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INVESTIGATING THE EFFECT OF ALUMINUM SUBSTITUTION ON THE PHYSICAL 

AND CHEMICAL PROPERTIES OF FERRIHYDRITE 

 

By 

 

RICHARD AJEWOLE 

Under the Direction of Nadine Kabengi, PhD 

ABSTRACT 

This thesis investigated the impact of aluminum (Al) substitution in ferrihydrite (FH) on 

both its chemical and physical properties. Al was coprecipitated with FH under controlled 

hydrolysis conditions to yield various % mol substitutions. Sulfate adsorption was measured across 

pHs to examine any changes in surface reactivity. The samples’ morphology, specific surface areas 

(SSAs), crystallinity, and phase transformation upon heating were evaluated and parameterized to 

allow conclusions on the role of Al on the physical properties. Sulfate sorption diminished across 

pHs for all Al saturation levels. X-ray Diffraction revealed goethite (GT) presence was negatively 

influenced by Al. The SSAs of samples increased non-linearly with increasing % mol Al, 

indicating a decreasing particle size with more Al content. Transmission Electron Microscopy 

micrographs showed the FH nanoparticles transformed to acicular/blocky laths of GT crystals and 

lenticular/platy hematite (HM) crystals with occasional grainy appearance at both room 

temperature and upon active heating. The phase transformation alongside the derived aspect ratios 

(length/width) of the GT crystals were retarded by the Al substitution. 

INDEX WORDS: Ferrihydrite, Oxyhydroxide, Adsorption, Co-precipitation, Aluminum, 

Sulfate, Speciation, Sorbent, XRD, Spectroscopy, Morphology 
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1 INTRODUCTION  

1.1 Ferrihydrite Occurrence and Description 

Ferrihydrite (FH) is a ferric oxyhydroxide found pervasive in various Earth surface 

systems, mostly occurring at the nanoscale. Naturally, FH forms in the presence of compounds 

with strong affinity for Fe oxide surface (Sposito, 1989). For instance, FH is found prevalent in 

soils where Fe(II) is abiotically oxidized, and the mineral formed consequently coprecipitated 

with, or adsorbed by soluble silicate or organic anions found in the soils thereby inhibiting the 

formation of more crystalline iron oxides: hematite and goethite (Childs, 1992). Other types of 

environments where FH is found locally include the following: freshwater and marine systems, 

areas impacted by mining such as acid mine drainage (AMD) environments, aquifers with high 

levels of ferriferous groundwater, hydrothermal hot springs, and ocean floor where the oxide is 

found in association with Mn oxides and occurs mostly as nodules (Sullivan and Bush, 2004; Adra 

et al., 2013; Cheng et al., 2011; Pham et al., 2012; Hrischeva and Scott, 2007).  

On the other hand, synthetic FH according to Schwertmann and Cornell (2000), can be 

formed by the rapid oxidation of aqueous Fe(II) under normal ambient conditions. FH can also be 

synthesized in the laboratory by direct precipitation as the first mineral phase from oxygenated 

iron-rich aqueous solutions (Alarcón et al., 2014). 

 

1.2 Crystal Structure of Ferrihydrite and Latest Findings 

Structurally, FH exhibits short-range structural order, giving it a poor crystallinity and a 

nanoparticulate character (Cismasu et al., 2011). In FH most disordered state, powder X-ray 

diffraction pattern reveals two broad X-ray diffraction (XRD) peaks. In its most crystalline state, 

a maximum of six strong lines are however observed (Schwertmann, 1988). Therefore, using the 
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size of FH constitutive crystallites as the basis of differentiation between the two diffraction end 

members, FH is named accordingly as two-line (2LFH) or six-line FH (6LFH) (Childs, 1992; Drits 

et al., 1993).   

FH also shows marked compositional variations due to its variable water content and lack 

of a known crystal structure (Cismasu et al., 2011). As a consequence, different formulae have 

been proposed for FH: 5Fe2O3.9H2O (Fleischer et al., 1975), Fe5HO8. 4H2O (Towe and Bradley, 

1967), and Fe2O3.2FeOOH.2.6H2O (Rusell, 1979).  

According to the International Mineralogical Association (IMA), the general adopted FH 

structural model has a trigonal unit cell (a = 5.08 Å and c = 9.4 Å) derived from hexagonal-close-

packed layers of O2, OH, H2O with Fe(III) coordinated in octahedral positions (Parfitt et al., 1992). 

However, the octahedral coordination of Fe(III) has been proposed to be limited to the mineral 

core while the surface of FH referred to as the “inter-phase” has Fe in tetrahedral coordination 

(Jambor and Dutrizac, 1998). These authors attributed FH high adsorptive capacity to be 

responsible for its “coordination unsaturated” surface sites. 

 X-ray spectroscopic studies have also shown FH structure to have close similarities to 

FeOOH-type minerals such as goethite and akaganeite (Jambor and Dutrizac, 1998). However, the 

complexity of FH structure makes it a continuous research area as a proper view of its surface 

structure offers insight into its ion adsorption behavior (Childs, 1992).  

Hence, to understand mineral phase stability of Fe oxides in nature (Navrotsky et al., 2008) 

and biogeochemical activities such as the disintegration of greenhouse gases (Beal et al., 2009), 

an analysis on FH composition is highly pertinent. Michel et al. (2007) synthesized FH samples at 

three distinct average coherent scattering domain sizes of approximately 2nm, 3nm, and 6nm. Pair 

Distribution Function (PDF) analysis of X-ray total scattering data was applied to the samples to 
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perform structural analysis. The generated result showed the structure of the samples to appear to 

be single phase contradicting the long posited multiple phase structure model. Maillot et al. (2011) 

suggested a model that includes tetrahedrally coordinated Fe(III) based on extended X-ray 

absorption fine structure (EXAFS) analysis performed on a large batch of synthetic FH.  Hiemstra 

and Van Riemsdijk (2009) and Hiemstra (2013) developed a surface structural model for FH by 

exploring the effects of surface structure and composition of FH nanoparticles on ion-binding and 

surface charge development. Properties such as mass density, molar mass, specific surface area 

(SSA), particle size, and site densities of numerous reactive surface groups, were quantified and 

tabulated. 

 

1.3 Charge/Surface Properties of Ferrihydrite 

Alongside structure and composition, understanding the surface properties of FH nanoparticles 

gives an insight into their surface reactivity and interaction with different aqueous species 

(Cismasu et al., 2012). For instance, FH has a high point-of-zero-charge (PZC), making it 

positively charged over most soil pH ranges (Spadini et al., 2003; Hofmann et al., 2005; Gilbert et 

al., 2007, 2009; Nagata et al., 2009; Antelo et al., 2010). These authors have also reported the PZC 

of FH to be between 7.9 and 8.1 for fresh, and not rigorously de-carbonated FH samples, and 

between 8.6 and 8.7 for dialyzed and N2-purged samples after synthesis. Cismasu et al. (2013) 

found the PZC of aluminous FH (ALSFH) to increase from 8.5 to 9 with increasing Al content 

from 0 to 20 % Al.  

FH as a common hydrous ferric oxide nanomineral has small particle sizes (1.5 – 5 nm) 

giving it a high surface area (>200 m2g-1) at the mineral/water interface (Villalobos & Antelo, 
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2011). Davis and Leckie (1978) and Dzombak and Morel (1990) also reported the surface area of 

FH to be as high as ∼600 m2/g.  

The surface of FH is also densely occupied by amphoteric functional groups that participate 

in both charge development and ligand exchange reactions (Johnston & Chrysochoou, 2016).  

 

1.4 Characterization Techniques for Ferrihydrite 

Given that FH affects the mobility of nutrients, trace elements, and contaminants in aquatic 

and terrestrial environments, it is important to characterize its different properties as a vital mineral 

sorbent (Cismasu et al., 2011, 2012). The methods often adopted in describing both physical and 

chemical properties of FH include chemical composition by acid digestion, X-ray diffraction 

(XRD), specific surface area determination through Brunauer-Emmett-Teller (BET) analysis, 

Transmission Electron Microscopy (TEM) combined with Energy Dispersive X-ray Spectroscopy 

(EDXS), Scanning Electron Microscopy (SEM), adsorption edges, and many chemical and 

physical techniques.  (Schwertmann & Cornell, 2008). These methods have enabled an in-depth 

understanding of the morphology and sorption behavior of FH thereby allowing research to focus 

extensively on FH as a crucial sequester of harmful oxyanions such as sulfate, chromate, arsenate, 

vanadate, phosphate, etc., in both natural (contaminated waters) and industrial systems (Yoko 

Masue, Richard H. Loeppert, & Kramer, 2007; Adra et al., 2013; Wijnja & Schulthess, 2002; 

Swedlund, Webster, & Miskelly, 2009; Naeem, Westerhoff, & Mustafa, 2007). 

