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A STUDY OF MINERAL IMPURITIES WITHIN THE GEORGIA KAOLINS 
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ABSTRACT 

     The mining industry located along the fall line region of central Georgia has been and 

remains as one of the largest global exporters of the clay mineral kaolinite. Among the kaolin 

deposits in that region, the Cretaceous Buffalo Creek formation and the Eocene Jeffersonville 

member contain the most commercially viable kaolin to extract and process for resale. The 

minerals of the sand and silt fractions of these kaolin units were separated via dense liquid 

separation and analyzed for comparison by X-ray diffraction, scanning electron microscopy, and 

elemental analysis. The dense fractions are enriched in select heavy minerals (zircon and rutile) 

and trace elements (rare earth).  These elemental enrichments and the differences in the mineral 

maturity of these gangue (grit) fractions suggest differences in the provenance of the gangue 

minerals between these two different kaolins. 
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1 INTRODUCTION  

1.1 The Georgia Kaolins 

The kaolin mining industry in Georgia is located geographically along the fall line region 

of central Georgia. The Georgia Kaolin District is centered in Sandersville, GA. It has been, and 

remains, as one of the largest global exporters of kaolinite (Schroeder and Erickson, 2014). The 

Cretaceous Buffalo Creek Formation and the Eocene Jeffersonville Member of the Huber 

Formation contain the most commercially viable kaolin to extract and process among the kaolin 

bearing units in the Georgia Kaolin district. Kaolinite mined in this region has many industrial 

uses and can be found in numerous household products including, paper coating, ceramics, 

rubber, plastics, pharmaceuticals, paints, cosmetics, medical supplies, and electronic hardware 

(Schroeder and Erickson, 2014; Elzea-Kogel et al., 2002). Although the Buffalo Creek 

Formation and Jeffersonville Member are both extensively mined, these kaolin bearing units 

differ in color, brightness, composition, and mineralogy. The following subsections give 

descriptions of the Buffalo Creek and Huber Formation. Following the descriptions of the 

formations, the geologic history of the Georgia Kaolins is summarized. The primary focus of this 

study is on the occurrences of the lanthanide rare earth metals in these two formations of the 

Georgia Kaolins. The potential for reserves of these rare earth elements and the hypotheses 

explaining their presence in the Georgia Kaolins are stated at the end of this introduction. 

 

1.1.1  Buffalo Creek Formation  

The Buffalo Creek Formation was deposited during the late Cretaceous Period. The 

kaolins within this formation are relatively soft, coarse-grained (approximately 55-65% <2 µm), 

and laterally discontinuous (Elzea-Kogel, 2002). The Buffalo Creek Formation contains many 

fining upward sand sequences and is capped by characteristic, soft kaolin lenses (Pickering and 
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Avant, 1999; Elzea-Kogel et al, 2002). A freshwater origin was suggested by Kesler (1963). This 

origin explains the lack of marine fossils and the random orientation of kaolin crystals (Murray, 

1980). Cramer (1974) and Elzea-Kogel (2002) observed characteristic deltaic subsurface facies 

patterns in Buffalo Creek kaolin-bearing sediments and concluded that the kaolin-bearing 

formations were of deltaic nature. Pickering and Linkous (1997) observed similarities between 

the Upper Cretaceous Brazilian Capim kaolins and the Buffalo Creek kaolins of Georgia. These 

similarities were consistent with Cramer’s conclusions that the soft kaolins formed in a 

freshwater deltaic location (Elzea-Kogel et al, 2002). 

Buffalo Creek Formation kaolins are cream in color and contain low concentrations of 

organic material. They exhibit conchoidal fracture in outcrop. These kaolins are mostly 

composed of large concentrations of kaolinite and, smaller concentrations of muscovite and 

quartz (Figure 1; Cheshire, 2011). Elser (2004) also noted thumb-nail sized muscovite grains in 

the Buffalo Creek kaolins. 

 

Figure 1: Buffalo Creek Kaolin in outcrop showing conchoidal fracture 
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Trace minerals found within the Buffalo Creek kaolins include anatase, rutile, and zircon. 

Cheshire (2011) noted a sizable concentration of the rare earth element bearing phosphate 

mineral, monazite, within Buffalo Creek kaolins. As shown later in this thesis, the Buffalo Creek 

kaolins contain sizable amounts of rare earth elements. Unlike Cheshire’s observation however, 

the rare earth elements seen in this study are believed to be sequestered in the zirconium bearing 

mineral grains. The thickness of the Buffalo Creek Formation varies from zero to approximately 

ten meters (Cheshire, 2011). The Buffalo Creek Formation was sampled from Washington 

County in this study. Cheshire (2011) reported exposures of the Buffalo Creek Formation in 

Wilkinson County as well. Cheshire also reported that no exposures of the Buffalo Creek 

Formation were observed east of Washington County. Buffalo Creek kaolins have however been 

reported west of Wilkinson County and are believed to extend to the Ocmulgee River as shown 

below (Figure 2) (Cheshire, 2011). 

 

Figure 2: Map showing lateral extent of Buffalo Creek Formation in red. Image modified from Vilsack, 2009 
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 1.1.2 Huber Formation  

The Tertiary Huber Formation uncomfortably overlays the Buffalo Creek Formation in 

the Georgia Kaolin District. The Huber Formation is sub-divided into two members, the 

Paleocene Marion member and the Eocene Jeffersonville member.  The Paleocene Marion 

Member contains soft, unoxidized, kaolins which are gray to black in color (Figure 3) (Pickering 

and Avant, 1999). The Marion Member is similar to the Buffalo Creek in many ways such as 

kaolin concentration and age as suggested by palynology data (Prowell and Christopher, 2000). 

The primary difference is that the Marion Member contains higher amounts of organics, lignite, 

and an abundance of iron sulfides (Cheshire, 2011). Since the Marion Member is not 

commercially viable to mine and process, it was not sampled during this study. Lignite bearing 

Marion Member kaolins can be seen in the figure below. 

 

Figure 3: Dark colored Marion Member kaolins in foreground, lighter colored Jeffersonville Member kaolins can be seen 

in the background 
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The Eocene Jeffersonville Member of the Huber Formation contains what is often 

referred to as “hard kaolin”. These hard kaolins differ from the Buffalo Creek in hardness, 

particle size, iron content, and presence of Eocene age trace fossils (Pickering and Avant, 1999). 

The grain size of the Jeffersonville Member kaolins is finer (approximately 80-90% <2 µm) than 

the Buffalo Creek kaolins (Cheshire, 2011). The Jeffersonville Member contains abundant trace 

fossils as well as having a much higher iron and silica content compared to the Buffalo Creek 

Formation (Cheshire, 2011). The Jeffersonville Member is also more laterally continuous than 

the Buffalo Creek Formation. It extends as far west as the Ocmulgee River and east to Aiken, 

South Carolina (Huddlestun and Hetrick, 1991; Figure 4).  

