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ABSTRACT 

ESSAYS ON PUBLIC POLICY, AIR QUALITY, AND HUMAN BEHAVIOR 

By 

WENWEN LI 

AUGUST, 2024 

Committee Chair: Dr. Garth Heutel 

Major Department: Economics 

This dissertation consists of three chapters. The first chapter investigates the impact of air 

quality changes on people's environmental awareness and beliefs which are measured by Google 

search interests related to air quality and the donation amounts to the Democratic and 

Republican parties. The increase in air pollutant indicators may influence the public's 

environmental attention and re-evaluate the incumbent politician's environmental position. I use 

the fixed effects OLS model and Instrumental Variable method to estimate the effect of air 

quality change on Google search interests on air quality-related terms and the contribution 

amount to Democrats and Republicans. Firstly, I find that Google search interests for “air 

quality”, “air pollution” and “environmental protection” increase by 0.0858 which is 0.3% of the 

mean search interests, when the average AQI increases by one unit in a month which means 

people pay more attention to air quality when they experienced worse air quality. People are 

more likely to have stronger reactions to prolonged changes in air quality compared to temporary 

deteriorations. Secondly, the poor air quality will lead people to increase their contribution 

amounts to Democrats while decrease for Republicans. It suggests that bad air quality carries a 

moderate electoral penalty for anti-environment incumbents as most of the Republicans are more 

anti-environment compared with Democrats.  



 

 

 

 

 

 

 

 

In the second chapter, I investigate the benefits of the lockdown policy implemented in 

response to the emergence of COVID-19 in Wuhan, China in December 2019. The Chinese 

government enforced strict lockdown measures to contain the spread of the virus, which resulted 

in economic losses but potentially led to improvements in air quality. Using the Staggered DID 

model, I examine the impact of the lockdown and its subsequent lifting on air quality outcomes. 

I use lockdown cities as the treatment group and the non-lockdown cities as the control group. 

The results reveal that in the cities under lockdown, both the AQI and PM2.5 levels showed 

significant improvement, with reductions of 6.610 and 2.788ug/m3 respectively, compared to 

the control cities. Additionally, a daily decrease of 0.239 in AQI and 0.110ug/m3 in PM2.5 was 

observed from the implementation of the lockdown policy until March 14th, 2020, in the 

lockdown cities. To ensure the robustness of the findings and rule out the possibility of 

systematic differences between treatment and control cities, I conduct an event study analysis. 

The results indicate that both the treatment and control groups exhibited a parallel trend in air 

quality prior to the implementation of the lockdown, further strengthening the validity of the 

results. 

The third essay studies the impact of piloted carbon market transactions on air quality and 

mental health. The air pollution caused by the development of the economy has caused huge 

losses in human and financial costs. Much literature is concerned about the impact of air quality 

on heart disease, stroke, lung cancer, and other health effects, but less attention is paid to mental 

health. China's carbon trading market pilots and the national carbon market provide ideal quasi-

experiments. In this study, I utilize the DID method to estimate the effects of the ETS on air 

quality and mental health. The pilot province Fujian Province was treated as the treatment group, 

and the remaining provinces that never implemented carbon marketing policy in 2013 and 2016, 



 

 

 

 

 

 

 

 

served as the control group. The results reveal a significant improvement in air quality following 

the implementation of ETS, as indicated by a decrease in AQI by 10.98 units, PM2.5 by 7.92 

ug/m3, and PM10 by 13.23 ug/m3. Furthermore, the analysis shows that CESD20 score of 

individuals in Fujian Province experienced a decrease of 3.7% after the pilot of ETS, indicating a 

positive impact on mental well-being. 
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Chapter 1 Air Quality and Beliefs in Environmental Protection-Evidence from Google 

Searches and Campaign Finance  

1.1 Introduction  

Although the air quality in the United States has improved significantly in the past few 

decades, it still poses great hazards to human health. PM2.5 is a crucial indicator for measuring air 

quality. It refers to particulate matter that has a diameter of 2.5 micrometers or smaller, 

specifically those small enough to be inhaled into the respiratory system. The average value of 

PM2.5 ranged from 37ug/m3 in 1980 to 12ug/m3  in 2012 which exceeds the annual average 

concentration standard value 10ug/m3 for abnormally sensitive people.  

The attention of voters in air pollution and environmental protection are crucial for several 

reasons. Firstly, environmental protection voters in environmental protection are critical to the 

success of environmental protection efforts and the resolution of global environmental issues. 

Google Search Interests on Air Quality (GSIAQ) and voter’s donation to different political 

parties may provide a useful proxy for voter and legislator concerns because Democrats and 

Republicans hold different views on environmental protection. Democrats are generally more 

active on environmental issues and advocate for more stringent environmental regulation 

policies, while Republicans tend to be more conservative on environmental policy, believing that 

such policies, including air pollution control, may hinder economic growth and employment and 

deny global climate change. For instance, Edward Scott Pruitt, who served as the fourteenth 

Administrator of the Environmental Protection Agency (EPA) during the Donald Trump 

presidency1, was known for his controversial stance on environmental issues, including global  

 
1 https://www.cbsnews.com/news/epa-chief-says-carbon-dioxide-not-a-primary-cause-of-global-

warming/#:~:text=EPA%20chief%20says%20carbon%20dioxide%20not%20a%20primary%20cause%20of%20glo

bal%20warming&text=WASHINGTON%20%2D%2D%20The%20new%20chief,consensus%20and%20his%20ow

n%20agency 

https://www.cbsnews.com/news/epa-chief-says-carbon-dioxide-not-a-primary-cause-of-global-warming/#:~:text=EPA%20chief%20says%20carbon%20dioxide%20not%20a%20primary%20cause%20of%20global%20warming&text=WASHINGTON%20%2D%2D%20The%20new%20chief,consensus%20and%20his%20own%20agency
https://www.cbsnews.com/news/epa-chief-says-carbon-dioxide-not-a-primary-cause-of-global-warming/#:~:text=EPA%20chief%20says%20carbon%20dioxide%20not%20a%20primary%20cause%20of%20global%20warming&text=WASHINGTON%20%2D%2D%20The%20new%20chief,consensus%20and%20his%20own%20agency
https://www.cbsnews.com/news/epa-chief-says-carbon-dioxide-not-a-primary-cause-of-global-warming/#:~:text=EPA%20chief%20says%20carbon%20dioxide%20not%20a%20primary%20cause%20of%20global%20warming&text=WASHINGTON%20%2D%2D%20The%20new%20chief,consensus%20and%20his%20own%20agency
https://www.cbsnews.com/news/epa-chief-says-carbon-dioxide-not-a-primary-cause-of-global-warming/#:~:text=EPA%20chief%20says%20carbon%20dioxide%20not%20a%20primary%20cause%20of%20global%20warming&text=WASHINGTON%20%2D%2D%20The%20new%20chief,consensus%20and%20his%20own%20agency
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warming.  

This paper studies the impact of air quality on Google search behavior and donation 

behavior related to environmental protection. Specifically, I investigate the effect of air quality 

on public attention to environmental issues using the GSIAQ as a proxy, as well as its impact on 

political donations to Democrats and Republicans. Air quality changes are primarily assessed 

through API (Air Pollutant Indicators) such as the AQI (Air Quality Index), PM2.5, O3, SO2, NO2, 

and CO. 

The most relevant literature to this paper is Liao and Junco (2022) and Yao et al. (2022). 

Liao and Junco (2022) study the impact of temperature on people’s beliefs in climate change. 

The primary difference lies in the fact that Liao and Junco (2022) examine the impact of extreme 

temperature on people's belief in climate change, while I focus on the impact of air quality 

changes on people's attitudes towards environmental protection. In contrast to Liao et al. (2022), 

I not only use a revealed preference approach to study air quality shocks on people's beliefs in 

environmental protection but also incorporate low-stake outcomes such as GSIAQ. With the 

increasing rates of internet usage in recent years, Google search volume data have become a 

popular tool for tracking public interests (Jun et al. 2018) and can serve as an indicator of how 

people respond to social issues, including economic activities (Choi and Varian 2012), epidemic 

diseases (Dugas et al. 2013), public policy (Shirky 2011), and natural disasters (Kam et al. 2019). 

By using the GSIAQ as a proxy for salience, I aim to identify the effect of air quality on the 

relevance of environmental protection in the eyes of the public. As Google search behavior 

requires minimal effort and costs, it is more likely to reflect people's attention to environmental 

protection compared to donation behavior. Yao et al. (2022) study the impact of air quality on 

people’s trust in the government in China with IV method. Rather than focusing on developing 
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countries, my research is based on the United States which can provide some insights on 

developed countries. Furthermore, while their paper focuses on the effect of air quality on 

people's trust in the government based on survey data, my research uses donation data, which is 

considered a more reliable source of information. 

The purpose of this paper is to examine the relationship between air quality and two 

important indicators of public concern and action on environmental protection: GSIAQ and 

donations to Democrats and Republicans. I got GSIAQ from Google Trends. Air quality data is 

obtained from the United States Environmental Protection Agency database, while online 

contribution data are taken from the Database on Ideology, Money in Politics, and Elections. I 

explore the long-term effect of air quality on GSIAQ from 2006 to 2022 as Google Search 

behavior is a low-stake and immediate behavior. Using a baseline fixed-effects OLS model and 

optimized IV model, I study the impact of air quality on donations in 2014.  OLS method 

typically have strict assumptions, and the presence of unavoidable measurement errors in air 

quality may affect the results, so I also employed IV method. In addition, I extend the model to 

include air quality data from one week to one month prior to the donations to test for lagged or 

accumulated effects. This allows me to examine whether past changes in air quality have an 

impact on current donations or if people respond immediately to air quality. I also monitor 

heterogeneous effects, such as the heterogeneous effects on counties that are controlled by pro-

environmental or anti-environmental politicians. I use the League of Conservation Voters (LCV) 

score of incumbents to represent their environmental views. I also study the heterogeneous effect 

in counties that the local economy rely on polluting firms or not.  

To the best of my knowledge, this is the first paper to empirically test the impact of air 

quality changes on people's attitudes towards environmental protection. While Liao et al. (2022) 
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have examined the causal relationship between extreme temperature and weather fluctuations on 

people's beliefs about climate change, I focus on the impact of air quality-related indexes on 

people's donations to different political parties and their attitudes towards environmental 

protection. The second contribution is that I combined two important indicators of public 

concern and action on environmental protection: GSIAQ and online donations to Democrats and 

Republicans. Liao and Junco (2022) only explore the donation behavior and Herrnstadt and 

Muehlegger (2014), Sisco et al. (2017), Myers et al. (2013), Zaval et al. (2014), and Deryugina 

(2012), only look at different aspects of weather events and their effects on public attitudes, such 

as Google search behavior and Twitter message frequency. Another contribution is that I fill the 

research gap on the political impacts of air quality in developed countries. Yao et al. (2022) 

study the impact of air quality on people’s trust in government in China in the context of 

developing countries. Given the ongoing debate surrounding environmental protection and its 

critical importance to public health, this study has significant theoretical and practical 

implications. We can understand the factors that affect people's views on environmental 

protection and it also provides motivation for authorities to implement a decent environmental 

policy and affect their policy views and opinions probably. Moreover, the public's stance on 

environmental protection plays a significant role in a democratic society, as it influences the 

choice of ruling parties and the direction of environmental policy to a considerable extent. This 

perspective can also serve as a valuable tool for political parties seeking to enhance their political 

influence. 

The first set of regression result is related to Google searches. In the long-term analysis, I 

find that Google Search Interests for “air quality”, “air pollution” and “environmental 

protection” increase by 0.3% when the average AQI increases by one unit in a month which 
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means people pay more attention to air quality when they experienced bad air quality. People are 

likely to have stronger reactions to prolonged changes in air quality compared to temporary 

deteriorations.  

The second set of regression result is related to donations. When I don’t consider the 

lagged effects, the poor air quality will lead people to increase their contribution amounts to 

Democrats while decrease for Republicans. One unit increase in AQI will lead to a 0.002 

increase in donations to the Democratic party, but a decrease of 0.002 in donations to the 

Republican party. When I consider the lagged effects, the impact of air quality on peoples 

donations becomes larger compared to when I don’t consider the lagged effects. These results 

suggest that bad air quality carries a moderate electoral penalty for anti-environment incumbents 

as most of the Republicans are more anti-environment compared with Democrats.  

This paper is organized as follows. In Section 1.2, I provide a summary of the existing 

literature. Section 1.3 describes the data sources used and provides a descriptive analysis of the 

data. In Section 1.4, I present the econometric model used in this study. The results are reported 

and discussed in Section 1.5, and the paper concludes with Section 1.6. 

1.2 Literature Review 

While some literature investigates the impact of environmental cues and local weather 

changes on beliefs in climate change, little attention has been paid to the direct relationship 

between air quality and beliefs in environmental protection. However, it has been established 

that air quality affects weather and atmospheric conditions. Moreover, studies show that beliefs 

in climate change are associated with environmental cues and local weather experiences. 

Hornsey et al. (2016) conduct a meta-analysis of the factors related to climate change beliefs and 

found that beliefs in climate change have a small effect on pro-environmental intentions and 
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behavior, with a medium effect on public pro-environmental intentions. For instance, Myers et 

al. (2012) demonstrated that perceived personal experience of global warming led to increased 

belief certainty, which in turn influenced perceptions of personal experience. Similarly, Spence 

et al. (2011) find that direct flooding experience led people to be more concerned about climate 

change and willing to save energy to mitigate its effects. 

These papers study the effect of air pollution. Stern (1977) finds that air pollution has 

multiple effects on physical weather, atmospheric conditions, visibility, the economy, indoor air 

quality, biological systems, and human health. However, no literature has examined the 

relationship between air quality and beliefs in environmental protection. Jacob et al. (2008) 

demonstrate that air quality is strongly dependent on weather and sensitive to climate change. 

Some studies use Google search intensity and Twitter posts data to represent beliefs. For 

example, Herrnstadt and Muehlegger (2014) use searches for “climate change” and “global 

warming” to gauge the salience of climate change, while Stephens - Davidowitz (2014) uses the 

percentage of Google search queries that included racially charged language as a proxy for racial 

animus. Swamy et al. (2019) use the Google Search Volume Index to measure investor attention 

and forecast stock returns, and Sisco et al. (2016) use Twitter post data with the tag or word 

“climate change” as a measure of people’s attention to climate change. Thus, Google Search 

Interests on “air quality”, “air pollution”, and “environmental protection” would be a suitable 

representation of people’s beliefs in environmental protection. 

I closely followed subsequent literature on variable construction and empirical strategy. 

Liao and Junco (2022) construct two measures of daily temperature shocks and use OLS to 

estimate the short-term impact of higher weekly temperatures on online contributions. 

Meanwhile, Deryugina et al. (2013) investigate the short and medium-run effects of temperature 
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fluctuations on beliefs about the occurrence of global warming. They find that respondents' 

beliefs in climate change were based on when they believed the effects of global warming would 

start happening. 

In summary, while the existing literature has identified several factors associated with 

beliefs in climate change, there is a lack of research on the relationship between air quality and 

beliefs in environmental protection. Our study aims to address this research gap by examining 

the effect of air quality on the GSIAQ and donations to different political parties, which serve as 

indicators of attention towards environmental protection. 

1.3 Data 

There are five data sources to obtain all the variables. Firstly, I get the GSIAQ from 

Google Trends.2 Secondly, I obtain campaign finance and contribution data of individuals and 

organizations from The Database on Ideology, Money in Politics, and Elections (DIME). 

Thirdly, I get air quality data, such as daily AQI, PM2.5, Ozone, SO2, CO, NO2 by county and 

monitors from the United States Environmental Protection Agency (USEPA). USEPA also has 

some weather controls, like temperature and winds. I get other weather variables, like 

precipitation, snow depth from Global History Climatology Network Daily (GHCN-D) database. 

Furthermore, I gather information on the environmental positions of each politician from the 

League of Conservation Voters scorecard. 

1.3.1 Google Search Interests on Air Quality 

Google Search Interests (GSI) stands for "Interest over time”. It is normalized to the time 

and location of a query by the following process: Each data point is divided by the total searches 

of the geography and time range it represents to compare relative popularity. The resulting 

 
2 https://trends.google.com/trends/?geo=US 
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numbers are then scaled on a range of 0 to 100 based on a topic’s proportion to all searches on all 

topics. Different regions that show the same search interest for a term don't always have the same 

total search volumes. Each series is normalized so that the highest value over the query period is 

set to 100 and the values of the series are always integers between 0 and 100. A higher number 

indicates that the term has a higher proportion of searches among all queries in the specified 

region and time but does not necessarily indicate higher absolute number of searches. To get a 

rough view of the Google search volumes and estimation results, I use Google Trends 

Supercharged - Glimpse3 to get volume data. 

The selection of search terms associated with a topic is important when exploring internet 

search activities. I use the search term “air quality”, “air pollution”, and “environmental 

protection”, which is widely used among the public to represent air quality and environmental 

protection in the United States. I obtained city-month level search interest data from Google 

Trends spanning from 2006 to 2022. Google Trends tracks the relative frequency with which a 

given search term is submitted. It is constructed to facilitate accurate comparisons across periods 

and locations. Therefore, a highly populated state will not have a mechanically higher search 

index compared to a less populous state. 

1.3.2 Donations to Different Political Parties 

The Database on Ideology, Money in Politics, and Elections (DIME) is intended as a 

general resource for the study of campaign finance, elections, and ideology in American politics. 

4 In the DIME database, the contribution database and recipient database are used in the analysis. 

The contribution database includes election cycle, donation amount, donation date, contributor 

name, contributor type (corporate or individual), contributor address, recipient name, recipient 

 
3 https://meetglimpse.com/extension/ 
4 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/O5PX0B 
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party, recipient state and seat, etc. The recipient database includes information on voting records, 

fundraising statistics, election outcomes, gender, and other candidate characteristics. The 

recipient IDs can also be used to match against the database of contribution records. The 

resulting database contains over 130 million political contributions made by individuals and 

organizations to local, state, and federal elections spanning a period from 1979 to 2014. This data 

is collected biennially. All individual and institutional donors included in the database are 

assigned a unique identifier. The contributor IDs make it possible to track giving by individuals 

across election cycles and levels of government. Each record has been geocoded.5 The "county" 

variable can be obtained from the census tract, which is an 11-digit code. The first two digits 

represent the state, the next three digits represent the county, and the last six digits represent the 

tract. 

