
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

12-2024

Neural Networks and Approximation of High-dimensional Neural Networks and Approximation of High-dimensional

Functions: Applications in Control and Partial Differential Functions: Applications in Control and Partial Differential

Equations Equations

Nathan Gaby
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

Recommended Citation Recommended Citation
Gaby, Nathan, "Neural Networks and Approximation of High-dimensional Functions: Applications in
Control and Partial Differential Equations." Dissertation, Georgia State University, 2024.
https://scholarworks.gsu.edu/math_diss/98

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/math_diss
https://scholarworks.gsu.edu/math
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss/98?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Neural Networks and Approximation of High-dimensional Functions: Applications in
Control and Partial Differential Equations

by

Nathan Gaby

Under the Direction of Xiaojing Ye, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

Year 2024

ABSTRACT

We investigate the usefulness of deep learning when applied to both control theory
and partial differential equations (PDEs). We will develop new network architectures and
methodologies to approach the solving of high-dimensional problems. Specifically, we de-
velop a network architecture called Lyapunov-Net for approximating Lyapunov functions in
high-dimensions and a new methodology called Neural Control for finding solution opera-
tors for high-dimensional parabolic PDEs. The theoretical accuracy and numerical efficiency
of these approaches will be investigated along with implementation details to use them in
practice.

INDEX WORDS: Lyapunov Functions, Deep Neural Networks, Control, Operator
Learning, Partial Differential Equations

Copyright by
Nathan Gaby

2024

Neural Networks and Approximation of High-Dimensional Functions: Application in Control and

Partial Differential Equations

by

Nathan Gaby

Committee Chair:

Committee:

Xiaojing Ye

Haomin Zhou

Alexandra Smirnova

Michael Stewart

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2024

iv

PART 0

DEDICATION

To my wonderful wife Mary Clayton. I could not have done all that I do, with as much

sanity as I do, without your love and encouragement.

v

PART 0

ACKNOWLEDGMENTS

There are numerous people who have assisted, encouraged, taught, influenced, guided, and

inspired me over the years it has taken to complete this dissertation. Many of these people

were influential in my research, my love of mathematics, and my life more generally. First, I

have to thank my advisor Xiaojing Ye, he was the reason I came to Georgia State to receive

my PhD. Without him, I would not have been able to develop the research skills needed to

engage in this work, or the tenacity needed to persist. Dr. Ye has inspired me, taught me,

pushed me, and encouraged me over these four and a half years and I am immensely grateful

for all of his mentorship, teaching, and encouragement along the way.

I want to thank my committee, Haomin Zhou for your wisdom and perspective on this

work and your kind words of support, Alexandra Smirnova and Michael Stewart for graciously

serving on my committee and for your thoughtful comments all while taking the time out of

your busy days serving as the chair and co-chair of our department.

I also want to thank and acknowledge my undergraduate advisor Ron Taylor, I would not

have ever taken this journey or been as prepared as I was to start it without his mentorship,

teaching, and friendship. I want to thank my parents and the enormous support they have

been throughout my many years of schooling. Thank you to my wife Mary Clayton, she has

been there through it all and has been the firmest supporter of our family throughout my

education. Finally, I thank the Lord for the numerous blessings he has given, none of which

I have ever deserved.

vi

PART 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 INTRODUCTION . 1

1.1 Neural Networks and Universal Approximation 1

2 LYAPUNOV-NET: A DEEP NEURAL NETWORK ARCHITECTURE
FOR LYAPUNOV FUNCTION APPROXIMATION 5

2.1 Introduction . 5

2.2 Background . 6

2.3 Proposed Method . 8

2.3.1 Lyapunov-Net and its properties 9

2.3.2 Training of Lyapunov-Net . 11

2.3.3 Lyapunov-Net approximation and certification theory 13

2.3.4 Application to control and others 20

2.4 Numerical Experiments . 22

2.4.1 Experiment setting . 22

2.4.2 Experimental results . 23

2.4.3 Comparison with existing DL methods 24

2.4.4 Application in Control . 27

2.5 Conclusions . 29

3 NEURAL NETWORK CONTROL FOR HIGH-DIMENSIONAL EVO-
LUTION PDES . 30

3.1 Introduction . 30

3.2 Background . 32

3.2.1 Classical methods for solving PDEs 32

3.2.2 Neural network based methods for solving PDEs 32

3.2.3 Learning solution operator of PDEs 34

3.2.4 Differences between the proposed approach and existing ones 35

3.3 Proposed Method . 36

3.3.1 Problem space and detailed methodology 37

3.3.2 Error analysis . 42

3.4 Numerical Results . 57

3.4.1 Implementation . 57

3.4.2 Experimental setting . 58

3.4.3 Numerical results on transport equation 62

3.4.4 Heat equation . 65

3.4.5 Allen-Cahn equation . 68

3.5 Variations and Generalizations . 70

4 EXTENDING NEURAL CONTROL FOR HIGH-DIMENSIONAL PDES 74

4.1 Introduction . 74

4.2 Proposed Method . 75

4.2.1 Control Theory Approach . 75

4.2.2 Theoretical Advances and Error Analysis 77

4.3 Numerical Results . 92

4.3.1 Implementation . 92

4.3.2 Comparison to Existing Methods 94

4.3.3 Hyperbolic PDE . 96

4.3.4 Applications to Hamilton-Jacobi-Bellman equations 98

APPENDICES . 103

A Proof of Inequality in Proposition 1 . 103

B Proof of Proposition 2 . 104

REFERENCES . 108

ix

PART 0

LIST OF TABLES

Table 2.1 Network parameter setting and training time in the tests. 23

Table 3.1 Problem settings, network structures, and the number of training trajec-
tories/samples in numerical experiments. HereM is the number of trajectories
used from Θ and Nθ is the total number of samples from Θ. 62

Table 4.1 The problem dimension d, the size of augument set T, the mini-batch
sizeK in training, and the width and depth of Vξ used in each of the numerical
experiments. 93

x

PART 0

LIST OF FIGURES

Figure 2.1 Plot of the learned Lyapunov-Net Vθ (top solid) and DVθ · f (bot-
tom wire) in the (x2, x8)-plane (left) and (x10, x13)-plane (right) for the 30d
synthetic DS. 25

Figure 2.2 The value of empirical risk function ℓ̂2 (in log scale) defined in (2.10)
versus iteration number (left) and wall-clock training time in seconds (right)
for the three network and training settings: DL [36] (red dashed), NL [16]
(green dotted), and Lyapunov-Net denoted LN (blue solid). Note that the risk
of Lyapunov-Net often hits 0, the most desired risk function value, explaining
the dropoff. 26

Figure 2.3 Left: learned Lyapunov-Net Vθ (top solid) and DVθ · f (bottom wire)
for the 2d inverted pendulum in phase and angular velocity space. Right:
Comparison of ROA for standard SOS/SDP methods and for Lyapunov-Net
with orange sample trajectories. 28

Figure 3.1 Schematic plot of pulling back trajectories (solid and dashed blue
curves) in M = {uθ : θ ∈ Θ} to trajectories in the parameter space Θ.
Here each trajectory in M represents the reduced-order model (e.g., DNN)
uθ(t)(·) approximating the PDE solution u∗(t, ·) starting from a given initial,
and it is pulled back to the trajectory θ(t) (we use θ(t) := θ(t) as a trajectory
here to avoid confusion with components θ1, . . . , θm) in Θ; and Vξ is a DNN
approximating the control vector field VF in Θ. 40

Figure 3.2 (Transport equation). Comparison between true solution u∗(·, t), the
approximation uθ(t)(·) and their pointwise absolute difference |uθ(t)(x)−u∗(x, t)|
for times t = 0, 0.15, 0.5, 0.85, 1 for IVPs with the first initial (rows 1–3), sec-
ond initial (rows 4–6) and third initial (rows 7–9) given by uθ with θ randomly
drawn from [−1, 1]m. 66

Figure 3.3 Comparison of the mean relative error ∥u∗(·, t) − uθ(t)(·)∥22/∥u∗(·, t)∥22
(top) and mean absolute ∥u∗(·, t) − uθ(t)(·)∥22 (bottom) versus time t for 100
different initial conditions of the transport (a)-(b), heat (c)-(d), and Allen-
Cahn (e)-(f) equations. Shaded areas indicate the standard deviation over the
100 results. 67

Figure 3.4 (Heat equation). Comparison between true solution u∗(·, t), the ap-
proximation uθ(t)(·) and their pointwise absolute difference |uθ(t)(x)−u∗(x, t)|
for times t = 0, 0.004, 0.008, 0.012, 0.015 for IVPs with the first (rows 1–
3), second (rows 4–6) and third initial (rows 7–9) drawn from the set G :=
{∑4

i=1 cigi : ci ∈ [−1, 1]} where gi is defined in (3.38). 72

Figure 3.5 (Allen-Cahn equation). Comparison between true solution u∗(·, t),
the approximation uθ(t)(·) and their pointwise absolute difference |uθ(t)(x) −
u∗(x, t)| for times t = 0, 0.004, 0.008, 0.012, 0.015 for IVPs with the first (rows
1–3), second (rows 4–6) and third initial (rows 7–9) drawn from the set G

defined in (3.40). 73

Figure 4.1 Comparison of NLS [34] method (black dashed line) and the proposed
method (black solid line). While the previous method only allows accurate
results for a small time scale T = 0.02, the new method allows more accuracy
for longer time scales T = 0.1. 95

Figure 4.2 Comparison with NLS [34] on the Heat Equation (4.31). All plots
show the (x1, x2) plane. (First column) initial g; (Second column): reference
solution; (Third column) Proposed method; and (Fourth column) NLS [34].
In all cases, the proposed method demonstrates significant improvement on
solution accuracy. 97

Figure 4.3 Mean relative error (dotted line) and standard deviation (grey) be-
tween the learned uθ(t) and the reference solution u∗ for 100 different random
initial conditions. (Left) hyperbolic PDE (4.33); (Right) Hamiltonian-Jacobi-
Bellman equation (4.35). Note that in either case, the tested initials are not
included in the training datasets. 99

Figure 4.4 The evolution of 50 sampled points X(0) (red circles) to time X(1)
(green triangles) in the (first column) (x1, x2) plane; (second column) (x3, x4)
plane; (third column) (x5, x6) plane; and (fourth column) (x7, x8) plane. The
background images show the expected minimum points of the terminal cost for
the five randomly chosen initials. We see the solution −∇uθ(t) provides correct
control for all cases. Note that the induced control may not be able to steer
the far-away initials to the minimum since the running cost penalizes large
movements that the terminal gains do not compensate for. This phenomenon
becomes less (more) likely as the terminal cost g is scaled larger (smaller). . 102

1

PART 1

INTRODUCTION

In recent years, deep learning methods have been used to solve many high-dimensional prob-

lems previously intractable to traditional numerical schemes. Led by the rapid expansion of

computing power enabled through ever smaller and more powerful microchips, deep learn-

ing has seen success in applications ranging from computer vision [69], to natural language

processing [116], to generative modeling [35, 105], to function approximation [123]. The

power of huge models called deep neural networks (DNNs) has been of particular interest.

These models are not new [2], however, modern computers and advances in numerical calcu-

lus through tools like automatic differentiation have made DNNs the central focus of much

modern research in machine learning, and more generally in artificial intelligence.

For this dissertation, we will investigate DNNs and their usefulness in approximating

functions. Specifically, we will look at the problem of finding high-dimensional Lyapunov

functions with applications in control theory and the problem of finding solution operators

to solve high-dimensional Partial Differential Equations (PDEs). These two applications

represent the power of DNNs when solving high-dimensional problems of the sort previously

unapproachable by traditional methods.

1.1 Neural Networks and Universal Approximation

DNNs can be viewed as nonlinear reduced-order models, and are powerful tools in solving

high-dimensional PDEs in recent years [7, 28, 43, 92, 93, 94, 124]. Mathematically, a DNN

can be expressed as the composition of a series of simple linear and nonlinear functions.

2

In the deep learning context, a typical building block of DNNs is called a layer, which is

a mapping h : Rd → Rd′ for some compatible input dimension d and output dimension d′

defined by:

h(z;W, b) := σ(Wz + b), (1.1)

where z ∈ Rd is the input variable of h, the matrix W ∈ Rd′×d and vector b ∈ Rd′ are called

the weight and bias respectively, and σ : R→ R is a nonlinear function that operates com-

ponentwise on its d′-dimensional argument vector Wz + b (hence σ is effectively a mapping

from Rd′ to Rd′). While in theory any non-polynomial function can serve as an activation

function, some common choices of activation functions include the hyperbolic tangent (tanh)

and rectified linear unit (ReLU) σ(z) = max(0, z) functions. A commonly used DNN struc-

ture uθ, often called a feed-forward network (FFN), is defined as the composition of multiple

layer functions of form (1.1) as follows:

uθ(x) := u(x; θ) = w⊤zL + b, (1.2)

where z0 = x, zl = hl(zl−1) := h(zl−1;Wl, bl), l = 1, . . . , L,

and the lth hidden layer h(·;Wl, bl) : Rdl−1 → Rdl is determined by its weight and bias

parameters Wl ∈ Rdl×dl−1 and bl ∈ Rdl for l = 1, . . . , L and d0 = d. Here the output of uθ

is set to the affine transform of the last hidden layer zNN = hL(zL−1) using weight w ∈ RdL

and bias b ∈ R. The network parameters θ refers to the collection of all learnable parameters

3

(stacked as a vector in Rm) of uθ, i.e.,

θ := (w, b,WL, bL, . . . ,W1, b1) ∈ Rm. (1.3)

The process of training the network uθ refers to finding the minimizer θ of some properly

designed loss function which takes θ as input.

Early research on the approximation capabilities of neural networks dates back to the

1980s from which we get one of the first universal approximation theorems due to [48].

Theorem 1. Let Ω ⊂ Rd be compact, g ∈ C(Ω) and ϵ > 0. For a DNN of the form (1.2)

with any continuous non-constant activation function σ there exists a large enough neural

network uθ such that

sup
x∈Ω
|g(x)− uθ(x)| < ϵ.

In particular, Hornik in [48] showed that a single hidden layer was sufficient for univer-

sal approximation. Following this early result and others in the 90s the interest in neural

networks waned. However, as previously mentioned, in recent years DNNs have been investi-

gated and new studies have shown their power in approximating high-dimensional functions,

see e.g. [39, 40, 66, 70, 89, 123]. Compared to the approach of Hornik, many of the modern

universal approximation theorems (such as [123]) come with approximation rates. These

rates show that the number of parameters of a DNN needed to approximate a Lipschitz

function to error ϵ scales as O(ϵ−d) in the worst case. This theory suggests weights should

scale exponentially in dimension, yet in practice this does not play out, suggesting there yet

remains a gap in the theory.

4

Ultimately, these results provide the theoretical underpinning which justify the use of

DNNs in different contexts. For the rest of this dissertation, we will seek to show how DNNs

can be utilized in both control and PDEs to develop novel techniques to solve classical nu-

merical problems in high-dimensions. The theoretical advances presented in this dissertation

will make use of varying modern universal approximation results stated for the more general

Sobolev spaces. We will use the standard notation to define the Sobolev space W k,p(Ω) and

will use the norm defined by

∥g∥Wk,p(Ω) = max
{
∥g(x)∥p, max

1≤i≤d
∥Dig(x)∥p

}
where Dig(x) is the weak partial derivative of g with respect to xi at x, ∥ · ∥p is the regular

Lp(Ω) norm. For p =∞ we have

∥g∥Wk,p(Ω) = max
{
ess sup

x∈Ω
|g(x)|, max

1≤i≤d
ess sup

x∈Ω
|Dig(x)|

}
.

For Sobolev spaces it has been shown in works such as [39] that for any M, ε > 0, k ∈ N,

p ∈ [1,∞], and Ω = (0, 1)d ⊂ Rd, denote F := {f ∈ W k,p(Ω;R) | ∥f∥Wk,p(Ω) ≤ M}, there

exists a DNN structure uθ of form (1.2) with sufficiently large m and L (which depend on

M , ε, d and p only), such that for any f ∈ F, there is ∥uθ − f∥Wk,p(Ω) ≤ ε for some θ ∈ Rm.

We will use variations on this result and others throughout the rest of this work and will

recite or reference these variations in the text as necessary.

5

PART 2

LYAPUNOV-NET: A DEEP NEURAL NETWORK ARCHITECTURE FOR
LYAPUNOV FUNCTION APPROXIMATION

2.1 Introduction

In this part, we will discuss the first of two application of DNNs to high-dimensional problems

previously unapproachable to traditional methods. This problem is approximating Lyapunov

functions for use in control. We first recall the definition of Lyapunov function for a given

general dynamical system x′ = f(x) with Lipschitz continuous f on the problem domain Ω.

We assume that x = 0 is the unique equilibrium of the system dynamics that lies within

Ω. If x = 0 is asymptotically stable, then by the converse Lyapunov theory, we can find a

Lyapunov function V defined as below.

Definition 1 (Lyapunov function). Let Ω ⊂ Rd be a bounded open set and 0 ∈ Ω, and

f : Ω→ Rd a Lipschitz function. Then V : Ω→ R is called a Lyapunov function if (i) V is

positive definite, i.e., V (x) ≥ 0 for all x ∈ Ω and V (x) = 0 if and only if x = 0; and (ii) V

has negative orbital-derivative, i.e., DV (x) · f(x) < 0 for all x ̸= 0.

DNNs have emerged for the approximation of Lyapunov functions of nonlinear and non-

polynomial dynamical systems in high-dimensional spaces [16, 22, 36, 98, 120].

For control Lyapunov functions, DNNs can also be used to approximate the control laws,

eliminating the restrictions on control laws to specific function types (e.g., affine functions)

in classical control methods such as linear-quadratic regulator (LQR).

6

We shall propose a general framework to approximate Lyapunov functions and control

laws using DNNs. This part’s main contributions will lie in the following aspects:

1. We propose a highly versatile network architecture, called Lyapunov-Net, to approxi-

mate Lyapunov functions. Specifically, this network architecture guarantees the desired

positive definiteness property. This leads to simple parameter tuning, significantly ac-

celerated convergence during network training, and greatly improved solution quality.

This will allow for fast adoption of neural networks in (control) Lyapunov function

approximation in a broad range of applications.

2. We show that the proposed Lyapunov-Nets are dense in a general class of Lyapunov

functions. More importantly, we prove that the Lyapunov-Nets trained by minimizing

empirical risk functions using finitely many collocation points are Lyapunov functions,

which provides a theoretical certification guarantee of neural network based Lyapunov

function approximation.

3. We test the proposed Lyapunov-Net to solve several benchmark problems numerically.

We show that our method can effectively approximate Lyapunov functions in these

problems with very high state dimensionality. Moreover, we demonstrate that our

method can be used to find control laws in the control Lyapunov problem setting.

2.2 Background

Approximating Lyapunov functions using neural networks can be dated back to [74, 106].

In [74] the authors attempted the idea assuming that a shallow neural network can exactly

7

represent the target Lyapunov function. In [106], stabilization problems in control using

neural networks with one or two hidden layers are considered. In [57], the control Lya-

punov functions (CLF) using quadratic Lyapunov function candidate is considered. A DNN

approach to CLF is considered in [1, 16] which are similar. Approximating stabilizing con-

trollers using neural networks is considered in [65]. Time discretized dynamics and successive

parameter updates are considered in [98, 100]. Specifically, [98] considers jointly learning

the Lyapunov function and its decreasing region which is expected to match the Region

of Attraction (ROA). Still more recently some authors have considered finding Lyapunov

functions by solving specific PDEs given by Zubovs equations [72].

Special network architectures to approximate Lyapunov functions are also considered in

[98]. In [98], a Lyapunov neural network of form ∥ϕθ(·)∥2 is proposed to ensure positive

semi-definiteness, where ϕθ(·) is a DNN. To ensure positive definiteness, the authors restrict

ϕθ to be a feed-forward neural network, all weight matrices to have full column rank, all

biases to be zero, and all activation functions to have trivial null space (e.g., tanh or leaky

ReLU but not sigmoid, swish, softmax, ReLU, or RePU). Compared to the architecture in

[98], the network architecture in the present work does not have any of these restrictions.

Moreover, the positive definite weight matrix constructions in [98] can make ∥ϕθ(x)∥2 grow

excessively fast as ∥x∥ increases, whereas ours does not have this issue.

In [36], the author considers dynamical systems with small-gain property, which yields

a compositional Lyapunov function structure that has decoupled components. In this case,

it is shown that the size of the DNN used to approximate such Lyapunov functions can be

8

dependent exponentially on the maximal dimension of these components rather than the

original state space dimension. Still other authors propose neural networks for other control

certificates such as barrier functions [22, 99, 120] and contraction metrics [114, 115]. While

these are a different direction compared to the approach in this section, they present other

promising angles for neural networks in control.

2.3 Proposed Method

In this section, we propose the Lyapunov-Net architecture to approximate Lyapunov func-

tions and discuss its key properties and associated training strategies. Our approach is to

approximate a Lyapunov function using a specially designed deep neural network. Due to

limited network size and finite collocation points for training in practice, we only guarantee

that our approximation function V is positive definite in Ω and satisfies a slightly relaxed

condition of Definition 1 (ii).

Denote B(x; δ) := {y ∈ Rd : ∥y − x∥ < δ} as the open ball of radius δ > 0 centered at x,

and Ωδ := Ω \B(0; δ) the problem domain with B(0; δ) excluded. Then the slightly relaxed

condition (ii) is as follows:

DV (x) · f(x) < 0, for all x ∈ Ωδ. (2.1)

where δ > 0 is arbitrary and prescribed by the user. We term such a function V as a

δ-accurate Lyapunov function.

A δ-accurate function can be used as a Lyapunov function for x′ = f(x) (or control-

9

Lyapunov function for f(x, u(x)) where the control u is to be found jointly with the Lyapunov

function, see Section 2.3.4) to prove that the solution x(t) will be ultimately bounded within

a small compact set (i.e., B(0; δ)) [56]. As δ → 0, the size of this compact set will converge

to 0, hence asymptotic stability is established. In practice, the smaller the value of δ, the

larger the network size and the more collocation points needed to train such a δ-accurate

Lyapunov function.

With this relaxed condition of Lyapunov function in mind, we now proceed by building

a versatile deep network architecture that is particularly suitable for finding Vθ for dynamics

evolving in high state dimension d. Then we will provide theoretical justifications for this

network. Finally, we will demonstrate that the training of this “Lyapunov-Net” renders a

minimization problem of a simple risk function, and thus requires much less manual hyper-

parameter tuning and achieves high optimization efficiency during practical computations.

2.3.1 Lyapunov-Net and its properties

We first construct an arbitrary DNN ϕθ(·) : Rd → R with the set of all its m trainable

parameters denoted by θ ∈ Rm. This network has input dimension d and output dimension

1. Then we build a scalar-valued network Vθ : Rd → R from ϕθ as follows:

Vθ(x) := |ϕθ(x)− ϕθ(0)|+ ᾱ∥x∥, (2.2)

where ᾱ > 0 is a small user-chosen parameter and ∥ · ∥ is the standard 2-norm in Euclidean

space. Then it is easy to verify that Vθ(0) = 0 and

Vθ(x) ≥ ᾱ∥x∥ > 0, ∀x ̸= 0.

10

In other words, Vθ is a candidate Lyapunov function that already satisfies condition (i) in

Definition 1: for any network structure ϕθ with any parameter θ, Vθ is positive definite and

only vanishes at the equilibrium 0. We call the neural network Vθ with architecture specified

in (2.2) a Lyapunov-Net.

We now make several remarks regarding the Lyapunov-Net architecture (2.2). First, we

use the augmented term ᾱ∥x∥ to lower bound the function Vθ(x) in order to ensure positive

definiteness. Other positive definite function r : Rd → R+ such that r(x) = 0 if and only if

x = 0 can be chosen as such lower bound, such as ᾱ∥x∥2 or ᾱ log(1 + ∥x∥2), etc.

Second, the term |ϕθ(x)− ϕθ(0)| in (2.2) can be replaced with ψ(ϕθ(x)− ϕθ(0)) for any

non-negative function ψ : Rm → R+ with ψ(0) = 0. We chose ψ(·) = | · | for its application to

our theory and simplicity. Note that one could also use a vector-valued DNN ϕθ : Rd → Rd′

where d′ is arbitrary which could further improve network capacity. So long as ϕθ is Lipschitz

continuous then Vθ is Lipschitz continuous and hence weakly differentiable. In practice, we

can also use ∥ · ∥2 or Huber norm to smooth out Vθ.

Third, a detailed characterization of the ᾱ > 0 is provided in Section 2.3.3. However, in

practice, one chooses ᾱ freely as Lyapunov functions can be arbitrarily scaled by a positive

constant.

Fourth, if the equilibrium is at x∗ instead of 0, then one can simply replace ϕθ(0) and

∥x∥ in (2.2) with ϕθ(x
∗) and ∥x − x∗∥, respectively. Without loss of generality, we assume

the equilibrium is at 0 hereafter in this section.

The properties remarked above show that Vθ defined in (2.2) serves as a versatile network

11

architecture for approximating Lyapunov functions. This architecture significantly eases

network training and yields an accurate approximation of Lyapunov functions in practice as

we will demonstrate.

2.3.2 Training of Lyapunov-Net

The training of Lyapunov-Net Vθ in (2.2) refers to finding a specific network parameter θ

such that the negative-orbital-derivative condition DVθ(x) · f(x) < 0 is satisfied at every

x ∈ Ω\{0}. This is achieved by minimizing a risk function that penalizes Vθ if the negative-

orbital-derivative condition fails to hold at some x. We can choose the following as such a

risk function:

ℓ(θ) :=
1

|Ω|

∫
Ω

(DVθ(x) · f(x) + γ∥x∥)2+ dx, (2.3)

where (z)+ := max(z, 0) for any z ∈ R. Here γ is a user-chosen parameter. It is clear that the

risk function ℓ(θ) reaches the minimal function value 0 if and only if DVθ(x) · f(x) ≤ −γ∥x∥

for all x ∈ Ω, which, in conjunction with Vθ already being positive definite, ensures that Vθ

is a Lyapunov function.