 

1.5 Common Ionic Substitutions in Ferrihydrite 

FH is rarely pure in natural systems, and often contains a significant amount of impurity 

such as Silicon (Si) which may be either partly polymerized or bonded via Si-O-Fe bonds (Carlson 

http://www.sciencedirect.com/science/article/pii/S0016703712007193#b0030
http://www.sciencedirect.com/science/article/pii/S0016703712007193#b0040
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and Schwertmann, 1981). Additionally, FH often coexists with structural impurities such as AlIII, 

MnIII, CrIII, VIII which infiltrated the structure through isomorphous substitution; the presence of 

these impurities greatly influences FH retention of environmental contaminants as well as its 

potential application in water treatment processes (Adra et al., 2013). According to Cornell and 

Schwertmann (2003), Al is the most invasive substituent in natural and synthetic Fe oxides. Some 

previous studies that have been conducted on the incorporation of Al into FH structure by different 

researchers are summarized below.  

Cismasu et al. (2012) investigated the effects of Al contents (between 5-40 %) and 

precipitation rates (rapid and slow) on the structure of 2LFH. They employed a variety of 

laboratory (TEM, Nuclear Magnetic Resonance (NMR), Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES)) and synchrotron-based techniques (X-ray total scattering and 

PDF, scanning transmission X-ray microscopy, Al K-edge X-ray absorption near edge structure 

spectroscopy (XANES)) to study the crystallinity, phase purity, and Al speciation in the FH 

nanoparticles. Two ALSFH series were prepared by co-precipitation from Al and Fe nitrate 

solutions under controlled hydrolysis conditions. Their results revealed that Al interacted with the 

FH structure via octahedral coordination and substituted for Fe in the structure by 20-30% 

regardless of the method of synthesis adopted. Beyond 30% Al substitution, separate aluminous 

phases (gibbsite) were observed in the samples that were slowly precipitated. However, NMR 

spectroscopy also detected phase separation in samples with lower Al content (particularly those 

slowly precipitated) even though this was below the detection limit of the XRD analysis carried 

out on the samples. They concluded that the amount of Al incorporation in FH was independent 

of the synthesis methods used but rather affected by the accumulated strain triggered by Al 

substitution in the FH lattice. 
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Ekstrom et al. (2010) explored the role of Al substitution on regulating the rate and extent 

of reduction of FH, GT, and lepidocrocite using the model dissimilatory Fe(III)-reducing 

bacterium (DIRB), Shewanella putrefaciens. The objective of the study was to predict the reducing 

strength of sediments on Fe (III)-based remediation techniques. FH samples were prepared using 

the synthesis method specified by Schwertmann and Cornell, 2000. A subset of the FH samples 

was also treated with pure quartz sand and sterilized by gamma irradiation to explore the impact 

of Al on FH reduction rates under conditions more representative of the natural environments. The 

samples were then analyzed using ICP analysis (to determine the Fe and Al content of the 

minerals), and BET (surface area determination by degassing for 24 h at 25o C). Parameters such 

as particle size and shape of the crystals were described using TEM. The identification of 

synthesized mineral phases was conducted using XRD and EXAFS. Batch reduction experiments 

showed FH to inhibit microbial Fe (III) reduction in the presence of Al. The reduction rates of FH 

were also assessed to fall below those of lepidocrocite and GT at Al saturation levels equal to or 

greater than 18 mol% Al.   

Masue et al. (2011) examined the impact of Al incorporation into the FH structure on its 

reductive dissolution and biotransformation by integrating both batch and advective flow column 

studies with Fe (II) and a bacterium (Shewanella sp. ANA-3). Also, they investigated the impact 

of ALSFH on the mobility of arsenic. Their results showed that structural Al diminishes the extent 

of FH reductive transformation. The reaction between the bacterium and the ALSFH showed that 

ALSFH dissolves incongruently at a faster rate compared to pure FH following the cessation of Fe 

(II)-induced transformation to secondary products. They also discovered the accelerated release of 

arsenic due to the reduced As (III) having a low affinity for the non-ferric sites formed from the 

reductive dissolution of ALSFH which results in the enrichment of Al sites.  
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The three studies described above all show the association of Al with FH to have significant 

effects on FH composition, structure, and surface properties such as area, particle size, abiotic 

dissolution rates, etc. Influence on the overall reactivity and interaction with organic and inorganic 

pollutants is also expected (Cismasu et al., 2012). However, the literature available till date reveals 

inconsistencies in the mode of Al association with FH. Cismasu et al. (2012) posited that variation 

in Al3+ speciation in FH ranges from true isomorphous substitution for Fe3+, to adsorption or 

surface precipitation, and to the formation of a mixture of two (or more) individual nanoscale 

phases. Varying concentrations of Al incorporation into FH structure have also been reported by 

different authors. For instance, Masue et al. (2007) reported 20 mol% Al, Schwertmann et al. 

(1979) reported 25 mol% Al, Harvey and Rhue (2008) reported approximately 82 mol% Al for 

synthetic 2LFH, and Chadwick et al. (1986) reported a maximum 92 mol% Al for 6LFH.  

 

1.6 Importance of ALSFH in the Removal of Oxyanions 

Selenate, phosphate, vanadate, chromate, and arsenate are some examples of oxyanions of 

key concern today (Adegoke et al., 2013). A well-known method for the removal of these 

oxyanions is “adsorption” onto various metal oxides and wastewater treatment residual due to 

advantages such as application at low concentrations, suitability for batch and continuous 

processes, and the overall reduction in sludge and waste material generation (Mohanty et al., 

2006). As a result, several studies have explored the prevalence of ALSFH in the removal of 

harmful contaminants in the environments. Some pertinent examples are elucidated below.  

Adra et al. (2013) studied the application of ALSFH in the treatment of arsenic 

contamination in a circumneutral pH river impacted by AMD. They examined contaminated 

sediments collected from the bed of the affected river and as well synthetic samples prepared by 
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neutralizing ferric nitrate solution with KOH. Al-bearing samples were prepared to yield various 

Al/Fe molar ratios. EXAFS spectroscopy conducted at the Fe K-edge showed that FH was the 

dominant mineral phase formed after the neutralization of the AMD. They also found 

Schwertmannite (an iron-oxyhydroxysulfate mineral) being transported in minute quantity from 

the AMD.   

Harvey & Rhue (2008) combined both traditional batch techniques and flow adsorption 

micro-calorimetry to investigate the effects of Al/Fe saturation level on the kinetics and energetics 

of phosphate sorption and on the structural development in a multi-component AlIII - FeIII sorbent 

system. They observed the Al content in the system to affect structural development and surface 

charge expressed as a function of Anion Exchange Capacity (AEC). The addition of more Al 

resulted in enhanced crystallization while the total energy of anion exchange was reported to 

exhibit a general increase with Al content. Higher structural development was also discovered to 

impact negatively phosphate sorption while higher AEC was accompanied by an increased 

phosphate sorption, as they expected.  

Cismasu et al. (2011) characterized and compared FH samples collected from an AMD 

environment with 2LFH. Their results showed the level of impurity content in the FH samples to 

affect both the structural coherence and particle size while surface reactivity was inferred to be 

affected as a result of variability in surface composition, particle size, and aggregation properties. 

With increasing Al contents, a decline in particle size and an increase in structural disorder were 

observed.  

Johnston & Chrysochoou (2016) using in-situ Attenuated Total Reflectance Fourier 

Transform Infrared spectroscopy (ATR-FTIR) studied the effect of the Al saturation level and pH 

on the adsorption mechanisms of chromate, selenate, and sulfate on FH. For the part of the study 
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involving sulfate, by using Multivariate Curve Resolution (MCR) to process obtained infrared 

spectra, they were able to characterize the structure and the influence of pH on the concentrations 

of synchronous sulfate species. Accordingly, they suggested that sulfate forms both outer-sphere 

and inner-sphere complexes on ALSFH with the bidentate setting primarily favored for the inner-

sphere complexation. The main effect of Al incorporation into the FH structure however reported 

for this study was the suppression of the availability of inner-sphere binding sites. 

Zhu et al. (2014) investigated the structure of sulfate adsorption complexes on FH using S 

K-edge XANES spectroscopy to determine whether sulfate forms inner- or outer-sphere 

complexes on Fe oxides. Based on the pre-edge feature observed in XANES, they suggested that 

some sulfate ions form inner-sphere complexes on FH surfaces. The structure of these sulfate 

inner-sphere complexes was then determined by EXAFS and d-PDF (Differential Pair Distribution 

Function) analyses. 

Fukushi et al. (2013) using an extended triple-layer model (ETLM) as the predictive model 

for sulfate adsorption, obtained pH adsorption edges in the presence of sulfate as a function of 

ionic strength and initial sulfate concentration from batch adsorption experiments. Sulfate 

adsorption on FH was observed to increase continuously with decreasing pH and ionic strength.  

There is quite an overwhelming evidence that the main mechanism of sulfate adsorption 

on FH is the outer sphere with some inner sphere at low pH and high coverage (Chrysochoou, 

2016).  

