
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Computer Science Dissertations Department of Computer Science 

5-9-2016 

Methods for Differential Analysis of Gene Expression and Methods for Differential Analysis of Gene Expression and 

Metabolic Pathway Activity Metabolic Pathway Activity 

Yvette Charly B. Temate Tiagueu 

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss 

Recommended Citation Recommended Citation 
Temate Tiagueu, Yvette Charly B., "Methods for Differential Analysis of Gene Expression and Metabolic 
Pathway Activity." Dissertation, Georgia State University, 2016. 
doi: https://doi.org/10.57709/8382486 

This Dissertation is brought to you for free and open access by the Department of Computer Science at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by 
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/8382486
mailto:scholarworks@gsu.edu


METHODS FOR DIFFERENTIAL ANALYSIS OF GENE EXPRESSION AND

METABOLIC PATHWAY ACTIVITY

by

YVETTE CHARLY BLANCHE TEMATE-TIAGUEU

Under the Direction of Alexander Zelikovsky, PhD

ABSTRACT

RNA-Seq is an increasingly popular approach to transcriptome profiling that uses the

capabilities of next generation sequencing technologies and provides better measurement

of levels of transcripts and their isoforms. In this thesis, we apply RNA-Seq protocol and

transcriptome quantification to estimate gene expression and pathway activity levels. We

present a novel method, called IsoDE, for differential gene expression analysis based on

bootstrapping. In the first version of IsoDE, we compared the tool against four existing



methods: Fisher’s exact test, GFOLD, edgeR and Cuffdiff on RNA-Seq datasets generated

using three different sequencing technologies, both with and without replicates. We also

introduce the second version of IsoDE which runs 10 times faster than the first imple-

mentation due to some in-memory processing applied to the underlying gene expression

frequencies estimation tool and we also perform more optimization on the analysis.

The second part of this thesis presents a set of tools to differentially analyze metabolic

pathways from RNA-Seq data. Metabolic pathways are series of chemical reactions oc-

curring within a cell. We focus on two main problems in metabolic pathways differential

analysis, namely, differential analysis of their inferred activity level and of their estimated

abundance. We validate our approaches through differential expression analysis at the

transcripts and genes levels and also through real-time quantitative PCR experiments.

In part Four, we present the different packages created or updated in the course of this

study. We conclude with our future work plans for further improving IsoDE 2.0.

INDEX WORDS: Bootstrapping algorithm, Next generation sequencing, Gene expres-
sion, RNA-Seq data, Expectation maximization, Graph analysis,
Metabolic pathway activity level, Metabolic pathways, Metabolic
pathway abundance, KEGG, Differential gene expression analysis
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PART 1

INTRODUCTION

1.1 RNA-Seq protocol for transcriptome quantifications

RNA-Seq is an increasingly popular approach to transcriptome profiling that uses

the capabilities of next generation sequencing (NGS) technologies and provides better

measurement of levels of transcripts and their isoforms. One issue plaguing RNA-Seq

experiments is reproducibility. This is a central problem in bioinformatics in general. It

is not easy to benchmark the entire RNA-Seq process [1], and the fact that there are fun-

damentally different ways of analyzing the data (assembly, feature counting, etc) make

it more difficult. Nevertheless RNA-Seq offers huge advantages over microarrays since

there is no limit on the numbers of genes surveyed, no need to select what genes to target,

and no requirements for probes or primers and it is the tool of choice for metagenomics

studies. Also, RNA-seq has the ability to quantify a large dynamic range of expression

levels, this lead to transcriptomics and metatranscriptomics.

Rapid advances in NGS have enabled shotgun sequencing of total DNA and RNA ex-

tracted from complex microbial communities, ushering the new fields of metagenomics

and metatranscriptomics. Depending on surrounding conditions e.g. food availability,

stress or physical parameters, the gene expression of organisms can vary widely. The aim

of transcriptomics is to capture the gene activity. Transcriptomics helps perform gene ex-

pression profiling to unravel gene functions. It can tell us, which metabolic pathways are

in use under the respective conditions and how the organisms interact with the environ-

ment. Hence, it can be applied for environmental monitoring and for the identification of

key genes. Transcriptomics also play a role in clinical diagnosis and in screening for drug

targets or for genes, enzymes and metabolites relevant for biotechnology [2–4].

While transcriptomics deals with the gene expression of single species, metatran-



2

scriptomics covers the gene activity profile of the whole microbial community. Metatran-

scriptomics studies changes in the the function and structure of complex microbial com-

munities as it adapts to environments such as soil and seawater. Unfortunately, as in all

"meta" approaches, only a small percentage of the vast number of ecologically important

genes has been correctly annotated[5].

In this thesis, we apply RNA-Seq protocol and transcriptome quantification to esti-

mate gene expression and pathway activity levels.

1.1.1 Differential gene expression analysis

Gene expression is the process by which the genetic code (the nucleotide sequence) of

a gene becomes a useful product. The motivation behing analyzing gene expression is to

identify genes whose patterns of expression differ according to phenotype, disease, exper-

imental condition (e.g.disease and control) or even from different organisms. Important

factors to consider while analyzing differentially expressed genes are: normalization, ac-

curacy of differential expression detection and differential expression analysis when one

condition has no detectable expression. A very popular domain of application of gene

expression analysis is time-series gene expression data [6], this stems from the fact that

biological processes are often dynamic.

In general, one of the main goals of differential expression (DE) analysis is to iden-

tify the differentially expressed genes between two or more conditions. Such genes are

selected based on a combination of expression level threshold and expression score cut-

off, which is usually based on p-values generated by statistical modeling. The expression

level of each RNA unit is measured by the number of sequenced fragments that map to

the transcript, which is expected to correlate directly with its abundance level [7].

The outcome of DE analysis is influenced by the way primary analysis (mapping,

mapping parameters, counting) is conducted [7]. In addition, the overall library prepa-

ration protocol and quality is also an important factor of bias [8–10]. As described in the

next chapters, DE analysis methods differ in how to deal with these pre-analysis phases.
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Furthermore, RNA Seq experiments tend to be underpowered (too few replicates) and

we need methods to perform DE under these circumstances.

In this thesis, we will address the following problems:

Differential gene expression problem

Given: RNA-Seq reads from two or more samples from two conditions

and gene annotation.

Find: Differentially expressed genes across both conditions.

1.1.2 Analysis of metabolic pathway activity

Metabolic pathways are series of chemical reactions occurring within a cell. They

referred to any of the sequences of biochemical reactions, catalysed by enzymes, that

occur in all living cells. In each pathway, a principal chemical is modified by a series of

chemical reactions. Figure 1.1 presents a part of the Glycolysis/Gluconeogenesis pathway

from the Kyoto Encyclopedia of Genes and Genomes (KEGG). In analyzing the pathways,

we will address the following problems:

Quantification of pathway activity level problem

Given: RNA-Seq reads from two or more samples from two conditions

and a pathway database.

Find: The activity levels of all pathways.

Differential pathway activity analysis problem

Given: RNA-Seq reads from two or more samples from two conditions

and a pathway database.

Find: Pathways with differential activity levels.
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Figure 1.1 Part of the Glycolysis/Gluconeogenesis pathway from KEGG

1.2 Contributions

• IsoDE a novel method for differential gene expression analysis for RNA-Seq data.

Our method uses the traditional bootstrapping approach to resample RNA-Seq

reads, in conjunction with the accurate Expectation-Maximization IsoEM algorithm

to estimate gene expression levels from the samples.

• Experimental study on RNA-Seq datasets generated using three different technolo-

gies (Illumina, ION Torrent, and 454) from two well-characterized MAQC samples.

We show that IsoDE has consistently high accuracy, comparable or better than that

of Fisher’s exact test, GFOLD, Cuffdiff, and edgeR (we did not compare directly

with NPEBSeq since installation was not successful).

– Unlike other methods, IsoDE maintains high accuracy (sensitivity and PPV

around 80%) on low coverage RNA-Seq datasets and at lower fold change

thresholds.

• Application of IsoDE to multi-replicates studies. We explored the effect of the num-

ber of replicates on prediction accuracy using a RNA-Seq dataset with 7 replicates
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for each of two conditions (control and E2-treated MCF-7 cells).

– We show that all methods generally benefit from the use of additional repli-

cates, GFOLD and edgeR show a marked discontinuity when transitioning

from 1 to 2 replicates.

– In contrast, IsoDE accuracy varies smoothly with changes in the number of

replicates.

• A novel graph-based approach to analyze pathways significance. We represent

metabolic pathways as graphs that use nodes to represent biochemical compounds,

with enzymes associated with edges describing biochemical reactions.

• An implementation of an EM algorithm, in which pathways are viewed as sets of

orthologs.

• The validation of the two approaches through differential expression analysis at the

transcripts and genes levels and also through real-time quantitative PCR experi-

ments.

1.3 Future work

• A new release of IsoDE with an improved pre-processing step extracting more in-

formation from bootstrap samples to tune the analysis phase further.

1.4 Roadmap

The dissertation proposal is organized as follows. Part 2 describes IsoDE tool and

the motivation behind it. We first presents the state of the art in DE analysis, then we

introduce our bootstrapping-based method IsoDe, we finish by describing the experi-

mental setup, the results and discussions. Different versions of IsoDE are discussed and

compare at the end of the chapter as well as our plans for improving upgrade on the
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tool. Part 3 describes metabolic pathways analysis, namely inferring pathway activity

level and abundance from RNA-Seq data. This section especially provides details on

our expected maximization based model to estimate pathway activity and details on our

topology-based approach to estimate pathway significance. In Part 4, we give a brief de-

scription of different software and tools implemented, updated or published during this

work. Our plans for future work are described in Part 5.
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PART 2

DIFFERENTIAL GENE EXPRESSION ANALYSIS

2.1 Introduction

RNA-Seq has become the new standard for the analysis of differential gene expres-

sion [11] [12] [13] due to its wider dynamic range and smaller technical variance [14]

compared to traditional microarray technologies. However, simply using the raw fold

change of the expression levels of a gene across two samples as a measure of differen-

tial expression can still be unreliable, because it does not account for read mapping un-

certainty or capture, fragmentation, and amplification variability in library preparation

and sequencing. Therefore, the need for using statistical methods arises. Traditionally,

statistical methods rely on the use of replicates to estimate biological and technical vari-

ability in the data. Popular methods for analyzing RNA-Seq data with replicates include

edgeR[15], DESeq [16], Cuffdiff [1], and the recent NPEBSeq [17].

Unfortunately, due to the still high cost of sequencing, many RNA-Seq studies have

no or very few replicates [18]. Methods for performing differential gene expression anal-

ysis of RNA-Seq datasets without replicates include variants of Fisher’s exact test [14].

Recently, Feng et al. introduced GFOLD [19], a non-parametric empirical Bayesian-based

approach, and showed that it outperforms methods designed to work with replicates

when used for single replicate datasets.

A simple approach is to select genes using a fold-change criterion. This may be the

only possibility in cases where no, or very few replicates, are available. An analysis solely

based on fold change however does not allow the assessment of significance of expression

differences in the presence of biological and experimental variation, which may differ

from gene to gene. This is the main reason for using statistical tests to assess differential

expression.[20]
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2.1.1 State of the art

2.1.1.1 GFOLD

GFOLD [19] is a generalized fold change algorithm which produces biologically

meaningful rankings of differentially expressed genes from RNA-Seq data. GFOLD as-

signs reliable statistics for expression changes based on the posterior distribution of log

fold change. The authors show that GFOLD outperforms other commonly used methods

when used for single replicate datasets.

2.1.1.2 Cuffdiff

Cuffdiff [1] uses a beta negative binomial distribution model to test the significance

of change between samples. The model accounts for both uncertainty resulting from read

mapping ambiguity and cross-replicate variability. Cuffdiff reports fold change in gene

expression level along with statistical significance.