In practice, the integral in (2.3) does not have an analytic form, and so Monte-Carlo

integration is used to approximate it. This is suitable for high-dimensional problems. To

this end, we notice that ℓ(θ) = EX∼U(Ω)[(DVθ(X) · f(X) + γ∥x∥)2+] where U(Ω) stands for

the uniform distribution on Ω and hence has distribution 1/|Ω|. Therefore, we approximate

ℓ(θ) in (2.3) using the empirical expectation

ℓ̂(θ) :=
1

N

N∑
i=1

(DVθ(xi) · f(xi) + γ∥xi∥)2+, (2.4)

12

where {xi : i ∈ [N]} are independent and identically distributed (i.i.d.) samples from

U(Ω). Then we train the Lyapunov-Net Vθ by minimizing ℓ̂(θ) in (2.4) with respect to θ.

In this case, standard network training algorithms, such as ADAM [59], can be employed

in conjunction with automatic differentiation to calculate gradients. Note that techniques

to improve the efficiency of Monte-Carlo integration, such as importance sampling, can be

applied. For simplicity, we use uniform sampling in the experiments and leave improved

sampling strategies for future investigation.

As discussed earlier, the empirical risk function defined using finitely many sampling

points introduces inaccuracies near 0, which is common in the literature. Several existing

works [16, 36] observed that the deep-learning-based Lyapunov function approximation may

violate the conditionDVθ(x)·f(x) < 0 within a small neighborhood of the equilibrium. Hence

why we will only search for δ-accurate Lyapunov functions. This ensures our Lyapunov

function will establish ultimate boundedness of the solution x(t), which means that x(t)

converges to a small neighborhood B(0; δ) of 0. We note again that δ > 0 can be set

arbitrarily small at the expense of a larger network size of Vθ and a greater amount of

sampling points. In this case, we can replace Ω with Ωδ in (2.3) and exclude the points

in B(0; δ) in (2.4). In practical implementation, we just apply standard uniform sampling

without such exclusion for simplicity.

The main advantage of the Lyapunov-Net architecture (2.2) is that the risk function (2.3)

(or the empirical risk function (2.4)) consists of a single term only with a single parameter.

This is in contrast to existing works [16, 36] where the risk functions have multiple terms to

13

penalize the violations of the negative-orbital-derivative condition, positive definiteness con-

dition, bound requirements, etc. Thus, network training in these works requires experienced

users to carefully tune the hyper-parameters to properly weigh these penalty terms in order

to obtain a reasonable solution. On the other hand, the proposed empirical risk function

for Lyapunov-Net Vθ requires little effort in parameter-tuning, and the convergence is much

faster in network training, as will be demonstrated in our numerical experiments below.

2.3.3 Lyapunov-Net approximation and certification theory

In this section, we provide theoretical guarantees on the approximation ability of Lyapunov-

Net. We shall concern ourselves with the activation function RePU which in this section

shall refer to the function RePU(x) = max{0, x}2. RePU is preferred to the common ReLU

as it is C1 and hence more useful for approximating Lyapunov functions. We note that the

forthcoming theory can be extended to other even smoother activation functions (such as

tanh or sigmoid). We present RePU in this paper due to its ability to exactly represent

polynomials [66] allowing for some proof simplification.

Let Ω = [−1, 1]d and Ωδ = Ω \ B(0; δ). Let x′ = f(x) be the dynamical system defined

by f . Further, we denote W k,p(Ω) as the regular Sobolev space over Ω, and Ck(Ω) as the

space of k-times continuously differentiable functions.

Assumption 1. f is Lf -Lipschitz continuous on Ω for some Lf > 0 and f(0) = 0.

Assumption 2. There exist V ∗ ∈ C1(Ω;R) and constants α, β, γ > 0, such that for all

14

x ∈ Ω there are

α∥x∥ ≤ V ∗(x) ≤ β∥x∥, (2.5a)

DV ∗(x) · f(x) ≤ −γ∥x∥. (2.5b)

Assumption 1 implies that ∥f∥C(Ω) ≤ Lf

√
d < ∞ and f ∈ W 1,∞(Ω). Assumption 2 can

also be relaxed to a more general case where α, β ∈ K∞ and σ ∈ L such that

α(∥x∥) ≤ V ∗(x) ≤ β(∥x∥)

DV ∗(x) · f(x) ≤ −ρ(x)

and ρ is a positive definite function such that ρ(x) ≥ α(∥x∥)σ(∥x∥). Here K∞ := {α : R+ →

R+ : α(0) = 0, lims→∞ α(s) = ∞, α is strictly increasing and continuous} and L := {σ :

R+ → R++ : lims→∞ σ(s) = 0, σ is strictly decreasing and continuous} [53]. For simplicity,

we consider (2.5a) and (2.5b) in this paper, which hold in a large class of real-world problems.

Assumption 2 also indicates that V ∗ is a Lyapunov function and 0 is the global asymptotically

stable equilibrium in Ω.

We will need the following result on the universal approximation power of neural net-

works.

Lemma 1 (Theorem 4.9 [40]). Let d ∈ N, B > 0, and ∥g∥W 1,∞(Ω) ≤ B. For all ϵ ∈ (0, 1/2),

there exists a feed-forward neural network ϕθ with network parameter θ and RePU activation

15

such that

∥ϕθ − g∥W 1,∞(Ω) ≤ ϵ,

We now show a sort of universal approximation for the general Lyapunov-Net.

Lemma 2. For any δ > 0, the set of Lyapunov-Nets of form Vθ(x) = |ϕθ(x)−ϕθ(0)|+ ᾱ∥x∥

with RePU network ϕθ and bounded weights θ ∈ [−1, 1]m, where m is the number of trainable

parameters in ϕθ, is dense in the function space S := {ḡ(x)+α∥x∥ : ḡ ∈ C1(Ω;R+), ḡ(0) = 0}

under the W 1,∞(Ωδ) norm so long as ᾱ ∈ (0, α).

Proof. Let h ∈ S be arbitrary, where h(x) = ḡ(x) + α∥x∥ for some ḡ as characterized by

the definition of S. Further let δ > 0 and ϵ > 0. Let ᾱ ∈ (0, α) and define g(x) :=

ḡ(x) + (α − ᾱ)∥x∥. We will use Vθ(x) to approximate h(x) = g(x) + ᾱ∥x∥. We note that

for all x ∈ Ωδ we have g(x) ≥ a := infx∈Ωδ
g(x) ≥ (α − ᾱ)δ > 0. From Lemma 1 we know

there exists a RePU neural network ϕθ : Rd → R such that ∥ϕθ− g∥W 1,∞(Ω) ≤ min(a/2, ϵ/2).

Noting g(0) = ḡ(0) = 0 we find that |ϕθ(0)| = |ϕθ(0)− g(0)| ≤ a/2. On the other hand, for

all x ∈ Ω, there is |ϕθ(x) − g(x)| ≤ a/2 which implies ϕθ(x) ≥ g(x) − a/2 ≥ a/2. Hence

ϕθ(x)− ϕθ(0) ≥ 0 for all x ∈ Ωδ. Furthermore, for all x ∈ Ω, there is

|Vθ(x)− h(x)| = |ϕθ(x)− ϕθ(0)− g(x) + g(0)|

≤ |ϕθ(x)− g(x)|+ |ϕθ(0)− g(0)|

≤ ϵ.

16

From this we find

|DiVθ(x)−Dih(x)| = |Di(ϕ(x)− ϕ(0))−Dig(x)|

≤ |Diϕ(x)−Dig(x)|

≤ ϵ

2
,

for all x ∈ Ωδ a.e. Thus

∥Vθ − h∥W 1,∞(Ωδ) ≤ max
(
ϵ,
ϵ

2

)
= ϵ.

To show the above is true for RePU networks whose weight matrices are bounded we

note the following observation: Suppose we have any layer of a RePU network of the form

RePU(Aℓzℓ−1 + bℓ), where Aℓ ∈ Rwℓ×wℓ−1 and bℓ ∈ Rwℓ with wℓ the width of layer ℓ. If Aℓ

and bℓ have max entry L, then both can be decomposed into

Aℓ = A
(ℓ)
1 + · · ·+ A

(ℓ)
N , bℓ = b

(ℓ)
1 + · · ·+ b

(ℓ)
N ,

such that each A
(ℓ)
i ∈ [−1, 1]wℓ×wℓ−1 and b

(ℓ)
i ∈ [−1, 1]wℓ . As RePU activation functions can

exactly represent the identity function Id using weights in [−1, 1] (see for example Lemma

17

2.1 [66]), we rewrite the layer RePU(Aℓzℓ−1 + bℓ) as

RePU(BℓId(Āzℓ−1 + b̄)) = RePU([A
(ℓ)
1 zℓ−1 + b

(ℓ)
1]

+ · · ·+ [A
(ℓ)
N zℓ + b

(ℓ)
N])

= RePU(Aℓzℓ−1 + bℓ),

where N ≤ ⌈L⌉, Bℓ = [Iwℓ
, Iwℓ

, . . . Iwℓ
] contains N order wℓ identity matrices,

Ā = [(A
(ℓ)
1)T , . . . , (A

(ℓ)
N)T]T ,

and b̄ = [(b
(ℓ)
1)T , . . . , (b

(ℓ)
N)T]T .

Combining the above observation and the proof for general RePU feed-forward networks

completes the proof for some bounded weights θ ∈ [−1, 1]m.

In practice, the usefulness of bounding the weights of our network is that once the depth

and size of Lyapunov-Net is fixed, we can ensure the Lipschitz constant of DVθ does not grow

unbounded during training. This guarantees a robust verification method through use of this

Lipschitz constant to ensure our approximating network is indeed a Lyapunov function after

tuning for size and width. We note that while many others [17, 39, 89, 101, 102, 123] consider

the needed size of networks to approximate functions in certain spaces, there are much fewer

results on Lipschitz bounded networks (See for example [51, 110] and references therein).

As network size bounds usually do not reflect the practical reality of many applications of

Lyapunov-Net, we will not exploit such analysis here.

From here on we assume Θ = [−1, 1]m for some m ∈ N.

18

Lemma 3. For any ε ∈ (0, γ√
dLf

) and δ > 0, there exists θ∗ ∈ Θ such that Vθ∗ satisfies

(2.5a) and

DVθ∗(x) · f(x) ≤ −aγ,ε∥x∥, ∀x ∈ Ωδ. (2.6)

where aγ,ε := γ − εLf > 0.

Proof. By Lemma 2, the set of Lyapunov-Nets, denoted by Vϵ
Θ, forms an ε-net of S in

the W 1,∞(Ωδ) sense. That is, for any h ∈ S, there exists θ ∈ Θ such that Vθ ∈ Vε
Θ and

∥Vθ − h∥W 1,∞(Ωδ) < ε. Since V ∗ ∈ S, we know there exists θ∗ ∈ Θ such that Vθ∗ ∈ Vε
Θ and

∥Vθ∗ − V ∗∥W 1,∞(Ωδ) < ε. Therefore

DVθ∗(x) · f(x) = DV ∗(x) · f(x) + (DV ∗(x)−DVθ∗(x)) · f(x)

≤ −γ∥x∥+ ∥DV ∗(x)−DVθ(x)∥ · ∥f(x)∥

≤ −γ∥x∥+ ε
√
dLf∥x∥

= −aγ,ε∥x∥

for all x ∈ Ωδ, where we used the facts that ∥Vθ − V ∗∥W 1,∞(Ωδ) < ε and f is Lf -Lipschitz in

Ω, and f(0) = 0 to obtain the last inequality.

With the set of bounded weights Θ and fixed network Vθ, we know there exists M > 0

such that DVθ(·) · f(·) is M -Lipschitz on Ω for all θ ∈ Θ. Moreover, as we discussed above,

minimizing an empirical loss function based on finitely many sample collocation points cannot

guarantee the result is a Lyapunov function. Hence we provide a theoretical guarantee for

19

finding an δ-accurate Lyapunov function. The following Lemma will be needed:

Lemma 4. For any δ, c ∈ (0, 1), there exists N = N(δ, c) ∈ N, such that for some N

sampling points x(i) ∈ Ωδ where i = 1, . . . , N , we have Ωδ ⊂ ∪Ni=1B(x(i); c∥x(i)∥).

Proof. Define the radi r1, . . . , rk, rk+1 such that δ/
√
d = r1 < r2 < · · · < rk ≤ 1 < rk+1 and

ri+1−ri = cri. The above relation requires ri = (1+c)i−1δ/
√
d. Thus k = ⌊− ln(δ/

√
d)/ ln(1+

c)⌋ + 1. Now define I = {±rj : j ∈ [k]} where [k] := {1, . . . , k} and let X = {x =

(x1, . . . , xd) ∈ Ω : xi ∈ I, i ∈ [d]}. Hence we set N = |X| = (2k)d.

Let y ∈ Ωδ be arbitrary. Then for each component yj of y we know there exists

integer kj ∈ [k] such that |yj| ∈ [rkj , rkj+1]. Therefore, we can choose the grid point

x = (sign(y1)rk1 , . . . , sign(yd)rkd) ∈ X for which

∥x− y∥2 = (rk1 − |y1|)2 + · · ·+ (rkd − |yd|)2

≤ (rk1 − rk1+1)
2 + · · ·+ (rkd − rkd+1)

2

= (crk1)
2 + · · ·+ (crkd)

2

≤ c2∥x∥2.

Thus ∥x− y∥ ≤ c∥x∥. As y ∈ Ωδ is arbitrary, we know Ωδ ⊂ ∪Ni=1B(x(i); c∥x(i)∥).

Theorem 2. For any δ ∈ (0, 1) and aγ,ϵ as defined in Lemma 3, choose any γ̄ ∈ (0, aγ,ϵ)

and 0 < c < γ̄
M
< 1 (if γ̄

M
≥ 1, then choose any c ∈ (0, 1)). Let N and X := {x(i) : i ∈ [N]}

be given as in Lemma 4 and the empirical risk function ℓ̂(θ) = 1
N

∑N
i=1(DVθ(x

(i)) · f(x(i)) +

γ̄∥x(i)∥)+. Then minimizer of ℓ̂ must exist and achieve minimum function value 0. Moreover,

20

for any minimizer θ̂ of ℓ̂(·), the corresponding Vθ̂ is an δ-accurate Lyapunov function of f

on Ω.

Proof. By Lemma 3, we know there exists θ∗ ∈ Θ such that Vθ∗ is positive definite and

DVθ∗(x) · f(x) ≤ −aγ,ϵ∥x∥ ≤ −γ̄∥x∥ for all x ∈ Ωδ. Hence ℓ̂(θ∗) = 0. Given that ℓ̂(θ) is

nonnegative for any θ, we know the minimum value of ℓ̂ on Θ is 0. Let θ̂ be any minimizer

of ℓ̂, then there is also ℓ̂(θ̂) = 0, which implies DVθ̂(x) · f(x) ≤ −γ̄∥x∥ for all x ∈ X.

Now for any y ∈ Ωδ, there exists x ∈ X, such that y ∈ B(x; c∥x∥) due to Lemma 4.

Hence

DVθ̂(y) · f(y) ≤ DVθ̂(x) · f(x) + |DVθ̂(y) · f(y)−DVθ̂(x) · f(x)|

≤ −γ̄∥x∥+M∥y − x∥

≤ −γ̄∥x∥+Mc∥x∥

≤ −(γ̄ −Mc)δ.

Since y is arbitrary, we know Vθ̂ is a δ-accurate Lyapunov function.

2.3.4 Application to control and others

In light of the power of Lyapunov functions, we can employ the proposed Lyapunov-Net to

many control problems of nonlinear dynamical systems in high-dimension. In this subsection,

we instantiate one of such applications of Lyapunov-Net to approximate control Lyapunov

function.

21

Consider a nonlinear control problem x′ = f(x, u) where u : Rd → Rn (n is the dimension

of the control variable at each x) is an unknown state-dependent control in order to steer

the state x from any initial to the equilibrium state 0. To this end, we parameterize the

control as a deep neural network uη : Rd → Rn (a neural network with input dimension d

and output dimension n) where η represents the network parameters of uη. In practice, the

control variable is often restricted to a compact set in Rd due to physical constraints. This

can be easily implemented in a neural network setting. For example, if the magnitude of the

control is required to be in [−β, β] componentwisely, then we can simply apply β · tanh(·) to

the last, output layer of uη.

Once the network structure uη is determined, we can define the risk of the control-

Lyapunov function (CLF):

ℓCLF(θ, η) :=
1

|Ω|

∫
Ω

(DVθ(x) · f(x, uη(x)) + γ∥x∥)2+ dx. (2.7)

Minimizing (2.7) yields the optimal parameters θ and η. In practice, we again approximate

ℓCLF(θ, η) by its empirical expectation ℓ̂CLF(θ, η) at sampled points in Ω, as an analogue to

ℓ(θ) versus ℓ̂(θ) above. Then the minimization can be implemented by alternately updating θ

and η using (stochastic) gradient descent on the empirical risk function ℓ̂CLF. Similar as (2.3),

we have a single term in the loss function in (2.7), which does not have hyper-parameters to

tune and the training can be done efficiently.

22

2.4 Numerical Experiments

2.4.1 Experiment setting

In this section, we demonstrate the effectiveness of the proposed method through a number

of numerical experiments. In our experiments, the value of ᾱ used in (2.2) and the depth

and size of ϕθ used in Vθ for the three test problems are summarized in Table 2.1. We

minimize the empirical risk function ℓ̂ using the Adam Optimizer with learning rate 0.005

and β1 = 0.9, β2 = 0.999 and Xavier initializer. In all tests, we iterate until the associated

risk of (2.4) is below a prescribed tolerance of 10−4. We use a sample size N (values shown

in Table 2.1), i.e., the number of sampled points in Ω in (2.4), such that the associated risk

reduces reasonably fast while maintaining good uniform results over the domain. We note

these points are drawn using a uniform sampling method for simplicity. We finally note in

all experiments the weights remain bounded in [−1, 1]m as noted in our theory.

All the implementations and experiments are performed using PyTorch in Python 3.9

in Windows 10 OS on a desktop computer with an AMD Ryzen 7 3800X 8-Core Processor

at 3.90 GHz, 16 GB of system memory, and an Nvidia GeForce RTX 2080 Super GPU

with 16 GB of graphics memory. The number of iterations needed to reach our stopping

criteria in (2.4) and training time (in seconds) for the three tests are also given in Table

2.1. As discussed in Chapter 1, how the width and depth of a neural network are related to

approximation power is an area of active research. In our experiments, we manually selected

the width and depth as shown in Table 2.1 which yielded good results.

23

Table 2.1 Network parameter setting and training time in the tests.

Test Problem Time Iter. N Depth/Width ᾱ

Curve Tracking 0.5 s 2 100K 3/10 0.5
10d Synthetic DS 1.5 s 2 200K 3/20 0.01
30d Synthetic DS 2.5 s 15 400K 5/20 0.01

2.4.2 Experimental results

To demonstrate the effectiveness of the proposed method, we apply Lyapunov-Net (2.2)

to three test problems: a two-dimensional (2d) nonlinear system from the curve-tracking

application [83], a 10d and 30d synthetic dynamical system (DS) from [36].

2.4.2.1 2-dimensional DS in curve tracking

We apply our method to find the Lyapunov function for a 2d nonlinear DS in a curve-tracking

problem [83]. The DS of x = (ρ, φ) is given by

ρ̇ = − sin(φ), (2.8a)

φ̇ = (ρ− ρ0) cos(φ)− µ sin(φ) + e. (2.8b)

We use the following constants in our experiments: e = 0.15, ρ0 = 1, and µ = 6.42 from [83]

as well as RePU activation.

The problem domain was mapped to Cartesian coordinates around the critical point

x∗ = (1, 0), and converted back when the training is done. The result shows that after only

2 iterations the positive definiteness and negative-orbital-derivative conditions are met. We

used RePU activation which is consistent with the theoretical results provided in Section

24

III-C. However, these results still hold by readily modifying the proofs if the common tanh

activation is used. We have also tested tanh activation in Lyapunov-Net and obtained a

similar performance.

2.4.2.2 10d Synthetic DS

We consider a 10d synthetic DS from [36], which is a vector field defined on [−1, 1]10 and

has an equilibrium at 0. The iteration number and computation time needed for training

are shown in Table 2.1.

2.4.2.3 30d Synthetic DS

We consider the same system as the 10d Synthetic DS but concatenate the function f three

times to get a 30d problem. Figure 2.1 graphed the approximated Lyapunov function Vθ (top

solid) and DVθ ·f (bottom wire) in the (x2, x8) and (x10, x13) planes, using RePU activation.

These plots show that Lyapunov-Net can effectively approximate Lyapunov functions in

such high-dimensional problem. We shall also use this example to compare the convergence

speeds to the Neural Network structures of [16, 36] in the following section.

2.4.3 Comparison with existing DL methods

To demonstrate the significant improvement of Lyapunov-Net over existing DL methods in

approximation efficiency, we compare the proposed Lyapunov-Net to two recent approaches

[16, 36] that also use deep neural networks to approximate Lyapunov functions in continuous

DS setting. Specifically, we use the 30d synthetic DS described above as the test problem

in this comparison. Both [16, 36] employ generic deep network structure of Vθ, and thus

25

x8
−1.00−0.75−0.50−0.250.000.250.500.751.00

x2
−1.00−0.75

−0.50−0.250.00
0.250.50

0.751.00
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5

x10−1.00−0.75−0.50
−0.250.000.25

0.500.751.00x13
−1.00−0.75−0.50−0.250.000.250.500.751.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

Figure 2.1 Plot of the learned Lyapunov-Net Vθ (top solid) and DVθ · f (bottom wire) in the
(x2, x8)-plane (left) and (x10, x13)-plane (right) for the 30d synthetic DS.

require additional terms in their risk functions to enforce positive definiteness of the networks.

Specifically, the following risk function is used from [36]:

ℓ̂1(θ) =
1
N

N∑
i=1

((
DV DL

θ (xi) · f(xi) + ∥xi∥2
)2
+

(2.9)

+
(
20∥xi∥2 − V DL

θ (xi)
)2
+
+
(
V DL
θ (xi)− 0.2∥xi∥2

)2
+

)
,

which aims at an approximate Lyapunov function V DL
θ satisfying 0.2∥x∥2 ≤ V DL

θ (x) ≤

20∥x∥2 and DV DL
θ (x) · f(x) ≤ −∥x∥2 for all x. In [16], the following risk function is used:

ℓ̂2(θ) = V NL
θ (0)2 + 1

N

N∑
i=1

[(DV NL
θ (xi) · f(xi))+ + (−V NL

θ (xi))+], (2.10)

which aims at an approximate Lyapunov function V NL
θ such that V NL

θ (0) = 0, V NL
θ (x) ≥ 0

and DV NL
θ (x) · f(x) ≤ 0 for all x. The activation functions are set to softmax in (2.9) as

suggested in [36] and tanh in (2.10) as suggested in [16]. We shall label these models as

Deep Lyapunov (DL) and Neural Lyapunov (NL) respectively. For Lyapunov-Net we use

(2.4) as it already satisfies the positive definiteness condition. We again do not impose any

26

structural information of the problem into our training, and thus all test methods recognize

the DS as a generic 30d system for the sake of a fair comparison.

We use the value of the less stringent empirical risk function ℓ̂2 with N = 400, 000 defined

in (2.10) as a metric to evaluate all three methods. Specifically, we plot the values of ℓ̂2 (in

log scale) versus iteration number and wall-clock training time (in seconds) in Figure 2.2

using the same learning rate for all methods.

0 20 40 60 80
iter.

10−8

10−6

10−4

10−2

100

102

ris
k

DL
NL
LN

0 5 10 15
time (s)

10−8

10−6

10−4

10−2

100

102

ris
k

DL
NL
LN

Figure 2.2 The value of empirical risk function ℓ̂2 (in log scale) defined in (2.10) versus
iteration number (left) and wall-clock training time in seconds (right) for the three network
and training settings: DL [36] (red dashed), NL [16] (green dotted), and Lyapunov-Net
denoted LN (blue solid). Note that the risk of Lyapunov-Net often hits 0, the most desired
risk function value, explaining the dropoff.

We see in Figure 2.2 that Lyapunov-Net (LN) has risk value decaying much faster than

the other methods. Further, Lyapunov-Net training does not need hyper-parameter tuning

to achieve this speed, whereas DL and NL require careful and tedious tuning to balance the

different terms in the risk function in order to achieve satisfactory results as shown in Figure

2.2. This highlights the efficiency and simplicity of Lyapunov-Net in finding the desired

Lyapunov functions.

27

We note that the performance of all methods can be further improved using additional

structural information as discussed in [36] and falsification techniques in training as in [16].

We leave these improvements to future investigations.

2.4.4 Application in Control

In this test, we compare Lyapunov-Net and SOS/SDP methods in the problem of estimating

the Region of Attraction (ROA) for the classical inverted pendulum control problem. We

shall show how the Lyapunov-Net framework allows simultaneous training of the control

policy and outperforms SOS/SDP methods by producing a larger ROA.

The inverted pendulum is an often considered problem in control theory see [16, 98]. For

this problem we have dynamics x = (θ, θ̇) governed by ml2θ̈ = mgl sin θ − βθ̇ + u, where

u = u(x) is the control. We use g = 9.82, l = 0.5, m = 0.15, and β = 0.1 for our experiments.

We shall use this model to compare SOS/SDP type methods to Lyapunov-Net when it comes

to estimating the ROA of this problem using the Lyapunov candidate function they both

find within respective valid regions.