 

Figure 4: Map showing lateral extent of Jeffersonville Member kaolins in red. Image modified from Vilsack, 2009 
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The Jeffersonville Member is near-white to gray in color. Many trace fossils can be 

observed in outcrop samples of Jeffersonville Member kaolin. It is primarily composed of 

kaolinite and quartz. Trace minerals found within the Jeffersonville member include rutile, 

anatase, pyrite, tourmaline, zircon, and ilmenite. Similarly to the Buffalo Creek Formation, trace 

amounts of rare earth elements were also found within Jeffersonville Member kaolins as detailed 

later in this study. As will be shown, the concentrations of rare earth elements are less than the 

amounts of rare earth elements in the Buffalo Creek. 

 

1.2 Geologic History of the Georgia Kaolins 

Although the complex geologic history of the Georgia Kaolins has been extensively 

studied, disagreements and confusion pertaining to the provenance, alteration, and stratigraphy of 

the clay minerals in the Georgia Kaolins remain among researchers (Cheshire, 2011). Recent 

studies (Cheshire, 2011; Elzea-Kogel et al, 2002) suggest that three separate “super-greenhouse” 

events were responsible for the majority of the “kaolinization” of primary minerals such as micas 

and feldspars. These micas (muscovite) and feldspars were deposited by sedimentary processes 

forming the Cretaceous Buffalo Creek Formation and the Tertiary Huber Formation. Although 

these “super-greenhouse” events were likely responsible for the majority of kaolinization, the 

kaolinization process most likely began as the mica and feldspar were weathered from felsic 

bedrock by chemical and mechanical weathering. These weathering processes continued during 

fluviatile transport. These sediments were weathered by in-situ chemical processes after 

deposition. The following subsection describes the complex geologic history of the Georgia 

Kaolins in more detail.  
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1.2.1 Paleogeography and Paleoclimate 

Beginning in the Cambrian, modern-day Georgia was located on the edge of the 

Laurentian Craton. The Laurentian Craton was part of the Rodina Supercontinent that formed in 

the latter part of the Precambrian Era. As a result of the breakup of the supercontinent Rodinia, 

global temperatures increased during the later Precambrian and into the Cambrian Period 

(Prothero and Dott, 2004). The increase in global temperatures resulted in increased sea levels 

transgressing onto the continents. These transgressive seas lead to the sedimentary deposits 

found on many passive margins along the Laurentian Craton (Prothero and Dott, 2004). Without 

the influence of terrestrial plants, rates of physical weathering were much higher and thus these 

passive margins became hosts to an abundance of sand and silt deposition (Prothero and Dott, 

2004). The mass of clastic sediments accumulated east of the edge of the Laurentian Craton 

causing subsidence east of the Craton. Part of this leading edge later was subducted beneath an 

island arc located further east of the Craton (Figure 5). 

 

Figure 5: An offshore subduction formed as a result of the mass of accumulated sediments on the continental shelf. Image 

modified from Plank and Shenck 1998 

  

In the Ordovician Period, this region was affected by the Taconic Orogeny. The Taconic 

Orogeny thrusted the shallow carbonate bearing sea and granitic island arc up onto the 
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Laurentian Craton (Figure 6; Miller et al., 2006). In addition to thrusting these rocks onto the 

craton, the orogeny metamorphosed the carbonate rocks and the granitic island arc. These 

granites docked onto North America and are now the Piedmont and Blue Ridge rocks of Georgia. 

The sedimentary sands were minimally metamorphosed to sandstones. These sandstones and 

carbonate rocks are seen in the Valley and Ridge Province of modern day northwestern Georgia. 

The Acadian Orogeny of the Devonian Period featured the docking of the metamorphic island 

arc material onto the North American craton. This docking further contributed to the 

metamorphism and weathering of the Blue Ridge Mountains and Piedmont Province. Based on 

the thickness of the post-orogenic sediments (e.g. Devonian Clastic Sequence, Ohio Black 

Shales, Chattanooga Shale), the Acadian Orogeny had a stronger impact on the New England 

region than the southeastern United States (Prothero and Dott, 2004). In the Carboniferous 

Period the craton, including the region to become Georgia, underwent the Alleghenian Orogeny. 

This collision was part of a larger assembly of continents leading to the formation of the 

supercontinent Pangaea (Miller et al., 2006). Piedmont, Blue Ridge, and other micro terranes are 

viewed as suspect terranes. These terranes were docked onto North America during the Taconic 

or Acadian Orogeny (Williams and Hatcher, 1982). Following and during the Alleghenian 

Orogeny, a series of three, post-metamorphic intrusions occurred in the Piedmont province 

which resulted in the formation of the Sparta Granite [~299 Ma], Siloam Granite [~270 Ma], and 

Edgefield Granite [~255 Ma] (Jones and Walker, 1973; Fullagar and Butler, 1976; Snoke et al., 

1980). 
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Figure 6: As a result of the Taconic Orogeny, offshore carbonates and the volcanic island arc were thrust upon Laurentia 

forming the Blue Ridge Mountains and Piedmont Province. Image modified from Plank and Shenck 1998 

 

In the Triassic Period, the supercontinent Pangaea began to rift apart. A passive margin 

formed at the paleo-coastline located along the Fall Line of the southeastern United States. The 

rifting of Pangaea was an integral step in the formation of the Georgia Kaolins as it promoted the 

deposition of weathered felsic sediments in the newly formed continental shelf southeast of the 

SW-NE trending Fall Line (Cheshire, 2011). An increase in global temperature as suggested by a 

negative shift in δ18O values in planktonic foraminifera coincides with the rifting of Pangaea 

(Frankes et al., 2005). This increase in temperature would have promoted the weathering and 

erosion of Blue Ridge and Piedmont derived sediments which would contribute to the formation 

of the Atlantic Coastal Plain (Cheshire, 2011; Frankes et al., 2005). Aside from the increase in 

global temperatures, the abundance of evaporites which formed in Europe at that time also 

suggests an arid environment was present (Chamley et al., 1979; Hallam, 1984; Frakes et al., 

1992). The arid climate would not favor the kaolinization of micas and feldspars by chemical 

weathering at that time (Cheshire, 2011). Moving into the early Cretaceous however, the Atlantic 
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Ocean continued to open which resulted in the climate cooling as well as becoming more humid 

(Frakes et al., 1992).  

Following the rifting of Pangaea, three separate “super-greenhouse” periods occurred 

from Cretaceous (Albian) to Tertiary (Paleocene). These super-greenhouse periods are times of 

extensive chemical weathering. It is believed that the sediments eroded from the Blue Ridge and 

Piedmont were altered to kaolinite during one or all three of these super-greenhouse periods 

(Cheshire, 2011). The first “super-greenhouse” period occurred during the Albian age of the 

early Cretaceous period. While the specific cause of this “super-greenhouse” period remains 

unknown, it is believed that it occurred in response to elevated atmospheric CO2 concentrations 

along with increased humidity levels as a result of the opening of the Atlantic Ocean (Poulsen et 

al., 2003). The second “super-greenhouse” period occurred shortly after, around the time of the 

Cenomanian-Turonian boundary (91 Ma) in the Cretaceous period. These first two “super-

greenhouse” periods are believed to have formed the majority of the Buffalo Creek kaolins by 

saprolization (Cheshire, 2011). At the time of these first two “super-greenhouse” periods, the 

area in which the Buffalo Creek Formation would have been deposited would have been around 

20-40oN latitude and 70-80oW longitude (Lehman, 1987; Frakes et al., 1992). This tropical-

subtropical environment would have greatly accelerated the erosional and saprolization processes 

(Cheshire, 2011). The deposition of the Buffalo Creek Formation is believed to have continued 

through the late Cretaceous, at which time global cooling resulted in regressing sea-levels 

(Norris et al., 2001). Global cooling would have caused a reduction in saprolization as well as 

kaolinite forming processes. In addition, the regressing sea level would expose deposited 

portions of Buffalo Creek Formation which would increase physical erosional processes. These 

increased erosional processes are likely responsible for the unconformity between the Buffalo 
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Creek and Huber formations as well as the laterally discontinuous nature of the Buffalo Creek 

kaolins (Cheshire, 2011). 