Cufflinks includes a separate program, Cuffdiff, which calculates expression in two

or more samples and tests the statistical significance of each observed change in expres-

sion between them. The statistical model used to evaluate changes assumes that the num-

ber of reads produced by each transcript is proportional to its abundance but fluctuates

because of technical variability during library preparation and sequencing and because of

biological variability between replicates of the same experiment. Cufflinks is a transcript-

level fragment count estimates. Cuffdiff uses an algorithm to model the expression of

a gene G. Following this algorithm, it is able to get a distribution for the expression of

a G. In the presence of replicates, to estimate the distribution of the log-fold-change in

expression for G under the null hypothesis, Cuffdiff compute the average of these distri-

butions and takes their log ratio. The process is repeated thousand times across the two

conditions. To calculate a p-value of observing the real log-fold-change, they sort all the

samples and count how many of them are more extreme than the log fold change they
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actually saw in the real data. This number divided by the total number of draws is the

estimate for the p-value. [1].

2.1.1.3 edgeR and DESeq

edgeR [15] is a statistical method for differential gene expression analysis which is

based on the negative binomial distribution. Although edgeR is primarily designed to

work with replicates it can also be run on datasets with no replicates. We used edgeR on

counts of uniquely mapped reads, as suggested in [21].

EdgeR as well as DESeq are downstream count-based analysis tools like both

avaioable as R/Bioconductor packages. The edgeR can be used to analyze replicates data

set (highly recommended) and non-replicate.

A particular feature of edgeR functionality, are empirical Bayes methods that permit

the estimation of gene-specific biological variation, even for experiments with minimal

levels of biological replication. edgeR can be applied to differential expression at the

gene, exon, transcript or tag level. In fact, read counts can be summarized by any genomic

feature. edgeR analyses at the exon level are easily extended to detect differential splicing

or isoform-specific differential expression.

DESeq and edgeR are two methods and R packages for analyzing quantitative read-

outs (in the form of counts) from high-throughput experiments such as RNA-seq. After

alignment, reads are assigned to a feature, where each feature represents a target tran-

script, in the case of RNA-Seq. An important summary statistic is the count of the number

of reads in a feature (for RNA-Seq, this read count is a good approximation of transcript

abundance).

Methods used to analyze array-based data assume a normally distributed, contin-

uous response variable. However, response variables for digital methods like RNA-seq

and ChIP-seq are discrete counts. Thus, both DESeq and edgeR methods are based on the

negative binomial distribution.

EdgeR and DESeq use a model where they separate out the shot noise (aka counting
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noise, sampling noise, Poisson noise) that arises from the count nature of the data from the

variance introduced by other types of noise (technical variance and biological variance).

Then the extra variance is modeled either as uniform (as in the case of EdgeR - e.g. all

biological/technical variances for all transcripts are set to the same over dispersion from

Poisson) or as quasi-correlated with read depth for DESeq. DESeq assumes that there

is a correlation between read depth and extra-Poisson noise while EdgeR assumes no

correlation.

2.1.2 Roadmap

In the next sections, we will compare our novel approach with the existing ones de-

scribed here using the following measures described by Rapaport et al.[7]: i) normaliza-

tion of count data; ii) sensitivity and specificity of DE detection; iii) performance on the

subset of genes that are expressed in one condition but have no detectable expression in

the other condition and, finally, iv) the effects of reduced sequencing depth and number

of replicates on the detection of differential expression.

2.2 The IsoDE method

2.2.1 Bootstrap sample generation

As most differential expression analysis packages, IsoDE starts with a set A of RNA-

Seq read alignments for each condition. Bootstrapping can be used in conjunction with

any method for estimating individual gene expression levels from aligned RNA-Seq

reads, estimation typically expressed in fragment per kilobase of gene length per million reads

(FPKM). In IsoDE, we use the IsoEM algorithm [22], an expectation-maximization (EM)

algorithm that takes into account gene isoforms in the inference process to ensure accu-

rate length normalization. Unlike some of the existing estimation methods, IsoEM uses

non-uniquely mapped reads, relying on the distribution of insert sizes and base quality

scores (as well as strand and read pairing information if available) to probabilistically
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infer their origin. Previous experiments have shown that IsoEM yields highly accurate

FPKM estimates with lower runtime compared to other commonly used inference algo-

rithms [23].

The first step of IsoDE is to generate M bootstrap samples by randomly resampling

with replacement from the reads represented in A. When a read is selected during re-

sampling, all its alignments from A are included in the bootstrap sample. The number of

resampled reads in each bootstrap sample equals the total number of reads in the original

sample. However, the total number of alignments may differ between bootstrap samples,

depending on the number of alignments of selected reads and the number of times each

read is selected. The IsoEM algorithm is then run on each bootstrap sample, resulting in

M FPKM estimates for each gene. The bootstrap sample generation algorithm is summa-

rized below:

1. Sort the alignment file A by read ID

2. Compute the number N of reads and generate a list L containing read IDs in the

alignment file A

3. For i = 1, . . . ,M do:

(a) Randomly select with replacement N read IDs from L, sort selected read IDs,

and extract in Ai all their alignments with one linear pass over A (if a read is

selectedm times, its alignments are repeatedm times in Ai)

(b) Run IsoEM on Ai to get the ith FPKM estimate for each gene

2.2.2 Bootstrap-based testing of differential expression

To test for differential expression, IsoDE takes as input two folders which contain

FPKM estimates from bootstrap samples generated for the two conditions to be com-

pared. In case of replicates, a list of bootstrap folders can be provided for each condition

(one folder per replicate, normally with an equal number of bootstrap samples) – IsoDE
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will automatically merge the folders for the replicates to get a combined folder per con-

dition, then perform the analysis as in the case without replicates.

In the following we assume that a total of M bootstrap samples is generated for

each of the compared conditions. We experimented with two approaches for pairing the

FPKMs estimated from the two sets of bootstrap samples. In the “matching” approach,

a random one-to-one mapping is created between the M estimates of first condition and

the M estimates of the second condition. This results in M pairs of FPKM estimates. In

the “all” approach, M2 pairs of FPKM estimates are generated by pairing each FPKM

estimate for first condition with each FPKM estimate for second condition. When pairing

FPKM estimate ai for the first condition with FPKM estimate bj for the second condition,

we use ai/bj as an estimate for the fold change in the gene expression level between the

two conditions. The “matching” approach thus results in N = M fold change estimates,

while the “all” approach results in N =M2 fold change estimates.

The IsoDE test for differential expression requires two user specified parameters,

namely the minimum fold change f and the minimum bootstrap support b. For a given

threshold f (typically selected based on biological considerations), we calculate the per-

centage of fold change estimates that are equal to or higher than f when testing for over-

expression, respectively equal to or lower than 1/f when testing for underexpression. If

this percentage is higher than the minimum bootstrap support b specified by the user

then the gene is classified as differentially expressed (DE), otherwise the gene is classified

as non-differentially expressed (non-DE). The actual bootstrap support for fold change

threshold f, as well as the minimum fold change with bootstrap support of at least b are

also included in the IsoDE output to allow the user to easily increase the stringency of the

DE test.

As discussed in the results section, varying the bootstrap support threshold b allows

users to achieve a smooth tradeoff between sensitivity and specificity for a fixed fold

change f (see, e.g., Figure 1). Since different tradeoffs may be desirable in different biolog-

ical contexts, no threshold b is universally applicable. In our experiments we computed
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b using a simple binomial model for the null distribution of fold change estimates and

a fixed significance level α = 0.05. Specifically, we assume that under the null hypothe-

sis the fold changes obtained from bootstrap estimates are equally likely to be greater or

smaller than f. We then compute b as xmin/N, where xmin = min{x : P(X ≥ x) ≤ α}

and X is a binomial random variable denoting the number of successes inN independent

Bernoulli trials with success probability of 0.5. For convenience, a calculator for comput-

ing the bootstrap support needed to achieve a desired significance level given the (possi-

bly different) numbers of bootstrap samples for each condition has been made available

online (see Availability).

The number M of bootstrap samples is another parameter that the users of IsoDE

must specify. As discussed in the results section, computing the bootstrap support for all

genes takes negligible time, and the overall running time of IsoDE is dominated by the

time to complete the 2M IsoEM runs on bootstrap samples. Hence, the overall runtimes

grows linearly withM. Experimental results suggest that the “all” pairing approach pro-

duces highly accurate results with relatively small values of M (e.g., M = 20), and thus

results in practical runtimes, independent of the number of replicates. We also note that

for studies involving pairwise DE analysis of more than two conditions, IsoDE only re-

quires M independently generated bootstrap samples per condition. Since the time for

computing pairwise bootstrap support values is negligible, the overall running time will

grow linearly with the number of conditions.

2.3 Settings of compared methods

The four methods that were compared to IsoDE are briefly described below.

Fisher’s exact test: Fisher’s exact test is a statistical significance test for categorical data

which measures the association between two variables. The data is organized in a 2x2

contingency table according to the two variables of interest. We use Fisher’s exact test to

measure the statistical significance of change in gene expressions between two conditions

A and B by setting the two values in the first row of the table to the estimated number
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of reads mapped per kilobase of gene length (calculated from IsoEM estimated FPKM

values) in conditions A and B, respectively. The values in the second row of the contin-

gency table depend on the normalization method used. We compared three normaliza-

tion methods. The first one is total read normalization, where the total number of mapped

reads in conditions A and B are used in the second row. The second is normalization by

a housekeeping gene. In this case, the estimated number of reads mapped per kilobase

of housekeeping gene length in each condition is used. We also test normalization by

ERCCs RNA spike-in controls [24]. FPKMs of ERCCs are aggregated together (similar to

aggregating the FPKMs of different transcripts of a gene), and the estimated number of

reads mapped per kilobase of ERCC are calculated from the resulting FPKM value and

used for normalization. In our experiments, we used POLR2A as a housekeeping gene.

The calculated p-value, which measures the significance of deviation from the null

hypothesis that the gene is not differentially expressed, is computed exactly by using the

hypergeometric probability of observed or more extreme differences while keeping the

marginal sums in the contingency table unchanged. We adjust the resulting p-values for

the set of genes being tested using the Benjamini and Hochberg method [25] with 5% false

discovery rate (FDR).

GFOLD: We used GFOLD v1.0.7 with default parameters and fold change significance

cutoff of 0.05.

Cuffdiff: In our comparison, we used Cuffdiff v2.0.1 with default parameters.

edgeR: We followed the steps provided in the edgeR manual for RNA-Seq data. cal-

cNormFactors(), estimateCommonDisp(), estimateTagwiseDisp(), and exactTest() were

used with default parameter, when processing the MCF-7 replicates. When processing

MAQC data and a single replicate of MCF-7 data, estimateTagwiseDisp() was not used,

and the dispersion was set to 0 when calling exactTest(). The results where adjusted for

multiple testing using the Benjamini and Hochberg method with 5%.
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2.3.1 Mapping RNA-Seq reads

MAQC Illumina reads were mapped onto hg19 Ensembl 63 transcript library; all

other datasets were mapped onto hg19 Ensembl 64 transcript library. Illumina datasets

(MAQC and MCF-7) were mapped using Bowtie v0.12.8 [26]. ION Torrent reads were

mapped using TMAP v2.3.2, and 454 reads were mapped using MOSAIK v 2.1.33 [27].

For edgeR, non-unique alignments were filtered out, and read counts per gene were gen-

erated using coverageBed (v2.12.0). Read mapping statistics are detailed in Table S1 in

Additional File 1. Number of mapped reads per kilobase of gene length used in Fisher’s

exact test calculation are based on IsoEM FPKMs.

2.4 Ground truth definition

On MAQC dataset the ground truth was defined based on the available qPCR data

from [28]. Each TaqMan assay was run in four replicates for each measured gene.