We adjust our model slightly so that we learn a u policy alongside Vθ. This is done by

implementing a single layer neural network ū which performs a simple linear transform for

some learned matrix A. We use such a simple control so that the control can be used in the

SOS/SDP algorithm. In the absence of such a comparison, we could make ū a much more

complex and further improved control policy. The training method is the same for both

networks.

In Figure 2.3, we use tanh as activation in Vθ because while the error bounds are similar

28

angle
−6 −4 −2 0 2 4 6 angular velocity

−6−4−2 0 2 4 6

DV
f,

V

−1400
−1200
−1000
−800
−600
−400
−200

0

−6 −4 −2 0 2 4 6

Angle(rad)

−4

−2

0

2

4

An
gu

la
r v

el
oc

ity

SOS
Ours

Figure 2.3 Left: learned Lyapunov-Net Vθ (top solid) and DVθ · f (bottom wire) for the 2d
inverted pendulum in phase and angular velocity space. Right: Comparison of ROA for
standard SOS/SDP methods and for Lyapunov-Net with orange sample trajectories.

with RePU, tanh has slightly better performance in this case. Once trained the u-policy

found is used for the SOS type method. As SOS methods are only applicable to polynomial

systems, we apply a Taylor approximation to the dynamics of the system and then compute

a sixth-order polynomial candidate using the standard SOS/SDP approach. We finally

compute the ROA determined by both algorithms using the level-sets of the functions over

the valid regions they found. We find that the area of the region found by Lyapunov-Net is

larger than that found by SOS. This result is plotted in Figure 2.3 where the orange paths

are a few sample trajectories. We note the similarity of our results to [16], who in addition

to the above, found examples where SOS methods produced incorrect ROA regions on this

same problem.

29

2.5 Conclusions

In this part, we have constructed a versatile deep neural network architecture called Lyapunov-

Net to approximate Lyapunov function for general high-dimensional dynamical systems.

We provided theoretical justifications on approximation power and certificate guarantees

of Lyapunov-Nets. Applications to control Lyapunov functions are also considered. We

demonstrated the effectiveness of our method on several test problems. The Lyapunov-Net

framework developed in the present work is expected to be applicable to a much broader

range of control and stability problems.

30

PART 3

NEURAL NETWORK CONTROL FOR HIGH-DIMENSIONAL
EVOLUTION PDES

We now switch gears and consider applications of DNNs to another high-dimensional prob-

lem. Instead of concerning ourselves with approximating functions as in Lyapunov-net, we

will develop a novel approach for finding solution operators for PDEs. This is an infinite-

dimensional problem, but we shall discuss in this and the next part how to reduce this to a

finite-dimensional optimization problem in a similar vein as what we did when developing

Lyapunov-net. We call the forthcoming approach “Neural Control” and will introduce the

relevant literature on the topic as we proceed. As Partial differential equations (PDEs) are

ubiquitous in modeling and are vital in numerous applications from finance, engineering, and

science [30] obtaining approximations of their solutions is of vital importance.

3.1 Introduction

DNNs have emerged as powerful tools for solving high-dimensional PDEs [7, 21, 28, 43, 44,

46, 62, 94]. For example, in [7, 21, 28, 94, 124], the solution of a given PDE is parameterized

as a DNN, and the network parameters are trained to minimize potential violations (in

various definitions) to the PDE. These methods have shown numerous successes in solving a

large variety of PDEs empirically. These methods aim at solving specific instances of PDEs,

and as a consequence, they need to start from scratch for the same PDE whenever the initial

and/or boundary value changes.

To solve the problem of finding PDEs for more than one instance, recent studies have

31

attempeted to find solution operators of PDEs [67, 76]. These methods aim at finding

the map from the problem’s parameters to the corresponding solution. Finding solution

operators has substantial applications as the same PDE may need to run many times with

different initial or boundary value configurations. However, existing methods fall short in

tackling high-dimensional problems as many require spatial discretization to represent the

solution operators using DNNs.

In the next two chapters, we will propose a new approach for finding solution operators

of high-dimensional evolution PDEs. For a given PDE, we first parameterize its solution

as a DNN, whose parameters denoted as θ are to be determined. Then we seek to find a

vector field on the parameter space that describes how θ evolves in time. This vector field

essentially acts as a controller on the parameter space, steering the parameters so that the

induced DNN evolves and approximates the PDE solution for all time. Once such a vector

field is found, we can easily change the initial conditions of the PDE by simply starting

at a new point in the parameter space. Then we follow the control vector field to find

the parameters trajectory that gives an approximation of the time-evolving solution. Thus,

different initial conditions can be considered for the same PDE without solving it repeatedly.

The new contributions of this part to the existing literature can be summarized as follows:

1. We develop a new computational framework to find the solution operator of any given

initial value problem (IVP) defined by high-dimensional nonlinear evolution PDEs.

This framework is purely based on the evolution PDE itself and does not require any

solutions of the PDE for training. Once we find the solution operator, we can quickly

32

compute solutions of the PDE with any initial value at a low computational cost.

2. We provide comprehensive theoretical analysis to establish error bounds for the pro-

posed method when solving linear PDEs and some special nonlinear PDEs.

3. We conduct a series of numerical experiments to demonstrate the effectiveness of the

proposed method in solving a variety of linear and nonlinear PDEs.

3.2 Background

3.2.1 Classical methods for solving PDEs

Classical numerical methods for solving PDEs, such as finite difference [113] and finite ele-

ment methods [55], discretize the spatial domain using mesh or triangulation. These meth-

ods convert a PDE to its discrete counterpart, which is a system of algebraic equations

with finite number of unknowns, and solve the system to obtain an approximate solution

on the pre-selected grid points [3, 29, 91, 112]. These methods have been significantly ad-

vanced in the past decades, and they can handle complicated situations such as irregular

domains. However, they severely suffer from the “curse of dimensionality” when applied to

high-dimensional problems.

3.2.2 Neural network based methods for solving PDEs

Early attempts using shallow neural networks to solve PDEs can be seen in [24, 62, 63, 64].

Related, in recent years DNNs have demonstrated striking power in solving PDEs through

various approaches [7, 9, 28, 86, 94, 104, 121, 124]. DNNs have demonstrated extraordinary

33

potential in solving many high-dimensional nonlinear PDEs, which were considered compu-

tationally intractable using classical methods. For example, a variety of DNN based methods

have been proposed based on the strong form [9, 24, 58, 80, 84, 87, 88, 94, 95], the variational

form [28], and the weak form [7, 124] of PDEs. They are considered with adaptive collocation

strategy [5], adversarial inference procedure [122], oscillatory solutions [14], and multiscale

methods [15, 73, 117]. Improvements of these methods with adaptive activation functions

[54], networks structures [37, 38, 49], boundary conditions [25, 79], structure probing [49], as

well as their convergence [78, 103], are also studied. Further, some methods can also solve

inverse problems, such as parameter identification.

For a class of high-dimensional PDEs with equivalent backward stochastic differential

equations (SDEs) that arise from Feynman-Kac theory, deep learning methods have been

used leveraging the Feynman-Kac theorem [8, 27, 33, 43, 44, 45, 50, 52, 90]. These methods

are shown to be good even in very high dimensions (¿200) [44, 50, 90], however, they are

limited to solving the special type of evolution equations whose generator function has a

corresponding SDE.

For evolution PDEs, parameter evolution algorithms [4, 12, 26] have also been considered.

These methods parameterize the PDE solution as a neural network [12, 26] or an adaptively

chosen ansatz as discussed in [4]. In these methods, the parameters are evolved forward

in time through a time marching scheme, where at each step a linear system [12, 26] or a

constrained optimization problem [4] needs to be solved.

34

3.2.3 Learning solution operator of PDEs

The aforementioned methods aim at solving a specific instance of a given PDE, and they

need to be rerun from scratch when any part of the problem configuration (e.g., initial

value, boundary value, problem domain) changes. In contrast, the solution operator of a

PDE directly maps a problem configuration to its corresponding solution. To this end,

several methods have been proposed to approximate Green’s functions for some linear PDEs

[10, 11, 71, 111], as solutions to such PDEs have explicit expression based on their Green’s

functions. However, this approach only applies to a small class of linear PDEs whose solution

can be represented using Green’s functions. Moreover, Green’s functions have singularities

and it requires special care to approximate them using neural networks. For example, rational

functions are used as activation functions of DNNs to address singularities in [10]. In [11],

the singularities are represented with the help of fundamental solutions.

For general nonlinear PDEs, DNNs have been used for operator approximation and meta-

learning for PDEs [41, 67, 76, 77, 82, 97, 118, 119]. For example, the work [41] considers

solving parametric PDEs in low-dimension (d ≤ 3 for the examples in the paper). Their

method requires discretization of the PDE system and needs to be supplied by many full-

order solutions for different combinations of time discretization points and parameter se-

lections for their network training. Their method applies proper orthogonal decomposition

to these solutions to obtain a reduced-order basis to construct solutions for new problems.

Another approach is DeepONets [76, 77, 118] which seek to approximate solution mappings

by using a special neural network consisting of a “branch” and “trunk” network. FNOs

35

[67, 119] use Fourier transforms to map a neural network to a low dimensional space and

then back to the solution. In addition, several works that apply spatial discretization of the

problem or transform domains and use convolutional neural networks (CNNs) [42, 96, 125]

or graph neural networks (GNNs) [61, 68, 75]. Interested readers may also refer to gen-

eralizations and extensions of these methods in [13, 19, 20, 31, 60, 68, 77, 82, 87]. A key

similarity of all these methods is they require certain domain discretization and often a large

number of labeled pairs of IVP initial conditions (or PDE parameters) and the correspond-

ing solution, obtained through other methods, for training. This limits their applicability to

high-dimensional problems where such training data is unavailable, or the mesh is prohibitive

to generate due to curse-of-dimensionality.

3.2.4 Differences between the proposed approach and existing ones

Different from all existing approaches, in this chapter we propose to approximate solution

operators of evolution PDEs through controlling the parameters of the DNN in a relevant

parameter space induced by DNNs’ architecture. Unlike the existing solution operator ap-

proximation methods (e.g., DeepONet [76] and FNO [67]) which seek to directly approximate

the infinite-dimensional operator, our approach is based on the relation between evolving so-

lutions and their projected trajectories in the parameter space. This leads us to convert

the problem of finding a solution operator over an infinite-dimensional function space into

a control vector field optimization problem over a finite-dimensional parameter space. As a

result, the problem of solving an evolution PDE in continuous space is reduced to numeri-

cally solving a system of ODEs, which can be done accurately with very low computational

36

complexity. Moreover, our approach does not require spatial discretization of the problem do-

main in any problem nor does it need any basis function representation throughout problem

formulation and computation. We provide mathematical insights into the relevant parameter

submanifold and its tangent spaces and establish their connection to the finite-dimensional

parameter space. These new insights led us to the proposed approach which approximates

solution operators of PDEs by controlling network parameters in the parameter space. These

new features also enable our approach to solve evolution PDEs in high-dimensional cases.

This is a significant advantage over existing operator learning methods such as DeepONet or

FNOs as their spatial discretization schemes, which are used to generate the training data,

hinder their application to high-dimensional cases.

3.3 Proposed Method

As discussed, we parameterize solutions u of our PDE as a DNN, which is denoted by uθ with

parameters θ, i.e., uθ is a parametric function determined by the value of its finite-dimensional

parameters θ, and uθ is used to approximate u. We identify this finite-dimensional parameter

space by restricting ourselves to a subset Θ ⊂ Rm such that all the parameters θ we care

about belong to Θ and we define the submanifold M of functions by

M := {uθ : Ω→ R | θ ∈ Θ}. (3.1)

As we can see, uθ defines a mapping from the parameter space Θ to the submanifold M of

the infinite-dimensional function space. We call M the parameter submanifold determined

37

by uθ.

To find the solution operator, we propose to build a control vector field V in the parameter

space Θ where θ resides. Then the solution operator can be implemented as a fast numerical

solver of the ODE defined by V . More precisely, to approximate a time-evolving function

u∗(·, t), e.g., the solution of an evolution PDE, over time horizon [0, T] using the DNN uθ,

we need to find a trajectory {θ(t) ∈ Θ | 0 ≤ t ≤ T} in the parameter space Θ so that uθ(t)(·)

is close to u∗(·, t) in the function space for every t ∈ [0, T]. For example, if we consider

L2(Ω) as the function space, by closeness we mean ∥uθ(t) − u∗(·, t)∥L2(Ω) is small for all t

(hereafter we denote ∥ ·∥p = ∥ ·∥Lp(Ω) for notation simplicity). Notice that {uθ(t) | 0 ≤ t ≤ T}

is a trajectory on M, whereas u∗(·, t) is a trajectory in the full space L2(Ω). To see how

this relates to a solution operator imagine we first find the parameters θ(0) such that uθ(0)

approximates some starting function g, then we follow the control vector field V to obtain a

trajectory {θ(t) | 0 ≤ t ≤ T} in Θ with low computational cost, which automatically induces

a trajectory uθ(t) to approximate the true solution u of some IVP with the initial value g.

We make these ideas concrete in the following subsections.

3.3.1 Problem space and detailed methodology

Let Ω be an open bounded set in Rd and F a nonlinear differential operator of functions

u : Ω → R with necessary regularity conditions, we consider the IVP of the evolution PDE

38

defined by F with arbitrary initial value as follows:
∂tu(x, t) = F [u](x, t), x ∈ Ω, t ∈ (0, T],

u(x, 0) = g(x), x ∈ Ω,

(3.2)

where T > 0 is some prescribed terminal time, and g : Rd → R stands for an initial value.

For ease of presentation, we assume zero Dirichlet boundary condition u(x, t) = 0 for all

x ∈ Ω̄ and t ∈ [0, T] (for compatibility we henceforth assume g(x) has zero trace on ∂Ω)

throughout this chapter. We denote ug as the solution to the IVP (3.2) with this initial

g. The solution operator SF of the IVP (3.2) is thus the mapping from the initial g to the

solution ug :

SF : C2(Ω̄)→ C2,1(Ω̄× [0, T]), such that g 7→ SF (g) := ug, (3.3)

where C2(Ω̄) := C(Ω̄) ∩ C2(Ω) for short. As a reminder, our goal is to find a numerical

approximation to SF . Namely, we want to find a fast computational scheme SF that takes

any initial g as input and accurately estimates ug with low computation complexity.

For ease of presentation, we use autonomous, second-order nonlinear differential operators

F [u] = F (x, u,∇xu,∇2
xu) as an example and take Ω = (0, 1)d in (3.2) to describe our main

idea below. Extensions to general non-autonomous nonlinear differential operators and PDEs

defined on an open bounded set Ω ⊂ Rd with given boundary values will be discussed in

Section 3.5.

We are unconcerned with the specific form of uθ and only assume that uθ(x) = u(x; θ) is

C1 smooth with respect to θ. This is a mild condition satisfied by many common models: if

39

uθ is a linear combination of basis functions and θ represents the combination coefficients,

then uθ is linear and hence smooth in θ; and if uθ is a feedforward DNN then uθ is smooth in

θ as long as all activation functions are smooth. Suppose there exists a trajectory {θ(t) | 0 ≤

t ≤ T} in the parameter space Θ such that its corresponding uθ(t) approximates the solution

of the IVP, we must have
∂tuθ(t)(x) = ∇θu(x; θ(t)) · θ̇(t) = F [uθ(t)](x), ∀x ∈ Ω, t ∈ (0, T],

uθ(0)(x) = g(x), ∀x ∈ Ω.

(3.4)

To compute uθ(t), it is sufficient to find a control vector (velocity) field VF : Θ→ Rm, in the

sense of θ̇(t) = VF (θ(t)), that steers the trajectory θ(t) along the correct direction starting

from the initial θ(0) satisfying uθ(0)(x) = g(x).

This observation suggests for the evolution equation in (3.4) to hold, it suffices to find a

vector field VF such that

∇θuθ · VF (θ) = F [uθ] (3.5)

for all θ ∈ Θ. It is important to note that VF only depends on the nonlinear differential

operator F of the original evolution PDE, but not any actual initial value g of the IVP. Once

some VF is found we can effectively approximate the solution of the IVP with any initial

value g: we first set θ(0) = θg, where θg denotes the parameters such that uθg fits g, then

we numerically solve the following ODE in the parameter space Θ (which can be fast) using

40

<latexit sha1_base64="owT9XyUBjs9ZC3PFA852Loog0D0=">AAAB73icbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmQ2dl1plcIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxup37rCbQRsXrAcQJ+xAZKhIIztFK7i0NA1vN65YpbdWegy8TLSYXkqPfKX91+zNMIFHLJjOl4boJ+xjQKLmFS6qYGEsZHbAAdSxWLwPjZ7N4JPbFKn4axtqWQztTfExmLjBlHge2MGA7NojcV//M6KYbXfiZUkiIoPl8UppJiTKfP077QwFGOLWFcC3sr5UOmGUcbUcmG4C2+vEyaZ1Xvsnpxf16p3eRxFMkROSanxCNXpEbuSJ00CCeSPJNX8uY8Oi/Ou/Mxby04+cwh+QPn8wfQp4/W</latexit>

✓1

<latexit sha1_base64="75P6BuBWgeSHpgY1v1EwOLqfxBg=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAILkpJiq9l0Y3LCrYVmhAmk0k7dCYJMzdCCXXjr7hxoYhb/8Kdf+O0zUJbD1w4c869zL0nSDlTYNvfRmlpeWV1rbxe2djc2t4xd/c6KskkoW2S8ETeB1hRzmLaBgac3qeSYhFw2g2G1xO/+0ClYkl8B6OUegL3YxYxgkFLvnngwoAC9hs1l4QJqFrxFr5Ztev2FNYicQpSRQVavvnlhgnJBI2BcKxUz7FT8HIsgRFOxxU3UzTFZIj7tKdpjAVVXj69YGwdayW0okTqisGaqr8nciyUGolAdwoMAzXvTcT/vF4G0aWXszjNgMZk9lGUcQsSaxKHFTJJCfCRJphIpne1yABLTECHVtEhOPMnL5JOo+6c189uT6vNqyKOMjpER+gEOegCNdENaqE2IugRPaNX9GY8GS/Gu/Exay0Zxcw++gPj8wcmFpa3</latexit>

✓2, · · · , ✓m

<latexit sha1_base64="sF5EPWZ8sLIV+bdaqaXVv34cL48=">AAAB8HicdVBNSwMxEM3Wr1q/qh69BItQLyVbtLa3ohePFeyHtEvJptk2NJtdklmhlP4KLx4U8erP8ea/MdtWUNEHA4/3ZpiZ58dSGCDkw8msrK6tb2Q3c1vbO7t7+f2DlokSzXiTRTLSHZ8aLoXiTRAgeSfWnIa+5G1/fJX67XuujYjULUxi7oV0qEQgGAUr3fVgxIEW4bSfL5ASsahUcErcKnEtqdWq5XINu3OLkAJaotHPv/cGEUtCroBJakzXJTF4U6pBMMlnuV5ieEzZmA5511JFQ2686fzgGT6xygAHkbalAM/V7xNTGhozCX3bGVIYmd9eKv7ldRMIqt5UqDgBrthiUZBIDBFOv8cDoTkDObGEMi3srZiNqKYMbEY5G8LXp/h/0iqX3Erp/OasUL9cxpFFR+gYFZGLLlAdXaMGaiKGQvSAntCzo51H58V5XbRmnOXMIfoB5+0ToBiQUg==</latexit>

✓(t)
<latexit sha1_base64="PLfWW0Hrt7g/XkZqUG6qAqN8nfE=">AAAB+HicdVBNSwMxEM3Wr1o/uurRS7AI9VJ2i9b2VvTisYK1hXYp2TTbhmazSzIr1KW/xIsHRbz6U7z5b8y2FVT0wcDjvZlk5vmx4Boc58PKrayurW/kNwtb2zu7RXtv/1ZHiaKsTSMRqa5PNBNcsjZwEKwbK0ZCX7COP7nM/M4dU5pH8gamMfNCMpI84JSAkQZ2sT+MIO3DmAGZleFkYJecimNQq+GMuHXHNaTRqFerDezOLccpoSVaA/vdvECTkEmggmjdc50YvJQo4FSwWaGfaBYTOiEj1jNUkpBpL50vPsPHRhniIFKmJOC5+n0iJaHW09A3nSGBsf7tZeJfXi+BoO6lXMYJMEkXHwWJwBDhLAU85IpREFNDCFXc7IrpmChCwWRVMCF8XYr/J7fVilurnF2flpoXyzjy6BAdoTJy0TlqoivUQm1EUYIe0BN6tu6tR+vFel205qzlzAH6AevtEwXsk1o=</latexit>

✓̇(t)

<latexit sha1_base64="Ol6S1sY02a6Ej6uzacw+4LLqBI4=">AAAB+HicdVDLSgNBEJyNrxgfWfXoZTAI8RJ2g8bkFhDEYwTzgOyyzE4myZDZBzO9YlzyJV48KOLVT/Hm3zibRFDRgoaiqpvuLj8WXIFlfRi5ldW19Y38ZmFre2e3aO7td1SUSMraNBKR7PlEMcFD1gYOgvViyUjgC9b1JxeZ371lUvEovIFpzNyAjEI+5JSAljyz2PFS547Pyg6MGZATzyxZFUujVsMZseuWrUmjUa9WG9ieW5ZVQku0PPPdGUQ0CVgIVBCl+rYVg5sSCZwKNis4iWIxoRMyYn1NQxIw5abzw2f4WCsDPIykrhDwXP0+kZJAqWng686AwFj99jLxL6+fwLDupjyME2AhXSwaJgJDhLMU8IBLRkFMNSFUcn0rpmMiCQWdVUGH8PUp/p90qhW7Vjm7Pi01L5dx5NEhOkJlZKNz1ERXqIXaiKIEPaAn9GzcG4/Gi/G6aM0Zy5kD9APG2yfM8pM5</latexit>

V⇠(✓)

<latexit sha1_base64="sdpZnQ16RUeWbl3sUdiAsoavelw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV3xdQwI4jFCXpAsYXbSm4yZnVlmZoWw5B+8eFDEq//jzb9xkuxBEwsaiqpuurvChDNtPO/bWVldW9/YLGwVt3d29/ZLB4dNLVNFsUEll6odEo2cCWwYZji2E4UkDjm2wtHt1G89odJMiroZJxjEZCBYxCgxVmp260M0pFcqexVvBneZ+DkpQ45ar/TV7UuaxigM5UTrju8lJsiIMoxynBS7qcaE0BEZYMdSQWLUQTa7duKeWqXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroJMiaS1KCg80VRyl0j3enrbp8ppIaPLSFUMXurS4dEEWpsQEUbgr/48jJpnlf8q8rlw0W5epfHUYBjOIEz8OEaqnAPNWgAhUd4hld4c6Tz4rw7H/PWFSefOYI/cD5/AHdrjxY=</latexit>

⇥
<latexit sha1_base64="J3vmaob7Cap/fj5SM2z8aLaIXmY=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kQxI1QwT5gOpRMmmlDM8mQ3BHK0M9w40IRt36NO//GTDsLbT0QOJxzLzn3hIngBlz32ymtrK6tb5Q3K1vbO7t71f2DtlGppqxFlVC6GxLDBJesBRwE6yaakTgUrBOOb3K/88S04Uo+wiRhQUyGkkecErCS34sJjCgR2f20X625dXcGvEy8gtRQgWa/+tUbKJrGTAIVxBjfcxMIMqKBU8GmlV5qWELomAyZb6kkMTNBNos8xSdWGeBIafsk4Jn6eyMjsTGTOLSTeUSz6OXif56fQnQdZFwmKTBJ5x9FqcCgcH4/HnDNKIiJJYRqbrNiOiKaULAtVWwJ3uLJy6R9Vvcu6xcP57XGbVFHGR2hY3SKPHSFGugONVELUaTQM3pFbw44L8678zEfLTnFziH6A+fzB4b+kXE=</latexit>M

<latexit sha1_base64="GhjoGVRmqLcGb/Mbs1Lsk/QXMpc=">AAAB9HicdVBdSwJBFJ21L7Mvq8dehiSwF5mVMn0TgujRIFPQRWbHUQdnZ7eZu4Is/o5eeiii135Mb/2bZtWgog5cOJxzL/fe40dSGCDkw8msrK6tb2Q3c1vbO7t7+f2DOxPGmvEmC2Wo2z41XArFmyBA8nakOQ18yVv++DL1WxOujQjVLUwj7gV0qMRAMApW8uJe0oURB1qE01kvXyAlYlGp4JS4VeJaUqtVy+UaducWIQW0RKOXf+/2QxYHXAGT1JiOSyLwEqpBMMlnuW5seETZmA55x1JFA268ZH70DJ9YpY8HobalAM/V7xMJDYyZBr7tDCiMzG8vFf/yOjEMql4iVBQDV2yxaBBLDCFOE8B9oTkDObWEMi3srZiNqKYMbE45G8LXp/h/clcuuZXS+c1ZoX61jCOLjtAxKiIXXaA6ukYN1EQM3aMH9ISenYnz6Lw4r4vWjLOcOUQ/4Lx9AgAqkko=</latexit>u✓(t)

<latexit sha1_base64="1TAdoT6K1LM81sOdXNq5fu6ANOg=">AAACGHicdVDLSgMxFM34rPVVdekmWIS6qZmitd0VBHFZwT6gHYZMmrahmQfJHaEM/Qw3/oobF4q47c6/MdMHqOiBwOGc+8g9XiSFBkI+rZXVtfWNzcxWdntnd28/d3DY1GGsGG+wUIaq7VHNpQh4AwRI3o4Up74necsbXad+64ErLcLgHsYRd3w6CERfMApGcnPn3YgqEFS6SReGHOgEx0tagLMJ7vZCWFpGcHN5UiQG5TJOiV0htiHVaqVUqmJ7ZhGSRwvU3dzUTGCxzwNgkmrdsUkETpIuZZJPst1Y84iyER3wjqEB9bl2ktlhE3xqlB7uh8q8APBM/d6RUF/rse+ZSp/CUP/2UvEvrxNDv+IkIohi4AGbL+rHEkOI05RwTyjOQI4NoUwJ81fMhlRRBibLrAlheSn+nzRLRbtcvLy7yNduFnFk0DE6QQVkoytUQ7eojhqIoUf0jF7Rm/VkvVjv1se8dMVa9ByhH7CmX+J0oPM=</latexit>

@✓u✓(t)✓̇(t)

<latexit sha1_base64="ibjgXjNxdO7CHcQGqXwC02Yu4YM=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyURX8uCIC4r2Ac0IUymk3boZBJmboQSiht/xY0LRdz6Fe78G6dtFtp6YOBwzr3cOSdMBdfgON9WaWl5ZXWtvF7Z2Nza3rF391o6yRRlTZqIRHVCopngkjWBg2CdVDESh4K1w+H1xG8/MKV5Iu9hlDI/Jn3JI04JGCmwDzwYMCDYi0mqIcFZkM+UcWBXnZozBV4kbkGqqEAjsL+8XkKzmEmggmjddZ0U/Jwo4FSwccXLNEsJHZI+6xoqScy0n08jjPGxUXo4SpR5EvBU/b2Rk1jrURyayZjAQM97E/E/r5tBdOXnXKYZMElnh6JMYJN10gfuccUoiJEhhCpu/orpgChCwbRWMSW485EXSeu05l7Uzu/OqvWboo4yOkRH6AS56BLV0S1qoCai6BE9o1f0Zj1ZL9a79TEbLVnFzj76A+vzB5Gil5M=</latexit>

✓ 7! u✓

Figure 3.1 Schematic plot of pulling back trajectories (solid and dashed blue curves) in
M = {uθ : θ ∈ Θ} to trajectories in the parameter space Θ. Here each trajectory in M

represents the reduced-order model (e.g., DNN) uθ(t)(·) approximating the PDE solution
u∗(t, ·) starting from a given initial, and it is pulled back to the trajectory θ(t) (we use
θ(t) := θ(t) as a trajectory here to avoid confusion with components θ1, . . . , θm) in Θ; and
Vξ is a DNN approximating the control vector field VF in Θ.

the control vector field VF : 
θ̇(t) = VF (θ(t)), ∀ t ∈ (0, T],

θ(0) = θg.