 Sulfate was selected as the oxyanion for this thesis work. Sulfate occurs majorly in natural 

waters from soils to oceans and its concentrations in acidic water is enhanced by pyrite weathering 

in AMD (Swedlund et al., 2009; Zhang & Peak, 2007). Examining the adsorption behavior of 

sulfate with pH is important, as sulfate influences the adsorption properties of harmful dissolved 
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species often found coexisting with FH and hence affects their mobility in streams and soils 

(Fukushi et al., 2013). Sulfate binds to mineral surfaces from modification of their surface charge 

and many studies have been conducted on the resultant ternary surface complexes formed by the 

adsorption of sulfate on Fh (Zhu et al., 2014; Bazilevskaya et al., 2011; Johnston & Chrysochoou, 

2016). The inhibiting effects of sulfate on mineral surfaces from competition for reactive sites have 

also been investigated by several authors (Swedlund et al., 2009; Ali & Dzonbak, 1996; Wijnja 

and Schulthess, 2002). Hence, the adsorption experiments conducted on both pure and ALSFH 

samples are important. Due to its high reactivity and large specific surface area, FH helps in the 

removal of inorganic pollutants such as sulfate, arsenic, antimony, from soils and surface waters 

(Dixit & Hering, 2003; Adra et al., 2013). Employing ALSFH is also important to replicate the 

conditions often found in natural environments where FH normally contains large amounts of 

impurities such as Al, presumably the outcome of co-precipitation processes (Bazilevskaya et al., 

2011). 

 

1.7 Purpose of the Study 

Understanding the importance of iron hydr(oxide) in the fate and transport of contaminants 

in natural systems, the objective of this thesis work was to investigate the impact of Al substitution 

in FH on both its chemical and physical properties. Sulfate adsorption across pHs was selected as 

a probe for charge and adsorption properties to examine changes in chemical reactivity. For the 

physical properties, samples’ morphology, specific surface area, crystallinity, and phase 

transformation upon heating were evaluated/parameterized to allow conclusions on the role of Al.  
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2 METHODS 

2.1 Preparation of synthetic pure & Al-bearing Co-precipitated FH Samples 

All mineral syntheses were performed with acid-washed glasswares, and all stock solutions 

were prepared with double deionized water (18.2 MΩ) and ACS grade chemicals, used as received.  

Al-free 2LFH sample (0_ALSFH) was prepared based on Schwertmann and Cornell (2000) 

method. Specifically, 20g of Fe(NO3)3.9H2O was added to 250 mL DI water and neutralized to a 

pH of 7.5 with the incremental addition of freshly-made 1 M KOH, with stirring rate kept at 350 

rpm. The first 150 mL of KOH was added in 5 min. The next 10 mL and last 2-3 mL were added 

dropwise at a rate of 0.5 mL min-1 and 0.1-0.3 mL min-1 respectively. After synthesis, the FH 

suspension was back-titrated to pH 4.6 with the addition of 60 mL of 0.1 M HNO3 and stirred 

vigorously for 30 min at 500 rpm. The back-titration helped keep the FH suspension kinetically 

trapped since according to Schwertmann and Cornell (2000), FH can be held as a stable suspension 

in low pH away from the PZC where the surface charge of particles is increased. After the back-

titration, centrifugation and dialysis followed to remove most of the residual ions (electrolytes). 

The suspension was dialyzed at 25o C against DI water for up to 4 days using 1 nm pore size 

Spectra/Por ® 7 dialysis membranes (molecular weight cut off of 1000) to remove entrained salts 

and Fe and Al species less than 1 nm. The water was changed several times daily until the 

conductivity dropped lower than 20S cm-1. The suspension was then collected and stored in 

polyethylene bottle for subsequent use. 

ALSFH samples were prepared following the same protocol as the 0_ALSFH but by adding 

various volumes of the starting solutions proportional to the desired final mol % Al. These were 6 

% Al, 12 % Al, 18 % Al, and 24 % Al abbreviated as 6_ALSFH, 12_ALSFH, 18_ALSFH, and 

24_ALSFH throughout the text. Starting solutions of 1 L of 0.2 M Fe(NO3)3.9H2O and 0.2 L of 
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0.2 M Al(NO3)3.9H2O were prepared by adding 80.778g in 1 L of DI water and 15.0052g in 0.2 L 

of DI water respectively.  

The suspensions’ density for each ALSFH was estimated gravimetrically by drying a known 

volume of each suspension in an oven at 600 C overnight (Table 1). This was subsequently used 

to obtain accurate mass in all experiments as described below.   

 

Composition of 

Ferrihydrite 

Density 

(g/L) 

Standard 

deviation 

0_ALSFH 8.86 ± 0.31 

6_ALSFH 7.93 ± 0.11 

12_ALSFH 6.99 ± 0.09 

18_ALSFH 6.13 ± 0.12 

24_ALSFH 5.47 ± 0.36 

 

 

2.2 Chemical Characterization  

2.2.1 Chemical Composition by Acid Digestion 

Acid Digestion was used to determine the Al and total metal (Al + Fe) content of the 

ALSFH suspensions. A known mass (between 0.05g and 0.10 g) of air-dried sample collected from 

each ALSFH suspension was dissolved in 6 mL concentrated HCl and 4 mL concentrated HNO3 

inside a Teflon beaker. The Teflon beaker was heated in a heating block equipped with a 

temperature regulator for an hour. The analyte solution was then filled up to 50 mL with deionized 

Table 1: Densities of FH Suspensions 
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water before conducting Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

analysis.  

2.2.2 Sulfate Adsorption Envelopes  

The goal here was to construct sulfate adsorption envelopes as a function of solution pH.   

These envelopes were obtained in 0.01 M NaCl background electrolyte at an initial sulfate solution 

concentration of 1 mM. 1 g/L suspension of each ALSFH was prepared by adding the appropriate 

volumes of the Na2SO4 and NaCl stock solutions. A known amount of 1.0 M HCl or NaOH was 

then added to obtain a final supernatant pH values in the range of 3 to 9. Three replicates of each 

pH condition were shaken on an end-to-end shaker for 24 h after which time, each suspension was 

centrifuged and decanted, and supernatant filtered using a 0.2 𝜇m syringe filter. The equilibrium 

pH of the supernatants was measured and final sulfate concentrations in the filtrate were measured 

using High-Performance Liquid Chromatography (HPLC) fitted with an ion conductivity detector 

(HPLC_IC). 

It is noteworthy to say that the obtained equilibrium pHs (Appendix B.1-B.5) differed 

slightly from the adjusted pHs (3-9), as no measures were taken to exclude atmospheric CO2 during 

the experiment. Accordingly, the equilibrium pHs have been used in the adsorption envelopes 

plots. However, for convenience, the initial pHs have been used in further discussion.  

2.3 Heat Treatment Experiments 

To further understand the role of Al substitution on FH, its transformation to more 

crystalline iron oxides (Hematite and Goethite) upon heating was investigated. Following findings 

by Burleson and Penn (2006) where FH aqueous suspensions aged at pH 10 and 900 C were found 

to have completely converted from FH nanodots to goethite nanorods, 10 ml samples of each 

ALSFH suspensions held at slightly alkaline pHs were stored in tightly capped glass vials and aged 
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at 900 C inside the oven for 48 hours. Samples were drawn from the initial vial at 0 h and 

subsequently at 12 h, 24 h, 36 h, and 48 h and stored under refrigeration until XRD and Electron 

Microscopy analyses were conducted as described below.  

2.4 Physical Properties 

2.4.1 Specific Surface Area Determination through BET Analysis 

 BET analysis was performed to evaluate the specific surface area (SSA) (m2/g) of each of 

the synthesized ALSFH samples. Multilayer nitrogen adsorption (Vm) expressed as a function of 

relative pressure (P/Po) was measured using a fully automated surface area analyzer 

(Quantachrome’s NOVA) equipped with the classical helium volumetric vacuum system.  

Specific surface areas on air-dried samples were obtained from multipoint (BET) N2 

adsorption isotherms and analyzed using the Quantachrome NovaWin software. Samples were out-

gassed prior to measurements for 19.0 h at 200.00 C to remove any adsorbed volatile compounds 

from the surface. 

2.4.2 Powder X-ray Diffraction (XRD) 

The structure of the ALSFH samples was examined by X-ray Diffraction. Each sample was 

prepared by pipetting tiny drops of the suspensions across a piece of tape ran across a sample 

holder, and air dried. Powder XRD patterns were then recorded with XPERT-PRO diffractometer: 

PANalytical measurement program (Figure 1), with a fixed 10 divergence slit type and graphite 

monochromator (to reduce the fluorescence of Fe in samples) using CuK𝛼 radiation at generator 

settings (40 mA, 45 kV). Samples were scanned from 10.02310 to 64.96110 2𝜃 in continuous scan 

mode, with step increments and counting time per step kept at 0.02600 2𝜃, and 121.8900 s 

respectively. The characteristic reflection peak (d-value) was matched with International Center 
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for Diffraction Data (ICDD) database, and its respective crystalline phase identified when 

appropriate.  

