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IN-SITU DATA ANALYTICS IN CYBER-PHYSICAL SYSTEMS

by

LIANG ZHAO

Under the Direction of WenZhan Song, PhD

ABSTRACT

Cyber-Physical System (CPS) is an engineered system in which sensing, networking, and

computing are tightly coupled with the control of the physical entities. To enable security, scala-

bility and resiliency, new data analytics methodologies are required for computing, monitoring and

optimization in CPS. This work investigates the data analytics related challenges in CPS through

two study cases: Smart Grid and Seismic Imaging System.

For smart grid, this work provides a complete solution for system management based on novel

in-situ data analytics designs. We first propose methodologies for two important tasks of power



system monitoring: grid topology change and power-line outage detection. To address the issue of

low measurement redundancy in topology identification, particularly in the low-level distribution

network, we develop a maximum a posterior based mechanism, which is capable of embedding

prior information on the breakers status to enhance the identification accuracy. In power-line out-

age detection, existing approaches suffer from high computational complexity and security issues

raised from centralized implementation. Instead, this work presents a distributed data analytics

framework, which carries out in-network processing and invokes low computational complexity,

requiring only simple matrix-vector multiplications. To complete the system functionality, we also

propose a new power grid restoration strategy involving data analytics for topology reconfiguration

and resource planning after faults or changes.

In seismic imaging system, we develop several innovative in-situ seismic imaging schemes

in which each sensor node computes the tomography based on its partial information and through

gossip with local neighbors. The seismic data are generated in a distributed fashion originally.

Different from the conventional approach involving data collection and then processing in order,

our proposed in-situ data computing methodology is much more efficient. The underlying mech-

anisms avoid the bottleneck problem on bandwidth since all the data are processed distributed in

nature and only limited decisional information is communicated. Furthermore, the proposed al-

gorithms can deliver quicker insights than the state-of-arts in seismic imaging. Hence they are

more promising solutions for real-time in-situ data analytics, which is highly demanded in disaster

monitoring related applications. Through extensive experiments, we demonstrate that the proposed

data computing methods are able to achieve near-optimal high quality seismic tomography, retain

low communication cost, and provide real-time seismic data analytics.



INDEX WORDS: Cyber-Physical System, Smart Grid, Seismic Imaging System, In-Network
Processing, In-Situ Analytics, Distributed Computing.
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PART 1

INTRODUCTION

In this chapter we introduce the main background of the two topics in the dissertation: the

Smart Grid and the Seismic Imaging System.

1.1 Smart Grid

The evolving modern Smart Grid is devoted to leverage the information and communications

technology to enrich the efficiency, reliability and sustainability of the operation of the energy. Pha-

sor measurement units (PMUs) directly obtain the complex voltages and currents; Smart meters

implemented between the end-users and the distribution network; Network processors are being

equipped over the grid. Those ample measurements of data offer much more powerful potential

monitoring capabilities than traditional grid. However, the way of data communication, computa-

tion and analytics becomes a key challenge. An overview of smart grid architecture is illustrated

in Figure 1.1.

Figure (1.1) Overview of smart grid achitecture [1].
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Three important system tasks are considered in this work: topology identification, power-line

outage detection, and grid reconfiguration. A important feature of smart grid is the flexibility in

network topology. Possible bi-direction energy flows, allowing for various distributed generation

from photovoltaic panels, wind turbines, and other sources [3]. In this situation, an accurate iden-

tification of grid topology becomes an imperative task since correct topology information consists

of a basis for various system analyse functions such as contingency analysis aiming to improve

the reliability of the system [4]. Similar as the topology identification, power-line outage detection

is also a core functionality. However, this task is extremely difficult, due to its vast scale and the

use of distributed energy generation and storage. Thus, a smart power-line outage detection calls

for a framework integrating distributed computing, communication and analytics in which local

actions can be coordinated for the effective protection of the power grid as a whole. Once the fault

has been found and cleared, a strategy to reconfigure the grid is required. The capability of self-

reconfiguration is a leading role [6] in smart grid development. It enables smart grids to redirect

their power flows in an appropriate way, e.g., via shedding loads, and other control measures, to

achieve certain desirable objectives. Considering the great penetration of renewable energy sources

(RES) in smart microgrids, the self-reconfiguration of smart microgirds needs a careful design to

address the volatility in the RES generations [7], [8].