(3.6)

The solution trajectory {θ(t) | 0 ≤ t ≤ T} of the ODE (3.6) induces a path {uθ(t) | 0 ≤ t ≤

T} in M as an approximation to the solution of the IVP. The computational cost is thus

composed of two parts: finding the parameters θg of uθ to fit g and numerically solving the

ODE (3.6), both of which are substantially cheaper than solving the IVP (3.2).

The main question is how to get the control vector field VF in (3.6)? As an explicit form

of VF is unknown, we choose to express VF in a general parametric form Vξ with parameters

ξ to be determined. Specifically, we propose to set Vξ as another DNN where ξ represents

the set of learnable network parameters in Vξ. A schematic plot of the pullback mechanism

41

and the control vector field in Θ is provided in Figure 3.1. We call Vξ the neural control

field. We learn the parameters ξ by minimizing the following loss function:

ℓ(ξ) :=

∫
Θ

∥∇θuθ · Vξ(θ)− F [uθ]∥22 dθ. (3.7)

In practice, we approximate the integral in ℓ by Monte Carlo integration. We sample K

points {θk | k = 1, . . . , K} uniformly from Θ (here the subscript k in θk stands for the kth

point among the K points sampled in Θ) and form the empirical loss function

ℓ̂(ξ) = K−1 ·
K∑
k=1

∥∇θuθk · Vξ(θk)− F [uθk]∥22 (3.8)

Then we minimize ℓ̂(ξ) with respect to ξ, where the L2 norm is also approximated by Monte

Carlo integration on Ω. The training of Vξ is summarized in Algorithm 1.

Algorithm 1 Training neural control Vξ
Require: Reduced-order model structure uθ and parameter set Θ. Control vector field

structure Vξ. Error tolerance ε.
Ensure: Optimal control parameters ξ.
1: Sample {θk}Kk=1 uniformly from Θ and {xn}Nn=1 from Ω.

2: Form empirical loss ℓ̂(ξ) as in (3.30).
3: Minimize ℓ̂ with respect to ξ using any optimizer (e.g., ADAM or AdaGrad) until ℓ̂(ξ) ≤
ε.

Once we trained the vector field Vξ, we can implement the solution operator SF in the

following two steps: we first find a θ(0) such that uθ(0) fits g, i.e., find θ(0) that minimizes

∥uθ − g∥2. This can be done by sampling {xn}Nn=1 from Ω and minimizing the empiri-

cal squared L2 norm (1/N) ·∑N
n=1 |uθ(xn) − g(xn)|2 with respect to θ. Then we solve the

ODE (3.6) using any numerical ODE solver (e.g., Euler, 4th order Runge-Kutta, predictor-

corrector) with θ(0) as the initial value. Both steps can be done efficiently and the total

42

computational cost is substantially lower than that of solving the original IVP (3.2) again.

We summarize how neural control solves IVPs in Algorithm 2. Further details on the prac-

tical implementation of Algorithm 1 and 2 are discussed in Section 3.4.

Algorithm 2 Implementation of solution operator SF of the IVP (3.2) using trained control
Vξ
Require: Initial value g and tolerance ε0. Reduced-order model uθ and trained neural

control Vξ.

Ensure: Trajectory θ̂t such that uθ̂t approximate the solution SF [g] of the IVP (3.2).
1: Compute initial parameters θ(0) such that ∥uθ(0) − g∥2 ≤ ε0.

2: Use any ODE solver to compute θ̂t to solve (3.6) with approximate field Vξ and initial
θ(0).

3.3.2 Error analysis

In this subsection, we develop an error estimate of the proposed method. We first focus on

the error due to projection onto the tangent space Tuθ
M in the L2 space in Section 3.3.2.1.

Then we establish the solution approximation error for linear and semilinear parabolic PDEs

in Section 3.3.2.2. For ease of discussion, we again assume zero Dirichlet boundary condition

u(x, t) = 0 for all x ∈ Ω̄ and t ∈ [0, T], and we let Ω = (0, 1)d ⊂ Rd be the unit open cube

in Rd and Θ some open bounded set in Rm (note that our analysis below applies as long as

Ω is open and bounded). We let F [u] := F (u,∇u,∇2u) be a nonlinear differential operator

with necessary regularity conditions to be specified later and allows for a unique solution to

the PDE for each initial. Additional requirements on the regularity of uθ will be given when

needed.

43

3.3.2.1 Approximation error of control vector field

We first investigate the main source of error when using a reduced-order model to approx-

imate the time-evolving solution of the given PDE. We show that this error is due to the

imperfect representation of F [uθ] using ∇θuθ in (3.5). Specifically, due to the approximation

of reduced-order models, Tuθ
M is only a finite-dimensional subspace of L2, and thus we can

only approximate the projection of F [uθ] onto this tangent space. We will need the following

assumptions on the regularity of uθ and F .

Assumption 3. The reduced-order model uθ(·) ∈ C3(Ω)∩C(Ω̄) for every θ ∈ Θ̄ and u(x; ·) ∈

C2(Θ) ∩ C(Θ̄). Moreover, there exists L > 0 such that for all θ ∈ Θ̄

F [uθ] ∈ FL := {f ∈ C1(Ω) ∩ C(Ω̄) : ∥f∥∞ ≤ L, ∥∇f∥∞ ≤ L}. (3.9)

Assumption 3 provides some sufficient regularity conditions on the reduced-order model

uθ and boundedness of F [uθ] and its gradient to be used in our error estimates. Notice

that we consider F as second-order differential operator here and therefore the assumption

uθ ∈ C3(Ω) ensures that uθ(x),∇uθ(x),∇2uθ(x) are all sufficiently smooth. The regularity

condition on F in Assumption 3 requires that the mapping F [uθ](x) is a C1 function and

have magnitudes and gradients bounded by L over Ω̄. These assumptions are generally mild

as we will use reduced-order models smooth in (x, θ), e.g., a DNN with smooth activation

functions, and the operator F is sufficiently regular.

Assumption 4. For any ε̄ > 0, there exist a reduced-order model uθ and a bounded open

44

set Θ ⊂ Rm, such that for every θ ∈ Θ̄ there exists a vector αθ ∈ Rm satisfying

∥αθ · ∇θuθ − F [uθ]∥2 ≤ ε̄.

Remark 1. Assumption 4 provides an upper bound on the error when projecting F [uθ] onto

the tangent space Tuθ
M, which is spanned by the functions in ∇θuθ. This error bound is

determined by the choice of uθ and the parameter set Θ. This can be seen as a first move,

we shall show in chapter 4 a way to extend this assumption with some basic requirements on

uθ but for the more general treatment of this subject presented in this chapter we will keep

uθ as a more general model and simply assume Assumption 4 holds.

We provide an example of a neural network with a special structure to justify the rea-

sonableness of Assumption 4.

Example 1. Let ε̄ > 0 and {φj}∞j=1 be a complete smooth orthonormal basis (e.g., generalized

Fourier basis) for L2(Ω). Suppose there exist C > 0, γ > 1, and C0 > 0 such that for all

u ∈ C3(Ω) ∩ C(Ω̄) and ∥u∥22 ≤ C0 we have

F [u] ∈ GC,γ := {f ∈ C1(Ω) ∩ C(Ω̄) : |⟨f, φj⟩|2 ≤ Cj−γ, ∀ j ≥ 1}. (3.10)

Then there exists m = m(ε̄, C, γ) ∈ N such that
∑∞

j=m+1Cj
−γ < ε̄2. Consider uθ = θ · φ =∑m

j=1 θjφj. We denote fθ := F [uθ] for short. Then ∇θuθ = φ = (φ1, . . . , φm) and for

αfθ = (αfθ
1 , . . . , α

fθ
m) with αfθ

j := ⟨fθ, φj⟩, there is

∥αfθ · ∇θuθ − F [uθ]∥22 =
∥∥∥ m∑

j=1

αfθ
j φj − fθ

∥∥∥2

2
=

∞∑
j=m+1

|⟨fθ, φj⟩|2 ≤ ε̄2.

45

Therefore, the reduced-order model uθ = θ · φ with Θ = {α ∈ Rm : |α|2 < C0} and αθ = αfθ

satisfy Assumption 4.

This example can be modified to use a more general form of uθ, such as a proper DNN.

To see this, we first repeat the procedure above but with ε̄ replaced by ε̄/2. Then the universal

approximation theorem [47, 123] and the continuity of DNNs in its parameters imply that

there exist DNNs {φ̂j : 1 ≤ j ≤ m}, whose network parameters are collectively denoted by

η ∈ Rm′
, satisfy ∥φ̂j − φj∥∞ ≤ ε̄/(2

√
mC0|Ω|) and hence ∥φ̂j − φj∥2 ≤ ε̄/(2

√
mC0) for all

η in an open set H ⊂ Rm′
. Consider the DNN uθ = c · φ̂ with parameters θ = (c, η) ∈ Rn

where n = m +m′. Then ∇cuθ(x) = (φ̂1, . . . , φ̂m). Using the example above, we know for

any fθ := F [uθ] ∈ GC,γ, there exists αfθ ∈ Rm such that ∥αfθ ·φ−F [uθ]∥2 ≤ ε̄/2. Therefore,

we use (αfθ , 0) which concatenates αfθ and 0 ∈ Rm′
as the combination coefficients of ∇θuθ

to obtain

∥(αfθ , 0) · ∇θuθ − F [uθ]∥2 = ∥αfθ · ∇cuθ − F [uθ]∥2

≤ ∥αfθ · φ̂− αfθ · φ∥2 + ∥αfθ · φ− F [uθ]∥∞

≤
m∑
j=1

|αfθ
j |∥φ̂j − φj∥2 +

ε̄

2

≤
√
mC0 ·

ε̄

2
√
mC0

+
ε̄

2

= ε̄.

Therefore, the DNN uθ = c · φ̂ with Θ = {(c, η) : |cj|2 < C0, η ∈ H} and αθ = (αfθ , 0) satisfy

Assumption 4.

46

Before proving the main proposition of this section we will need the following lemma.

Lemma 5. Suppose Assumption 3 and 4 are satisfied. For all ε > ε̄ there exists v : Θ̄→ Rm

such that v is bounded over Θ̄ and the value of v at θ, denoted by vθ, satisfies

∥vθ · ∇θuθ − F [uθ]∥2 ≤ ε, ∀ θ ∈ Θ̄.

Proof. Let ε > ε̄ and δ ∈ (0, ε − ε̄). By Assumption 4, for all θ ∈ Θ there exists αθ ∈ Rm

coefficient such that

∥αθ∇θuθ − F [uθ]∥2 ≤ ε̄.

As F [uθ] and ∇θuθ are continuous in θ and Ω is bounded, we associate to each θ and

coefficient αθ the open set uθ containing θ, small enough, such that for all θ′ ∈ uθ we have

∥αθ∇θuθ′ − αθ∇θuθ∥2 + ∥F [uθ]− F [uθ′]∥2 ≤ δ (3.11)

and hence

∥αθ · ∇θuθ′ − F [uθ′]∥2 ≤ ∥αθ∇θuθ′ − αθ∇θuθ∥2 + ∥αθ∇θuθ − F [uθ]∥2 + ∥F [uθ]− F [uθ′]∥2 ≤ δ + ε̄.

(3.12)

Therefore ∪θ∈Θ̄uθ is an open cover of Θ̄. As Θ̄ is compact this open cover has a finite subcover

∪Ni=1Uθi for particular θi’s. Define v : Θ̄ → Rm such that vθ := v(θ) = αθi if θ ∈ Uθi (if θ

is in the intersection of multiple Uθi ’s we choose a single αθi arbitrarily). We see from this

construction that vθ is uniformly bounded over Θ̄ as the range of vθ is finite. From (3.12)

47

we have

∥vθ · ∇θuθ − F [uθ]∥2 ≤ δ + ε̄ ≤ ε.

With Assumptions 3 and 4, and Lemma 5 we can prove the existence of an accurate

neural control field Vξ parameterized as a neural network, as shown in the next proposition.

Proposition 1. Suppose Assumption 3 and 4 hold. Then for any ε > 0, there exists a

differentiable vector field parameterized as a neural network Vξ : Θ̄ → Rm with parameters

ξ, such that

∥Vξ(θ) · ∇θuθ − F [uθ]∥2 ≤ ε,

for all θ ∈ Θ̄.

Proof. We first show that there exists a differentiable vector-valued function V : Θ̄ → Rd

such that

∥V (θ) · ∇θuθ − F [uθ]∥2 ≤
ε

2
(3.13)

for all θ ∈ Θ̄. To this end, we choose ε̄0 ∈ (0, ε/2) and ε̄ ∈ (ε̄0, ε/2), then by Assumption

4 and Lemma 5 we know that there exist a reduced-order model uθ, a bounded open set

Θ ⊂ Rm, and Mv > 0 such that there is a vector-valued function θ 7→ vθ, where for any

θ ∈ Θ̄, we have |vθ| < Mv and

∥vθ · ∇θuθ − F [uθ]∥2 ≤ ε̄.

48

Note that vθ is not necessarily differentiable with respect to θ. To obtain a differentiable

vector field V (θ), for each θ ∈ Θ̄, we define the function ψθ by

ψθ(w) := ∥w · ∇θuθ − F [uθ]∥22 = w⊤G(θ)w − 2w⊤p(θ) + q(θ),

where

G(θ) :=

∫
Ω

∇θuθ(x)∇θuθ(x)
⊤ dx, p(θ) :=

∫
Ω

∇θuθ(x)F [uθ](x) dx, q(θ) :=

∫
Ω

F [uθ](x)
2 dx.

(3.14)

Then we know

ψ∗
θ := ψθ(vθ) = ∥vθ · ∇θuθ − F [uθ]∥22 ≤ ε̄2. (3.15)

It is also clear that G(θ) is symmetric and positive semi-definite. Moreover, due to the

compactness of Ω̄ and Θ̄, as well as that ∇θu ∈ C(Ω̄× Θ̄), we know there exists λG > 0 such

that

∥G(θ)∥2 ≤ λG

for all θ ∈ Θ̄. Therefore, ψθ is a convex function and the Lipschitz constant of ∇ψθ is

uniformly upper bounded by λG over Θ̄. Now for any w ∈ Rm, h > 0, and K ∈ N (we reuse

the letter K as the iteration counter instead of the number of sampling points in this proof),

we define

O
K,h
θ (w) := wK , where wk = wk−1 − h∇ψθ(wk−1), w0 = w, k = 1, . . . , K.

Namely, OK,h
θ is the oracle of executing the gradient descent optimization scheme on ψθ with

step size h > 0 for K iterations.

49

Next, we slightly modify the standard convergence result of gradient descent in convex

optimization [85, Theorem 2.1.14] and obtain Lemma 8 in Appendix A. Notice that ψθ

is convex, differentiable, and ∇ψθ is Lipschitz continuous with Lipschitz constant upper

bounded by λG. Therefore, applying Lemma 8 with y = vθ, f = ψθ, and the gradient

descent scheme for K iterations (K to be determined soon) with initial 0 and any fixed step

size h ∈ (0, 1/λG) to ψθ directly yields an error bound for ψθ(O
K,h
θ (0)):

ψθ(O
K,h
θ (0))− ψ∗

θ ≤
|0− vθ|2
2Kh

. (3.16)

Combining this with the bound |vθ| < Mv, we choose any

K ≥ M2
v

2h((ε/2)2 − ε̄2) ,

and there is

ψθ(O
K,h
θ (0))− ψ∗

θ ≤
M2

v

2Kh
≤

(ε
2

)2

− ε̄2. (3.17)

Notice that OK,h
θ is a differentiable vector-valued function of θ because K and h are fixed.

Therefore, combining (3.15) and (3.17) yields

0 ≤ ψθ(O
K,h
θ (0)) = (ψθ(O

K,h
θ (0))− ψ∗

θ) + ψ∗
θ ≤ (ε/2)2 − ε̄2 + ε̄2 = (ε/2)2.

As this inequality holds ∀θ ∈ Θ̄, we set V (θ) = O
K,h
θ (0) which is a differentiable function of

θ satisfying (3.13).

By the universal approximation theorem of neural networks [39] (see also the discussion in

the introduction), we know there exists a differentiable vector-valued function parameterized

50

as a neural network Vξ with parameters ξ such that

|Vξ(θ)− V (θ)|∞ ≤ ε/(2B)

for all θ ∈ Θ̄, where B := maxθ∈Θ̄ ∥∇θuθ∥2 <∞ and | · |∞ stands for the ∞-norm of vectors.

Hence we know

∥Vξ(θ)·∇θuθ−F [uθ]∥2 ≤ ∥Vξ(θ)·∇θuθ−V (θ)·∇θuθ∥2+∥V (θ)·∇θuθ−F [uθ]∥2 ≤ B· ε
2B

+
ε

2
= ε.

This completes the proof.

Remark 2. It is important to note the geometry of M, especially its dimensionality, is com-

plex and highly dependent on the structure of uθ and the parameter space Θ. In particular,

we can show that the tangent space Tuθ
M = span(∇θuθ) at any uθ ∈ M is in the L2 space,

where ∇θuθ = (∂θ1uθ, . . . , ∂θmuθ) for θ = (θ1, . . . , θm). (Here we use discrete indices 1, . . . ,m

as subscripts of θ to indicate its components for notation simplicity. This is to be distin-

guished from the subscript t in θ(t) which stands for time of the trajectory θ(t).) However,

dim(Tuθ
M) may vary across different uθ on M. For example, consider the reduced-order

model uθ parameterized as a DNN as in (1.2): when w = 0, we have θ = (0, b, · · ·) and

hence ∂Wl
uθ = 0 and ∂bluθ = 0 for all l = 1, . . . , L. In this case, the m components of ∇θuθ

are not linearly independent, and dim(Tuθ
M) < m for such θ’s. This distinguishes our pa-

rameter submanifold from existing ones, such as [4], which assumes that the tangent space is

always of full dimension m at any point of the submanifold. In our case, however, challenges

and complications in dealing with the parameter submanifold M can be avoided if we made

such an assumption, but it will lead to incorrect analysis and error estimation, which poses a

51

major technical challenge for the proposed framework. Specifically, we note that the rank of

G(θ) varies across Θ, and therefore the pseudoinverse G(θ)+ may be discontinuous. A major

theoretical merit of Proposition 1 is that we can still ensure the existence of a differentiable

control vector field in such case.

3.3.2.2 Error analysis in solving (semi-)linear parabolic PDEs

Now we are ready to provide error bounds of our method in solving a large class of linear and

semilinear parabolic PDEs. This class of PDEs covers many types of reaction-diffusion equa-

tions, such as heat equations, Fisher’s equation or the Allen-Cahn equation. The differential

operator F in linear and semilinear parabolic PDEs has the form

F [u] = ∇ · (A∇u) + b · ∇u+ f(u)

where A : Ω→ Rd×d and b : Ω→ Rd are continuous, f : R→ R is Lf -Lipschitz and acts on

u(x) for each x. Moreover we assume that there exist λ ≥ 0 and B ≥ 0 such that

z⊤A(x)z ≥ λ|z|2, ∀ z ∈ Rd, x ∈ Ω, (3.18)

and

∥∇ · b∥∞ ≤ B. (3.19)

Furthermore, due to the smoothness of Vξ and compactness of Θ̄, we know there exist

MV > 0 and LV > 0 such that

max
θ∈Θ̄
|Vξ(θ)| ≤MV and max

θ∈Θ̄
|∇θVξ(θ)| ≤ LV . (3.20)

Theorem 3. Suppose Assumptions 3 and 4 hold. Then there exist control field Vξ such that

52

for any u∗ satisfying the evolution PDE in (3.2) there is

∥uθ(t)(·)− u∗(·, t)∥2 ≤ e(Lf+B/2−λ/Cp)t(ε0 + εt) (3.21)

for all t as long as θ(t) ∈ Θ̄, where θ(t) is solved from the ODE (3.6) with Vξ and initial

θ(0) satisfying ∥uθ(0)(·)− u∗(·, 0)∥2 ≤ ε0. Here Cp is a constant depending only on Ω.

Proof. We denote the residual

r(x, t) := ∇θuθ(t)(x) · Vξ(θ(t))− F [uθ(t)](x).

Then by Proposition 1 we have ∥r(·, t)∥2 ≤ ε for all t. Furthermore, we denote

δ(x, t) := uθ(t)(x)− u∗(x, t)

for all (x, t) ∈ Ω̄× [0, T] and D(t) := ∥δ(·, t)∥2, then there is

D′(t) =
〈 δ(·, t)
∥δ(·, t)∥2

, ∂tδ(·, t)
〉
. (3.22)

Here we use the convention that δ(·, t)/∥δ(·, t)∥2 = 0 if δ(·, t) = 0 a.e. By the definition of δ,

we have

∂tδ(x, t) = ∂tuθ(t)(x)− ∂tu∗(x, t)

= ∇θuθ(t)(x) · θ̇(t)− F [u∗](x, t)

= ∇θuθ(t)(x) · Vξ(θ(t))− F [u∗](x, t)

= F [uθ(t)](x)− F [u∗](x, t) + r(x, t)

= ∇ · (A(x)∇δ(x, t)) + b(x) · ∇δ(x, t) + f(uθ(t)(x))− f(u∗(x, t)) + r(x, t).

53

Therefore, we have

⟨δ(·, t), ∂tδ(·, t)⟩ =
∫
Ω

δ(x, t) (∇ · (A(x)∇δ(x, t)) + b(x) · ∇δ(x, t)) dx

+

∫
Ω

δ(x, t)(f(uθ(t)(x))− f(u∗(x, t)) + r(x, t)) dx (3.23)

=: I(t) + J(t).

Because uθ(t)(·)|∂Ω = u∗(·, t)|∂Ω = 0, we know δ(·, t)|∂Ω = 0. Thus, we have

I(t) =

∫
Ω

δ(x, t) (∇ · (A(x)∇δ(x, t)) + b(x) · ∇δ(x, t)) dx

= −
∫
Ω

∇δ(x, t)⊤A(x)∇δ(x, t) dx− 1

2

∫
Ω

(∇ · b(x))δ(x, t)2 dx (3.24)

≤ −λ
∫
Ω

|∇δ(x, t)|2 dx− 1

2

∫
Ω

(∇ · b(x))δ(x, t)2 dx

≤ − λ

Cp

∫
Ω

|δ(x, t)|2 dx+ B

2

∫
Ω

|δ(x, t)|2 dx,

where the first equality is just by the definition of I(t), the second equality is obtained by

integrating by parts on both terms and using δ(·, t)|∂Ω = 0, the first inequality is due to

(3.18), and the last inequality is due to the Poincare’s inequality

∥δ(·, t)∥2 ≤ Cp∥∇δ(·, t)∥2

as δ(·, t)|∂Ω = 0 for all t (here Cp the Poincare’s constant depending on Ω only) and the

54

bound (3.19). We can also obtain

J(t) =

∫
Ω

δ(x, t)(f(uθ(t)(x))− f(u∗(x, t))− r(x, t)) dx

≤
∫
Ω

|δ(x, t)| · |f(uθ(t)(x))− f(u∗(x, t))− r(x, t)| dx

≤
∫
Ω

|δ(x, t)| · (Lf |δ(x, t)|+ |r(x, t)|) dx (3.25)

≤ Lf∥δ(x, t)∥22 + ∥r(·, t)∥2∥δ(·, t)∥2

≤ Lf∥δ(x, t)∥22 + ε∥δ(·, t)∥2,

where the first identity is by the definition of J(t), the second inequality is due to the

Lipschitz condition of f . Combining (3.22), (3.23), (3.24) and (3.25), we obtain

D′(t) ≤
(
Lf +

B

2
− λ

Cp

)
D(t) + ε.