 

Figure 1.  PANalytical XPERT-PRO XRD (Nikonova, 2015) 

 

2.4.3 Electron Microscopy Analysis 

2.4.3.1   TEM combined with EDXS 

High-resolution transmission electron microscopy (HRTEM) characterization was carried 

out using a JEM 2100F (Figure 2) operating at an accelerating voltage of 200 kV (JEOL, Ltd. 

Tokyo Japan) at NanoEarth facility at Virginia Tech, Blacksburg VA. Samples were prepared by 

diluting 50L of each ALSFH suspension in 500L of methanol to prevent probable 

agglomeration. 1-3 drops of the diluted suspension were dropped on a copper specimen grid coated 

with an ultrathin layer of carbon (Ted Pella, Inc.). The grid was then placed under the hood to 
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allow the methanol to evaporate. Information on the sample elemental composition was collected 

using energy dispersive X-ray spectroscopy (EDXS; Oxford detector). Additionally, electron 

diffraction patterns were captured from selected areas on the samples for crystallinity and mineral 

verification. Micrographs taken at a 120-200kX and 400kX magnification were selected for further 

analyses using Gatan Digital Micrograph 2.1.1. These were analyzed to qualitatively describe 

samples morphological differences and to quantitatively parameterize the aspect ratio 

(Length/Width) of the observed particles in an attempt to parameterize any morphological 

differences and relate them to the Al substitution. Hematite (HM) and goethite (GT) particles were 

also tallied up across a set number of particles for each sample to obtain a qualitative HM/GT ratio.  

 

Figure 2.  JEM-2100F Transmission Electron Microscope (Source: JEOL) 
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3  RESULTS AND DISCUSSION 

3.1 Chemical Composition by Acid Digestion 

Compositional analyses (Table 2) of the ALSFH samples by ICP-AES revealed the desired 

mol % Al were not achieved in with the exception of the 0_ALSFH (pure FH) sample which 

returned a value approximately equal to the initial molar ratio of the Al- and Fe-nitrate solutions. 

The data indicated that 7.69% is the highest mol% achieved on the ALSFH. While the reason for 

this discrepancy is unknown to us at this moment, it seems that for the 6_ALSFH, 12_ALSFH, 

18_ALSFH, and 24_ALSFH samples, a significant amount of their Al content might have leached 

out during dialysis. Another possibility for the substantial loss in the amount of Al present in the 

samples is the relatively high solubility of Al when certainly compared to FeIII solubility, 

considering the conditions of the FH synthesis (Cornell and Schwertmann, 2003). As these values 

will continue to be probed on another set of samples in the future samples, for convenience, the 

initial mol % Al values have been used in further discussion. 

Table 2: Composition of air-dried samples of the ALSFH suspensions 

Sample Fe (mg) Al (mg) Metal content 

(mmol/g) 

Al  

(mol %) 

Fe  

(mol %) 

% Loss 

in Al 

0_ALSFH 65.50 0.04 11.71 0.13 99.87 No loss 

6_ALSFH 31.66 0.69 11.82 4.34 95.66 27.67 

12_ALSFH 29.59 0.83 11.18 5.47 94.53 54.42 

18_ALSFH 54.80 2.06 10.55 7.23 92.77 59.83 

24_ALSFH 27.90 1.12 10.79 7.69 92.31 67.96 

*  Metal content (mmol/g; dry weight of FH samples digested) 

 

However, a good indication of successful coprecipitation and perhaps substitution of Al 

with the FH is the plot (Figure 3) of the FH suspensions densities (g/L) against the % mol Al which 

returned a R-squared value of 0.9957 showing that as the lighter Al replaced the heavier Fe, the 

suspensions’ densities did decrease in a manner proportional to the initial concentrations.   
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Figure 3: Density (g/L) of FH suspensions vs % mol Al 
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3.2 Sulfate Adsorption-Envelopes Experiments 

Results from the conducted adsorption envelopes experiments (Figure 4) revealed a 

decrease in sulfate sorption for all the ALSFH samples as pH increased. This trend is also 

replicated when the amount of sulfate sorbed is normalized by the SSA of the FH samples (Figure 

5). The 6_ALSFH sample (Figure 4B) exhibited a significant drop in sulfate sorption from pH 3-

7 and experienced a slight increase as it crossed the neutral pH relative to the 0_ALSFH sample. 

The ALSFH samples with 12% Al, 18% Al, and 24% Al composition (Figure 4C, 4D, and 4E 

respectively) showed an upward trend in sulfate sorption, and this trend was more pronounced in 

the strongly acidic domain (pH 3-5). Also, in the acidic region, the 24_ALSFH sample had the 

most sulfate sorption of all the FH samples with over 90% sorption observed at strongly acidic pH 

3-4. 
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Figure 4.  Sulfate pH-adsorption envelopes for pure and Al-substituted FH. Error bars have 

been plotted by specifying the values of standard errors obtained for each adsorption 

envelope experiment as both positive and negative error values 
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Figure 5. Sulfate pH-adsorption envelopes for pure and Al-substituted FH normalized with 

measured SSA 

 

Figure 4 portrays the adsorption envelopes of sulfate on FH in 10mM NaCl solution as 

background electrolyte and 1mM Na2SO4 as reacting solution. For any of the ALSFH samples, the 

amount of sulfate adsorption increased with the decrease in pH. This trend is characteristic of 

oxyanion sorption on metal oxides (Harvey & Rhue, 2008) and has been corroborated by many 

studies. For instance, in a study conducted by Fukushi et al. (2013), using an extended triple-layer 

model (ETLM) as the predictive model for sulfate adsorption, pH adsorption edges in the presence 

of sulfate as a function of ionic strength and sulfate concentration were obtained from batch 

adsorption experiments. The sulfate adsorption on FH was observed to increase continuously with 

decreasing pH and ionic strength.  Harvey and Rhue (2008) studied the kinetics and energetics of 

phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) sorbent system using a 
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combination of traditional batch techniques and flow adsorption calorimetry. Their investigation 

showed that phosphate sorption on the hydr(oxides) followed a typical two-step trend where 

sorption rates are initially high but decreases as the availability of sorption sites on the oxide 

surface decreases. 

A closely similar “relative” reduction in sorption (Figure 6) was observed across pH 4-9 

using the percentage function of the difference between sorption at these pHs and pH 3. The region 

of greatest loss in sorption coincided with pH 9 pointing at a strong inhibiting effect at this pH 

across all the ALSFH samples. 

 

Figure 6. Relative reduction in sorption over pH range 4-9 across all ALSFH samples 

 

Gimenez et al. (2007) studied the sorption of As (III) and As (V) on different natural oxides 

(hematite, magnetite, and goethite). They observed that variation in the arsenic sorbed in response 

to pH corresponded with a decrease in sorption on the three sorbents at alkaline pH values. This 

observation was replicated in the trend observed for sorption loss represented in (Figure 6) where 

the region corresponding to the greatest relative reduction in sulfate sorption was observed at pH 

9. Naeem et al. (2007) in assessing vanadium removal by three commercially available metal oxide 

0

10

20

30

40

50

60

70

80

90

100

0% 6% 12% 18% 24%

R
el

a
ti

v
e 

re
d

u
ct

io
n

 i
n

 s
o
rp

ti
o
n

 

(%
)

Al content (mol %)

pH 4

pH 5

pH 6

pH 7

pH 8

pH 9



23 

adsorbents used the influence of pH, vanadium concentration, and volume/mass ratio as a probe. 

Vanadium adsorption was observed here to decrease with increasing pH, with maximum 

adsorption capacities achieved at pH 3-4.  

According to Parks (1965), and Schwertmann and Taylor (1977), synthetic Fe oxides are 

well documented to have their PZC within the range pH 7–9. PZC is an important parameter often 

used in characterizing the protonation (positive surface sites) and deprotonation (negative surface 

sites) behavior of hydr(oxides) in aqueous suspensions (Bourikas et al., 2005). The affinity of 

mineral surfaces to ionic surfactants or polyelectrolytes which help modify their surface properties 

is defined by the position of their PZC (Adegoke et al., 2013). As a consequence, FH shows a 

positive charge at pHs less than the PZC and anions are likely to be adsorbed. In the pH-adsorption 

envelope experiments conducted, the initially high sulfate sorption (pH 3-4) recorded for the FH 

samples (Figure 4) regardless of their Al content can be attributed to the presence of positive 

reactive sites on the mineral surface below the PZC thereby aiding ion or ligand exchange. An 

upward shift in PZC due to increasing Al content as observed by Cismasu et al. (2013) could 

explain the high sorption rates seen in the 24_ALSFH sample. 