POLR2A (ENSEMBL gene ID ENSG00000181222) was chosen as the reference gene and

each replicate CT was subtracted from the average POLR2A CT to give the log2 difference

(delta CT). For delta CT calculations, a CT value of 35 was used for any replicate that had

CT >35. The normalized expression value of a gene g would be: 2(CT of POLR2A)-(CT of g).

We filtered out genes that: (1) were not detected in one or more replicates in each samples

or (2) had a standard deviation higher than 25% for the four TaqMan values in each of

the two samples. Of the resulting subset, we used in the comparison genes whose Taq-

Man probe IDs unambiguously mapped to Ensemble gene IDs (686 genes). A gene was

considered differentially expressed if the fold change between the average normalized

TaqMan expression levels bin the two conditions was greater than a set threshold with

the p-value for an unpaired two-tailed T-test (adjusted for 5% FDR) of less than 0.05. We

ran the experiment for fold change thresholds of 1, 1.5, and 2.

For experiments with replicates we used the RNA-Seq data generated from E2-

treated and control MCF-7 cells in [21]. In this experiment, we compared IsoDE with
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Ground truth
Over-Expressed Non-Differential Under-Expressed

Predicted (TOE) (TND) (TUE)
Over-Expressed (POE) TPOE
Non-Differential (PND) TPND
Under-Expressed (PUE) TPUE

Table 2.1 Confusion matrix for differential gene expression

GFOLD and edgeR. The predictions made by each method when using all 7 replicates

for each condition were used as its own ground truth to evaluate predictions made using

fewer replicates. The ground truth for IsoDE was generated using a total of 70 bootstrap

samples per condition.

2.5 Evaluation metrics

For each evaluated method, genes were classified according to the differential ex-

pression confusion matrix detailed in Table 2.1. Methods were assessed using sensitivity,

positive predictive value (PPV), F-score, and accuracy, defined as follows:

Sensitivity =
(TPOE+ TPUE)

(TOE+ TUE)

PPV =
(TPOE+ TPUE)

(POE+ PUE)

Accuracy =
(TPOE+ TPND+ TPUE)

(TOE+ TND+ TUE)

F− score = 2× Sensitivity× PPV
Sensitivity+ PPV
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2.6 Experimental setup

2.6.1 Datasets

We conducted experiments on publicly available RNA-Seq datasets generated from

two commercially available reference RNA samples and a breast cancer cell line.

To compare the accuracy of different methods, we used RNA-Seq data RNA sam-

ples that were well-characterized by quantitative real time PCR (qRT-PCR) as part of the

MicroArray Quality Control Consortium (MAQC) [28]; namely an Ambion Human Brain

Reference RNA, Catalog # 6050), henceforth referred to as HBRR and a Stratagene Univer-

sal Human Reference RNA (Catalog # 740000) henceforth referred to as UHRR. To assess

accuracy, DE calls obtained from RNA-Seq data were compared against those obtained as

described in the Methods section from TaqMan qRT-PCR measurements collected as part

of the MAQC project (GEO accession GPL4097).

We used RNA-Seq data generated for HBRR and UHRR using three different tech-

nologies: Illumina, ION-Torrent, and 454. Details about the datasets and their SRA acces-

sion numbers (or run IDs for ION Torrent datasets) are available in Table S1 in Additional

File 1.

The MCF-7 RNA-Seq data was generated (from the MCF-7 ATCC human breast can-

cer cell line) by Liu et al. [21] using Illumina single-end sequencing with read length of

50bp. A total of 14 biological replicates were sequenced from two conditions: 7 replicates

for the control group and 7 replicates for E2-treated MCF-7 cells. Sequencing each repli-

cate resulted produced between 25 and 65 millions of mapped reads. Details about this

dataset and accession numbers are also available in Table S1 in Additional File 1.

2.6.2 Bootstrapping support and pairing strategy effects on IsoDE accuracy and

runtime

We evaluated both the “matching” and “all” pairing strategies of IsoDE (referred to

as IsoDE-Match and IsoDE-All) for fold change threshold f of 1, 1.5, respectively 2, and
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Figure 2.1 Sensitivity, PPV, and F-Score of IsoDE-Match (M=200 bootstrap samples per
condition) on the Illumina MAQC data, with varying bootstrap support threshold.

bootstrap support threshold b between 40% and 95%. The results of IsoDE-Match with

M = 200 bootstrap replicates per condition are shown in Figure 2.1. The results show

that, for each tested value of f, varying b results in a smooth tradeoff between sensitivity

and PPV, while the F-score changes very little. For the remaining experiments we used a

bootstrap support level b computed using a significance level of 0.05 under the binomial

null model detailed in the Methods section. Note the value of b selected in this way

depends on the number of numberN of fold change estimates, which in turn depends on

bothM and the pairing strategy (N is equal toM for IsoDE-Match, respectively toM2 for

IsoDE-All).

To determine the best pairing strategy, we ran IsoDE-Match and IsoDE-All with num-

ber of bootstrap samples M varying between 10 and 200 (results not shown). For the

considered measures, IsoDE-All achieved an accuracy very close to that of IsoDE-Match
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when run with a comparable value of N. For example, as shown in Tables 2-4, IsoDE-All

run onM = 20 bootstrap samples (N = 400) had similar accuracy with the largest number

of bootstrap samples we could use with IsoDE-Match (M = N = 200).

Since for a fixed N IsoDE-Match requires 2N bootstrap samples while IsoDE-All re-

quires only 2
√
N of them, using IsoDE-All is significantly faster in practice. Indeed, most

of the IsoDE time is spent generating bootstrap samples and estimating expression lev-

els for each of them using the IsoEM algorithm, with bootstrap support computation

typically taking a fraction of a minute. Figure 2.2 shows the time required to generate

M = 20, respectively M = 200, bootstrap samples for both conditions of several MAQC

datasets. All timing experiments were conducted on a Dell PowerEdge R815 server with

quad 2.5GHz 16-core AMD Opteron 6380 processors and 256Gb RAM running under

Ubuntu 12.04 LTS. IsoEM is run on bootstrap samples sequentially, but for each run its

multi-threaded code takes advantage of all available cores (up to 64 in our experimental

setup). As expected, the running time scales linearly with the number of bootstrap sam-

ples per condition, and thus generatingM = 20 bootstrap samples per condition is nearly

10 times faster than generatingM = 200 of them. Overall, IsoDE-Match withM = 20 has

reasonable running time, varying between 1 hour for the smallest 454 dataset to 3.5 hours

for the Illumina dataset.

2.7 Results and discussion

2.7.1 Results for DE prediction without replicates

We compared IsoDE against GFOLD, Cuffdiff, edgeR, and different normaliza-

tion methods for Fisher’s exact test; namely total normalization, housekeeping gene

(POLR2A) normalization, and normalization using External RNA Controls Consortium

(ERCC) RNA spike-in controls [24]. Cuffdiff results were considerably worse on the Il-

lumina MAQC dataset, compared to other methods. Consequently, Cuffdiff was not in-

cluded in other comparisons. edgeR was also not included in further comparisons due
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Figure 2.2 Running times (in seconds) of IsoDE-Match withM = 200 and IsoDE-All with
M = 20 on several MAQC datasets. The indicated number of reads represents the total
number of mapped reads over both conditions of each dataset, for more information on
the datasets see Table S1.

to lack of clear definition of uniquely mapped reads for ION-Torrent and 454 datasets

which were mapped using local read alignment tools. ERCC spike-ins were available

only for ION Torrent samples; therefore, ERCC normalization for Fisher’s exact test was

conducted only for ION Torrent datasets.

Table 2.2 shows the results obtained for the MAQC Illumina dataset using minimum

fold change threshold f of 1, 1.5, and 2, respectively. Table 2.3 shows the results obtained

from combining the ION Torrent runs listed in Table S1 (Additional File 1) for each of

the MAQC datasets for the same values of f. Table 2.4 shows the results for the First

454 MAQC dataset, while results for the Second 454 dataset are presented in Table S2 in

Additional File 1. For each fold change threshold, the best performing method for each

statistic is highlighted in bold.

IsoDE has very robust performance, comparable or better than that of the other meth-

ods for differential gene expression. Indeed, IsoDE outperforms them in a large number



22

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 70.41% 70.79% 91.24% 79.72%
FishersHousekeeping 65.60% 65.22% 95.05% 77.36%
GFOLD 78.13% 80.06% 92.67% 85.90%
Cuffdiff 11.37% 6.96% 100.00% 13.01%
edgeR 73.03% 73.26% 95.56% 82.94%
IsoDE-Match 82.63% 87.46% 83.70% 85.54%
IsoDE-All 82.22% 87.17% 82.82% 84.94%

1.5

FishersTotal 74.05% 78.20% 84.85% 81.39%
FishersHousekeeping 76.68% 73.61% 93.67% 82.44%
GFOLD 79.15% 79.35% 90.41% 84.52

¯
%

Cuffdiff 28.43% 8.60% 100.00% 15.85%
edgeR 80.01% 79.92% 92.07% 85.57%
IsoDE-Match 78.98% 86.23% 84.62% 85.42%
IsoDE-All 79.01% 86.42% 84.49% 85.44%

2

FishersTotal 78.43% 81.86% 82.44% 82.15%
FishersHousekeeping 81.20% 80.00% 88.21% 83.90%
GFOLD 82.94% 78.84% 92.37% 85.07%
Cuffdiff 40.96% 10.47% 100.00% 18.95%
edgeR 83.67% 81.63% 91.17% 86.13%
IsoDE-Match 82.04% 85.58% 85.19% 85.38%
IsoDE-All 81.20% 86.74% 83.07% 84.87%

Table 2.2 Accuracy, sensitivity, PPV and F-Score in % for MAQC Illumina dataset and
fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is M = 200 for
IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using
the binomial model with significance level α = 0.05.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 71.68% 72.76% 90.56% 80.69%
FisherHousekeeping 67.15% 66.87% 94.74% 78.40%
FisherERCC 71.39% 72.45% 88.97% 79.86%
GFOLD 75.77% 77.55% 90.43% 83.50%
IsoDE-Match 81.75% 86.38% 82.18% 84.05%
IsoDE-All 81.46% 86.07% 82.13% 84.05%

1.5

FisherTotal 74.16% 78.39% 85.06% 81.59%
FisherHousekeeping 76.06% 73.23% 92.96% 81.93%
FisherERCC 74.31% 78.59% 85.45% 81.87%
GFOLD 75.47% 77.63% 87.88% 82.44%
IsoDE-Match 77.66% 83.94% 84.75% 84.34%
IsoDE-All 77.81% 84.13% 84.45% 84.29%

2

FisherTotal 79.71% 83.02% 84.00% 83.51%
FisherHousekeeping 81.75% 80.70% 88.75% 84.53%
FisherERCC 79.42% 82.56% 84.12% 83.33%
GFOLD 80.58% 76.74% 90.66% 83.12%
IsoDE-Match 81.75% 85.81% 84.63% 85.22%
IsoDE-All 81.61% 86.28% 84.13% 85.19%

Table 2.3 Accuracy, sensitivity, PPV and F-Score in % for Ion Torrent dataset and fold
change threshold f of 1, 1.5, and 2. The number of bootstrap samples is M = 200 for
IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using
the binomial model with significance level α = 0.05.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 34.01% 30.50% 95.63% 46.24%
FisherHousekeeping 24.52% 20.12% 94.74% 33.38%
GFOLD 55.62% 54.18% 92.11% 68.23%
IsoDE-Match 75.33% 79.57% 77.41% 78.47%
IsoDE-All 78.85% 84.67% 81.04% 82.82%

1.5

FisherTotal 48.18% 35.37% 89.81% 50.75%
FisherHousekeeping 42.48% 24.86% 97.74% 39.63%
GFOLD 62.19% 58.13% 85.39% 69.17%
IsoDE-Match 64.09% 74.19% 72.52% 73.35%
IsoDE-All 72.85% 79.54% 80.62% 80.08%

2

FisherTotal 57.96% 39.53% 85.43% 54.05%
FisherHousekeeping 55.33% 29.30% 97.67% 45.08%
GFOLD 69.05% 61.16% 83.49% 70.60%
IsoDE-Match 67.15% 76.51% 70.30% 73.27%
IsoDE-All 75.18% 80.93% 78.03% 79.45%

Table 2.4 Accuracy, sensitivity, PPV and F-Score in % for the First 454 dataset and fold
change threshold f of 1, 1.5, and 2. The number of bootstrap samples is M = 200 for
IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using
the binomial model with significance level α = 0.05.

of cases, across datasets and fold change thresholds. Very importantly, unlike GFOLD and

Fisher’s exact test, IsoDE maintains high accuracy (sensitivity and PPV around 80%) on

datasets with small numbers of mapped reads such as the two 454 datasets. This observa-

tion is confirmed on results obtained for pairs of individual ION-Torrent runs, presented

in Tables S3 and S4 in Additional File 1. This makes IsoDE particularly attractive for such

low coverage RNA-Seq datasets.