By Grönwall’s inequality we deduce that

D(t) ≤ e(Lf+B/2−λ/Cp)t(D(0) + εt).

Recall that

D(0) = ∥δ(·, 0)∥2 = ∥uθ(0)(·)− u∗(·, 0)∥2 = ∥uθ(0)(·)− g(·)∥2 ≤ ε0,

we thus have

∥u(·, θ(t))− u(·, t)∥2 = D(t) ≤ e(Lf+B/2−λ/Cp)t(ε0 + εt)

for all time t, which completes the proof.

55

The error estimate in Theorem 3.5 indicates that the approximation error is determined

by three factors: (i) the approximation error ε0 of the reduced order model to the initial

value g, (ii) the local approximation error ε of the projection of F [uθ] onto the tangent space

of M at uθ; and (iii) the irregularity of the differential operator F itself. While the error

from (iii) is determined by the given PDE, we can make an effort to suppress (i) and (ii)

in practice by robust architecture of uθ and the training of Vξ. We note the error estimate

provided in Theorem 3.5 is an upper bound of the approximation error.

Remark 3. While we assumed f to be globally Lipschitz, the result in Theorem 3 still

holds locally with local Lipschitz condition of f . For example, in the case of the Allen-Cahn

example, we know if our initial function is bounded by 1 the true trajectories will remain

bounded allowing the results of Theorem 3 to apply.

Corollary 1. Suppose the conditions in Theorem 3 hold. Let θ̂t be the numerical solution to

the ODE (3.6) obtained by using the Euler scheme with step size h > 0. Then

∥uθ̂t(·)− u
∗(·, t)∥2 ≤

LVMV |Ω|h
2

(eLV t − 1) + e(Lf−B/2+η/Cp)t(ε0 + ε̄t) (3.26)

for all t as long as θ(t) ∈ Θ̄.

Proof. Given the estimate provided in Theorem 3, we only need to show

∥uθ̂t(·)− uθ(t)(·)∥2 ≤
LVMV |Ω|h

2
(eLV t − 1), (3.27)

since combined with (3.21) it yields the claimed estimate (3.26). To show (3.27), we notice

56

that

θ̈t =
d

dt
Vξ(θ(t)) = ∇θVξ(θ(t)) · θ̇(t) = ∇θVξ(θ(t)) · Vξ(θ(t)).

Therefore we have

|θ̈t| = |∇θVξ(θ(t)) · Vξ(θ(t))| ≤ LVMV

where LV and MV are defined in (3.20). Hence, by the standard results for the Euler’s

method [6, pp. 346]), we know the numerical solution θ̂t satisfies

|θ̂t − θ(t)| ≤
hMV

2

(
eLV t − 1

)
(3.28)

for all t. Therefore, we obtain

∥uθ̂t − uθ(t)∥2 =
(∫

Ω

|uθ̂t(x)− uθ(t)(x)|
2 dx

)1/2

=
(∫

Ω

|∇θuθ̃t(x) · (θ̂t − θ(t))|2 dx
)1/2

≤ LV |Ω||θ̂t − θ(t)| ≤
LVMV |Ω|h

2
(eLV t − 1),

where the second equality is due to the fact that uθ is C1 in θ and hence the mean value

theorem applies to uθ (here θ̃t is some point on the line segment between θ̂t and θ(t)).

The proof above can be modified if a different numerical ODE solver is employed. In

that case one can obtain improved upper bound and order in step size h in (3.28).

57

3.4 Numerical Results

3.4.1 Implementation

In Section 3.3.1, we have showed that the neural control field Vξ is parameterized as a deep

network, and its parameters ξ can be learned by solving

min
ξ

{
ℓ(ξ) :=

∫
Θ

∥Vξ(θ) · ∇θuθ − F [uθ]∥22dθ
}
.

The first-order optimality condition of this minimization problem is given by G(θ)Vξ(θ) =

p(θ) where G(θ) and p(θ) are defined in (3.14). The objective function ℓ(ξ) above shares the

same minimizers as the following one:

ℓ̄(ξ) :=

∫
Θ

|G(θ)Vξ(θ)− p(θ)|2 dθ. (3.29)

In our numerical experiments, we use ℓ̄ defined in (3.29), as we can train to towards the

optimal solution Vξ = G+(θ)p(θ) as the optimal value which seems to produce lower error

empirically.

Moreover, we know the minimum loss value of (3.29) is 0, which contrasts to (3.7) where

the minimum loss value is often unknown.

In practice, as the dimension of θ and Ω could be large, we have to approximate (3.29)

using techniques such as Monte-Carlo integration. This leads to the approximate forms

G̃(θ) =
1

Nx

Nx∑
i=1

∇θuθ(xi)∇θuθ(xi)
⊤, p̃(θ) =

1

Nx

Nx∑
i=1

∇θuθ(xi)F [uθ](xi),

where xi, i = 1, . . . , Nx are sampled from Ω. By also drawing samples from Θ, we arrive at

58

our empirical loss function defined by

ℓ1(ξ) :=
1

Nθ

Nθ∑
j=1

|G̃(θj) · Vξ(θj)− p̃(θj)|2. (3.30)

To improve the training of Vξ, we also augment the loss function ℓ1 in (3.30) with an

additional term following a data-driven approach. Specifically, we follow the methods in

[12, 26] to generate multiple sample trajectories starting from randomly sampled initial

values {θ(0)(i) : i ∈ [M]} in Θ. For the ith trajectory, a sequence of directions {v(i)j : j =

0, 1 . . . , Nt} are solved from linear systems G̃(θ
(i)
j)v

(i)
j = p̃(θ

(i)
j) and the discrete-time points

on the trajectory are obtained by θ
(i)
j+1 = θ

(i)
j + hv

(i)
j for j = 0, 1, . . . , Nt − 1. We add the

augment loss term

ℓ2(ξ) :=
1

NtM

M∑
i=1

Nt∑
j=1

|Vξ(θ(i)j)− v(i)j |2. (3.31)

Combining with (3.30), we obtain our final loss function

ℓtotal(ξ) = ℓ1(ξ) + ζℓ2(ξ), (3.32)

where ζ is a weight parameter. In our experience for parabolic linear PDEs using only ℓ1 is

sufficient to generate a good result. For the nonlinear case adding ℓ2 substantially improves

training results empirically as network parameters may move far away from those we sampled

near the initial parameters.

3.4.2 Experimental setting

To demonstrate the performance of the proposed method, we test it on three different PDEs:

a 10-dimensional (10D) transport equation, a 10D heat equation, and a 2D Allen-Cahn

59

equation. Both of the transport equation and heat equation are linear PDEs, while the

Allen-Cahn is a highly nonlinear PDE. In fact, we also tested 10D Allen-Cahn equation

but only present the result of the 2D one here. This is because the true solution of Allen-

Cahn equation does not have closed-form, and we have to employ a classical finite difference

method, which does not scale to 10D case, to produce a reference solution for comparison. In

contrast, we have closed-form solutions of the IVPs with transport and heat equations and

hence we can use them as the true solution for direct comparison. In our tests, we employ

the following structure of our reduced-order model

uθ(x) = α(x)zL(x, θ) (3.33)

for the heat equation and Allen-Cahn equation. We use the following network structure

uθ(x) = zL(β(x), θ) (3.34)

for the transport equation. In (3.33), α(x) is a distance function of ∂Ω such that it satisfies

the zero boundary condition, and in (3.34) β(x) is a function chosen to satisfy a periodic

boundary condition as in [26]. This aligns with our choice of uθ in (3.33) and (3.34) as

the IVP with heat and Allen-Cahn equations have zero boundary value whereas the IVP

with transport equation has periodic boundary value in our experiments. In both (3.33) and

(3.34), zL is the neural network and is defined by

zL = wLzL−1, zl = zl−1 + σ(Wlzl−1 + bl), l = 1, . . . , L− 1 (3.35)

60

and z0 = σ(W0x+ b0). Here σ is a user-chosen activation function (we use tanh or ReLU in

our experiments) Wl ∈ Rd′×d′ are the weight matrices and bl ∈ Rd′ are the bias vectors, and

W0 ∈ Rd′×d and wL ∈ R1×d, all of these matrices and vectors make up the parameters vector

θ. Networks such as in (3.35) are often called residual neural networks (ResNet), and have

been shown performing better than basic feed forward networks in function approximation

[108]. The values of L and d′ in our experiments are shown in Table 3.1. They are selected

manually to balance the depth L and width d′ so that uθ does not have too many neurons

but still remains expressive. We use a similar structure for the vector field Vξ, but adjust the

layers to be ηl = ηl−1+GeLU(Ūlθ+ b̄l) tanh(Ulηl−1+bl). Here GeLU(x) = xΦ(x) where Φ(x)

is the standard Gaussian cumulative distribution function. This is a slight modification of

the network architecture proposed in [107] for improved effectiveness in training by gradient

descent. We selected this network structure by starting with a ResNet with small width

and depth and ReLU activation, then we gradually increased the width and depth until

the improvement in the final loss value became insignificant. Finally, we attempted a few

different activation functions and network architectures for this width and depth and selected

the aforementioned structure which appeared to perform slightly better. This process was

by no means exhaustive.

Other network architectures can be used as well. The width and depth of our network

are reported in Table 3.1. Information about the number of trajectories used for (3.31) is

also collected in Table 3.1. For all of the experiments, we set the weight ζ = 0.1 in (3.32)

to reflect the scale difference of the two loss terms and use the standard ADAM optimizer

61

with learning rate 0.001, β1 = 0.9, β2 = 0.999. We terminate the training process when the

empirical loss ℓtotal(ξ) < 0.1 or when the percent decrease of the empirical loss is less than

0.1% averaged over the past 100 steps. Once Vξ is learned, we use the 4th-order Runge-Kutta

method with a step size of T/200 (T is determined from the problem) to solve θ(t) from the

ODE in (3.6) in Algorithm 2 and compare the corresponding uθ with the reference solutions.

All the implementations and experiments are performed using PyTorch in Python 3.9 in

Windows 10 OS on a desktop computer with an AMD Ryzen 7 3800X 8-Core Processor at

3.90 GHz, 16 GB of system memory, and an Nvidia GeForce RTX 2080 Super GPU with 16

GB of graphics memory. Total computational time is split between three unique activities:

(i) the generation of Nθ samples for ℓ1 in (3.30); (ii) the generation of the M trajectories for

ℓ2 in (3.31); and (iii) the training of the network Vξ. Parts (i) and (ii) can be parallelized

offline to speed up the process. We discuss the specific time cost of the implementation of

our method in the examples below.

We also provide a few remarks on the sampling strategy in Θ. While one can draw θ

uniformly from Θ, adding samples θ corresponding to some example solutions to the PDE

may further improve training efficiency. In practice, we use both uniformly sampled θ’s

and those close to the θ’s corresponding to some randomly chosen initial functions. These

initial functions are only used to help the loss function weigh more on the regions that are

potentially more important than others in Θ; but they are not among the randomly chosen

initial functions used for any testing. Details on samplings are given below.

62

Table 3.1 Problem settings, network structures, and the number of training trajecto-
ries/samples in numerical experiments. Here M is the number of trajectories used from
Θ and Nθ is the total number of samples from Θ.

Problem Dim. d uθ Width/Depth Vξ Width/Depth M Nθ

Transport Equation 10 12/4 1,500/4 0 160,000
Heat Equation 10 12/5 2,000/10 600 200,000

Allen-Cahn Equation 2 10/3 2,000/5 200 200,000

3.4.3 Numerical results on transport equation

We first consider the initial value problem defined by a 10D transport equation with periodic

boundary conditions as follows:


∂tu(x, t) = −1 · ∇xu(x, t), ∀x ∈ Ω, t ∈ [0, T],

u(x, 0) = g(x), ∀x ∈ Ω̄,

(3.36)

where Ω = (0, 1)10, T = 1, 1 is the vector whose components are all ones, and the boundary

value u(x, t) = 0 for all x ∈ ∂Ω and t ∈ [0, T]. This IVP has the true solution u∗(x, t) =

g(x−1 · t). We obtain the solution operator of the IVP (3.36), we use (3.34) as the reduced-

order model uθ. Although our error analysis requires certain regularity on initial and solution

of PDEs, we test on the case where both are only Lipschitz continuous but not differentiable

for this transport equation. To this end, we set the activation of uθ to ReLU. Further, define

β(x) = (cos(2π(x− b)), sin(2π(x− b)))⊤ where b ∈ R10 is a trainable parameter with sin and

cos acting component-wise to x. This means that the first hidden layer usesW0 ∈ R12×20. For

this example, we shall set Θ = [−1, 1]m where m are the number of parameters in uθ. Then

63

we train the neural control vector field Vξ by minimizing (3.7) with the number of sampled θ

drawn uniformly from Θ shown in Table 3.1. We note that this equation performed equally

well with or without the loss ℓ2 in (3.31). As such we need not generate any trajectories and

this is reflected in Table 3.1.

After the control Vξ is obtained, we test the performance of Vξ on a variety of initial

values g by uniformly sampling θ(0) ∈ Θ. We emphasize that the corresponding θ(0)’s

to these initial values are not used in the training process. We show three approximate

solutions for three random initials in Figure 3.2. For the first random initial g1 determined

by the random θ(0), we plot the corresponding true solution u∗(·, t), the approximate solution

uθ(t)(·) obtained by Algorithm 2, and their pointwise absolute difference |uθ(t)(x)− u∗(x, t)|

from row 1 to row 3 in Figure 3.2 respectively for t = 0, 0.15, 0.5, 0.85, 1. The plots for

the second and third g2 and g3 random initials are shown in rows 4–6 and 7–9 in Figure

3.2 respectively. From Figure 3.2, we can see that the reduced-order model uθ(t) with θ(t)

controlled by the trained vector field Vξ closely approximates the true solution u∗(·, t) with

low absolute errors (note that the scale of the error is different from that of u∗(·, t) and

uθ(t)(·)). Figure 3.3a and 3.3b plots the mean of the absolute error ∥u∗(·, t) − uθ(t)(·)∥22,

and the relative error ∥u∗(·, t)− uθ(t)(·)∥22/∥u∗(·, t)∥22 respectively over 100 randomly chosen

initials, while the standard deviation is shaded in. We see mean errors < 1% even though

the initial functions considered are not smooth. This suggests that the proposed model can

generalize to the case where the initial and solution of the PDE are not sufficiently smooth.

We now discuss the computational cost of the method. In our tests, it took 1.78 hours

64

to generate G̃ and p̃ from the samples in Θ used for training. Once generated, the training

of Vξ (i.e., minimizing the loss function ℓtotal in (3.32)) took 5 minutes to complete. Testing

each initial condition by solving (3.6) using a 4th-order Runge-Kutta (RK4) solver with step

size 0.005 took an average of 2.1 seconds per initial. We note that no time is needed in this

case to fit an initial, as θ(0) is chosen randomly.

The proposed method has evidient improvement on computational cost over existing

methods that only solve specific instances of the PDEs. In this test, we compare the com-

putational cost with PINN [94] and a time marching (TM) [26] method. We use the same

structure of uθ for PINN and time marching as used by our method. We sample 10,000

points (x, t) ∈ (0, 1)10 × [0, 1] for PINN and 10,000 points x ∈ (0, 1)10 for each step of the

time marching method. We train PINN using its default parameters until convergence. For

TM, we use RK4 with the same step size 0.005 and its default linear system solver for each

step. We follow all other implementation steps of both PINN and TM as described in their

original papers. For a single initial g, PINN, TM, and the proposed method took 116.5s,

16.7s, and 2.1s respectively to obtain the solution. This significant time reduction is due to

the fact that the proposed method has learned the control field in the parameter space and

thus can compute the solution of the PDE by solving an ODE which has very low computa-

tion complexity. The improvement is more significant for higher-order PDEs because PINN

and TM require more time to compute the differential operator whereas the computation

complexity of the proposed method remains the same.

The proposed method is capable of approximating solution operators of high-dimensional

65

PDEs whereas existing methods cannot. This is because existing solution operator learning

methods, such as DeepONet, require spatial discretization, and thus the network size and

sampling amounts grow exponentially fast in problem dimension. For example, for a one-

dimensional (d = 1) evolution PDE, DeepONet [76] requires 100 sample solutions (which

must be generated by another numerical method) each evaluated at 104 grid points in the

(x, t) domain in R × R+. Thus the size of their trunk network alone is already 10 times

larger than our Vξ in the 10-dimensional case. When the problem dimension d becomes over

3, DeepONet will be infeasible computationally. In addition, our method does not require

sample solutions which could be unavailable or difficult to obtain in practice.

3.4.4 Heat equation

Next we consider an initial value problem with heat equation in 10D:
∂tu(x, t) = ∆u(x, t), ∀x ∈ Ω, t ∈ [0, T]

u(x, 0) = g(x), ∀x ∈ Ω̄,

(3.37)

where Ω = (0, 1)10 and the boundary value u(x, t) = 0 for all x ∈ ∂Ω and t ∈ [0, T]. As most

of the initial conditions we consider have rapid evolution in a short time, we use T = 0.01 in

this test. For neural network we use (3.33), with α(x) = Π10
i=14(xi−x2i) and tanh activation.

In order to have a class of analytical examples to compare against, we use the base

66

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

56.19

33.25

10.30

12.64

35.58

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

56.19

33.25

10.30

12.64

35.58

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

0.00000

0.01860

0.03719

0.05579

0.07438

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

169.2

137.2

105.2

73.2

41.1

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

169.2

137.2

105.2

73.2

41.1

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.25

0.0 0.5 1.0

t = 0.5

0.0 0.5 1.0

t = 0.75

0.0 0.5 1.0

t = 1.0

0.0000

0.0776

0.1552

0.2327

0.3103

Figure 3.2 (Transport equation). Comparison between true solution u∗(·, t), the ap-
proximation uθ(t)(·) and their pointwise absolute difference |uθ(t)(x) − u∗(x, t)| for times
t = 0, 0.15, 0.5, 0.85, 1 for IVPs with the first initial (rows 1–3), second initial (rows 4–6) and
third initial (rows 7–9) given by uθ with θ randomly drawn from [−1, 1]m.

67

0.00 0.25 0.50 0.75 1.00
time

0.000

3.120

6.241

9.361

re
la

tiv
e

er
ro

r

1e 5

(a)

0.00 0.25 0.50 0.75 1.00
time

-0.100

0.000

0.100

0.200

0.300

ab
so

lu
te

 e
rro

r

(b)

0.000 0.003 0.005 0.007 0.010
time

0.025

0.050

0.075

0.100

0.125

re
la

tiv
e

er
ro

r
(c)

0.000 0.003 0.005 0.007 0.010
time

0.001

0.002

0.003

0.004

ab
so

lu
te

 e
rro

r

(d)

0.0 0.2 0.4 0.6
time

0.000

0.025

0.050

0.075

0.100

re
la

tiv
e

er
ro

r

(e)

0.0 0.2 0.4 0.6
time

-0.005

0.000

0.005

0.010

0.015

0.020

ab
so

lu
te

 e
rro

r

(f)

Figure 3.3 Comparison of the mean relative error ∥u∗(·, t) − uθ(t)(·)∥22/∥u∗(·, t)∥22 (top) and
mean absolute ∥u∗(·, t)−uθ(t)(·)∥22 (bottom) versus time t for 100 different initial conditions of
the transport (a)-(b), heat (c)-(d), and Allen-Cahn (e)-(f) equations. Shaded areas indicate
the standard deviation over the 100 results.

functions

g1(x) = Π10
i=1 sin(πxi),

g2(x) = sin(2πx1)Π
10
i=1 sin(πxi),

g3(x) = sin(2πx2)Π
10
i ̸=2 sin(πxi)

g4(x) = sin(2πx1) sin(2πx2)Π
10
i=3 sin(πxi).

(3.38)

to generate a class of initial conditions G := {∑4
i=1 cigi : ci ∈ [−1, 1]}. To train our method,

we drew 600 samples from G and found a corresponding θ(0)(j) for each sample. We set the

parameter space to be Θ := {θ(0)(j) + δ : |δ| ≤ 3, j = 1, . . . , 600}. We then uniformly

sampled 200,000 points from this set Θ and generated paths for (3.30) from the 600 centers

to train Vξ. We then tested the method on a new set of 100 initials randomly drawn from

68

G by following the method outlined in Algorithm 2. We randomly select three from the

test set containing the 100 initials and plot the result using our method in Figure 3.4. In

addition, Figure 3.3c and 3.3d show the mean and standard deviations of the relative and

absolute errors versus time t. We notice that the relative error increases while absolute error

decreases: this is because the true solution u∗(t, ·) gradually vanishes in time and hence it is

easy to cause large relative error even when the absolute error is small.

In this test, it took 2.64 hours to generate G̃ and p̃ for (3.30) and 1.33 hours to generate

the trajectories for (3.31). This time cost is significantly higher than the transport equation

as the heat equation requires the computation of the Laplacian which is second-order. Once

the samples were generated, training Vξ took approximately 10 minutes. For testing, it took

an average of 25 seconds to train a θ(0) to a sampled g and an average of 2.6 seconds to

then solve (3.6) using a 4th order Runge-Kutta solver with step size 0.0001. This amounts

to less than 30 seconds in time per initial for the testing stage.

3.4.5 Allen-Cahn equation

In this test, we consider the IVP with nonlinear Allen-Cahn equation given by
∂tu(x, t) = ϵ∆u(x, t) + 3

2
(u(x, t)− u(x, t)3) , ∀x ∈ Ω, t ∈ (0, T]

u(x, 0) = g(x), ∀x ∈ Ω̄,

(3.39)

where Ω = (−1, 1)2, ϵ = 0.0001, and the boundary value u(x, t) = 0 for all x ∈ ∂Ω and

t ∈ [0, T]. As the Allen-Cahn PDE does not have an analytical solution to compare against,

we resort to the classical implicit-explicit scheme (see e.g. [109]) with a 100×100 grid and

69

2000 time points to generate a reference solution for comparison in 2D case only, despite

that our method can be applied to higher dimensional case. In this test, we use (3.33) with

α(x) = (1 − x21)(1 − x22) as our neural network. We let Ti : R → R represent the ith order

Chebyshev polynomial. We generate a class of initial conditions

G :=

{
(1− x21)(1− x22)

m∑
k=1

ckTik(x1)Tjk(x2) : ik, jk ∈ {0, . . . , 6}, m ≤ 36, |ck| ≤ 1

}
.

(3.40)

We see that G is a space of all combinations of Chebyshev polynomials up to degree 6

multiplied by a boundary function. This set is chosen to represent a diverse spread of initials

that can be approximated by our neural network from (3.33). We drew 200 samples from G

and found a corresponding θ(0)(j) for each sample. Then, as in the case of heat equations

above, we generated the parameter set Θ := {θ(0)(j) + δ : |δ| ≤ 3, j = 1, . . . , 200}. We

sampled from Θ uniformly and generated paths from the 200 centers to train Vξ. We again

tested the method on a new set of 100 initials from G. The results of the proposed method at

time t = 0, 0.15, 0.3, 0.45, 0.6 for three random initials are shown in Figure 3.5. In Figure 3.3e

and 3.3f we again plot the mean relative and absolute errors versus time, which demonstrate

promising approximation performance of our method.

Figure 3.3e shows some challenges in the relative error as time advances. This is because

the solution to the Allen-Cahn equation for this initial value has fast-increasing derivatives as

time progresses, which poses a challenge to all numerical methods including ours in solving

Allen-Cahn equations in general. Specifically, such large derivatives force the parameters θ

of the neural network to blow up quickly, and hence the trajectory θ(t) may rapidly escape

70

from the prescribed Θ over which we trained the vector field Vξ. This is a challenge that

remains to be overcome by using more adaptive training methods and sampling strategies.

For this experiment, generating G̃ and p̃ for (3.30) took 1.04 hours while the generation of

the trajectories for (3.31) took only 15 minutes. The much lower dimension of this problem

compared to the transport and heat equation examples accounted for the speed up in the

generation of samples. Similar to the transport equation, training Vξ took only 7 minutes.

For testing, it took an average of 21 seconds to train a θ(0) to a sampled g and an average

of 2.1 seconds to then solve (3.6) using a 4th order Runge-Kutta solver with step size 0.002.

This amounts to less than 24 seconds in total time per initial for the testing stage.

3.5 Variations and Generalizations

In this section, we briefly discuss modifications of the proposed approach so that it can be

applied to some other problems involving evolution PDEs. In particular, we consider the

following two cases: general time-dependent PDEs and initial value problems with time-

varying boundary conditions.

Applications to general time-dependent PDEs

Our approach can be readily applied to a large variety of time-dependent PDEs. The reason

is that these PDEs can be converted to the exact form of (3.2) for which our method is

designed. To avoid overloading the bracket notation, we temporarily use F (u) and F (t, u)

to represent F [u] and Ft[u] (differential operator that explicitly depends on time t). We first

71

note that one can convert any non-autonomous evolution PDE into an autonomous one:

∂tu = F (t, u) ⇐⇒ ∂tũ = F̃ (ũ), where ũ := [t;u], F̃ (ũ) :=
[
1;F (u)

]
, (3.41)

and [· ; ·] means to stack the two arguments vertically to form a single one. We can also

consider PDEs involving higher order time derivatives and convert them to first-order PDE

systems by noticing equivalency as follows:

∂ttu = F (u) ⇐⇒ ∂tũ = F̃ (ũ), where ũ := [u; v], F̃ (ũ) :=
[
v;F (u)

]
. (3.42)

History-dependent PDEs can also be considered: denote Hu(t) := {u(·, s) | 0 ≤ s ≤ t} the

trajectory recording the path of u up to time t and F a nonlinear operator on path Hu,

then we can set Hu(t) as an auxiliary variable and convert the problem ∂tu = F [Hu] to an

autonomous evolution PDE of [u;Hu].