The incorporation of a structural impurity such as Al in FH has been shown by many 

authors to influence the stability of the hydrous ferric oxide by limiting its structural development 

into more crystalline phases (Cornell & Schwertmann, 2003; Bazilevskaya et al., 2011; Johnston 

& Chrysochoou, 2016). Several studies have also investigated the effects of Al on surface 

properties of hydr(oxides) and the mobility of organic and inorganic contaminants in aqueous 

environments (Masue et al., 2007; Jain et al., 2009; Manceau & Gates, 2013). Observing the 

plotted sorption data (Figure 4), it can be seen that the ALSFH sample with 6 % Al saturation level 

(Figure 4B) experienced approximately 56 % reduction in sorption amount when compared to the 
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pure FH sample (Figure 4A) at pH 3. This reduction was also observed for the 6_AlSFH within 

pH 4-7. The amount of sulfate sorbed however increased with Al content for the other ALSFH 

samples (12_ALSFH, 18_ALSFH, and 24_ALSFH) (Figure 4C, 4D, and 4E respectively). 

Therefore, understanding the behavior observed for the different ALSFH samples (particularly the 

negative effect on sorption in the 6_ASFH sample) requires characterizing the effects of Al 

substitution on the adsorption mechanisms of sulfate (Johnston & Chrysochoou, 2016).   

Referencing findings by Zhu et al. (2014) and Johnston & Chrysochoou (2016) on the 

surface structure and reactivity of ALSFH, the significant loss in sorption observed in the 

6_ALSFH sample (Figure 4B) may be the result of limited well-ordered reactive sites triggered by 

the effects of Al on the growth of the Fe hydr(oxide) nuclei. The surge recorded in the level of 

sorption for the 12_ALSFH, 18_ALSFH, and 24_ALSFH samples (Figure 4C, 4D, and 4E 

respectively) may also be the result of the significant increase in the relative fraction of outer-

sphere complexes for sulfate with increasing Al substitution. By observing Johnston & 

Chrysochoou (2016)’s finding on the inhibition of the occurrence of sulfate sorption via inner-

sphere ligand exchange due to increasing Al content, the mechanism of sulfate sorption on the FH 

samples may be assumed to be the outcome of simple ion exchange occurring via outer-sphere 

complexation. The possibility that the outer sphere complexation may involve a crystalline Al 

phase (e.g. gibbsite or boehmite with PZC typically around 9-10) where sulfate is being 

increasingly exchanged with more Al substitution shouldn’t be ruled out. However, this hypothesis 

can only be tested by finding whether Al is inside the FH structure or precipitated out as a separate 

phase.  

Implicatively, experiments aimed at understanding the mechanisms through which 

oxyanions (particularly sulfate) are adsorbed by ALSFH will be my future focus.  
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3.3 SSA through BET Analysis 

From the Multi-Point BET plots (Appendix D.1-D.5), the SSAs of the 0_ALSFH, 

6_ALSFH, 12_ALSFH, 18_ALSFH, 24_ALSFH samples were 136.41 m²/g, 139.26 m²/g, 312.17 

m²/g, 343.16 m²/g, 336.25 m²/g respectively. However, it is important to note that these obtained 

BET SSA values are indicative of the exposed surface area of dry sample aggregates. These values 

considerably underestimate the actual SSA to be derived from the samples when suspended in 

aqueous solutions. This is due to the larger particle aggregation that ensues upon drying such 

synthesized nanoparticles (Villalobos and Antelo, 2011).  

A “non-linear” upward trend was observed in SSA with more Al substitution into the 

structure of FH.  The difference in the SSAs can be attributed to the impact of Al substitution on 

the physical properties of the FH samples such as particle size and morphology. As will be 

discussed later on using the evidence gathered from XRD analysis, with more Al, less 

transformation to more crystalline phases was seen thereby ensuring that the ALSFH samples 

persisted as FH for an extended period of time. Also, the BET SSA values of 136.41 m²/g and 

336.25 m²/g, for 0_ALSFH and 24_ALSFH, respectively, strongly suggest a definitive size 

difference between both FH samples. Hence, using the obtained SSAs as proxies for the particle 

size of each FH sample, the crystallite size in nm (Figure 7) can be obtained using the linear 

relationship [SSABET = -72.741(Crystallite Size in nm) + 558.91] derived by Villacís-García et 

al., 2015 by recalculating the data by Wang et al. (2013). Accordingly, the particle size for 

0_ALSFH, 6_ALSFH, 12_ALSFH, 18_ALSFH, and 24_ALSFH was respectively 5.83 nm, 5.80 

nm, 3.41 nm, 2.98 nm, and 3.07 nm. A decline in particle size was accompanied by a corresponding 

increase in SSA. The particle sizes derived also agreed with the particle size range (2 to 9nm) 

specified by Hiemstra (2013) for FH to be considered a nanomineral.  
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To obtain the SSA of individual FH particles (actual SSA), the actual SSA was related to 

the inverse relationship between particle diameter d (nm) and SSA [SSA = (6/)/d, where 

g/cm3 is the mass density for 2LFH; Murphy et al., 1976]. Hence, the calculated actual 

SSA of 0_ALSFH, 6_ALSFH, 12_ALSFH, 18_ALSFH, and 24_ALSFH was respectively 288.04 

m2g-1, 290.00 m2g-1, 493.22 m2g-1, 564.05 m2g-1, and 546.57 m2g-1. These values assume the 

individual FH particles to possess a spherical shape (Villalobos and Antelo, 2011) and agree with 

the SSA of >200 m2g-1 reported by Weidler (1997) and Dzombak & Morel (1990).  

The determined SSAs of the FH samples are vital in predicting how the bioavailability of 

pure and ALSFH in environmental settings influences their application as sorbent systems for 

contaminants cleaning. 

 

Figure 7. Linear relationship between particle size (nm) and BET-SSA 



27 

3.4 XRD Analysis 

3.4.1 X-ray diffractograms for unaged (0 h) nanoparticles 

The characteristic reflection peaks (d-values) from the XRD analysis of samples were 

matched to the ICDD database (Card no. 29-0713) for phase identification. Peaks (110) indicative 

of goethite (GT: -FeOOH) were identified in the XRD spectra (Figure 8). No other Fe oxide 

phases particularly the two bands characteristic of 2LFH usually centered at 2𝜃 of 350 and 630 

according to Schwertmann and Cornell (2007) were identified. The samples had been kept in the 

lab at room temperature for more than five months before analysis. It seems that the stability of 

the suspensions may have been compromised and some FH to GT transformations have already 

occurred.  Also, no peaks confirming the presence of separate aluminum phases (gibbsite, 

boehmite) were observed in the diffraction data.  This may be due to the possibility that the Al 

phases could have been amorphous. A detection problem could have also stemmed from the 

relatively small amount of analyte pipetted on the tape attached to the sample holder. It is highly 

doubted that the volume of the ALSFH suspension dropped on the tape contained as much as ~ 2 

% by mol Al for XRD to pick a boehmite or a gibbsite signal.  

From the appearance of the XRD spectra, differences in the relative crystallinities of the 

samples were deduced by observing changes in the peak widths and heights. The 0_ALSFH 

exhibited a tall and sharp peak denoting high crystallinity. However, the peak became broader and 

lower as more Al was added (6_ALSFH, 12_ALSFH, and 18_ALSFH) indicating a decreasing 

crystallinity until it completely disappeared at 24_ALSFH. This trend corroborated the findings 

by several studies (Cornell and Schwertmann, 2003; Bazilevskaya et al., 2011; Johnston & 

Chrysochoou, 2016) positing that Al incorporation into FH impedes crystal growth. 
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Also, the results from the XRD analysis matched those obtained from measuring the SSAs 

of the samples. Summarily, crystallinity (0_ALSFH > 6_ALSFH > 12_ALSFH >18_ALSFH > 

24_ALSFH) decreased with increasing SSA (136.41 m²/g < 139.26 m²/g < 312.17 m²/g < 343.16 

m²/g < 336.25 m²/g). 

 

Figure 8. X-ray diffraction patterns for unaged nanoparticles. The inset picture shows the 

hkl indices of Goethite (ICDD Card no. 29-0713) 

 

3.4.2 X-ray diffractograms for aged (12 h, 24 h, 36 h, and 48 h) nanoparticles 

The results obtained from the time-lapse aging experiments (Figure 9) modelled those 

previously gathered from the unaged samples except for the appearance or persistence of the 

goethite peak in the 24_AlSFH samples. The goethite peak for the 24_ALSFH sample, as well as 
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for all other substitutions, increased with time (12 h < 24 h < 36 h < 48 h) highlighting the increased 

transformation of FH into GT upon heating. It is noteworthy to mention that the previously noted 

Al impact still held upon heating, whereby an increased Al content resulted in a lower overall 

transformation into GT as witnessed by the inverse relation between the size of the GT peak and 

the Al content in the ALSFH samples This trend and the lack of an XRD peak indicating the other 

crystalline and thermodynamically stable end product (for e.g. HM) within the ferrihydrite 

aggregate prompted an investigation by Electron Microscopy aimed at understanding the influence 

of temperature on the rate of conversion of FH to crystalline oxides. Findings from this 

investigation are discussed in the paragraphs below. 