2.7.2 DE prediction with replicates

We also studied the effect of the number of biological replicates on prediction accu-

racy using the MCF-7 dataset. We performed DE predictions using an increasing number

of replicates. IsoDE was run with a total of 20 bootstrap samples per condition, dis-

tributed equally (or as close to equally as possible) among the replicates, as detailed in

Table 2.5. GFOLD and edgeR were evaluated for 1 through 6 replicates using as ground
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Figure 2.3 Sensitivity, PPV, F-Score, and accuracy of IsoDE-All (with 20 bootstrap runs per
condition), edgeR, and GFOLD on the Illumina MCF-7 data with minimum fold change
of 1 and varying number of replicates.

truth the results obtained by running each method on all 7 replicates (see the Methods

section). For IsoDE, we also include the results using M = 20 bootstrap samples from

all 7 replicates as its ground truth is generated using a much larger number of bootstrap

samples (M = 70). Figure 2.3 shows the results of the three compared methods for a fold

change threshold of 1, results for fold change thresholds 1.5 and 2 are shown in Figures

S1 and S2 in Additional File 1.

Since for this experiment the ground truth was defined independently for each

method, it is not meaningful to directly compare accuracy metrics of different methods.

Instead, we focus on the rate of change in the accuracy of each method as additional

replicates are added. Generally, all methods perform better when increasing the number
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# Replicates Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Bootstraps Per Condition
1 20 20
2 10 10 20
3 7 7 6 20
4 5 5 5 5 20
5 4 4 4 4 4 20
6 4 4 3 3 3 3 20
7 3 3 3 3 3 3 2 20

Table 2.5 IsoDE setup for experiments with replicates. IsoDE experiments on the MCF-7
dataset was performed as follows. First we generated, for each of the 7 replicates of each
condition 20, 10, 6, 5, 4, 3, respectively 2 bootstrap samples. We then used subsets of these
bootstrap samples as input for IsoDE to perform DE analysis with varying number of
replicates and a fixed total numberM = 20 of bootstrap samples per condition. In experi-
ment 1 we used 20 bootstrap samples from first replicate of each condition, in experiment
2 we used 10 bootstrap samples for each of the first 2 replicates of each condition, and so
on.

of replicates. However, the accuracy of IsoDE varies smoothly, and is much less sensi-

tive to small changes in the number of replicates. Surprisingly, this is not the case for

GFOLD and edgeR sensitivity, which drops considerably when transitioning from 1 to

2 replicates, most likely due to the different statistical models employed with and with-

out replicates. Although we varied the number of replicates without controlling the total

number of reads as Liu et al. [21], our results strongly suggest that cost effectiveness met-

rics such as those proposed in [21] are likely to depend on to the specific method used

for performing DE analysis. Therefore, the analysis method should be taken into account

when using such a metric to guide the design of RNA-Seq experiments.

2.7.3 Effect of gene abundance

We also studied the effect of gene abundance on the IsoDE, GFOLD, and edgeR pre-

diction accuracy. We selected the subset of genes that are expressed in at least one of the

two RNA samples. We sorted these genes by the average of the gene’s expression. We

used the FPKM values predicted by IsoEM, the FPKM values predicted by GFOLD, and

the number of uniquely mapped reads, for IsoDE, GFOLD, and edgeR, respectively. The
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genes were then divided into quintiles, for each method independently, where quintile

1 had the genes with the lowest expression levels, and quintile 5 had the genes with the

highest expression levels. Sensitivity, PPV, and F-score where calculated for each quintile

separately.

Figure 2.4 shows that, for results with both 1 and 6 replicates, sensitivity, PPV, and

F-score of IsoDE are only slightly lower on genes with low expression levels compared

to highly expressed genes (similar results are achieved for intermediate numbers of repli-

cates and higher fold change thresholds). In contrast, GFOLD shows a marked difference

in all accuracy measures for genes in the lower quintiles compared to those in the higher

quintiles. The sensitivity of edgeR is also lower for genes expressed at low levels, how-

ever it’s PPV is relatively constant across expression levels.

2.8 Taking in account inter-replicates variations

2.8.1 Estimation of inter-replicates variations

2.8.1.1 Experimental setup

We conducted an analysis to estimate false positive rate. Our expectation is to have

no DE genes or a very few number of them when we perform DE within the same condi-

tion. For this purpose, we used once again the MCF-7 dataset. We have 7 MCF treated and

7 MCF untreated replicates. In this experiment we would compare replicates of treated

with replicates of treated, and replicates of untreated with replicates of untreated. We can

only have 3 replicates per sub-conditions.

We designed three scenarios all of them comparing control vs control and treated vs

treated from MCF7 replicates. To follow a similar setting as in the experiment in Table S5,

we ran IsoDE using an increasing number of replicates, all from the same conditions. A

total of 20 bootstrap samples were used for each sub-conditions while varying the number

of replicates from 1 to 7. Let us call the replicates E1,...,E7 and C1,...,C7. The details of the

experiments are presented in table 2.6.



28

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5

Unique read counts quintile 
 

edgeR - 6 replicates - FC = 1 

Sensitivity

PPV

F-score

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1 2 3 4 5

FPKM quintile 

IsoDE - 1 replicate - FC = 1 

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1 2 3 4 5

FPKM quintile 

IsoDE - 6 replicates - FC = 1 

Sensitivity

PPV

F-score

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5

FPKM quintile 

GFOLD - 1 replicate - FC = 1 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5

FPKM quintile 

GFOLD - 6 replicates - FC = 1 

Sensitivity

PPV

F-score

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5

Unique read counts quintile 

edgeR - 1 replicate - FC = 1 

* * 

Figure 2.4 Sensitivity, PPV, and F-Score of IsoDE-All (with 20 bootstrap runs per con-
dition), edgeR, and GFOLD on the Illumina MCF-7 data, computed for quintiles of ex-
pressed genes after sorting in non-decreasing order of average FPKM for IsoDE and
GFOLD and average count of uniquely aligned reads for edgeR. First quintile of edgeR
had 0 differentially expressed genes according to the ground truth (obtained by using all
7 replicates).
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# Replicates E1 E2 E3 E4 E5 E6 E7 Bootstraps Per Sub-condition
1 20 20 20
2 10 10 10 10 20
3 7 7 6 7 7 6 20

Table 2.6 IsoDE setup for experiments with replicates within each condition. IsoDE exper-
iments on the MCF-7 dataset was performed as follows. First we generated, for each of
the 6 replicates used in each condition 20, 10, 7, respectively 6 bootstrap samples. We then
used subsets of these bootstrap samples as input for IsoDE to perform DE analysis with
varying number of replicates and a fixed total number M = 20 of bootstrap samples per
condition. Each condition consists of 3 replicates. In experiment 1 we used 20 bootstrap
samples from first replicate and fourth replicate, in experiment 2 we used 10 bootstrap
samples for each of the first 2 replicates and 10 bootstrap samples for replicates 4th and
5th, and so on.

2.8.1.2 Results

Figure 2.5 presents the results of IsoDE for the experiments. The chart shows the total

number of genes, the number of genes which have FPKM equals to 0 - without sampling,

that is using all the reads - and a bar showing genes which are DE with FPKM = 0 in at

least one condition.

Figure 2.5 False positive rate in replicates experiment.
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2.8.1.3 Discussion

The first observation to catch our attention is that for a handful of genes, IsoDE is

(1) reporting non negligible fold changes (e.g. fold change 2), and (2) not calling them

statistically significant based on their very low FPKM bootstrap distribution value. How

can we explain these results?

We can argue that in case of (2) these genes have extremely low counts (usually very

few counts in perhaps only one or two samples: experiment involving 2 or 3 replicates).

The logic of IsoDE does not apply any independent filtering [29], such that the likeli-

hood of a gene being significantly differentially expressed is related to how strongly it

is expressed. This advocates for discarding extremely lowly expressed genes, because

differential expression is likely not statistically detectable.

To reduce these cases of false positive, we can apply a higher bootstrap threshold

such that only the genes which have a high fold change will be declared DE. When we

have high count, the results are not surprising but with low count, there is too much

unpredictability. We can also filter some genes based on their reads frequencies. For ex-

ample, we can remove genes without at least 2 counts per million in at least two samples.

After filtering, we expect the number of genes showing apparently large fold changes to

reduce.

Even with filtering and thesholding, we still expect to see some DE genes. These can

account for variability or noise in the preparation of replicates which is a very common

issue in RNA-Seq experiments.

2.8.2 Factoring in inter-replicate variations

Future update to the tool will be, in case of replicates, to first perform some pre-

processing. This will consist of setting up a data-generated bootstrap support to get rid

of genes which account for noise and remove them from the analysis. This adjustement

of our tool to deal with replicates is expected to reduce the false positive rate.
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2.9 Update IsoDE: P-value computation

2.9.1 IsoDE - New IsoEM

The new version of the tool presents a superfast IsoEM generating bootstrap samples

in a matter of few minutes. In the old version, bootstrapping was external to IsoEM,

thus to compute x bootstrap samples, we were calling IsoEM x times. The new version

eliminates this multiple calling of IsoEM algorithm and now everything is done internally.

A typical IsoEM command now include as option the number of bootstrap sample along

with confidence interval. Providing those two options enable IsoDE to run at least 10

times faster.

For example, to generate 20 bootstrap from a sample with about 65 millions reads

can now require only 12 minutes while we needed 2 hours with the former version. For

the same sample, 200 bootstrap can now be available after just 2 hours and not in about

2 days like in the past. In addition to the FPKM (Fragments Per Kilobase Million) format

the former version used to report gene and isoforms frequencies, different output formats

for abundance are now available:

• The eCPM (expected Count Per Million) is one of the new measure introduced.

eCPM takes into account multireads by using the fractional allocation of reads to

transcripts. To compute them we take the final expected read counts n(j) computed

by IsoEM algorithm and normalize them to a sum of 1 million, i.e.,

eCPM(i) = 106 ∗ n(i)/sumjn(j)

This gives eCPMs for isoforms. The eCPMs for genes are computed by just sum-

ming over the isoforms of each gene.

• TPM (Transcripts Per Kilobase Million) the last format added in IsoEM is normal-

ized over all reads count in a sample. Hence from the FPKMs, which are already

available, to TPM is straightforward. For a gene i having j isoform(s)::

TPMi = 10
6FPKMi/(sumjFPKMj)
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The new version of IsoEM includes not only a zipped file containing all bootstrap

sample of isoform and gene frequencies estimation but also confidence interval for each

gene expression level.Bootstrapped confidence intervals are an important feature since, in

the most simplest case, it directly allow to flag some geneâĂŹs expression. The standard

error/variance from bootstrap abundance estimates will tell us how reliable our expres-

sion estimates from aligned reads. For example, high variance of a geneâĂŹs expression

informs us that our abundance estimate is not reliable. This could typically occur for

genes with lower expression abundance and genes with large contributions from multi-

mapping reads. For our DE analysis it is a very useful information.