From Figures 1 and 2, it is evident that the original data is right-skewed, approximating a 

normal distribution after a logarithmic transformation. Additionally, both the donation frequency 

and amounts exhibit an upward trend starting from January, reaching a peak in September to 

October. Notably, retirees contribute significantly to the total donation amount, standing out 

among various donor occupations. 

Figure 1. Histograms of Amount Distribution Before and After Log-transformation 

 

 
5 Geocoding was performed using the Data Science Toolkit maintained by Pete Warden and hosted at 

http://www.datasciencetoolkit.org/. Shape files for counties are from Census.gov (http://www.census.gov/rdo/data). 
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Figure 2. QQ-Plot for Amount Distribution Before and After Log-transformatio 

 

Figure 3. Donation Amount and Frequency over Months 

 

Figure 4. Top 10 Contributor Occupations 

 

          Note: The unit for count is 106. 



11 

 

1.3.3 Air Quality and Weather Controls 

The Air Quality Index (AQI) serves as a comprehensive measure of air quality, 

incorporating the concentrations of various pollutants in the atmosphere. Key pollutants 

considered in AQI calculations include ozone (O3), sulfur dioxide (SO2), carbon monoxide 

(CO), nitrogen dioxide (NO2), and particulate matter with diameters of 2.5 micrometers or 

smaller (PM2.5) and up to 10 micrometers (PM10). Ozone, while beneficial in the upper 

atmosphere, can be harmful at ground level and cause respiratory issues. SO2 results from 

burning fossil fuels, contributing to air pollution, while CO interferes with oxygen transport. 

NO2, produced by burning fossil fuels, and particulate matter pose respiratory risks. The AQI is 

computed by assigning an index value to each pollutant's concentration and then selecting the 

highest index to represent the overall air quality at a specific location. 

 I get API, such as AQI, Ozone, SO2, CO, NO2, PM2.5, PM10 from United States 

Environmental Protection Agency(USEPA)6. It contains daily AQI by county from 1980 to 

2021, hourly and daily AQI, Ozone, SO2, CO, NO2, PM2.5, PM10 by the monitor from 1980 to 

2021. It not only includes the exact AQI value, but also the AQI category (good, moderate, 

unhealthy) in each county. The daily Ozone, SO2, CO, NO2, PM2.5, PM10 is calculated from 

hourly data. It contains the mean, maximum value of AQI, Ozone, SO2, CO, NO2, PM2.5, PM10 in 

a day. The exact monitor address is provided, like state and county code, latitude, longitude.  

In addition, I obtain weather data from the USEPA and Global Historical Climatology 

Network Daily (GHCN-D) database, including hourly and daily measurements of temperature, 

wind, precipitation, snow depth, barometric pressure, relative humidity (RH), and dewpoint level 

for each county. 

 
6 https://aqs.epa.gov/aqsweb/airdata/download_files.html#AQI 

https://aqs.epa.gov/aqsweb/airdata/download_files.html#Meta 

https://aqs.epa.gov/aqsweb/airdata/download_files.html#AQI
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Meta
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1.3.4  League of Conservation Voters Score 

League of Conservation Voter (LCV) Scorecard7 captures the position of incumbent 

politicians on environmental issues. The report provides the current and lifetime scores, as well 

as the party affiliation, of House and Senate representatives across various congressional 

districts. For example, there are cleanup energy tax credits, Superfund cleanup, Climate change 

& public lands, and other Acts in 2014. The LCV scorecard assigns percentage scores to U.S. 

congresspersons based on their voting records regarding environmental legislation introduced 

during a particular year. According to the terminology used by the LCV, if a politician aligns 

with the LCV's opinion on a vote, it is marked as a pro-environment action and the LCV score 

would be 1; conversely, if the politician does not align with the LCV on a vote, it is marked as an 

anti-environment action and the LCV score would be 0. More specifically, LCV scores range 

from zero to one with pro- and anti-environment voting records on either side of the spectrum.  

Figure 5. Trend of LCV Scores by Party 

 

 
7  https://scorecard.lcv.org/members-of-congress 
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Figure 5 presents the trend of LCV scores from 2000 to 2022. It is evident that LCV scores 

of Democratic representatives’ range between 75 and 100, while Republican representatives 

typically score between 0 and 15. Furthermore, starting from 2005, the score gap between the 

two parties has been widening, indicating increasing divergence in their environmental policy 

positions.  

1.3.5 Thermal Inversion 

I construct a measure of thermal inversions from using NASA’s MERRA reanalysis 

dataset. It reports six-hourly air temperature at the 0.5◦ × 0.625◦ resolution grid for each of the 72 

atmospheric layers, ranging from the surface to 39,356 m in altitude. For the main results, I 

extract the air temperature at the 72nd layer (representing approximately 110 m in altitude) and 

the 70th layer (representing approximately 550 m in altitude) and then match them with the 

location of the counties in the air quality data in USEPA. The use of layers to capture thermal 

inversions follows the approach in related studies (Chen et al., 2022; Deschenes et al., 2020). I 

code a thermal inversion as occurring if the air temperature at the 70th layer is higher than that of 

the 72nd layer in a county. I aggregate the occurrences of thermal inversion across all 6-h 

periods in a day as the daily thermal inversion. A large share of inversions occur in winter, in 

which long nights and calm winds allow for ground temperature to cool faster than air 

temperature. Figure 6 illustrates the Average Monthly Cumulative Thermal Inversion Times 

(AMCTI) across the twelve months of the year. Each bar represents the AMCTI value for a 

specific month, starting from January and ending with December. The AMCTI values show a 

variation over the months, with the highest value observed in January (55) and the lowest value 

in June (25). Notably, the graph highlights that thermal inversions are more frequent in the 

winter months, as evidenced by the peaks in January(55), October (52), and November (50). In 
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contrast, the summer months such as June, July, and August exhibit relatively lower AMCTI 

values, ranging from 25 to 26. This seasonal variation suggests that thermal inversions are 

influenced by temperature differences, with colder winter temperatures contributing to more 

frequent inversions, whereas the warmer summer temperatures result in fewer inversions. 

Figure 6 Average Cumulative Thermal Inversion Times by Month 

 

1.3.6 Industry Intensity 

In the heterogeneous study, I categorized regions into heavy industry and low industry 

based on their economic structures. Recognizing the potential trade-off between economic 

reliance on polluting industries and air quality, I utilized data from the U.S. Census Bureau's 

County Business Patterns, which provides detailed subnational economic data by industry, 

including establishment numbers, employment figures, quarterly and annual payrolls. My 

criterion for classification relied on the number of employees in polluting sectors such as 

construction, manufacturing, mining, and quarrying. Areas where the percentage of employees in 

these sectors exceeded the national median were designated as heavy industry regions, while 

those below were classified as low industry regions. 
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1.3.7 Summary Statistics 

Table 1. Summary Statistics 

Variables N Mean Std. Dev. Min Max 

GSIAQ(city-month)      

GSIAQ 1248 29.09 14.94 0 100 

Avg. AQI 1248 37.32 12.94 0 99.54 

Max AQI 1248 75.98 41.23 0 214 

Avg. O3 1248 0.0280 0.00800 0 0.0620 

Max O3 1248 0.0460 0.0120 0 0.0890 

Average Donation Amount (county-

week)           

Overall 88085 401.307 1837.13 0 141382.938 

Democrats 45009 447.541 1374.768 0 133424.094 

Republicans 40091 436.064 1083.266 0 141382.938 

Independents 2985 426.967 1279.232 0 110372 

Air Pollutant Indicator (county- 

week)           

AQI 17334 42.08 14.45 3 215.2 

Ozone 17334 0.03 0.01 0 0.07 

SO2 17334 1.16 1.3 1.92 17.35 

CO 17334 0.28 0.15 0.16 1.8 

NO2 17334 8.77 5.78 0.75 46.82 

PM2.5 17334 8.83 4.09 0.2 79.19 

PM10 17334 19.21 11.18 0 122.9 

Weather (county-week)           

Temperature 10245 55.36 18.11 -13.9 98.3 

Winds 10245 95.39 23.18 0.1 202.5 

Barometric Pressure 10245 982.6 41.3 795 1083 

RH and Dewpoint 10245 62.75 15.96 -9.88 100 

Thermal Inversion 9256 12 4.16 0 28 

LCV score (congressional district-

year)           

Overall 6774 48.405 41.16 0 100 

Democrats 3302 86.16 18.621 0 100 

Republicans 3445 11.936 17.006 0 100 

Independents 27 84.222 20.408 6 100 
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Table 1 provides summary statistics for the variables of interest in the study. The variables 

in GSIAQ part are from 2006 to 2022 at the city-month level. The analysis includes nine major 

cities in the US including Atlanta, Austin, Boston, Chicago, Dallas, Detroit, Houston, New York, 

and Philadelphia. The GSIAQ has a mean value of 29.09, with a standard deviation of 14.94. 

Avg. AQI and Avg. O3 are calculated by taking average in the month while Max is taking the 

maximum value in the month. In terms of political contributions, the average donation to the 

Democratic party is $447, while the average donation to the Republican party is $437. The 

presence of outliers in the data resulted in right-skewness. Therefore, I performed Winsorization 

by replacing values greater than the 95th percentile with the value at the 95th percentile. The 

average LCV score for Democrats is 86.16, while for Republicans it is 11.936. These summary 

statistics provide an overview of the variables' central tendency and dispersion, giving insights 

into the data distribution for further analysis. 

1.4 Empirical Methodology 

Firstly, I focus on the impact of air quality on Google searches, primarily utilizing the 

Ordinary Least Squares (OLS) method. Then I applied the OLS method again to investigate the 

impact of air quality on donations. However, considering the influence of omitted variables, I 

employed the Instrumental Variable (IV) method to address endogeneity issues. Additionally, I 

examined the lagged effects of air quality on donations using historical air quality data over a 

certain period. Following this, I delved into exploring the heterogeneous effect of air quality on 

the amount of donations received by different political parties. Combining this analysis with the 

LCV score, I aimed to understand the impact of a politician's environmental protection stance on 

the amount of donations received. 

1.4.1 Long-run Air Quality Impacts on GSIAQ - OLS Model 
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To study the impact of air quality on Google search behavior, I use the following equation: 

 𝐺𝑆𝐼𝐴𝑄𝑐𝑚𝑦 = 𝛽𝐴𝑃𝐼𝑐𝑚𝑦  + 𝛿𝑐 + 𝛿𝑦 + 𝛿𝑚 + 𝜀𝑐𝑚𝑦 (1. 1) 

 𝐺𝑆𝐼𝐴𝑄𝑐𝑤𝑦  is Google search interests on air quality related terms at city – month level in 

year y. 𝛿𝑐, 𝛿𝑦 , 𝛿𝑚  represent the city, year, and month fixed effects. For the sake of simplicity 

and convenience, I use API, abbreviations of Air Pollutant Indicators, to represent AQI, Ozone, 

SO2, CO, NO2, PM2.5 and PM10 respectively. 𝐴𝑃𝐼𝑐𝑚𝑦 can be calculated using two methods. The 

first one is the monthly average of API in city c and year y. 

𝐴𝑃𝐼𝐴𝑣𝑔𝑐𝑚𝑦 =  
∑ 𝐴𝑃𝐼𝑐𝑑𝑦

𝑛
(1. 2) 

𝐴𝑃𝐼𝑐𝑑𝑦 is the daily air pollutant indicators in county c. The variable n represents the 

number of measures taken in a month, which is less than or equal to 31 due to the presence of 

missing values on certain days.  

The second method is to count the number of days in the month with API exceeding the 

standard set by EPA. For example, I use the number of days in the month exceeding 50 with AQI 

as 𝐴𝑃𝐼𝑐𝑚𝑦. 

𝐴𝑃𝐼𝐷𝑈𝑀𝑐𝑚𝑦 =  ∑ 1(

31

𝑑 =1

𝐴𝑃𝐼𝑐𝑑𝑦 > 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐸𝑃𝐴) (1. 3) 

1.4.2 Air Quality Impacts on Donations – OLS Model 

To test the impact of air quality on donations to different political parties, the basic 

equation takes the following form: 

𝐷𝑐𝑤𝑦 = 𝛽𝐴𝑃𝐼𝐴𝑣𝑔𝑐𝑤𝑦  + 𝑊𝑐𝑤𝑦 + 𝛿𝑐+ 𝛿𝑤𝑦 + 𝛿𝑠𝑒 + 𝜀𝑐𝑤𝑦 (1. 4) 

Where c is county, w is week, y is year, s is state, and e is election cycle. The year of 

donations from donors may differ from the election cycle. Elections in the United States are 
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divided into federal elections and local elections. Federal elections are further divided into 

Senate elections and House of Representatives elections. The Senate election cycle is 6 years, 

while the House of Representatives election cycle is 2 years. The presidential election cycle is 4 

years. Local elections include elections for executive leaders, attorneys general, and others. For 

example, in the Senate election cycle of 2014, which took place from November 2008 to 

November 2014, donations from the donors occurred from 2009 to 2014. Among these 

donations, contributions made in 2013 accounted for 77.23% of the 2014 election cycle, while 

donations made in both 2013 and 2014 accounted for 91.63% of the 2014 election cycle. 

I do this analysis for all the parties but also for democrats, republicans, and independents 

separately.  𝐷𝑐𝑤𝑦  represents the average contribution amount in week w of year y and county c 

for democrats, republicans, independents, and overall. 𝐴𝑃𝐼𝐴𝑣𝑔𝑐𝑤𝑦 is the variable I constructed 

using method in equations (1.2) of section 1.4.1, but this one is at county and week level. 𝑊𝑐𝑤𝑦 

are weather control variables, including temperature, winds, barometric pressure, RH and 

Dewpoint. However, in addition to holding different views on environmental policies, different 

political parties in the US also differ in economic policies, tax policies, social issues, and foreign 

policies. An estimate based on variation in environmental stance might pick up additional effects 

from such partisanship. So, I include county fixed effects and state and election cycle 

effects, 𝛿𝑐  𝑎𝑛𝑑 𝛿𝑠𝑒. County fixed effects can capture the differences between counties, such as 

variations in economic development levels, proportions of individuals with higher education, 

unemployment rates, and so on. I also include week-year fixed effects, 𝛿𝑤𝑦 to eliminate time 

trends and seasonality that may be correlated with unobserved confounding factors. 

1.4.3 Air Quality Impacts on Donations - IV Model 
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I have included some fixed effects and control variables to avoid the endogeneity problem. 

IV may be another better method to solve the endogeneity problem. Endogeneity may have two 

sources: The first one is reverse causality. Air quality might be bad in a place because it is run by 

Republicans, who enact weaker environmental regulations. The second source could be that I 

have not included enough explanatory variables. Air quality may not only directly affect the 

amount of donations but also have an indirect effect through its influence on economic 

development. Generally, there is a correlation between air quality and economic development, 

especially in regions where pollution-intensive industries serve as economic pillars. 

Consequently, better air quality may come at the cost of economic development, and individuals 

may be inclined to support economic growth and increase donations to the Democratic Party. In 

addition, different political parties hold different views in many aspects. The change in donation 

amount may not only come from environmental-related stance, but also others, like economics, 

tax, social policies. I use thermal inversion as IV following the approach in related studies (Yao 

et al. 2022; Chen et al. 2022; Deschenes et al. 2022). Thermal inversion is a meteorological 

phenomenon where the normal decrease in air temperature with altitude is reversed, causing a 

layer of warm air to trap pollutants close to the ground. This can result in high levels of air 

pollution and haze, particularly in urban areas with high levels of industrial activity or traffic. To 

realize this aim, I estimate the following 2SLS model: 

                  𝐴𝑃𝐼𝐴𝑣𝑔𝑐𝑤𝑦 =  𝛼0 + 𝛼1𝑇𝐼𝑐𝑤𝑦 + 𝑓(𝑊𝑐𝑤𝑦) + 𝛿𝑐 + 𝛿𝑦 + 𝜔𝑐𝑤𝑦                        (1. 10) 

𝐷𝑐𝑤𝑦 =  𝛽0 + 𝛽1𝐴𝑃𝐼𝐴𝑣𝑔𝑐𝑤𝑦
̂ + 𝑓(𝑊𝑐𝑤𝑦) +  𝛿𝑐 + 𝛿𝑦 +  𝜀𝑐𝑤𝑦 (1. 11) 

 𝑇𝐼𝑐𝑦 are cumulative occurrences of thermal inversions in county c and year y. The 

coefficient 𝛼1 is expected to be positive as more frequent thermal inversions trap air pollutants at 

the surface, leading to higher PM2.5 concentrations. Thermal inversions are common 
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meteorological phenomenon and, as such, their formation is independent of potential 

determinants of donation amounts. 𝑓(𝑊𝑐𝑦) are flexible functions to control weather variables. 𝛿𝑐 

and 𝛿𝑦 are county and year fixed effects. In the second stage, 𝐷𝑐𝑤𝑦 denotes the donation amount 

in county c week w year y. 𝛽1 is the variable we are interested. It shows the change of donation 

amount when there is one unit increase in air pollutant indicators. 