In the Paleocene, the climate began to warm again (Zachos et al., 2001). The Marion 

Member is believed to have been deposited at this time (Cheshire, 2011). Despite belonging to a 

different formation than the Buffalo Creek, similarities can be observed between the two 

formations. It was hypothesized that they are derived from the same saprolite area of the 

weathered Piedmont province (Cheshire, 2011). In addition, any differences observed between 

the two, such as the preservation of higher organic content and finer grain sizes, can be attributed 

to the difference in depositional environment (Elzea-Kogel et al., 2002; Cheshire, 2011). 

 Following the deposition of the Marion Member in the mid Paleocene, global 

temperatures greatly increased during the Paleocene-Eocene Thermal Maximum (PETM) and 

Early Eocene Optimum (Zachos et al., 2001). These extreme temperatures would have further 

promoted the kaolinization and saprolization processes. Palynology data provided by Prowell 

and Christopher (2000) suggests that the Jeffersonville Member was deposited during the early-

mid Eocene. Cheshire (2011) further suggests that the third “super-greenhouse” period would 

have occurred during the Early Eocene Optimum. Following this third “super-greenhouse” 

period and the deposition of the Jeffersonville Formation, another major transgression 

submerged the southeastern United States (Cheshire, 2011). It was during this time that the 

Barnwell Group was deposited (Cheshire, 2011). The Barnwell Group includes the Late Eocene 

Clinchfield Sand Formation and the Twiggs Clay Formation (Pickering and Avant, 1999). 

Following the Eocene, sea level dropped in response to the formation of polar ice caps. This drop 

in sea level resulted in the erosion of coastal plain sediments which exposed Piedmont igneous 

and metamorphic rocks and uncovered the fall line where it currently exists (Cheshire, 2011). 
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1.3 Rare Earth Element Mining and Consumption in the United States 

Although domestic reserves of rare earth elements are estimated at approximately 

1,300,000 metric tons, the United States remains a net importer of the rare earth elements 

(Gambogi, 2016). In 2015 the United States consumed approximately 17,000 tons of rare earth 

elements and produced approximately 4,100 tons of rare earth elements (Gambogi, 2016). The 

cost of imported rare earth elements in 2015 was estimated at $150,000,000 (Gambogi, 2016). 

Few companies domestically mined rare earth elements in 2015 and those who did focused 

primarily on the fluorocarbonate mineral, bastnasite, which was mined from reserves located in 

Mountain Pass, California (Gambogi, 2016). 

1.3.1 Alternative Sources of Rare Earth Elements 

Due to industrial and technological advancement in recent years, the demand for rare 

earth elements has greatly increased and less conventional sources of rare earths are being 

explored for economic viability. Previously, four primary types of deposits were known for 

containing rare earth elements (Van Gosen, 2014). These deposits include carbonatites, alkaline 

igneous rocks, ion-adsorption clays, and monazite-xenotime-bearing placer deposits (Van Gosen, 

2014). Recent studies however suggest the potential of rare earth extraction from alternative 

sources such as coal, ocean water, and regoliths associated with coastal plain clays (Rozelle et al, 

2016; Drost and Wang, 2016; Foley and Ayuso, 2015). Foley and Ayuso are currently studying 

such regoliths where they have reported enrichments in the light rare earths as high as 200-800 

times higher than chondrite. Enrichments on the order of 20-100 times higher than chondrite 

were observed for the heavy rare earths (Foley and Ayuso, 2015). 



13 

1.4 Goals of this Study 

The primary focus of this study is to observe and compare the mineralogy and chemical 

composition of kaolin gangue (sand and silt fractions, also known as “grit”) associated with the 

Buffalo Creek Formation and Jeffersonville Member of the Huber Formation toward determining 

provenance of these grit minerals in the Georgia Kaolins. Two hypotheses (H1 and H2) were 

formulated.  

H1: The provenance of the gangue minerals are likely from nearby igneous rocks (Sparta 

Granite). 

H2: Rare earth elements are most likely to be found within the heavy fraction of the 

gangue. This hypothesis is likely to be possible based on the observations made by Cheshire 

2011. Cheshire associated light rare earth elements with the phosphate mineral monazite, a heavy 

mineral whose density is 4.6 to 5.7 g/cm3. He also mentions the possibility of the association of 

the heavy rare earth elements with the mineral zircon in the Georgia Kaolins. 

The goal of this study is to test these two hypotheses. In doing so, the thesis results are 

aimed at determining the provenance of the gangue as well as determining which minerals within 

the heavy fraction are the most strongly correlated with the presence of rare earth elements.  
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2 METHODS 

2.1 Samples and Locations 

Samples analyzed in this study were provided with the permission and assistance of the 

Thiele Kaolin Company on May 14, 2015. Ed Riley of Thiele Kaolin assisted in the collection 

and blunging of the samples. The blunging process is described in Section 2.2.  The sample of 

the Cretaceous Buffalo Creek Formation was collected from the Avant Mine. The sample of the 

Jeffersonville Member of the Tertiary Huber Formation was collected from the Dukes Mine. 

Location maps of these open pit quarries are shown below. 

 

Figure 7: Google Earth map of Avant Mine location, Buffalo Creek kaolins were sampled from the Avant Mine 
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Figure 8: Google Earth map of Dukes Mine location, Jeffersonville Member kaolins were sampled from the Dukes Mine 

 

2.2 Sample Register, Blunging, and Heavy Mineral Separation 

This study, unlike many other studies of the Georgia Kaolins, focuses on the mineralogy 

of the grit fraction. The sand and silt fractions associated with these kaolinites are referred to as 

gangue or “grit”. Grit is separated from the clay fraction via a process known as blunging. In the 

first step in the separation of grit, the raw kaolinite from outcrop is crushed. The crushed 

kaolinite is mixed with water, Na-hexametaphosphate, and soda ash (sodium carbonate) 

solutions and is blunged in a Morehouse Cowles Dissolver, to separate the clays from the sand 

and silt. The grit then settles and is collected from the clay slurry by decanting the clay fraction. 

In actual production, the clay fraction separated from grit is processed further to produce kaolin 

clay for market.  

