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Under the Direction of H. Spencer Banzhaf, PhD  

 

 

ABSTRACT 

This dissertation contains three essays. In the first essay, I derive non-parametric tests of 

behavior consistent with the tragedy of the commons model based on recent results in the industrial 

organization literature (Carvajal et al. 2013). The approach derives testable implications of such 

behavior under any arbitrarily concave, differentiable production function of total inputs and when 

individual extractors of the resource have any arbitrary convex, differentiable cost of supplying 

inputs. I extend the tests to account for sampling errors in observed data and derive statistical tests 

based on “how far off” the marginal costs are from those that are consistent with the model.  

Applying this approach to panel data of Norwegian fishers, I find evidence rejecting the tragedy 

of the commons model.  Significantly, I find that rejection rates of the model increase after property 

rights reforms moved the fishery away from the tragedy of the commons. 



In the second essays, I bridge the research in behavioral economics and environmental 

psychology and use designed experiments to test the effects of natural and urban environments on 

risk and time preferences. I examine whether time in green /urban space can improve economic 

decision making, helping people escape the poverty trap. Results from the laboratory show 

evidence that viewing urban pictures tend to reduce cognitive burdens and decrease risk averse 

behavior among people familiar with urban environment.  

In the third essay, I examine the effects of a carbon tax on energy-efficient innovations.  In 

an influential paper, Popp (2002) empirically analyzed the effect of energy prices on energy-

efficient innovations as measured by new patents. In this research, I explore the efficiency of 

carbon taxes, or the extent to which they can induce innovation through the price channel.  Based 

on the estimates from Popp’s model, I estimate the costs directly added from a carbon tax based 

on emission coefficients of different types of fuels in the U.S. market and predict the number of 

new energy-efficient innovations that would be stimulated by a carbon tax. Results from the 

estimation indicate the significance of the price elasticity of energy-efficient innovations and 

limited effects from scaling up carbon taxes. 
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1 

1 NON-PARAMETRIC TESTS OF THE TRAGEDY OF THE COMMONS  

1.1 Introduction 

The “tragedy of the commons” (Hardin 1968) occurs when strategic incentives, unchecked 

by property rights or other institutional arrangements, undermine the potential value of a 

commonly held resource.  Because individuals do not bear the full decline in marginal productivity 

when they utilize the common resource, they have an incentive to use it too intensively, relative to 

the group's welfare.  In the standard model, individuals receive a prorated share of collective 

output, proportionate to their inputs, so by increasing inputs they can obtain a larger share of the 

pie (Gordon 1954, Weitzman 1974, Dasgupta and Heal 1979).  Classic examples include sending 

cattle to a common pasture, extracting oil from a common pool, and fishing from the sea.1 

Though examples of the tragedy at work are pervasive, groups can avoid the trap of open-

access by devising ways to cooperate and limit access to the commons, effectively managing 

common-pool resources to avoid the tragedy (Ciriacy-Wantrup and Bishop 1975, Ostrom 1990).  

Evidence from laboratory experiments suggests that when they make decisions anonymously and 

without communication, individuals do over-exploit common resources, producing the "tragedy," 

but when they can communicate and/or can build other institutions to change incentives, they can 

overcome the tragedy (Ostrom 2009). 

Surprisingly, then, there have been few empirical tests of the standard model with naturally 

occurring data.  In the context of fisheries, Costello, Gaines, and Lynham (2008) and Birkenbach, 

Kaczan and Smith (2017) find that individual catch shares can prevent the collapse of fisheries and 

slow the race to fish.  This policy outcome is consistent with over-exploitation in the open-access 

 
1 Compare also Sen's (1966) model of cooperatives. 
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regime, but does not test individual behavior.  Kirkley, Paul, and Squires (2002) and Felthoven, 

Horrace, and Schnier (2009) outline approaches for measuring capacity utilization in an industry 

exploiting a common pool resource, such as a fishery, interpreting excess capacity as a symptom 

of the excessive application of variable inputs to the resource.  This approach requires estimating 

a production function for firms.  But, although they certainly estimate important policy effects of 

various property rights regimes, and although they provide "circumstantial" evidence of commons-

like behavior, none of these papers provide an explicit mapping from the strategic behavior in the 

commons model to the data in a way which allows the behavioral model to be tested. 

On the other hand, Huang and Smith (2014) have conducted the first micro-level empirical 

investigation of strategic behavior in a common pool.  They develop a dynamic structural model 

of the microeconomic behavior of fishers operating in an open access fishery.  Each fisher chooses 

his effort to maximize his expected utility given all other fishers' actions, with agglomeration or 

congestion effects specified such that individual catch per day is affected by the total number of 

vessels fishing on that day.  With estimates from their parametric model, potential efficiency gains 

can be quantified by comparing the optimal vessel numbers to the predicted vessel numbers 

resulting from the individual maximization problem.  However, their approach presupposes Nash 

behavior in a commons game rather than providing a way to test for such behavior.  Moreover, 

their approach is highly parametric, which has the advantage of allowing for counter-factual policy 

simulations and welfare analyses, but comes at the cost of bringing in numerous maintained 

assumptions when it comes to testing for particular modes of strategic behavior. 

In this paper, we introduce an alternative empirical strategy that complements the existing 

literature.  Our approach tests whether individual behavior is consistent with the tragedy of the 

commons model.  In particular, drawing on recent work by Carvajal el al. (2013), we develop a 
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non-parametric revealed preference-type test for the "tragedy" in common pool resources.  

Carvajal et al. developed a revealed preference test for Cournot equilibrium, deriving properties 

that hold when firms are strategically interacting as predicted by the Cournot model.  As the 

tragedy of the commons and the Cournot model are essentially isomorphic (both are surplus-

sharing games), we can derive similar properties that hold under the strategic interactions of the 

tragedy of the commons.  This approach has the advantage of requiring no parametric assumptions 

about production functions or cost functions (beyond convexity).  The test is derived from the key 

characteristics of the tragedy of the commons that each agent maximizes its objective function 

independently and from a proportionate sharing rule.  The test can be implemented with panel data 

of individual inputs and total output.  In particular, given panel data on each agent's input and the 

total output from exploitation, we show that a data set is consistent to the tragedy of the commons 

with convex cost functions if and only if there is a solution to a linear program that we can 

explicitly construct from the data.  Accordingly, the tests we derive can be applied to various 

settings with common pool resources, from fisheries to oil and water extraction. 

We extend the tests to incorporate sampling errors in total input and output.  Sampling 

error is modeled as a latent parameter, which can be inferred from our linear program under the 

null hypothesis of behavior consistent with the tragedy-of-the-commons.  The model allows for 

the analysis to impose boundaries on permissible sampling errors based on credible information 

or assumptions. Sampling errors change the testable properties, and increase the domain of the 

linear program, which make the test less stringent. Hence, compared to the basic tests, tests with 

sampling errors reduce rejections of the model. 

Additionally, we derive tests to gauge the minimum distance of the set of recovered 

marginal costs from those that are consistent with the model.  Developing ideas proposed by 
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Diewert (1973) and Varian (1985), we include an adjustment factor in the model to guarantee that 

data would always pass the model.  We apply a linear program to reveal the minimal magnitude 

of the adjustments required.  Based on this result, we apply a chi-squared test and a Kolmogorov-

Smirnov test to inform probability distributions for rejections of the model.  Variations of these 

extensions could also be applied to the tests of the Cournot model (as in Carvajal et al.) as well as 

the tragedy of the commons. 

We take the test to the Norwegian coastal fishery for cod and other whitefish (the largest 

fishery in Norway and a major contributor to the global market for whitefish).  As a quantitative 

measure of the extent of rejection, we subsample from the data set and obtain rejection rates from 

repeated subsampling.  Our basic results reject behavior consistent with the tragedy of the 

commons using the full data sets.  Results from tests with sampling errors display lower rejection 

rates in general but do not alter the pattern.  Lastly, the statistical test based on distance from 

revealed marginal costs to model-consistent marginal costs also rejects the hypothesis that data is 

consistent with the TOC model.  Interestingly, preliminary results show that the rejection rates are 

higher after institutional reforms in the Norwegian fishery that reduced open access.   

The rest of the paper is organized as follows.  In Section 2, we derive the theoretical results 

for the classic static model of the average return game, in which agents select their inputs and each 

unit of input receives the average return (rather than marginal return).  In Section 3, we offer 

additional extensions to the model, including quantifying distance to the model, conducting 

statistical tests, and measurement error.  Section 4 discusses the empirical application and 

Section 5 shows the results.  Section 6 concludes.   
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1.2 Theoretical Model:  A Nonparametric Test of the Tragedy of the Commons 

1.2.1 The Case with Time-Invariant Cost of Effort 

Consider an industry consisting of 𝐼 profit-maximizing firms, indexed by 𝑖 = 1,2, … , 𝐼, 

each having free access to an exogenously fixed common property resource.  There are 𝑇 decision 

periods indexed by 𝑡 = 1,2, … , 𝑇.  Denote 𝑞𝑖,𝑡 as the extraction effort by firm 𝑖 in period 𝑡.  For 

example, 𝑞𝑖,𝑡 might be the number of fishing vessel-days in year 𝑡.  Let 𝑄𝑡  =  ∑ 𝑞𝑖,𝑡𝑖  be the total 

level of effort applied to the resource at time 𝑡.  The differentiable production function for the 

industry at time 𝑡 is 𝑌𝑡 = 𝐹𝑡(𝑄𝑡), with 𝐹(0) = 0, 𝐹′(𝑄) > 0, and 𝐹′ non-increasing for all 𝑡.  

Following the canonical commons model (Gordon 1954, Weitzman 1974, Dasgupta and Heal 

1979, Cornes and Sandler 1996), each firm's catch is proportionate to its share of input.  Thus, firm 

𝑖′s revenue in period 𝑡  is 
𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡(𝑄𝑡), where 𝑝𝑡 denotes the market price of output (e.g. fish) at 

time 𝑡.  This assumption captures the characteristic of open-access resources that factors tend to 

receive their average rather than the marginal product.  Finally, let 𝐶𝑖(𝑞𝑖,𝑡) denote firm 𝑖's cost 

function, which is a differentiable and non-decreasing function of 𝑞 and which—for now—we 

treat as time invariant. 

Following Carvajal et al.'s logic for Cournot competition, we say a panel data set 𝒪 =

{𝑝𝑡𝐹𝑡 , (𝑞𝑖,𝑡)
𝑖𝜖1…𝑁

}
𝑡𝜖1…𝑇

 is consistent with the tragedy of the commons if there exist cost functions 

𝐶𝑖̅ for each firm 𝑖, and concave production functions 𝐹̅𝑡 for each observation 𝑡 which jointly satisfy 

the following two conditions: 

(i) 𝐹̅𝑡(𝑄𝑡) = 𝐹𝑡   

(ii) 𝑞𝑖,𝑡 𝜖 𝑎𝑟𝑔𝑚𝑎𝑥𝑞̃𝑖,𝑡≥0{
𝑞̃𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡(𝑄𝑡) − 𝐶𝑖̅(𝑞̃𝑖,𝑡)}.  

Condition (i) says the production function must be consistent with observed output at 
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time t.  Condition (ii) says firm 𝑖's input at time t maximizes its profit given the inputs of all other 

firms (a standard Nash assumption). 

Note that we do not need to estimate the production function as do Kirkley, Paul, and 

Squires (2002) or Huang and Smith (2014).  We allow the analysis to explain the data using any 

arbitrary concave production function, as long as it passes through the observed total output and 

inputs, 𝑝𝑡𝐹𝑡(𝑄𝑡) and 𝑄𝑡, at each decision period.  Similarly, no restrictions are placed on firms' 

cost functions except that they are increasing and convex.  These assumptions are sufficient to 

guarantee a quasi-concave profit function to be maximized. 

To see this, note that firm i's profit-maximization problem at time 𝑡 is: 

(1) max
𝑞𝑖,𝑡

𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡(𝑄𝑡) − 𝐶𝑖 (𝑞𝑖,𝑡).  

Taking other firms' actions as given, the first-order condition is: 

(2)  
𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡

′(𝑄𝑡) + (1 −  
𝑞𝑖,𝑡

𝑄𝑡
) ∗

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
= 𝐶𝑖,𝑡

′ .  

This is the standard result that firms equate marginal cost to a weighted average of marginal 

returns and average returns (Weitzman 1974, Dasgupta and Heal 1979).  In the case of a 

monopolist, 𝑞𝑖,𝑡 = 𝑄𝑡 and the entire weight is on the efficient condition to equate marginal cost to 

marginal return.  In the limit, as the firms grows small, 𝑞𝑖,𝑡/𝑄𝑡 goes to zero and the firms equate 

marginal cost to average revenue, thus depleting all resource rents (Gordon 1954). 

Rearranging terms, we obtain: 

(3) 
𝑝𝑡𝐹𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡

′

𝑞𝑖,𝑡
=

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
− 𝑝𝑡𝐹𝑡

′(𝑄𝑡). 
 

Notice in Equation (3) that the left-hand side involves firm-specific terms (inputs 𝑞𝑖,𝑡 and 

marginal costs 𝐶𝑖,𝑡
′ ) while the right-hand side involves only market-wide data (total revenue 

𝑝𝑡𝐹𝑡(𝑄𝑡), marginal revenue product 𝑝𝑡𝐹𝑡
′, and total input 𝑄𝑡).  Consequently, from the first-order 
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condition, we obtain a common ratio property comparable to that in Carvajal et al.: 

(4)        
𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡

′

𝑞𝑖,𝑡
 =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑗,𝑡
′

𝑞𝑗,𝑡
 = ∙∙∙ =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝐼,𝑡
′

𝑞𝐼,𝑡
≥ 0 for 𝑡 𝜖 𝑇. 

In other words, in each period, functions of firms' extraction effort and marginal costs 

should all be equal.  The expressions are nonnegative given the concavity of the production 

function.   

Moreover, because each firm's cost function is convex, the array {𝐶𝑖,𝑡
′ } displays increasing 

marginal costs for each firm i.  Thus, if the cost function is time-invariant, we also have the co-

monotone property as described in Carvajal et al., such that for all i,  

(5)  𝑞𝑖,𝑡 >  𝑞𝑖,𝑡′  →  𝐶′𝑖,𝑡  ≥  𝐶′𝑖,𝑡′ .   

Consequently, a set of observations is consistent with the tragedy of the commons with 

convex cost functions if and only if there exist nonnegative numbers {𝐶𝑖,𝑡
′ } for all i,t that obey the 

common ratio and co-monotone properties.  In Example 1, we show that certain data sets are not 

consistent with the tragedy of the commons given the interplay of the two properties.  

Example 1: Consider the following observations of two firms 𝑖 and 𝑗 sharing a common-

pool resource: 

(i) At observation 𝑡, 𝑝𝑡𝐹𝑡(𝑄𝑡) = 50, 𝑞𝑖,𝑡 =50, 𝑞𝑗,𝑡 =100. 

(ii) At observation 𝑡′,  𝑝𝑡′𝐹𝑡′(𝑄𝑡′) = 350, 𝑞𝑖,𝑡′ =70, 𝑞𝑗,𝑡′ =60. 

Re-arranging the common-ratio property at t' to isolate 𝐶𝑗,𝑡′
′  and using the fact that 

𝑞
𝑗,𝑡′

𝑞𝑖,𝑡′
𝐶𝑖,𝑡′

′ ≥ 0, we have: 

𝐶𝑗,𝑡′
′   =  

 𝑝
𝑡′𝐹

𝑡′(𝑄
𝑡′)

𝑄𝑡′
−

𝑞
𝑗,𝑡′

𝑞𝑖,𝑡′

 𝑝
𝑡′𝐹

𝑡′(𝑄
𝑡′)

𝑄𝑡′
+

𝑞
𝑗,𝑡′

𝑞𝑖,𝑡′
𝐶𝑖,𝑡′

′  ≥  
 𝑝

𝑡′𝐹
𝑡′(𝑄

𝑡′)

𝑄𝑡′
−

𝑞
𝑗,𝑡′

𝑞𝑖,𝑡′

 𝑝
𝑡′𝐹

𝑡′(𝑄
𝑡′)

𝑄𝑡′
 =0.385. 

 Now, we know from the first-order condition (2) that 𝐶𝑖,𝑡
′ <

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
, at each time t 
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for all i, because 𝐶𝑖,𝑡
′ =

𝑞𝑖,𝑡

𝑄𝑡
(𝑝𝑡𝐹𝑡

′(𝑄𝑡) −
𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
) +

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
 and 𝐹𝑡

′(𝑄𝑡) −
𝐹𝑡(𝑄𝑡)

𝑄𝑡
< 0 given the 

concavity of production function.  Thus, 𝐶𝑗,𝑡
′ <  

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
 = 0.33.  In addition, from the co-monotone 

property, we have 𝐶𝑗,𝑡′
′ ≤ 𝐶𝑗,𝑡

′   because 𝑞𝑗,𝑡′ < 𝑞𝑗,𝑡.  Thus, in sum, 0.385 ≤ 𝐶𝑗,𝑡′
′ < 𝐶𝑗,𝑡

′ <  0.33, 

which is clearly a contradiction. Thus, there are no nonnegative marginal costs that satisfy the 

common-ratio property and the co-monotone properties.  The data in Example 1 are not consistent 

with the tragedy of the commons model. 