All these new features along with some optimization on the code enable IsoDE 2.0 to

drastically reduce running time, and also improves performance over the existing tech-

nologies, sequencing depths, and minimum fold change thresholds.

2.9.2 IsoDE - Kallisto

Kallisto [30] is a new RNA-Seq quantification approach. The results in the kallisto

paper indicate that the software is not just fast, but also very accurate. Kallisto underlying

RNA-Seq analysis are the alignments, and although kallisto is pseudoaligning instead, it

is almost always only the compatibility information that is used in actual applications.

This is the same approach perform in the Sailfish paper [31].As we the authors show in

their paper, from the point of view of compatibility, the pseudoalignments and alignments

are almost the same.

The way Kallisto does this is to directly assess, for each read, which transcripts it

is compatible with, by checking the compatibility of the k-mers in each read (for some

suitable k=31).

Essentially, pseudoalignments define a relationship between a read and a set of com-

patible transcripts (this relationship is computed based on mapping the k-mers to paths in

a transcript De Bruijn graph). The pseudoalignment here gives us more information than

the set of individual k-mers, since the k-mers in a read remain coupled when the read is
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assigned to a transcript equivalence class. As the pseudoalignments are generated, equiv-

alence classes are computed and maintained similar to the concept of equivalence classes

among reads as introduced in the IsoEM paper or to equivalence classes among k-mers as

used in Sailfish [31] or in Salmon [32]. Another important speed-inducing feature is that

kallisto only looks for exact matches of k-mers to the transcriptome.

The speed of kallisto speed also enables bootstrap implementation to estimate the

confidence interval for each transcript expression abundance

Because Kallisto compares with IsoEM and it does already generate bootstrap sam-

ples, it naturally becomes a choice for a new version of IsoDE analysis. Thus, this thesis

also presents a configuration of IsoDE which integrates Kallisto.

2.9.3 Comparison IsoDE: IsoEM-Old, IsoEM-New, Kallisto

2.10 Conclusions

A practical bootstrapping based method, IsoDE, was developed for analysis of dif-

ferentially expressed genes in RNA-Seq datasets. Unlike other existing methods, IsoDE

is non-parametric, i.e., does not assume an underlying statistical distribution of the data.

Experimental results on publicly available datasets both with and without replicates show

that IsoDE has robust performance over a wide range of technologies, sequencing depths,

and minimum fold changes. IsoDE performs particularly well on low coverage RNA-Seq

datasets, at low fold change thresholds, and when no or very few replicates are available.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 34.01% 30.49% 95.63% 46.24%
FisherHousekeeping 24.53% 20.12% 97.74% 33.38%
GFOLD 55.62% 54.18% 92.11% 68.23%
IsoDE-IsoEM-Match 78.54% 82.9% 80.36% 81.65%
IsoDE-IsoEM-All 79.3% 84.1% 79.9% 81.9%
IsoDE-Kallisto-Match 77.81% 82.04% 80.06% 81.04%
IsoDE-Kallisto-All 78.39% 82.97% 79.41% 81.15%

1.5

FisherTotal 48.18% 35.37% 89.81% 50.75%
FisherHousekeeping 42.48% 24.86% 97.74% 39.63%
GFOLD 62.19% 58.13% 85.39% 69.17%
IsoDE-IsoEM-Match 73.14% 82.79% 76.10% 79.30%
IsoDE-IsoEM-All 71.5% 80.3% 78.7% 79.5%
IsoDE-Kallisto-Match 70.80% 79.54% 78.79% 79.16%
IsoDE-Kallisto-All 71.53% 81.84% 77.68% 79.70%

2

FisherTotal 57.96% 39.53% 85.43% 54.05%
FisherHousekeeping 55.33% 29.30% 97.67% 45.08%
GFOLD 69.05% 61.16% 83.49% 70.60%
IsoDE-IsoEM-Match 74.60% 80.47% 78.10% 79.27%
IsoDE-IsoEM-All 72.0% 80.9% 74.5% 77.6%
IsoDE-Kallisto-Match 74.16% 80.23% 78.05% 79.13%
IsoDE-Kallisto-All 72.41% 79.30% 76.12% 77.68%

Table 2.7 Accuracy, sensitivity, PPV and F-Score in % for the Second 454 dataset and fold
change threshold f of 1, 1.5, and 2. The number of bootstrap samples is M = 200 for
IsoDE-Match and M = 20 for IsoDE-All, and bootstrap support was determined using
the binomial model with significance level α = 0.05.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 70.41% 70.79% 91.24% 79.72%
FishersHousekeeping 65.60% 65.22% 95.05% 77.36%
GFOLD 78.13% 80.06% 92.67% 85.90%
Cuffdiff 11.37% 6.96% 100.00% 13.01%
edgeR 73.03% 73.26% 95.56% 82.94%
IsoDE-Kallisto-All 65.8% 65.9% 94.5% 77.7%
IsoDE-IsoEM-Match 82.3% 86.7% 83.8% 85.2%
IsoDE-IsoEM-All 82.9% 87.9% 83.0% 85.4%

1.5

FishersTotal 74.05% 78.20% 84.85% 81.39%
FishersHousekeeping 76.68% 73.61% 93.67% 82.44%
GFOLD 79.15% 79.35% 90.41% 84.52%
Cuffdiff 28.43% 8.60% 100.00% 15.85%
edgeR 80.01% 79.92% 92.07% 85.57%
IsoDE-Kallisto-All 76.2% 77.1% 89.4% 82.8%
IsoDE-IsoEM-Match 80.1% 87.2% 85.2% 86.2%
IsoDE-IsoEM-All 79.9% 88.0% 83.8% 85.8%

2

FishersTotal 78.43% 81.86% 82.44% 82.15%
FishersHousekeeping 81.20% 80.00% 88.21% 83.90%
GFOLD 82.94% 78.84% 92.37% 85.07%
Cuffdiff 40.96% 10.47% 100.00% 18.95%
edgeR 83.67% 81.63% 91.17% 86.13%
IsoDE-Kallisto-All 79.3% 85.6% 81.6% 83.5%
IsoDE-IsoEM-Match 82.3% 86.3% 84.9% 85.6%
IsoDE-IsoEM-All 80.9% 87.0% 82.2% 84.5%

Table 2.8 Accuracy, sensitivity, PPV and F-Score in % for MAQC Illumina dataset and
fold change threshold f of 1, 1.5, and 2. The number of bootstrap samples is M = 200 for
IsoDE-Match and IsoDE-All and M = 20 for IsoDe-Kallisto, and bootstrap support was
determined using the binomial model with significance level α = 0.05.
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PART 3

INFERRING METABOLIC PATHWAY ACTIVITY LEVELS FROM RNA-SEQ DATA

3.1 Introduction

For the past several years, RNA-Seq has revolutionized biological research through

the many advantages it provides. Because of RNA-Seq, it is easier to characterize tran-

scripts and their isoforms, to detect genes without need of prior information in the form

of probes or primers, and estimate expression level of transcript with good precision.

In contrast to microarray data, RNA-Seq data allows frequency of expression of all

transcripts without a priori knowledge of the gene sequence. RNA-Seq data can ac-

count for the entire RNA volume producing enzyme for a given pathway. When applied

to metatranscriptome data, the first challenge of pathway analysis is to decide which

metabolic pathways are active in the sampled community (i.e., pathway activity detec-

tion). Recent software tool (MEGAN4 [33] and MetaPathways [34] using SEED and KEGG

(Kyoto Encyclopedia of Genes and Genomes) [35] annotations) enable the organization

of transcripts or reads into ortholog groups and pathways by collecting all transcripts

or reads represented by at least one ortholog group and providing that collection to the

user. The parsimonious approach MinPath [36] identifies the smallest family of path-

ways covering all expressed ortholog groups. A more elaborate Markov Chain Monte

Carlo (MCMC) approach takes into account the co-occurrences of genes in more than one

pathway for analyzing metagenomic data [37]. Following pathway detection, the second

major challenge of pathway analysis is to infer pathway activity levels to enable detection

of differential expression. Few existing tools incorporate this step, a major focus of this

paper.

Methods that treat pathways as simple gene sets [38, 39] are popular even though

they do not use all information available. In recent years, a number of pathway analysis
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methods have been developed that combine knowledge of pathway topology (e.g., gene

position on the pathway, gene-gene interactions, etc.) with gene expression data based

on comparative analyses (reviewed in [40]). Such methods have been applied primarily

to experimental studies of single organisms. Despite the inherent pathway architecture

of microbial biochemical function, relatively few analyses of complex metatranscriptomic

datasets incorporate pathway-level inference of metabolic activity.

The new analysis techniques, presented here, is suitable for RNA-Seq data analysis

to investigate the underlying metabolic differences between species living in separate

environments.

Our contribution consists of the following:

1. A novel graph-based approach to analyze pathways significance. We represent

metabolic pathways as graphs that use nodes to represent biochemical compounds,

with enzymes associated with edges describing biochemical reactions.

2. An implementation of an EM algorithm, in which pathways are viewed as sets of

orthologs.

3. The validation of the two approaches through differential expression analysis at the

transcripts and genes levels and also through real-time quantitative PCR experi-

ments.

Pathways can also be regarded as a set of ortholog group on which we can apply a

set cover. We will use a binary ortholog group expression model to determine if there is

or not RNA-Seq evidence for the expression of a given ortholog group in a given sample.

The validation step of these methods consists of extracting the genes involved in

our estimated differential pathways activity levels, and analyzing their expression levels

or transcript frequency estimation. We expect to see the differential pathway activity

confirmed at the protein and contigs level. We carry this final analysis through the novel

bootstrapping tool IsoDE [41].
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Our experimental study was performed with RNA-Seq data from the marine bry-

ozoan, Bugula neritina. Using the two novel computational approaches we implemented,

we were able to find differentially expressed pathways from the data. This result is been

validated by quantitative PCR (qPCR) conducted using a housekeeping gene also iden-

tified in the data. The housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), was chosen to normalize the qPCR data, as is standard practice. Based on our

results, we applied qPCR experiments to quantify transcripts in the following identified

pathways: Fatty acid elongation (ko00062), Peroxisome (ko04146) and Ribosome biogen-

esis in eukaryotes (ko03008) [35].

The rest of the paper is organized as follows. Our formal models to analyze path-

ways and to infer pathway activity are presented in the next section entitled Methods.

Following Methods is the Differential-analysis section in which we present how we com-

pute differential activity between pathways. We finish by presenting and discussing our

results on Bugula neritina data in the Results section. The paper is concluded with possible

future work.

3.2 Methods

In this paper we introduce a graph-based and an expectation maximization approach

to identify specific differences between biological systems on the level of ortholog groups

and pathways.

Figure 1 presents the entire flow of XPathway tools. In the graph-based approach,

we compute a p-value using parameters extracted from the network to answer two dif-

ferent statistical questions: (1) When and based on what parameter can we say that a set

of proteins significantly map to a pathway? (2) What is the probability of finding such

a mapping by chance given the data (transcripts/reads/proteins) and a pathway topol-

ogy? Finally, significant metabolic pathways are selected by comparing the p-value of

the original pathway with the ones from different bootstrapped samples. The expectation

maximization method on the other hand uses the interaction among identified ortholog
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Figure 3.1 The XPathway tools analysis flow. The branches represent the two approaches
used to compute pathway significance in the case of graph-based on the left and path-
way activity level in the case of the expectation maximization approach on the right.
Both methods are validated by computing contigs/transcripts differential expressions
and qPCR as the last step of the flow.

groups to decide on a pathway activity. The last part of the flow consists of validating

both branches. First, we compute differential expression analysis on all contigs extracted

from pathways output by both branches. Secondly, a qPCR experiment is carried out on
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the contigs which have a fold change of 1.5 or more.