 

Figure 9. XRD patterns for nanoparticles aged at (A) 12 h, (B) 24 h, (C) 36 h, and (D) 48 h 

 



30 

3.5 TEM analysis combined with EDXS 

TEM characterization of the unaged nanoparticles (Figure 10) revealed that FH nanodots 

in the 0_ALSFH were aggregated and significantly transformed to acicular crystals of goethite 

nanorods. This is again the result of the transformation occurring at room temperature, despite the 

suspensions being stored at low pH, away from their ZPC. However, the incorporation of Al into 

the FH structure retarded the transformation and fewer goethite nanorods were observed for the 

6_ALSFH, 12_ALSFH, and 18_ALSFH respectively.  Both 0_ALSFH and 6_ALSFH samples 

also showed evidence of hematite (HM: -Fe2O3) crystals with grainy appearance. Further 

incorporation of Al into the FH structure favored the appearance of lenticular crystals of HM in 

the 12_ALSFH sample. The HM crystals in the 18_ALSFH sample were the largest and exhibited 

transitional forms with hexagonal outline but lobed edges (Schwertmann et al., 1979). These 

results again showcased the transformation of the FH suspensions at room temperature in the time-

scale of 5 months. A strong inhibiting effect of Al substitution in the FH structure was seen in the 

24_ALSFH sample which contains predominantly small aggregated spheres of FH nanoparticles. 

This is confirmed by the lack of crystalline peak in the XRD pattern (Figure 8) for the 24_ALSFH 

sample. 
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Figure 10. Representative TEM micrographs of unaged ALSFH samples 

 

Table 3 presents the result of the semi-quantitative parameterization of the aspect ratio of 

the mineral particles observed under HRTEM. The mineral particle dimensions (Table 3) 

calculated showed a decrease in aspect ratio of the goethite nanorods with increasing Al 

substitution. This trend has been previously observed for Al-substituted goethite (Burleson and 

Penn, 2006; Ekstrom et al., 2010; Schulze and Schwertmann, 1987). Ekstrom et al. (2010) findings 

showed goethite particles without Al to exhibit multidomainic acicular crystals while more Al 

replacements favored monodomainic crystals with decreasing aspect ratio. 

Table 3: Particle dimensions (L/W) of GT crystals found in unaged samples 

Sample* Aspect Ratio (L/W) Standard deviation 

0_ALSFH 32.7 ± 3.7 

6_ALSFH 8.4 ± 1.9 

12_ALSFH 8.3 ± 2.1 

18_ALSFH 7.5 ± 1.4 

 

*  Data on particle dimensions for the 24_ALSFH sample is unavailable as no crystalline phase  

was observed 
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The impact of heating on crystal growth for all the ALSFH samples is well reflected in the 

electron micrographs of the samples heated at 48 h (Figure 11). In the 0_ALSFH sample, a 

complete phase transformation of the FH nanoparticles to GT and HM was observed. Also, blocky 

laths of GT crystals were found interspersed with acicular GT crystals while the HM crystals were 

well-developed when compared to the grainy appearance observed for HM in the unaged 

0_ALSFH sample (Figure 10). Heat also modified particle morphology for both the GT and HM 

crystals in all the ALSFH samples. With more Al substitution, an increase was observed in the 

amount and sizes of the HM crystals. It can be observed qualitatively that more HM particles are 

in the 24_ALSFH sample. Hence, it was concluded that the inhibiting effect of Al in this case was 

less effective when compared to the unaged 24_ALSFH (Figure 10) where no phase transformation 

of the FH nanoparticles occurred. 

 

Figure 11. Representative TEM micrographs of FH samples aged at 90° C for 48 h 
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Under the influence of heat, a decrease in aspect ratio of the GT crystals in the 6_ALSFH 

(Table 4) was immediately observed after the introduction of Al into the FH structure. However, 

no significant difference was seen across the 12_ALSFH and 18_ALSFH samples before an 

eventual decline in aspect ratio for the 24_ALSFH sample. 

Results from these TEM micrographs modelled the XRD patterns (Figure 9) collected for 

all the ALSFH samples after heat treatment for 48 hours. However, XRD failed to pick any peak 

for the HM crystals. This could be due to the low overall concentration of HT in the samples which 

is below the detection limit of the XRD. Lastly, it is important to note that although the ALSFH 

heated suspensions were sampled at 12 h, 24h, and 36 h also, micrographs collection from these 

time points is still underway and will be included as soon as finished. These will be valuable in 

obtaining an understanding of the speed of the FH transformation and whether it is similar for both 

GT and HT.  

Table 4: Particle dimensions (L/W) of GT crystals found in samples aged for 48 h 

Sample Aspect Ratio (L/W) Standard deviation 

0_ALSFH 19.5 ± 7.3 

6_ALSFH 7.1 ± 1.8 

12_ALSFH 9.5 ± 2.8 

18_ALSFH 9.9 ± 3.9 

24_ALSFH 6.9 ± 1.6 

 

The EDX spectrum (Figure 12A) of the spot analyzed in the 0_ALSFH sample did not have 

any peak for Al indicating the original conditions set during synthesis. The corresponding EDX 

spectra (Figure 12B, 12C, 12D, and 12E) collected from spots in the 6_ALSFH, 12_ALSFH, 

18_ALSFH, and 24_ALSFH samples respectively, all indicated Al peaks which continued to grow 

with more substitution of Al into the FH structure.   
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Figure 12. EDX spectrographs of FH samples aged at 90° C for 48 h 
*  Refer to Appendix F1-F5 for clearer spectrographs 
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4     CONCLUSIONS 

The conducted adsorption envelopes experiments revealed an increase in pH to cause a 

decline in the amount of sulfate adsorbed on all the ALSFH samples. Sulfate adsorption was most 

pronounced at acidic pHs with more Al substitution into the FH structure favoring an upward trend 

in this oxyanion’s adsorption within the acidic domain after an initial decline with the introduction 

of Al in the 6_ALSFH sample. A closely similar “relative reduction” in sorption was also observed 

across all pHs with pH 9 corresponding to the region where adsorption was most inhibited.  

Using SSA through BET analysis as a probe for a physical property such as particle size 

for the FH samples, an increase in SSA was accompanied by a corresponding decrease in particle 

size. This indicated Al substitution affects crystallite size. This is because of the inhibiting effect 

Al has on FH growth and crystallization.  

XRD analysis was also used to evaluate phase transformation of the FH samples (aged and 

unaged). Peaks (110) indicative of goethite (GT) were identified in the XRD spectra. No other Fe 

oxide phases or Al oxide peaks confirming the presence of separate aluminum phases were 

observed in the diffraction data for both sample series. However, the incorporation of Al 

influenced peak widths and heights and impeded crystal growth. 

TEM micrographs were collected and helped with the identification of morphological 

differences in all the samples. For both sample series, FH nanodots were found to have transformed 

to GT and HM crystals. GT crystals were either acicular or as blocky laths depending on the 

amount of Al in the FH structure while the HM crystals had either grainy appearance, were 

lenticular, or were platy crystals with lobed edges. Noteworthy in the unaged samples was the 

retardation of crystal growth by Al substitution which was most prominent in the unaged 
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24_ALSFH sample where aggregated spheres of FH nanoparticles persisted. This effect was 

however removed under the influence of heat as evident in the aged 24_ALSFH sample. 

Conclusively, Al as a structural impurity affects the physicochemical properties of FH 

nanoparticles such as SSA, particle size, surface reactivity, and stability of the mineral. 
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5 FUTURE CONSIDERATIONS 

In the future, the impact of Al substitution on the acid dissolution behavior of the FH 

samples will be explored. This will provide an insight on understanding whether the co-

precipitation of Al with the FH samples occurs congruently (i.e. indication that both Al and Fe 

dissolve at equal rates) or incongruently. Also, according to Cornell and Schwertmann (2003), the 

dispersal of Al throughout the entire mineral phase rather than concentration on the surface or 

discrete domains within the hydr(oxide) can be used as a proxy for isomorphic substitution which 

is a function of congruent dissolution.  To that effect elemental map using electron microscopy 

will be further helpful in identifying the location of the Al in these samples.  

Understanding the mechanism of formation of both GT and HM crystals in FH in the 

presence of Al-containing solution will also be the subject of future study. The idea that GT forms 

from ALSFH through a solution phase and that HM nucleates and forms within FH aggregates 

will be tested to see if the Al content in both crystals is increased by the Al-containing solution or 

solely Al coprecipitated during the synthesis of FH. TEM micrographs for the 12 h, 24 h, and 36 

h time-points will be collected and used alongside existing micrographs (Unaged and 48 h) to 

further test this hypothesis. 