1.2.2 Linear Program for the Test 

Our approach to test the tragedy-of-the-commons model can be reformulated as a simple 

linear program:  Given panel data on each agent's input and the total output from exploitation, find 

nonnegative marginal costs, {𝐶𝑖,𝑡
′ }, for all agent i at each time t, which satisfy the common-ratio 

property (4) and the co-monotone property (5).  This linear program is analogous to the conditions 

specified in Afriat’s Theorem for testing consistency with utility-maximizing behavior using the 

Generalized Axiom of Revealed Preference (GARP) (Afriat, 1967). This approach encompasses a 

diversity of research programs and has been extended to a wide array of settings (Chambers and 

Echenique, 2016, Hands 2014), including firms’ costs (Varian, 1984) and Cournot competition 

(Carvajal et al. 2013).  

In our context, a set of observations is consistent with the tragedy of the commons with 

convex cost functions if and only if, given the observed 𝑝𝑡F𝑡, 𝑞𝑖,𝑡, and 𝑄𝑡 there are numbers 𝐶′𝑖,𝑡 

satisfying (See Appendix A for a proof): 

  (i)  
𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡

′

𝑞𝑖,𝑡
 =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑗,𝑡
′

𝑞𝑗,𝑡
 ≥ 0  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (ii) (𝑞𝑖,𝑡 −  𝑞𝑖,𝑡′)(𝐶′𝑖,𝑡 −  𝐶′𝑖,𝑡′) ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶′𝑖,𝑡  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 
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Condition (i) is the common-ratio property which follows from the first-order condition; 

condition (ii) is the co-monotone property which follows from the convexity of the cost function; 

and condition (iii) is a non-negativity constraint which follows from the fact that the cost function 

is increasing.  For a panel data set, failure to obtain a solution to any element in the marginal cost 

set {𝐶′
𝑖,𝑡}∀ 𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇, will result a rejection to the model in this basic test.  

To understand the implications of this test, we emphasize three features.  First, it is entire 

data sets that are or are not rejected, not individual observations or individual firms.  Again, this 

feature is consistent with tests of consumers' choices, in which entire data sets are or are not 

consistent with GARP, not individual choices.  However, one can always throw out particular 

observations from the data set and consider the effect of doing so.  Thus, taking random subsets of 

the data, one can generate rejection rates, as a quantitative measure of "how much" the data are 

inconsistent with the tragedy of the commons model.  Further, one can isolate data from particular 

firms or periods to see if the data set is more likely to be rejected with or without them.  Below, 

we leverage this possibility in our empirical applications to test the effect on rejection rates of 

including data generated under differing property rights regimes. 

Second, our approach tests the minimum necessary conditions for the above behavioral 

model.  Under the model's behavioral assumptions, the test eliminates any type I error.  On the 

other hand, it is weak in the sense of potentially allowing a great deal of type II error.  That is, 

rejection of the model gives one confidence that the data indeed are not consistent with the tragedy 

of the commons model, but—as always—failure to reject does not guarantee the model is true 

(nor, of course, that alternative models are false).  It is always the case, of course, that failure to 

reject a null hypothesis does not guarantee it is true.  This is not a limitation of our approach so 

much as a limitation of what can be said about the behavioral model:  if further restrictions would 
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lead to more regulations, then arguably it is the auxiliary hypotheses that are being rejected, not 

the fundamentals of the behavioral model. 

Third, nevertheless, even with the very weak assumptions we bring to the model, we still 

can learn a great deal from the tests derived from it.  Data sets that are consistent with the tragedy 

of the commons model are inconsistent with at least some rival models.  Consider, for example, 

fisheries with individual fishing quotas (IVQs) that are non-tradable.  IVQs restrict each vessel to 

catch up to its quota.  Although non-tradability prevents cost minimization subject to a total catch 

(as firms with high costs at the margin may be allocated quota that cannot be traded to low-cost 

firms), IVQs have some advantages.  Typically, they cap the total allowable catch so as to protect 

the sustainability of a fishery.  Additionally, unlike group quotas (which also cap the total catch), 

they prevent a "race to fish" within a season, as a firm's share is exogenous to how quickly it fishes.   

Importantly, IVQs do not lead to a common ratio property like Equation (4). To see this, 

note that the objective function would now be written as a constrained optimization problem: 

(1') max
𝑞𝑖,𝑡

𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡(𝑄𝑡) − 𝐶𝑖 (𝑞𝑖,𝑡) + 𝜆𝑖,𝑡 (𝐿𝑖,𝑡 −

𝑞𝑖,𝑡

𝑄𝑡
∗ 𝐹𝑡(𝑄𝑡)), 

 

where 𝐿𝑖,𝑡 is the quota limit and 𝜆𝑖,𝑡 is the shadow cost of that limit.  Note output prices 

appear in the revenue term but not the constraint.  The revised first-order condition is: 

(2')  (𝑝𝑡 − 𝜆𝑖,𝑡) [
𝑞𝑖,𝑡

𝑄𝑡
∗ 𝐹𝑡

′(𝑄𝑡) + (1 −  
𝑞𝑖,𝑡

𝑄𝑡
) ∗

𝐹𝑡(𝑄𝑡)

𝑄𝑡
] = 𝐶𝑖,𝑡

′ .  

The quota is associated with a firm-specific shadow price on catch, so it is equivalent to 

the original problem with an adjusted output price.  Finally, rearranging terms, we obtain: 

(3') 
𝐹𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡

′ (𝑝𝑡−𝜆𝑖,𝑡)⁄

𝑞𝑖,𝑡
=

𝐹𝑡(𝑄𝑡)

𝑄𝑡
− 𝐹𝑡

′(𝑄𝑡). 
 

Taking this equation in isolation, it would appear that instead of solving the linear program 

by finding numbers 𝐶𝑖,𝑡
′ , we could instead simply solve for numbers 𝐶𝑖,𝑡

′ (𝑝𝑡 − 𝜆𝑖,𝑡)⁄ .  However, 
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the latter numbers would not be expected to satisfy the co-monotone property, which is based on 

the convexity of 𝐶𝑖,𝑡
′  alone.  For example, ceteris paribus, higher effort one year might come with 

a higher quota, but this would tend to lower 𝜆𝑖,𝑡 (as the quota is less binding), and hence lower the 

over-all expression 𝐶𝑖,𝑡
′ (𝑝𝑡 − 𝜆𝑖,𝑡)⁄ , perhaps violating the co-monotone property. 

Thus, we would expect an IVQ regime to lead to higher rejection rates. We leverage this 

insight in our empirical work below.    

1.3 Extensions 

In this section, we extend the model in various ways.  Our extensions can be applied to 

other settings as well, including the case of Cournot competition considered by Carvajal et al. 

(2013).  Thus, they represent an additional contribution of this research. 

1.3.1 The Test with Sampling Error 

The test we derived in Section 2 assumes that data are observed without error.  Moreover, 

it assumes data from a census (not just sample) of users, so that Q = ∑iqi and total catch F(Q) are 

observed.  In this section, we consider the case where only a sample of users are observed, so that 

total effort Q and total revenue F are estimates based on sample means times N. 

Suppose we observe 𝑝𝑡𝐹̂𝑡 = 𝑝𝑡𝐹𝑡 ∗ 𝛼𝑡 and 𝑄̂𝑡 =  𝑄𝑡 ∗ 𝛽𝑡, instead of the true total revenue, 

where 𝛼𝑡 and 𝛽𝑡 are proportionate errors.  Then the common ratio property becomes 

𝛼𝑡𝑝𝑡F𝑡(𝑄𝑡)−𝛽𝑡𝑄𝑡(𝐶𝑖,𝑡
′ )

𝑞𝑖,𝑡
 =  

𝛼𝑡𝜆𝑡𝑝𝑡F𝑡(𝑄𝑡)−𝛽𝑡𝑄𝑡(𝐶𝑗,𝑡
′ )

𝑞𝑗,𝑡
.  Dividing both sides by 𝛽𝑡 and letting 𝜆𝑡 = 𝛼𝑡/𝛽𝑡, we 

can write the linear program with sampling errors as: 

(i) 
𝜆𝑡𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑖,𝑡

′ )

𝑞𝑖,𝑡
 =  

𝜆𝑡𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑗,𝑡
′ )

𝑞𝑗,𝑡
≥ 0, ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

(ii) (𝑞𝑖,𝑡 −  𝑞𝑖,𝑡′)(𝐶′𝑖,𝑡 − 𝐶′𝑖,𝑡′) ≥ 0, ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶′𝑖,𝑡  ≥   0,  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇,  
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(iv) 𝜆𝑡 > 0, ∀ 𝑡 ϵ 𝑇. 

Without sampling errors, we should look for marginal costs that satisfy properties above 

without 𝜆𝑡.  We treat 𝜆𝑡 as unknowns and let the linear program look for the set of 

{𝜆𝑡, 𝐶′
𝑖,𝑡}∀ 𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇 that rationalizes the data with the model.  The idea is to ask if there are 

plausible sampling errors in the estimated aggregate 𝑄̂𝑡 and 𝑝𝑡𝐹̂𝑡 that would make the micro data 

consistent with the model.  Furthermore, when more information (or modeler-defined judgement)) 

of direction or range of the sampling errors is available, we can easily add bounds on the sampling 

errors to the constraints.  

In the linear program specified above,  𝜆𝑡 counts the ratio of sampling errors in total 

revenue and total input.  It increases the bandwidth of the two variables and gives more flexibility 

to the constraints on marginal costs.  Compared to the basic model, we would expect lower 

rejection rates of the model when sampling error is allowed.  Meanwhile, estimates of the sampling 

errors {𝜆𝑡}∀ 𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇 associated with the corresponding rejections to the model inform us about 

the sensitivity of the tests to sampling errors.  In our application below, we compare results for the 

same sample with and without sampling errors.  

1.3.2 Distance to the Model and Statistical Tests 

Following the logic of sampling error in Section 3.1, relaxing the constraints results in 

lower rejections to the model.  A natural question to ask is how “low” is low enough for us to 

attribute the rejections to nuanced situations such as sampling errors or trembling hands in a small 

portion of participants’ behavior.  On the other hand, how “big” of a rejection is big enough for us 

to statistically conclude the data does not conform to the model? That’s the question we will answer 

in this section.  

Building on the marginal-cost-consistency method described in Diewert (1973) and Varian 
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(1985), we can gauge the distance of the revealed marginal costs in our tests to those that are 

consistent with the TOC model. Similar to Varian’s approach of finding a minimal perturbation of 

the budget constraints that would make observed choices data to be satisfied with GARP, we can 

find a minimal adjustment to marginal costs needed to turn a rejection of the model to acceptance. 

We implement this method by adding adjustment factors to marginal costs in the Common 

Ratio property.  The adjustment factors are constructed in a way to guarantee that data would 

always pass the model.  We deploy a linear program to find the minimal magnitude of the 

adjustment, which is the minimized distance from the revealed marginal costs to those that would 

be consistent to the model.  We denote them as revealed marginal costs and model-consistent 

marginal costs below, respectively.  Based on these solutions, we then derive a chi-squared test 

and Kolmogorov-Smirnov test to inform statistical acceptance/rejection of the model.  

We use the following linear program:  

min
𝐶𝑖,𝑡

′ ,𝛿𝑖,𝑡

∑ ∑ |𝛿𝑖,𝑡|

𝑖𝑡

 

Subject to: 

(i) 
𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑖,𝑡

′ +𝛿𝑖,𝑡)

𝑞𝑖,𝑡
 =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑗,𝑡
′ +𝛿𝑗,𝑡)

𝑞𝑗,𝑡
≥ 0,  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

(ii) (𝑞𝑖,𝑡 −  𝑞𝑖,𝑡′)(𝐶𝑖,𝑡
′ −  𝐶𝑖,𝑡′

′ ) ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶𝑖,𝑡
′  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

𝛿𝑖,𝑡 is the minimum adjustment factor on marginal cost 𝐶𝑖,𝑡
′ .  Constraints (i), (ii) and (iii) 

guarantee that the set {𝛿𝑖,𝑡, 𝐶𝑖,𝑡
′ }∀ 𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇 satisfies the common-ratio property, co-monotone 

property, and nonnegativity constraint.  By construction, such solutions always exist.2  Hence, we 

 
2 This is because the adjustment factors expand the domain of marginal costs to all real numbers. As there 

are no convexity constraints on the adjustment factors (i.e. no co-monotone constraint), adjustment factors 

can always be found to make the common-ratio properties be satisfied.  Note that it would not do to 
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can identify and quantify the minimal adjustment factors {𝛿𝑖,𝑡}∀ 𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇, which is the minimal 

distance between the revealed marginal costs to the model-consistent marginal costs. 

1.3.2.1 A Chi-squared Test 

Taking the minimal distance found above, we can conduct a chi-squared test of the null 

hypothesis that the data is consistent with the model.  Denote the set of marginal costs that is 

consistent with the model as {𝑚𝑐𝑖,𝑡̃}𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇 (model-consistent marginal costs).  The model-

consistent marginal costs can be obtained from the linear program in this section as 𝐶𝑖,𝑡
′ + 𝛿𝑖,𝑡.  

Assume the model-consistent marginal costs follow a log-normal distribution 𝑁(𝜇, 𝜎2) with the 

lower limit zero.  Finally, denote the revealed marginal costs of an observed data set 

as {𝑚𝑐𝑖,𝑡̂}𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇.  The revealed marginal costs are obtained in the linear program as 𝐶𝑖,𝑡
′ .   

Under the null hypothesis that an observed data set is consistent with the model, revealed 

marginal costs would converge to the distribution of model-consistent marginal costs in the limit.    

Hence, zi,t=
log (mci,t̂)-log (mci,t̃)

σ
 follows a standard normal distribution. And we can easily obtain 

𝑧𝑖,𝑡 from the adjustment factor 𝛿𝑖,𝑡 solved from the linear program, given 𝛿𝑖,𝑡 = 𝑚𝑐𝑖,𝑡̂ − 𝑚𝑐𝑖,𝑡̃. As 

a result, 𝑆 = ∑ ∑ 𝑧𝑖,𝑡
2/𝜎2𝐼

𝑖=1
𝑇
𝑡=1  follows a chi-squared distribution with 𝑇 ∗ 𝐼 degrees of freedom.  

With large sample, we can substitute the sample variance for the population variance.  When 𝑆 is 

larger than the critical value of a chi-squared distribution, we can reject the null that the data is 

consistent with the TOC model statistically.  

1.3.2.2 Two-sample Kolmogorov-Smirnov Test 

Alternatively, we can test the null hypothesis with the Kolmogorov-Smirnov (KS) test.  

 
incorporate the adjustment into all equations.  That would simply be the same as the original model.  If 

there are no numbers 𝐶𝑖,𝑡
′  satisfying (i)-(iii), then there are no numbers (𝐶𝑖,𝑡

′  + 𝛿𝑖,𝑡) either.   
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The advantage of this method is that we do not need to assume a particular distribution of the 

model-consistent marginal costs.  The two-sample KS test directly compares the distance between 

the cumulative probability function (CDF) of two sample variables and checks if the two samples 

are from the same distribution.  The empirical distance function is specified as 𝐷𝑛,𝑚 =

𝑠𝑢𝑝𝑥|𝐹1,𝑛(𝑥) − 𝐹2,𝑚(𝑥)|, which represents the supremum of the distance between the CDF of 

sample 1 with 𝑛 observations and the CDF of sample 2 with 𝑚 observations.  In our case, sample 

1 consists of the model-consistent marginal costs, and sample 2 contains the revealed MCs.  And 

the sample size for both samples is 𝐼 ∗ 𝑇. 𝐷𝑛,𝑚 is a vector consisting the distance between the two 

CDFs at each value of the sample variable represented by 𝑥, which in our case is the marginal cost.  

We can take small intervals on the domain of marginal costs, obtain values of the two CDFs, and 

find the maximum distance of the two CDFs.  The null hypothesis is rejected at level 𝛼 if the 

maximum distance is larger than the critical value, that is 𝐷𝑛,𝑚 > 𝑐(𝛼) ∗ √
𝑚+𝑛

𝑚∗𝑛
, at critical level 𝛼. 

1.3.3 Measurement Error in q 

In Section 3.2, we considered distance to the model in the space of marginal costs as they 

show up in Condition (i), marginal cost consistency.  An alternative is to consider distance to the 

model in the space of inputs 𝑞𝑖,𝑡.  If we allow those to be measured with error, then we can frame 

this approach as asking, how large would measurement error in inputs have to be for it to explain 

any rejections of the model?   

In this case, we can use the linear program: 

min
𝐶𝑖,𝑡

′ ,𝛿𝑖,𝑡

∑ ∑ |𝛿𝑖,𝑡|

𝑖𝑡

 

Subject to: 
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 (iv) 
𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑖,𝑡

′ )

𝑞𝑖,𝑡+𝛿𝑖,𝑡
 =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡(𝐶𝑗,𝑡
′ )

𝑞𝑗,𝑡+𝛿𝑗,𝑡
 ≥ 0, ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (v)  [(𝑞𝑖,𝑡 + 𝛿𝑖,𝑡) − ( 𝑞𝑗,𝑡 + 𝛿𝑗,𝑡)](𝐶𝑖,𝑡
′ −  𝐶𝑖,𝑡′

′ ) ≥ 0   ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (vi)  𝐶𝑖,𝑡
′  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

This approach has the advantage of a clear structural interpretation in terms of 

measurement error and of consistently incorporating the error into all relevant points in the 

model.  In future work, we will consider using this approach. 