3.2.1 Expectation maximization model of pathway activity

In this section we present an EM-based algorithms for inferring pathway activity

levels based on metatranscriptome sequence data. Let w be a pathway that is considered

to be a set of enzymes represented by their ortholog groups w = {p1, . . . , pk}. Since an

ortholog group can have multiple functions and participate in multiple pathways, the

pathways can be viewed as a family of subsetsW of the set of all ortholog groups P. Below

we start by introducing a uniform binary pathway activity model based on a discrete

ortholog group expression model.

The uniform binary pathway activity model is based on the assumptions of uniformity,

namely that each molecule from an ortholog group participates in each active pathway

with the same probability (i.e., in equal proportions) and of binary activity, which pos-

tulates that a pathway is active if the level of ortholog group activity exceeds a certain

(possibly pathway dependent) threshold. Formally, let δ(w) be a binary variable indicat-

ing the activity status of w, i.e., δ(w) = 1 if w is active and δ(w) = 0, otherwise. Also, let

the activity level of pathway w be the summation over constituent ortholog groups g of

their participation gw in w. Since we assume that each ortholog group g is equally likely

to participate in each pathway containing it, it follows that gw = (1+
∑

w ′3p,w ′ 6=w δ(w
′))−1

and the activity level fw of pathway w is given by

fw =
∑
g∈w

gw =
∑
g∈w

1

1+
∑

w ′3g,w ′ 6=w δ(w
′)

(3.1)

The binary activity status ofw is computed from its activity level fw and the threshold Tw

as follows

δ(w) =

 0 if fw < Tw

1 if fw ≥ Tw
(3.2)

The uniform binary model described by equations (3.1)-(3.2) can be solved using a sim-
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ple iterative algorithm. The algorithm starts with assigning activity status δ(w) = 1 to

each pathway w ∈ W, i.e., ∆0(W) = {δ0(w)|w ∈ W} ← 1 and then repeatedly updates

the activity level according to (3.1) and the activity status according to (3.2). The proce-

dure terminates when the status sequence ∆0(W) = 1, ∆1(W), ∆2(W), . . . starts to oscillate

∆n+k(W) = ∆n(W) or converges. In all our preliminary experiments, an oscillation with

period k = 2 is achieved in at most 10 iterations. Also the threshold Tw does not signifi-

cantly change the order of pathways sorted with respect to their activity levels estimated

as the mean fw after convergence. The model is represented in Figure 2.

a1 

a2 

a3 

a4 

a5 

 

b1 

b2 

b3 

b4 

 

 

A B 

Figure 3.2 Expectation maximization approach to compute pathway activity. This bipar-
tite graph consists of a set A representing reads/contigs/ORF/proteins and the set B is
for ORFs/proteins/ortholog groups/EC (Enzyme Commission) numbers. The arcs rep-
resent mapping between elements of both sets. For our binary EM, the set A consists of
contigs mapped to ortholog groups and the weight of each arc is 1.

Although the uniform binary model allows the computation of pathway activity by

assigning ortholog groups to pathways, it does have some limitations hindering it for

capturing specific attributes of the metabolic network. For example, the binary uniform

model assigns only value 1 or 0, if the ortholog group belongs to a pathway or not, respec-

tively. This yes or no assumption is not always true since there may be a fractional part

of an ortholog group belonging to different pathways. Moreover, the uniformity model is

not easily applicable to natural processes because all assignment are never equally likely.

Finally the model is not completely stable but rather periodic with some subsets of or-
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tholog groups fluctuating between pathways.

3.2.2 Graph-based estimation of pathway significance

Ideally, a comprehensive pathway analysis method would take into consideration the

position and role of each gene in a pathway, the efficiency with which a certain reaction

is carried out, and some limiting factors (e.g. dealing with metagenomics data or not).

With genome data, it is possible to consider pathways size, gene length and overlap in

gene content among pathways [37] to compute the relative abundance of pathways and

pathway ranking, but this approach might not work with RNA-Seq data especially in the

absence of a genome reference.

Henceforth, in our second approach, each pathway is viewed as a network of en-

zymes also called EC numbers (Enzyme Commission numbers) in order to compute their

statistical significance. Significance of a pathway activity on the sample is measured by

the randomness of the positions of matched enzymes in the corresponding KEGG path-

way graph. The randomness is measured using a permutation model for finding signifi-

cant pathway alignments and motifs [42].

This model assumes that the subset of expressed enzymes in an active annotated pathway

should be connected. The enzyme permutation model finds the average vertex degree in

the subgraph induced by expressed enzymes. Then the same parameter is computed

for sufficiently many random permutations of enzyme labels. The statistically significant

match should have density higher than 95% of permutations. Specific characteristics of

the graph taken into account in our analysis are:

1. Number of nodes. A node represents a protein that got mapped during BLAST.

KEGG usually assigns a green color to those proteins in the graph.

2. Density = (Number of edges) / (Number of vertex - 1)

3. Number of 0 in and out-degree vertex. Let call this number x. x is defined by:
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x = ((number of vertex with out-degree = 0) + (number of vertex with in-degree=0))

/ 2 * (number of nodes)

4. We also consider other criteria such as (1) Number of green connected components,

(2) Largest Number of nodes in connected component and (3) Largest Number of

edges in connected component.

Using these metrics, we compute the density of the induced graph composed of only

mapped proteins. We obtain the names of those proteins through EC numbers on the

graph. Below, we present two graph-based models, the vertex label swapping and the

edge swapping for random graph generation, to analyze pathways. This model is ex-

plained by the left side of Figure 1 and Figure 3 presents an example when we permute

labels of two vertices.

Model 1: Vertex label swapping for random graph generation

a 

b 

e 

c 

d 

d 

b 

c 

e 

a 

a 

b 

c 

d 

a 

b 

c 

d 

Figure 3.3 Vertex labels swapping model for random graph generation. We only swap
vertices which have different labels. A label is an attribute of a vertex representing a
mapped or not protein.

In this model, we keep the same topology but we allow swapping of labels between

two vertices. One known issue of this approach is, vertices with high degree always get

connected. This might lead to too many significant matches, thus increasing the false

positive rate. The vertex label swapping algorithm can be represented as follows:

Model 2: Edge swapping for random graph generation

Because of the bias in the vertex label swapping model, we also implemented the edge

swapping. Here, the idea is to keep the in-degree and out-degree of each node the same,
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Algorithm 1 Vertex labels swapping algorithm for random graph generation
1: G = (V, E)← Original Graph
2: i← 1

3: j← 1

4: for i ≤ m do
5: for j ≤ n do
6: randomly pick two vertices a and b from V
7: if no (label(a) == label(b)) then
8: swap label of a and b
9: end if

10: end for
11: end for
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Figure 3.4 Edge swapping model for random graph generation. Before swapping the
edges, we check that the in and out-degree of the vertices involved remain the same.

swapping nodes only if these values do not change. We keep vertex labels the same.

Figure 4 presents an example when we permute two edges.

The edge swapping algorithm can be represented as follows:

Algorithm 2 Edge swapping algorithm for random graph generation
1: G = (V, E)← Original Graph
2: i← 1

3: j← 1

4: for i ≤ m do
5: for j ≤ n do
6: randomly pick two edges a (a0→a1) and b(b0→b1) from E
7: if no (a0 == b0) or (a0 == b1) or (a1 == b0) or (a1 == b1) and no (a1→a0

or b1→b0) then
8: remove edges a and b
9: create new edges: a0→b1 and b0→a1

10: end if
11: end for
12: end for
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3.2.3 Differential analysis of pathway activity and significance

3.2.3.1 Differential analysis of pathway activity

The goal of this analysis is to determine which pathway needs to be considered more

closely to understand the difference in the metabolism of two organisms. For this pur-

pose, we use the pathway expression computed from the binary model presented earlier.

First we compute expression of each pathway present in the set of pathways we get from

KEGG for a given sample. Then we compute the difference between the expression of

each pathway. Under this model, the pathways selected as having differential activity are

the ones where the ratio of their expression is greater than a certain threshold. Table 3

presents our results on differential analysis of pathway activity.

3.2.3.2 Differential analysis of pathway significance

Differential analysis of pathway significance is based on the p-value described in

the graph-based sub-section of Methods. We randomly permute each pathway graph

generating m different graphs. Note that even the smallest pathway graphs contains at

least 15 nodes and about 40 edges which is sufficient to generate defaultm = 200 distinct

random graphs. A pathway is significant if the p-value of the mapping is less than 5%.

The p-value is the position of the original graph when placed in the sorted list of all

randomly generated graphs sorted first by “density" (largest to smallest) and then by the

number of nodes having 0 in-degree or 0 out-degree (smallest to largest). A pathway is

significant if its p-value is less than 5%, very significant if its p-value is less than 1% and

the most significant if its p-value is less or equal to 0.5%.

Let p1 be the p-value for pathway X in sample 1 and let p2 be the p-value for path-

way X in sample 2. We say that pathway X is differentially significant between the two

samples if the probability computed by the equation of probDiff(X) below is greater than

50%.
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probDiff(X) =


(1− p1) ∗ p2 if p1 ≥ p2

(1− p2) ∗ p1 if p2 < p1

For example, let us consider m = 200 randomly generated graphs and the vertex

label swapping model. In Figure 5 representing part of the Fatty acid elongation pathway

(ko00062), the mapped enzymes (filled rectangles) in sample 1 form a sub-graph with

density = 1.875 and the number of 0 in/out degree = 0.11 for that sub-graph. After sorting

the graph, the position of our original graph is the first, hence p-value p1 = 0.5% (most

significant pathway given the 200 graphs). In Sample 2, the mapped enzymes (filled

rectangles) form a sub-graph with density = 1.375, number of 0 in/out degree = 0.22 for

that sub-graph and its position after sorting is 148. This results in a p-value p2 = 74.5%

(not a significant mapping).

Based on the value of p1 and p2, probDiff(ko00062) = .74which is greater than 50%.

We conclude that ko00062 is differentially significant in the two samples.

Sample 1 Sample 2 

Figure 3.5 Pathway differential analysis. In sample 1, the mapped enzymes (filled rect-
angles) form a sub-graph with density = 1.475, the number of 0 in/out degree = 0.11 and
p-value=0.5. In Sample 2, the mapped enzymes (filled rectangles) form a sub-graph with
density = 1.375, the number of 0 in/out degree = 0.22 and p-value=.74. Based on these
p-value, we say that this pathways is differentially significant.
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3.3 Results and Discussion

3.3.1 Bugula neritina data preparation

Bugula neritina is a colonial marine invertebrate found in temperate waters around

the world [43]. B. neritina associates with an uncultured microbial symbiont, âĂIJCandidatus

Endobugula sertulaâĂİ [44] that has been shown to produce bryostatins, bioactive com-

pounds that protect the host larvae from predation [45, 46]. Because of the pharmaceutical

potential of the bryostatins, and the inablilty to grow the symbiont in the laboratory, we

chose to examine host gene expression in the presence and absence of the symbiont to

understand more about the molecular underpinnings of this relationship. In addition,

as symbiont endow the larvae with high concentrations of bryostatins compared to the

adult [47, 48], we also wanted to examine host gene expression in portions of the colony

that possess reproductive structures termed ovicells, and those without ovicells.

Adult colonies of B. neritina growing on floating docks were collected from four loca-

tions on the Eastern coast of the USA: Radio Island Marina and Yacht Basin Marina, More-

head City (North Carolina) in March 2012, and Oyster public docks, Oyster (Virginia) in

June 2012. The colonies were rinsed in filtered sea water and preserved in TRIzol reagent

(Invitrogen, Carlsbad, CA) at -80 degree celsius prior to RNA extraction. Total RNA was

then extracted from the preserved samples (RNeasy Mini kit, Qiagen,Inc., Valencia, CA,

USA). The RNA was purified and treated with RNase-free DNaseI to remove any contam-

inating DNA. The purified total RNA was processed according to standard operating pro-

cedure for preparation of mRNA library for sequencing (TruSeq RNA Sample Preparation

Kit, Illumina, San Diego, CA, USA). The adapter-ligated cDNA library was hybridized to

the surface of Illumina flow cell and sequenced on an Illumina HiSeq 2500 sequencing

platform. The paired-end reads were assembled de novo using Trinity software package

[49] and the assembled contigs were annotated by performing blastx searches (Translated

Query-Protein Subject BLAST 2.2.26+) against the Swiss-Prot database. A complete de-

scription on how the samples were obtained, cleansed and sequenced is available in this
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paper [50].