1.2 Seismic Imaging System

Besides the smart grid study case, this work also investigates another example of CPS: seismic

imaging system. Current seismic imaging systems use sensors placed on earth surface to acquire

information of the compressional waves generated by underground seismic activities. The acquired

data are then used to derive the internal velocity structure of the earth subsurface. However, they

are prone to several bottleneck problems. First, for example, in previous volcano monitoring inves-

tigations, the number of stations (sensors) is up to 20 due to deployment cost and other issues. The

resulting low station coverage inevitably becomes a main constraint on our capability of obtaining

high-resolution tomography model [9]. Second, even if thousands of nodes can be incorporated

(e.g. petroleum exploration systems), the huge volume of raw seismic data has to be collected into
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a central place for post-processing. The underlying time-consuming process prohibits its poten-

tial for effective disaster warning in which the time scale can be tens of minutes. We adopt the

travel-time based seismic tomography in the presenting work to reveal the velocity model inside

the volcano [82]. The basic procedure of seismic tomography is illustrated in Figure 1.2 involving

three steps.

Event Location Ray Tracing Tomography Inversion

Sensor Node

Seismic Rays

Estimated Magma Area

Blocks on Ray Path
Magma

Estimated Event Location

Earthquake Event

(a) (b) (c)

Figure (1.2) Procedure of Seismic Tomography

The first step is “Event Location”, which means we need estimate the where and when certain

seismic event occurs. (Figure 1.2(a)). The second step is named “Ray tracing”. This process is

to estimate the rays coming from the the event location to the receivers. The traces of the rays

are affected by the velocity structures of the materials they travel along. In other words, the rays

contain information of the internal velocity model that we are interested in (see Figure 1.2(b) as a

conceptual view of this process). The final step is “Tomographic Inversion”. It basically utilizes

the traced ray paths to image a 3-D tomography of the velocity model within the volcano (Figure

1.2(c)). In this thesis, we focus on the tomographic inversion process, which can be formulated

as a large linear inversion problem. However, it is highly demanded to have a distributed data

analytics platform to fill the gap between the “centralized” nature of traditional seismic tomography

computing and the “distributed” feature of sensor networks.

1.3 Our Approach

From the previous two subsections, we realize that a paradigm-shifting data computing plat-

form is highly demanded to fit the needs of implementing smart power grid and new seismic

imaging system. Our approach is named in-situ data analytics in which in-network computing
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Figure (1.3) Big Data Analytics in Distributed Networks. Left: traditional approach. Right: in-situ
computing.

is performed to deliver the insights on the interested quantity (See the right part of Figure 1.3).

Traditional approach for data analytics in distributed networks is data collection/aggregation then

computing, which is slow and expensive. In contrast, the proposed in-situ computing platform is

more efficient and enables real-time data analytics. In the two study cases, we model their chal-

lenges as computing problems in distributed systems and develop various algorithms based on the

idea of in-situ data analytics.

The rest of thesis is organized as follows. In part 2, we present our in-situ data analytics

approach for topology identification, power-line outage detection, and grid reconfiguration in smart

grid, respectively. Next in part 3, we propose several decentralized algorithms for in-situ seismic

imaging system. Finally in part 4 we conclude this thesis.
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PART 2

IN-SITU DATA ANALYTICS IN SMART GRID

In this part, we apply in-situ data analytics approach to address three important challenges in

smart grid. In the first stage, we consider two tasks: topology identification and power-line outage

detection, which are imperatives for the functionality of fault/change detection in the system. In

the second stage, we investigate the problem of designing grid reconfiguration strategy, especially

after certain faults/changes have been detected and cleared. The workflow is depicted in Figure

2.1.

Figure (2.1) Workflow of the smart grid study case.

2.1 Topology Identification with Limited Measurements

2.1.1 Related Work

In grid management, a critical task of a system operator is to take quick actions to restore con-

tinuity of electric power supply following forced outages. However, many existing outage man-

agement system (OMS) are still based on the process of call aggregation, which can take from tens

of minutes to hours to identify the culprit device. Thus, advanced smart grid systems call for au-
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tomatic detection schemes, which will dramatically improve the quality of service. Unfortunately,

it is said that in particular the distribution networks today may still have only few measurements

at the substation. On the other hand, the number of circuit breakers is typically larger than the

available measurements [10].

In this thesis, we devise a novel framework capable of successfully infer the true network

topology with high probability under limited measurements. Based on the prior information of

circuit breaker status, the topology identification can be posed as a maximum a posterior (MAP)

estimation problem. Since the formulated MAP is a NP-hard problem which is very difficult to

solve exactly, we adopt semidefinite programming (SDP) relaxation to obtain an approximated

easier optimization problem. By exploiting compressive sensing advances, the objective function

of the aforementioned problem is regularized by the `1-norm of selected vectors, which explores

sparsity of the change of status of circuit breakers.