Evolution PDEs with boundary conditions

We can also modify our method to solve IVPs with different boundary conditions. Let

(g, ϕ) be the pair of initial and boundary values of the IVP. That is, u(x, 0)|Ω̄ = g and

u(x, t)|∂Ω×[0,T] = ϕ. In this case, we can parameterize uθ(x) = φη(x) + α(x)ψζ(x) with

θ = (η, ζ), where φη and ψζ are two reduced-order models (e.g., neural nets) with parameters

η and ζ, respectively, and α(x) is a prescribed smooth function such that α(x) > 0 if x ∈ Ω

and α(x) = 0 if x ∈ ∂Ω. Here φη is to fit the boundary value ϕ without interference from

αψζ as the latter vanishes on the boundary ∂Ω.

72

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

0.773

0.192

0.390

0.972

1.553

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

0.773

0.192

0.390

0.972

1.553

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

0.00000

0.01268

0.02535

0.03803

0.05070

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

1.203

0.828

0.453

0.078

0.296

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

1.203

0.828

0.453

0.078

0.296

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

t = 0

0.0 0.5 1.0

t = 0.004

0.0 0.5 1.0

t = 0.008

0.0 0.5 1.0

t = 0.012

0.0 0.5 1.0

t = 0.015

0.00000

0.00912

0.01825

0.02737

0.03650

Figure 3.4 (Heat equation). Comparison between true solution u∗(·, t), the approxima-
tion uθ(t)(·) and their pointwise absolute difference |uθ(t)(x) − u∗(x, t)| for times t =
0, 0.004, 0.008, 0.012, 0.015 for IVPs with the first (rows 1–3), second (rows 4–6) and third
initial (rows 7–9) drawn from the set G := {∑4

i=1 cigi : ci ∈ [−1, 1]} where gi is defined in
(3.38).

73

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

0.769

0.338

0.094

0.525

0.957

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

0.769

0.338

0.094

0.525

0.957

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

0.00000

0.01606

0.03212

0.04818

0.06425

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

1.007

0.580

0.152

0.276

0.703

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

1.007

0.580

0.152

0.276

0.703

1 0 1
x1

1

0

1

x 2

t = 0

1 0 1

t = 0.15

1 0 1

t = 0.3

1 0 1

t = 0.45

1 0 1

t = 0.6

0.00000

0.00681

0.01362

0.02043

0.02724

Figure 3.5 (Allen-Cahn equation). Comparison between true solution u∗(·, t), the ap-
proximation uθ(t)(·) and their pointwise absolute difference |uθ(t)(x) − u∗(x, t)| for times
t = 0, 0.004, 0.008, 0.012, 0.015 for IVPs with the first (rows 1–3), second (rows 4–6) and
third initial (rows 7–9) drawn from the set G defined in (3.40).

74

PART 4

EXTENDING NEURAL CONTROL FOR HIGH-DIMENSIONAL PDES

4.1 Introduction

In this last part we will continue searching for ways to find solution operators for evolutional

PDEs of the form 
∂tu(x, t) = F [u](x, t), x ∈ Ω, t ∈ (0, T],

u(x, 0) = g(x), x ∈ Ω.

(4.1)

Previously, we had approached approximating the solution operator by solving the nonlinear

least squares problem defined as

min
ξ

∫
Θ

∫
Ω

|∇θuθ(x) · Vξ(θ)− F [uθ](x)|2 dxdθ. (4.2)

This approach turns out to be a natural first choice sharing much of the reasoning used in

many deep learning papers such as PINNs [94] or the approach we used in Lyapunov-Net

in terms of the negative orbital requirement. Namely, the general idea followed by the least

squares problem is that we collect together some relevant penalty terms that we want to

be zero and add those to a loss function which we seek to minimize. While the previous

chapter shows that in certain cases the total computational cost for solving this least-squares

problem is substantially lower than solving the IVP (4.1) directly over and over again, there

remain hurdles to using this approach. Chief amongst these, the computational cost in

solving the nonlinear least squares problem (4.2) is high due to the relatively high dimension

m of Θ. Further, it requires intuition and careful tuning in sampling the θ from Θ to achieve

75

reasonable solution quality. These issues may hinder the practical applications of this least

squares approach. As such, we shall develop an extension of this method that builds upon

the main ideas developed in the previous chapter but is simpler to implement and use.

The new contributions of this part to the existing literature can be summarized as follows:

1. We develop improve on the Neural Control framework by introducing a new training

approach which utilizes Neural-ODE to train the DNNs.

2. We extend the theoretical analysis from the previous chapter to establish error bounds

for the proposed method when more general semi-linear PDEs, as well as show new

results on approximation capabilities of our previous theory.

3. We conduct a new series of numerical experiments and compare these to the least-

squares approach of the previous chapter to show some improvements.

4.2 Proposed Method

We now develop the new approach to estimate ξ which is substantially more efficient and

accurate, even without any intuition, in training Vξ than the alternative of using (4.2).

4.2.1 Control Theory Approach

Consider θ(t) as a controllable trajectory in the parameter space and recall that when ap-

proximating the solution operator it suffices to find a proper control vector field Vξ with

parameters ξ such that

∇θuθ(t)(x) · Vξ(θ(t)) = ∂t(uθ(t)(x)) = F [uθ(t)](x), ∀x ∈ Ω, t ∈ (0, T] (4.3)

76

and the initial θ(0) to satisfy uθ(0) = g. Realize, enforcing (4.3) for many trajectories θ(t) is

equivalent to minimizing the following running cost

r(θ(t); ξ) := ∥∇θuθ(t) · Vξ(θ)− F [uθ(t)]∥2L2(Ω) (4.4)

for any trajectory θ(t) in Θ. Realize a problem of the least-squares approach is that relevant

trajectories can be unevenly distributed in Θ for the corresponding uθ(t) to be a meaningful

solution to (4.1), this is a major issue leading to the inefficient sampling of Θ in (4.2).

Therefore, we propose the following strategy to learn Vξ effectively: first, define the auxiliary

variable γ(t) := [θ(t); s(t)] ∈ Rm+1 (we use the MATLAB syntax [·; ·] to stack vectors as one

column vector) such that γ(0) = [θ(0); 0] and

γ̇(t) = [θ̇(t); ṡ(t)] = [Vξ(θ(t)); r(θ(t); ξ)].

Define ℓ(γ; ξ) = [0m; 1]
⊤γ, and we see ℓ(γ(T); ξ) =

∫ T

0
r(θ(t); ξ)dt. We then sample M initial

values {gi : i = 1, . . . ,M} and fit them by {uθi(0) : i = 1, . . . ,M} correspondingly, then

solve the following terminal value control problem with control parameters ξ:

min
ξ

ℓ̂(ξ) :=
1

M

M∑
i=1

ℓ(γi(T); ξ),

subject to γ̇i(t) = [Vξ(θi(t)); r(θi(t); ξ)], γi(0) = [θi(0); 0], i = 1, . . . ,M,

(4.5)

where each θi(t) starts from its own initial θi(0) fitted earlier. In practice, we shall be required

to approximate the L2 norm within r(θ; ξ) in (4.4) using Monte Carlo integration as usual.

With the formulation in (4.5), we now show how to calculate gradients of ℓ̂ using Neural

ODE (NODE) [18]. It suffices to consider the case with M = 1. NODE allows us to

77

calculate ∇ξℓ(γ(T), ξ) as follows: using the adjoint sensitivity method, we introduce the so-

called adjoint parameter a : [0, T] → Rm+1 such that a(T) = −∇γℓ(γ(T); ξ) and ȧ(t)⊤ =

−a(t)⊤∇γ[Vξ(θ(t)); r(θ(t); ξ)]. In practice, we compute [θ(t); r(θ(t); ξ)] forward in time to T ,

and then compute a(t) and integrate a(t)⊤∇ξ[Vξ(θ(t)); r(θ(t); ξ)] simultaneously backward

in time to calculate ∇ξℓ(γ(T), ξ) = −
∫ 0

T
a(t)⊤∇ξ[Vξ(θ(t)); r(θ(t); ξ)]dt. The latter can be

used in any standard first-order optimization algorithm, such as stochastic gradient descient

method and ADAM [59] to minimize ℓ. This can be readily extended to the case withM > 1

and averaged loss ℓ̂ in (4.5). The training of Vξ is summarized in Algorithm 3. In this work,

we apply ADAM to minimize ℓ̂ and its parameter settings are provided in Section 4.3.

Algorithm 3 Training neural control Vξ
Require: Reduced-order model structure uθ and parameter set Θ. Control vector field

structure Vξ. Error tolerance ε.
Ensure: Optimal control parameters ξ.
1: Sample {θk(0)}Kk=1 uniformly from Θ.

2: Form loss ℓ̂(ξ) = 1
M

∑M
i=1

∫ T

0
ℓ(θi(t); ξ)dt as in (4.5).

3: Minimize ℓ̂(ξ) with respect to ξ (using Neural ODE to compute ∇ξ ℓ̂(ξ)).

Once the vector field Vξ is trained, we can implement the solution operator SF in the

same way as in Algorithm 2.

4.2.2 Theoretical Advances and Error Analysis

In this section, we provide theoretical justifications on the solution approximation ability

of the proposed method for a general class of second-order semi-linear PDEs. For ease of

presentation, we first define Sobolev ball with radius L in W k,∞(Ω) as follows.

78

Definition 2 (Sobolev ball). For L > 0 and k ∈ N, we define the Sobolev ball of radius L

as the set

SB(Ω, L, k) := {g ∈ W k,∞(Ω) : ∥g∥Wk,∞(Ω) ≤ L}.

As mentioned in Section 4.2.1, we focus on IVPs with solutions compactly supported

in an open bounded set Ω ⊂ Rd for ease of discussion. More specifically, we consider the

following IVP with an evolution PDE and arbitrary initial value g:

∂tu(x, t) = F [u](x, t) x ∈ Ω, t ∈ (0, T)

u(x, 0) = g(x) x ∈ Ω,

u(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T]

(4.6)

where F is a kth order autonomous, (possibly) nonlinear differential operator. We note that

non-autonomous PDEs can be converted to an equivalent autonomous one by augmenting

spatial variable x with t in practice. For the remainder of this section, we require the

following regularity on F .

Assumption 5. Let F be a kth order differential operator and p ∈ N. For all L > 0, there

exists Mp,L,F > 0 such that for all w, v ∈ SB(Ω, L, k + p) we have

∥F [w]− F [v]∥W p,∞(Ω) ≤Mp,L,F∥w − v∥Wk+p,∞(Ω)

The requirements of Assumption 5 ensure that F : W k+p,∞(Ω) → W p,∞(Ω) is Lipschitz

over SB(Ω, L, k + p) for the specified p. For many types of PDEs, this assumption is quite

mild. For example, if the second-order linear/nonlinear differential operator F is Cp in

(x, u(x),∇u(x),∇2u(x)) for all x ∈ Ω, then F satisfies Assumption 5 with k = 2. With this

79

new assumption we can replace Assumption 4 from the previous chapter with a different

theorem.

Theorem 4. Suppose F satisfies Assumption 5 for k, p ∈ N. Let ϵ > 0 and L > 0. Then

there exists a feed-forward neural network uθ and an open bounded set Θu,F,L ⊂ Rm such that

(i) For every θ ∈ Θu,F,L, there exists αθ ∈ Rm such that

∥αθ∇θuθ − F [uθ]∥W 1,∞(Ω) < ϵ.

(ii) For every g ∈ W 2k+3,∞(Ω) ∩ SB(Ω, L, 2k + 2), there exists θ ∈ Θu,F,L such that

∥uθ − g∥W 1,∞(Ω) < ϵ.

To prove Theorem 4 we will need a few results. First, we prove the following Lemma,

which provides a meaningful connection between commonly-used general neural networks

with fixed parameters and neural networks with time-evolving parameters. For ease of

presentation, we restrict to standard feed-forward networks only, while the idea can be

readily generalized to other networks (see Remark 4).

Lemma 6. For any feed-forward neural network architecture vη(x, t) with parameters denoted

by η, there exists a feed-forward neural network uθ(t)(x) and a differentiable evolution of the

parameters θ(t) such that uθ(t)(x) = vη(x, t) for all x ∈ Rd and t ∈ R.

Proof. We denote the feed-forward network vη(x, t) = w⊤
l hl−1(x, t) + bl with

hℓ(x, t) = σ(Wℓhℓ−1(x, t) + bℓ), ℓ = 1, . . . , l − 1,

80

where h0(x, t) = σ(W0x + w0t + b0) and η = (wl, bl,Wl−1, . . . ,W0, w0, b0). Note that all

components in η are constants independent of x and t. Similarly, denote uθ(x) = w̃⊤
l h̃l−1(x)+

b̃l with

h̃ℓ(x) = σ(W̃ℓh̃ℓ−1(x) + b̃ℓ), ℓ = 1, . . . , l − 1,

where h̃0(x) = σ(W̃0x + b̃0) and θ = (w̃l, b̃l, W̃l−1, . . . , W̃0, b̃0). Note that θ(t) can be time-

evolving. Hence, we can set b̃0(t) = w0t + b0 for all t and all other components in θ(t) as

constants identical to the corresponding ones in η, i.e., w̃l(t) ≡ wl, b̃L(t) ≡ bL, . . . , b̃1(t) ≡ 10.

Then it is clear that uθ(t)(x) = vη(x, t) for all x and t, and θ(t) is differentiable.

Remark 4. While we state Lemma 6 for feed-forward neural networks, it is easy to see that

the result holds for general neural networks as well. To see this, note that for any neuron

y(x, t) we can rewrite it as ỹη(t)(x) as shown in Lemma 6. For any neuron z(t, x, y(x, t)) we

can write it as z(t, x, y(x, t)) = z(t, x, ỹη(t)(x)) = z̃(η(t),η̃(t))(x) for some neural network z̃η,η̃

with input x and parameters (η, η̃) evolving in t. Applying this repeatedly justifies the claim.

We will use the following statement of the universal approximation theorem for neural

networks in our later proofs.

Lemma 7 (Theorem 5.1 [23]). Let ϵ > 0, L > 0, and k ∈ N. There exists a fixed feed-forward

neural network architecture wη with tanh activation such that for all f ∈ SB(Ω, L, k + 1)

there exists an η ∈ Rm such that

∥wη − f∥Wk,∞(Ω) < ϵ.

81

Proof. While Theorem 5.1 in [23] is stated for Ω = [0, 1]d we can apply a transformation layer

to generalize this for more arbitrary bounded Ω. Thus Lemma 7 is an immediate corollary

to Theorem 5.1 in [23].

We now advance to the proof.

Proof of Theroem 4. Let δ > 0 and define Ωδ = Ω× [−δ, δ]. Denote

L̄ := (1 + (1 + δ)Mk,L,F)L+ (1 + δ)∥F [0]∥Wk+1,∞(Ω).

For any g ∈ W 2k+3,∞(Ω) with ∥g∥W 2k+2,∞(Ω) ≤ L, we define Tg such that Tg(x, t) = g(x) +

tF [g](x) for all (x, t) ∈ Ωδ. Note that Tg(·, 0) ≡ g(·) and ∂tTg(·, t) = F [g](·) for all t.

Furthhermore, there is

∥Tg∥Wk+2,∞(Ωδ) = ∥g + tF [g]∥Wk+2,∞(Ωδ)

≤ ∥g∥Wk+2,∞(Ωδ) + ∥F [g]∥Wk+1,∞(Ω) + δ∥F [g]∥Wk+2,∞(Ω) (4.7)

≤ ∥g∥Wk+2,∞(Ωδ) + (1 + δ)∥F [g]∥Wk+2,∞(Ω)

=: I + (1 + δ) · II,

where the first equality in (4.7) is due to the definition of Tg, the first inequality due to the

triangle inequality inW k+2,∞(Ωδ), the split of time and spatial derivatives on Tg, and |t| ≤ δ,

and the second inequality due to ∥F [g]∥Wk+1,∞(Ωδ) ≤ ∥F [g]∥Wk+2,∞(Ωδ). Since g ∈ C2k+2(Ω),

we have

I := ∥g∥Wk+2,∞(Ωδ) ≤ ∥g∥W 2k+3,∞(Ω) ≤ L (4.8)

82

given that g is constant in t. On the other hand, there is

II := ∥F [g]∥Wk+2,∞(Ω) ≤ ∥F [g]− F [0]∥Wk+2,∞(Ω) + ∥F [0]∥Wk+2,∞(Ω)

≤Mk,L,F∥g∥W 2k+2,∞(Ω) + ∥F [0]∥Wk+2,∞(Ω) (4.9)

≤Mk,L,FL+ ∥F [0]∥Wk+2,∞(Ω)

where the second inequality is due to the Assumption 5 on F . Combining (4.7), (4.8) and

(4.9) yields ∥Tg∥Wk+2,∞(Ωδ) ≤ L̄. By Lemma 7, there exists a feedforward neural network

architecture vη such that for any Tg there are parameters η = ηg for some ηg satisfying

∥vηg − Tg∥Wk+1,∞(Ωδ) <
ϵ

2(1 +Mk,L,F)
. (4.10)

Define wg := vηg − Tg, then wg ∈ W k+2,∞(Ωδ) since vηg is smooth in (x, t) and Tg(·, t) =

g(·)+tF [g](·) ∈ W k+2,∞(Ωδ). As a result, for any multi-index α ∈ Nd+1 satisfying |α| ≤ k+1,

there is ∂αwg ∈ W 1,∞(Ωδ), which also implies ∂αwg ∈ C(Ωδ). Due to this continuity, we also

have

∥∂αwg(·, 0)∥L∞(Ω) ≤ ∥∂αwg∥L∞(Ωδ). (4.11)

Since α is arbitrary, we thus have

∥wg(·, 0)∥W p,∞(Ω) ≤ ∥wg∥W p,∞(Ωδ) (4.12)

∥∂twg(·, 0)∥W p−1,∞(Ω) ≤ ∥∂twg∥W p−1,∞(Ωδ) (4.13)

83

for all p = 1, . . . , k + 1. Therefore,we have

∥vηg(·, 0)− g(·)∥Wk+1,∞(Ω) = ∥wg(·, 0)∥Wk+1,∞(Ω) ≤ ∥wg∥Wk+1,∞(Ωδ) (4.14)

= ∥vηg − Tg∥Wk+1,∞(Ωδ) <
ϵ

2(1 +Mk,L,F)
,

where the two equalities are due to the definition of wg, the first inequality due to (4.12)

with p = k + 1, and last inequality due to (4.10), Note that (4.14) further implies that

∥F [vηg](·, 0)− F [g](·)∥W 1,∞(Ω) ≤Mk,L,F∥vηg(·, 0)− g(·)∥Wk+1,∞(Ω) <
ϵ

2
. (4.15)

Combining the results above, we have

∥∂tvηg(·, 0)− F [vηg](·, 0)∥W 1,∞(Ω) ≤ ∥∂tvηg(·, 0)− F [g](·)∥W 1,∞(Ω) + ∥F [g](·)− F [vηg](·, 0)∥W 1,∞(Ω)

< ∥∂twg(·, 0)∥W 1,∞(Ω) +
ϵ

2

≤ ∥∂twg∥W 1,∞(Ωδ) +
ϵ

2
(4.16)

≤ ∥vηg − Tg∥Wk+1,∞(Ωδ) +
ϵ

2

≤ ϵ.

where the first inequality above is due to the triangle inequality, the second due to the

definition of wg, the property ∂tTg(·, 0) = F [g](·), and (4.15), the third due to (4.13) with

p = 2, the fourth due to ∥vηg − Tg∥Wk+1,∞(Ωδ) being the max of terms including ∥∂t(vηg −

Tg)∥W 1,∞(Ωδ), and the last inequality due to (4.14). Since vη uses tanh activations and hence

is smooth in η, we know both (4.14) and (4.16) hold for some open neighborhood Ug of ηg

84

in Rm.

Following the ideas in the proof of Lemma 6 we define the sets Ûg where for each η =

(wl, . . . , w0, b0) ∈ Ug we have θ = (wl, . . . , b0) ∈ Ûg, since Ug is open we can easily conclude

that Ûg is also open.

Now we set Γ :=
⋃

g∈W 2k+3,∞(Ω)∩SB(Ω,L,2k+2) Ûg, which is open, and Θu,L,F = Γ ∩ BR(0)

where BR(0) := {θ ∈ Rm : |θ| < R} is a bounded open set for some R > 0. Therefore

Θu,L,F is also bounded and open. Moreover by Lemma 6, for any θ ∈ Θu,L,F , there exists

η ∈ Ug for some g and a differentiable θ̂(t), such that uθ̂(t)(·) = vη(·, t) for all t with θ̂(0) = θ.

Therefore,

∂tvη(·, 0) = ∂tuθ̂(t)(·)|t=0 = ∇θuθ̂(0)(·) ·
˙̂
θ(0) = ∇θuθ(·) · ˙̂θ(0).

Let αθ =
˙̂
θ(0). Given that (4.16) holds for vη and uθ(·) = vη(·, 0), we know that

∥∇θuθ · αθ − F [uθ]∥W 1,∞(Ω) = ∥∂tvη(·, 0)− F [vη](·, 0)∥Wk+1,∞(Ωδ) < ϵ,

which justifies the first claim.

(ii) For any g ∈ W 2k+2,∞(Ω) ∩ SB(Ω, L, 2k + 1), we know there exists ηg ∈ Ug, such

that vηg(·, 0) = g(·). Given the definition of Θu,F,L above, there exists θ ∈ Θu,F,L and a

differentiable curve θ̂(t) such that θ̂(0) = θ and uθ̂(t)(·) = vηg(·, t) for all t. Therefore, given

that (4.14) holds for vηg , we have

∥uθ − g∥W 1,∞(Ω) = ∥uθ̂(0) − g∥W 1,∞(Ω) = ∥vηg(·, 0)− g(·)∥W 1,∞(Ω) < ϵ,

which proves the second claim.

85

Theorem 4 tells us that with a sufficiently large neural network, we can find a subset

Θu,F,L of the parameter space such that the tangent spaces of Θu,F,L can approximate F [uθ]

arbitrarily well. Realize, this theorem allows us to derive a stronger result when compared

to Assumption 4 from the previous chapter and only requires regularity on the operator

F and the approximating power of neural networks. With Theorem 4 we can now state a

similar existence result as in Proposition 1 of vector fields defined over Θu,F,L that have the

approximation capabilities proved in Theorem 4.

Proposition 2. Suppose Assumption 5 holds. Then for any ε > 0 and L > ϵ > 0, there

exists a differentiable vector field parameterized as a neural network Vξ : Θ̄u,F,L → Rm with

parameters ξ, such that

∥Vξ(θ) · ∇θuθ − F [uθ]∥H1(Ω) ≤ ε,

for all θ ∈ Θ̄u,F,L.

Due to the similarity of the proof of Proposition 2 to that of Proposition 1, we have

moved the exposition to Appendix B. Now we provide a few mild conditions on the problem

setting of the PDE and its solutions, as follows.

Assumption 6. Let Ω be a bounded open set of Rd. The solutions to (4.1) are compactly

supported within Ω for all t ∈ [0, T].

Of particular importance, Assumption 6 allows us to be able to design uθ so that∇uθ(x) =

0 and uθ(x) = 0 on the boundary and as such matches the true solutions on the boundaries

as well (see e.g. [12, 26, 34] for more discussion on this point).

86

Assumption 7. Let (4.1) be a second-order semi-linear PDE with F [u](x) := (σ2(x)/2)∆u(x)+

f(x, u(x),∇u(x)) for some (possibly) fully nonlinear function f such that the following in-

equalities hold for all x, y ∈ Ω, u, v ∈ R and p, q ∈ Rd:

|f(x, u, p)− f(y, v, q)| ≤ Lf (|x− y|+ |u− v|+ |p− q|) (4.17a)

|∂xf(x, u, p)− ∂xf(y, v, q)| ≤ Lx(|x− y|+ |u− v|+ |p− q|) (4.17b)

|∂uf(x, u, p)− ∂uf(y, v, q)| ≤ Lu(|x− y|+ |u− v|+ |p− q|) (4.17c)

|∂pf(x, u, p)− ∂pf(y, v, q)| ≤ Lp(|x− y|+ |u− v|+ |p− q|) (4.17d)

for some Lf , Lx, Lu, Lp > 0. Here | · | denotes absolute value or standard Euclidean vector

norm.

It should be noted that F as defined in Assumption 7 satisfies the requirements of As-

sumption 5, and thus we can use the results of Proposition 2. Now we are ready to present

the main theorem of the present chapter.

Theorem 5. Suppose Assumptions 6 and 7 hold. Let ε0 ≥ ε > 0 be arbitrary. Then for any

L > ε > 0 there exist a vector field Vξ and a constant C > 0 depending only on F , uθ, and

Vξ, such that for any u∗ ∈ SB(Ω, L, 2) satisfying the evolution PDE in (4.1), Assumption 6

and u∗(·, 0) ∈ SB(Ω, L, 4) there is

∥uθ(t)(·)− u∗(·, t)∥H1(Ω) ≤
√
2(ε0 + 2εt)e4Ct (4.18)

for all t as long as θ(t) ∈ Θ̄u,F,L, where θ(t) is solved from the ODE defined by (3.6) with Vξ

87

and initial θ(0) satisfying ∥uθ(0)(·)− u∗(·, 0)∥L2(Ω) ≤ ε0.

Proof. Due to Assumptions 7 and 5, there exist a vector field Vξ and a bounded open set

Θu,F,L that satisfy the results of Proposition 2. Assume θ(t) ∈ Θu,F,L is the solution to (3.6),

and ∥uθ(0)(·)−u∗(·, 0)∥2 ≤ ε0 (such θ(t) is guaranteed to exist for ε ≤ ε0), where u
∗ is the true

solution of the PDE (4.1). As u∗ ∈ SB(Ω, L, 2), there exists Mf := ∥∂uf∥L∞(Ω×[−L,L]×[−L,L]d)

because u∗ ∈ SB(Ω, L, 2) which implies ∂uf(x, u
∗(x, t),∇u∗(x, t)) ≤ Mf a.e. in Ω for every

t. Similarly, by Assumption 7 we have ∂pf Lipschitz continuous jointly in its arguments and

thus there is ∇ · ∂pf(x, u∗(x, t),∇u∗(x, t)) ≤M ′
f a.e. in Ω for some M ′

f > 0.