1.4 Empirical Application 

In this section, we describe the Norwegian fishery and the dataset to which we apply our 

tests of the tragedy of the commons. 

1.4.1 The Norwegian Ground Fishery 

Norway has the largest fishing industry in Europe.  Its most valuable fishery is whitefish, 

with cod, haddock and saithe (Atlantic pollock) being the most important species.  Norway's 

whitefish fishery is biologically separate from other major fisheries, so output from the fishery 

F(Q) can be modeled in isolation as a single resource.  The fleet targeting whitefish consists of 

various vessel groups of different sizes and gear.  Trawlers are relatively large vessels with lengths 

ranging from 28 to 76 meters and fish in deeper waters.  The coastal fleet consists of smaller 

vessels using a variety of gears such as long lines, troll nets and Danish seine.  Our sample contains 

only the coastal fleet, with no trawlers.  Each fishing vessel is separately owned by an operator, so 

vessels can be taken as firms in our model. 

In 1989, after the collapse of the Northeast Atlantic cod, a total allowable catch (TAC) 

quota was set by the joint Norwegian-Russian Fishing Committee for whitefish, with the TAC 

divided between the trawler fleet and the coastal fleet.  Then in 1990, an IVQ system was 
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theoretical introduced to the Norwegian coastal fleet.  However, many fishermen (particularly 

small vessel owners) were allocated larger quotas than their previous catches, whereas others 

(mostly large vessels) were allocated smaller quotas than their previous catches.  To ensure that 

the allocated quotas were fished within the coastal vessel group, an "overbooking system" was 

introduced in 1991, which allowed vessel owners to fish above the allocated quotas.  As the 

overbooking was substantial, the IVQ system essentially was not binding during the early years of 

the program, making it more like a regulated restricted access system (RRA) than a true IVQ 

system.  From the perspective of our theoretical model, we view this period as preserving the open 

access regime, with some restrictions on technological inputs and total catch, but with no 

individual limits on catch (or effort) and with incentives promoting a race to fish.  Our data 

(described below) begin in 1998, during this regime. 

In 2003, the total allowable catch (TAC) quota was divided into four groups by vessel 

length. Groups no longer needed to compete across size categories.  This appears to have helped 

the small vessels as a group.  However, the sum of the individual quotas exceeded the TAC (group 

quota), so though firms theoretically could catch all their quota, they still had to compete with 

other vessels of the same size class to reach the limit.  Moreover, there was no guarantee they 

would get any quota.  Effectively, the individual quotas were upper-bound constraints.  This 

problem appears to be especially problematic for the small vessels in 2003.   

Finally, in 2004, vessels above 15 meters were allowed to merge quotas from several 

vessels onto one vessel. Meanwhile, overbooking was no longer allowed.  Thus, the regime for 

larger coastal vessels transformed to a truly binding IVQ system in 2004, while it remained an 

RRA system for smaller vessels.  See Hannesson (2013), Standal, Sønvisen and Asche (2016), and 

Standal and Asche (2018) for further discussion of the fishery.   
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In sum, from 1998 to 2002, all vessels were under an RRA regime.  After 2003, big coastal 

vessels transitioned into an IVQ regime while the small vessels were still under an RRA regime.  

In between, 2003 was something of a transition year.  Small vessels and large vessels were given 

separate group quotas, but still competed within group, a problem that may have been especially 

severe for small vessels.   

This change in property rights regimes affords an opportunity to apply our test of the 

tragedy of the commons using a difference-in-differences design.  We expect higher rejection rates 

for big coastal vessels for the 2003-7 period, relative to the 1998-2002 period, and relative to the 

corresponding difference for small vessels.  (In sensitivity analyses, we also consider omitting 

2003.) 

1.4.2 Description of Data 

The data for the Norway coastal fleet come from an annual random survey of vessels from 

1998 to 2007.  Only a sample of the registered active vessels are surveyed each year.  The first 

row of Table 1 shows the sample size (number of observations).  The second row of Table 1 shows 

the total number of vessels registered in each year (population).  The total sample comprises 1127 

individual vessels from 1998 to 2007.  Each vessel is identified with a unique ID.  We have 

information on the length and weight of each vessel.  Additionally, based on surveys of all fishers, 

we observe annual data on effort and other inputs, including days at sea, operating days (days at 

sea plus days working at port), fuel expenditure, labor compensation, and the average number of 

crew members operating the vessel. 

With respect to outputs, we have vessel-year data on the total revenues received by species 

(cod, haddock, saithe and other whitefish).  We also have catches of cod, haddock, saithe and other 

whitefish, both in physical units (tons) and revenues (NOK).  However, our test only requires 
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knowing the aggregate revenue.  Thus, we first create an index by summing over fish species, then 

sum over vessels to obtain the total sample revenue for each year, 𝑝𝑡F̂𝑡.  Then, we multiply the 

average sample revenue by number of total vessels in the population to obtain the aggregate 

revenue.  Row 3 of Table 1 shows the total sample revenue.  It shows a clear upward trend in total 

revenue, with each year higher than the previous.  Row 4 similarly shows total catch in tons, which 

follows a similar upward trend.  The remainder of Table 1 offers additional details on the 

distribution of catch across vessels and across species, by year.   

Although it requires only annual aggregate revenue on the output side, our test requires 

micro-level data on the input side.  Vessels do not necessarily fish in all years, so we have an 

unbalanced panel of vessel-level inputs.  Also, reported zeros for an input indicates that these fields 

were left blank in the survey.  Accordingly, we exclude vessels that reported both zero operating 

days and zero days at sea but positive labor, fuel or other operating expenses in the analysis.  

Table 2 shows raw data on inputs, including operating days, days at sea, person-years, labor 

compensation, and fuel expenditure.  

1.4.3 Quantifying Effort 

In taking the theoretical model to the data, a central modelling question is how to measure 

effort (or input) 𝑞𝑖,𝑡 as a scalar, as required by the theoretical model.  As measures of effort, we 

consider the following four proxies:  operating days, imputed days at sea, imputed days at sea 

times vessel length (Length* Days), and an estimated scalar-valued function of effort based on 

multiple inputs.  Of these, operating days, which includes days at sea as well as days processing 

and offloading in port, is the most straightforward proxy.  Table 3 shows summary statistics for 

operating days as used in the model. 

Our second measure is days at sea.  Averaging over time, days at sea contains 81.3 fewer 
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days fleet-wide than operating days, and there are 748 observations with positive operating days 

but zero days at sea.  Since it is impossible to have zero days at sea when operating days and catch 

are positive, we treat these zeros as missing and replace them with imputed values when the 

associated operating days are positive.  To impute these values, we use the following regression 

model: 

(6) 𝑑𝑎𝑦𝑠 𝑎𝑡 𝑠𝑒𝑎 = 𝛽0 + 𝛽1 ∗ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑦𝑠 + 𝛽2 ∗ 𝑓𝑢𝑒𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒.  

We run the model in Equation (6) conditional on 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑦𝑠 > 0 and 𝑑𝑎𝑦𝑠 𝑎𝑡 𝑠𝑒𝑎 >

0, and use the predicted coefficients to estimate missing values of days at sea for observations with 

positive operating days.  Table 4 gives the estimated regression coefficients from Equation (6) 

(Model 4), as well as alternatives.  Model 1 estimates days at sea only as a fixed proportion of 

operating days; Model 2 adds fuel expenditure but continues to omit the constant.  Models 3 and 

4 are similar to 1 and 2 respectively, but include the constant term.  Out-of-sample prediction 

comparisons (using leave-one-out validation) suggest that Model 4 has the best fit, with the 

exception of Model 5, which includes fixed effects.  However, vessel fixed effects cannot be 

estimated for those vessels with insufficient data, making this an impractical choice.  Thus, we 

choose Model 4 as it reflects a balance between accuracy and reducing missing observations.  

Based on this model, Table 3 shows annual data on imputed days at sea.  

Our third measure of input uses these imputed days at sea times vessel length.  This is a 

common proxy for input in the fishery literature.  Table 3 also reports annual values of this product. 

Our fourth and final measure of input aggregates multiple input variables into a scalar-

valued function.  This is a common practice in the fisheries literature (see McCluskey and Lewison 

2008 for review and discussion).  We adopt a straightforward method that serves our purpose.  

Suppose the production function for vessel 𝑖 in year 𝑡 is 
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(7) ln(𝐶𝑎𝑡𝑐ℎ𝑖,𝑡) = 𝑎 + 𝑏 ∗ 𝑙𝑛𝐸𝑖,𝑡 + 𝜆𝑡 + 𝑒𝑖,𝑡,  

where 𝜆𝑡 is a dummy which captures year effects, such as different stock levels, and 𝐸𝑖,𝑡 denotes 

the overall effort level for vessel 𝑖 at year 𝑡, and is a sub-function of other inputs.  In particular, let  

(8) 
ln (𝐸𝑖,𝑡) = 𝛼2ln (𝑝𝑒𝑟𝑠𝑜𝑛-𝑦𝑒𝑎𝑟𝑠𝑖,𝑡) + 𝛼3ln (𝑓𝑢𝑒𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑖,𝑡) +

𝛼4ln (𝑙𝑎𝑏𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑖,𝑡) + 𝑣𝑒𝑠𝑠𝑒𝑙𝑖𝑑𝑖,   

 

in which man-years denotes the labor input (measured at the day level) and labor compensation is 

the total payment to workers on the vessel and 𝑣𝑒𝑠𝑠𝑒𝑙𝑖𝑑𝑖 is vessel level fixed effect that captures 

vessel length, tonnage, etc.  

Substituting Equation (8) into (7), we estimate the combined model.  Note, however, that 

we cannot separately identify 𝑏 in Equation (7) from the alphas in Equation (8).  Thus, we do not 

identify effort to scale.  This is not problematic, however, because our test treats the cost of effort 

as a latent function, so any arbitrary change of scale in effort can be reconciled by an offsetting 

change in the scale of the cost function.  Results of estimating this model are shown in Table 5.  

Column 1 introduces the individual inputs in levels, whereas Column 2 does so in logs (as shown 

in Equation (8)).  We use Column 2 in our analysis, as it has a better fit.  Table 3 shows summary 

statistics for this estimated value. 

1.4.4 Sampling Subsets of Data 

Because, in our approach, rejections are all or nothing, the presence of only one firm 

behaving out of step with the other firms could result in rejecting the entire data set.  Likewise, if 

cost functions shift over time, assuming they are constant could lead to false rejections.  To sidestep 

these issues, we follow Carvajal et al. (2013) and repeatedly sample smaller subsets of data.  

Sampling the data allows us to consider rejection rates (percentage of data sets that do not conform 

to the tragedy of the commons model), rather than one single all-or-nothing conclusion. We follow 
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Carvajal et al. (2013) and repeatedly sample smaller subsets of data. We divide the entire data set 

into multiple subsets, with each set consisting of N vessels and T consecutive years, where N ∈ {5, 

10, 50, 100, 150} and T ∈ {3, 6, 8, 10}.3  Then we separately test for consistency with the tragedy–

of–the–commons model using each set. We randomly sampled 100 subsets from each N-by-T 

combination, giving us a reasonable estimate of the rejection rates for each combination.  (To 

facilitate comparisons, we used the same subsample of data for each cell across models.)   

1.4.5 Weighted Sampling and Property Rights Regime Comparison 

As discussed in section 4.1, the evolution of property rights in the Norwegian fishery 

motivates splitting the data into the periods of the RRA regime (1998-2002) and the period of 

IVQs for the coastal vessels at least 15 meters in length (2003-2007).  Accordingly, we cut the 

data into four cells using a 2x2 design; large coastal vessels (≥15 meters long) and small (<15 m) 

by before (1998 – 2002) and after (2003 – 2007).  It is worth noting that, though we sub-sample 

by vessel size in this exercise, in the common-ratio properties for each group of each year, we keep 

the total input 𝑄𝑡 and output 𝐹𝑡(𝑄𝑡) across all vessels.  That is, behavior by all vessels (regardless 

of length) still affects the optimal behavior of any one vessel.  

In this unbalanced panel for the Norwegian coastal fleet, due to the administration of a 

random survey, there are fewer observations of surveyed vessels in earlier time periods (before 

2003) than later (after 2003).  When we sample subsets as described in Section 4.4 with no 

restrictions (where each vessel has an equal probability to be selected), the sets sampled in later 

periods will contain more data points than those from earlier periods. Given the nature of our test, 

more data points create more constraints, which automatically yields higher rejections holding all 

 
 3 The larger the number of vessels and windows, the longer it takes to run the test.  Due to resource 

constraints, the largest number of vessels we sample is 150.  The subset with 150 vessels and 13 years 

takes 16 days to run on an i7-4770 CPU, 24GB, 64-bit computer. 
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other things equal.  Hence, to make sure the gap in rejection rates per group is attributed to 

behavioral difference under different management regimes, rather than the difference in the 

number of observations in the samples, we employ weighted sampling to generate comparable 

samples for each group.  

Weighted sampling is implemented by redistributing probabilities of being selected among 

vessels of later periods (2003-2007).  Probabilities of vessels with more observations (3 and 4 data 

points in periods 2003-2007) are reduced, and the reduced probabilities are added to vessels with 

fewer observations (1 and 2 data points), with the total probability always summing up to one.  The 

largest adjustment of the probability of a vessel is less than 0.0002, while the original probability 

of a vessel being sampled is around 0.00116, hence the adjustment is less than 17%.  After 

weighted sampling, the maximum difference in the number of observations between the groups 

(before vs. after) is less than 0.2% (difference in observations divided by total observations in 

subsample sets).  In our 2x2 design, our weighted sampling ensures that the big-after and big-

before groups have similar numbers of observations, as do the small-after and small-before groups.  

It helps to balance the number of observations among groups to generate credible difference-in-

difference results.  We first take the difference of rejections between the big-after and big-before 

groups and likewise for the small-after and small-before groups.  Finally, we take the difference-

in-difference to inform effects of regime changes. 

As discussed in Section 2.2, data generated from the IVQ regime is not expected to be 

consistent with the tragedy of the commons model.  We expect the difference of big vessels (after-

before) will be higher than those for small vessels.  

1.5 Results 

In this section, we present the results of our tests.  We first present results of the basic tests 
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as described in Section 2.  We then present results with sampling errors (Section 3.1) and statistical 

tests based on distance from revealed marginal costs to model-consistent marginal costs 

(Section 3.2).  

1.5.1 Results of Test Pooling all Data 

Tables 6-9 present results using the basic test of Section 2, using four respective proxies of 

effort:  operating days, imputed days at sea, length times days and estimated total effort.  Each cell 

in the tables shows the rejection rate for a sample of 100 data sets for 𝑁 vessels and 𝑇 consecutive 

years.  Note that the rejection rates generally are increasing in N (moving down the rows) and T 

(moving to the right across columns), as the number of equations and inequalities to satisfy is 

increasing in these parameters.  Exceptions to this rule are due to random sampling.  Furthermore, 

when more than 100 vessels are considered for longer than 6 years, the rejection rates approach 

one.  These results indicate that the behavior of vessels/fishermen in our sample cannot be 

explained by the TOC model when a fair number of observations are included.  

Additionally, we test consistency with the model with sampling errors (as discussed in 

Section 3.1).  The boundaries on sampling errors we adopted is [-5%, 5%].  That is, we restrict the 

multiplier 𝛾𝑡 to be between [0.95, 1.05].  We are only able to apply narrow boundaries to our 

sample data from Norwegian ground fishery due to a large number of missing observations in the 

data set4.  Notice that the adjustment factor functions as a multiplier on total revenue.  Given that 

the average revenue in our sample is 1.4 million NOK (around 166,000 USD) per year per vessel, 

this bandwidth allows for an average adjustment to the revenue of 67,000 NOK (around 8,000 

 
4 Our unbalanced panel data of Norwegian ground fishery has 79.3% of data points missing. The amount 

of missing substantially reduces nonempty constraints in our test, which makes it easy to find marginal 

costs that are consistent with the model. Allowing for a larger adjustment to the total revenue makes the 

tests even less stringent and reduces the rejection rates towards zero. For instance, all rejection rates are 

zero when the boundary is 10% in our case.  
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USD) per year per vessel.  That amount is more than the average cost of fuel expenditure per year 

per vessel, so it is not negligible.  Tables 10-13 present results using the test with sampling errors.  

As we would expect with added flexibility, rejections to the TOC model allowing for sampling 

errors are slightly lower than those in the basic model (comparing like cells).  But the previous 

patterns remain.  First, rejection rates still increase in N and T.  Second, when more than 100 

vessels are considered for longer than 6 years, the rejection rates still approach one.  This result 

provides additional support for the conclusion that behavior of vessels/fishermen in our sample 

cannot be explained by the TOC model when a fair number of observations are included. 

1.5.2 Results of Statistical Tests 

We conduct the Chi-squared test of Section 3.2 to the same subsamples in the basic tests 

for input operating days.  For now, we only take subsamples for N ∈ {5, 10, 50} and T ∈ {3, 6}.  