The effect of Al content on sorption energetics of FH nanoparticles will also be explored 

in the future by collecting data on the heat of sulfate sorption and flow adsorption calorimetry will 

be used to elucidate the effects of sulfate sorption on the surface properties of the ALFH sorbent 

system.  
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APPENDICES  

Appendix A: Densities of FH suspensions 

Composition of Ferrihydrite Density (g/L) Standard deviation       

(S.D) 

0_ALSFH 8.86 ± 0.31 

6_ALSFH 7.93 ± 0.11 

12_ALSFH 6.99 ± 0.09 

18_ALSFH 6.13 ± 0.12 

24_ALSFH 5.47 ± 0.36 

   

Specification of parameters used for the adsorption envelopes experiments 

ApHX   

BpHX   

CpHX   

DpHX   

EpHX   

Where   

X = 1, 2, 3 (sample number)   

A = 0_ALSFH   

B = 6_ALSFH   

C = 12_ALSFH   

D = 18_ALSFH   

E = 24_ALSFH   
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Appendix B: pH’s of supernatants used for HPLC analysis 

Appendix B.1: pH Determination for 0_ALSFH 

Samples pH of Supernatant   

 1 2 3 

Mean 

pH S. D 

A3 [3.00] 2.97 2.98 2.98 2.98 ± 0.01 

A4 [4.01] 3.92 3.94 3.93 3.93 ± 0.01 

A5 [5.02] 5.44 5.29 5.24 5.32 ± 0.10 

A6 [6.02] 6.2 6.32 6.3 6.27 ± 0.06 

A7 [6.99] 7.02 6.97 6.89 6.96 ± 0.07 

A8 [8.03] 7.4 7.4 7.46 7.42 ± 0.03 

A9 [9.04] 8.11 8.11 7.92 8.05 ± 0.11 

      

Initial pH of 1L solution = 8.28      

[adjusted pH]      

Na2SO4 (1mM) = 0.142042 g Weighed Na2SO4 (1mM) = 0.1431 g  

NaCl (10mM) = 0.58443 g Weighed NaCl (10mM) = 0.5847 g  

Volume equivalent of 1g of A = 112.87g     

 

Appendix B.2: pH Determination for 6_ALSFH 

Samples pH of Supernatant   

 1 2 3 

Mean 

pH S. D 

B3 [3.01] 2.94 2.94 2.96 2.95 ± 0.01 

B4 [4.03] 4.09 4.09 4.1 4.09 ± 0.01 

B5 [5.03] 5.18 5.12 5.14 5.15 ± 0.03 

B6 [6.00] 5.83 5.84 5.85 5.84 ± 0.01 

B7 [7.00] 6.67 6.71 6.74 6.71 ± 0.04 

B8 [8.03] 7.06 7.01 6.94 7.00 ± 0.06 

B9 [9.04] 7.18 7.18 7.24 7.20 ± 0.03 

      

Initial pH of 1L solution = 8.15      

[adjusted pH]      

Required Na2SO4 (1mM) = 

0.142042 g  Weighed Na2SO4 (1mM) = 0.1423 g 

Required NaCl (10mM) = 0.58443 g  Weighed NaCl (10mM) = 0.5838 g 

Volume equivalent of 1g of B = 126.10 mL      
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Appendix B.3: pH Determination for 12_ALSFH 

Samples pH of Supernatant   

 1 2 3 

Mean 

pH S. D 

C3 [3.02] 3.06 3.03 3.03 3.04 ± 0.02 

C4 [3.99] 4.2 4.21 4.15 4.19 ± 0.03 

C5 [5.02] 5.2 5.22 5.19 5.20 ± 0.02 

C6 [6.01] 6.05 6.12 6.14 6.10 ± 0.05 

C7 [7.02] 7.01 6.97 6.96 6.98 ± 0.03 

C8 [8.04] 7.28 7.26 7.35 7.30 ± 0.05 

C9 [8.99] 8.24 8.21 8.2 8.22 ± 0.02 

      

Initial pH of 1L solution = 8.33      

[adjusted pH]      

Required Na2SO4 (1mM) = 

0.142042 g  Weighed Na2SO4 (1mM) = 0.1430 g 

Required NaCl (10mM) = 0.58443 g  Weighed NaCl (10mM) = 0.5852 g 

Volume equivalent of 1g of C = 143.06 mL      

 

Appendix B.4: pH Determination for 18_ALSFH 

Samples pH of Supernatant   

 1 2 3 

Mean 

pH S. D 

D3 [3.02] 3.01 3 3.02 3.01 ± 0.01 

D4 [4.01] 4.13 4.14 4.15 4.14 ± 0.01 

D5 [5.01] 5.22 5.15 5.12 5.16 ± 0.05 

D6 [6.00] 6.12 6.08 6.09 6.10 ± 0.02 

D7 [6.98] 6.78 6.85 6.71 6.78 ± 0.07 

D8 [8.01] 7.29 7.3 7.25 7.28 ± 0.03 

D9 [9.01] 7.6 7.54 7.49 7.54 ± 0.06 

      

Initial pH of 1L solution = 8.23      

[adjusted pH]      

Required Na2SO4 (1mM) = 

0.142042 g  Weighed Na2SO4 (1mM) = 0.1426 g 

Required NaCl (10mM) = 0.58443 g  Weighed NaCl (10mM) = 0.5845 g 

Volume equivalent of 1g of D = 163.13 mL      
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Appendix B.5: pH Determination for 24_ALSFH  

Samples pH of Supernatant   

 1 2 3 

Mean 

pH S. D 

E3 [3.02] 3.12 3.1 3.13 3.12 ± 0.02 

E4 [4.03] 4.19 4.2 4.21 4.20 ± 0.01 

E5 [5.00] 5.17 5.13 5.1 5.13 ± 0.04 

E6 [6.05] 6.13 6.16 6.18 6.16 ± 0.03 

E7 [7.03] 6.9 6.84 6.8 6.85 ± 0.05 

E8 [8.06] 7.16 7.1 7.04 7.10 ± 0.06 

E9 [9.00] 8.05 8.11 8.1 8.09 ± 0.03 

      

Initial pH of 1L solution = 8.44      

[adjusted pH]      

Required Na2SO4 (1mM) = 

0.142042 g  Weighed Na2SO4 (1mM) = 0.1420 g 

Required NaCl (10mM) = 0.58443 g  Weighed NaCl (10mM) = 0.5846 g 

Volume equivalent of 1g of E = 182.8 mL     
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Appendix C: HPLC Data 

Appendix C.1: Adsorption data for 0_ALSFH 

Samples 

Dilution 

factor Diluted conc. (mg/L) 

Amount sorbed 

(mg/L) 

Amount 

sorbed (mM) 

A31 1 36.62 57.39 0.60 

A32 1 35.24 58.77 0.61 

A33 1 34.71 59.30 0.62 

A41 1 42.57 51.44 0.54 

A42 1 42.26 51.75 0.54 

A43 1 41.14 52.87 0.55 

A51 1 53.61 40.40 0.42 

A52 1 56.38 37.63 0.39 

A53 1 53.98 40.03 0.42 

A61 1 66.81 27.20 0.28 

A62 1 65.04 28.97 0.30 

A63 1 67.49 26.52 0.28 

A71 1 78.97 15.04 0.16 

A72 1 75.55 18.46 0.19 

A73 1 78.57 15.44 0.16 

A81 1 80.85 13.16 0.14 

A82 1 81.06 12.95 0.13 

A83 1 77.96 16.05 0.17 

A91 1 83.85 10.16 0.11 

A92 1 83.39 10.62 0.11 

A93 1 81.53 12.48 0.13 

     

Initial SO42- conc. = 94.009 mg/L 

Molar mass of SO42- = 96.06 g/mol 
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Appendix C.2: Adsorption data for 6_ALSFH 

Samples 

Dilution 

factor Diluted conc. (mg/L) 

Amount sorbed 

(mg/L) 

Amount sorbed 

(mM) 

B31 1 70.68 25.84 0.27 

B32 1 70.35 26.17 0.27 

B33 1 70.54 25.98 0.27 

B41 1 72.63 23.89 0.25 

B42 1 71.39 25.12 0.26 

B43 1 72.01 24.51 0.26 

B51 1 75.02 21.50 0.22 

B52 1 74.41 22.11 0.23 

B53 1 74.50 22.02 0.23 

B61 1 77.11 19.41 0.20 

B62 1 76.89 19.63 0.20 

B63 1 76.43 20.09 0.21 

B71 1 80.82 15.70 0.16 

B72 1 79.48 17.04 0.18 

B73 1 80.46 16.06 0.17 

B81 1 82.22 14.30 0.15 

B82 1 82.24 14.28 0.15 

B83 1 81.54 14.98 0.16 

B91 1 81.96 14.56 0.15 

B92 1 83.12 13.40 0.14 

B93 1 83.46 13.06 0.14 

     

Initial SO42- conc. = 96.518 mg/L 

Molar mass of SO42- = 96.06 g/mol 
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Appendix C.3: Adsorption data for 12_ALSFH 

Samples 

Dilution 

factor 

Diluted conc. 