After blunging, the grit fraction was screened with a 325 mesh sieve (45 micron) to 

collect the sand and silt fraction. The fraction less than 325 mesh (45 micron) was discarded. The 
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sand and silt fractions from the Buffalo Creek Formation that remained were washed and dried at 

50oC. The grit fraction from the Jeffersonville Formation was taken for a second blunging 

process in a Waring Blender since this sample contained a significant amount of unblunged clay. 

Soda ash (NaCO3) and Na-hexametaphosphate solutions were added in the blender to assist in 

the blunging process. This mixture was then once again screened and washed. The washed 

material was then oven dried at 50oC and collected for further study. The two samples obtained 

from this process were labeled “BC grit” and “JV grit” to indicate that the source of raw kaolins 

collected from the Cretaceous Buffalo Creek Formation and the Jeffersonville Member of the 

Eocene Huber Formation. 

The two grit samples were then further separated into light and heavy fractions via dense 

liquid separation. Lithium metatungstate (ρ=2.95Kg/L) was the dense fluid utilized in these 

separations. This liquid was chosen due to its low price and low volatility relative to other 

separatory fluids (Totten and Hanan, 2007). The density separation involved mixing grit and 

lithium metatungstate (LMT) in a 1 liter separatory funnel. This mixture was covered and left 

overnight to allow mineral grains with densities greater than 2.95Kg/L to settle to the bottom of 

the funnel, while mineral grains with densities less than 2.95Kg/L floated to the top of the 

separatory funnel. After settling overnight, the dense grains which settled at the bottom of the 

separatory funnel were carefully drained into a funnel filter lined with Number 2 filter paper. 

Number 2 filter paper was used to assure the retention of silt-sized grains. The filter was then 

covered and given time to allow for any excess Lithium metatungstate to drain out of the 

collected dense grains. After the drainage of any excess Lithium metatungstate, the funnel 

containing the dense grains was rinsed three times using deionized water. The rinsed filters were 

then placed in an oven at 50oC for approximately two hours or until dry. After drying, the 
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samples were carefully collected in small sampling jars and labeled as the “heavy fraction”. The 

light grains which remained within the separatory funnel were then drained, rinsed, and dried 

using the same procedure. This material was also collected after drying; however it was labeled 

the “light fraction”. These separations were performed separately on both the Buffalo Creek and 

Jeffersonville Member grit samples. These separations yielded the four samples which will be 

referred to throughout this study: Buffalo Creek light, Buffalo Creek heavy, Jeffersonville light, 

and Jeffersonville heavy. The initial samples of the Buffalo Creek and Jeffersonville Member 

will be referred to as Buffalo Creek grit and Jeffersonville grit respectively. 

2.3 X-Ray Diffractometry 

Preliminary X-Ray Diffraction (XRD) analyses were performed prior to density 

separations in attempt to approximate the bulk mineralogy of the Buffalo Creek and 

Jeffersonville grit samples. Later analyses of the heavy and light sub fractions were performed 

after the dense liquid separation. The X-Ray Diffractometer used for these analyses was a 

Panalytical X’pert (Figure 9). 

 

Figure 9: Georgia State Geosciences Department’s XRD 

Grit samples were analyzed on random oriented slide mounts (Figures 10 and 11), 

prepared via the backfill method as described in Moore and Reynolds (1997). These samples 
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were not powdered. The amounts of the recovered heavy minerals were not large and needed to 

be used for chemical or other mineralogic analyses. Samples were analyzed at normal speed 

(1o2θ/minute) from a range of 0o-70o with a time constant of 1 second. A nickel filter and copper 

radiation (at approximately 1.54Å) were used in the analysis. The software X’pert HighScore© 

was used to assist mineral identification. 

 

Figure 10: Buffalo Creek grit in random oriented slide mount 

 

 

Figure 11: Jeffersonville Member grit in random oriented slide mount 

Mounts of the light and heavy separates were prepared by mixing approximately 0.5 g of 

sample with 2mL of deionized water. The mixture was then stirred and the slurry was dripped 



19 

onto a petrographic glass slide using a 10mL disposable pipette. The slide was then heated at 

50oC for approximately an hour until dry. 

 

Figure 12: Buffalo Creek Heavy separate on a slide 

 

 

Figure 13: Jeffersonville Member Heavy separate on a slide 

 

2.4 Scanning Electron Microscopy 

Scanning Electron Microscopy examinations were performed on the light and heavy 

separates of both grit samples. The intentions of these examinations were to search for unique 

mineral grains and image mineralogical consistencies with data provided by X-Ray 

Diffractometry. The microscope used was a LEO 1450vp SEM. A Rontec (SD type) detector 

along with IXRF software was also utilized to collect and identify characteristic X-Rays for 
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elemental identification. The Rontec detector was only used during the examinations of the 

heavy separates. Subsamples of the heavy separates were coated in carbon to a thickness of about 

15 nm. Subsamples of the light separates were gold coated to a thickness of about 15 nm prior to 

examination. The acceleration voltage also varied between analyses of the light and heavy 

fraction. An acceleration voltage of 15kV was used in the analysis of the light fraction while a 

voltage of 30kV was utilized in the analysis of the heavy fraction. 

2.5 Chemical Analysis 

Samples of the grit, heavy fraction, and light fraction for both Buffalo Creek and 

Jeffersonville Member kaolins were sent to Activation Laboratories for chemical analyses. 

Major, trace, and rare earth elements were analyzed by Activation Laboratories using ICP-MS. 

Standards and reproducibility provided by Activation Laboratories are included in Appendix A. 

The amounts of Lanthanide REE were calculated for a 500 m3 volume of Buffalo Creek and 

Jeffersonville Member. The amount of REE (in grams) is the product of the volume of kaolin, 

density of the kaolin, fraction of grit, and the concentration REE total (ppm or mg/kg). The 

fraction of grit and density of the Buffalo Creek and Jeffersonville Members were data from 

Dombrowski (1993). 

 

  



21 

3 RESULTS 

3.1 X-Ray Diffractometry Data 

Preliminary diffraction analyses on the grit samples provided bulk mineralogy which are 

shown in the first diffraction patterns below (Figures 14 and 15). Buffalo Creek diffraction data 

is shown in Figure 14. Jeffersonville diffraction data is shown in Figure 15. These diffraction 

patterns permit identification of the prevalent minerals in these samples. The X-Pert Pro software 

of the XRD provided assistance in identifying minerals present in these samples. 

 

Figure 14: Labelled diffraction scan of Buffalo Creek grit 

 

 
Figure 15: Labelled diffraction scan of Jeffersonville Member grit 
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The Buffalo Creek grit showed a much more diverse mineralogical composition than the 

Jeffersonville Grit. Kaolinite, quartz, zircon, and the titanium bearing minerals anatase and rutile 

were observed in the Buffalo Creek grit. The Jeffersonville grit sample contained almost 

exclusively quartz. The heavy separates were then analyzed to determine whether the separation 

process successfully sequestered the dense minerals (Figure 16 and 17).  