The test statistics of operating days is 𝑇𝑜𝑝𝑒𝑟 = ∑ ∑ 𝑧𝑖,𝑡
2/𝜎2𝑁

𝑖=1
𝑇
𝑡=1 =

57286

0.3684
= 12365.8.  The chi-

squared critical value 𝐶0.05,58500 = 59064.  Thus, we reject the null hypothesis that the data 

obtained for a group of vessels with input operating days is consistent with the behavioral model 

depicted in the tragedy of the commons.  Chi-squared tests of other three input variables (imputed 

days at sea, length times days and estimated effort) yield similar results. 

We also conduct the KS test for the same subsamples of operating days as in the Chi-

squared test.  We first plot the distributions of the two samples of marginal costs in Figure 1.  In 

the figure, the revealed marginal costs are {𝑚𝑐𝑖,𝑡̂}𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇 and the model-consistent marginal costs 

are {𝑚𝑐𝑖,𝑡̃}𝑖 ϵ 𝐼,∀ 𝑡 ϵ 𝑇.  From Figure 1, we can narrow down the maximum distance of the two 

distributions to the intervals of marginal costs between [1, 2].  To find the maximum distance of 

the CDFs between the samples, we take bins of 0.1 within the interval and compare the two CDFs.  

Results are presented in Table 14.  The estimated maximum distance 𝐷𝑁∗𝑇,𝑁∗𝑇= 0.18, and the 
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critical value is 0.019.  Hence, again, we reject the null hypothesis that the data obtained for a 

group of vessels with input operating days is consistent with the model.  KS tests of the other three 

inputs (imputed days at sea, length times days and estimated effort) yield the same conclusion.  

Results from the two statistical tests confirm our observation from the rejection rates tables 

in Section 6.1. More importantly, the maximum distance obtained from the KS test can be used as 

an indicator to inform how far the current regime in the Norwegian ground fishery is away from 

the TOC model. Consider one fishery, we can track the maximum distance overtime and evaluate 

the effectiveness of management policy at different time periods. Across fisheries, the method can 

be used to gauge the distance to the TOC setting for fishing behavior under different property-

rights management regimes. Hence, it can be adopted to compare efficiency levels across sites. 

Since the test does not rely on parametric specification of production, comparison across sites do 

not need to estimate production or cost function for each site. 

1.5.3 Results Comparing Property Rights Regimes 

Recall that all vessels operated under RRA before 2003.  Throughout the period (1998-

2007) in our sample, a TAC for all participants was in place, but in 2003 the quota was divided to 

groups based on vessel length.  After 2003, small vessels remained operating under a total 

allowable catch and the RRA regime, while big vessels transitioned to an IVQ regime.  This make 

the small vessels a good control group for the big vessels:  whereas there is competition among 

vessels under a group quota, competition among big vessels is reduced under the property-rights 

based management of IVQs.  The effectiveness of the property-rights approach of IVQs over the 

non-property-rights based approach of RRA drives the difference-in-differences results in our 

empirical study.  
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Table 15-18 present results per group after weighted sampling.  The results indicate that, 

after the reform, big vessels incur a higher increase in rejection rates of the TOC model than small 

vessels.  That implies the IVQ regime generates more fishing behavior inconsistent with the 

tragedy of the commons model.  In other words, the IVQ regime nudges fishing behavior away 

from Nash more effectively than does RRA, as one would expect.  

Note that after we split the data into four groups, there are fewer observations to sample 

from per group. Because weighted sampling as described in section 4.5 only controls for the 

difference in the number of observations of each paired group (before vs. after), but not the 

magnitude of observations in samples, the levels of rejection rates are sensitive to the number of 

observation in the respective subgroups, but the difference and difference-in-difference results are 

reflecting the overall change in management regimes and are more stable. 

We also replicated these tests omitting 2003, which was a transition year and arguable was 

different from the subsequent 2004-7 period, when large vessels were under the TAC.  Our results 

are qualitatively similar using this approach.  They are available upon request. 

Interestingly, looking only at small vessels, we observe a decrease in rejection rates in the 

2003-7 period.  Taken in isolation, this suggests that the behavior of small vessels moved closer 

to Nash in 2003.  One possible explanation for this finding is an induced race to fish after securing 

the small group right without assigning rights to individuals.  Comparing the number of small and 

big vessel across years (see Table 19), there is a marked increase in the total number of small 

vessels in each year starting in 2003, whereas there is not much change in big vessels.  Even with 

a slight decline in average fishing effort in all vessels after 2003, the increase in the number of 

small vessels still leads to an increase in the total effort of the small-vessel group.  The increased 

number of participants and increased total effort move the collective behavior of small vessels 
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closer to Nash.  New entry in small vessels may have been induced by increased economic rent 

after the division of the quota.  Perhaps before 2003, under the TAC for all vessels, small vessels 

could not compete with big vessels in the race to fish.5  After 2003, separated TAC for small group 

reduced the competition from big vessels and secured a potential economic rent.  However, without 

individually assigned property rights to quotas, the secured economic rent attracted new entrants 

and spurred the race to fish.  This result is in line with the finding in Homans and Wilen (1997) 

that certain types of non-property-rights-based management may induce a race to fish. It also 

speaks to the findings in Kroetz et al. (2015) that policy with good social objectives could reduce 

overall efficiency and rents in fisheries.  

1.6 Conclusion 

Work to date on testing the tragedy of the commons has focused either on policy outcomes 

involving the state of shared resources or, when using behavioral data, has relied on highly 

structural models involving numerous maintained assumptions.  Drawing on applications of 

revealed preference theory to behavioral data, such as work by Carvajal et al. (2013) using the 

Cournot model, we derive non-parametric tests of the tragedy of the commons using minimal 

behavioral assumptions.  Additionally, we present methods to account for the sampling errors in 

aggregate output and input data, and to gauge the distances to the model as well statistical tests 

based on the distances. 

We apply this new test to the Norwegian groundfishery.  Overall, we find the behavior of 

individual fisherman/vessel of the Norwegian Coastal Fishery does not conform to the model of 

 
5 Technically, our model captures the incentives even for small vessels with little market power in 

manipulating resource rents.  However, in practice, it may be that with small costs of optimizing it did not 

make sense for small vessels to fully consider the incentives under Nash competition until the quota was 

divided.   
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the tragedy of the commons.  However, we find that rejection rates are larger after property rights 

reforms, for the large vessels that received stronger property rights.  Our approach can be applied 

to other common pool resources whenever individual effort data is available.  And it can be used 

to compare effectiveness of different management regimes. It yields important policy implications. 

For instance, despite their theoretical appeal and mounting empirical evidence of economic 

benefits, property rights-based management in fisheries remains controversial. Critics of catch 

shares express concerns about social issues such as equity and effects on fishing communities. 

These views are expressed in the policy process that ultimately shapes how fisheries are regulated. 

Do the resulting regulations address the first-order problem of the commons, or do they preserve 

the tragedy? Our approach can help to answer this question and suggest which regulatory regimes 

are not up to the task. After all, even the strongest opponents of catch shares do not defend the 

tragedy of the commons as an appropriate alternative. 
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Table 1 Summary Statistics for Selected Output Variables 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Obs.   307 321 328 323 316 279 321 306 317 359 

Population  1193 1143 1081 1063 1230 1441 1342 1131 1165 1290 

Total annual 

value (100 

million NOK)  
3.61 3.67 3.67 3.91 3.98 4.54 4.61 4.68 6.58 7.40 

 
 

          

Total annual 

harvest (10 

million kg)  
4.17 4.62 4.94 5.31 5.81 6.64 7.84 8.23 8.43 9.25 

            

Cod  Mean 77.7 55.2 45.0 48.3 52.2 51.5 59.4 72.0 85.4 73.7 

(thousand kg) SD 87.2 60.3 53.6 51.2 38.5 38.3 45.4 63.2 72.3 66.6 
 Min 0.1 0.9 0.6 0.2 0.1 0.2 0.1 0.2 0.3 0.0 
 Max 471.4 411.1 581.8 334.6 332.6 299.3 294.6 452.0 444.4 451.3 
 

 
          

Haddock  Mean 19.8 10.7 9.0 11.4 12.7 12.6 11.4 16.7 17.7 21.4 

(thousand kg) SD 38.3 21.9 19.7 14.3 26.9 32.7 21.3 30.4 28.2 38.7 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Max 204.3 188.1 211.3 92.4 251.3 416.2 158.5 260.5 185.0 310.8 
 

 
          

Saithe  Mean 29.9 26.3 22.8 24.7 19.7 23.2 22.8 31.9 50.1 47.3 

(thousand kg) SD 68.9 49.5 32.9 42.6 37.8 33.3 38.0 68.5 101.6 101.6 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Max 574.1 418.7 251.7 420.0 321.1 197.3 199.2 716.4 873.8 943.7 
 

 
          

Other  Mean 70.4 58.6 91.3 51.9 40.5 41.1 32.8 45.3 61.9 71.7 

(thousand kg) SD 248.2 212.3 302.6 178.1 131.9 94.7 77.7 110.4 162.4 263.9 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  Max 1,807.2 1,859.2 2,203.4 1,864.4 1,409.4 644.3 673.4 899.4 2,014.3 2,482.1 
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Table 2 Summary Statistics for Selected Input Variables (Raw Data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Obs.   69 72 80 76 71 279 321 306 317 359 

Operating days Mean 268.2 262.0 268.5     253.8 244.2 213.3 193.8 220.9 227.4 210.1 
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6 
 Min 204.0   176.0 190 107 146 99.0 83.0 90.0 93.0 90.0 
 Max 338.0 364.0 348 338 342.0 354.0 342.0 345.0 355.0 338.0 
 

 
          

Days at sea Mean 219.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 168.9 
 SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0       58.7 56.2 53.9 
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.0 55.0 72.0 68.2 

  Max 295.0 322.0 343.0 335.0 287.0 336.0 324.0 330.0 345.0 325.0 

            

Person years Mean 2.3 2.2 2.1 2.2 2.1 2.2 2.1 2.3 2.4 2.4 

 

SD 1.8 1.8 1.8 1.6 1.6 1.4 1.3 1.5 1.5 1.5 

Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Max 12.0 12.0 12.7 11.0 12.6 10.7 8.1 10.0 8.1 9.0 
 

 
          

Labor  Mean 637.3 607.6 574.8 652.3 593.7 511.2 607.4 772.3 1025.8 1015.9 

compensation SD 799.9 808.9 791.9 821.6 592.5 480.4 562.8 721.6 937.6 979.2 

(thousand NOK) Min 65.5 81.5 65.8 63.1 109.3 104.1 108.0 149.1 141.5 158.2 
 Max 5,161.4 6,658.9 5,930.7 6,151.7 4,918.5 3,906.7 4,606.4 4973.9 6920.2 7184.6 
 

 
          

Fuel expenditure Mean 47.9 52.3 80.6 70.6 59.8 59.7 72.6 108.0 135.5 121.6 

(thousand NOK) SD 73.0 91.9 161.3 127.3 108.1 92.6 97.9 163.7 177.8 194.1 
 Min 3.0 3.4 1.5 4.6 3.2 1.3 3.1 6.9 10.2 9.6 
 Max 539.5 745.7 1,405.7 1,458.6 1,066.7 1,113.5 937.7 1610.0 1605.5 1623.6 
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Table 3 Summary Statistics for Selected Input Variables (As used in Analysis) 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Obs.  69 72 80 76 71 279 321 306 317 359 

Operating days Mean 268.2 262.0 268.5 253.8 244.2 213.3 193.8 220.9 227.4 210.1 
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6 
 Min 204.0   176.0 190.0 107.0 146.0 99.0 83.0 90.0 93.0 90.0 
 Max 338.0 364.0 348.0 338.0 342.0 354.0 342.0 345.0 355.0 338.0 

            
Imputed days  Mean 217.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 169.0 

at sea SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0 58.7 56.2 53.9 
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.1 55.0 72.0 68.2 
 Max 295.0 322.0 343.0 335.0 287.0 336.0 324.6 330.0 345.0 325.0 
 

           
Length times   Mean 4169.2 4067.3 3748.1 3248.1 3197.8 2200.5 2237.6 2434.3 2605.8 2377.7 

Imputed days SD 1261.4 1449.2 1713.7 1312.7 1377.6 1090.4 1146.4 1349.6 1260.3 1247.1 

at sea Min 2133.6 1772.6 877.8 707.8 1459.2 696.0 672.0 581.9 816.4 606.6 
 Max 7707.8 8826.0 9415.4 9195.8 7720.7 8564.4 8898.0 9058.5 8771.2 8908.3 
 

           
Estimated effort Mean 9.66 9.41 8.86 9.61 7.66 3.23 3.72 4.72 5.98 5.82 

 SD 6.01 6.71 7.21 6.77 5.74 2.95 3.32 4.31 5.23 5.43 

 Min 0.83 1.79 1.35 1.38 2.15 0.83 0.94 0.96 1.11 1.07 

 Max 29.18 36.55 36.11 35.33 31.54 25.54 25.03 28.99 39.45 41.24 
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Table 4 Regression Model for Imputing Missing Days at Sea 

Days at sea Model 1 Model 2 Model 3 Model 4* Model 5 

Operation days 0.848*** 0.815*** 0.875*** 0.808*** 0.585*** 

 (0.0143) (0.0149) (0.0223) (0.023) (0.0386) 

Fuel expenditure No 4.322*** No 4.351*** 2.928 

  (0.641)  (0.646) (2.141) 

Constant No No -3.555 2.678 67.60*** 

   (7.500) (7.389) (11.56) 

Year fixed effects Yes Yes Yes Yes Yes 

Vessel fixed effects No No No No Yes 

      

R2 — — 0.624 0.641 0.505 

N 964 964 964 964 964 

Standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. We used model 4 to impute missing days 

at sea in the analysis. The R-squared of Model 5 is the within value from running OLS on the demeaning 

data. The between and overall R-squared are 0.597 and 0.613.  

 

 

Table 5 Regression Model of Effort Function 

Total catch quantity Log-Level Log-Log 

Person-years 0.090*** 0.156** 

 (0.02) (0.057) 

Fuel expenditure 0.039** 0.133** 

 (0.016) (0.031) 

Labor compensation 0.032** 0.703** 

 (0.003) (0.041) 

 
  

Constant 11.32*** 10.51*** 

 (0.084) (0.103) 

Year fixed effects 

Vessel fixed effects 

Yes 

Yes 

Yes 

Yes 

R2 0.27 0.41 

N 1092 1092 

Standard errors in parentheses. *** p<0.01; ** p<0.05; 

 * p<0.1. 
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Table 6 Rejection Rates ─ Operating days 

Years 
3 6 8 10 

Number of Vessels 

5 0.01 0.00 0.04 0.22 

10 0.04 0.03 0.30 0.53 

50 0.40 0.58 0.96 1.00 

100 0.81 0.88 1.00 1.00 

150 0.93 1.00 1.00 1.00 

 

Table 7 Rejection Rates ─ Imputed Days at Sea 

Years 
3 6 8 10 

Number of Vessels 

5 0.00 0.02 0.15 0.21 

10 0.01 0.02 0.28 0.55 

50 0.37 0.54 1.00 1.00 

100 0.65 0.90 1.00 1.00 

150 0.88 0.98 1.00 1.00 

 

Table 8 Rejection Rates ─ Length Times Imputed Days at Sea 

Years 
3 6 8 10 

Number of Vessels 

5 0.01 0.00 0.07 0.18 

10 0.01 0.03 0.35 0.68 

50 0.29 0.62 1.00 1.00 

100 0.69 0.87 1.00 1.00 

150 0.95 0.99 1.00 1.00 

 

Table 9 Rejection Rates ─ Estimated Total Effort 

Years 
3 6 8 10 

Number of Vessels 

5 0.01 0.00 0.09 0.19 

10 0.01 0.02 0.24 0.35 

50 0.22 0.49 0.98 1.00 

100 0.57 0.80 1.00 1.00 

150 0.77 0.95 1.00 1.00 
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Table 10 Rejection Rates ─ Operating Days with Measurement Error 

Years 
3 6 8 10 

Number of Vessels 

5 0.00 0.15 0.26 0.21 

10 0.00 0.13 0.25 0.38 

50 0.03 0.15 0.31 0.59 

100 0.10 0.21 0.36 0.69 

150 0.18 0.28 0.40 0.75 

 

Table 11 Rejection Rates ─ Imputed Days at Sea with Measurement Error 

Years 
3 6 8 10 

Number of Vessels 

5 0.00 0.01 0.15 0.20 

10 0.00 0.00 0.25 0.51 

50 0.00 0.33 0.99 1.00 

100 0.00 0.70 1.00 1.00 

150 0.00 0.87 1.00 1.00 

 

Table 12 Rejection Rates ─ Imputed Days Times Length with Measurement Error 

Years 
3 6 8 10 

Number of Vessels 

5 0.01 0.00 0.07 0.18 

10 0.01 0.03 0.35 0.68 

50 0.29 0.62 1.00 1.00 

100 0.69 0.87 1.00 1.00 

150 0.95 0.99 1.00 1.00 

 

Table 13 Rejection Rates ─ Estimated Effort with Measurement Error 

Years 
3 6 8 10 

Number of Vessels 

5 0.00 0.00 0.00 0.06 

10 0.00 0.00 0.00 0.14 

50 0.00 0.13 0.34 0.97 

100 0.00 0.40 0.73 1.00 

150 0.00 0.47 0.92 1.00 
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Table 14 CDF of Two Samples 