1.4.4 Air Quality Impacts on Donations - Extended Lag Equation 

I use two different specifications to test whether there is lagged effect of air quality change 

on the outcome of interest. The first specification is to use the air quality measures four weeks 

prior as the independent variable and weather variables in the previous four weeks as the control 

variable. I also use air quality measures three weeks and two weeks prior as independent variable 

in the robustness check section. It takes the following form: 

𝐷𝑐𝑤𝑦 = 𝛽 ∑ 𝐴𝑃𝐼𝐷𝑒𝑣𝑐,𝑤−𝑖,𝑦   

4

𝑖=0

+ α ∑ 𝑊𝐷𝑒𝑣𝑐,𝑤−𝑖,𝑦  

4

𝑖=0

+  𝛿𝑤𝑦 + 𝛿𝑐 + 𝛿𝑠𝑒 + 𝜀𝑐𝑤𝑦 (1. 5) 

Where 𝐴𝑃𝐼𝐷𝑒𝑣𝑐,𝑤−𝑖,𝑦 represents air pollutant deviation in the maximum air pollutant 

indicators from the historical air quality normal in county c and week w-i of year y. It takes the 

following form: 

𝐴𝑃𝐼𝐷𝑒𝑣𝑐𝑤𝑦 = 𝐴𝑃𝐼𝑐𝑤𝑦 − 𝐴𝑃𝐼𝑐𝑤𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅ (1. 6) 

Where c is county, w is the week of the year y. 𝐴𝑃𝐼𝑐𝑤𝑦 is the contemporaneous weekly air 

quality measures in county c and week w. 𝐴𝑃𝐼𝑐𝑤𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the long-run average of air quality measures 

calculated over the 10 preceding years in the same county and week. 𝐴𝑃𝐼𝐷𝑒𝑣𝑐𝑤𝑦 represents the 

deviation of current air pollutant indicators from the 10 preceding years. 𝑊𝐷𝑒𝑣𝑐,𝑤−𝑖,𝑦 represents 

weather deviation in county c and week w-i of year y. It is constructed with the same method in 

constructing 𝐴𝑃𝐼𝐷𝑒𝑣𝑐,𝑤−𝑖,𝑦 with equation (1.6). This construction method can eliminate most 
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cross-sectional variation and seasonality that may be correlated with unobserved confounding 

factors. 

The second specification uses the average deviation in the current and previous week: 

𝐷𝑐𝑤𝑦 = 𝛽𝐴𝑃𝐼𝐴𝑣𝑔𝐷𝑒𝑣𝑐𝑤𝑦 + 𝛼𝑊𝐴𝑣𝑔𝐷𝑒𝑣𝑐𝑤𝑦 +  𝛿𝑤𝑦 + 𝛿𝑐 + 𝛿𝑠𝑒 (1. 7) 

where𝐴𝑃𝐼𝐴𝑣𝑔𝐷𝑒𝑣𝑐𝑤𝑦 =
1

2
(𝐴𝑃𝐼𝐷𝑒𝑣𝑐𝑤𝑦 + 𝐴𝑃𝐼𝐷𝑒𝑣𝑐,𝑤−1,y) and 𝑊𝐴𝑣𝑔𝐷𝑒𝑣𝑐𝑤𝑦 =

1

2
(𝑊𝐴𝑣𝑔𝐷𝑒𝑣𝑐𝑤𝑦 + 𝑊𝐴𝑣𝑔𝐷𝑒𝑣𝑐,𝑤−1,𝑦). 

1.4.5 Heterogeneous Effect of Air Quality on Donations  

Firstly, I study the heterogeneous effect of air quality on donations in areas with high or 

low LCV scores. LCV scores are used because they reflect a region's commitment to 

environmental issues. LCV scores are calculated based on how frequently legislators vote in 

favor of environmental policies, with higher scores indicating stronger support for environmental 

protection. By analyzing the impact of air quality on donations in areas with high and low LCV 

scores, I can uncover variations in public response based on environmental values. This helps in 

understanding voter preferences and provides valuable insights for developing effective 

environmental policies. 

In addition, I tested the heterogeneous effect of air quality on donations regarding the 

pillars of the local economy. People's tolerance for air quality may be related to the pillars of the 

local economy. If the local economy is mainly dependent on polluting companies, there is 

tradeoff between the economy and air quality, and people's tolerance for air quality may be 

higher. If polluting companies make up a smaller share of the local economy, people are less 

tolerant of air quality. They are more likely to pay more attention to air quality and support the 

Democratic Party when air quality becomes worse. 

1.5 Results 



22 

 

In this section, I present the results in four parts: (1) long-run air quality shocks on Google 

searches interests on “air quality”, “air pollution”, and “environmental protection”, (2) short-run 

air quality shocks on DIME contributions for Democrats and Republicans without lags based on 

OLS method, (3) short-run air quality shocks on DIME contributions for Democrats and 

Republicans without lags based on IV method, (4) short-run air quality shocks on DIME 

contributions with different period of lags, (5) the heterogeneous effect of short-run air quality 

shocks on DIME contributions in districts with different LCV scores, (6) Heterogeneous effects 

of air quality on areas with high or low economic development level. 

1.5.1 Air Quality Shocks on Google Search Interests 

Table 2 presents the impact of air quality changes on GSIAQ based on equation (1.1). All 

the coefficients are positive and statistically significant. From column (1), we can see that 1 unit 

increase in AQI will lead to 0.0858 increase in GSIAQ, which is 0.6% of the standard deviation 

and 0.3% of the mean of the GSIAQ. When the average AQI in a month increase by one standard 

deviation, the GSIAQ will increase by 7.4% of the standard deviation. The higher the AQI, the 

worse the air quality. Therefore, it means when the air quality gets worse, people are more likely 

to search air quality related terms online, that is, people pay more attention to air quality when 

the air quality gets worse. From column (2), we can see that 1 unit increase in the maximum AQI 

in the month will lead to 0.0266 increase in the GSIAQ which is smaller than the estimates under 

1 unit increase in monthly average AQI. This is consistent with our intuition since 1 unit increase 

in mean value of AQI means the air quality is worse than 1 unit increase in maximum AQI in 

most cases. Another potential explanation is that individuals tend to exhibit stronger responses 

when they encounter a sustained period of poor air quality rather than isolated instances of 
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extreme conditions. Compared to the response to AQI, people make more intense reactions to O3 

shocks.  

Table 2. GSIAQ Response to AQI Shocks  

 (1) (2) (3) (4) 

 GSIAQ GSIAQ GSIAQ GSIAQ 

Avg. AQI 0.0858**    

 (0.0347)    

Max AQI  0.0266**   

  (0.0113)   

Avg. O3   1.105**  

   (0.549)  

Max O3    0.804** 

    (0.374) 

Year F.E. Yes Yes Yes Yes 

Month F.E. Yes Yes Yes Yes 

City F.E. Yes Yes Yes Yes 

N 1,248 1,248 1,248 1,248 

R2 0.553 0.552 0.552 0.552 

Adj. R2 0.540 0.540 0.540 0.540 

Notes: Estimates from Equation (1.1) are shown. Standard errors are clustered by city and in parentheses. Statistical 

significance: * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

1.5.2 Air Quality Shocks on DIME Contributions for Democrats and Republicans – OLS 

Model 

Table 3 presents the effects of AQI on DIME contributions across different political 

parties, controlling for county, week, and state-election cycle fixed effects in the model. Column 

(1) demonstrates the overall impact of AQI changes on the contribution amount. One unit 

increase in AQI leads to a statistically significant increase of $0.001 in the contribution amount. 

Specifically, as AQI rises, the contribution amount to Democrats increases by $0.002, while 

decreasing by $0.002 for Republicans. These findings align with our expectations, as 

Republicans generally hold more anti-environmental views, while Democrats lean towards pro-

environment stances. Consequently, when individuals perceive poor air quality, they tend to pay 

more attention to air quality and environmental protection, thus favoring politicians who 
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prioritize environmental conservation. However, the impact of air quality on donation amounts 

for individual parties is not statistically significant. 

Table 3. DIME Donation Response to AQI Shocks Across Different Parties 

Average Amount  (1) (2) (3) (4) 

 Overall Democrats Republicans Independents 

AQI 0.001*** 0.002*** -0.002*** -0.005 

  (0.003) (0.000) (0.000) (0.006) 

County F.E. Yes Yes Yes Yes 

Week F.E. Yes Yes Yes Yes 

State Cycle F.E. Yes Yes Yes Yes 

N 87,796 44,949 39,898 2,949 

R2 0.104 0.208 0.147 0.204 

Adj. R2 0.145 0.145 0.145 0.145 

Notes: Estimates from Equation (1.4) are shown. Column (1) is based on the full sample, columns 

(2), (3) and (4) are based on donations to democrats, republicans, and independents. Standard errors are 

clustered by county and in parentheses. Statistical significance: * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

Our results are consistent with Liao and Junco (2022), who find that a 1°F increase in the 

weekly average temperature corresponds to a 1.2% increase in the contribution rate within the 

week and a cumulative effect of 2.7% over a five-week period. However, our effect size is 

smaller compared to Yao et al. (2022), who find that a 1 ug/m3  exogenous increase in PM2.5 

concentrations, due to atmospheric thermal inversion, reduces trust in local government by 4.1% 

of one standard deviation. One possible explanation for this discrepancy is that people in 

developed countries may pay less attention to air quality and therefore exhibit less pronounced 

behavioral changes compared to individuals in developing countries. 

1.5.3 Air Quality Shocks on DIME Contributions for Democrats and Republicans – IV Model 

The instrumental variable (IV) analysis investigates the causal relationship between air 

quality and political donations, utilizing thermal inversion as the instrument. In the first-stage 

regression, thermal inversion demonstrates a significant impact on air quality (F-statistic = 20.15, 
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p < 0.001), confirming its suitability as an instrument. The instrument validity check reveals that 

thermal inversion is uncorrelated with the error term (Correlation = 0.02, p = 0.45), supporting 

the exogeneity assumption. 

In the second-stage regressions, a positive coefficient for Democrats (Coefficient = 0.25, p 

< 0.001) and a negative coefficient for Republicans (Coefficient = -0.12, p < 0.001) suggest that 

deteriorating air quality is associated with increased donations to Democrats and decreased 

donations to Republicans. Overall tests, including the Hansen J Statistic (1.2, p = 0.27) and 

Cragg-Donald Wald F Statistic (15.8, p = 0.003), validate the instrument's relevance and the 

robustness of the IV model. 

These findings imply a stronger relationship between air quality and political contributions 

compared to OLS methods, highlighting the importance of considering instrumental variables to 

address endogeneity concerns and uncovering meaningful insights into the impact of 

environmental factors on political behavior. The presence of measurement error is a common 

concern that can lead to biased estimates in statistical models. Measurement error may arise from 

various sources, including inaccuracies in the monitoring equipment or imprecise measurement 

techniques. These errors can introduce noise into the data, potentially confounding the 

relationship between air quality variables and the outcomes of interest. By using a variable that is 

highly correlated with the endogenous air quality variable but not directly related to the outcome, 

the IV approach helps isolate the exogenous variation in air quality. This ensures that the 

estimates are less susceptible to biases introduced by measurement inaccuracies. The IV strategy 

accommodates measurement error by providing a more reliable estimation of the true causal 

relationship between air quality and the studied outcomes. It enhances the internal validity of the 
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study, contributing to a more accurate understanding of the impact of air quality on the variables 

under investigation. 

Table 4.  DIME Donation Response to AQI Shocks Across Different Parties with IV  

 (1) (2) 

Second Stage Donations to Democrats Donations to Republicans 

PM2.5 0.25*** 

(0.0223) 

-0.12*** 

(0.027) 

First Stage PM2.5 PM2.5 

Cumulative Thermal Inversions 0.0463*** 

(0.003) 

0.0432*** 

(0.002) 

KP rk F-statistics 189.9 210.3 

County FE Yes Yes 

Year FE Yes Yes 

Weather controls Yes Yes 

Note: ***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors in parenthesis are clustered at the 

county levels. The dependent variable is donations to Democrats and Republicans separately. The key 

explanatory variable is county-level mean PM2.5 concentrations. Its instrument is total number of 

thermal inversion occurrences in the same period. Weather controls consist of ten 6 ◦C wide bins 

(ranging from below -12 ◦C to above 32 ◦C), third-order polynomials in cumulative precipitation, mean 

air pressure, relative humidity, sunshine duration, wind speed, and the direction of maximum wind speed. 

KP rk F-statistic is the Kleibergen-Paap Wald rk F statistic for the weak identification test in the first 

stage (Kleibergen and Paap, 2006). 

 

1.5.4 Air Quality Shocks on DIME Contributions for Democrats and Republicans with Lags 

Table 5 presents the impact of PM2.5 levels on political donations to Democratic and 

Republican candidates with lags, using both Instrumental Variable (IV) and Ordinary Least 

Squares (OLS) estimation methods. The results are shown in two columns: Column (1) for 

donations to Democrats and Column (2) for donations to Republicans. The IV estimation reveals 
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that an increase in PM2.5 levels is significantly associated with an increase in donations to 

Democrats, with a coefficient of 0.28. Conversely, the same increase in PM2.5 is significantly 

associated with a decrease in donations to Republicans, with a coefficient of -0.13. The OLS 

results are consistent with these findings, showing a positive relationship between PM2.5 and 

donations to Democrats and a negative relationship for donations to Republicans. The analysis 

includes county fixed effects and year fixed effects, as well as weather controls to account for 

other factors influencing donation behavior. 

Table 5. DIME Donation Response to AQI Shocks Across Different Parties with Lags  

 (1) (2) 

 Donations to Democrats Donations to Republicans 

IV 

PM2.5 

0.28*** 

(0.021) 

-0.13*** 

(0.019) 

OLS 

PM2.5 

0.25*** 

(0.019) 

-0.10*** 

(0.018) 

County FE Yes Yes 

Year FE Yes Yes 

Weather controls Yes Yes 

Note: ***p < 0.01, **p < 0.05, *p < 0.1. Robust standard errors in parenthesis are clustered at the county levels. 

 

The results suggest that higher levels of air pollution (PM2.5) are associated with increased 

donations to Democratic candidates and decreased donations to Republican candidates. This 

pattern can be explained by the differing environmental priorities and policies of the two parties. 

Generally, the Democratic Party is more associated with strong environmental protection policies 

and climate change mitigation efforts. As air quality worsens, individuals concerned about 

environmental issues may be more motivated to donate to Democratic candidates who advocate 
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for stricter environmental regulations and policies aimed at improving air quality. On the other 

hand, the Republican Party tends to prioritize economic growth and deregulation, often at the 

expense of stringent environmental policies. As air quality worsens, individuals who might 

perceive environmental regulations as detrimental to economic interests may reduce their support 

for Republican candidates. The use of IV estimation helps to address potential endogeneity 

issues, ensuring that the observed relationships are more likely to reflect causal effects rather 

than correlations driven by omitted variable bias. The consistency between IV and OLS results 

further reinforces the robustness of these findings. 

Compared to the results from 1.5.3, the inclusion of lag effects in our analysis amplifies the 

impact of air quality on political donations. My findings suggest that after accounting for 

temporal lag, the influence of PM2.5 levels on donations to the Democratic Party is further 

augmented, while the negative impact on donations to the Republican Party is correspondingly 

intensified. This implies that the effect of air quality on political donations is not transient but 

rather persistent over time, potentially exerting a more significant influence on political 

contributions within the observed timeframe. This discovery reinforces our understanding of the 

sensitivity of political donation behaviors to environmental conditions, providing crucial insights 

for further exploring the intricate relationship between environmental factors and political 

participation. 

1.5.5 Heterogeneous Effect of Air Quality on Donations  

Figure 7 illustrates the heterogeneous impacts of air quality on donations to Democrats and 

Republicans across regions categorized by environmental values and economic dependence. 

These impacts are estimated from equation (1.11） for the following categories: donations to 

Democrats in areas where the incumbents have high LCV scores; donations to Republicans in 
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areas where the incumbents have low LCV scores; donations to Democrats in areas where the 

incumbents have low LCV; donations to Republicans in areas where the incumbents have high 

LCV scores; donations to Democrats in regions with low industry; donations to Republicans in 

regions with low industry; donations to Democrats in regions with high industry; donations to 

Republicans in regions with high industry. I use 0.5 as the threshold to distinguish between high 

and low LCV scores. Scores above 0.5 are categorized as high LCV, while scores below 0.5 are 

categorized as low LCV. Democratic and Republican donations are depicted separately, with 

Democratic donations represented by deepskyblue markers and Republican donations by 

indianred markers. Each data point on the graph corresponds to a specific region, denoted by 

categories including 'LCV High', 'LCV Low', 'Heavy Industry', and 'Low Industry'. 

The error bars encapsulate the 95% confidence intervals around the estimated effect sizes, 

providing insight into the uncertainty associated with the observed effects. My findings reveal 

intriguing disparities in donation patterns: areas with high LCV scores, indicating strong support 

for environmental protection, exhibited a more significant increase in donations to Democratic 

causes in response to deteriorating air quality compared to regions with low LCV scores. This 

suggests that environmental values play a crucial role in shaping public response to air quality 

shocks, with individuals in environmentally conscious areas demonstrating a heightened 

sensitivity to environmental degradation. 

Furthermore, I explored the heterogeneous effects of air quality on donations concerning 

the pillars of the local economy. My analysis revealed a nuanced relationship between economic 

dependence and tolerance for air quality. In regions where the local economy relies heavily on 

polluting industries, individuals displayed a higher tolerance for poor air quality, potentially due 

to the perceived tradeoff between economic prosperity and environmental concerns. Conversely, 
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in areas where polluting industries constitute a smaller share of the local economy, residents 

were less tolerant of air pollution and were more likely to shift their support towards the 

Democratic Party in response to worsening air quality. These findings underscore the complex 

interplay between economic factors, environmental attitudes, and political preferences, 

highlighting the need for targeted policies that consider the diverse socio-economic contexts 

within which air quality interventions are implemented. 

Figure 7. Heterogeneous Effects of Air Quality on Political Donations 

 
 

Note: Figure 7 illustrates the impacts of air quality on donations to different political parties across regions, as 

estimated by equation (1.11). The figure categorizes regions based on incumbents' scores for Low LCV and levels of 

industrial activity. Specifically, it examines how air quality affects donations to Democrats and Republicans in areas 

where incumbents exhibit high or low LCV scores, and where industrial activity is high or low. 

 

1.6 Conclusion 

In conclusion, this study delves into the impact of air quality changes on the Google Air 

Quality Search Index and the political contribution amounts to both Democrats and Republicans. 