The samples used for analysis include: Lane 1: symbiotic; Lane 2: non symbiotic

(aposymbiotic) [51]; Lane 3: symbiotic, with ovicells; and Lane 4: symbiotic, without ovi-

cells. The symbiotic relationship was assessed in the collected colonies by PCR analysis

for the presence of the bryostatin biosynthetic gene cluster gene, bryS [51, 52]. We report

only the values averaged over all 4 lanes. The reads were assembled into contigs by Trin-

ity. We also conducted a Trinity assembly on the union of all reads - about 221,818,850

of them - 2x50 bp using 22 Gb of space. We obtained 166,951 contigs, after filtering with

RSEM-isopct-cutoff=1.00, also 76,769 ORFs, 37,026 BLAST hits of translated ORFs against

the SwissProt database and around 12,748 proteins hits. This translates to 59.37% ORFs

hits and 63.35% contigs hits. Using IsoDE, we were able to identify 1485 differential ex-

pressed genes between the two different conditions, the symbiotic and aposymbiotic B.

neritina.

3.3.2 Pathway extraction and graph generation

By de novo co-assembly of RNA-Seq data and BLAST-ing resulting contigs against

protein databases, with a certain confidence, we can infer the ortholog groups expressed

in the sample. This is an important attribute of KEGG. We use KEGG to generate path-

ways from Trinity contigs and proteins. From the pathway databases we can easily ex-

tract the enzyme information associated with each pathway. We actually extracted all

pathways along with all mapped proteins.

KEGG represents proteins as KO numbers and we also follow this representation.

It uses KGML, an exchange format of KEGG pathway maps, to interact with external

applications.The next step was to download all KGML files associated with the pathways

using the API provided by KEGG. To convert KGML files to graph of node and vertices,

we implemented and ran a novel tool called KGMLPathway2Graph. Mapping the output

of KGMLPathway2Graph with KO numbers from KEGG analysis of our data, allowed us

to compute pathway significance through p-value.
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3.3.3 Results

Pathway expression differences in symbiotic and aposymbiotic Bugula neritina (Lanes 1

and 2) are shown in Table 1 and in Table 2 respectively following vertex labels permuta-

tion and the edges permutation models. We ran our graph-based models algorithm 1 with

m = 200 graphs each generated after n = 1000000 permutations of labels or edges. This

high number of permutations is necessary to introduce sufficient differences in the gen-

erated graphs. Table 3 presents the results on differential analysis of pathway activities

between the same two Bugula neritina conditions.

Pathway p-value from sym-
biotic Bugula

p-value from apo-
symbiotic Bugula ProbDiff

ko04146 .99 .05 .94
ko03008 .99 .05 .94
ko03013 .99 .05 .94
ko00983 .99 .05 .94
ko04530 .99 .05 .94
ko00062 .01 .75 .74
ko00400 .01 .99 .98
ko00071 .99 .01 .98
ko00100 .99 .01 .98
ko00910 .04 .99 .95
ko04122 .99 .03 .97
ko04713 .99 .01 .99

Table 3.1 Vertex label permutation: the p-values of pathways are computed from the sym-
biotic (Lane 1) and aposymbiotic (Lane 2) B. neritina data. This table presents the most
significant divergence in pathway results, using the criteria described in the Methods
section, they are declared differentially significant.

In the additional file, we present a summary of transcripts differential expression

(DE) analysis results using IsoDE [41] and pathway activity inference results.
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Pathway p-value from sym-
biotic Bugula

p-value from apo-
symbiotic Bugula ProbDiff

ko04146 .99 .05 .94
ko03008 .99 .05 .94
ko03013 .99 .05 .94
ko00983 .99 .05 .94
ko04530 .99 .05 .94
ko00400 .01 .99 .98
ko04122 .99 .03 .97
ko04713 .99 .01 .99
ko00130 .01 .75 .74
ko00120 .01 .99 .98
ko00072 .99 .01 .98
ko00120 .99 .01 .98
ko00230 .04 .99 .95
ko00627 .99 .03 .97
ko00770 .99 .01 .99
ko00980 .99 .03 .97
ko04630 .99 .01 .99

Table 3.2 Edge permutation: the p-values of pathways are computed from the symbiotic
(Lane 1) and aposymbiotic (Lane 2) Bugula data. This table presents the most significant
divergence in pathway results, using the criteria described in the Methods section, they
are declared differentially significant.

3.3.4 Validation

From our statistical analysis, we identified some pathways that were differentially

expressed (DE) by all methods. The next step was to experimentally validate these re-

sults. The first validation step is done through IsoDE, a software to analyze differentially

expressed genes. Through KEGG, we are able to get all the proteins (contigs) participat-

ing in a pathway. IsoDE then indicates which of those contigs are also DE. From those

DE contigs, we extracted the genes that will be tested via quantitative PCR (qPCR) exper-

iment, the next validation step.

The goal of qPCR is to quantify the level of expression in the symbiotic and aposym-

biotic B. neritina. It is used to validate the gene expression given by IsoDE. Primers were
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Pathway Expression from-
symbiotic Bugula

Expression from-
aposymbiotic Bugula

Ratio between-
pathway expressions

ko00300 2.75 0.38 7.27
ko00290 4.26 1.71 2.49
ko04712 1.77 0.77 2.30
ko00903 1.88 0.84 2.25
ko01220 2.24 1.10 2.04
ko00981 2.00 1.00 2.00
ko04744 3.55 1.82 1.95
ko00626 1.48 0.76 1.93
ko00624 1.17 0.67 1.76
ko00072 2.17 1.25 1.74
ko00730 2.50 1.50 1.67
ko04730 3.80 2.40 1.58
ko00363 2.92 1.88 1.56
ko05150 2.13 1.38 1.55
ko04112 3.00 2.00 1.50
ko05219 1.67 2.50 0.66
ko00625 1.00 1.98 0.50
ko00984 1.00 2.00 0.50
ko00592 1.25 3.02 0.42
ko00965 0.66 1.66 0.40
ko00940 1.42 3.71 0.38
ko00460 0.60 2.02 0.30
ko00944 0.17 1.17 0.14

Table 3.3 Pathway activities levels with ratio. Expression represents the expression level
of the pathway activity in symbiotic (Lane 1) and aposymbiotic (Lane 2) B. neritina data.
This table presents pathways with a ratio of 1.5 or higher in their activity level or path-
ways with a ratio of 0.66 or lower from the opposite direction. Using the criteria described
in section 2, they are found to significantly differ in activities level.

designed using Primer 3 Plus [53]. Total RNA from recently collected symbiotic and

aposymbiotic B. neritina colonies was converted to cDNA using Superscript III (Invitro-

gen, Carlsbad, CA, USA) using random hexamers according to the manufacturerâĂŹs in-

structions. cDNA was subjected to qPCR analysis after and expression in the samples was

compared using the 24Ct method [54]. The reference gene used with the glyceraldehyde-

3-phosphate dehydrogenase gene, a housekeeping gene identified from the B. neritina
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transcriptome (contig m.4423) [55, 56]. The expression of three genes identified as being

differentially expressed in symbiotic and aposymbiotic animals from the fatty acid elon-

gation pathway (ko00062) were compared.

Using IsoDE, nine gene pathways were chosen from KEGG and 2485 top differen-

tially expressed contigs were taken from the list of all contigs. Within the selected path-

ways, there was a total of 637 contigs extracted. Each gene in these contigs was checked

for fold change 1.2 or higher. Next, the number of genes that had significant fold change

was compared to the total number of genes in the pathway. If the number of genes with

fold change of 1.2 or higher account for at least 15% of the total number of genes in that

pathway, then this pathway was chosen to be further investigated. The pathways chosen

are fatty acid elongation (ko00062), peroxisome (ko04146), ribosome biogenesis in eukary-

otes (ko03008), RNA transport (ko03013) and drug metabolism - other enzymes (ko00983)

[35].

The fatty acid elongation pathway contains fourteen (14) KEGG mapped contigs

and three (3) of those were found significantly differentially expressed. They are very-

long-chain 3-oxoacyl-CoA reductase (DHB12), 3-ketoacyl-CoA thiolase (fadA) and 3-

ketoacyl-CoA thiolase B, peroxisomal (THIKB). Once all the contigs in the pathway were

checked, additional information was compiled: KEGG pathway and protein numbers,

contig number, UniProt accession number and predicted fold change between symbiotic

and aposymbiotic B. neritina [57]. qPCR primers were designed using Primer 3 Plus and

ordered from Integrated DNA Technology [53]. The primers were tested using cDNA at

concentrations from 1 ng/µL to 0.1 pg/µL. In order to use 44Ct method, every primer

had to have the same efficiency and efficiency around 100% [54].

RNA was extracted from symbiotic and aposymbiotic B. neritina colonies. Following

the Direct-zol RNA MiniPrep protocol (Zymo Research Corp., Irvine, California, USA),

50 mg of B. neritina tissue was homogenized and RNA was extracted. Then the RNA was

further purified using the OneStep PCR Inhibitor Removal Kit (Zymo Research Corp.,
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Irvine, California, USA). To eliminate any contaminating genomic DNA, a DNase I treat-

ment was performed according to the manufacturerâĂŹs protocol (DNase I Recombinant,

RNase-free, Roche, Mannheim, Germany). Finally, the RNA was further purified with the

RNA Clean-up and Concentrator Kit (Zymo Research Corp., Irvine, California, USA). The

concentration of RNA was quantified in triplicate using a Nanodrop spectrophotometer.

Both symbiotic and aposymbiotic cDNA were synthesized using the Superscript III

protocol (Superscript III First Strand Synthesis System for RT-PCR, Invitrogen by Life

Technologies, Carlsbad, California, USA) with random hexamers. qPCR primer effi-

ciencies were determined using qPCR. All qPCR reactions were performed using 7500

Fast Real-Time PCR system (Applied Biosystems) with hot-start Taq polymerase, SYBR

Green fluorescent dye and ROX passive reference dye (Maxima SYBR Green/ROX qPCR

Master Mix (2X), Life Technologies, Carlsbad, California, USA). The efficiencies for each

primer pair were calculated using the slope of amplification curve in the equation E =

10(-1/slope) [58].

The expression levels of three genes, fadA, DHB12, and THIKB were measured in

symbiotic and aposymbiotic B. neritina with G3P acting as an endogenous control. The

reactions were run in triplicate for symbiotic and aposymbiotic cDNA along with a neg-

ative template control. The Ct averages and standard deviations were calculated to find

the Ct differences between the target gene and the control (4Ct) and 4Ct standard de-

viation. 44Ct was calculated by subtracting the symbiotic or aposymbiotic 4Ct by the

symbiotic4Ct. This resulted in symbiotic44Ct equal to 0 to compared the fold change

between symbiotic and aposymbiotic expression levels.

As presented in Table 4, the fold change predicted by differential expression analysis,

using IsoDE, for these three genes indicated that expression was higher in the aposym-

biotic B. neritina. fadA had a predicted fold change of 2.91, while DHB12 had a value of

1.90 (non-significant difference), and THIKB equaled 2.84. qPCR analysis showed that

when aposymbiotic gene expression was compared to symbiotic gene expression, fadA
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had 6.88 higher expression in aposymbiotic B. neritina. DHB12 had 0.66 times lower ex-

pression and THIKB had 2.52 higher expression, indicating that computational method

closely predicted expression in independent biological samples.