MC CDF_𝑚𝑐𝑖,𝑡̂ CDF_𝑚𝑐𝑖,𝑡̃. Distance 

1.0 0.60 0.44 0.16 

1.1 0.65 0.48 0.17 

1.2 0.70 0.52 0.18 

1.3 0.75 0.56 0.18 

1.4 0.79 0.61 0.18 

1.5 0.83 0.64 0.18 

1.6 0.86 0.68 0.17 

1.7 0.88 0.71 0.17 

1.8 0.91 0.75 0.16 

1.9 0.92 0.78 0.15 

2.0 0.94 0.80 0.14 
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Table 15 Rejection Rates per Group - Operating Days 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 

3 5 0.04 0.15 0.01 0.07 -0.05 

3 10 0.28 0.30 0.08 0.23 0.13 

3 50 0.92 1.00 0.57 0.97 0.32 

4 5 0.19 0.16 0.05 0.08 0.06 

4 10 0.53 0.40 0.16 0.30 0.27 

4 50 1.00 0.99 0.89 1.00 0.12 

5 5 0.16 0.10 0.05 0.09 0.10 

5 10 0.48 0.46 0.18 0.29 0.13 

5 50 1.00 1.00 0.90 0.99 0.09 

       
 

Table 16 Rejection Rates per Group – Imputed Days at Sea 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 

3 5 0.13 0.07 0.04 0.09 0.11 

3 10 0.34 0.27 0.15 0.18 0.10 

3 50 1.00 1.00 0.80 1.00 0.20 

4 5 0.26 0.11 0.04 0.05 0.16 

4 10 0.48 0.28 0.24 0.21 0.17 

4 50 1.00 0.99 0.96 0.99 0.04 

5 5 0.23 0.14 0.11 0.07 0.05 

5 10 0.57 0.40 0.27 0.22 0.12 

5 50 1.00 1.00 0.99 0.99 0.00 
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Table 17 Rejection Rates per Group – Length times Days at Sea 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 

3 5 0.04 0.05 0.01 0.07 0.05 

3 10 0.36 0.23 0.09 0.24 0.28 

3 50 0.99 0.98 0.74 0.97 0.24 

4 5 0.04 0.09 0.07 0.11 -0.01 

4 10 0.40 0.34 0.18 0.26 0.14 

4 50 1.00 1.00 0.82 0.99 0.17 

5 5 0.20 0.11 0.07 0.08 0.10 

5 10 0.60 0.33 0.19 0.18 0.26 

5 50 1.00 0.99 0.95 0.97 0.03 

 

 

Table 18 Rejection Rates per Group – Estimated Total Effort 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 

3 5 0.06 0.10 0.00 0.02 -0.02 

3 10 0.21 0.17 0.03 0.08 0.09 

3 50 0.98 0.95 0.61 0.79 0.21 

4 5 0.09 0.12 0.04 0.05 -0.02 

4 10 0.35 0.36 0.10 0.08 -0.03 

4 50 1.00 0.99 0.76 0.75 0.00 

5 5 0.18 0.10 0.01 0.03 0.10 

5 10 0.47 0.30 0.12 0.10 0.15 

5 50 1.00 0.99 0.77 0.85 0.09 
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Table 19 Total Number of Vessels per Group per Year 

Year Number of Vessels Per Group Per Year 

1998 

Big-Before 

277 

Small-Before 

917 

1999 240 903 

2000 230 851 

2001 226 838 

2002 253 977 

Ave   245   897 

2003 

Big-After 

263 

Small-After 

1178 

2004 231 1111 

2005 210 921 

2006 197 968 

2007 197 1093 

Ave   220   1054 

     
 

 

 

 

Figure 1 Distribution of Two Samples 
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2 NATURE AND SCARCITY  

2.1 Introduction 

Research at the intersection of economics and psychology has found that cognitive burdens 

hinder people's ability to perform well economically and to make prudent economic decisions. 

They perform worse at tasks requiring attention, become more cautious, and become more 

impatient (Deck and Jahedi 2015). In particular, the cognitive burdens associated with acute 

scarcity of time or money appear to create tunnel vision in which people focus on pressing needs 

while neglecting long-term consequences (Shah et al. 2012, Mani et al. 2013, Mullainathan and 

Shafir 2013, Haushofer and Fehr 2014). It appears that when "System 2," or analytical thinking, is 

burdened by urgent present needs, less cognitive capacity is available for use in other judgments 

and decisions (Kahneman 2011, Schilbach, Schofield, and Mullainathan 2016). This vicious cycle 

may perpetuate poverty traps. 

At the same time, research at the intersection of psychology and health has found that the 

sense of beauty and wonder inspired by green environments improves one's mind, body, and spirit. 

The restorative rest of time in nature improves focused attention and reduces stress (Bowler et al. 

2010, Bratman et al. 2012, 2015, Hartig et al. 2014). Relative to time spent in brown, urban 

environments, time in green, natural environments has been found experimentally to improve 

short-term recall and performance at tasks requiring attention (Berman et al. 2008, Berto 2005, 

Hartig et al. 2003). It also reduces stress, as seen in lower blood pressure, salivary cortisol, and 

neural activity in the subgenual prefrontal cortex (associated with rumination), and to improve 

self-reported mood. The effects extend to looking out windows to or at pictures of green spaces 

(Berman et al. 2008, Berto 2005, Hartig et al. 1999, 2003, Hartig and Staats 2006, Ulrich et al. 

1991). These experimental findings also appear to have external validity. In observational studies, 
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individuals living closer to green spaces had lower cortisol levels and lower mental distress 

(Thompson et al. 2012, White et al. 2013). Additionally, children who moved homes show 

significant cognitive functioning improvement among those who move to greener areas (Wells 

2000). 

In this research, we explore the intriguing possibility that, as they facilitate focused 

attention and reduce stress, green environments concomitantly improve economic decision 

making. We test this hypothesis by conducting lab experiments replicating previous work on 

cognitive burdens and economic decision making (Deck and Jahedi 2015, Shah et al. 2012), but 

crossing them with time spent viewing pictures of green vs. urban scenes, as in many 

environmental psychology experiments (e.g. Hartig and Staats 2006). We test whether exposure 

to green/urban environments affects subjects' performance on tasks requiring attention, their risk 

aversion, and their patience. We also test whether it especially improves such performance among 

participants whose focused attention has been depleted by greater cognitive burdens.  

Results from experimental data with undergraduate college students do not show any effect 

of nature on restoring cognitive capacity. On the contrary, there is evidence that viewing pictures 

of urban scenes helps to reduce risk averse behavior among subjects who are burdened by 

memorizing long digit numbers. Below we discuss the details of our experimental design and 

issues that need to be addressed in future research.  

2.2 Experiment 

A total of 246 undergraduate students from Georgia State University (GSU) were recruited 

for this study. The experiment was clustered in sessions of approximately 20 people at the 

Experimental Economics Center (ExCEN) of Georgia State University. The participation fee was 

$10, and participants were paid an additional $15 on average. All participants were seated at a 
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computer before the experiment started. Hard copies of experimental instructions were provided 

to each subject. The experimenter read the instructions to participants and guided practice rounds 

prior to the start of the experiment. Practice rounds were designed with feedback to make sure that 

participants understood their choices and associated payoffs from their choices.  

2.2.1 Methodology 

Drawing mainly on the design in Deck and Jahedi (2015) but also work in psychology 

(e.g.Berman et al. 2008), in the experiment we use a digit-memorizing task to induce varying 

degrees of cognitive load. Half the individual participants in each session were randomly assigned 

to memorize a 1-digit number, the other half to memorize a 5- to 8-digit number. Considering 

subjects may give up memorizing if correct recall become too difficult, we modified the long 8-

digit number in Deck and Jahedi to numbers varying between [5, 6,7,8] digits, with subjects started 

with 5-digit and increased gradually to up to 8-digit given their correct recall in previous periods, 

likewise, the number decreased down to 5 if their previous recall is incorrect. Hence, the length of 

number was different for each participant and solely depended on participant’s performance in 

memorization during the experiment.       

The experiment contains 80 repeated periods. At the beginning of each period, a randomly 

selected number of the predetermined length appeared on their screen for five seconds. They were 

instructed to memorize that number without making notes. The payoff for correctly recalling the 

number was $22. And $0 would be paid if the number recalled was wrong. The payoff for correct 

recall was higher than the average return from all other tasks in this experiment to motive subjects, 

to effectively induce cognitive load.  

Next, subjects were presented with one question randomly drawn from one of the three 

main tasks, which are explained in more detail below: (1) a dots-mixed task, (2) a gamble for small 
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stakes, or (3) an inter-temporal choice. Once the question was completed, participants were asked 

to recall the number they just memorized and enter it in a blank box on the screen. The next screen 

told the participants if their answers were correct or not. Then the second period began, a new digit 

would appear, and participant were presented with another question, again randomly drawn from 

the three tasks.  

In the Dots-Mixed task, participants saw pictures of either a green apple or a lime presented 

on the left or right side of a fixation cross. If they see a green apple, they should press a key on the 

same side as the apple ('Q' for left, 'P' for right). If they see a lime, they should press a key on the 

opposite side ('P' for left, 'Q' for right). The order of the trials was randomized. Each trial started 

with a fixation cross presented for half of one second. Then the apple or lime was presented for 

three-quarters of a second, during which participants needed to respond. The payoff for correctly 

pressing the key was $10. We first implemented this task as subjects use mouse to choose letters 

P or Q, later (starting in session 7) we modified it to using keyboard. In data analysis below, we 

treated analysis before and after session 7 for this task separately.  

In the risk-aversion task, participants chose between two options: one that returned an 

amount of money $Y with certainty, or a lottery that had a 50/50 chance of returning either $0 or 

a larger amount of money $Z. The framing was either in terms of gains or losses. For example, 

one could choose between receiving $8 for sure vs. a 50/50 gamble between winning either $0 or 

$18; or alternatively one could be given an endowment of $16 and face a choice of losing $8 for 

sure or facing a gamble of losing either $0 or $14. In gains gamble, Y and Z were randomly drawn 

with equal probability from the pairwise set {8,18; 9, 20; 10, 22; 11, 24; 12, 26; 13, 28; 14, 30; 15, 

32}. In losses gamble, endowment, Y and Z were randomly drawn with equally probability from 

the set {16, -8, -14; 18, -9, -16; 20, -10, -18; 22, -11, -20; 24, -12, -22; 26, -13, -24; 28, -14, -26; 
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30, -15, -28}. These gambles were designed to secure the same mean return in the losses and gains 

frames in order and fix the difference in mean return as payoff increases. In such a way, it is 

convenient to compare the number of safe choices (certainty amount) within subjects by counts, 

and to compare the change in number of safe choices across treatments.   

Finally, in the time-preference task, participants were asked which they prefer: $15 of 

money today or $X a week from today. X was drawn with equal probability from the set {$15.25, 

$15.50, $15.75, $16, $17, $18, $19, $20}. To reduce the "transaction cost" associated with 

postponed payments, as well as to increase confidence that future payments will arrive, we adapted 

the procedure of Andreoni and Sprenger (2012). Participants were paid $10 in cash for completing 

the experiment and their payoffs from the time-preference task were mailed “today” or “in a week” 

regardless of their choices. Given that our sample pool mainly live on campus or close by, the time 

they received mailed payments were similar and were consistent with their choices.  

After 40 periods, participants viewed either 50 pictures of green scenery or of urban 

scenery, assigned randomly. Specifically, half of the participants who memorized 1-digit numbers 

viewed green pictures, and the other half viewed urban pictures; likewise for those who memorized 

5- to 8-digit numbers. Viewing pictures is an established way to mimic time in green or urban 

places and has similar effects in psychological studies (e.g. Berman et al. 2008, Berto, 2005, Hartig 

et al. 1999). The pictures used were the same as those used in previous work (Hartig and Staats 

2006, Berman et al. 2008). Each picture was displayed for 10 seconds on the screen. Picture-

viewing lasted for 10-12 minutes. At the end of picture viewing, participants were asked to rate on 

a scale of 1 to 5 how much they like the set of pictures (1=dislike, 5=like a lot). Participants were 

not paid for viewing pictures. 
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After viewing pictures, participants repeated the same procedure as before the pictures for 

another 40 periods. Those who memorized a 1-digit number before viewing the pictures continued 

with memorizing a 1-digit number, and those who memorized a longer digit number also continued 

to do so. At the end of the experiment, the computer randomly chose one of the 80 periods for 

which the participant gets paid. It was randomly determined whether the participant was paid by 

the question task or the memorization task in the chosen period.  

This experiment essentially follows the design of Deck and Jahedi (2015), with some minor 

modifications (such as using real rather than hypothetical inter-temporal decisions, and replacing 

mathematical multiplication task with Dots-mixed task), and with the main modification of taking 

time to view pictures at the midway point. In addition, we modified the long 8-digit number in 

Deck and Jahedi to numbers varying between [5, 6,7,8] digits, considering subjects may give up 

memorizing if correct recall become too difficult. Deck and Jahedi found that participants 

burdened with memorizing 8-digit numbers performed more poorly on the mathematical 

multiplication task, showed less tolerance for risk, relative to those assigned a 1-digit number. 

2.3 Results 

Table 20 shows summary statistics of choices before viewing pictures by treatments of 

short and long digits. We can compare the results in Table 20 to summary statistics reported in 

Table 3 of Deck and Jahedi (2015) (hencehorth, D&J). Results for short-digit numbers are similar 

in our case from D&J. Given that our long-digit numbers are shorter than their 8-digit numbers on 

average, the burdens induced in our case should be lower. This is indicated by the percentage of 

correct memorization in the long-digit case in comparison to their correction rates in the 

multiplication task (69.5% vs. 43.3% in D&J). In our case, there is no evidence that response in 

the Dots-mixed task was affected by the burden of memorizing. However, D&J find multiplication 
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task was negatively affected by memorization (71.6% correct response in 1-digit and 55.9% in 8-

digit). Moreover, D&J find less risky choice (more risk aversion) in the 8-digit scenario for both 

gains and losses frames. In our case, similarly, there is more risk averse/safe choices in the gains 

lottery under long-digit numbers, but no evidence of risk aversion in the losses lottery. Lastly, D&J 

show more patience in time choices under 8-digit numbers, while we find less patience in the long-

digit case.  

In D&J, 8-digit numbers decreased the correct response in the multiplication task from 

71.6% for 1-digit numbers to 55.9%. However, in our Dots-mixed task (which replaced the 

multiplication task), the effect of long-digit numbers is relatively minor.  Also, our correct 

memorization in long-digit numbers is much higher than in D&J (69.5% vs. 43.3% in D&J). Our 

initial concern that 8-digit numbers may be too difficult, and that subjects may give up memorizing 

might not have been accurate. Additionally, reduced difficulty may have weakened the load and 

further diluted restorative effects of picture viewing treatments that might otherwise be salient 

under heavier cognitive burden.  

Next, we show results of statistical tests on the effects of pictures and digits. First, Table 

21 shows statistical tests on the effect of the cognitive burden from long-digit numbers, taking the 

short-digit numbers as a baseline. Since we modified the way subjects input their responses in the 

Dots-mixed task at session 7, we run the test for sessions post 7 and for all pooled sessions 

separately for the Dots task. There is weak evidence that the digit load decreased the correct 

response rate in the Dots task after the modification. There also is weak evidence that digit load 

affects risk preference in the gains context. The results raise the possibility that our reduced load 

might not be strong enough to change behavior. And it is unclear why D&J find less choice of the 

early option (more patience) in time choices, while we find less patience with long-digit numbers.  
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Second, we show the average treatment effects of nature pictures, taking urban pictures as 

the control group. Table 22 presents results when pooling different digit-number groups. It shows 

the difference-in-differences, that is, the difference after viewing nature pictures relative to before, 

vs. the same difference after viewing urban pictures. Thus, it nets out any effect from viewing 

pictures generally, or of taking a break from the tasks. The results show some evidence of the 

average treatment effects on risk choices, but otherwise little effect of nature pictures.  Thus, we 

are unable to replicate the effect of nature viewing, using only pictures, previously reported in the 

literature. It may be that picture viewing is not a substitute for time spent in nature.  It may also be 

that nature viewing does not affect these particular tasks. 

Third, we turn to statistical tests of the restorative effects of nature/urban pictures. We 

present summary statistics for before and after picture-viewing treatments, for short and long-digit 

numbers respectively in Table 23. On testing the restorative effects of pictures, we are looking for 

changes of responses in three tasks after picture viewing compared to before picture viewing. To 

account for the order effects and learning effects, which include the fact that subjects can perform 

differently just because they take a short break during picture viewing or because they have 

developed skills in the tasks during the first 40 periods, we take difference-in-differences before 

and after picture viewing between nature and urban pictures.  Thus, we take the triple difference 

comparing the difference-in-differences from before/after and nature/urban with long digits to the 

difference-in-differences with short digits. Results are presented in Table 24.   