In what follows, we denote ∥ · ∥2 := ∥ · ∥L2(Ω) and

ut := uθ(t), vt := u∗t , e0(·, t) := ut(·)− vt(·), e1(·, t) := ∇ut(·)−∇vt(·)

to simplify the notations hereafter. Define

E(t) =
1

2

∫
Ω

|ut(x)− vt(x)|2 dx+
1

2

∫
Ω

|∇ut(x)−∇vt(x)|2 dx =
∥e0(·, t)∥22

2
+
∥e1(·, t)∥22

2
.

Taking the time derivative of E, we find

Ė(t) = ⟨e0(·, t), ∂te0(·, t)⟩+ ⟨e1(·, t), ∂te1(·, t)⟩

= ⟨ut − vt, F [ut]− F [vt]⟩+ ⟨∇ut −∇vt,∇F [ut]−∇F [vt]⟩+ ⟨ut − vt, ϵt⟩+ ⟨∇ut −∇vt,∇ϵt⟩

=: I + II + III + IV, (4.19)

where ⟨·, ·⟩ is the inner product in the L2(Ω) space, ϵt(·) := ∇θuθ(t)(·) ·Vξ(θ(t))−F [uθ(t)](·) =

∂tut(·) − F [ut](·), and the terms III and IV result from ∂tut = F [ut] + ϵt. We shall now

88

proceed to estimate the four terms above.

For the term I, we first notice that

I1 :=
〈
ut − vt,

σ2

2
(∆ut −∆vt)

〉
=

∫
Ω

σ2(x)

2
e0(x, t)∆e0(x, t)dx =

∫
Ω

σ2(x)

2

(
∇ · (e0(x, t)∇e0(x, t))− |∇e0(x, t)|2

)
dx

≤
∫
∂Ω

σ2(x)

2
e0(x, t)∇e(x, t) · n⃗(x) dS(x)−

∫
Ω

(σ(x)∇σ(x)) · (e0(x, t)∇e0(x, t))dx

≤ Mσ∥e0(·, t)∥2∥∇e0(t, ·)∥2,
(4.20)

where Mσ := ∥σ∇σ∥L∞ < ∞, n⃗(x) is the unit outer normal at x ∈ ∂Ω, and the first

inequality is due to
∫
Ω

σ2

2
|∇e0|2 ≥ 0. Furthermore, we can show a bound for the quantity:

I2 :=⟨e0(·, t), f(·, ut,∇ut)− f(·, vt,∇vt)⟩ ≤ Lf∥e0(·, t)∥2(∥e0(·, t)∥2 + ∥∇e0(·, t)∥2),

(4.21)

where we used the Lipschitz bound on f to arrive at the inequality. Realize I = I1 + I2 and

so

I ≤ (Mσ + Lf)∥e0(·, t)∥2∥∇e0(t, ·)∥2 + Lf∥e0(·, t)∥22. (4.22)

Next, consider the term

〈
∇ut −∇vt,∇(

σ2

2
∆ut −

σ2

2
∆vt)

〉
=

∫
∂Ω

σ2(x)

2
∆e0(x, t)∇e0(x, t) · n⃗(x) dS(x)

−
∫
Ω

σ2(x)

2
(∆e0(x, t))

2dx

≤ 0,

(4.23)

where the inequality comes as ∇e0(x, t) = 0 on the boundary by Assumption 6. Now we

89

define

II2 = ⟨∇ut −∇vt,∇[f(·, ut,∇ut)− f(·, vt,∇vt)]⟩

= ⟨∇e0(·, t), ∂xf(·, ut,∇ut)− ∂xf(·, vt,∇vt)⟩

+ ⟨∇e0(·, t), (∂uf(·, ut,∇ut)∇ut − ∂uf(·, vt,∇vt)∇vt)⟩

+ ⟨∇e0(·, t), (∇2ut∂pf(·, ut,∇ut)−∇2vt∂pf(·, vt,∇vt))⟩

= II2,1 + II2,2 + II2,3.

(4.24)

We now estimate these three terms using our assumptions on the function f . First

II2,1 ≤ Lx

∫
Ω

∇e0(x, t)(|ut(x)− vt(x)|+ |∇ut(x)−∇vt(x)|)dx

≤ Lx(∥∇e0(·, t)∥2∥e0(·, t)∥2 + ∥∇e0(·, t)∥22).

Since Θ̄u,F,L is compact and θ(t) is bounded, it is easy to see there exists a constant Mu > 0

such that ∥ut∥W 2,∞(Ω) ≤ Mu where Mu depends only on Θ̄u,F,L and the architecture of ut.

Therefore,

II2,2 = ⟨∇e0(·, t), (∂uf(·, ut,∇ut)− ∂uf(·, vt,∇vt))∇ut + ∂uf(·, vt,∇vt)∇e0(·, t)⟩

≤ MuLu∥∇e0(·, t)∥2(∥e0(·, t)∥2 + ∥∇e0(·, t)∥2) +Mf∥∇e0(·, t)∥22.

Finally, we have

II2,3 = ⟨∇e0(·, t),∇2ut∂pf(·, ut,∇ut)−∇2vt∂pf(·, vt,∇vt)⟩

= ⟨∇e0(·, t),∇2ut(∂pf(·, ut,∇ut)− ∂pf(·, vt,∇vt))⟩

+ ⟨∇e0(·, t), (∇2e0(·, t))∂pf(·, vt,∇vt)⟩.

90

Now we see

⟨∇e0(·, t),∇2ut(∂pf(·, ut,∇ut)−∂pf(·, vt,∇vt))⟩ ≤MuLp∥∇e0(·, t)∥2(∥e0(·, t)∥2 + ∥∇e0(·, t)∥2)

(4.25)

and

⟨∇e0(·, t), (∇2e0(·, t))∂pf(·, vt,∇vt)⟩ =
∫
Ω

∂pf(x, vt(x),∇vt(x))⊤∇2e0(x, t)∇e0(x, t)dx

=

∫
Ω

∂pf(x, vt(x),∇vt(x))⊤∇
(
1

2
|∇e0(x, t)|2

)
dx

= − 1

2

∫
Ω

∇ · (∂pf(x, vt(x),∇vt(x)))|∇e0(x, t)|2dx

≤ d

2
M ′

f∥∇e0(·, t)∥22,
(4.26)

where we used the fact that ∇e0(·, t) = 0 on ∂Ω to get
∫
∂Ω
∂pf |∇e0|2dS(x) = 0. Applying

(4.25) and (4.26) in II2,3, we find

II2,3 ≤MuLp∥∇e0(·, t)∥2∥e0(·, t)∥2 +
(
MuLp +

d

2
M ′

f

)
∥∇e0(·, t)∥22.

Define

C := Lx +MuLu +MuLp +max
{
Mσ + Lf , Mf +

d

2
M ′

f

}
,

and we can see

I + II ≤ C(∥e0(·, t)∥22 + ∥e0(·, t)∥2∥∇e0(·, t)∥2 + ∥∇e0(·, t)∥22)

≤ 2C
(
∥e0(·, t)∥22 + ∥∇e0(·, t)∥22

)
.

(4.27)

91

Now, using our bound on ϵt, we can bound III and IV:

III + IV = ⟨e0(·, t), ϵ(·, t)⟩+ ⟨∇e0(·, t),∇ϵ(·, t)⟩

≤ ε̄(∥e0(·, t)∥2 + ∥∇e0(·, t)∥2)

≤
√
2ε̄
√
∥e0(·, t)∥22 + ∥∇e0(·, t)∥22.

(4.28)

Applying (4.27) and (4.28) to (4.19) and dividing both sides by E(t), we see

d

dt

√
E(t) =

Ė(t)√
E(t)

≤ 4C
√
E(t) + 2ε̄.

Applying Grönwall’s inequality, we conclude

√
E(t) ≤ (

√
E(0) + 2ε̄t)e4Ct = (ε0 + 2ε̄t)e4Ct.

The above inequality holds for any u∗(·, 0) ∈ SB(Ω, L, 4) by Proposition 2, and so the proof

is completed.

Remark 5. Theorem 5 provides an upper bound on the error between uθ(t) and u∗(·, t): it

depends on the projection error ε and initial error ε0 linearly, while it grows exponentially

fast in t which is expected. Note that Theorem 5 extends Theorem 3.6 in [34] from PDEs that

are linear in the first- and second-order terms to general semi-linear PDEs. This extension

requires substantial efforts and new proof steps.

92

4.3 Numerical Results

4.3.1 Implementation

Throughout all experiments, we select the following special form for our neural network

Vξ : Rm → Rm,

Vξ(θ) = ϕ
(s)
ξs
(θ)

(
ϕ
(r)
ξr
(θ) + ϕ

(e)
ξe
(θ)⊙ θ

)
, (4.29)

where ξ = (ξs, ξr, ξe), ⊙ is component wise multiplication, and ϕ(s) : Ω → R is a sigmoid

feedforward network, ϕ(e) : Ω → Rd is a ReLU feedforward network, and ϕ(r) : Ω → Rd

is a ReLU ResNet, each of depth L and constant width w as shown in Table 4.1. We

decided to use the structure above in order to represent both linear functions through ϕ(r)

and exponential functions through ϕ(e), while ϕ(s) acts as a scaling network to handle the

varying velocities the different regions of the parameter space may use. It appears to perform

better than the other few generic networks we tested.

The loss function (4.5) records the total error accumulated along the trajectories. Some-

times it can be further augmented by an additional loss containing relative errors to target

values obtained by, e.g., [26]. In [26], the goal is to solve a given PDE (not to approximate

solution operator) but it provides potential target locations θ̄(T) by solving a sequence of

linear least squares problems from a given θ̄(0). We leverage this method to generate an

additional set T = {θ̄i(T) : i = 1, . . . , |T|}, and add the following augmentation term to the

loss function (4.5):

ℓaug(ξ) :=
1

|T|

|T|∑
i=1

(
ℓ(γi(T); ξ) +

∥uθi(T) − uθ̄i(T)∥22
∥uθ̄i(T)∥22

)
, (4.30)

93

Table 4.1 The problem dimension d, the size of augument set T, the mini-batch size K in
training, and the width and depth of Vξ used in each of the numerical experiments.

Experiment d |T| K Width Depth

Heat Equation 10 0 100 1000 5
Hyperbolic PDE 10 1000 100 600 5
HJB Equation 8 250 512 1000 5

where the first term in the sum is due to the same logic in (4.5) by starting from θi(0) = θ̄i(0)

for all i and the second term is to match the targets computed by [26]. Here θi(T) is the

first m components of γi(T). Since time-marching is very slow, we only add a small sized

T for some of our experiments. Nevertheless, they help to further improve approximation

of Vξ in certain experiments. Finally, we note that the empirical estimations in the relative

errors are on L2(Ω) norm and thus are again approximated by Monte Carlo integration over

Ω. Other parameters are also shown in Table 4.1.

For all the experiments, we use the standard ADAM optimizer [59] with learning rate

0.0005, β1 = 0.9, β2 = 0.999. We terminate the training process when the percent decrease of

the loss is less than 0.1% averaged over the past 20 steps or 10,000 total iterations whichever

comes first. Once Vξ is learned, we use the adaptive Dormand-Prince (DOPRI) method

to approximate θ(t) from the ODE in (3.6). All the implementations and experiments are

performed using PyTorch in Python 3.9 in Windows 10 OS on a desktop computer with

an AMD Ryzen 7 3800X 8-Core Processor at 3.90 GHz, 16 GB of system memory, and an

Nvidia GeForce RTX 2080 Super GPU with 8 GB of graphics memory.

94

4.3.2 Comparison to Existing Methods

First, we consider an initial value problem corresponding to the 10D heat equation (d = 10):

∂tu(x, t) = ∆u(x, t), ∀x ∈ Ω, t ∈ [0, T] (4.31)

with initial value u(x, 0) = g(x), where Ω = (−1, 1)10 ⊂ R10 and we use periodic boundary

conditions. Note that this is beyond the restrictions we used in error analysis, which suggests

that the analysis may be extended to more general cases. As most of the initial conditions

result in rapid diffusion, we use T = 0.1 in this test. We define our neural network as follows:

uθ(x) =
80∑
i=1

ci tanh
(
a⊤i sin (π(x− β))− bi

)
. (4.32)

We choose this network with trainable parameters θ = (β, ai, bi, ci) with i = 1, . . . , 80,

ai, β ∈ Rd and bi, ci ∈ R which enforce the periodic boundary conditions as sin(π(1− p)) =

sin(π(−1 − p)) for any p ∈ R and the sin function above acts component-wisely. Hence,

θ ∈ Rm has dimension m = 970. We train the vector field Vξ using the nonlinear least

squares (NLS) method in [34] and the proposed method (Alg. 3) and test their performance

on randomly generated initial conditions. Specifically, we generate a set of 100,000 points

sampled uniformly from Θ := {θ ∈ Rm : |θ| ≤ 20} and another 50,000 from N(0m, 0.5Im),

use them as the initials to train the control field Vξ defined in (4.29) for both of the compared

methods.

After the training is completed, we generate 100 random initials g = uθ(0) where θ(0) ∼

N(0m, 0.5Im). For each g, we compute the ODE (3.6) using the trained Vξ of the comparison

methods, obtain an approximate solution uθ(t), and compute the relative error ∥uθ(t)(·) −

95

0.000 0.005 0.010 0.015 0.020
time

0.000

0.020

0.040

0.060

re
la

tiv
e

er
ro

r

(a) T = 0.02

0.000 0.025 0.050 0.075 0.100
time

0.000

0.200

0.400

0.600

0.800

re
la

tiv
e

er
ro

r

(b) T = 0.10

Figure 4.1 Comparison of NLS [34] method (black dashed line) and the proposed method
(black solid line). While the previous method only allows accurate results for a small time
scale T = 0.02, the new method allows more accuracy for longer time scales T = 0.1.

u∗(·, t)∥22/∥u∗(·, t)∥22 where the true solution is given by u∗(x, t) =
∫
g(y)N(y − x, 2tId) dy

[30], where N stands for the density of Gaussian. Then we show the average and standard

deviation of the relative errors over these 100 initials versus time t in Figure 4.1.

Figure 4.1 shows that Alg. 3 significantly improves the approximation accuracy compared

to the NLS method provided by [34]. Specifically, Vξ obtained by NLS yields reasonably

accurate solutions up to t = 0.01 with < 2% relative error, but the error grows unacceptably

large to 60% on average at t = 0.1. On the other hand, the vector field Vξ trained by Alg. 3

yields much more stable and accurate solution uθ(t). The relative error maintains to be lower

than 0.3% at t = 0.01 and 4% for the proposed method at t = 0.1. We also show the

approximation uθ(t) obtained by NLS and the proposed method for t = 0.02 in Figure 4.2.

Due to space limitation, we only draw 5 different initial function g (as shown from the top to

bottom rows in Figure 4.2). From left to right columns, they are the initial g (first column),

96

the true solution u∗ (second column), the result obtained by the proposed method (third

column), and the approximation obtained by NLS (fourth column), where the last three are

at t = 0.02.

The training time for NLS takes approximately 1.3 hours using NLS, but only about 15

minutes using Algorithm 3. The testing time for individual initial condition, i.e., running

time of Alg. 2, takes an average of 0.84 second with a standard deviation of 0.33 second.

We remark that this time can be significantly reduced when multiple initials are queried in

batch. For example, it takes only 1.94 seconds to solve 100 different initials when they are

batched. These results demonstrate the significant improvement of the proposed method in

both accuracy and efficiency.

4.3.3 Hyperbolic PDE

Our next test is on the following 10D nonlinear hyperbolic PDE:

∂tu(x, t) = F [u](x, t) := 2∇ · tanh(u(x, t)) (4.33)

with initial value u(x, 0) = g(x) and Ω = (−1, 1)10. We remark that this is a very challeng-

ing problem and its solutions can often develop shocks which makes most methods suffer.

Therefore, we choose T = 0.15 as this is the earliest we observed shock waves in the ex-

amples we shall compare against. Then we enforce periodic boundary conditions by using

the same network uθ in (4.32) as above. Here, we sample θi(0) such that ai, β ∼ N(0d, Id)

and bi ∼ N(0, 1) for i = 1, . . . , 80, and c = (c1, c2, . . . , c80)
⊤ is sampled uniformly from the

sphere of radius 1. For this method to be scalable, we have to use special initials g = uθ(0)

97

1 0 1
1

0

1

1 0 1 1 0 1 1 0 1
3.146

1.666

0.187

1.292

2.772

1 0 1
1

0

1

1 0 1 1 0 1 1 0 1
2.456

0.844

0.767

2.379

3.990

1 0 1
1

0

1

1 0 1 1 0 1 1 0 1
3.867

2.517

1.168

0.181

1.530

1 0 1
1

0

1

1 0 1 1 0 1 1 0 1
1.248

0.274

0.699

1.672

2.645

1 0 1
1

0

1

1 0 1 1 0 1 1 0 1
0.875

1.293

1.711

2.129

2.547

Figure 4.2 Comparison with NLS [34] on the Heat Equation (4.31). All plots show the
(x1, x2) plane. (First column) initial g; (Second column): reference solution; (Third column)
Proposed method; and (Fourth column) NLS [34]. In all cases, the proposed method demon-
strates significant improvement on solution accuracy.

98

with ai(0) = (ai1(0), 0, . . . , 0)
⊤ for i = 1, . . . , 80. For the θ’s to be used in the terminal

set T, we make use of this form of our tested g’s and sample β, bi, and c as above but use

ai(0) = (ai1(0), 0, . . . , 0)
⊤ with ai1 ∼ N(0, 1).

The PDE (4.33) does not have analytic solutions. For comparison purpose, we use a

dedicated solver [81], which is a numerical approximation using a first-order upwind scheme,

with 4000 time steps and 1000 spatial steps to compute the reference solution. We use

as initial conditions the g’s defined above as their 1-d nature allows the computation of

our reference solutions. We stress that the initials we use here for testing are not contained

within the samples used for training. After training, we use the learned control Vξ to generate

solutions for all these initials. We plot mean and relative error of our method compared to

the reference numerical solutions for 100 different random initials in Figure 4.3 (left). We

observe a relative error of less than 4% on average, and more than 70% of results are below

8% relative error in our tests. These results suggest that our proposed method has great

potential to be applied to more challenging PDEs.

4.3.4 Applications to Hamilton-Jacobi-Bellman equations

We consider the following stochastic control problem with control function α:

min
α

1

2

∫ T

0

|α(X(t), t)|2dt+ g(X(T)), (4.34a)

s.t. dX(t) = α(X(t), t)dt+
√
2ϵdW, where X(0) = x, (4.34b)

99

0.000 0.050 0.100 0.150
time

0.000

0.020

0.040

0.060

0.080

re
la

tiv
e

er
ro

r

0.000 0.250 0.500 0.750 1.000
time

0.000

0.025

0.050

0.075

0.100

re
la

tiv
e

er
ro

r

Figure 4.3 Mean relative error (dotted line) and standard deviation (grey) between the
learned uθ(t) and the reference solution u∗ for 100 different random initial conditions. (Left)
hyperbolic PDE (4.33); (Right) Hamiltonian-Jacobi-Bellman equation (4.35). Note that in
either case, the tested initials are not included in the training datasets.

and the objective function consists of a running cost of α and a terminal cost g, and W is

the standard Wiener process. We set problem dimension to d = 8, coefficient ϵ = 0.2, and

terminal time T = 1. Here X(t) ∈ Rd for all t. The corresponding Hamilton-Jacobi-Bellman

(HJB) equation of this control problem is a second-order nonlinear PDE of the value function

u:

∂tu(x, t) = −ϵ∆u(x, t) +
1

2
|∇u(x, t)|2, ∀x ∈ Rd, t ∈ [0, T] (4.35)

with terminal cost (value) u(x, T) = g(x). The optimal control α(x, t) = −∇u(x, t) for all

x and t. This problem is a classic problem with many real-world applications [32]. Our

goal is to find the solution operator that maps any terminal condition g to its corresponding

solution. We note that (4.35) can be easily converted to an IVP with initial value g by

changing t to T − t. We choose

uθ(x) =
50∑
i=1

wie
−|ai⊙(x−bi)|2/2,

100

where ⊙ denotes component wise multiplication, and the parameters θ ∈ Rm with m = 850

is the collection of (wi, ai, bi) ∈ R×Rd ×Rd for i = 1, . . . , 50. We select this neural network

as it is similar to those in the set G below (but they are not necessarily the actual solutions

u∗) and satisfies |uθ(x)| → 0 as x→∞ so long as ai ̸= 0. This is important as our solutions

will be mainly concentrated in [−3, 3]d due to the solution property of the HJB equation and

we want our neural network to reflect this. We sample g functions by setting them to uθ(0)

for θ(0) sampled from

Θ := {θ : wi ∈ (−1, 0), |ai|∞ ∈ (0.1, 2), |bi|∞ ∈ [−2, 2]},

and use these to generate trajectories θ(t) for training. We sampled 250 points θi(0)
′s from

Θ uniformly and then used the time marching numerical method as described in [26] to

generate a terminal dataset T. As such we use the loss function (4.30) in our training.

As Ω = R8 we use importance sampling to generate the x points for our Monte-Carlo

approximations of ∥ · ∥2. Namely, we sample x from the distribution defined by the density

ρ(x; θ) := 1
50

∑50
i=1N(x− bi, diag(ai)−2).

After we train the Vξ, we uniformly sample 100 terminal conditions g from the following

set:

G :=
{ 50∑

i=1

cie
−|x−bi|2/σ2

i : ci ∈ (−1, 0), σ2
i ∈ (0.5, 20), |bi|∞ ∈ [−2, 2]

}
.

We choose such G as it is an analogue to the Reproducing Kernel Hilbert Space (RKHS) and

can represent a variety of functions by different combinations of functions in practice. For

101

each g, we compute the solution using the Cole-Hopf transformation [30]:

u∗(x, t) = −2ϵ ln
(
(4ϵπ(T − t))−d/2

∫
Rd

exp

(
− |x− y|

2

4ϵ(T − t) −
g(y)

2ϵ(T − t)

)
dy

)
.

We can approximate these true solutions using Monte-Carlo methods, which is done by using

importance sampling to sample 20,000 points in R8 using the distribution N(x, 2ϵ(T − t)).

This allows us to approximate the integral above and compute u∗ at each (x, t). We graph

the average and standard deviation of the relative error of the solution by our approach for

these 100 terminal costs in Figure 4.3 (right) with reversed time t← T − t. This plot shows

that the average relative error is about 7.5% and the standard deviation is less than 3%.

For demonstration, we show the performance of control α̂(·, t) := −∇uθ(t)(·) obtained

above. Due to space limitation, we select 5 terminal cost g’s such that they vary in

x1, x2 making the minimum locations clear. For each g, we sample 50 X0’s uniformly from

[−1.5, 1.5]2 × [−1, 1]6 and generate their trajectories by solving the stochastic differential

equation with α̂ in (4.34b) using the Euler-Maruyama method with step size 0.001. The ini-

tial X(0)’s (red dots) and the terminal locations X(T)’s (green triangle) averaged over 1000

runs for these terminals are shown from top to bottom rows in Figure 4.4. The gray-level

contours show the corresponding terminal cost g and the locations of X are shown in the

(x1, x2), (x3, x4), (x5, x6), and (x7, x8) planes in the four columns of Figure 4.4. From these

plots, one can see properly controlled particle locations by using the solution obtained by

the proposed method.

102

2 0 2
(a)

2

0

2

2 0 2
(b)

2 0 2
(c)

2 0 2
(d)

15.00

11.25

7.50

3.75

0.00

2 0 2
2

0

2

2 0 2 2 0 2 2 0 2
15.00

11.25

7.50

3.75

0.00

2 0 2
2

0

2

2 0 2 2 0 2 2 0 2
15.00

11.25

7.50

3.75

0.00

2 0 2
2

0

2

2 0 2 2 0 2 2 0 2
15.00

11.25

7.50

3.75

0.00

2 0 2
2

0

2

2 0 2 2 0 2 2 0 2
15.00

11.25

7.50

3.75

0.00

Figure 4.4 The evolution of 50 sampled points X(0) (red circles) to time X(1) (green tri-
angles) in the (first column) (x1, x2) plane; (second column) (x3, x4) plane; (third column)
(x5, x6) plane; and (fourth column) (x7, x8) plane. The background images show the ex-
pected minimum points of the terminal cost for the five randomly chosen initials. We see the
solution −∇uθ(t) provides correct control for all cases. Note that the induced control may
not be able to steer the far-away initials to the minimum since the running cost penalizes
large movements that the terminal gains do not compensate for. This phenomenon becomes
less (more) likely as the terminal cost g is scaled larger (smaller).

103

APPENDICES

A Proof of Inequality in Proposition 1

In the proof of Proposition 1, we needed (3.16). This equation can be obtained by applying

the lemma below, whose proof is a slight modification of the proof of [85, Theorem 2.1.14].

Lemma 8. Let f : Rd → R be a differentiable convex function and ∇f is L-Lipschitz

continuous for some L > 0. Define the gradient descent iterates by

xi = xi−1 − h∇f(xi−1)

with x0 ∈ Rd. Let y ∈ Rd and 0 < h < 1
L
, then for any k ≥ 1 there is

f(xk)− f(y) ≤
|x0 − y|2

2kh
.

Proof. Following the standard steps in the proof of [85, Theorem 2.1.14] and using 0 < h <

1/L we can derive the bound

f(xi)− f(xi−1) ≤ −h
(
1− 1

2
hL

)
|∇f(xi−1)|2 ≤ −

h

2
|∇f(xi−1)|2. (36)

Since f is convex, there is

f(x) ≤ f(y) +∇f(x)⊤(x− y), ∀x ∈ Rd.