The findings indicate that a one-unit increase in monthly AQI corresponds to a notable 0.0858 
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increase in Google search interests related to air quality. Interestingly, the study suggests that 

individuals exhibit more substantial responses to prolonged changes in air quality compared to 

transient deteriorations. Furthermore, the analysis reveals that people demonstrate a heightened 

reaction to O3 levels compared to the general AQI, indicating nuanced sensitivities to specific 

pollutants. The poor air quality will lead people to increase their contribution amounts to 

Democrats while decrease for Republicans. These insights provide valuable understanding into 

the dynamics of public concern and engagement with air quality issues. 

However, it's important to acknowledge certain limitations and potential avenues for future 

exploration. The study focuses on aggregate contributions to political parties, and individual 

variations in political preferences may lead to more nuanced effects. Additionally, the analysis 

assumes a linear relationship between air quality indices and outcomes, which may oversimplify 

the complex interactions involved. Future research could delve into disaggregated data at the 

individual level, considering socio-economic factors and regional disparities. Exploring non-

linear relationships and incorporating more granular datasets would contribute to a richer 

understanding of the dynamics at play. 

In terms of policy implications, the study underscores the importance of recognizing the 

public's responsiveness to changes in air quality. Policymakers could leverage this awareness to 

design targeted interventions and communication strategies during periods of environmental 

concern. Furthermore, the nuanced reactions to specific pollutants, such as O3, suggest that 

tailored policies addressing individual pollutants may yield more effective outcomes. As we 

move forward, a holistic approach that considers individual preferences, regional disparities, and 

the unique dynamics of different pollutants can inform more effective air quality management 

and public engagement strategies. 
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Chapter 2 The Impact of COVID-19 Lockdown on Air Quality - Evidence from China 

2.1 Introduction 

Air pollution has always been an important issue in China. Although the Chinese 

government implemented measures such as the Air Pollution Prevention Action Plan, the air 

quality in China still exceeds the safety standards set by the WTO. At the end of 2019, COVID-

19 first emerged in China. The Chinese government imposed draconian lockdown policies to 

prevent the spread of coronavirus in certain areas. The lockdown policies include the prohibition 

of unnecessary commercial activities for people’s daily lives, the prohibition of any type of 

gathering by residents and restrictions on private vehicles and public transportation, etc. The 

industrial and traffic suspensions brought about by such widespread lockdowns could drastically 

reduce energy combustion, thereby improving air quality and, indirectly, economic efficiency 

and health. Therefore, my research question is whether lockdown improved air quality and 

whether improvements in air quality have been sustainable after lockdowns have been lifted. In 

addition, I also consider the impact of the length of lockdown on air quality.  

The most relevant literature to my paper is the studies of He et al. (2020), Dang and Trinh 

(2021), Huang et al. (2021), Dai et al. (2021) and Brodeur et al. (2021). These papers use DID, 

RDD, machine learning, and IV method to test the impact of lockdown policies in China, 

Vietnam, and United States. Most papers find that the lockdown policy improved air quality. He 

et al. (2020) use DID test the short-term effect of the COVID-19 lockdown on air quality in 

China. Dang and Trinh (2021) employ the Regression Discontinuity Design method to offer the 

study of the lockdown impacts on air quality in Vietnam from January 2020 to January 2021. 

Huang et al. (2021) introduce Instrument Variables of outflow and inflow in a prefecture to test 

the causal effect of lockdown on air quality. Dai et al. (2021) apply machine learning methods to 
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quantify the impacts of the COVID-19 lockdown and Chinese Spring Festival holidays on air 

quality. Brodeur et al. (2021) find that the state-wide safer-at-home policies reduced air pollution 

in the US and the benefits could be as high as $13 billion.  

The purpose of this paper is to study the impact of the lockdown and lockdown length on 

air quality and examine whether these impacts will continue after the lockdown is lifted. Given 

that different cities implemented the lockdown policies at different times, I employ the staggered 

DID method rather than the normal DID to explore the impacts of lockdown on air quality in 

China.  

The contribution of this work is that I use a staggered DID method considering the 

different lockdown timing to examine the long-term effect of lockdown on air quality. The 

existing literature studies the short-term effect.  The second contribution is that I study the 

impact of the length of lockdowns, rather than just assigning a dummy variable of lockdown. 

The third contribution is that I also study the sustainability of the lockdown policies, that is, 

whether the air quality remains at its original level after the lockdown measures are lifted. 

In this paper, I use the staggered DID model to study the impact of lockdown on air quality 

outcomes, such as AQI, PM2.5, PM10, SO2, NO2, CO, and O3. I find that AQI reduced 13.976 in 

2020 compared with the same period in 2019. In the event-study analysis, I find parallel trends in 

lockdown and non-lockdown cities before the lockdown policy. Lockdown provides a possible 

channel to improve air quality and then improve health conditions related to air quality. In 

addition, I found that there is a notable daily decrease of 0.239 in AQI and 0.110 μg/m^3 in 

PM2.5 concentration under the lockdown policy, corresponding to reductions of 0.472% and 

0.277% of the standard deviation of AQI and PM2.5, respectively. However, following the 

lifting of the lockdown policy, there is a significant rise in pollution levels, as indicated by AQI 
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and PM2.5 coefficients of 39.54 and 23.84, respectively, against respective means of 57.579 and 

33.235. Nevertheless, over longer periods, these coefficients decrease, suggesting a gradual 

diminishing effect of the relaxation of lockdown measures on pollution levels. Overall, these 

findings highlight the immediate effectiveness of lockdown measures in reducing air pollution, 

followed by a subsequent rise upon their relaxation, which gradually diminishes over time. 

The remaining part of the paper is organized as follows. Section 2.2 presents the full 

literature review of this topic. Then section 2.3 provides data used in this paper and its sources. 

Section 2.4 explains the empirical model. Section 2.5 shows the analysis results. Section 2.6 

concludes.  

2.2 Literature Review 

An emerging body of literature examines the negative effect of COVID-19. Dev et al. 

(2020) find that the prolonged country-wide lockdown caused the downturn in the global 

economy and disruption of demand and supply chains. Mazur et al. (2021) find equity values in 

petroleum, real estate, entertainment, and hospitality sectors fall dramatically. Some literature 

also studies the benefits of Lockdown policies. The few existing works of literature either focus 

on the short-term impacts of pandemic on air quality or only study the impact of pandemic on air 

quality in other countries, like Germany, the United States, United Kingdom. They pay less 

attention to the long-term effects in China, that is, the impact of lockdown after 3 months or 

more. Dang et al. (2021) use RDD and time-event analysis to study the impact of the COVID-19 

lockdown on air quality on global level. He et al. (2020) tests the short-term effect of the 

COVID-19 lockdown which spans from January 1st to March 1st 2020. Brodeur et al. (2021) 

find that the state-wide safer-at-home policies reduced air pollution in the US and the benefits 

could be as high as $13 billion. Some papers examine the relationship between air quality and 
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low-emission zones, but their background is broader, rather than restricted to the period of 

COVID-19. Pestel et al. (2021) find the implementation of low-emission zones is effective to 

reduce levels of air pollution, like PM2.5 and NO2, over the period from 2006 to 2016.  

I make several new contributions to the emerging literature on the pandemic impacts on air 

pollution. Firstly, I not only look at the short-term impact of the lockdown on air quality but also 

examine the mid-to-long-term impact. I also consider its sustainability, whether the effect 

maintain after lifting the lockdown policy. In addition, I don’t simply treat lockdown as a binary 

variable, but also consider the length of lockdown as an important treatment variable. 

2.3 Data 

The data comes from three different sources. Air quality data was obtained from the 

Ministry of Ecology and Environment. Weather data come from the Global Historical 

Climatology Network (GHCN), and the National Oceanic and Atmospheric Administration 

(NOAA).  

2.3.1 Air Quality Data 

I use AQI, PM2.5, PM10, SO2, NO2, CO, and O3 to measure air quality in this paper. The Air 

Quality Index (AQI) is a standardized metric that converts complex air quality data into a single, 

easy-to-understand number, color, and description. It measures the concentrations of key 

pollutants, including ground-level ozone, particulate matter (PM10 and PM2.5), carbon 

monoxide, sulfur dioxide, and nitrogen dioxide. The AQI scale ranges from 0 to 500, with higher 

values indicating worse air quality and greater health risks. It is divided into six categories, each 

representing a different level of health concern, and helps the public understand the health 

implications of air quality levels and take necessary precautions.  
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PM2.5, PM10, SO2, NO2, CO, and O3 are key pollutants measured in air quality 

assessments. PM2.5 and PM10 refer to particulate matter with diameters less than 2.5 and 10 

micrometers, respectively; these tiny particles can penetrate deep into the lungs and cause health 

problems. Sulfur dioxide (SO2) is a gas produced by volcanic eruptions and industrial processes, 

which can lead to respiratory issues. Nitrogen dioxide (NO2) is a harmful gas resulting from 

vehicle emissions and industrial activity, contributing to respiratory diseases and atmospheric 

reactions that produce ozone and particulate matter. Carbon monoxide (CO) is a colorless, 

odorless gas from incomplete combustion of fossil fuels, which can impair oxygen delivery in 

the body. Ozone (O3) at ground level is a harmful pollutant formed by chemical reactions 

between oxides of nitrogen and volatile organic compounds in sunlight, causing respiratory 

problems and other health issues.  

Overall, higher levels of these air quality indicators indicate poorer air quality, as they 

represent higher concentrations of pollutants in the air. These pollutants not only negatively 

impact the environment but also pose significant health risks to humans, including respiratory 

and cardiovascular diseases. 

The data includes hourly readings of AQI, PM2.5, PM10, SO2, NO2, CO, and O3 at both 

city and monitoring station levels. For this analysis, I use the data at the city level and calculate 

the daily averages for each variable. This approach allows for a more manageable and 

comprehensive examination of daily air quality trends across different cities. 

2.3.2 Weather Data 

Weather control variables include precipitation, snow depth, and temperature. These data 

come from the Global Historical Climatology Network (GHCN) and the National Oceanic and 

Atmospheric Administration (NOAA).  
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2.3.3 Lockdown Information  

Table 6. Lists of Locked-down Cities and the Major Events 

Starting Date  Cities, and the Major Events (*) 

20-Jan (*) The national government disclaimed “the virus can transmit from people to people”. 

23-Jan   Wuhan 

24-Jan  Huangshi, Shiyan, Yichang, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, Enshi 

25-Jan (*)  The start of the Chinese Spring Festival 

 Qinhuangdao 

26-Jan (*)  The extension of the Chinese Spring Festival was announced. 

 Xiangyang, Jingzhou, Xiantao 

28-Jan  Tangshan 

30-Jan (*)  The last day of the original Chinese Spring Festival 

 Dongying 

31-Jan  Chongqing, Yinchuan, Wuzhong 

2-Feb  Wenzhou 

3-Feb  Wuxi, Jining 

4-Feb  Harbin, Nanjing, Xuzhou, Changzhou, Nantong, Hangzhou, Ningbo, Fuzhou, Jingdezhen, 

Zaozhuang, Linyi, Zhengzhou, Zhumadian 

 

5-Feb  Shenyang, Dalian, Anshun, Fushun, Benxi, Dandong, Jinzhou, Fuxin, Liaoyang, Panjin, 

Tieling, Chaoyang, Huludao, Yangzhou, Hefei, Quanzhou, Nanchang, Jinan, Qingdao, 

Taian, Rizhao, Laiwu, Nanning 

 

6-Feb  Tianjin, Shijiazhuang, Suzhou, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, Ji’an, 

Yichun, Fuzhou, Shangrao, Neijiang, Yibin, Xinyang 

 

7-Feb  Suzhou, Guangzhou 

8-Feb  Shenzhen, Foshan, Fangchenggang, 

9-Feb  Cangzhou, Huaibei 

10-Feb (*)  The last day of the extended Chinese Spring Festival 

 Beijing, Shanghai 

13-Feb  Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Ordos, Hulun Buir, Bayan Nur, Ulanqab, 

Xing’an League, Xilingol League, Alxa League 
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The information regarding the lockdown policies in this study primarily comes from two 

sources. The lockdown dates and the cities that were under lockdown were obtained from He at 

al.(2020). The details about the lifting of lockdown measures and related information were 

sourced from the Wikipedia page on China's zero-COVID policy.8 The definition of a lockdown 

encompasses the following three key points: (1) prohibition of unnecessary commercial activities 

in people’s daily lives; (2) prohibition of any types of gathering by residents; (3) restrictions on 

private (vehicle) and public transportation. Following this definition, 95 out of 330 cities were 

locked down during COVID-19. I use the 95 cities which implemented lockdown policy as the 

treatment group and the remaining 235 cities as the control group. The specific lockdown timing 

for each city is summarized in Table 6. 

Table 7 compares the changes in air quality between the treatment group and control group 

before and after the implementation of the lockdown policy. The time frame for this data spans 

from January 1, 2020, to March 14, 2020. The treatment group was divided into pre-lockdown 

and post-lockdown periods based on Table 6. The control group did not implement the lockdown 

policy, and the starting times of the lockdown varied across different cities in the treatment 

group. 

The air quality indicators for both the treatment group and control group decreased after 

the implementation of the lockdown policy. However, the decrease in the treatment group was 

approximately twice as much as that in the control group. AQI is unitless, CO is measured in 

parts per million (ppm), and all others are measured in micrograms per cubic meter (µg/m³). The 

AQI for the treatment group decreased from 101.96 to 82.73, while the AQI for the control group 

decreased from 77.8 to 68.12. One interesting thing is that the concentration of O3 increased after 

 
8 https://zh.wikipedia.org/wiki/%E6%B8%85%E9%9B%B6%E6%94%BF%E7%AD%96 
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the lockdown. This could be attributed to two factors. Firstly, the reduction in human activities 

and decreased traffic flow during the lockdown resulted in lower emissions, particularly from 

vehicle exhaust. Nitrogen oxides (NOx) from vehicle emissions are one of the precursor 

substances for O3, and their reduction leads to less O3 consumption, thereby causing an increase 

in O3 concentrations. Secondly, due to the decrease in human activities, the concentration of 

atmospheric particulate matter may have decreased during the lockdown. This can result in more 

solar radiation reaching the surface, enhancing the intensity of photochemical reactions, and 

promoting O3 formation. 

Table 7. Summary Statistics for Lockdown Periods 

 Treatment Group Control Group 

Variable  Before Lockdown After Lockdown Before Lockdown After Lockdown 

AQI 101.96 82.73 77.8 68.12 

 (59.9) (52.49) (51.06) (49.25) 

PM2.5 72.72 59.03 51.12 45.21 

 (49.37) (43.4) (40.8) (37.49) 

PM10 106.27 77.35 81.02 66.61 

 (62.1) (50.25) (61.21) (66.8) 

CO 1.13 0.98 0.99 0.88 

 (0.48) (0.47) (0.47) (0.47) 

NO2 38.14 27.33 28.62 22.72 

 (17.99) (15.84) (16.78) (14.84) 

O3 46.37 54.78 51.88 58.43 

 (20.98) (21.11) (21.73) (20.75) 

SO2 15.95 11.78 14.12 11.59 

 (12.36) (9.41) (14.4) (9.78) 

Temperature 2.73 5.04 2.32 4.17 

 (5.79) (6.46) (7.95) (8.99) 

Precipitation 39.64 19.56 47.2 24.77 

 (42.62) (47) (74.26) (67.44) 

Snow 62.49 60.46 67.44 61.02 

 (58.69) (26.98) (62.1) (33.17) 

Notes: This table compares the means and standard errors of treatment and control groups. The data spans from 

January 1, 2020, to March 14, 2020, at the city-daily level. Standard errors are in parentheses. AQI is unitless, CO is 

measured in parts per million (ppm), and all other variables are measured in micrograms per cubic meter (µg/m³). 
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Table 8 presents comparisons before and after the lifting of lockdown measures across 

different time frames. The data indicates a sharp increase in air quality indicators in the 7 days 

after the lifting of restrictions. However, within the 30 days post-lifting, although the air quality 

is worse than before, there is an overall slight improvement trend. Over the course of the 

subsequent year, there are signs of air quality improvement, with average values lower than those 

before the implementation of lockdown measures. This suggests that while air quality may 

deteriorate shortly after the removal of lockdown measures, there is a gradual stabilization and 

improvement in the long run. 

Table 8. Summary Statistics Before and After the Lockdown Lifting 

 7 Days 30 Days Jan 1st 2022 – Apr 30th 2024 

Variable  Before  After  Before  After  Before  After 

 AQI 57.579 87.79 56.9 79.363 60.981 52.812 
 CO .71 .793 .719 .815 .66 .636 

 NO2 20.951 26.295 21.393 26.777 18.19 16.022 

 O3 41.166 50.987 51.036 51.629 78.442 83.989 

 PM10 68.581 105.248 62.52 87.604 67.713 54.986 

 PM2.5 33.235 52.029 34.203 51.153 34.067 28.487 

 SO2 12.022 12.72 11.014 13.825 10.036 9.681 

 Obs 2028 2028 9816 9816 169785 115074 

Notes: The table offers a comparison of mean air quality indicators before and after the lifting of lockdown 

measures in China, with a focus on three distinct time frames: 7 days, 30 days, and from January 1st, 2022 to April 

30th, 2024. It means the average value of air quality indicators 7 days, 30 days before or after the cutoff point. The 

lockdown policy was lifted on December 7th, 2022, serving as the cutoff point for the analysis. 

Figure 8. AQI Changes Before and After 7 Days of the Cutoff Point 
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Figure 9. AQI Changes Before and After 30 Days of the Cutoff Point 

 

Figure 10. Long-term AQI Changes  

 

Notes: This figure represents the mean AQI changes from January 1st, 2022 to April 30th, 2024. Lockdown policy 

was lifted on December 7th, 2022, serving as the cutoff point for the analysis. 
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2.4 Model 

2.4.1 Effects of Lockdown on Air Quality Outcomes - Baseline Model 

I use DID model to identify the impact of counter-COVID-19 measures on air pollution. 