In Table 24, we run OLS regression with robust standard errors of each task response on 

treatments and interacting terms. Within the Nature and Urban picture scenarios, the coefficients 

on the interacting term After (picture viewing) times Long (digit numbers) measure the effect of 

picture viewing on task response of treatment group (long-digit), taking the effect on the control 
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group (short-digit) as benchmark. Denote y as outcome, n for nature and u for urban; l for long-

digit and s for short-digit numbers; a for after and b for before picture viewing. The coefficients 

on After×long measure the mean difference measured by: (𝑦𝑢𝑙𝑎 − 𝑦𝑢𝑙𝑏) − (𝑦𝑢𝑠𝑎 − 𝑦𝑢𝑠𝑏) within 

the urban picture scenario, and (𝑦𝑛𝑙𝑎 − 𝑦𝑛𝑙𝑏) − (𝑦𝑛𝑠𝑎 − 𝑦𝑛𝑠𝑏) within nature picture scenario, 

respectively. The triple difference of the restorative effects of nature pictures over urban pictures 

is measured as [(𝑦𝑛𝑙𝑎 − 𝑦𝑛𝑙𝑏) − (𝑦𝑛𝑠𝑎 − 𝑦𝑛𝑠𝑏)] − [(𝑦𝑢𝑙𝑎 − 𝑦𝑢𝑙𝑏) − (𝑦𝑢𝑠𝑎 − 𝑦𝑢𝑠𝑏)]. And the mean 

difference of this triple difference is captured by the coefficients on the interacting term Nature× 

long×After.  

The bottom row of the last three columns in table 24 shows the triple-differences.  We find 

an increase in safe choices from green pictures relative to urban pictures (for long digits relative 

to short digits). We find no evidence of an effect in the other tasks.  Looking at the difference-in-

differences, we see that urban pictures reduced risk safe choice and there is no effect from nature 

pictures. Thus, the significant effects on risk choices in triple difference is mainly driven by urban 

pictures. This finding contradicts our hypothesis that nature pictures reduce cognitive burden while 

urban pictures do not. As cognitive burden leads to risk averse behavior, if nature pictures 

effectively restore the mind and urban pictures do not, we shall see less risk safe choices with 

nature and more risk safe choice with urban. Results in table 24 raise two possibilities. One 

possibility is sample selection. Our sample are all undergraduate students from Georgia State 

University (GSU) and most of them have lived and are living in urban environment. In our sample, 

57.3% of the subjects live on campus (in the downtown Atlanta area) and most of them have lived 

close by the city of Atlanta in the past. Although urban pictures were rated lower than nature 

pictures (see table 23), it may be that the urban settings were more familiar to the GSU sample. 

Another possibility is the reduced cognitive load mentioned earlier. If 5- to 8-digit numbers did 
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not induce sufficient cognitive burden, we are less likely to find evidence of restorative effect of 

nature or urban pictures. In that case, the effect we discovered in urban pictures could be something 

else, not the restorative effects on cognitive burden that we are initially searching for. A final 

possibility is that viewing pictures may not have the same effect as time in actual environments. 

To explore the two possibilities, first, we ran the same experiment with 121 undergraduate 

students from the University of Alabama (AL) at the Interactive Decision Experiment (TIDE) Lab 

in the Culverhouse College of Business at AL. Summary statistics of the AL sample are presented 

in table 25. Table 26 shows the effect of long digits (cognitive load) on behavior before picture 

viewing. Most of the AL sample live on campus of the University of Alabama or close to campus, 

and they are surrounded by green and natural environment. If we find effects from nature but not 

urban with the AL sample, that may indicate existence of sample bias in GSU sample.  

First, the rating of pictures of AL sample is lower than that of the GSU sample, for both 

nature and urban pictures, with nature still preferred to urban. The results in table 26 show that 

working with long-digits did not lower performance in attention-requiring task (Dots-mixed task); 

on the contrary, there were more correct responses in the Dots-mixed task under the long-digit 

scenario. Also, long-digit-induced burden did not lead to risk aversion, it resulted in less safe 

choices and more time later choices (more patience). These results raise the possibility again that 

our 5- to 8-digit numbers did not induce sufficient cognitive burden.  

Second, mean comparison of responses before vs. after reviewing pictures across scenarios 

do not show any evidence of the effect from either nature or urban pictures (diff-in-dff) or from 

the comparison of the two picture sets (triple difference) in AL sample. Results from AL sample 

do not rule out the first possibility that subjects are more likely to be affected by the environment 

that they are more familiar with, and it raises the second possibility that cognitive burden induced 
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was not sufficient. This will be incorporated in our next step to enhance the digit load or consider 

other methodologies to induce cognitive burden more effectively.  

2.4 Conclusion and further steps 

In this study, building upon previous studies in behavioral economics and environmental 

psychology, we examined the restorative effect of viewing nature or urban pictures on cognitive 

burden induced by memorizing numbers, and the consequent affect in choices involving attention-

requiring tasks and risk and time preferences. Our results with GSU students show evidence that 

urban pictures help to reduce burden and decrease risk averse behavior with people who are 

familiar with urban environment.  

However, the results reveal heterogeneity in individuals and groups and raise concerns on 

the level of cognitive burdens induced by designed long-digit numbers. We need to be aware about 

the possibility that the psychological effect from nature may not be universal. People may be more 

likely to relax in environment they are familiar with. On the other hand, the findings from current 

sample are not conclusive. To improve our understanding in the interactions of environment and 

human brains, further studies are required. In our next step, we will extend the length of numbers 

for inducing cognitive burden and reexamine our current conclusion with multiple samples.  

Though surely no panacea for poverty and inequality, this research has the potential to 

extend our understanding in decision making involving risk and time preference under cognitive 

burdens. Insofar as the "environmental justice" literature has established that minorities and the 

poor are exposed to more pollution and less green space (Banzhaf 2012; Heynen et al. 2006), it 

also has the potential to elucidate one factor in economic inequality and the intergenerational 

transmission of disadvantage, in the US and globally. Although this study has not found a plausible 

solution, studies uncovering the myth of environment and human decision making has the potential 
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to open the door to an intriguing pathway to more equitable as well as environmentally sustainable 

development. 
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Table 20 GSU ─ Summary Statistics before Picture Viewing 

Percentage of 

Response 

Pooled 1 

digit 

Pooled 5-

8 Digit 

Before picture viewing 

Digit Memorization 98.1% 69.5% 

 5000 4840 

Correct Dots 54.0% 51.3% 

 2500 2372 

Risk Safe Choice 

(gains) 49.1% 53.9% 

 642 607 

Risk Safe Choice (loss)  73.4% 71.2% 

 661 605 

Time later choice 47.6% 42.0% 

  1197 1256 
 Note: number of observations below percentage of response of each task.   

 

 

 

 

 

Table 21 GSU-Effect of Cognitive Load on Behavior - Pooled data of before picture 

viewing 

 

  

Mean comparison (OLS) with robust standard error 

Dependent 

Variables: 

Correct at 

Dots 

Correct at 

Dots 

Risk safe 

choice 

Risk safe 

choice 

Time later 

choice 

 All sessions 
Sessions 7-

10 
Gains Losses All sessions 

long-digit number -0.027** -0.042** 0.048** -0.021 -0.055** 

t-value [-1.91] [-2.38] [1.70] [-0.85] [-2.78] 
        

Observations 4872 2785 1249 1266 2453 
Notes: Dots-mixed task was enhanced from clicking the mouse to use keyboard at session 7. T-values are in 

Brackets. ** significant at 5%.  
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Table 22 GSU ─ Effect of Pictures - Pooled data of short- and long-digit numbers 

Mean comparison (OLS) with robust standard error 

Dependent 

Variables: 

Correct at 

Dots 

Risk safe 

choice 

Risk safe 

choice 

Time later 

choice 
 All sessions Gains Losses All sessions 

After  0.038 -0.306 -0.312 -0.003 
 [2.65] [-1.06] [-1.14] [-0.12] 

Nature 0.015 0.019 0.044 -0.041 
 [1.07] [0.67] [1.73] [-2.05] 

After*Nature -0.002 0.034 0.089** -0.002 
 [-0.08] [0.83] [2.48] [-0.07] 

Observations 9828 2463 2464 4904 

Notes: T-values are in Brackets. ** significant at 5%. 
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Table 23 GSU ─ Summary Statistics 

Percentage of 

Response 

Nature Pictures Urban Pictures 

Short Digit Long Digit 

Short 

Digit 

Long 

Digit 

Before picture viewing 

Digit Memorization 97.9% 69.3% 98.3% 69.7% 

 2520 2480 2480 2360 

Correct Dots 56.0% 50.9% 52.1% 51.7% 

 1230 1218 1270 1154 

Risk Safe Choice 

(gains) 49.2% 55.4% 48.9% 52.1% 

 327 319 315 288 

Risk Safe Choice 

(loss)  73.5% 76.1% 73.7% 66.4% 

 360 301 301 304 

Time later choice 48.6% 37.2% 46.6% 47.1% 

 603 642 594 614 

After picture viewing 

Rate of Pictures 4.57 4 

Digit Memorization 98.5% 70.2% 98.3% 70.2% 

 2520 2480 2480 2360 

Correct Dots 59.6% 54.5% 55.5% 55.8% 

 1267 1267 1225 1197 

Risk Safe Choice 

(gains) 48.7% 56.3% 50.8% 43.7% 

 308 321 297 288 

Risk Safe Choice 

(loss)  77.8% 0.8% 73.2% 60.2% 

 333 308 291 266 

Time later choice 48.2% 36.1% 44.9% 48.5% 

  606 579 662 604 

Note: rate of pictures, 1=strongly dislike, 5=like a lot. Number of observations 

displayed below response percentage.  
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Table 24 GSU ─ Effect of Picture Viewing on Behavior 

  Nature (diff-in-diff) Urban (diff-in-diff) Triple difference 

Dependent 

Variables: 

Correct 

at Dots 

Risk 

safe 

choice 

Time 

later 

choice 

Correct 

at Dots 

Risk 

safe 

choice 

Time 

later 

choice 

Correct 

at Dots 

Risk 

safe 

choice 

Time 

later 

choice 

After 0.036 0.021 -0.004 0.034 0.009 -0.018 0.035 0.028 -0.018 

  [1.85] [0.79] [-0.14] [1.74] [0.31] [-0.63] [1.74] [0.31] [-0.63] 

Long-digit 
-0.051 0.038 -0.114 -0.004 -0.016 0.004 -0.004 -0.016 0.004 

[-2.54] [1.41] [-4.07] [-0.19] [-0.56] [0.15] [-0.19] [-0.56] [0.15] 

After × long -0.0002 0.017 -0.007 0.007 
-

0.087** 
0.032 0.007 -0.087 0.032 

  [-0.01] [0.46] [-0.18] [0.24] [-2.14] [0.80] [0.24] [-2.14] [0.80] 

Nature          0.039 0.0067 0.019 

           [1.95] [0.25] [0.68] 

Nature× long          -0.047 0.053 -0.118 

           [-1.65] [1.38] [-2.94] 

After x nature          0.002 0.012 0.014 

           [0.07] [0.32] [0.34] 

Nature × 

long × after 

         -0.007 0.104** -0.039 
         [-0.18] [1.89] [0.056] 

               

Constant 0.56 0.62 0.49 0.52 0.61 0.46 0.52 0.61 0.47 

R-squared 0.004 0.003 0.01 0.002 0.006 0.0007 0.003 0.009 0.009 

Obs.  4982 2577 2430 4846 2350 2474 9828 4927 4904 

Notes: T-values are in brackets. ** significant at 5%. We also tried incorporating rate of picture in the 

analysis, nothing changed on treatment effect only that rate of picture is significant.  
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Table 25 Alabama ─ Summary Statistics 

Percentage of 

Response 

Nature Pictures Urban Pictures 

Short Digit 

Long 

Digit Short Digit 

Long 

Digit 

Before picture viewing 

Digit Memorization 97.3% 67.6% 96.9% 72.0% 

 1240 1240 1200 1160 

Correct Dots 67.1% 69.2% 63.6% 71.2% 

 601 602 593 587 

Risk Safe Choice 

(gains) 48.1% 47.7% 51.1% 35.0% 

 162 132 172 163 

Risk Safe Choice (loss)  69.0% 74.1% 71.5% 63.4% 

 158 166 151 134 

Time later choice 49.2% 61.2% 45.1% 52.2% 

 319 340 284 276 

After picture viewing 

Rate of Pictures 3.92 3.02 

Digit Memorization 98.6% 67.7% 98.2% 75.8% 

 1240 1240 1200 1160 

Correct Dots 71.7% 71.7% 69.8% 74.4% 

 640 625 647 579 

Risk Safe Choice 

(gains) 54.9% 51.7% 45.0% 36.1% 

 173 149 131 133 

Risk Safe Choice (loss)  67.1% 67.6% 75.9% 60.0% 

 140 148 166 145 

Time later choice 41.1% 56.3% 43.8% 52.8% 

  287 318 256 303 

Note: rate of pictures, 1=strongly dislike, 5=like a lot 

 

Table 26 Alabama ─ Effect of Cognitive Load on Behavior 

Mean comparison (OLS) with robust standard error 

Dependent 

Variables: 

Correct at 

Dots 

Risk safe 

choice 
Risk safe choice 

Time later 

choice 
  Gains Losses  

long-digit number 0.049** -0.098** -0.009 0.099** 

t-value [2.56] [-2.28] [-0.24] [3.47] 
      

Observations 2383 629 609 1219 

 T-values are in brackets. ** significant at 5%. 
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3 CARBON TAXATION AND INDUCED INNVATION  

3.1 Introduction 

Providing the incentives to stimulate innovation is a key advantage of market-based carbon 

policies over other regulatory policies.  Besides its static cost-effectiveness, which induces firms 

to equalize their marginal costs under current knowledge to the tax level, carbon taxes provide 

incentives to develop cleaner ways of production and novel ways to reduce emissions.  Such 

innovation is crucial in the long run to reduce pollution-control costs (Jung et al. 1996).  Moreover, 

technological innovations that help clean the environment also enable the company or industry to 

thrive and to be more competitive in global markets.  The growth and better environment created 

by energy-related innovation will benefit people from all socioeconomic strata.  That is probably 

why voters of all stripes are broadly supportive of technological innovation that can move us to a 

cleaner energy future (AMS, 2017). 

However, we have very limited empirical evidence about the effect of market-based carbon 

policy on energy-efficient innovation.  Previous studies either provide only theoretical results 

(Weber and Neuhoff, 2010), or focus on one just sector or industry, such as the auto industry 

(Aghion et al., 2016) or the German power sector (Rogge and Hoffmann, 2011).  Since the seminal 

work of Popp (2002) on energy prices, we have learned that higher fuel prices induce firms to 

energy-efficient innovations.  Insofar as a carbon tax will raise energy prices in general (bringing 

them up to their true social costs), I can examine the U.S. energy market and see if policy-induced 

increase in energy prices can stimulate energy-efficient innovations.   

In this paper, I empirically examine the effect of a carbon tax on energy-efficient 

innovations with observed and simulated data.  I intend to answer the following questions.  First, 

given the current quality and stock of energy-related technology, what is the effect of higher energy 
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prices (i.e. the tax) on innovation?  Second, how would energy prices respond to a carbon tax 

implemented at a given point, in a partial equilibrium framework, while holding other market 

factors constant?  And lastly, bridging the two parts, what is the effect of an energy tax on more 

energy-efficient innovation?  The purpose of the paper is to provide empirical evidence on the 

ability of carbon taxes to stimulate or boost energy-efficient innovations and to provide insights 

into such effects at different tax levels.  The findings can also inform general equilibrium studies 

on the overall effects of a carbon tax by providing indicators of the endogenous technological 

change. 

I answer the proposed questions with the following steps.  First, I replicate the work of 

Popp (2002) based on 1970-1994 data. In future work, I will extend this analysis to include more 

recent data.  Following Popp, I specify innovation as a function of expected energy prices, the 

stock of knowledge, and other control factors.  The expected energy prices depend on a weighted 

average of past prices. I also use estimated stocks of knowledge available to investors measure 

technological opportunities.  As in Popp (2002), I use patent citations data to infer the quality of 

patents granted in term of usefulness.  

Second, I simulate energy prices following a hypothetical carbon tax, imposed at a given 

year.   I calculate the change in gross-of-tax fuel prices by adding the direct tax costs to observed 

prices. Specifically, suppose a carbon tax was implemented at a given year, I add proportionate 

cost of the tax to each type of fuel prices given its carbon dioxide emission coefficient from the 

U.S.  Energy Information Administration (EIA).  Then, the expected prices for the post-policy 

period is estimated based on the price updating model of Popp (2002), where the new expected 

prices depend on the post-tax price from the previous period and the price history.   
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Combining the two parts, I estimate the level of innovation that would have had occurred 

if a carbon tax was implemented in the past.  My analysis permits one to explore the effects of 

various levels of carbon taxes.  The results of these estimated effects of a carbon tax on energy-

efficient innovation at different levels show the responsiveness of innovation to carbon taxes, 

especially in the long-run. For instance, given the average knowledge level and a carbon tax of $5 

(per metric ton CO2) implemented in the year of 1971, there would be a threefold increase in the 

number of energy-efficient patents by the end of 1991. However, the incremental effects of raising 

the carbon tax levels are relatively small. The change in the number of energy-efficient patents 

under a carbon tax of $5 is similar to that with a carbon tax of $30.  

3.2 Replication of Popp (2002) 

Below I present the replication of Popp (2002) in two parts. In part one, I reproduce the 

results of productivity estimates for energy-efficient patents. In part two, I re-estimate the 

regression for the effects of energy prices on energy-efficient patents in the U.S.  