The diffraction patterns for the heavy separate materials from the Buffalo Creek and 

Jeffersonville show firstly that the dense liquid separation successfully sequestered the dense and 

light fractions of the grit. Peaks representing rutile and zircon can be observed on the 

diffractogram for both Jeffersonville and Buffalo Creek heavy subsamples. The presence of 

residual kaolinite in the Buffalo Creek Heavy subsample and the absence of kaolinite in the 

Jeffersonville subsample suggest that the blunging process was more effective in dispersing 

kaolinite from the Jeffersonville Member grit than from the Buffalo Creek grit. The diffraction 

patterns for the Buffalo Creek and Jeffersonville light separates further verify that the dense 

liquid separation was effective in that heavy minerals such zircon were absent. 

 
Figure 16: Labelled diffraction scan of Buffalo Creek heavy fraction 
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Figure 17: Labelled diffraction scan of Jeffersonville Member heavy fraction 

 

Figure 18: Labelled diffraction scan of Buffalo Creek light fraction 

 

Figure 19: Labelled diffraction scan of Jeffersonville light fraction 
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3.2 Scanning Electron Microscopy Data 

Scanning electron microscopy examinations were performed on the heavy and light 

separates of both grit samples. The Rontec detector was used only while analyzing the heavy 

separates in attempt to determine more accurately their mineralogy and elemental composition. 

Images and elemental spectra for all of the analyzed heavy separates are provided in Appendix 

B. 

Observations varied between the examinations performed on the Buffalo Creek and 

Jeffersonville samples. Eleven mineral grains of the Buffalo Creek heavy separate were 

chemically analyzed during the SEM examinations. Among the eleven grains, six showed 

predominant concentrations of titanium, four exhibited high concentrations of zirconium, and 

one showed high concentrations of iron and magnesium. Zirconium and titanium bearing 

minerals within the Buffalo Creek heavy separate are shown in the labeled SEM image below 

(Figure 21). The grains do not show evidence of extensive physical weathering due to transport. 

The lack of quartz and kaolinite in the heavy fraction suggests that the dense liquid separation 

process successfully separated the dense minerals (zircon and rutile) from the light minerals such 

as quartz.  

Ten random mineral grains of the Jeffersonville separate were chemically analyzed 

during the examinations. Among the ten grains, six showed predominant concentrations of iron 

and magnesium, three showed high concentrations of zirconium, and one showed a high 

concentration of titanium. Similarly to the Buffalo Creek heavy separates, few quartz and 

kaolinite grains were seen in the heavy separate. Unlike the Buffalo Creek heavy separates 

however, grains of the Jeffersonville show unique signs of physical weathering (Figure 23). 

During the examinations of the light separates the major difference observed was the 
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composition. While the Buffalo Creek light separate contained mostly kaolinite, the 

Jeffersonville light separate was predominantly composed of quartz. 

 

Figure 20: SEM image of the Buffalo Creek heavy fraction 

 

 

Figure 21: Labelled mineral grains in the Buffalo Creek heavy separate. Ti corresponds to Rutile. Zr corresponds to 

Zircon 
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Figure 22: SEM image of Tourmaline within Jeffersonville heavy fraction. The number of weathered mineral surfaces is 

greater in Jeffersonville compared to Buffalo Creek 

 

 

Figure 23: SEM image of physical weathering on Jeffersonville heavy grains 
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Figure 24: SEM image of Buffalo Creek light fraction 

 

 

Figure 25: SEM image of quartz grains within Jeffersonville light fraction 
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3.3 Elemental Data 

Major element, trace element, and Lanthanide Rare Earth Element (REE) analyses are 

summarized in Tables 1-6. For major elements, all reported values represent weight percent 

(wt%) oxides. Rare earth and trace element values are given in parts per million (ppm). 

Enrichment data tables which show enrichment and depletion relative to upper continental crust 

(as provided by Rudnick and Gao 2004) were also compiled. Figures 26 and 27 graphically show 

rare earth elemental enrichments relative to upper continental crust. The correlation of Zr to REE 

and TiO2 to REE are shown in Figures 28 and 29 respectively. 

 

 

Table 1: Major Elemental Concentrations (Given in Weight Percentage) 

 

 

Table 2: Major Elemental Enrichments (Relative to UCC) 

Metal Oxide BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light Upper Continental Crust

SiO2 42.1 96.65 6.97 40.93 44.82 95.8 66.62

Al2O3 35.43 0.49 3.81 16.59 36.79 0.38 15.4

Fe2O3 0.82 2 6.27 10.1 0.83 2.39 5.04

MnO 0.012 0.016 0.098 0.062 0.007 0.019 0.1

MgO 0.06 0.03 0.24 1.38 0.04 0.01 2.48

CaO 0.08 0.05 0.15 0.18 0.04 0.04 3.59

Na2O 0.11 0.06 0.07 0.39 0.15 0.06 3.27

K2O 0.21 0.05 0.02 0.45 0.26 0.05 2.8

TiO2 7.032 0.168 58.28 19.05 0.801 0.053 0.64

P2O5 0.11 0.01 0.44 0.28 0.03 0.01 0.15

Metal Oxide BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light

SiO2 0.63 1.45 0.10 0.61 0.67 1.44

Al2O3 2.30 0.03 0.25 1.08 2.39 0.02

Fe2O3 0.16 0.40 1.24 2.00 0.16 0.47

MnO 0.12 0.16 0.98 0.62 0.07 0.19

MgO 0.02 0.01 0.10 0.56 0.02 0.00

CaO 0.02 0.01 0.04 0.05 0.01 0.01

Na2O 0.03 0.02 0.02 0.12 0.05 0.02

K2O 0.08 0.02 0.01 0.16 0.09 0.02

TiO2 10.99 0.26 91.06 29.77 1.25 0.08

P2O5 0.73 0.07 2.93 1.87 0.20 0.07
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Table 3: Rare Earth Elemental Concentrations (Given in Parts Per Million) 

 

 

Table 4: Rare Earth Elemental Enrichments (Relative to UCC) 

 

Element BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light Upper Continental Crust

La 23.2 2.9 298 178 1.8 1.3 31

Ce 48.7 5.2 612 312 3.8 2.5 63

Pr 5.72 0.61 72.5 37.8 0.44 0.27 7.1

Nd 22.6 2.3 274 133 1.8 0.9 27

Sm 6.6 0.5 75.7 30.2 0.6 0.2 4.7

Eu 0.8 0.08 7.64 5.32 0.11 0.05 1

Gd 12.9 1.3 142 43.7 1.2 0.2 4

Tb 3.5 0.2 35.4 10 0.3 0.1 0.7

Dy 30.1 1.5 308 81.8 2.8 0.3 3.9

Ho 7.6 0.3 76.7 20.1 0.7 0.1 0.83

Er 25.7 1 245 65.6 2.2 0.2 2.3

Tm 4.12 0.16 40.7 11.3 0.37 0.05 0.3

Yb 28.4 1.1 274 81.5 2.5 0.3 2

Lu 4.35 0.16 43 13.4 0.38 0.04 0.31

Sum 224.29 17.31 2504.64 1023.72 19 6.51 148.14

Element BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light

La 0.75 0.09 9.61 5.74 0.06 0.04

Ce 0.77 0.08 9.71 4.95 0.06 0.04

Pr 0.81 0.09 10.21 5.32 0.06 0.04

Nd 0.84 0.09 10.15 4.93 0.07 0.03

Sm 1.40 0.11 16.11 6.43 0.13 0.04

Eu 0.80 0.08 7.64 5.32 0.11 0.05

Gd 3.23 0.33 35.50 10.93 0.30 0.05

Tb 5.00 0.29 50.57 14.29 0.43 0.14

Dy 7.72 0.38 78.97 20.97 0.72 0.08

Ho 9.16 0.36 92.41 24.22 0.84 0.12

Er 11.17 0.43 106.52 28.52 0.96 0.09

Tm 13.73 0.53 135.67 37.67 1.23 0.17

Yb 14.20 0.55 137.00 40.75 1.25 0.15

Lu 14.03 0.52 138.71 43.23 1.23 0.13
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Table 5: Trace Elemental Compositions (Given in Parts Per Million) 