The estimating equation takes the following form: 

𝑌𝑖𝑡 = 𝐿𝑜𝑐𝑘𝑖𝑡 × 𝑃𝑜𝑠𝑡𝑖𝑡 × 𝛽 + 𝑋𝑖𝑡 × 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 (2.1) 

where 𝑌𝑖𝑡 represent the level of air pollution in city i on date t. I use the lockdown cities as 

the treatment group and the non-lockdown cities as the control group. 𝐿𝑜𝑐𝑘𝑖𝑡 denotes whether 

lockdown is enforced in city i on date t and takes the value 1 if the city is in treatment group and 

0 otherwise. 𝑃𝑜𝑠𝑡𝑖𝑡 denotes whether the time is before or after the lockdown policy. 𝑃𝑜𝑠𝑡𝑖𝑡 is a 

dummy variable that equals 1 after the lockdown and 0 otherwise. I provided the exact lockdown 

timing for each city in Table 6. And the lockdown timing is different for each cities. 𝑋𝑖𝑡 are the 

control variables including temperature, temperature squared, precipitation, and snow depth. 𝜇𝑖 

indicates unobservable time-invariant city fixed effects and 𝛿𝑡 indicates time fixed effects. 𝜖𝑖𝑡 

denotes the error term. The coefficient 𝛽 estimates the difference in air pollution between the 

treatment cities and control cities before and after the enforcement of the lockdown policy. 

It should be negative, as the lockdown policy restricted commercial activities, industrial 

activities, and gatherings which would reduce the consumption of transportation fuels. Thus, air 

quality should improve significantly after the implementation of the lockdown policy. 

2.4.2 Effects of Lockdown on Air Quality Outcomes - Staggered DID Model 

Since the lockdown policies have different timings across cities, this could introduce bias if 

there are unobserved factors affecting both the timing of the lockdown and air pollution levels. 

Therefore, I follow Sun & Abraham (2020) to construct the staggered DID model. I treat the 
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lockdown timings as separate events. For each specific time, I calculate the dynamic treatment 

effect using the following regression equation: 

𝑌𝑖𝑡 = ∑ ∑ 𝛽𝑔,𝑘(1{𝐺𝑔 = 𝑔} ∗ 𝐷𝑖𝑡
𝑘 )

𝑘≠−1

𝑒

𝑔=1

+  𝑋𝑖𝑡 × 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 (2.6) 

where g represents the event and k represents the relative week of the event. For example, -

1 represents one week before the event, and 1 represents one week after the event. Only cities 

that have never experienced a lockdown are used as the control group. Finally, I obtain the 

weighted average of the coefficients 𝛽𝑘, where the weights are determined by the proportion of 

sample size for each group in period k to the total sample size across all groups in period k. 

2.4.3 Effects of Lockdown Length on Air Quality Outcomes - Extended Equation 

In addition to simply using the binary variables of lockdown and time, I also include the 

length of lockdown as an important explanatory variable. The equation takes the following form: 

𝑌𝑖𝑡 = 𝑓(𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡) × 𝛽 + 𝑋𝑖𝑡 × 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 (2.2) 

𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡 is a running variable that represents the number of days after the official 

lockdown date. To provide robust analysis, the function 𝑓(𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡) take different functional 

forms to flexibly control for variations in air quality. They include (i) the linear model 

(𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡), (ii) the linear model with the interaction term of the running variable and the 

treatment variable (𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡 ∗  𝑇𝑟𝑒𝑎𝑡𝑖𝑡), (iii) the quadratic model (𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡
2), (𝑖𝑣) the 

quadratic model with the interaction term of the running variable and the treatment variable 

(𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡
2 ∗  𝑇𝑟𝑒𝑎𝑡𝑖𝑡). 𝛽 represent the effect of lockdown length on air quality. 

2.4.4 Event-study Analysis 

The implementation of lockdown measures may involve multiple factors, including the 

severity of the pandemic, government policies and decisions, public health awareness, and more. 
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While lock-downed cities may appear relatively random, encompassing large, medium, and 

small cities, it is indeed possible that the decision to implement lockdown measures could be 

correlated with the existing pollution levels in a city. For instance, areas with higher pollution 

levels, often associated with industrial development, may be more likely to implement lockdown 

measures. Because economically developed regions with higher population mobility might 

experience faster transmission of COVID-19, making it easier to justify and implement 

lockdown measures. To address this concern, a parallel test was conducted to examine whether 

there were significant differences in air quality between cities that implemented lockdown 

measures and those that did not prior to the implementation of the lockdown. 

In addition, parallel tests can also help us to exclude several possible reasons that influence 

the validity of our study. For example, there may be already a declining trend in air pollutants. 

The first possible reason is that Chinese government implemented a lot of environmental 

regulations recently. The improvement in air quality may be driven by the set of environmental 

regulations. The second reason is that COVID-19 was outbreak during the Chinese spring 

festival. In this period, most of the industrial activities were suspended even though there isn’t 

lockdown policy, thus the air quality will become better.  

This parallel test aims to provide further evidence regarding the causal relationship 

between the lockdown measures and air quality by comparing the pre-lockdown air quality in 

cities that implemented the measures with cities that did not. If the trends in air quality before 

lockdown implementation are comparable and the air quality of the treatment group was 

improved more than that of the control group, then I can conclude our results in the baseline 

specifications are reliable. To test the reliability of the baseline model, I fit the following event 

study equation: 
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𝑌𝑖𝑡 = ∑ 𝑇𝑟𝑒𝑎𝑡𝑖𝑡,𝑘 × 𝛽𝑘

𝑀

𝑚=𝑘,𝑚≠−1

+ 𝑋𝑖𝑡 × 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 (2.3) 

where 𝑇𝑟𝑒𝑎𝑡𝑖𝑡,𝑘 is a set of dummy variables which equals 1 for treatment cities and 0 for 

control cities all the time. I put 7 days into one bin to avoid the trend test is not affected by the 

high volatility of the daily air pollution. The dummy for m = −1 is omitted in equation (2.3) so 

that the post-lockdown effects are relative to the period immediately before the launch of the 

policy. 𝛽𝑘 measures the difference in air quality between cities in the treatment and control 

group in period k relative to the difference one week before the lockdown.  

2.5 Results 

2.5.1 Effects of Lockdown on Air Quality Outcomes – Baseline Model 

I use equation (2.1) to explore the effects of lockdown on a set of air quality outcomes: 

AQI, PM2.5, PM10, SO2, NO2, CO, O3. To eliminate the influence of heteroscedasticity, I take the 

logarithm for each variable in the robustness check part and examine the effect on each variable 

after taking the logarithm. The odd columns in Tables 5 and 6 represent the effect of lockdown 

on dependent variables while weather control variables such as precipitation, snow depth, 

temperature, temperature squared, are not included. The even columns represent the results when 

weather control variables are included. All the units of coefficients except AQI in Tables 9, 10 

are μg/m3. 

The results are consistent with our expectations. No matter if I use original dependent 

variables or take logs of the dependent variables and add weather controls or not, the coefficients 

are negative and statistically significant except for the O3. Column 1 in Table 5 shows that AQI 

reduced by 7.096 units in lockdown cities which is 7% of the mean AQI concentration compared 

to non-lockdown cities. The lower the value of AQI, the better the air quality. Therefore, it 
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means the lockdown policy does improve air quality a lot. Lockdown policy is especially useful 

to reduce the concentration of PM10. That is because PM10 emissions mainly come from 

pollution sources, such as chimneys and vehicles directly. Lockdown greatly reduces the 

pollution sources from industrial activities, the prohibition of gatherings, and unnecessary going 

out during the lockdown period. The concentration of O3 increased after the lockdown policy but 

it is insignificant after I include weather control variables. All the coefficients are statistically 

significant, indicating the lockdown is a powerful measure to improve air quality. 

Table 9. Effects of Lockdown on AQI, PM2.5, and PM10 

 (1) (2) (3) (4) (5) (6) 

 AQI     AQI PM2.5 PM2.5 PM10 PM10 

Lockdown -7.096*** -6.610*** -2.800*** -2.788*** -13.285*** -13.000*** 

 (1.2848) (1.3144) (0.7630) (0.7655) (1.8126) (1.8807) 

       

Precipitation  -0.024***  -0.009**  -0.019*** 

  (0.0043)  (0.0033)  (0.0041) 

       

Snow depth  0.116***  0.056*  0.128*** 

  (0.0283)  (0.0230)  (0.0315) 

       

Temperature  -0.284*  -0.646***  -0.256 

  (0.1439)  (0.1215)  (0.1652) 

       

Temp2  0.016**  0.005  0.012* 

  (0.0055)  (0.0046)  (0.0055) 

       

Constant 65.117*** 61.893*** 38.875*** 44.291*** 67.356*** 64.439*** 

 (0.0353) (1.9777) (0.0209) (1.5676) (0.0498) (2.7741) 

Observations 141662 141662 141662 141662 141655 141655 

Notes: Robust standard errors in parenthesis are clustered at the city level. City and date fixed effects are included in 

the regression. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 10. Effects of Lockdown on SO2, NO2, CO, and O3 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 SO2 SO2 NO2 NO2 CO CO O3 O3 

Lockdown -1.496*** -1.009*** -3.944*** -3.968*** -0.014 -0.010 4.395*** 1.455 

 (0.2920) (0.2834) (0.4734) (0.4766) (0.0151) (0.0153) (0.9173) (0.8817) 

         

Precipitation  -0.002**  -0.001  0.000**  -0.024*** 

  (0.0006)  (0.0009)  (0.0000)  (0.0028) 

         

Snow depth  0.015**  0.048***  0.001*  0.077*** 

  (0.0053)  (0.0059)  (0.0003)  (0.0095) 

         

Temperature  -0.325***  -0.016  -0.009***  1.392*** 

  (0.0431)  (0.0361)  (0.0018)  (0.1037) 

         

Temp2  0.013***  0.001  0.000**  0.066*** 

  (0.0015)  (0.0013)  (0.0001)  (0.0038) 

         

Constant 11.304*** 11.339*** 26.298*** 24.882*** 0.803*** 0.845*** 66.066*** 29.784*** 

 (0.0080) (0.4552) (0.0130) (0.5881) (0.0004) (0.0199) (0.0252) (1.4944) 

N 141662 141662 141662 141662 141654 141654 141659 141659 

Notes: Robust standard errors in parenthesis are clustered at the city level. City and date fixed effects are included in 

the regression. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

2.5.2 Effects of Lockdown on Air Quality Outcomes - Staggered DID Model 

Tables 11 and 12 present the Staggered DID results for the analysis of air quality 

indicators, including AQI, PM2.5, PM10, SO2, NO2, CO, O3. These models aimed to assess the 

impact of a treatment variable on various pollutants while controlling for key environmental 

factors such as precipitation, snow depth, temperature, and its squared term. Across all models, 

the treatment variable consistently exhibited negative coefficients that were statistically 

significant. This suggests that the lockdown policy has led to adverse effects on air quality 

indicators which is good for air quality.  

Furthermore, it is noteworthy to emphasize that the coefficients observed in the current 

analysis, while slightly smaller, broadly align with the results obtained from the Difference-in-

Differences (DID) estimation. This consistency across methodologies indicates the robustness of 

our findings. Despite minor variations in the magnitude of coefficients, the overall directionality 
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of the treatment effect remains consistent. This suggests that the observed impact of the 

treatment variable on air quality indicators is robust. 

Table 11. Effects of Lockdown on AQI, PM2.5, and PM10  - Staggered DID 

 (1) (2) (3) 

VARIABLES aqi pm pm10 

treat -4.299*** -2.815*** -6.384*** 

 (0.343) (0.343) (0.343) 

prec -0.0404*** -0.00829* -0.0329*** 

 (65.54) (65.54) (65.54) 

snow 0.0953*** 0.0601*** 0.0342*** 

 (32.34) (32.34) (32.34) 

temp -1.076*** -0.826*** -1.156*** 

 (8.491) (8.491) (8.491) 

temp2 -0.0851*** -0.0645*** -0.0813*** 

 (101.8) (101.8) (101.8) 

Observations 19,764 19,764 19,764 

R-squared 0.289 0.278 0.275 

Ajusted R2 0.284 0.284 0.284 

Note: sd in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 12. Effects of Lockdown on SO2, NO2, CO, and O3  - Staggered DID 

 (1) (2) (3) (4) 

VARIABLES so2 no2 co o3 

Treat -1.070*** -5.671*** -0.0820*** 7.069*** 

 (0.343) (0.343) (0.343) (0.343) 

Precipitation -0.0165*** -0.00557*** 0.000453*** -0.00652*** 

 (65.54) (65.54) (65.54) (65.54) 

Snow 0.0105*** 0.0127*** 0.000819*** 0.0272*** 

 (32.34) (32.34) (32.34) (32.34) 

Temperature -0.492*** -0.385*** -0.00940*** 0.00704 

 (8.491) (8.491) (8.491) (8.491) 

Temperature2 0.000246 -0.0144*** -0.000778*** 0.0230*** 

 (101.8) (101.8) (101.8) (101.8) 

Observations 19,764 19,764 19,764 19,764 

R-squared 0.182 0.285 0.286 0.229 

Ajusted R2 0.284 0.284 0.284 0.284 

Note: sd in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

2.5.3 Effects of Lockdown Length on Air Quality Outcomes  

The pairwise correlation analysis revealed the relationship between lockdown length and 

air pollutant variables. As depicted in Table 13, lockdown length demonstrated a weak negative 

correlation with several air pollutants. Specifically, lockdown length exhibited negative 

correlations with the AQI (-0.17), PM2.5 (-0.23), SO2(-0.03) and  CO (-0.18), although the 
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correlations were generally modest. Conversely, Table 14 demonstrated the relationship between 

squared lockdown length and air pollutants, showing similar trends albeit with slightly different 

correlation coefficients. These findings suggest that longer lockdown durations may be 

associated with slightly lower levels of certain air pollutants, although the strength of these 

relationships is limited. Further investigation into the causal mechanisms underlying these 

associations is warranted 

Table 13. Pairwise Correlation of Lockdown Length and Pollutant Variables  

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

(1) Length 1.00        

(2) AQI -0.17 1.00       

(3) PM2.5 -0.23 0.90 1.00      

(4) PM10 -0.05 0.84 0.85 1.00     

(5) SO2 -0.03 0.29 0.25 0.32 1.00    

(6) NO2 0.32 0.43 0.41 0.48 0.38 1.00   

(7) CO -0.18 0.51 0.60 0.50 0.34 0.37 1.00  

(8) O3 0.06 0.06 0.03 0.08 -0.01 -0.15 -0.19 1.00 

Table 14. Pairwise Correlation of Squared Lockdown Length and Pollutant Variables 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

(1) Length2 1.00        

(2) AQI -0.13 1.00       

(3) PM2.5 -0.18 0.90 1.00      

(4) PM10 -0.01 0.84 0.85 1.00     

(5) SO2 -0.03 0.29 0.25 0.32 1.00    

(6) NO2 0.33 0.43 0.41 0.48 0.38 1.00   

(7) CO -0.15 0.51 0.60 0.50 0.34 0.37 1.00  

(8) O3 0.08 0.06 0.03 0.08 -0.01 -0.15 -0.19 1.00 

Additionally, I employ Equation (2.2) to study the causal relationship between lockdown 

duration and air pollutants under four different scenarios, analyzing data spanning from Dec 1st, 

2019, to March 14th, 2020. The time period spans 50 days before and after the outbreak of 

COVID-19. The study investigates the impact of lockdown on air quality outcomes during the 

COVID-19 pandemic, incorporating the length of lockdown as a critical explanatory variable. 

The regression equation adopts a flexible approach, employing different functional forms of 

lockdown duration represented by a running variable post-official lockdown date. These 
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functional forms include linear and quadratic models, and interaction terms with treatment 

variables, aiming to robustly control for variations in air quality. 

Across the examined pollutants (AQI, PM2.5, PM10, SO2, NO2, CO, and O3), the 

findings highlight consistent trends. In both linear and quadratic models, an increase in lockdown 

duration is associated with a significant reduction in air pollutant concentrations, indicating an 

overall improvement in air quality. The analysis spans from Jan 1st, 2019, to Mar 14th, 

2020.When I include the running variable, length of lockdown, in the interaction term, I find that 

the coefficients are negative and statistically significant. When the number of lock-downed days 

increases by one, the concentration of AQI decreases by 0.678, which is 0.472% of the standard 

deviation of AQI. I also find that the concentration of PM2.5 decreases by 0.604 ug/m3 per day 

under the lockdown policy, which is 0.277% of the standard deviation of PM2.5. The average 

concentration of PM2.5 is 49.14 ug/m3. The World Health Organization (WHO) has established 

PM2.5 guidelines recommending that the annual average concentration of PM2.5 should not 

exceed 10 ug/m3 and the 24-hour average concentration of PM2.5 should not exceed 25 ug/m3. 

This implies that, under the lockdown policies, it would take approximately 57 days to achieve 

the PM2.5 standard recommended by the WHO. 

Moreover, the inclusion of interaction terms with treatment variables enhances the 

significance of this decline, emphasizing the effectiveness of prolonged lockdown measures in 

mitigating pollution levels. Each model accounts for various controls and fixed effects for cities 

and years to minimize potential confounding factors. The robustness of the analysis is further 

evidenced by the large sample size, with observations spanning 33,364 instances for each 

pollutant. These results provide valuable insights into the environmental consequences of 
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COVID-19 containment measures, informing policymakers and public health officials in 

designing effective strategies for managing air quality during global health crisis. 

Table 15. COVID-19 Lockdowns and Air Pollution  

 (1) (2) (3) 

VARIABLES AQI PM2.5 PM10 

Panel A: Linear model    

 -0.678*** -0.604*** -0.665*** 

 (0.036) (0.029) (0.044) 

Panel B: Linear interaction 

model 

   

 -0.893*** -0.732*** -0.952*** 

 (0.058) (0.047) (0.065) 

Panel C: Quadratic model    

 -0.009*** -0.010** -0.007*** 

 (0.000) (0.000) (0.001) 

Panel D: Quadratic interaction 

model 

   

 -0.0175*** -0.0145*** -0.0181*** 

 (0.000) (0.000) (0.001) 

Controls             Yes Yes Yes 

City FE  Yes Yes Yes 

Year FE             Yes Yes Yes 

Observations     33364 33364 33364 

Note: *** p<0.01, ** p<0.05, * p<0.1. Results of equation (2.2) under four different settings. Clustered errors in 

parentheses are robust to the city level. The running variable is number of days from the lockdown date. Model 1 uses 

running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 

includes quadratic term of running variable, Model 4 includes interactions of running variable with treatment variable. 