104

Combining this with x = xi−1 and (36), we derive

f(xi)− f(y) ≤ ∇f(xi−1)
⊤(xi−1 − y)−

h

2
|∇f(xi−1)|2

=
1

2h

(
2h∇f(xi−1)

⊤(xi−1 − y)− h2|∇f(xi−1)|2 + |xi−1 − y|2 − |xi−1 − y|2
)

=
1

2h

(
|xi−1 − y|2 − |xi−1 − h∇f(xi−1)− y|2

)
=

1

2h

(
|xi−1 − y|2 − |xi − y|2

)
.

We can now bound the telescoping sum

k∑
i=1

(f(xi)− f(y)) ≤
1

2h

k∑
i=1

(|xi−1 − y|2 − |xi − y|2) ≤
1

2h
|x0 − y|2.

By (36) we know f(xk) ≤ f(xk−1) ≤ · · · ≤ f(x0) and therefore

f(xk)− f(y) ≤
1

k

k∑
i=1

(f(xi)− f(y)) ≤
|x0 − y|2

2hk
.

B Proof of Proposition 2

First we sight the following corollary to Theorem 4 which follows Lemma 5.

Lemma 9. Suppose Assumption 5 is satisfied. For all ε > 0 there exists v : Θ̄u,F,L → Rm

such that v is bounded over Θ̄u,F,L and the value of v at θ, denoted by vθ, satisfies

∥vθ · ∇θuθ − F [uθ]∥H2 ≤ ε, ∀ θ ∈ Θ̄.

Lemma 9 is an immediate result by combining Theorem 4 above and Lemma 5. Hence

we omit the proof here. With this lemma in hand, we can prove our main result of this

105

section.

Proof of Proposition 2. In what follows, we will follow the proof of Proposition 3.4 in [34] to

extend that result from the L2 to theH1 norm. We first show that there exists a differentiable

vector-valued function V : Θ̄u,F,L → Rd such that

∥V (θ) · ∇θuθ − F [uθ]∥H2 ≤ ε

2
(37)

for all θ ∈ Θ̄u,F,L. After which the claim about neural networks follows immediately from

the proof of Proposition 1. To this end, we choose ε̄0 ∈ (0, ε/2) and ε̄ ∈ (ε̄0, ε/2), then by

Theroem 4 and Lemma 9 we know that there exists a neural network uθ, a bounded open

set Θ̄u,F,L ⊂ Rm, and Mv > 0 such that there is a vector-valued function θ 7→ vθ, where for

any θ ∈ Θ̄u,F,L, we have |vθ| < Mv and

∥vθ · ∇θuθ − F [uθ]∥H2 ≤ ε̄.

Note that vθ is not necessarily differentiable with respect to θ. To obtain a differentiable

vector field V (θ), for each θ ∈ Θ̄u,F,L, we define the function ψθ by

ψθ(w) := ∥w · ∇θuθ − F [uθ]∥2H2 = w⊤G(θ)w − 2w⊤p(θ) + q(θ),

where

G(θ) =
d∑

i=1

∫
Ω

∇θ∂xi
uθ(x)∇θ∂xi

uθ(x)
⊤dx+

∫
Ω

∇θuθ(x)∇θuθ(x)
⊤dx

p(θ) =
d∑

i=1

∫
Ω

∇θ∂xi
uθ(x)F [uθ](x)dx+

∫
Ω

∇θuθ(x)∇θF [uθ](x)dx

q(θ) =

∫
Ω

F [uθ](x)dx,

(38)

106

we are using the convention that ∇θuθ ∈ Rd is a column vector. Then we know

ψ∗
θ := ψθ(vθ) = ∥vθ · ∇θuθ − F [uθ]∥2H2 ≤ ε̄2. (39)

It is also clear that G(θ) is symmetric and positive semi-definite. Moreover, due to the

compactness of Ω̄ and Θ̄u,F,L, as well as that ∇θu ∈ C(Ω̄× Θ̄), we know there exists λG > 0

such that

∥G(θ)∥2 ≤ λG

for all θ ∈ Θ̄u,F,L with respect to the spectral norm. Therefore, ψθ is a convex function and

the Lipschitz constant of ∇ψθ is uniformly upper bounded by λG over Θ̄u,F,L. Now for any

w ∈ Rm, h > 0, and K ∈ N (we reuse the letter K as the iteration counter instead of the

number of sampling points in this proof), we define

O
K,h
θ (w) := wK , where wk = wk−1 − h∇ψθ(wk−1), w0 = w, k = 1, . . . , K.

Namely, OK,h
θ is the oracle of executing the gradient descent optimization scheme on ψθ with

step size h > 0 for K iterations.

Now we note that ψθ is convex, differentiable, and ∇ψθ is Lipschitz continuous with

Lipschitz constant upper bounded by λG. With these in mind, we can directly use the

process from Proposition 1 to arrive at the inequality

ψθ(O
K,h
θ (0))− ψ∗

θ ≤
(ε
2

)2

− ε̄2. (40)

107

Here we have set K to be some fixed number such that

K ≥ M2
v

2h((ε/2)2 − ε̄2) .

Notice that OK,h
θ is a differentiable vector-valued function of θ because K and h are fixed.

Therefore, combining (39) and (40) yields

0 ≤ ψθ(O
K,h
θ (0)) = (ψθ(O

K,h
θ (0))− ψ∗

θ) + ψ∗
θ ≤ (ε/2)2 − ε̄2 + ε̄2 = (ε/2)2.

As this inequality holds ∀θ ∈ Θ̄, we set V (θ) = O
K,h
θ (0) which is a differentiable function of

θ satisfying (37). This completes the proof.

108

APPENDIX

REFERENCES

[1] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. Formal synthesis of lyapunov

neural networks. IEEE Control Systems Letters, 5(3):773–778, 2021.

[2] S. Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic

Computers, EC-16(3):299–307, 1967.

[3] W. F. Ames. Numerical methods for partial differential equations. Academic press,

2014.

[4] W. Anderson and M. Farazmand. Evolution of nonlinear reduced-order solutions for

pdes with conserved quantities. SIAM Journal on Scientific Computing, 44(1):A176–

A197, 2022.

[5] C. Anitescu, E. Atroshchenko, N. Alajlan, and T. Rabczuk. Artificial neural net-

work methods for the solution of second order boundary value problems. Computers,

Materials & Continua, 59(1):345–359, 2019.

[6] K. Atkinson. An Introduction to Numerical Analysis (2nd ed.). John Wiley I& Sons,

1989.

[7] G. Bao, X. Ye, Y. Zang, and H. Zhou. Numerical solution of inverse problems by weak

adversarial networks. Inverse Problems, 36(11):115003, 2020.

[8] C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-

dimensional fully nonlinear partial differential equations and second-order backward

stochastic differential equations. Journal of Nonlinear Science, pages 1–57, 2017.

109

[9] J. Berg and K. Nyström. A unified deep artificial neural network approach to partial

differential equations in complex geometries. Neurocomputing, 317:28–41, 2018.

[10] N. Boullé, C. Earls, and A. Townsend. Data-driven discovery of Green’s functions with

human-understandable deep learning. Scientific Reports, 12:4824, 03 2022.

[11] N. Boullé, S. Kim, T. Shi, and A. Townsend. Learning Green’s functions associated

with time-dependent partial differential equations. Journal of Machine Learning Re-

search, 23:1–34, 08 2022.

[12] J. Bruna, B. Peherstorfer, and E. Vanden-Eijnden. Neural galerkin schemes with active

learning for high-dimensional evolution equations. Journal of Computational Physics,

496:112588, 2024.

[13] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis. Deepm&mnet: Inferring

the electroconvection multiphysics fields based on operator approximation by neural

networks. arXiv preprint arXiv:2009.12935, 2020.

[14] W. Cai, X. Li, and L. Liu. A phase shift deep neural network for high frequency ap-

proximation and wave problems. SIAM Journal on Scientific Computing, 42(5):A3285–

A3312, 2020.

[15] W. Cai and Z.-Q. J. Xu. Multi-scale deep neural networks for solving high dimensional

pdes. arXiv preprint arXiv:1910.11710, 2019.

[16] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. Advances in neural

information processing systems, 32, 2019.

[17] L. Chen and C. Wu. A note on the expressive power of deep rectified linear unit

110

networks in high-dimensional spaces. Mathematical Methods in The Applied Sciences,

42:3400–3404, 2019.

[18] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary

differential equations. Advances in neural information processing systems, 31, 2018.

[19] Y. Chen, B. Dong, and J. Xu. Meta-mgnet: Meta multigrid networks for solving

parameterized partial differential equations. arXiv preprint arXiv:2010.14088, 2020.

[20] P. Clark Di Leoni, C. Meneveau, G. Karniadakis, and T. Zaki. Deep operator neu-

ral networks (DeepONets) for prediction of instability waves in high-speed boundary

layers. Bulletin of the American Physical Society, 2020.

[21] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific

machine learning through physics–informed neural networks: Where we are and what’s

next. Journal of Scientific Computing, 92(3):88, 2022.

[22] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural

lyapunov-barrier functions. arXiv preprint arXiv:2109.06697, 2021.

[23] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh

neural networks. Neural Networks, 143:732–750, 2021.

[24] M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving

partial differential equations. Communications in Numerical Methods in Engineering,

10(3):195–201, 1994.

[25] S. Dong and N. Ni. A method for representing periodic functions and enforcing

exactly periodic boundary conditions with deep neural networks. arXiv preprint

111

arXiv:2007.07442, 2020.

[26] Y. Du and T. A. Zaki. Evolutional deep neural network. Phys. Rev. E, 104:045303,

Oct 2021.

[27] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic differential

equations. arXiv preprint arXiv:1706.04702, 5(4):349–380, 2017.

[28] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for

solving variational problems. Communications in Mathematics and Statistics, 6(1):1–

12, 2018.

[29] G. Evans, J. Blackledge, and P. Yardley. Numerical methods for partial differential

equations. Springer Science & Business Media, 2012.

[30] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathe-

matics. American Mathematical Society, Providence, RI, 1998.

[31] Y. Fan, C. O. Bohorquez, and L. Ying. Bcr-net: A neural network based on the

nonstandard wavelet form. Journal of Computational Physics, 384:1–15, 2019.

[32] W. Fleming and R. Rishel. Deterministic and Stochastic Optimal Control. Springer,

1975.

[33] M. Fujii, A. Takahashi, and M. Takahashi. Asymptotic expansion as prior knowledge

in deep learning method for high dimensional bsdes. Asia-Pacific Financial Markets,

pages 1–18, 2017.

[34] N. Gaby, X. Ye, and H. Zhou. Neural control of parametric solutions for high-

112

dimensional evolution pdes. SIAM Journal on Scientific Computing (accepted), 2023.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial networks. Communications of

the ACM, 63(11):139–144, 2020.

[36] L. Grüne. Computing lyapunov functions using deep neural networks. arXiv preprint

arXiv:2005.08965, 2020.

[37] Y. Gu, C. Wang, and H. Yang. Structure probing neural network deflation. arXiv

preprint arXiv:2007.03609, 2020.

[38] Y. Gu, H. Yang, and C. Zhou. Selectnet: Self-paced learning for high-dimensional

partial differential equations. arXiv preprint arXiv:2001.04860, 2020.

[39] I. Guhring, G. Kutyniok, and P. Peterson. Error bounds for approximations with deep

relu neural networks in ws,p norms. Analysis and Applications, 18:803–859, 2020.

[40] I. Gühring and M. Raslan. Approximation rates for neural networks with encodable

weights in smoothness spaces. Neural Networks, 134:107–130, 11 2020.

[41] M. Guo and J. S. Hesthaven. Data-driven reduced order modeling for time-dependent

problems. Computer Methods in Applied Mechanics and Engineering, 345:75–99, 2019.

[42] X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approxima-

tion. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, page 481–490, New York, NY, USA, 2016. Associa-

tion for Computing Machinery.

[43] J. Han, A. Jentzen, and W. E. Overcoming the curse of dimensionality: Solving

113

high-dimensional partial differential equations using deep learning. arXiv preprint

arXiv:1707.02568, pages 1–13, 2017.

[44] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations

using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–

8510, 2018.

[45] J. Han, J. Lu, and M. Zhou. Solving high-dimensional eigenvalue problems using deep

neural networks: A diffusion monte carlo like approach. Journal of Computational

Physics, 423:109792, 2020.

[46] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C. Ye. Deep learning with

domain adaptation for accelerated projection-reconstruction mr. Magnetic resonance

in medicine, 80(3):1189–1205, 2018.

[47] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

[48] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-

versal approximators. Neural networks, 2(5):359–366, 1989.

[49] J. Huang, H. Wang, and H. Yang. Int-deep: A deep learning initialized iterative

method for nonlinear problems. Journal of Computational Physics, 419:109675, 2020.

[50] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional non-

linear pdes. Mathematics of Computation, 89(324):1547–1579, 2020.

[51] T. Huster, C.-Y. J. Chiang, and R. Chadha. Limitations of the lipschitz constant as a

defense against adversarial examples. In ECML PKDD 2018 Workshops, pages 16–29.

114

Springer International Publishing, 2019.

[52] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. A proof that rectified deep

neural networks overcome the curse of dimensionality in the numerical approximation

of semilinear heat equations. SN partial differential equations and applications, 1(2):1–

34, 2020.

[53] G. K. Ingo Guhring and P. Peterson. A compendium of comparison function results.

Mathematics of Control, Signals, and Systems, 26:339–374, 2014.

[54] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. Adaptive activation functions

accelerate convergence in deep and physics-informed neural networks. Journal of Com-

putational Physics, 404:109136, 2020.

[55] C. Johnson. Numerical solution of partial differential equations by the finite element

method. Courier Corporation, 2012.

[56] H. Khalil. Nonlinear Systems, 3rd Ed. Prentice Hall, New Jersey, 2001.

[57] S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure

stability of dynamical system-based robot reaching motions. Robotics and Autonomous

Systems, 62(6):752–765, 2014.

[58] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. hp-vpinns: Variational

physics-informed neural networks with domain decomposition. arXiv preprint

arXiv:2003.05385, 2020.

[59] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio

and Y. LeCun, editors, 3rd International Conference on Learning Representations,

115

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,

2015.

[60] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error

bounds for Fourier neural operators. Journal of Machine Learning Research, 22:Art–

No, 2021.

[61] N. B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. M. Stuart,

and A. Anandkumar. Neural operator: Learning maps between function spaces with

applications to pdes. J. Mach. Learn. Res., 24(89):1–97, 2023.

[62] M. Kumar and N. Yadav. Multilayer perceptrons and radial basis function neural

network methods for the solution of differential equations: a survey. Computers &

Mathematics with Applications, 62(10):3796–3811, 2011.

[63] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary

and partial differential equations. IEEE transactions on neural networks, 9(5):987–

1000, 1998.

[64] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of

Computational Physics, 91(1):110–131, 1990.

[65] F. Lewis, S. Jagannathan, and A. Yesildirak. Neural network control of robot manipu-

lators and non-linear systems. CRC press, 2020.

[66] B. Li, S. Tang, and H. Yu. Better approximations of high dimensional smooth functions

by deep neural networks with rectified power units. Communications in Computational

Physics, 27:379–411, 02 2020.

116

[67] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Fourier neural operator for parametric partial differential equations.

arXiv preprint arXiv:2010.08895, 2020.

[68] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Neural operator: Graph kernel network for partial differential equa-

tions. arXiv preprint arXiv:2003.03485, 2020.

[69] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou. A survey of convolutional neural

networks: analysis, applications, and prospects. IEEE transactions on neural networks

and learning systems, 33(12):6999–7019, 2021.

[70] S. Liang and R. Srikant. Why deep neural networks for function approximation? In

International Conference on Learning Representations (ICLR), 2017.

[71] G. Lin, F. Chen, P. Hu, X. Chen, J. Chen, J. Wang, and Z. Shi. Bi-greennet: Learning

Green’s functions by boundary integral network. arXiv preprint arXiv:2204.13247,

2022.

[72] J. Liu, Y. Meng, M. Fitzsimmons, and R. Zhou. Physics-informed neural network

lyapunov functions: Pde characterization, learning, and verification. arXiv preprint

arXiv:2312.09131, 2023.

[73] Z. Liu, W. Cai, and Z.-Q. J. Xu. Multi-scale deep neural network (mscalednn) for solv-

ing poisson-boltzmann equation in complex domains. arXiv preprint arXiv:2007.11207,

2020.

[74] Y. Long and M. Bayoumi. Feedback stabilization: Control lyapunov functions modelled

117

by neural networks. In Proceedings of 32nd IEEE Conference on Decision and Control,

pages 2812–2814. IEEE, 1993.

[75] W. Lötzsch, S. Ohler, and J. S. Otterbach. Learning the solution operator of boundary

value problems using graph neural networks. arXiv preprint arXiv:2206.14092, 2022.

[76] L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: Learning nonlinear operators for

identifying differential equations based on the universal approximation theorem of

operators. arXiv preprint arXiv:1910.03193, 2019.

[77] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde: A deep learning library for

solving differential equations. arXiv preprint arXiv:1907.04502, 2019.

[78] T. Luo and H. Yang. Two-layer neural networks for partial differential equations:

Optimization and generalization theory. arXiv preprint arXiv:2006.15733, 2020.

[79] L. Lyu, K. Wu, R. Du, and J. Chen. Enforcing exact boundary and initial conditions

in the deep mixed residual method. arXiv preprint arXiv:2008.01491, 2020.

[80] M. Magill, F. Qureshi, and H. de Haan. Neural networks trained to solve differential

equations learn general representations. In Advances in Neural Information Processing

Systems, pages 4071–4081, 2018.

[81] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks

for high-speed flows. Computer Methods in Applied Mechanics and Engineering,

360:112789, 2020.

[82] Z. Mao, L. Lu, O. Marxen, T. A. Zaki, and G. E. Karniadakis. DeepM&Mnet for hyper-

sonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock

118

using neural-network approximation of operators. arXiv preprint arXiv:2011.03349,

2020.

[83] S. Mukhopadhyay and F. Zhang. An algorithm for computing robust forward invariant

sets of two dimensional nonlinear systems. Asian Journal of Control, 2020.

[84] M. A. Nabian and H. Meidani. A deep neural network surrogate for high-dimensional

random partial differential equations. arXiv preprint arXiv:1806.02957, 2018.

[85] Y. Nesterov. Introductory lectures on convex programming. Lecture Notes, pages

119–120, 1998.

[86] N. Nüsken and L. Richter. Solving high-dimensional Hamilton–Jacobi–Bellman pdes

using neural networks: perspectives from the theory of controlled diffusions and mea-

sures on path space. Partial Differential Equations and Applications, 2(4):1–48, 2021.

[87] G. Pang, M. D’Elia, M. Parks, and G. E. Karniadakis. nPINNs: nonlocal physics-

informed neural networks for a parametrized nonlocal universal laplacian operator.

algorithms and applications. arXiv preprint arXiv:2004.04276, 2020.

[88] G. Pang, L. Lu, and G. E. Karniadakis. fpinns: Fractional physics-informed neural

networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[89] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions

using deep relu neural networks. Neural Networks, 108:296–330, 2018.

[90] H. Pham, X. Warin, and M. Germain. Neural networks-based backward scheme for

fully nonlinear pdes. SN Partial Differ. Equ. Appl., 2(1), 2021.

[91] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations,

119

volume 23. Springer Science & Business Media, 2008.

[92] M. Raissi and G. E. Karniadakis. Machine learning of linear differential equations

using gaussian processes. arXiv preprint arXiv:1701.02440, 2017.

[93] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part

i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint

arXiv:1711.10561, 2017.

[94] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[95] A. A. Ramabathiran and P. Ramachandran. Spinn: Sparse, physics-based, and par-

tially interpretable neural networks for pdes. Journal of Computational Physics,

445:110600, 2021.

[96] B. Raonić, R. Molinaro, T. Rohner, S. Mishra, and E. de Bezenac. Convolutional

neural operators. arXiv preprint arXiv:2302.01178, 2023.

[97] F. Regazzoni, L. Dedè, and A. Quarteroni. Machine learning for fast and reliable

solution of time-dependent differential equations. Journal of Computational Physics,

397:108852, 2019.

[98] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural network: Adap-

tive stability certification for safe learning of dynamical systems. In Conference on

Robot Learning, pages 466–476. PMLR, 2018.

[99] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni.

120

Learning control barrier functions from expert demonstrations. In 2020 59th IEEE

Conference on Decision and Control (CDC), pages 3717–3724, 2020.

[100] G. Serpen. Empirical approximation for lyapunov functions with artificial neural nets.

In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,

volume 2, pages 735–740. IEEE, 2005.

[101] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by number

of neurons. Commun. Comput. Phys., 28(5):1768–1811, 2020.

[102] Z. Shen, H. Yang, and S. Zhang. Neural network approximation: Three hidden layers

are enough. Neural networks : the official journal of the International Neural Network

Society, 141:160–173, 2021.

[103] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of

physics informed neural networks. arXiv preprint arXiv:2004.01806, 2020.

[104] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial

differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

[105] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data

distribution. Advances in neural information processing systems, 32, 2019.

[106] E. D. Sontag. Feedback stabilization using two-hidden-layer nets. In 1991 American

control conference, pages 815–820. IEEE, 1991.

[107] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In

C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

121

[108] P. Tabuada and B. Gharesifard. Universal approximation power of deep residual neural

networks through the lens of control. IEEE Transactions on Automatic Control, pages

1–14, 2022.

[109] T. Tang and J. Yang. Implicit-explicit scheme for the allen-cahn equation preserves

the maximum principle. Journal of Computational Mathematics, 34:471–481, 09 2016.

[110] U. Tanielian, M. Sangnier, and G. Biau. Approximating lipschitz continuous functions

with groupsort neural networks. arXiv preprint arXiv:2006.05254, 2021.

[111] Y. Teng, X. Zhang, Z. Wang, and L. Ju. Learning Green’s functions of linear reaction-

diffusion equations with application to fast numerical solver. In Proceedings of Mathe-

matical and Scientific Machine Learning, volume 190 of Proceedings of Machine Learn-

ing Research, pages 1–16. PMLR, 15–17 Aug 2022.

[112] J. W. Thomas. Numerical partial differential equations: conservation laws and elliptic

equations, volume 33. Springer Science & Business Media, 2013.

[113] J. W. Thomas. Numerical partial differential equations: finite difference methods,

volume 22. Springer Science & Business Media, 2013.

[114] H. Tsukamoto, S.-J. Chung, and J.-J. Slotine. Learning-based adaptive control using

contraction theory. In 2021 60th IEEE Conference on Decision and Control (CDC),

pages 2533–2538, 2021.

[115] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear

stability analysis and learning-based control: A tutorial overview. Annual Reviews in

Control, 52:135–169, 2021.

122

[116] A. Vaswani. Attention is all you need. Advances in Neural Information Processing

Systems, 2017.

[117] B. Wang, W. Zhang, and W. Cai. Multi-scale deep neural network (mscalednn) meth-

ods for oscillatory stokes flows in complex domains. arXiv preprint arXiv:2009.12729,

2020.

[118] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric

partial differential equations with physics-informed DeepONets. Science advances,

7(40):eabi8605, 2021.

[119] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson. U-fno—

an enhanced Fourier neural operator-based deep-learning model for multiphase flow.

Advances in Water Resources, 163:104180, 2022.

[120] W. Xiao, R. Hasani, X. Li, and D. Rus. Barriernet: A safety-guaranteed layer for

neural networks. arXiv preprint arXiv:2111.11277, 2021.

[121] L. Yang, D. Zhang, and G. E. Karniadakis. Physics-informed generative adversarial

networks for stochastic differential equations. SIAM Journal on Scientific Computing,

42(1):A292–A317, 2020.

[122] Y. Yang and P. Perdikaris. Adversarial uncertainty quantification in physics-informed

neural networks. Journal of Computational Physics, 394:136–152, 2019.

[123] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Net-

works, 94:103–114, 2017.

[124] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional

123

partial differential equations. Journal of Computational Physics, page 109409, 2020.

[125] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for

surrogate modeling and uncertainty quantification. Journal of Computational Physics,

366:415–447, 2018.

	Neural Networks and Approximation of High-dimensional Functions: Applications in Control and Partial Differential Equations
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Neural Networks and Universal Approximation

	LYAPUNOV-NET: A DEEP NEURAL NETWORK ARCHITECTURE FOR LYAPUNOV FUNCTION APPROXIMATION
	Introduction
	Background
	Proposed Method
	Lyapunov-Net and its properties
	Training of Lyapunov-Net
	Lyapunov-Net approximation and certification theory
	Application to control and others

	Numerical Experiments
	Experiment setting
	Experimental results
	Comparison with existing DL methods
	Application in Control

	Conclusions

	NEURAL NETWORK CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDES
	Introduction
	Background
	Classical methods for solving PDEs
	Neural network based methods for solving PDEs
	Learning solution operator of PDEs
	Differences between the proposed approach and existing ones

	Proposed Method
	Problem space and detailed methodology
	Error analysis

	Numerical Results
	Implementation
	Experimental setting
	Numerical results on transport equation
	Heat equation
	Allen-Cahn equation

	Variations and Generalizations

	EXTENDING NEURAL CONTROL FOR HIGH-DIMENSIONAL PDES
	Introduction
	Proposed Method
	Control Theory Approach
	Theoretical Advances and Error Analysis

	Numerical Results
	Implementation
	Comparison to Existing Methods
	Hyperbolic PDE
	Applications to Hamilton-Jacobi-Bellman equations

	APPENDICES
	Proof of Inequality in Proposition 1
	Proof of Proposition 2

	REFERENCES