(mg/L) 

Amount sorbed 

(mg/L) 

Amount sorbed 

(mM) 

C31 1 16.01 81.65 0.85 

C32 1 16.00 81.67 0.85 

C33 1 15.88 81.79 0.85 

C41 1 24.29 73.38 0.76 

C42 1 24.26 73.41 0.76 

C43 1 26.21 71.46 0.74 

C51 1 32.97 64.69 0.67 

C52 1 32.93 64.74 0.67 

C53 1 32.90 64.77 0.67 

C61 1 42.57 55.10 0.57 

C62 1 42.64 55.03 0.57 

C63 1 42.59 55.08 0.57 

C71 1 51.05 46.61 0.49 

C72 1 51.14 46.53 0.48 

sC73 1 50.99 46.68 0.49 

C81 1 57.43 40.24 0.42 

C82 1 57.33 40.33 0.42 

C83 1 57.33 40.34 0.42 

C91 1 58.96 38.70 0.40 

C92 1 59.07 38.60 0.40 

C93 1 59.21 38.46 0.40 

     

Initial SO42- conc. = 97.666 mg/L 

Molar mass of SO42- = 96.06 g/mol 
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Appendix C.4: Adsorption data for 18_ALSFH 

Samples 

Dilution 

factor 

Diluted conc. 

(mg/L) 

Amount sorbed 

(mg/L) 

Amount sorbed 

(mM) 

D31 1 8.54 89.40 0.93 

D32 1 8.32 89.62 0.93 

D33 1 8.37 89.57 0.93 

D41 1 25.45 72.49 0.75 

D42 1 25.52 72.42 0.75 

D43 1 25.37 72.57 0.76 

D51 1 34.29 63.65 0.66 

D52 1 34.24 63.70 0.66 

D53 1 34.25 63.69 0.66 

D61 1 53.46 44.48 0.46 

D62 1 52.40 45.54 0.47 

D63 1 52.13 45.81 0.48 

D71 1 69.96 27.98 0.29 

D72 1 69.76 28.18 0.29 

D73 1 69.65 28.29 0.29 

D81 1 78.44 19.50 0.20 

D82 1 79.14 18.80 0.20 

D83 1 79.01 18.93 0.20 

D91 1 81.40 16.54 0.17 

D92 1 81.49 16.45 0.17 

D93 1 81.86 16.08 0.17 

     

Initial SO42- conc. = 97.938 mg/L 

Molar mass of SO42- = 96.06 g/mol 

 

 

 

 

 

 



55 

Appendix C.5: Adsorption data for 24_ALSFH 

Samples 

Dilution 

factor 

Diluted conc. 

(mg/L) 

Amount sorbed 

(mg/L) 

Amount sorbed 

(mM) 

E31 1 2.67 93.50 0.97 

E32 1 2.43 93.74 0.98 

E33 1 2.61 93.56 0.97 

E41 1 9.27 86.90 0.90 

E42 1 9.65 86.52 0.90 

E43 1 9.64 86.53 0.90 

E51 1 22.97 73.20 0.76 

E52 1 21.44 74.73 0.78 

E53 1 21.56 74.61 0.78 

E61 1 41.55 54.62 0.57 

E62 1 42.30 53.88 0.56 

E63 1 44.41 51.76 0.54 

E71 1 62.59 33.58 0.35 

E72 1 61.60 34.57 0.36 

E73 1 60.70 35.47 0.37 

E81 1 71.18 24.99 0.26 

E82 1 69.14 27.03 0.28 

E83 1 70.15 26.02 0.27 

E91 1 73.73 22.45 0.23 

E92 1 72.65 23.52 0.24 

E93 1 77.95 18.22 0.19 

     

Initial SO42- conc. = 96.171 mg/L 

Molar mass of SO42- = 96.06 g/mol 
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Appendix D: Multi-Point BET plots for synthesized Fh samples 

Appendix D.1: Multi-Point BET plot for 0_ALSFH 
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Appendix D.2: Multi-Point BET plot for 6_ALSFH 
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Appendix D.3: Multi-Point BET plot for 12_ALSFH 
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Appendix D.4: Multi-Point BET plot for 18_ALSFH 
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Appendix D.5: Multi-Point BET plot for 24_ALSFH 
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Appendix E: Determination of Mineral Particle Dimensions 

Appendix E.1: Unaged Samples 

Sample Length (nm) Width(nm) 

Aspect 

ratio   

0_ALSFH 588.29 19.9 29.56   

 570.77 16.84 33.89   

 645.08 17.27 37.35 Average = 32.74 

 676.18 21.89 30.89 S.D = ± 3.66 

 253.66 6.99 36.29 99.9 % C.I = 4.92 

 422.29 14.84 28.46   

      

      

6_ALSFH 208.71 28.75 7.26   

 214.09 26.72 8.01   

 216.06 38.53 5.61 Average = 8.39 

 137.19 17.83 7.69 S.D = ± 1.88 

 208.85 24.33 8.58 99.9 % C.I = 2.33 

 275.61 25.02 11.02   

 187.69 17.83 10.53   

      

      

12_ALSFH 291.41 33.83 8.61   

 198.83 31.67 6.28   

 237.09 35.46 6.69 Average = 8.33 

 208.14 23.92 8.70 S.D = ± 2.08 

 236.16 23.51 10.05 99.9 % C.I = 1.71 

 169.02 28.75 5.88   

 249.01 22.23 11.20   

 238.66 21.89 10.90   

 226.81 37.79 6.00   

 226.67 24.33 9.32   

 276.47 40.05 6.90   

 204.92 17.27 11.87   

 158.07 26.72 5.92   

 246.13 26.54 9.27   

 145.8 23.82 6.12   

 170.53 17.69 9.64   
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18_ALSFH 185.78 29.09 6.39   

 191.09 27.71 6.90 Average = 7.52 

 200.68 28.75 6.98 S.D = ± 1.35 

 238.86 24.33 9.82 99.9 % C.I = 1.98 

 153.77 20.39 7.54   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

Appendix E.2: Aged Samples 

Sample Length (nm) 

Width 

(nm) 

Aspect 

ratio   

0_ALSFH 261.13 19.03 13.72   

 485.45 23.82 20.38 Average = 19.45 

 337.6 17.69 19.08 S.D = ± 7.25 

 246.93 19.9 12.41 99.9 % C.I = 7.54 

 335.57 25.79 13.01   

 325.83 18.77 17.36   

 287.93 14.16 20.33   

 374.34 9.89 37.85   

 427.94 19.9 21.50   

 385.03 20.39 18.88   

      

      

6_ALSFH 147.04 18.9 7.78   

 134.64 21.89 6.15   

 142.96 20.98 6.81 Average =  7.14 

 121 26.7 4.53 S.D = ± 1.84 

 160.72 15.95 10.08 99.9 % C.I = 2.14 

 114.43 22.12 5.17   

 122.62 15.48 7.92   

 121.2 13.99 8.66   

      

      

12_ALSFH 170.07 14.84 11.46   

 183.26 11.28 16.25 Average = 9.51 

 177.28 22.12 8.01 S.D = ± 2.77 

 165.05 23.51 7.02 99.9 % C.I = 2.75 

 177.51 21.89 8.11   

 208 26.54 7.84   

 151.3 13.46 11.24   

 191.02 17.69 10.80   

 146.5 22.12 6.62   

 135.69 15.64 8.68   

 152.67 17.83 8.56   
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18_ALSFH 170.66 22.77 7.49   

 168.44 13.99 12.04   

 139.48 16.84 8.28 Average = 9.85 

 144.23 20.39 7.07 S.D = ± 3.87 

 120.33 14.1 8.53 99.9 % C.I = 3.83 

 117.22 11.06 10.60   

 182 9.12 19.96   

 102.91 20.39 5.05   

 216.63 20.39 10.62   

 151.51 15.64 9.69   

 218.34 24.33 8.97   

      

24_ALSFH 106.34 18.9 5.63   

 128.75 13.45 9.57   

 105.51 20.08 5.25 Average = 6.91 

 106.76 18.9 5.65 S.D = ± 1.58 

 102.46 15.64 6.55 99.9 % C.I = 1.65 

 113.34 17.83 6.36   

 109.11 15.48 7.05   

 106.99 11.9 8.99   

 85.89 15.64 5.49   

 120.92 14.16 8.54   

 



65 

Appendix F: EDX Spectra of ALSFH Samples Aged at 90° C for 48 h 

Appendix F.1: EDX spectrum for 0_ALSFH 
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Appendix F.2: EDX spectrum for 6_ALSFH 
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Appendix F.3: EDX spectrum for 12_ALSFH 
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Appendix F.4: EDX spectrum for 18_ALSFH 
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Appendix F.5: EDX spectrum for 24_ALSFH 
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