3.2.1 Productivity of Patents and Stock of Knowledge 

To study innovation, establishing the existing stock of knowledge on which inventors can 

build is essential. As Popp pointed out, if diminishing returns to research exit, increases in the 

current level of research and development (R&D) may make future R&D more difficult; on the 

other hand, technology accumulation is also important for innovative breakthrough. Hence, when 

we study the effect of energy prices on induced innovation, the stock of knowledge cannot be 

neglected. Also, since patents vary in their contribution and usefulness to future research, good 

estimates of the quality and productivity of patents become very important. Popp used patent 

citation data to construct productivity estimates. The following paragraph from Popp (2002) 

explains why citation data is a good source for this purpose:  
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when a patent is granted, it contains citations to earlier patents that are related to the 

current invention. The citations are placed in the patent after consultations among the 

applicant, his or her patent attorney, and the patent examiner. It is the applicant’s 

responsibility to list any related previous patents of which he or she is aware, and the 

examiner, who specialized in just a few patent classifications, will add other patents to 

the citations as well as subtracting any irrelevant patents cited by the inventor. Patent 

citations narrow the reach of the new patents by placing the patents cited outside the realm 

of the current patent, so it is important that all relevant patents be included in the citations. 

For the same reason, inventors have an incentive to make sure that no unnecessary patents 

are cited. As a result, the previous patents cited by a new patent should be a good indicator 

of previous knowledge that was utilized by the inventor (page 167).  

 

The assumption Popp made was that the citations indicate a flow of knowledge. Also, he 

pointed out that probability of citation is a better indicator of the knowledge carried in a patent 

than a simple count of subsequent citations, because the raw number of citations to any patent 

depends on the total number of patents that follow. Below I replicate the productivity estimates 

using the patent citation data and model from Popp (2002). I begin with an introduction to the data; 

then I present the stages of estimation, and compares my results to Popp.  

Table 27 presents a sample of the citation data used in Popp (2002). Table 28 lists the 12-

energy technology group chosen by Popp due to data availability and quality (more details of data 

choice can be found in Popp, 2002). In table 27, patents granted from 1950 to 1990 were presented 

with the number of citations from 1974 to 1991. YEARAPP shows the citing year (the year patents 

cited earlier patents were applied). Column GROUP contains a character variable with the name 

of each energy technology group. PATAPPS shows the number of patents applications in each 

technology group in the years that citations were counted. Column GROUPNUM has a numeric 

index represents each energy technology group. PCTCTCLS records the probability of citation for 

patents within each group (details of calculation explained below). NGRNTCLS shows the number 

of patents in each technology group that were granted and YEARGRNT is the year those patents 

were granted. NCITES records the number of citations of the cited/citing cohort. As a result, the 



61 

 

data were sorted by cited and citing year into groups of patents that could potentially cite each 

other. According to Popp, cross-groups citations were not considered because spillovers of 

knowledge do not necessarily impact R&D in the energy sector right away, including citations to 

all patents would complicate the induced innovation regression.  

As mentioned above, PCTCTCLS records the probability of citation for patents within each 

group. Denote the granted year of cited patents as CTD, and the application year of citing patents 

as CTG, and denote each technology group as i, and the number of citations of each cohort in each 

technology group as 𝑐𝑖,𝐶𝑇𝐷,𝐶𝑇𝐺. Also, denote the number of potentially cited patents that were 

applied for in year CTD as 𝑛𝑖,𝐶𝑇𝐺. Then the number of potentially citing patents granted in the year 

CTG as 𝑛𝑖,𝐶𝑇𝐺, the probability of citation is written as: 

(1)  𝑝𝑖,𝐶𝑇𝐷,𝐶𝑇𝐺 =
𝑐𝑖,𝐶𝑇𝐷,𝐶𝑇𝐺

(𝑐𝑖,𝐶𝑇𝐷)(𝑛𝑖,𝐶𝑇𝐺)
. 

The probability of citation of each group cohort is modeled as in equation (2) by Popp:  

(2)  𝑝𝑖,𝐶𝑇𝐷,𝐶𝑇𝐺 = 𝛼𝑖𝛼𝑖,𝐶𝑇𝐷𝛼𝐶𝑇𝐺𝑒𝑥𝑝[−𝛽1(𝐶𝑇𝐺 − 𝐶𝑇𝐷)]{1 − 𝑒𝑥𝑝[−𝛽2(𝐶𝑇𝐺 − 𝐶𝑇𝐷)]} +

                                𝜀𝑖,𝐶𝑇𝐷,𝐶𝑇𝐺. 

In equation (2), the first factor 𝛼𝑖 stands for the effect of size of the technology group. It is 

a group fixed effect. The third factor 𝛼𝑖,𝐶𝑇𝐺 captures the effect of frequency with which patents 

applied for in the citing year cite earlier patents. It is a year fixed effects counting for any behavior 

change in citing over time. The second component, 𝛼𝑖,𝐶𝑇𝐷 presents the productivity parameter. 

Higher values of 𝛼𝑖,𝐶𝑇𝐷 imply that the patents are more likely to be cited and probably that the 

knowledge embodied in those patents is particularly useful. The two exponential distributions 

model the flow of knowledge. 𝛽1 represents the rate of decay of knowledge as it become obsolete, 

and 𝛽2 represents the rate at which newly produced knowledge (newly patented innovation) 

diffuses through society.  
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Using the patent citation data from Popp (2002), I re-estimate the productivity of patents 

in each technology group over years in equation (2) with nonlinear least squares. My results are 

presented in Figure1. As in Popp (2002), year 1970 of each technology group was normalized to 

1. The results in Figure 2 are comparable to Figure 3 in Popp (2002).  

In general, my productivity estimates are very close to those in Popp (2002). The 

productivity pattern over time is very consistent with the findings in Popp. However, there are a 

few estimates slightly different from Popp. First, my productivity estimates of solar energy, solar 

batteries, heat exchange, and continuous casting around 1976 are lower than those in Popp. Also, 

my estimates of waste heat after 1988 is slightly lower than that in Popp. These differences may 

be due to the ways that different statistic programs handle nonlinear least squares.6  

Next, knowledge stocks of each energy group are constructed. As in Popp, a stock of 

patents weighted by the productivity estimates are measured as in equation (3).  

(3) 𝐾𝑖,𝑡 = ∑ 𝛼𝑖,𝑠
𝑡
𝑠=0 𝑃𝐴𝑇𝑖,𝑠𝑒𝑥𝑝[−𝛽1(𝑡 − 𝑠)]{1 − 𝑒𝑥𝑝[−𝛽2(𝑡 − 𝑠)]}. 

As specified in equation (3), the accumulated stock of knowledge at a certain time is 

measured by the sum of patents granted in previous years 𝑃𝐴𝑇𝑖,𝑠, weighted by the productivity 

factor 𝛼𝑖,𝑠,  and the time decay factors 𝑒𝑥𝑝[−𝛽1(𝑡 − 𝑠)], and diffusion factors 1 − 𝑒𝑥𝑝[−𝛽2(𝑡 −

𝑠)]. And the unweighted stocks are calculated in the same way without the productivity weights 

𝛼𝑖,𝑠. I present my results of weighted stock of knowledge of each energy technology group over 

years in Figure 3. These results are comparable to Figure 4 in Popp (2002). As in Popp, the stocks 

of year 1970 were normalized to 1. In Figure 3 the dashed lines are unweighted stocks and solid 

lines represent the weighted stocks.  

 
6 I programmed the model in MATLAB and Popp’s coding was in GAUSS. 
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Compared to Figure 4 in Popp (2002), my weighted stocks of knowledge are very 

consistent with those in Popp. However, there are a few mismatches in the unweighted stocks. 

This discrepancy might be due to inclusion/exclusion of certain years.7 The weighted stocks 

contain the information of quality and usefulness of patents, but the unweighted stocks do not. 

Only the weighted stocks of knowledge are used in the second stage below when examining the 

effects of energy prices on patents. 

3.2.2 Energy Prices and Innovation 

After estimating of stock of knowledge, I turn to the analysis of patents and energy prices. 

The model from Popp was specified as follows:  

(4) 𝑙𝑜𝑔(
𝐸𝑃𝐴𝑇𝑖,𝑡

𝑇𝑂𝑇𝑃𝐴𝑇𝑡
) = 𝜑𝑖 + 𝛾(1 − 𝜆)𝑙𝑜𝑔𝑃𝐸,𝑡

∗ + 𝜃𝑙𝑜𝑔𝐾𝑖,𝑡−1  + 𝜂(1 − 𝜆)𝑙𝑜𝑔𝒁𝑖,𝑡
∗ + 𝜆𝑡𝜇0 + 𝜀𝑖𝑡, 

where 𝑃𝐸,𝑡
∗ = 𝑃𝐸,𝑡 + 𝜆𝑃𝐸,𝑡−1 + 𝜆2𝑃𝐸,𝑡−2+. . . +𝜆𝑡−1𝑃𝐸,1, and  

           𝒁𝑖,𝑡
∗ = 𝑍𝑖,𝑡 + 𝜆𝑍𝑖,𝑡−1 + 𝜆2𝑍𝑖,𝑡−2+. . . +𝜆𝑡−1𝑍𝑖,1, with  𝑖 = 1, . . . ,11;  𝑡 = 1, . . . ,20. 

In this model, the dependent variable is 𝐸𝑃𝐴𝑇𝑖,𝑡, the number of successful nongovernment 

U.S. patent applications for technology i in year t, divided by 𝑇𝑂𝑇𝑃𝐴𝑇𝑡,  the total number of 

successful nongovernment U.S. patent applications in the same year. 𝑃𝐸,𝑡
∗  is the expected energy 

price in year t, and it depends on the weighed average of past prices. 𝒁𝑖,𝑡
∗  is a vector that contains 

the expected R&D spending by the U.S. Department of Energy and some other group-specific 

explanatory variables as listed in Popp (2002) (see page 164). As with energy prices, the expected 

values are included in the regression.  

𝐾𝑖,𝑡−1 represents the previous stock of knowledge of group i as estimated in section 2.1. 𝜇0 

stands for the truncation remainder, because an infinite series of past independent variables is not 

 
7 I used all available years (1899-1995) when calculating the unweighted stocks of knowledge. It is 

unclear which years Popp adopted in the paper.  
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possible. By specification, 𝛾(1 − 𝜆)  represents the short-run price elasticity of energy innovation, 

and 𝛾 is the long-run price elasticity. Lagged party of the president and lagged government R&D 

are used as instruments for government R&D. A time trend and lagged values of other exogenous 

variables are used as instruments for the knowledge stock8.  

Using the U.S. patent data from 1971 to 1991 as in Popp (2002), and with the stock 

estimates from section 2.1, I re-estimate the model in equation (4) with Generalized Method of 

Moments (GMM). First, I find the estimates of 𝛾 given the first moment defined by equation (4), 

then substitute the estimated value of 𝛾 into the model and run the linear model to obtain statistical 

t values and confidence intervals for the coefficients.  

My results for equation (4) are presented in table 29. The results from Popp (2002) are 

copied from his table 4 and shown in table 29 for comparison. The magnitude of the effect of 

energy prices is very close to that obtained by Popp and is significant. However, I obtained a higher 

impact of the weighted stock of patents, which is highly significant. To reiterate Popp’s points on 

these results: “the price elasticities found suggest the reaction of the research community to a 

change in policy, such as a carbon tax, will be swift, and that higher prices would quickly lead to 

a shift toward environmentally friendly innovation. In addition, the positive knowledge stock 

coefficients suggest that the usefulness of the existing base of knowledge is important to inventors 

– inventors 'stand on the shoulders' of their predecessors.”  

In this paper, I focus on the short- and long-run effect of energy prices. Given the estimates 

of short-run price elasticity of energy innovation at 0.05 and the long-run price elasticity as 0.569, 

I calculate the increased innovations generated by price change in table 30. From year 𝑡 to 𝑡 + 1, 

 
8 Popp collected 25 variables as potential instruments for knowledge stocks, including macroeconomic 

indicators and technological group specific outputs. It is unclear which of those were applied. In this 

paper, I used all possible variables from Popp’s list. Detailed list is available upon request.  
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suppose price increase by the percentage specified in table 30, correspondingly, the percentage 

change in the ratio of energy-efficient patents (average of the 11 technology groups) to total patents 

in the U.S. was calculated. For example, suppose the total patents at year 𝑡 is 1000, and there are 

50 patents in the energy-efficient sector, the number of patents will increase to 50.76 in the short-

run and 59.34 in the long-run, when energy prices are expected double.  

3.3 Carbon Tax and Energy Prices 

In this section, I construct post-CO2 tax energy prices.  Energy prices in equation (4) were 

obtained from U.S. Energy Information Administration (EIA) as in Popp (2002). The EIA 

constructs average energy prices for major production and consumption sectors by dividing total 

expenditure by total consumption.9 The total average price per year constructed by EIA was used 

in the regression. 

Examining the average energy price levels after a national carbon tax normally requires a 

general equilibrium analysis incorporating the dynamics of demand and supply, in which 

technological innovation is endogenous. Since this paper focuses on the partial equilibrium effect 

of energy prices on innovation, I adopt a less complex and straightforward method by transforming 

the effective price of tax to different type of energy by their CO2 emission coefficients. This 

method is the same as that presented by Hafstead & Picciano (2017).  

I first obtain the CO2 emission coefficient from EIA of different types of fuels as in table 

31. The emission coefficients measure the weight of CO2 released per million British thermal unit 

of fuel. The costs added to each type of fuel can be calculated as coefficients/1000*tax at each tax 

level specified. The hypothetical tax levels are in current dollars, and they are converted by CPI 

 
9 See details at 

https://www.eia.gov/state/seds/data.php?incfile=/state/seds/sep_prices/total/pr_tot_US.html&sid=US 

 



66 

 

when applied to previous years. The tax levels are chosen based on previous carbon tax that has 

been considered or implemented worldwide.10 

Energy types in table 31 are matched with types of the EIA coefficients and prices. The 

categories of the coefficients and prices are fairly consistent, with a few exceptions. For 

Hydrocarbon gas liquids (HGL), I take the average coefficients of propane, butane and flared 

natural gas. And for wood and waste, I take the average coefficients of municipal solid waste and 

waste oil. Then, the added costs from each type of fuel are weighted by the ratio of fuel 

consumption to total consumption. And the aggregate weighted costs are added to the total energy 

price to obtain the post-tax energy prices. Since all energy prices are in 1987 constant dollars, all 

added costs are converted to 1987 constant dollars with the CPI index. Table 32 presents total 

energy price adopted by Popp and the aggregate weighted added costs by different tax levels. All 

prices in table 32 are in 1987 constant dollars except the tax levels in the header.  

While calculating the consumption weights for added costs, electricity consumption was 

not included. In the U.S., electricity is generated by other primary fuels (such as coal, natural gas 

and nuclear energy, and other renewable resources such as hydropower, biomass, wind, 

geothermal and solar power). Since the emission coefficients of related primary fuels are 

incorporated, it would be double counting to add the costs of electricity. Also, Coke is counted for 

imported only (not exported) for simplicity.  

 
10 In 2012, Australia proposed a carbon tax of AUD $23 per tonne of emitted CO2. New Zealand 

proposed NZ $15 per tonne of CO2 in 2005. The European Commission suggested €4 to €30 per tonne of 

CO2 to EU countries. And British Columbia implemented a tax of $10 per tonne of CO2 emission in 

2008.  
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3.4 Carbon Tax and Induced Innovation 

Combining the estimates from section 2 and 3, now I present the results of innovation that 

could be generated by carbon taxes. First, I use the formula of expected prices in equation (4) to 

obtain the expected price when a carbon tax is introduced. For instance, as in table 32, the tax costs 

associated with various tax levels (total added costs) are added to the total energy prices adopted 

by Popp to obtain the post-tax energy prices. Then, expectations of future prices are formed based 

on the post-tax energy prices following the adaptive expectation model as specified in equation 

(4). The assumption is that individuals are likely to take the post-tax prices in the past and put 

weights on them to predict price changes in the future. For instance, if a carbon tax was 

implemented in 1970, how would people in 1980 form expectations of energy prices for 10 years 

later, as of 1990? Given the added costs from the carbon tax in table 32, energy prices observed 

from 1970 to 1980 would have increased by the total added costs. Adding the total added costs of 

various tax levels to the total energy prices used in Popp, I obtain the post-tax energy prices. And 

these post-tax energy prices from 1970-1980 would be the observations to people in 1980. 

According to adaptive expectation theory, these would be the information people took into 

consideration when they speculated future price changes.11 That is, the model assumes people treat 

the tax as a repeated shock, the importance of which they discount especially in the short-run as 

their expectations are that prices will revert to their recent mean.  An alternative would be to first 

predict expectations of the net-of-tax price using the adaptive expectations model, and then add 

 
11 Please note that this method assumes away the dynamics in energy price changes. As people/firms expect 

higher prices and change their consumption/production behavior, the change in supply and demand and the 

technological innovations will all affect future prices. Hence, the price realized may differ from the 

estimated post-tax prices based in historical data.    
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the tax to their expectation.  That approach would assume people treat the tax component of the 

price is a permanent shock. 