Master 

SCADA

Substation

Remote 

Terminal Unit

Analog 

Measurements

Digital 

Measurements

Substation

Remote 

Terminal Unit

Analog 

Measurements

Digital 

Measurements

Figure (2.2) SCADA Topology. Analog measurements can be from phasor measurement units
(PMUs), power flow meters or power injection meters, etc. Digital measurements contain readings
from circuit breaker monitors installed in the substation.

2.1.2 Problem Formulation

In this section we describe the model in detail, and the basic maximum a posteriori probability

(MAP) method for estimating the topology pattern.
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Topology Pattern Model and Prior Distribution We consider a system with N circuit

breakers. We represent a topology pattern, i.e., as a vector s ∈ {0, 1}N , where si = 1 means that

circuit breaker i is open and si = 0 means breaker is closed. Since circuit breaker is normally-closed

or open (circuit breaker operates rarely), leveraging this prior knowledge will improve the accuracy

of topology identification from an information theory perspective [51]. For instance, consider the

case that the probability of a circuit breaker is open equals to 0.5, then if no measurement is

available, we can only guess the status of breaker by tossing a coin. However, in another case

when the probability of a breaker is open equals to 0.99, we can always decide the breaker is open

with a very high accuracy even without any measurement. In other words, the prior knowledge

in the later case is more “informative” than the first case. We assume that circuit breakers act

independently, and the open state for circuit breaker i occurs with known probability pi based on

the historical data. That is:

p(si) =


pi si = 1;

1 − pi si = 0;
(2.1)

Thus, the (prior) probability of topology pattern s occurring is:

p(s) =

N∏
i=1

psi
i (1 − pi)1−si (2.2)

Measurement Model We combine two types of measurements: Analog measurements and

Digital measurements to infer the true topology and state of the system. za denotes the vector

of analog measurements including readings from PMUs, power flow meters and power injection

meters. zd represents the vector of digital measurements from circuit breaker monitors with val-

ues 1 or 0 indicating the open/closed status of the breaker. We will explain the relation between

state variables and analog measurements, circuit breaker status and digital measurements and the

constraint between state variables and breaker status.

We define the state of the system x ∈ RK as the voltage phasor angles in all the K buses

(substations) and assume M analog measurements are available. These measurements depend on
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the state x by the following linear model:

za = Hax + v (2.3)

where Ha ∈ R
M×K is the analog measurement matrix. v is the measurement noise vector which

is assumed to be Gaussian distributed, i.e., v ∼ N(0,Λ) and each element of v is independent of

each other and x, which implies that the covariance matrix Λ is diagonal. Explicitly, the diagonal

element Λii equals to σ2 for i = 1, 2, . . . ,M.

Similar as the analog measurement model, we assume L digital measurements can be ob-

tained, thus, the equation relating the digital measurements to the breaker status s can be denoted

as follows.

zd = Hds (2.4)

where zd ∈ {0, 1}L, Hd ∈ R
L×N and each row of Hd is with values of zeros except one entry of

1 that corresponds to the measurement in that breaker. We assume digital measurements zd are

communicated through reliable channels which implies (2.4) is a noise-free model. In network

topology identification scenario which we focus on in this paper, the above set of linear equations

is typically assumed to be under-determined (L < N), which means that the number of digital

measurements is smaller than the number of circuit breakers.

Since both the analog and digital measurements will be used to identify the topology with

the state estimation stage, the relationship between state x and topology pattern s can be modeled

in the following way [52]: Define the switch-bus incident matrix A ∈ RL×K with the properties

of: 1) its i-th row aT
i corresponds to the (m, n) switch between buses m and n with m < n; 2) the

m-th (n-th) entry of the vector aT
i equals to +1(−1) and zero elsewhere. When the (m, n) switch is

closed, the voltage phasor angle difference between its two ends is zero, and this can be expressed

as: aT
i x = 0.
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Posterior Probability Let p(x, s|za, zd) to be the posterior probability of state x and topol-

ogy pattern s given the measurement za and zd. Based on Bayes’ rule we can have:

p(x, s|za, zd) =
p(za, zd|x, s)p(x, s)

p(za, zd)

∝ p(za, zd|x, s)p(x, s)

∝ p(za, zd, x, s)