 

Element BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light Upper Continental Crust

Sc 87 1 333 68 57 8 14

Be 1 1 1 3 1 1 2.1

V 215 8 1559 506 63 8 97

Cr 250 40 1050 390 150 40 92

Co 4 1 5 12 3 2 17.3

Ni 120 20 180 40 50 20 47

Cu 20 10 10 60 20 10 28

Zn 60 30 190 410 30 30 67

Ga 70 1 173 58 56 1 17.5

Ge 2 1 2 3 1 1 1.4

As 6 5 50 17 5 5 4.8

Rb 5 2 2 13 6 2 84

Sr 78 7 26 172 6 5 320

Y 273 7 2175 555 21 2 21

Zr 5778 251 56430 31450 459 72 193

Nb 109 8 1030 361 15 3 12

Mo 24 2 215 18 4 2 1.1

Ag 0 1.5 0 0 2 0.5 53

In 0.8 0.2 5.6 1.2 0.2 0.2 0.056

Sn 28 1 215 35 6 1 2.1

Sb 1.9 0.5 4.5 5.4 0.7 0.5 0.4

Cs 0.5 0.5 0.5 0.5 0.5 0.5 4.9

Ba 57 57 65 216 57 55 624

Bi 1.1 1.1 10.8 5.6 0.4 0.4 0.16

Hf 142 6.1 1380 734 12 1.8 5.3

Ta 8.4 0.4 73.7 29.1 1.1 0.2 0.9

W 9 1 52200 7070 8280 6550 1.9

Tl 0.1 0.1 0.1 0.1 0.1 0.1 0.9

Pb 13 5 136 89 5 5 17

Th 45.5 1.6 418 76.9 5.3 0.4 10.5

U 18.9 0.7 152 56.3 2.8 0.2 2.7
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Table 6: Trace Elemental Enrichments (Relative to UCC) 

 

Element BC Grit JV Grit BC Heavy JV Heavy BC Light JV Light

Sc 6.21 0.07 23.79 4.86 4.07 0.57

Be 0.48 0.48 0.48 1.43 0.48 0.48

V 2.22 0.08 16.07 5.22 0.65 0.08

Cr 2.72 0.43 11.41 4.24 1.63 0.43

Co 0.23 0.06 0.29 0.69 0.17 0.12

Ni 2.55 0.43 3.83 0.85 1.06 0.43

Cu 0.71 0.36 0.36 2.14 0.71 0.36

Zn 0.90 0.45 2.84 6.12 0.45 0.45

Ga 4.00 0.06 9.89 3.31 3.20 0.06

Ge 1.43 0.71 1.43 2.14 0.71 0.71

As 1.25 1.04 10.42 3.54 1.04 1.04

Rb 0.06 0.02 0.02 0.15 0.07 0.02

Sr 0.24 0.02 0.08 0.54 0.02 0.02

Y 13.00 0.33 103.57 26.43 1.00 0.10

Zr 29.94 1.30 292.38 162.95 2.38 0.37

Nb 9.08 0.67 85.83 30.08 1.25 0.25

Mo 21.82 1.82 195.45 16.36 3.64 1.82

Ag 0.00 0.03 0.00 0.00 0.04 0.01

In 14.29 3.57 100.00 21.43 3.57 3.57

Sn 13.33 0.48 102.38 16.67 2.86 0.48

Sb 4.75 1.25 11.25 13.50 1.75 1.25

Cs 0.10 0.10 0.10 0.10 0.10 0.10

Ba 0.09 0.09 0.10 0.35 0.09 0.09

Bi 6.88 6.88 67.50 35.00 2.50 2.50

Hf 26.79 1.15 260.38 138.49 2.26 0.34

Ta 9.33 0.44 81.89 32.33 1.22 0.22

W 4.74 0.53 27473.68 3721.05 4357.89 3447.37

Tl 0.11 0.11 0.11 0.11 0.11 0.11

Pb 0.76 0.29 8.00 5.24 0.29 0.29

Th 4.33 0.15 39.81 7.32 0.50 0.04

U 7.00 0.26 56.30 20.85 1.04 0.07
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Figure 26: Buffalo Creek rare elemental enrichments relative to UCC 

 

 

Figure 27: Jeffersonville Member rare elemental enrichments relative to UCC 
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Trends were observed between the sum of rare earth elements and the concentration of 

select trace and major elements. To quantify these trends, correlation plots were created and 

linear regression lines were fit to each plot. The strongest correlations of the rare earth elements 

were with zirconium and TiO2.  

 

Figure 28: Correlations of sum of rare earths to ppm Zirconium (R2=0.99) 

 

 

Figure 29: Correlations of sum of rare earths to weight percent TiO2 (R2=0.98) 
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3.4 Amounts of REE in Buffalo Creek and Jeffersonville Member 

The amounts of REE were calculated to aid in later economic assessment or REE in the 

Georgia Kaolins. This model was designed to calculate the approximate amounts of REE within 

a 500m3 volume of kaolin. Density and grit percentage values were determined by Dombrowski 

(1993). Tables showing the calculations of estimated rare earth elements within the grit samples 

are provided below. 

 

Table 7: Mass of 500m3 of Kaolin Approximation 

 

 

Table 8: Concentration of Rare Earth Elements in 500m3 of Kaolin 
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4 DISCUSSION 

4.1 Mineralogical and Elemental Comparison 

4.1.1 XRD 

When comparing the preliminary diffraction patterns for the Buffalo Creek and 

Jeffersonville grit samples, it is evident that there is considerable variation between the 

mineralogical compositions of these two samples (Figure 14-15). The abundance of quartz in the 

Jeffersonville Member grit sample is consistent with previous literature stating that it is of a 

more sedimentary origin (Hurst and Pickerington, 1997). In contrast, more abundant 

mineralogically mature and heavy minerals (e.g. rutile, anatase, zircon), are found within the 

Buffalo Creek grit. The variability of these minerals found in the Buffalo Creek shows a less 

mature mineral suite. The less mature mineral suite may suggest that the mined location of the 

Buffalo Creek kaolins is closer to the source be it a saprolite or parent rock. The high amounts of 

quartz and the prevalence of etched mineral surfaces in the Jeffersonville Member are interpreted 

to be a more mature mineral suite. The distance between the mined location and the source may 

be much greater for the Jeffersonville member.  