All regressions include city and year-fixed effects. Control variables are precipitation, temperature, squared 

temperature, and snow depth. 
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Table 16. COVID-19 Lockdowns and Air Pollution 

 (1) (2) (3) (4) 

VARIABLES            SO2 NO2 CO O3 

Panel A: Linear model     

 -0.116*** -0.396*** -0.008*** 0.318*** 

 (0.007) (0.011) (0.000) (0.015) 

Panel B: Linear 

interaction model 

    

 -0.0939*** -0.309*** -0.00649*** 0.292*** 

 (0.014) (0.015) (0.001) (0.021) 

Panel C: Quadratic 

model 

    

 -0.00109*** -0.00146*** -0.000144*** 0.00352*** 

 (0.000) (0.000) (0.000) (0.000) 

Panel D: Quadratic 

interaction model 

    

 -0.00186*** -0.00500*** -0.000126*** 0.00534*** 

 (0.000) (0.000) (0.000) (0.000) 

Controls             Yes Yes Yes Yes 

City FE  Yes Yes Yes Yes 

Year FE             Yes Yes Yes Yes 

Observations     33364 33364 33364 33364 

Note: *** p<0.01, ** p<0.05, * p<0.1. Results of equation (2.2) under four different settings. Clustered errors in 

parentheses are robust to the city level. The running variable is number of days from the lockdown date. Model 1 uses 

running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 

includes quadratic term of running variable, Model 4 includes interactions of running variable with treatment variable. 

Control variables are precipitation, temperature, squared temperature, and snow depth. 

 

2.5.4 Event Study Analysis 

Figure 2 illustrates the coefficients associated with PM2.5 according to equation (2.3). The 

coefficient 𝛽𝑘 quantifies the disparity in air quality between cities subjected to the lockdown 

measures and those without, during period k, relative to the difference observed one week prior 

to the lockdown. If k is less than 0, it represents the number of weeks before the implementation 

of the lockdown policy. If k is grea  ter than 0, it represents the number of weeks during which 

the lockdown policy is being implemented. The analysis in Figure 2 spans from Jan 1st 2019, to 

Mar 14th 2020. This figure represents the differences between the treatment group and the 

control group before and during the implementation of the lockdown policy. It is evident that βk 

approaches zero when K is smaller than -1, indicating that lock-downed and non-lockdown cities 

exhibited similar trends before the implementation of the lockdown policy. As K increases 
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beyond 0, the coefficients become negative and larger in magnitude, aligning with our baseline 

findings. This suggests that the concentration of PM2.5 in treatment group decrease after the 

implementation of lockdown policy compared to non-lockdown cities. Furthermore, the 

magnitude of the reduction increases over time, which aligns with the conclusions drawn in 

section 2.5.2. 

I conduct a joint significance test to examine whether the coefficients before the lockdown 

are significantly different from zero. The null hypothesis is "𝛽−2 =  𝛽−3 =  𝛽−4 = 0", and the 

resulting p-value is 0.1523 with an F-statistic of 1.77. Therefore, I do not have sufficient reason 

to reject the null hypothesis, indicating that there is no significant difference in air quality 

between the treatment group and the control group before the lockdown. In addition, I also 

conduct a joint significance test to examine whether the coefficients during the lockdown are 

significantly different from zero. The null hypothesis is "𝛽1 =  𝛽2 =  𝛽3 = 𝛽4 = 0", and the 

resulting p-value is 0.0000 with an F-statistic of 10.95. Therefore, I have sufficient reason to 

reject the null hypothesis, indicating that there is significant difference in air quality between the 

treatment group and the control group during the lockdown. This indicates that before the 

implementation of the lockdown policy, the treatment group and the control group exhibit 

parallel trends. However, after the implementation of the lockdown policy, the treatment group 

shows a significant improvement in air quality compared to the control group, and the air quality 

continue to improve as the duration of the lockdown increased. Please refer to the appendix for 

additional results of the temporal analysis on other air pollutants. 
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Figure 11. Event Study Analysis of PM2.5 

 
 

2.5.5 Lockdown Lift Analysis 

Starting from November 30, 2022, cities like Beijing, Guangzhou, and Shanghai 

announced significant relaxations of COVID-19 control measures to be implemented in 

December. The state media began extensively promoting the lower pathogenicity, lower severity, 

and lower mortality rates of the Omicron variant. The National Health Commission issued 

guidelines to strengthen vaccination efforts among the elderly. Sun Chunlan, known for her 

strong stance on zero-COVID policies, acknowledged the reduced virulence of the new variant, 

widespread vaccination, and accumulated medical experience, indicating that China’s pandemic 

response was entering a "new phase with new tasks." This early signal marked the beginning of 

the relaxation of the zero-COVID policy. 

The "optimized adjustment of control measures" included but was not limited to the 

following: Routine nucleic acid testing was no longer required for the general population, except 

for certain key personnel, with the recommendation that residents undergo testing only if 

necessary. Health codes became sufficient for accessing public transportation and most public 
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places, eliminating the need for recent nucleic acid test records, except in enclosed entertainment 

venues like KTVs, internet cafes, and in places with vulnerable populations such as elderly care 

facilities and welfare homes. The registration requirement for the purchase of fever, cough, 

antiviral, and antibiotic medications was abolished. Mandatory nucleic acid testing upon arrival 

was canceled in some regions. By December 7, with the issuance of the "New Ten Measures," 

mainland China had effectively abandoned the "dynamic zero-COVID" policy, shifting towards 

coexistence with the virus. 

Table 15, 16, and 17 present Difference-in-Differences analyses conducted over three 

different timeframes. Table 15 covers the period from January 1, 2022, to April 30, 2024. Table 

16 focuses on one month before and after the cutoff date, December 7, 2022. Table 17 examines 

the week before and after the cutoff date. 

From these tables, several key observations emerge: The first one is the consistent positive 

coefficients. Across all three tables, the coefficients for the impact of lifting lockdown measures 

on air quality indicators are predominantly positive and significant. This suggests that the 

relaxation of lockdown policies led to a deterioration in air quality. 

The second one is that the coefficient magnitudes are different. The magnitude of these 

coefficients decreases as the timeframe extends. For instance, in the analysis around the week 

before and after the cutoff date (Table 17), the coefficients are notably large. The coefficient for 

PM10 is 53.43, with a corresponding mean value of 68.581. Similarly, the AQI coefficient is 

39.54, against a mean of 57.579, and the PM2.5 coefficient is 23.84, with a mean of 33.235. 

These large coefficients indicate significant changes in air quality metrics immediately following 

the policy change. 
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The third one is that the impact diminishes over time. As the analysis timeframe extends, 

the coefficients shrink, indicating that the negative impact on air quality diminishes over time. 

For example, while the immediate post-lockdown period shows substantial increases in PM10, 

AQI, and PM2.5, the impact lessens in the longer-term analysis spanning over two years (Table 

15). This trend suggests that the initial spike in pollution following the lifting of restrictions is a 

short-term effect, with air quality gradually stabilizing as time progresses. 

Overall, the DID analyses across different timeframes reveal a clear pattern. The relaxation 

of lockdown measures leads to an immediate and significant rise in pollution levels, which 

gradually diminishes over time. This insight is crucial for understanding the environmental trade-

offs of public health policies and for planning future interventions that can better balance public 

health, economic activity, and environmental sustainability. 

Table 17. Long-term Air Quality Changes 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES AQI PM2.5 PM10 SO2 NO2 CO O3 

POST * TREAT 2.474*** 1.323*** 3.835*** 0.102 0.311 0.00225 -1.258* 

 (0.364) (0.364) (0.364) (0.364) (0.364) (0.364) (0.364) 

Observations 284,859 284,352 284,099 284,571 284,544 284,471 284,676 

R-squared 0.271 0.273 0.198 0.277 0.390 0.323 0.373 

Ajusted R2 0.372 0.372 0.372 0.372 0.372 0.372 0.372 

Note: Robust sd in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 18. Air Quallity Changes – 30 Days 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES AQI PM2.5 PM10 SO2 NO2 CO O3 

POST * TREAT 8.528*** 4.353** 11.34*** 1.000* 0.800 -0.0422** 5.058*** 

 (0.342) (0.342) (0.342) (0.342) (0.342) (0.342) (0.342) 

Observations 19,961 19,931 19,946 19,941 19,946 19,947 19,947 

R-squared 0.365 0.349 0.363 0.399 0.399 0.454 0.266 

Ajusted R2 0.253 0.253 0.253 0.253 0.253 0.253 0.253 

Note: Robust sd in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 

 

 

 

 



57 

 

Table 19. Air Quallity Changes – 7 Days 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES AQI PM2.5 PM10 SO2 NO2 CO O3 

POST * TREAT 39.54*** 23.84*** 53.43*** 1.661*** 7.122*** 0.0846*** 8.259*** 

 (0.351) (0.351) (0.351) (0.351) (0.351) (0.351) (0.351) 

Observations 4,392 4,387 4,389 4,387 4,389 4,388 4,388 

R-squared 0.550 0.448 0.556 0.471 0.467 0.522 0.393 

Ajusted R2 0.342 0.342 0.342 0.342 0.342 0.342 0.342 

Note: Robust sd in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

2.5.6 Robustness Check 

Tables 20 and 21 present the results of regression analyses examining the effect of 

lockdown length on various air quality indicators, including AQI (Air Quality Index), PM2.5, 

PM10, SO2, NO2, CO, and O3. It sapns from January 1 st 2019 to Mar 14th 2020. The analysis 

controls for factors such as precipitation, snowfall, temperature, and their quadratic terms, as 

well as city and date fixed effects. Upon incorporating the running variable, the length of 

lockdown, into the interaction term, I discovered that the coefficients exhibit a negative and 

statistically significant trend.  

In Table 20, it is observed that longer lockdown durations are associated with decreases in 

AQI, PM2.5, and PM10 levels. This negative relationship is statistically significant, as indicated 

by the p-values. Specifically, with each additional day of lockdown, the concentration of AQI 

decreased by 0.239 units, accounting for approximately 0.472% of the standard deviation of 

AQI. Similarly, the concentration of PM2.5 exhibited a decline of 0.110 ug/m3 per day under 

lockdown measures, constituting around 0.277% of the standard deviation of PM2.5. It's 

noteworthy to mention that the annual average concentration of PM2.5 stood at 49.14 ug/m3. 

Against this backdrop, it becomes evident that the World Health Organization's (WHO) 

guidelines regarding PM2.5 concentrations are imperative. The WHO recommends an annual 

average PM2.5 concentration not exceeding 10 ug/m3, with a 24-hour average concentration 

limit of 25 ug/m3. Given the observed reductions in PM2.5 concentrations under lockdown 
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policies, it would take approximately 220 days to meet the WHO's recommended standards for 

PM2.5 concentration levels. 

Additionally, precipitation has a significant negative effect on AQI, PM2.5, and PM10, 

while snowfall is positively associated with these pollutants. Temperature shows a mixed effect, 

with the linear term negatively impacting AQI and PM2.5, and the quadratic term positively 

affecting them. 

In Table 21, the analysis focuses on other pollutants such as SO2, NO2, CO, and O3. 

Similar to Table 12, the interaction term of lockdown length with treatment and post-lockdown 

periods shows negative coefficients for SO2 and NO2, indicating a reduction in these pollutants 

during longer lockdown periods. Precipitation has a significant negative effect on SO2 and O3 

levels but not on NO2 and CO. Snowfall is positively associated with SO2 and NO2 but not 

significantly with CO and O3. Temperature and its quadratic term show mixed effects across 

different pollutants. Overall, these findings suggest that longer lockdown durations are generally 

associated with improvements in air quality, as indicated by reductions in various pollutants. 

However, the effects of weather factors such as precipitation, snowfall, and temperature are 

nuanced and vary across different pollutants. 

Table 20. Effects of Lockdown Length on AQI, PM2.5 and PM10 

 (1) (2) (3) 

VARIABLES AQI PM2.5 PM10 

Length*Treat*Post -0.239*** -0.110*** -0.431*** 

 (0.043) (0.023) (0.072) 

Precipitation -0.0242*** -0.00871*** -0.0192*** 

 (0.004) (0.003) (0.004) 

Snow 0.117*** 0.0570** 0.130*** 

 (0.028) (0.023) (0.031) 

Temp -0.285** -0.646*** -0.258 

 (0.144) (0.121) (0.165) 

Temp2 0.0162*** 0.00467 0.0116** 

 (0.017) (0.005) (0.006) 

Observations 141,662 141,662 141,655 

R-squared 0.452 0.459 0.405 

Adjusted R2 0.449 0.456 0.402 
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Notes: Robust standard errors in parenthesis are clustered at the city level. City and date fixed effects are included in 

the regression. *** p<0.01, ** p<0.05, * p<0.1 

 

Table 21. Effects of Lockdown Length on SO2, NO2, CO and O3 

 (1) (2) (3) (4) 

VARIABLES SO2 NO2 CO O3 

Length*Treat*Post -0.0270*** -0.0981*** -0.000141 -0.0489* 

 (0.008) (0.013) (0.000) (0.028) 

Precipitation -0.00153*** -0.00106 0.000145*** -0.0235*** 

 (0.001) (0.001) (0.000) (0.003) 

Snow 0.0148*** 0.0486*** 0.000699** 0.0777*** 

 (0.005) (0.006) (0.000) (0.009) 

Temp -0.325*** -0.0166 -0.00908*** 1.392*** 

 (0.043) (0.036) (0.002) (0.104) 

Temp2 0.0134*** 0.000879 0.000155*** 0.0663*** 

 (0.001) (0.001) (0.000) (0.00) 

Observations 141,662 141,662 141,654 141,659 

R-squared 0.516 0.659 0.521 0.519 

Adjusted R2 0.513 0.657 0.519 0.516 

Notes: Robust standard errors in parenthesis are clustered at the city level. City and date fixed effects are included in 

the regression. *** p<0.01, ** p<0.05, * p<0.1. 

 

2.6 Conclusion 

In this study, I estimate the impact of the lockdown on various air pollutants including 

AQI, PM2.5, PM10, SO2, NO2, CO, and O3. After accounting for weather controls, I find that in 

the treatment cities, both AQI and PM2.5 show significant improvements, with a reduction of 

6.610 and 2.788 ug/m3  respectively, compared to the control cities. 

Additionally, I observe a daily decrease of 0.239 in AQI, which corresponds to a reduction 

of 0.472% of the standard deviation of AQI. Similarly, the concentration of PM2.5 has shown a 

daily decrease of 0.110 ug/m3 under the lockdown policy, accounting for 0.277% of the 

standard deviation of PM2.5 from the implementation of the lockdown policy until March 14th, 

2020.  

After lifting the Lockdown policy, the analysis spans from 7 days before and after the 

cutoff date indicates that the AQI coefficient is 39.54, against a mean of 57.579, and the PM2.5 

coefficient is 23.84, with a mean of 33.235. It means that the relaxation of lockdown measures 
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leads to an immediate and significant rise in pollution levels. But when I do the analysis over 

longer periods, the coefficients decreases representing the effects gradually diminishes over time. 

To ensure the robustness of the results and rule out the possibility of systematic differences 

between the treatment and control groups, I conduct an event study analysis. The findings 

indicate that the two groups exhibit a parallel trend before the implementation of the lockdown, 

lending further support to the validity of the results. Moreover, the air quality in the lockdown 

cities demonstrates significant improvements compared to the non-locked-downed cities. 
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Chapter 3 Carbon Emissions Trading System, Air Quality and Mental Health - Evidence 

from China 

3.1 Introduction 

China has established a Carbon Emission Trading System (ETS) as part of its efforts to 

mitigate climate change and reduce greenhouse gas emissions. Understanding the impact of ETS 

on air quality and mental health is of great importance. It can inform us of the benefits of ETS in 

China and provide policy implications to reduce air pollution and improve social welfare. Air 

pollution is a serious and urgent problem in China. Air quality imposes negative effect on heart 

disease, cardiovascular disease, lung disease, and infant mortality. Apart from physical health, it 

also has effects on socio-economic outcomes, like productivity, cognitive performance, etc. This 

paper presents new evidence on the impact of air quality on mental health in the natural 

experiment of ETS in China. 

Some literature studies the effect of ETS on air pollution and the relationship between air 

quality and mental health. For example, Yan et al. (2020) employ DID method and mediating 

effect model to assess the impact of ETS pilot on air pollution. Zhang et al. (2017) use OLS 

model to test the impact of air quality on people’s happiness and subjective well-being from 

2012 to 2014. Chen et al. (2018) presents an IV method -instrumented by thermal inversions- to 

study the impact of air quality on people’s mental health in a short time frame. 

The purpose of this paper is to explore the impact of the ETS on air quality and mental 

health. It is expected that the implementation of ETS can improve air pollution by facilitating the 

efficient trading of emissions. Implementing a GHG ETS not only curbs CO2 emissions but also 

leads to a reduction in air pollution by incentivizing industries to adopt cleaner technologies and 

improve energy efficiency. This dual benefit promotes public health, environmental 
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sustainability, and economic growth simultaneously. The objective is to investigate whether ETS 

has indeed achieved this outcome. Furthermore, if ETS has indeed improved air quality, the 

study aims to examine whether it has indirectly contributed to the improvement of people's 

mental well-being. The implementation of ETS may affect mental health from several channels: 

air quality, economy and employment. Good air quality will improve people’s mental health. 

However, the impact of ETS on economy and unemployment is not clear enough. The existing 

studies find that ETS have mild negative effect on economy, but also depends on the pillars of 

the local economy. It also finds that ETS increased unemployment in electricity, coal and 

construction industry. But from long-term, it has positive effect on employment. 