Second, I apply the energy innovation price elasticity to obtain the short-run and long-run 

changes in innovation that are triggered by the price change, holding everything else constant. The 

partial effects of additional increase in energy prices from the tax are directly obtained by 

multiplying the price elasticity with any price changes. Results are shown in table 33 and 34 for 

the short-run price elasticity and long-run price elasticity, respectively. I arbitrarily chose the years 

of 1981-1991 to exemplify the long-run effects.  In tables 33 and 34, the second column presents 

the number of patents without tax of the technology group “using waste as fuel” as an example of 

the counterfactual group. The effects of taxes in terms of the number of patents generated can be 

obtained by subtracting the number of patents at tax zero from the number of patents post tax at a 

specific level. Please note the increase in number of patents post tax in table 33 and 34 is for one 

technology group only, the gross effect for all energy-efficient patents is much larger. For instance, 

the total effect for the 11 technology groups in study would be 11 times larger based on the average 

price elasticity estimated.  

The changes in the number of new patents following price changes illustrate the 

effectiveness and significance of the price elasticity of energy innovations. Firstly, the short-run 

effect on one single technology group seems small. This is a result from the small magnitude of 

the tax increasement relative to the energy price levels, especially after multiplying with factors in 

emission coefficients. Secondly, in the long-run, the effect on one technology group becomes more 

obvious. This is consistent with the time that innovations would demand. It is important to 

remember that there are more than 11 energy efficient technology groups and the estimated price 
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elasticity only counted the average effect on the chosen 11 groups due to data availability. Hence, 

the actual gross effect is likely to be much larger than my calculation and it might occur faster.  

3.5 Conclusion and Future Steps 

In the analysis so far, I have replicated the results of Popp (2002) with 1970-1994 data and 

used the estimated coefficients on energy prices to quantify the number of new energy-efficient 

innovation that would be stimulated by various levels of carbon taxes. The results in this paper 

only consider the partial-equilibrium causal effects of carbon taxes and do not analyze the dynamic 

changes in demand and supply when examining the price increase post a carbon tax. Still, the 

results are informative for policy makers and researchers working on the dynamic effects of carbon 

taxes where induced innovations play a key role in determining the future costs of emission 

abatements and energy consumption. And it provides a useful starting point for future analysis 

under a general-equilibrium framework.  

The next step is to update the estimates with more recent patent data and to obtain 

innovation changes for recent and future periods. First, I will update the estimates of technology 

stock and price coefficients with up-to-data patents and prices data. Second, I will conduct out-of-

sample simulation of expected energy prices for future years with an ARMA (Auto-regressive 

moving-average) time series model based on historical prices. The ARMA model regresses prices 

on its own lagged values and adjusts the average level of prices overtime to minimize the remaining 

noise.  It assumes that future energy prices would largely depend on past prices.  The model and 

its variation have been widely used in predicting electricity and crude oil prices (Cuaresma et al., 

2004, Liu and Shi, 2013). Lastly, I will quantify the innovation that would emerge if a carbon tax 

is imposed now and in the future. The results can be used as a reference points for predicting 

potential innovation benefits of carbon tax policies.  
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Table 27 Patents Citation Data (Popp 2002) 

Obs 
YEAR

APP 
GROUP 

PAT

APPS 

GROU

PNUM 
PCTCTCLS 

YEARGR

NT 

NGRNTC

LS 

NCIT

ES 

1 1974 coalliq 63 1 0 1950 2 0 

2 1975 coalliq 58 1 0 1950 2 0 

3 1976 coalliq 115 1 0 1950 2 0 

4 1977 coalliq 106 1 0 1950 2 0 

… … … … … … … … … 

580 1989 coalliq 29 1 0.007 1988 26 5 

581 1990 coalliq 23 1 0.012 1988 26 7 

582 1991 coalliq 17 1 0.000 1988 26 0 

583 1990 coalliq 23 1 0.011 1989 38 10 

584 1991 coalliq 17 1 0.008 1989 38 5 

585 1991 coalliq 17 1 0.009 1990 20 3 

586 1974 coalgas 51 2 0 1950 2 0 

587 1975 coalgas 49 2 0 1950 2 0 

588 1976 coalgas 65 2 0 1950 2 0 

589 1977 coalgas 63 2 0 1950 2 0 

590 1978 coalgas 70 2 0 1950 2 0 

591 1979 coalgas 53 2 0 1950 2 0 

… … … … … … … … … 

6435 1991 contcast 107 11 0 1990 164 11 

 

Table 28 Energy Groups in Popp (2002) 

Supply Technology   

coalliq Coal liquefaction: producing liquid fuels 

coalgas Coal gasification: producing gaseous fuels 

solareng Solar energy 

solrbtry Batteries for storing solar energy 

fuelcell Fuel cells 

wstfuel Using waste as fuel 

Demand Technologies   

wstheat Recovery of waste heat for energy 

heatx165 Heat Exchange, general 

heatpump Heat Pumps 

stireng Stirling engines 

contcast Continuous casting processing of metal 
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Table 29 Induced Innovation Regression Results 

Independent Variable 

Weighted 

Stock of 

Patents 

Popp 

(2002) 

Constant -2.120 -7.311 

  [-37.783] [-46.625] 

Energy Prices: 𝛾(1 − 𝜆)   0.050 0.060 

  [3.653] [2.852] 

Lagged knowledge stock: 𝜃 2.044 0.838 

  [31.16] [72.3231] 

Government R&D: 𝜂(1 − 𝜆) -0.002 -0.009 

  [-0.403] [-1.741] 

Truncation error: 𝜇0 -1.027 -1.203 

  [-7.795] [-5.054] 

 𝜆 0.912 0.829 

long-run energy elasticity: 𝛾 0.569 0.354 

Long-run government R&D elasticity: 𝜂 -0.023 -0.025 

    

Number of technology groups 11 11 

Note: T values are in parentheses.   

 

 

Table 30 Price Increase and Innovation 

Percentage increase in expected 

price 5% 10% 15% 20% 50% 100% 

       

Short-run             

Percentage change in patents ratio 
0.11% 0.21% 0.30% 0.40% 0.88% 1.52% 

At total PAT=1000, ratio=5%      

# of PAT post price increase 50.05 50.10 50.15 50.20 50.44 50.76 

       

Long-run             

Percentage change in patents ratio 
1.21% 2.38% 3.51% 4.61% 10.54% 18.68% 

At total PAT=1000, ratio=5%      

# of PAT post price increase 50.61 51.19 51.76 52.30 55.27 59.34 
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Table 31  Fuel Emissions and Tax Costs 

Energy Type 
CO2 

coefficient 

Cost 

added 

w/tax=$5 

tax=$10 tax=$15 tax=$20 tax=$25 tax=$30 

Coal (all type) 95.35 $0.48 $0.95  $1.43  $1.91  $2.38 $2.86 

Coke 114.12 $0.57 $1.14  $1.71  $2.28  $2.85 $3.42 

Natural Gas 53.07 $0.27 $0.53  $0.80  $1.06  $1.33 $1.59 

Home Heating and 

Diesel Fuel (Distillate) 
73.16 $0.37 $0.73  $1.10  $1.46  $1.83 $2.19 

HGL 50.00 $0.25 $0.50  $0.75  $1.00  $1.25 $1.50 

Jet Fuel 70.90 $0.35 $0.71  $1.06  $1.42  $1.77 $2.13 

Motor Gasoline 71.30 $0.36 $0.71  $1.07  $1.43  $1.78 $2.14 

Residual Fuel Oil 78.79 $0.39 $0.79  $1.18  $1.58  $1.97 $2.36 

Petroleum other 72.62 $0.36 $0.73  $1.09  $1.45  $1.82 $2.18 

Nuclear Fuel 0.00 $0.00 $0.00  $0.00  $0.00  $0.00 $0.00 

Wood and Waste 68.47 $0.34 $0.68  $1.03  $1.37  $1.71 $2.05 
Note: CO2 coefficient is measured in kilogram CO2 per million btu of fuel. Tax price is per metric ton CO2 in 

current (2018) dollars. CO2 coefficients are estimates from U.S. Energy Information Administration. Coefficients 

vary slightly across time but the difference since 1970 is minor.  
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Table 32 Energy Groups in Popp (2002) 

year 

Total 

Energy 

Price 

(Popp) 

TTL. Added 

Cost 

w/tax=$5 

tax=$10 tax=$15 tax=$20 tax=$25 tax=$30 

1970 4.56 0.16 0.32 0.48 0.64 0.79 0.96 

1971 4.62 0.16 0.32 0.48 0.63 0.78 0.95 

1972 4.62 0.16 0.32 0.47 0.63 0.78 0.95 

1973 4.81 0.16 0.32 0.48 0.63 0.79 0.95 

1974 6.21 0.16 0.31 0.47 0.63 0.78 0.95 

1975 6.57 0.16 0.31 0.47 0.63 0.78 0.94 

1976 6.68 0.16 0.31 0.47 0.63 0.78 0.94 

1977 6.97 0.16 0.31 0.47 0.63 0.78 0.94 

1978 6.94 0.16 0.31 0.47 0.62 0.77 0.94 

1979 7.81 0.16 0.31 0.47 0.63 0.78 0.94 

1980 9.39 0.16 0.31 0.47 0.63 0.78 0.94 

1981 10.09 0.16 0.31 0.47 0.63 0.78 0.94 

1982 10.05 0.16 0.31 0.47 0.62 0.77 0.94 

1983 9.67 0.16 0.31 0.47 0.63 0.78 0.94 

1984 9.28 0.16 0.31 0.47 0.63 0.78 0.94 

1985 8.97 0.16 0.31 0.47 0.62 0.78 0.93 

1986 7.62 0.16 0.31 0.47 0.62 0.77 0.93 

1987 7.37 0.16 0.31 0.47 0.62 0.77 0.93 

1988 7.03 0.15 0.31 0.46 0.62 0.77 0.92 

1989 7.08 0.15 0.31 0.46 0.61 0.76 0.92 

1990 7.37 0.15 0.30 0.46 0.61 0.76 0.91 

1991 7.06 0.15 0.30 0.45 0.60 0.75 0.91 
Note: Total energy price (Popp) are observed historical energy price without carbon tax in the U.S. 

market. Level of taxes are in current dollars. Other prices and costs are in constant 1987 dollars. 
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Table 33 Carbon Tax and Innovation (short-run price elasticity) 

Carbon tax per 

metric ton CO2  
$0  $5  $10  $15  $20  $25  $30  

Year 

 # of 

PAT 

(waste 

fuel) 

 # of PAT 

post tax 
# # # # # 

End of 1971 53.0 53.1 53.2 53.2 53.3 53.4 53.5 

1972 52.0 52.1 52.2 52.2 52.3 52.4 52.5 

1973 52.0 52.1 52.2 52.2 52.3 52.4 52.5 

1974 49.0 49.1 49.2 49.2 49.3 49.4 49.4 

1975 29.0 29.1 29.1 29.2 29.3 29.3 29.4 

1976 32.0 32.1 32.1 32.2 32.3 32.3 32.4 

1977 34.0 34.1 34.1 34.2 34.3 34.3 34.4 

1978 41.0 41.1 41.1 41.2 41.2 41.3 41.4 

1979 40.0 40.1 40.1 40.2 40.2 40.3 40.3 

1980 50.0 50.1 50.1 50.2 50.2 50.3 50.3 

1981 44.0 44.1 44.1 44.2 44.2 44.3 44.3 

1982 58.0 58.1 58.1 58.1 58.2 58.2 58.3 

1983 50.0 50.1 50.1 50.1 50.2 50.2 50.3 

1984 44.0 44.0 44.1 44.1 44.2 44.2 44.3 

1985 46.0 46.1 46.1 46.2 46.2 46.2 46.3 

1986 61.0 61.1 61.1 61.2 61.2 61.2 61.3 

1987 83.1 83.1 83.2 83.2 83.3 83.3 83.3 

1988 69.1 69.2 69.2 69.3 69.3 69.4 69.4 

1989 84.5 84.5 84.6 84.6 84.7 84.7 84.8 

1990 102.4 102.5 102.5 102.6 102.6 102.6 102.7 

1991 97.5 97.6 97.6 97.7 97.7 97.8 97.8 

Note: The column of tax=$0 contains number of patents for technology group waste fuel.  
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Table 34 Carbon Tax and Innovation (long-run price elasticity) 

Carbon tax per 

metric ton CO2  
$0  $5  $10  $15  $20  $25  $30  

Year 
 # of 

PAT 

 # of 

PAT post 

tax 

# # # # # 

1987 83.1 83.6 84.2 84.7 85.3 85.8 86.3 

1988 69.1 69.7 70.2 70.8 71.3 71.9 72.4 

1989 84.5 85.1 85.6 86.2 86.7 87.2 87.8 

1990 102.4 103.0 103.5 104.1 104.6 105.2 105.7 

1991 97.5 98.1 98.7 99.2 99.8 100.3 100.9 
Note: The column of tax=$0 contains number of patents for technology group waste fuel.  
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Figure 2 Estimated Productivity of Patents 
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Figure 3 Estimated Productivity of Patents-continued 
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Figure 4 Stock of Knowledge 
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Figure 5 Stock of Knowledge-continued 
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APPENDIX  

The following statements on a panel data set 𝒪 = {𝑝𝑡𝐹𝑡, (𝑞𝑖,𝑡)
𝑖𝜖1…𝑁

}
𝑡𝜖1…𝑇

 are equivalent: 

(A) The set 𝒪 is consistent with the tragedy of the commons with concave production function 

and convex cost function. 

(B) There exists a set of nonnegative numbers {𝐶𝑖,𝑡
′ }

𝑖𝜖1…𝑁
 that satisfy the linear program: 

  (i)  
𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡

′

𝑞𝑖,𝑡
 =  

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑗,𝑡
′

𝑞𝑗,𝑡
 ≥ 0  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (ii) (𝑞𝑖,𝑡 −  𝑞𝑖,𝑡′)(𝐶𝑖,𝑡
′ −  𝐶𝑖,𝑡′

′ ) ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶𝑖,𝑡
′  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

Proof 

Our proof is straightforward and follows the outline of Carvajal et al. (2013).  To see (A) 

implies (B), suppose that the data are rationalized with production {𝑝𝑡𝐹𝑡, 𝑞𝑖,𝑡}
𝑖𝜖1…𝑁,𝑡𝜖1…𝑇

. Then the 

first order condition guarantees the existence of {𝐶′𝑖,𝑡}
𝑖𝜖1…𝑁

 that satisfy the common ratio property 

(i). Given convexity of costs, the co-monotone property (ii) is satisfied as well.  

To see (B) implies (A), we first show that at observation t, when (i) is satisfied, there exists 

a concave production function 𝐹𝑡 such that 𝐹̅𝑡(𝑄𝑡) = 𝐹𝑡, and with each firm having the cost 

function 𝐶𝑖̅, {𝑞𝑖,𝑡}
𝑖𝜖1…𝑁,𝑡𝜖1…𝑇

, which constitutes behavior consistent with the Tragedyofthe–

Commons model.  We define 𝐹̅𝑡(𝑄𝑡) by 𝑝𝑡𝐹̅𝑡
′(𝑄𝑡) =

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
− 𝑏𝑡 and let 𝑏𝑡 =

𝑝𝑡F𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡
′

𝑞𝑖,𝑡
.  A 

concave function will satisfy the definition here since the average return is larger than the marginal 

return.  Firm 𝑖’s decision is to choose 𝑞𝑖,𝑡 that maximizes profit {
𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹𝑡(𝑄𝑡)} − 𝐶𝑖,𝑡

′ ; this 

function is concave, so the input level is optimal if and only if it obeys the first-order condition.  

Apply 𝐹̅𝑡(𝑄𝑡) defined above, we have 
𝑞𝑖,𝑡

𝑄𝑡
∗ 𝑝𝑡𝐹̅𝑡

′(𝑄𝑡) + (1 −  
𝑞𝑖,𝑡

𝑄𝑡
) ∗

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
− 𝐶𝑖,𝑡

′ =
𝑞𝑖,𝑡

𝑄𝑡
(

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
−

𝑝𝑡𝐹𝑡(𝑄𝑡)−𝑄𝑡𝐶𝑖,𝑡
′

𝑞𝑖,𝑡
) + (1 − 

𝑞𝑖,𝑡

𝑄𝑡
) ∗

𝑝𝑡𝐹𝑡(𝑄𝑡)

𝑄𝑡
− 𝐶𝑖,𝑡

′ = 0.  Hence, 𝑞𝑖,𝑡 is the profit-maximizing input of firm 

𝑖 at time 𝑡. 
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Second, we show that if for some firm 𝑖 there are positive scalars {𝐶𝑖,𝑡
′ }

𝑇𝜖1…𝑇
 that are 

increasing with 𝑞𝑖,𝑡, then there exists a convex cost function 𝐶𝑖̅ such that 𝐶𝑖,𝑡
′ 𝜖𝐶𝑖̅(𝑞𝑖,𝑡).  Proof of 

this part is the same as in Lemma 2 in Carvajal et al. (2013).   

Using the two conclusions above, we see that constraint (i) confirms that the choice of 

input 𝑞𝑖,𝑡 is the optimal choice that satisfies the first order condition of the TOC model.  And 

constraints (i) and (ii) ensure that marginal costs revealed from the linear program is the taken 

from a time-invariant convex cost function.  Constraint (iii) ensures the nonnegativity of 

marginal costs.  Hence, satisfying the three properties in the linear program implies consistency 

with the TOC model. However, given the nonlinearity in production function, we do not 

guarantee a unique TOC equilibrium as in Carvajal et al. (2013), that means when data passes the 

linear program, it is not guaranteed that data was generated under a TOC regime.  
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