Diffraction patterns for the heavy fraction subsamples of the Buffalo Creek and 

Jeffersonville Member grit suggest that the dense liquid separation fractionated the light and 

dense minerals from each other (Figures 16-17). The Buffalo Creek heavy subsample primarily 

contains the dense minerals rutile, anatase, and zircon. In addition to the dense minerals a small 

peak of kaolinite as well as a peak of quartz is present. The Jeffersonville Member heavy fraction 

subsample contains the same dense minerals rutile and zircon; however, no kaolinite peak is 

present. Unlike the Buffalo Creek heavy fraction subsample, the Jeffersonville heavy fraction 

subsample contains multiple quartz peaks. The presence of light minerals within the dense 
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subsamples and the high prevalence of quartz within these samples suggests a degree error 

within the separations; however due to the majority of the heavy minerals sequestered having a 

density greater than 2.95Kg/L, it can be confidently stated that the dense liquid separation 

successfully separated the dense minerals from the light minerals of the grit using the LMT 

liquid. 

Diffraction patterns for the light subsamples also suggest a clean separation of the light 

and heavy minerals. The Buffalo Creek light fraction contains the minerals muscovite, kaolinite, 

anatase, and quartz. The Jeffersonville light fraction contains the minerals muscovite and quartz. 

In the case of the light separates, anatase is the only mineral present with a density greater than 

2.95Kg/L. The presence of anatase in the Buffalo Creek light subsample suggests error in the 

separations as stated above, however the predominance of light minerals in the light density 

fraction further suggests that the LMT dense liquid separation successfully sequestered the light 

and dense fractions of the grit. 

4.1.2 SEM 

Elemental compositions were obtained from EDS spectra during SEM examinations. 

These data were used to further validate the mineralogical composition of the samples. Among 

the eleven grains of BC heavy which were analyzed, four were abundant in zirconium (and 

containing silicon), six were abundant in titanium, and one mineral grain contained high 

concentrations of iron and silicon. This data is consistent with what was expected after the XRD 

analyses reported abundances of the titanium bearing minerals anatase and rutile as well as the 

zirconium bearing mineral zircon and silicon (i.e. zircon). The iron rich grain is likely ilmenite. 

Spectra obtained while viewing Jeffersonville Member heavy grains varied greatly. Among the 

ten grains analyzed, six were abundant in iron and magnesium, three were abundant in zirconium 
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and silicon, and one was abundant in titanium. The high concentrations of iron and magnesium 

in this sample are indicative of minerals such as tourmaline, or ilmenite. This assumption for the 

identification of tourmaline, or ilmenite is made based on the crystal habit of the minerals, the 

chemical composition of the minerals, and the sedimentary nature of the parent material of the 

Jeffersonville Member kaolin.  

Physical differences were also observed when comparing the SEM examinations of the 

Buffalo Creek and Jeffersonville Member heavy separates. The lack of excessive kaolinite and 

quartz in the heavy fraction suggests that the blunging and dense liquid separation successfully 

sequestered the dense minerals within both grit samples. The Jeffersonville Member heavy 

fraction grains show evidence of physical weathering indicating a relatively greater degree of 

maturity, as observed by SEM specialist Dr. Robert Simmons (Figure 23). Buffalo Creek heavy 

grains did not show evidence of the same degree of physical weathering. 

Although compositional spectra were not collected on the light separates of the samples 

during analysis, many of the quartz grains were confidently identified by Dr. Robert Simmons. 

The SEM images of the Buffalo Creek light fraction suggest that it is composed mostly of 

kaolinite based on the presence of hexagonal or pseudo-hexagonal flakes. In contrast, the 

Jeffersonville Member light sample is almost exclusively composed of quartz. The few kaolin 

grains which can be observed in the Jeffersonville Member light sample are much smaller than 

the kaolin sheets which can be observed in the Buffalo Creek light sample. These observations 

regarding both subsamples are consistent with Elzea-Kogel et al., (2002) and what was expected 

after receiving the preliminary XRD data. The large fraction of quartz shows a different source 

or provenance for the Jeffersonville Member kaolins compared to the Buffalo Creek. 
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4.1.3 Elemental Analysis 

The intent of having the samples chemically analyzed was to determine if any of the 

samples contained unique trace constituents which may help more confidently assess 

provenance. Data received from Activation Laboratories was first sorted in the elemental groups 

of major elements, rare earth elements, and trace elements. Tables of this data were compiled, as 

provided above. These elemental values were normalized to the Upper Continental Crust 

standard as provided by Gao and Rudnick (2004). Enrichment tables were then compiled by 

dividing the measured value for a given element by the concentration of that element in the UCC 

standard (i.e., normalization). In addition to compiling the enrichment tables, graphs were also 

made to show enrichments/depletions within each sample as compared to UCC. 

The elemental analysis of the grit samples is consistent with the preliminary XRD data. 

The major and trace element composition for the Buffalo Creek grit sample reflects the 

mineralogy of zircon, rutile and smaller amounts of quartz and other phases. The major and trace 

element composition of the Jeffersonville Member shows a considerable amount of SiO2 (96 

wt%). This composition is reflected by the high quartz composition in that sample (Figure 15, 

Table 1). This data also validates that the blunging process is more effective in separating 

kaolinite out of Jeffersonville kaolins as opposed to Buffalo Creek kaolins. In addition to a more 

diverse composition, it was observed that the Buffalo Creek grit contains approximately 224 ppm 

REE on a whole rock basis (Table 3). This concentration is enriched when normalized to upper 

continental crustal (UCC) or to North American Shale Composite (NASC, Gromet et al., 1984) 

values (Table 4).  

The elemental analyses of the light and heavy subsamples provide insight on the source 

of the rare earth elements within the Jeffersonville Member and Buffalo Creek grit samples. 
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High concentrations of titanium oxide and zirconium are observed in both heavy fraction 

subsamples. High concentrations of rare earth elements are also observed in both heavy fraction 

subsamples. Low concentrations of titanium oxide and zirconium are observed in both light 

subsamples and subsequently, low concentrations of rare earth elements are observed in both 

light subsamples. The concentrations of phosphorous are low in the grit. Cheshire (2011) and 

Dombrowski (1993) argue for the presence of REE-phosphate minerals (monazite) in the 

Georgia Kaolins. Monazite is a source of the Light Lanthanide Rare Earth Elements (La, Ce, 

Nd). The separation of grit apparently did sequester the REE-phosphates from the Georgia 

Kaolins into the heavy fraction. 

4.1.4 Geologic History and Provenance 

Using knowledge of the geologic history of the Georgia Kaolins along with data provided 

by this study, the provenances of the Buffalo Creek Formation and Jeffersonville Member were 

determined. The correlation of the first two super greenhouse periods occurring just before the 

deposition of the Buffalo Creek Formation along with its relatively diverse mineralogical 

composition suggests that its provenance is proximal to the Georgia Kaolin District. A proximal 

provenance would have undergone less sedimentary transport, which would explain why many 

mature constituents such as zircon and Rare Earth Elements remained in the Buffalo Creek 

Formation. The Jeffersonville Member was deposited later, after the third super greenhouse 

event, which occurred during the Paleocene-Eocene Thermal Maximum. This super greenhouse 

event was warmer than the first two and likely altered weathered micas and feldspars in the Blue 

Ridge and Piedmont provinces of Georgia. These weathered micas and feldspars were 

transported via fluviatile processes and deposited in the Georgia Kaolin District. Minerals such 

as zircon and rutile are less prone to sedimentary transportation. As such, these minerals are seen 
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in much lower concentrations in the Jeffersonville Member kaolins than in the Buffalo Creek 

Formation.  