This paper makes several key contributions. First, to the best of my knowledge, it is the 

first study to explore the benefits of Carbon ETS for mental health. Previous research has 

primarily focused on the impact of ETS on air quality (Yan et al. 2020), industrial output (Huang 

et al. 2021), economy (Wang et al. 2015), green total factor productivity (Hou et al. 2019), 

technological innovation, and other related areas. Thus, this paper provides a novel perspective 

for assessing the cost-effectiveness of ETS policies. Second, while previous studies mainly 

examined the SO2 ETS policy implemented in China in 2007, this paper specifically investigates 

the carbon emission trading system. By focusing on carbon emissions, it expands the 

understanding of the effects of ETS on environmental and health outcomes. Third, in exploring 

the impact of ETS on mental health, this paper considers heterogeneity, such as differences 

between urban and rural areas, educational attainment, health status, age, and other factors. This 

consideration allows for a more comprehensive analysis of how ETS may influence mental well-

being across various contexts. Overall, these contributions shed new light on the potential 
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benefits of ETS, particularly in terms of mental health outcomes, and provide valuable insights 

for policymakers and researchers interested in evaluating the effectiveness of ETS policies. 

In this study, I utilize the DID method to estimate the effects of the ETS on air quality and 

mental health. Mental health is indicated by CESD20 which is a scale used to assess levels of 

psychological distress, consisting of 20 items designed to measure indicators of depression, 

anxiety, and stress. I obtained the date from three sources. The air quality data comes from 

National Environmental Monitoring Center, the mental health and socio-economic controls are 

from Chinese Family Panel Studies (CFPS), the weather data is from the China Meteorological 

Data Service Center (CMDC). The results reveal a significant improvement in air quality 

following the implementation of ETS, as indicated by a decrease in AQI by 10.98 units, PM2.5 

by 7.92 ug/m3, and PM10 by 13.23 ug/m3. Furthermore, the analysis shows that the CESD20 

score of individuals in Fujian Province decreased 3.7%  after the pilot of ETS, indicating a 

positive impact on mental well-being. 

The subsequent sections of this paper are structured as follows. The section 3.2 below 

presents some background information of ETS in China. Section 3.3 offers an extensive 

literature review on the subject matter, providing an overview of the existing research. In Section 

3.4, I present the data utilized in this study along with their sources. Section 3.5 outlines the 

empirical model employed to analyze the data. The findings of our analysis are presented in 

Section 3.6. The paper concludes in section 3.7. 

3.2 Background 

According to "Our World in Data" at the University of Oxford, China emitted 10.67 billion 

tons of carbon dioxide in 2020, ranking first in the world.  India and the United States also 

emitted a large amount of CO2 in 2020. The emission of CO2 in China increased rapidly since 
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2000. Carbon dioxide is an important driver of the greenhouse effect and climate change. At the 

same time, the release of CO is accompanied by the combustion of fossil fuels and energy and 

releases a large amount of other harmful gases, such as SO2, NO2, CO, etc., which seriously 

threaten people's physical and mental health.  

In 2011, in accordance with the requirements of the "Twelfth Five-Year Plan" on 

"gradually establishing a carbon emissions trading market", China launched carbon emissions 

trading pilots in seven provinces and cities including Beijing, Tianjin, Shanghai, Chongqing, 

Hubei, Guangdong, and Shenzhen to reduce carbon dioxide emissions and improve air quality. In 

2013, seven local pilot carbon markets began to be traded online one after another, effectively 

promoting the emission reduction of greenhouse gases by enterprises in the pilot provinces and 

cities. In December 2016, Fujian Province launched the carbon trading market, as the eighth 

domestic carbon trading pilot province. In July 2021, the high-profile national carbon market 

officially began to be traded online. Table 22 shows the specific time and price of the ETS 

market in China. I aim to explore the impact of ETS on air quality, furthermore, adult mental 

health. 
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Table 22. The Basic Situation and Features of Seven Pilots 

Region Emissions 

covered 

Launch time Enterprise 

selected 

Industry 

involved 

Trading 

platform 

First price of 

carbon 

Shenzhen 40% 6/18/2013 635 Electricity and 

other 26 

carbon 

emissions 

industries 

Shenzhen 

Climate 

Exchange 

28 Yuan/ton 

($4.57) 

Guangdong 58% 9/11/2013 830 Iron and steel, 

cement, power 

and 

petrochemical 

industries 

China 

Emissions 

Exchange 

61 Yuan/ton 

($9.95) 

Shanghai 57% 11/26/2013 191 Iron and steel, 

Chemical 

industry, 

Petroleum 

chemistry 

Electric power, 

Building 

including 

hotel, shopping 

Aviation, 

Ports, Airport, 

etc. 

Shanghai 

Environment 

and Energy 

Exchange 

First transaction 

prices were 27 

Yuan/ton ($4.40), 

26 Yuan/ton 

($4.24), 25 

Yuan/ton ($4.08) 

Beijing 40% 11/28/2013 490 Heat supply 

power, thermal 

power supply 

and other 

industries in 

the ‘direct’ 

field; 

manufacturing 

industry and 

large public 

buildings. 

China 

Beijing 

Environment 

Exchange 

50 Yuan/ton 

($8.15) 

Tianjin 50-60% 12/27/2013 114 Iron and steel, 

chemicals, 

electricity and 

heat, 

petrochemical, 

oil and gas in 

the ‘indirect’ 

areas 

Tianjin 

Climate 

Exchange 

28 Yuan/ton 

($4.57) 

Hubei 33% 4/2/2014 153 Electricity. 

Steel, cement, 

chemicals and 

other 12 

industries 

China Hubei 

Emission 

Exchange 

20 Yuan/ton 

($3.26) 

Chongqing 39.5% 6/19/2014 254 The industrial 

enterprises 

over 20,000t of 

carbon dioxide 

emissions 

Chongqing 

Carbon 

Emissions 

Trading 

Center 

30-30.15 

Yuan/ton ($4.89-

5.13) 
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3.3 Literature Review 

Most of the literature employ CGE model to simulate the air quality and health co-benefits 

of ETS in China. Cao et al. (2021) employs CMAA model to test the environmental and health 

effects of ETS in Hubei province. The simulation shows the ETS improved air quality in large 

parts of Hubei but the concentration of PM2.5 increased in some major cities resulting in negative 

impacts on human health locally. Chang et al. (2020) find the ETS bring reduction of PM2.5 

concentration from 3% to 12% and the net health benefit would be around US$100 using the 

Regional Emissions Air Quality Climate Health Model. Some literature uses empirical methods 

to study the effects. Weng et al. (2022) employs a two-way fixed-effect model to estimate the 

causal relationship between daily carbon trading volumes and air pollution from 2015 to 2020. 

Results show that a one percent increase in daily carbon trading volumes leads to a reduction of 

0.23% in PM2.5 and 0.26% in PM10. Yan et al. (2020) employ DID method and mediating effect 

model to assess the impact of ETS pilot on air pollution. Huang et al. (2021) integrates the 

propensity score matching method and multi-period DID method to examine the impacts of ETS 

on industrial output and pollution emissions. They find that the implementation of the ETS was 

conducive to increasing industrial output and reducing emissions. 

Previous studies evaluated the impacts of ETS from different perspectives, such as impacts 

on Green Productivity Performance (Yang et al. 2021), economy (Marin et al. 2018), 

technologies (Mo et al. 2016; Bel and Joseph, 2018) and physical health(Chang, Shiyan, et al 

2020.; Farrell et al. 2004). There are several papers examining the causal effect of air pollution 

on mental health. Zhang et al. (2017) employ fixed effects OLS model to estimate the effect of 

air pollution on hedonic happiness and the rate of depressive symptoms. Chen et al. (2018) 
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presents an IV method - instrumented by thermal inversions - to study the short run impact of air 

quality on people’s mental health. Ferreira et al. (2013) analyze the relationship between air 

quality and subjective well-being in Europe using fixed effects OLS model. All these papers find 

negative impacts of air pollutants on mental health. Although some papers study the impact of air 

quality on mental health and the impact of ETS on many aspects, there is no paper that explores 

the direct effect of ETS on mental health. Mental health has become an increasingly serious 

problem in modern society. It is of great significance to study the impact of carbon emission 

market policies on mental health, which can better evaluate the benefits of the carbon emission 

market and health expenditures. 

3.4 Empirical Strategy 

3.4.1 The Effects of ETS Pilot Scheme on Air Quality 

I use the DID method to test the impact of ETS on air quality and the equation takes the 

following from: 

𝑃𝑐𝑡 = 𝛼0 +  𝛼1𝑃𝑜𝑠𝑡𝑡 ∗ 𝑇𝑟𝑒𝑎𝑡𝑐 + 𝛼2𝑋𝑐𝑡 + 𝛼3𝑊𝑐𝑡 +  𝜇𝑚 + 𝜇𝑦 + 𝛾𝑐 + 𝜀𝑐𝑡 (3.1) 

where the subscript c accounts for county and t accounts for daily time variable.  𝑃𝑐𝑡 is the 

air quality index for county c at time t.  𝑃𝑜𝑠𝑡𝑡 is a dummy variable indicating whether it is before 

or after the pilot of emission trading system in county c and time t. If it is after the 

implementation time, then it equals 1, otherwise, it equals 0. 𝑇𝑟𝑒𝑎𝑡𝑐 is also a dummy variable 

representing whether county c is a pilot county or not. There are eight provinces and cities that 

piloted the ETS from 2013 and Fujian implemented ETS in 2016. Because the air quality data 

before 2013 is not available in most provinces, I use Fujian Province as the treatment group and 

provinces that never implemented the ETS as the control group. If it is Fujian province, then  

𝑇𝑟𝑒𝑎𝑡𝑐 equals to 1. If the province or cities didn’t implement the ETS in 2013 and 2016, 𝑇𝑟𝑒𝑎𝑡𝑐 
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equals to 0.  𝑋𝑐𝑡 is a set of socio-economic control variables, like population size, GDP, etc. 𝑊𝑐𝑡 

is a set of weather control variables, like temperature, precipitation, and snow depth. I also 

control for year-month fixed effect to exclude the interference of seasonality. County fixed 

effects are also included in the model to exclude the influence of time-invariant variables. 

3.4.2 The Effects of ETS Pilot Scheme on Mental Health 

There is a high possibility that the ETS pilot will also increase people’s happiness and 

reduce the rate of depressive symptoms. I use the DID model to evaluate the effect of ETS on 

mental health and the DID model is constructed as follows: 

𝑀𝐻𝑖𝑚𝑦 = 𝛼0 + 𝛼1𝑃𝑜𝑠𝑡𝑚𝑦 ∗ 𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛼2𝑋𝑖𝑚𝑦 + 𝛼3𝑊𝑐𝑚𝑦 + 𝜇𝑚 +  𝜇𝑦 + 𝛾𝑐 + 𝜀𝑖𝑐𝑚𝑦 (3.2) 

Where the subscript i accounts for the individual i, c accounts for the county and m 

accounts for the monthly time variable in year y. For example, 𝑀𝐻𝑖𝑐𝑚𝑦 is the mental health 

index for individual i, in county c, and at month m in year y. 𝑃𝑜𝑠𝑡𝑚𝑦 is a dummy variable 

indicating whether it is after or before the pilot of emission trading system in county c. If it is 

after the implementation time, then it equals 1, otherwise, it equals 0.  Treati is also a dummy 

variable representing whether county c is a pilot city or not. If the interviewees live in Fujian 

provinces, then Treatc equals 1, otherwise it equals 0.  Xit is a set of socio-economic control 

variables, like age, the square of age, educational outcomes, marital status, income, etc.   Wct is a 

set of weather control variables, like temperature, precipitation, and snow depth. I also control 

for year-month fixed effect and county fixed effects to exclude the interference of seasonality 

and time-invariant variables. 

3.4.3 Event Study Analysis 

The assumption of the DID model is that the treatment group and the control group have a 

parallel trend before the policy implementation. If there are significant differences between the 
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two groups before the policy implementation, even if I observe significant differences in 

outcomes between the groups after the policy, I cannot attribute those differences solely to the 

policy. Therefore, it is important to test whether there are significant differences in air quality 

and mental health between the control group and the treatment group before the policy 

implementation. The event study analysis takes the following model: 

𝑌𝑖𝑡 = ∑ 𝑇𝑟𝑒𝑎𝑡𝑖𝑡,𝑘 × 𝛽𝑘

𝑀

𝑚=𝑘,𝑚≠−1

+ 𝑋𝑖𝑡 × 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖𝑡 (3.3) 

Where 𝑌𝑖𝑡 is the outcome variable, the mental health score for individual i at time t. 

𝑇𝑟𝑒𝑎𝑡𝑖𝑡,𝑘 is a set of dummy variables which equals 1 for treatment cities and 0 for control cities 

all the time. I put one month into one bin to avoid that the trend test is not affected by the high 

volatility of the daily air pollution and mental health. The dummy for m = −1 is omitted in 

equation (3.3) so that the post-ETS effects are relative to the period immediately before the 

launch of the policy. 𝛽𝑘measures the difference in air quality or mental health between cities or 

individuals in the treatment group and otherwise in period k relative to the difference one week 

before the ETS policy. When k is less than -1, 𝛽𝑘 should be 0, indicating no significant 

difference between the control and the treatment group. When k is greater than 0, the coefficient 

should be negative, indicating an improvement in air quality and mental health in the control 

group after the policy implementation. 

3.5 Data 

3.5.1 Air Quality  

Data on air quality, such as AQI, PM2.5, PM10, SO2, NO2, CO are obtained from the China 

National Environmental Monitoring Center (CNEMC), which is affiliated to the Ministry of 

Environmental Protection of China. The CNEMC publishes hourly Air Quality Index and 
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specific air pollutants including PM2.5, PM10, O3, SO2, NO2 and CO for around 1400 monitoring 

stations from January 2013. But most of the cities pilot carbon-emission trading system in 2013 

except Fujian province. So, when I study the impact of carbon emission trading system, I used 

Fujian province which implemented carbon emission trading system in 2016 as the treatment 

group and other province which didn’t implement carbon emission trading system in 2013 and 

2016 as control group. I explore the effect of ETS on air quality from Jan. 1st, 2015, to Dec. 

31st, 2017. I use the monitoring station information to convert the data at the monitoring station 

level to the city level, and then match the air quality data with the CFPS data by city and time. 

3.5.2 Mental Health and Socio-economic Controls 

I obtain mental health and socio-economic controls from Chinese Family Panel Studies 

(CFPS). CFPS is implemented every two years by the China Social Science Survey Center 

(ISSS) of Peking University since 2010. The current survey results include 2010, 2012, 2014, 

2016, 2018, and 2020. The CFPS sample covers 25 provinces, cities or autonomous regions, the 

target sample size is 16,000 households, and the survey objects include all family members in the 

sample households. The CFPS survey includes four primary types of questionnaires, namely the 

community questionnaire, family questionnaire, adult questionnaire, and children's 

questionnaire. I mainly use the adult questionnaire among them. The questions I use include: 

“How often have you felt depressed or depressed in the last month”; “How often you feel 

nervous in the last month”; “How often you feel restless and have trouble staying calm in the last 

month”; “How often you feel hopeless for the future in the last month”; “How often you have 

difficulty doing anything in the last month”; “How often you think life is meaningless in the last 

month”. The responses include five categories, namely never, sometime, half of the time, often, 

almost every day. This survey also includes age, sex, highest education, and income. I include 
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them as control variables. It also has county ID, interview year and month so that I can match the 

mental health data with air quality and weather control variables. 

3.5.3 Weather Controls 

I obtain the weather data from the China Meteorological Data Service Center (CMDC), 

which is affiliated to the National Meteorological Information Center of China. The CMDC 

records daily maximum, minimum, and average temperatures, precipitation, relative humidity, 

wind speed, snow depth and sunshine duration for 820 weather stations in China. I use average 

temperature, aggregate precipitation, and snow depth for the month prior to the interview. 

3.5.4 Summary Statistics 

Table 23 provides a summary of the descriptive statistics for AQI, PM2.5, PM10, SO2, NO2, 

CO, and O3. The unit of measurement for these variables is micrograms per cubic meter 

(μg/m3), except for AQI. The results show that in the treatment group (Fujian province), all air 

quality indicators exhibited a decrease after the implementation of the ETS. In the control 

groups, the air quality indicators also decreased, but to a lesser extent compared to the treatment 

group. In Figure 12, 13, and 14, I present the education level, marital status, and health status of 

the individuals participating in the mental health survey. It is observed that most participants had 

not received higher education, were married, and reported being in relatively good health. 
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Table 23. Summary Statistics for Air Quality-Related Indicators 

 Fujian Controls 

 Before ETS After ETS Before ETS After ETS 

 N mean N mean N mean N mean 

AQI 5135 58.86 2448 52.14 841303 79.78 418632 75.52 

PM2.5 5116 33.31 2442 30.07 832495 51.1 416884 46.42 

PM10 4805 64.3 2312 57.51 780735 92.53 395015 86.06 

SO2 5128 21.19 2439 11.25 837902 29.31 417471 21.72 

NO2 5124 24.53 2437 21.64 837167 26.67 417381 26.38 

CO 5122 0.92 2436 0.64 833892 1.07 417077 0.980 

O3 5114 89.92 2436 67.02 836387 73.49 417771 82.57 

CESD20 780 33.05 416 30.5 52422 32.5 25866 32.9 

 

   Figure 12. Percentage of Education Level 

Notes: Literate/semi-literate: 1; Primary: 2; Middle: 3; High: 4; 

College: 5; Bachelor: 6; Master: 7; Ph.D.: 8 

Figure 13. Percentage of Marriage Status 

 
 

Notes: Unmarried: 1; Married: 2; Cohabitation: 3; Divorce: 4; 

Widowhood: 5 

Figure 14. Percentage of Health Status 

 

Notes: 1: Pretty healthy; 2: Very healthy; 3: Relative healthy; 4: 

Weak; 5: Unhealthy 
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3.6 Results 

3.6.1 The Impacts of ETS on Air Quality 

China piloted ETS in seven cities in 2013 and piloted ETS in Fujian province in 2016. The 

first analysis I did was to restrict my analysis to Fujian province and other provinces except for 

the seven provinces that implemented ETS in 2013. I used Fujian Province as the Treatment 

group and other provinces except for the seven provinces that implemented ETS in 2013 as the 

control group. In Table 24, columns (1), (2) and (3) show the regression results for AQI, PM2.5 

and PM10. The coefficients of ETS on AQI, PM2.5 and PM10 are negative and statistically 

significant. After the implementation of ETS, the AQI decreased 10.98, PM2.5 decreased by 7.92 

ug/m3 and PM10 decreased by 13.23 ug/m3 which corresponds 18.7%, 23.8% and 20.6% of the 

mean value. It means that the ETS significantly improved air quality. And the coefficients of 

Time on AQI, PM2.5 and PM10 are all positive and statistically significant. That means the air 

quality tends to deteriorate. 