Genes fadA DHB12 THIK
Fold change of gene expression in
aposymbiotic B. neritina compared
to symbiotic by FPKM analysis

2.91 1.90 2.84

Gene expression in symbiotic B.
neritina by qPCR analysis

2.46 4.34 4.34

Gene expression in aposymbiotic B.
neritina by qPCR analysis

29.32 2.85 10.95

Fold change of gene expression in
aposymbiotic B. neritina compared
to symbiotic by qPCR analysis

6.88 0.66 2.52

Table 3.4 Experimental quantification of fatty acid elongation gene expression by qPCR
in symbiotic and naturally aposymbiotic B. neritina.

3.3.5 Discussion

Although all the EM and the graph-based methods worked on the same data gener-

ated by KEGG, the input to each approach were very different. For example, the Trinity

output of sample1 on KEGG generates about 306 pathways. All of these pathways were

considered for EM methods while only a small subset of 80 was used as input to each

of the graph-based model. Different factors contributed to this reduced number of path-

ways been analyzed in the edge/vertex swapping model: (1) We were not able to extract

the KGML of all pathways from from KEGG; (2) We were not able to convert all KGML

to actual graph and (3) Some graphs did not carry enough mapping to be significant (we

excluded pathways with less than 3 ortholog groups mapped).

Consequently, the graph-based approaches yield considerable less differentially ex-

pressed pathways than EM methods although results from both models in the graph-

based approaches were very consistent. Also, the graph-based analysis appears to be
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more stringent selecting only the pathways which are the farthest apart according to our

statistic criteria.

Looking at the overall small number of differential pathways, we can say that Bugula

n. with or without the symbiotic relationship still exhibits very similar reaction. As shown

in Table 5, the over all difference in the pathway activity and differentially expressed

transcripts between the two samples is very small.

Because working with non-model organisms, such as B. neritina, is more challenging

due to the lack of tools for genetic manipulation, for future works, we plan on the follow-

ing. First, run XPathways tools in other organisms, including model organisms to further

verify their efficacy and second, extend the model to handle not only metabolic pathways

put also signaling pathways.

FC = 2 FC = 1.5
Pathway 8% 12%
Contigs 13% 28%

Table 3.5 Percentage of differentially expressed contigs with fold change (FC) of 2 and 1.5
respectively.

3.4 Conclusions

XPathway tools with its two computational approaches is able to efficiently infer

pathway activity as well as pathway significance, respectively an expectation maximiza-

tion and a graph-based approach. Rather than trying directly to identify differentially

expressed genes from RNA-Seq data for a non-model organism, XPathway tools allows

to more accurately predict differential expression of genes using wealth of information

collected in the KEGG database for related organisms. Our experimental comparisons on

Bugula neritina RNA-Seq data with or without the symbiotic bacteria enable the detection

and comparison of pathways with metabolic difference. qPCR experiment successfully

validated our findings.
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PART 4

SOFTWARE PACKAGES AND TOOLS

4.1 Software package

4.1.1 XPahway Tools

• XPahway Tools constitutes a set of tools that compares metabolic pathway activity

analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways.

The XPathway analysis of pathway activity is based on expectation maximization and

topological properties of pathway graphs. The different tools that constitute XPathway

are:

• KGMLPathway2Graph: Extraction tool for metabolic network. KGMLPath-

way2Graph aims at extracting metabolic pathways from KGML flatfile database.

• Link Gopher 1.3.3: Mozilla Firefox add-ons Link gopher is used to copy all green

nodes in each pathway from KEGG output. These nodes are part of the pathway

urls.

• java code: To extract all green nodes per pathways for further analysis.

• Python code: To compute pathway activity level and significance.

• shell script: To download all KGML file from Kegg using wget. This is a one time

operation since ko xml file do not change.

• Infer Pathway activity level pipeline and Pathway significance pipeline All steps

for the analysis are provided and explained in the Readme file.

http : //alan.cs.gsu.edu/NGS/?q = content/xpathway

4.1.2 IsoDE

• IsoDE is a software package that can be used to perform differential gene expression
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analysis for RNA-Seq data both with and without replicates. IsoDE is based on boot-

strapping, which provides a principled way to test for differential expression based

on fold changes obtained from FPKM estimates obtained by resampling the original

read alignments. This strategy can be used in conjunction with any method for esti-

mating individual gene expression levels from aligned RNA-Seq reads; in the IsoDE

implementation we rely on the IsoEM algorithm, a scalable expectation-maximization

algorithm that takes into account gene isoforms in the inference process to ensure ac-

curate length normalization. Experiments on MAQC RNA-Seq datasets without repli-

cates show that IsoDE has consistently high accuracy as defined by the qPCR ground

truth, frequently outperforming existing methods such as Fishers exact test, edgeR,

GFOLD, and Cuffdiff, particularly at for low coverage data and at lower fold change

thresholds. In experiments on MCF-7 RNA-Seq datasets with up to 7 replicates IsoDE

also achieved high accuracy that varies smoothly with the number of replicates and is

relatively uniform across the entire range of gene expression levels.

The software is written in Java so it can be run on any platform with a java virtual

machine. The source code is distributed with the installation package.

IsoDE is available in three different packages:

• IsoDE coupled with IsoEM with external bootstrap generation

• IsoDE coupled with IsoEM with internal bootstrap generation

• IsoDE coupled with Kallisto using kallisto bootstrap sample and IsoDE analysis.

http : //dna.engr.uconn.edu/?pageid = 517.

4.1.3 IsoEM version 1.1.4

• IsoEM package can be used to infer isoform and gene expression levels from high-

throughput transcriptome sequencing RNA-Seq data. IsoEM uses a novel expectation-

maximization algorithm that exploits read disambiguation information provided by

the distribution of insert sizes generated during sequencing library preparation, and
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takes advantage of base quality scores, strand, and read pairing information (if avail-

able). Empirical experiments on synthetic datasets show that the algorithm signifi-

cantly outperforms existing methods of isoform and gene expression level estimation

from RNA-Seq data.

The software is written in Java so it can be run on any platform with a java virtual

machine. The source code is distributed with the installation package.

http : //dna.engr.uconn.edu/?pageid = 105

4.1.4 DORFA

• DORFA translated as Database-guided ORFeome Assembly from RNA-Seq Data is a

novel tool for protein database guided ORF assembly. DORFA takes as input the set

of partial ORFs produced by an RNA-Seq assembler and builds from them complete

ORFs. The biological value of the tool is very important, since it complements the

output of a de-novo RNA-Seq assembler. Finding the exhaustive set of ORFs can be

crucial for accurate protein activity level estimation or for pathway reconstruction (i.e.

missing some proteins one can not tell exactly whether a certain pathway is present in

an organism or not).

4.2 Tools and Applications

4.2.1 The Etheostoma tallapoosae Genome Annotation pipeline

The family Percidae contains over 200 species, most of which are within the sub-

family Etheostomatinae. This subfamily (the darters) represents a species rich radiation

of freshwater fishes in North America. Evolutionary relationships between the various

darter species have been deduced from morphological, mitochondrial DNA sequence

and limited nuclear DNA sequence comparisons. However, a thorough understanding

of the evolution of the darter species will require comparisons at the whole genome level.

DNA was extracted from a single Tallapoosa darter utilizing the Qiagen DNeasy
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Blood and Tissue kit. This DNA was then prepared for sequencing and sequenced with

an Illumina MiSeq by the Georgia Genomics Facility at the University of Georgia. The

DNA was sheared to an average size of about 700 bp and libraries were prepared with the

TruSeq sample preparation kit. Two 250PE runs were performed on a MiSeq instrument.

Two barcoded libraries were sequenced in the first run (this was necessary because this

run also contained a small percentage of barcoded amplicons for a different study). The

second run just sequenced a single genomic DNA library.

As a first step, the genome of the Tallapoosa darter (Etheostoma tallapoosae) has

been sequenced utilizing two Illumina MiSeq 250-PE runs generating 52 million reads.

This provided an average 12 fold coverage of the estimated 1 billion nucleotide genome.

The sequences were assembled with Minia into contigs and these were assembled into

scaffolds with SSPACE.

For an initial assembly of the sequences into longer contigs, the three libraries were

combined into one fasta file. This file was used as the input for the Minia short read

assembler software. The only parameters that can be varied are the k-mer length and

minimum abundance. The sequences were assembled for most k-mer lengths between

31 and 75 at minimum abundance settings of 2 and 3. The longest contigs and the most

nucleotides assembled into contigs were obtained at k-mer 61 with minimum abundance

setting of 3 and at k-mer 73 with minimum overlap abundance of 2.

An initial assessment to determine if the sequence reads were correctly assembled

was performed by finding scaffolds which shared sequence similarity with the LPLII, PLC

and RPS6 Tallapoosa darter genomic sequences described above. A BLAST server was

set up and databases were created from each of the scaffold assemblies. A BLAST server

allows for the identification of Tallapoosa darter scaffolds homologous to sequences of in-

terest.Scaffolds that contain sequences homologous to each of the three Tallapoosa darter

reference sequences were found with blastn searches. These scaffolds were then paired

with the reference sequences.

The scaffolds were also imported into an instance of WebApollo along with gene
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evidence tracks generated by fgenesh. A set of scripts were developed to facilitate the

formatting and import of these tracks and scaffold sequences into WebApollo that will

make it simple for labs to set up WebApollo instances for their own genome data with-

out extensive computer system experience. A web site has been developed that gives

access to both the BLAST and WebApollo servers to the public to spur interest in darter

genomics and to enable annotation of the Tallapoosa darter genome by a community of

darter researchers.

http : //www.dartergenomics.org/tallapoosa− darter− genome

https : //pag.confex.com/pag/xxii/webprogram/Paper12567.html

4.2.2 Vispa Plugin

VISPA [59] algorithm has seen substantial changes in the past years. The motivation

behind the adjustments was to:

1. Normalize the frequencies of reconstructed quasispecies

2. Produce better alignment and ultimately to speed the running time of the algorithm.

The adjusted VISPA software now incorporates an enhanced approach of estimat-

ing frequencies using expected maximization. SEGEMEHL, the previous aligner, was

replaced by MOSAIK and two versions of VISPA are now available. The first one accepts

fasta file as input and runs with MOSAIK and the second version takes bam/sam file as

input and runs with any other aligner.

Alongside the improvements on the code, VISPA plugin was developed and installed

on Ion Torrent on December 2012; Torrent Suite version 3.2. The plugin uses the internal

aligner provided by Ion Torrent, TMAP, to map reads to a genome reference. However, in

January 2013, Ion Torrent released version 3.4 of its server. This new Torrent Suite version

triggered the need to upgrade the plugin since fasta file were no longer directly available

from the experiment. This task was completed on February 10th, 2013 and the plugin
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made available for download on Ion Torrent Community website.

http : //mendel.iontorrent.com/ion− docs/visa− Plugin− 15007958.html
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PART 5

DISCUSSION AND FUTURE WORK

In ongoing work, we are exploring possibility of integrating multiple samples to

perform gene differential analysis. This addition will boost comparative analysis from

samples sequenced under similar conditions such as outbreak. Also, we plan to explore

a post-processing analysis on each generated bootstrap sample before computing gene

abundance to check their biological significance by controlling the false discovery rate.

The direct outcome of this new feature will be, depending on the size of the sample, a

maximal number of bootstrap sample will be recommended. Further more, we are ex-

ploring how to incorporate elements of the A-Seq-2 protocol in IsoEM. The A-Seq-2 anal-

ysis is an independently estimated abundances for transcripts expression level estimates

that can be used as ground truth as describes in the following paper [60]. This protocol

can be used to assess the accuracy of abundance estimation for RNA-Seq data for real

data and can be used to further improve IsoEM estimates.
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