4.2 Rare Earth Elemental Correlations 

Once observed, the exceptionally high rare earth element concentrations were looked at 

more closely. The sums of rare earths in all six samples were calculated and plotted against 

select trace elements to determine which elements apparently had the strongest correlation with 

the total amounts of rare elements (Table 3; Figures 28-29). These figures (Figures 28-29) show 

a strong correlation coefficient between total rare earths and titanium within the samples 

(R2=0.98). Zirconium also had a strong positive correlation (R2=0.99). The enrichment of rare 

earths within zircon is consistent with previous findings for REE in zircon (Watson et al, 2006; 

Trail et al, 2012; Klemme et al, 2005). However, the strong correlation of rare earth elements 

with titanium bearing minerals is inconsistent with previous findings. A recent study conducted 

by Klemme et al., 2005 concluded that rare earth metals tend not to partition into rutile directly 

from a rhyolitic melt.  

Another argument to test the association of REEs with rutile is the comparison of the 

valence and ionic radius of titanium and the elements of the lanthanide series. The ionic radii of 

the lanthanum series elements ranges from approximately 0.8Å-1.0Å, and all contain a valence 

of 3+ or 4+ (Bloss, 1965). Titanium occurs in valence states of 3+ and 4+ and has ionic radii of 

0.69Å and 0.64Å respectively (Bloss, 1965). The light rare earth elements contain ionic radii 

greater than 0.9 Å. The REE would not readily partition into rutile by inspection of ionic radii. 

The ionic radius of zirconium is approximately 0.82Å (Bloss, 1965). A radius of this size 

is very close to that of the heavy rare earths and suggests that the lanthanide series would 

partition much more readily into zircon than in rutile. Aside from this observation, previous 
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studies of zircon trace elemental chemistry have provided strong evidence to support this 

hypothesis (Watson et al, 2006; Trail et al, 2012). In addition to previous studies supporting this 

hypothesis, the highest R2 value in this study is associated with the correlation between the sum 

of REE and ppm of Zr. This correlation further validates the association heavy rare earth 

elements with the mineral zircon. An additional observation to note is that the concentrations of 

zirconium and titanium are often strongly positively correlated with each other based on density 

and mineral maturity, within upper continental crustal rocks. This association of REE in rutile is 

likely coincidental and reflects the co-association of zircon and rutile in the heavy fractions 

produced by the heavy liquid separation. 
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5 CONCLUSION 

The blunging process in combination with dense liquid separation via Lithium 

Metatungstate (LMT) successfully produced grit samples and subsamples for this study of the 

Georgia Kaolins. Images of the heavy and light separates, provided by SEM, show very few 

kaolin grains, which are easily identifiable by their sheet structure. The only sample which 

showed significant amounts of kaolin during the SEM examinations was the Buffalo Creek Light 

fraction. In contrast, the lack of kaolin and predominance of SiO2 in the Jeffersonville Light 

subsample, suggests that the blunging process, as performed in this study, is more effective in 

dispersing kaolinite from the Jeffersonville Member raw kaolin ore than from Buffalo Creek raw 

kaolin ore.  

Using the data provided by this study, many differences in mineralogy can be observed 

between the Buffalo Creek and Jeffersonville Grit samples. Mineralogically, the Jeffersonville 

sample’s 96% abundance of quartz in addition to evidence of extensive physical weathering 

suggests a sedimentary, fluviatile origin. The Buffalo Creek grit was composed of various 

minerals. In terms of chemical compositions, the Buffalo Creek grit samples contain an abundant 

variety of less soluble elements such as titanium, zirconium, and rare earth metals. This 

composition suggests that the saprolite or parent source rock for the Buffalo Creek kaolins was 

closer in proximity to the Georgia Kaolin district than the saprolite or parent source rock for the 

Jeffersonville kaolins. A further refinement and testing of this idea requires a geochronologic 

study of the zircon grains found in the Buffalo Creek and Jeffersonville grit. 

The two constituents most strongly associated with the presence of the Lanthanide rare earth 

elements in this study are Zr and TiO2. These constituents have correlation coefficients of R2= 

0.99 and R2= 0.98 respectively when plotted against the sum of lanthanide rare earths. Despite 
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being strongly positive, the correlation of rare earths with the titanium bearing mineral rutile is 

likely coincidental as a result of the common association of zirconium and titanium oxide. The 

correlation of the mineral zircon with REE however is consistent with previous findings (Trail et 

al, 2012). This correlation may indicate a pathfinder element for REE in the Georgia Kaolins. 

The presence of enrichments in the HREE elements associated with the heavy mineral zircon 

differs from observations made by Cheshire (2011). Cheshire associated REE within the Georgia 

Kaolins with the phosphate minerals florencite and monazite. Cheshire also noted stronger 

enrichments in the LREE, which differs from what was observed in this study. One possible 

explanation for the inconsistency between these studies is that the blunging process, in particular 

the reaction of soda ash (NaCO3) and Na-hexametaphosphate solution with grit may have, 

dispersed phosphate minerals such as monazite. This hypothesis would further explain the low 

concentrations of phosphate minerals and the low P2O5 in the grit as seen in Table 1. 

The amounts of the REE in the Buffalo Creek are noteworthy, especially when normalized 

to Upper Continental Crust.  For the Buffalo Creek, the combined effects of the production of 

grit fraction followed by the heavy liquid separation of that grit produces a heavy fraction that is 

35-150 times greater in heavy REE (Eu-Lu) relative to UCC, or a total Lanthanide REE content 

of 2530 ppm. This concentration of REE is reflective of the presence of zircon in the grit.  The 

total REE concentration comprises a concentration that is clearly mineable (Foley and Ayuso, 

2015).  For the Jeffersonville Member, the total amount of REE produced by heavy mineral 

separation of grit fraction is 1038 ppm. This amount is still significant relative toward 

considering to extract REE further from the Jeffersonville Member.  The United States currently 

imports many of its supplies of the heavy REE from China. Consequently, the technique of 
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producing grit followed by heavy mineral separation warrants further development as a possible 

way to extract and co-produce HREE along with kaolinite from the Georgia Kaolins.  
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APPENDICES 

Appendix A 

 Standard and reproducibility data were provided by Activation Laboratories. The dataset 

was arranged into the three elemental groups observed in this study, major, rare earth, and trace 

elements. 

 

Table 9: Major Elemental Standards and Reproducability 
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Table 10: Rare Earth Elemental Standards and Reproducability 
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Table 11: Trace Elemental Standards and Reproducability 

 

 

Table 12: Trace Elemental Standards and Reproducability 
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Appendix B 

Mineral grains analyzed and photographed during the SEM examinations are shown 

below. Elemental spectra are provided for mineral grains which were chemically analyzed. 
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