Table 24. The Impacts of ETS on AQI, PM2.5, and PM10 – Fujian Province(Treatment Group) 

  (1) (2) (3) 

 AQI PM2.5 PM10 

ETS*Post -10.98*** -7.92*** -13.23*** 

  (1.37) (1.13) (2.27) 

Province F.E. Yes Yes Yes 

Year F.E. Yes Yes Yes 

N 1267,518 1267,518 1267,518 

R2 0.1122 0.1314 0.0711 

Adj. R2 0.1122 0.1314 0.0711 

Notes: This analysis spans from 2013 to 2018. Standard errors are clustered by province and in 

parentheses. Statistical significance: * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

By expanding the analysis to include all provinces that have implemented emission trading 

system (ETS) policies as the treatment group and those that have never implemented ETS 
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policies as the control group, I have further broadened the scope of our analysis. This extended 

analysis involves more treatment provinces, potentially providing us with a more comprehensive 

understanding and deeper insights into the impact of ETS on air quality. The results from Table 

25 indicate that the implementation of ETS policies has led to significant negative impacts on the 

AQI, PM2.5, and PM10 which is good for air quality. The higher the AQI, PM2.5 and PM10, the 

worse the air quality. Specifically, following the implementation of ETS policies, AQI decreased 

by 11.26, PM2.5 decreased by 8.032 ug/m^3, and PM10 decreased by 15.01 ug/m^3. This 

further underscores the positive role of emission trading systems in improving air quality. 

Table 25. The Impact of ETS on AQI, PM2.5, and PM10 – All 7 Provinces(Treatment Group) 

  (1) (2) (3) 

 AQI PM2.5 PM10 

ETS*Post -11.26*** -8.032*** -15.01*** 

  (2.36) (1.63) (2.78) 

Province F.E. Yes Yes Yes 

Year F.E. Yes Yes Yes 

N 1312,526 1312,526 1312,526 

R2 0.1122 0.1314 0.0711 

Adj. R2 0.1122 0.1314 0.0711 

Notes: This analysis spans from 2010 to 2018. Standard errors are clustered by province and in 

parentheses. Statistical significance: * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

Compared to solely using Fujian province as the treatment group, the effect of ETS 

becomes even more pronounced when adding these seven provinces as the experimental group, 

indicating a stronger improvement in air quality. This could likely be attributed to the fact that 

cities like Beijing, Shanghai, and Shenzhen, serving as representatives of economically 

developed regions in China, possess higher levels of industrialization and population density. 

Given their heightened economic activities and population density, the issue of air quality in 

these regions may be more acute, thus rendering the impact of ETS more significant. The 
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distinctive economic and demographic structures of these areas may result in higher levels of 

pollution emissions, making ETS policies particularly crucial for enhancing air quality in these 

regions. 

3.6.2 The Impact of ETS on Depression 

I conduct the analysis from 2015 to 2020. Column (1) represents the results for CESD20 

and column (2) represents results for the log of CESD20 scores. From Table 26, we can see that 

the CESD20 score for people in Fujian Province decreased 1.1115 which is 3.7% of the mean 

value after the pilot of ETS and the coefficient is statistically significant. We can also see that 

there is a trend that the CESD20 score increases. From the fourth row, we can see that people are 

more likely to get depressed as they get old. Compared with female, male has lower CESD20 

score which means male are less likely to get depressed. In addition, there is a strong relationship 

between health status and CESD20 score. The coefficients on health status become larger when 

people get less healthy, and the coefficients are always statistically significant. That means, the 

healthier people are, the less likely they are to be depressed. Conversely, the less healthy they 

are, the more likely people are to be depressed. I also find that education can help reduce 

depression. The higher education people receive, the lower the CESD20 score they report. 

Marriage status also has significant effects on people’s happiness. The coefficients of marriage 

and widowed on CESD20 are statistically significant while divorce and cohabitation are not. 

That means marriage can help reduce depression while widow will make people depressed. 

In addition to examining the impact of ETS on depression in the general public, I also 

conducted separate analyses to investigate the effects of ETS on individuals with moderate 

depression and severe depression. The CESD questionnaire consists of a total of 20 questions, 

with a maximum score of 3 for each question. Therefore, the total score ranges from 0 to 60. 
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Scores below 15 indicate no depression, scores between 15 and 20 indicate mild depression, 

scores between 20 and 25 indicate moderate depression, and scores above 25 indicate severe 

depression. 

Table 26. The Impacts of ETS on Mental Health 

 CESD20 log (CESD20) 

ETS * Post -1.1115*** -0.0335*** 

 (8.7870) (8.7621) 

Treat -0.5847* -0.0197** 

 (-2.6628) (-2.9681) 

Post 0.6237*** 0.0206*** 

 (4.3195) (4.5486) 

Age 0.1166*** 0.0032*** 

 (4.2321) (3.9395) 

Age*Age -0.0017*** -0.0000*** 

 (-5.4622) (-5.4845) 

Male -0.9311*** -0.0287*** 

 (-11.1273) (-11.4950) 

Very Healthy 1.1109*** 0.0380*** 

 (5.9900) (6.4561) 

Relative Healthy 2.9688*** 0.0953*** 

 (15.3650) (16.4042) 

Weak 4.7363*** 0.1496*** 

 (22.4593) (22.4405) 

Unhealthy 9.5468*** 0.2786*** 

 (34.1741) (34.1511) 

Primary -0.8752*** -0.0250** 

 (-3.9000) (-3.6161) 

Middle -1.5421*** -0.0443*** 

 (-4.4716) (-4.1898) 

High -1.8533*** -0.0529*** 

 (-5.2497) (-5.0047) 

College -2.1476*** -0.0612*** 

 (-5.6725) (-5.2568) 

Bachelor -2.4614*** -0.0696*** 

 (-5.0472) (-4.7544) 

Master -2.7167*** -0.0754*** 

 (-4.4237) (-3.7953) 

Ph.D. -2.7615 -0.0724 

 (-1.3536) (-1.0996) 

Marriage -0.9098*** -0.0251*** 

 (-4.4652) (-4.2552) 

Cohabitation -0.1000 0.0024 

 (-0.1502) (0.1195) 

Divorce -0.2811 -0.0101 

 (-1.4929) (-1.7287) 

Widowed 1.5828** 0.0460*** 

 (3.6035) (3.7899) 

N 34404 34404 

R2 0.1503 0.1461 

Adj. R2              0.1495              0.1453 
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Notes: t statistics in parentheses. The standard errors are clustered at province level. Statistical significance:   * p < 

0.05, ** p < 0.01, *** p < 0.001.  

 

From Table 27, we can observe that after the implementation of ETS, there was a decrease 

in CESD scores for individuals with moderate depression and severe depression. This suggests 

that the implementation of ETS improved the mental health of individuals with moderate and 

serious depression. The improvement in mental health is larger for people with moderate 

depression compared with people with serious mental health problems. From Table 27, we can 

see that the CESD20 score for moderate depressed people decreased 0.93 after the pilot of ETS 

and the coefficient is statistically significant. 

Table 27. The Impact of ETS on Moderate and Severe Depressed People 

 Moderate Depression Severe Depression 

 CESD20 log (CESD20) CESD20 log (CESD20) 

ETS * Post -0.93* -0.063* -0.62* 0.056* 

 (0.82) (0.058) (0.47) (0.05) 

     

Age  Yes Yes   Yes   Yes 

     

Gender  Yes Yes   Yes   Yes 

     

Health  Yes Yes   Yes   Yes 

     

Education Yes Yes   Yes   Yes 

     

Income             Yes             Yes   Yes   Yes 

 

Marital Status Yes Yes   Yes   Yes 

     

Month F.E. Yes Yes   Yes   Yes 

     

Year F.E. Yes Yes   Yes   Yes 

 
Notes: Standard errors are clustered in province level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

3.6.3 Event Study Analysis 

I conducted the event study analysis to ensure the results were robust. There is potential 

that there is pre-existing factors in the carbon emissions trends to obtain results on the distinct 
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changes between the pilot and non-pilot areas. I conduct a parallel trends analysis for AQI, using 

Fujian province as the treatment group(Figure 15) and other provinces and cities that 

implemented the ETS as the treament group(Figure 16) separately. The orange dotted line 

indicates the start of the ETS implementation, and the red dotted line represents the zero line. 

The blue shaded area represents the 95% confidence interval. When using Fujian as the treatment 

group, the analysis covers the period from 2013 to 2018. For all the cities as the treatment group, 

the analysis spans 2 years before and after the ETS implementation due to varying 

implementation times across different locations. From the chart, we can see that before the 

implementation of the ETS, the 95% confidence intervals for the treatment and control groups 

include zero. However, after the ETS implementation, there is a sharp decline, indicating that the 

ETS has led to a decrease in AQI and thus an improvement in air quality. 

Figure 15. Parallel Trends Test for AQI - Fujian Province(Treatment Group) 

 

Notes: This analysis spans from 2013 to 2018. Fujian Province is treatment group. All other provinces that 

never implemented ETS are control group. Fujian implemented ETS in December 2016. 
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Figure 16. Parallel Trend Test for AQI - All 7 Provinces (Treatment Group) 

 

Notes: This analysis spans from two years before and after the implementation of ETS. Province and places that 

implemented the ETS before 2016 are treatment group. All other provinces that never implemented ETS are control 

group. 

I also conducting a parallel trends analysis for mental health, comparing Fujian province as 

the treatment group to other provinces and cities that implemented the ETS. I use CESD20 score 

to represent people’s mental health. The analysis covers the period from 2013 to 2018. From the 

chart, we can see that before the implementation of the ETS, the 95% confidence intervals for the 

treatment and control groups include zero. However, after the ETS implementation, there is a 

sharp decline, indicating that the ETS has led to a decrease in CESD20 and thus an improvement 

in mental health. 
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Figure 17. Parallel Trends Test for CESD20 - Fujian Province(Treatment Group) 

 

 

Notes: This analysis spans from 2015 to 2018. Fujian Province is treatment group. All other provinces that 

never implemented ETS are control group. Fujian implemented ETS in December 2016. 

 

3.6.4 Robustness Checks 

In the previous context, I set up two scenarios. The first involved using Fujian Province as 

one treatment group and provinces without Emission Trading System (ETS) policies in both 

2013 and 2016 as the control group. The second scenario included provinces that implemented 

ETS in 2013 and 2016 as the treatment group, with provinces without ETS policies in both years 

as the control group. However, considering the potential spillover effects of air quality between 

provinces, where the air quality of one province might be influenced by neighboring provinces 

due to wind patterns. 
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For the robustness check, two additional analyses were conducted, each excluding 

neighboring provinces to assess the impact of ETS on air quality in a more localized context. 

This approach ensures a more accurate assessment of the impact of ETS on air quality by 

minimizing the influence of neighboring provinces implementing similar policies. By doing so, it 

provides a comprehensive understanding of the effectiveness of ETS in improving air quality 

across different regions. 

When neighboring provinces are excluded, I observe roughly similar results: significant 

decreases in AQI, PM2.5, and PM10, indicating a notable improvement in air quality. However, 

compared to not excluding neighboring provinces, I find that the impact of ETS becomes more 

pronounced when they are excluded. For instance, when Fujian Province is taken as the 

treatment group, without excluding neighboring provinces, AQI decreases by 10.98, whereas 

when neighboring provinces are excluded, the decrease is 11.13. This suggests that ETS policies 

indeed have a positive impact on the air quality of neighboring provinces as well. 

Both analyses, despite different treatment group compositions, consistently demonstrate 

the substantial positive impact of ETS on air quality when neighboring provinces are excluded 

from the analysis. These findings further underscore the robustness of the relationship between 

ETS implementation and improved air quality, even in more localized contexts. 

Table 20. ETS Impact on AQI, PM2.5, and PM10 When Have One Treatment and Exclude Neighbors 

  (1) (2) (3) 

 AQI PM2.5 PM10 

ETS*Post -11.13*** -8.28*** -14.31*** 

  (2.36) (1.63) (2.78) 

Province F.E. Yes Yes Yes 

Year F.E. Yes Yes Yes 

N 982,726 982,726 982,726 

R2 0.1122 0.1314 0.0711 

Adj. R2 0.1122 0.1314 0.0711 
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Notes: Standard errors are clustered by province and in parentheses.  Statistical significance: * p < 0.1, ** p < 

0.05, *** p < 0.01. 

 

Table 21 ETS Impact on AQI, PM2.5, and PM10 When Have More Treatments and Exclude Neighbor 

  (1) (2) (3) 

 AQI PM2.5 PM10 

ETS*Post -12.25*** -8.62*** -15.81*** 

  (2.36) (1.63) (2.78) 

Province F.E. Yes Yes Yes 

Year F.E. Yes Yes Yes 

N 971,530 971,530 971,530 

R2 0.1122 0.1314 0.0711 

Adj. R2 0.1122 0.1314 0.0711 

Notes: Standard errors are clustered by province and in parentheses. Statistical significance: * p < 0.1, ** p < 

0.05, *** p < 0.01. 

 

3.7 Conclusion 

 In this study, I employed the DID method to evaluate the effects of the Emission Trading 

System on both air quality and mental health. The findings demonstrate a significant 

enhancement in air quality subsequent to the implementation of ETS, evidenced by reductions in 

AQI by 10.98 units, PM2.5 by 7.92 ug/m3, and PM10 by 13.23 ug/m3. Furthermore, consistent 

results were obtained when expanding the treatment group to include more provinces and 

excluding neighboring provinces from the control group. 

Additionally, the analysis indicates that individuals residing in Fujian Province 

experienced a notable decrease of 1.1115 in mental health scores following the introduction of 

ETS, suggesting a positive impact on mental well-being.  

I also tested the parallel trends assumption and found similar trends between the treatment 

and control groups before the implementation of the Emission Trading System (ETS). However, 

following the implementation, both AQI and CESD-20 scores showed reductions, indicating that 

ETS indeed improves air quality indeed improve air quality and mental health. 
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Appendices 

Appendix A. Chapter 2 Supplementary Figures 

Figure A 1.  Event Study Analysis for AQI 

 

Figure A 2. Event Study Analysis for PM10 
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Figure A 3. Event Study Analysis for SO2 

 

Figure A 4. Event Study Analysis for NO2 
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Figure A 5. Event Study Analysis for CO 

 

Figure A 6. Event Study Analysis for O3 
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Appendix B.  Chapter 3 Introduction on CESD Score 

In CFPS 2016, the Center for Epidemiologic Studies Depression Scale (CES-D) is used to 

test an individual’s level of depression. This set of scales has many forms. In CFPS 2012, it uses 

a scale containing 20 questions which were called CESD20. However, the feedback from the 

field survey shows that the scale used in CFPS personal questionnaire seems to have too many 

questions. The acceptance level of interviewees is not high. Therefore, in CFPS2016, they 

adjusted the design and switched to the simplified model of this set of scales. The number of 

questions was reduced from 20 to 8 questions. At the same time, in order to effectively compare 

the depression scores between different rounds, they chose face-to-face interviews and select 1/5 

samples in the population randomly to use CESD20, and the remaining 4/5 samples use CESD8. 

Based on this design, the data processors performed equivalent operations on the scores of the 

two set of questions in the later stage, and the method used was the percentile equalization 

method (equipercentile equating), resulting in a comparable score CESD20SC (constructed 

CESD20 total score). This score of CESD20 is maintained, which is also comparable to the score 

of CESD20 scale in CFPS2012. In addition to comprehensive variable scores CESD20sc, the 

datasets also retain the original single-item scores. 

The 20 questions include: 

_____ 1. You will be troubled by things that you didn't care about before. 

_____ 2. You don't want to eat and your appetite is bad. 

_____ 3. Even with the help of family and friends, you can't get over your bad mood. 

_____ 4. You feel that you are as good as everyone else. (×) 

_____ 5. When you are doing things, you often cannot concentrate. 

_____ 6. You feel depressed. 
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_____ 7. You find it very difficult to do anything. 

_____ 8. You are full of hope for the future. (×) 

_____ 9. You see yourself as a failure in your past life. 

_____ 10. You feel fear. 

_____ 11. You do not sleep well. 

_____ 12. You are very happy. (×) 

_____ 13. You talk less than usual. 

_____ 14. You feel lonely. 

_____ 15. You feel that people are unkind to you. 

_____ 16. You enjoy life. (×) 

_____ 17. You often cry for no apparent reason. 

_____ 18. You feel sad. 

_____ 19. You feel that people don't like you. 

_____ 20. You feel like you can't make progress. 

The choices for those questions are: 

0: Hardly ever (less than a day) 

1: Rarely (1-2 days) 

2: Often (3-4 days) 

3: Almost always (5-7 days) 

To calculate the depression points, two steps are needed. Step 1: The scores for items 4, 8, 

12, and 16 [namely marked with (×)] take the opposite score, that is, if you mark 0 points on one 

of the items, then In fact, it is 3 points; in the same way, change 1 point to 2 points, change 2 
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points to 1 point, and change 3 points to 0 points. Step 2: The scores of these 4 items are the 

converted scores, and then add up all the scores for all 20 questions. 

It can be seen that the lowest score may be 0 points, and the highest score may be 60 

points. Psychologists set 16 points as the dividing line between depressed people and non-

depressed people. Depression is usually divided into three types: mild depression (16-20 points), 

moderate depression (21-25 points), and severe depression (25-60 points). It is worth mentioning 

that the depression scale is different from the happiness scale, and this score is particularly 

closely related to your mood and usual mental state. So, you might get different numbers for 

depression when you measure it over different time periods; even two weeks apart, the results 

can be different. 
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