(2.5)

where p(za, zd, x, s) is the joint probability of (za, zd, x, s). We assume that they are mutually inde-

pendent, and by using (2.2) and (2.3) we can derive:

p(za, zd, x, s) = p(za)p(s)p(zd)p(x)

= N(Hax,Λ)
N∏

i=1

psi
i (1 − pi)1−si p(zd)p(x)

(2.6)

whereN(Hax,Λ) means the probability of analog measurements za. It is Gaussian distributed with

mean Hax and covariance matrix Λ. Note that (2.4) is noise-free, thus p(zd) = 1. With respect to

p(x), we assume no “informative” prior information on x is available. In consequence, x can be

assumed uniform distributed which implies p(x) = c, where c is a constant. Then (2.6) is simplified

as:

p(za, zd, x, s) = cN(Hax,Λ)
N∏

i=1

psi
i (1 − pi)1−si (2.7)

In next section, we will see “prior information” on x will not influence our MAP estimation under

this setting.

MAP Estimation The maximum a posteriori estimation can be rewritten as:

max p(za, zd, x, s) = max
x,s
N(Hax,Λ)

N∏
i=1

psi
i (1 − pi)1−si (2.8)
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Define the log-loss function as the negative log probability lza,zd (x, s) = − log p(za, zd, x, s), then it

is equivalent to reformulate the objective as follows:

min
x,s

lza,zd (x, s) = − log
(
N(Hax,Λ)

N∏
i=1

psi
i (1 − pi)1−si

)
= − log

(
N(Hax,Λ)

)
− log

( N∏
i=1

psi
i (1 − pi)1−si

)
=

1
2

(za −Hax)TΛ−1(za −Hax) + bT s + C

=
1

2σ2 (za −Hax)T (za −Hax) + bT s + C

=
1

2σ2 xT HT
a Hax − 2zT

a Hax + bT s + C′

(2.9)

where Λ is replaced by σ2I, and b = [b1,b2, . . . ,bN] with bi = log
(
(1 − pi)/pi

)
. C and C′ are

constants that are independent of the optimization variables x and s.

To ease the presentation, we define:

Q = 1
2σ2 HT

a Ha

qT = −2zT
a Ha (2.10)

Then (2.9) can be reposed as:

minimize
x,s

xT Qx + qT x + bT s (2.11)

Now we add the aforementioned constraints of the problem into (2.11), the complete MAP estima-

tion problem becomes as follows:

minimize
x,s

xT Qx + qT x + bT s

subject to zd = Hds

Acx = 0

s ∈ {0, 1}N

(2.12)
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where Ac is a sub-matrix of A (switch-bus matrix) corresponding to the set of circuit breakers

which are measured to be in the closed status. Notice that (2.12) is a standard form of mixed 0 − 1

integer quadratic optimization problem which is known to be NP-hard. We can analyze why (2.12)

is very hard to solve from an optimization point of view. From the definition of Ha, it can be

deduced that matrix Q is symmetric positive semidefinite. Consequently, the objective of (2.12) is

a convex quadratic function of x and s. In other words, the difficulty of this problem results from

the constraint. The constraint s ∈ {0, 1}N is non-convex which makes (2.12) to be a non-convex

problem as a whole.

We present in this section a heuristic for solving (2.12) approximately. Our method is based on

relaxing the original problem (2.12) into an easier convex program which can be solved efficiently

and globally.

2.1.3 SDP Relaxation of the MAP Problem

In this section, we describe a type of convex relaxation: SDP relaxation. In recent years, it has

been at the center of some very exciting developments in the area of signal processing and commu-

nications, and it has shown great significance and relevance on a variety of applications. Roughly

speaking, SDP relaxation is a powerful, computationally efficient approximation technique for a

host of very difficult optimization problems [53].

We now derive the SDP relaxation for the MAP problem. The relevant notations are listed as

follows for reference:

• SN = {A ∈ RN×N | A = AT } denotes the set of symmetric matrices.

• A � B means matrix A − B is positive semidefinite with A,B ∈ SN .

• A • B =
N∑

i=1

N∑
j=1

Ai jBi j is the inner product of A,B ∈ SN .

Before the SDP relaxation, we first raise an equivalent problem to (2.12). We introduce
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X = xxT , S = ssT and rewrite (2.12) as follows:

minimize
x,X,s,S

Q • X + qT x + bT s

subject to zd = Hds

Acx = 0

Sii − si = 0 i = 1, 2, . . . ,N
1 xT

x X

 =


1

x

 ·


1

x


T


1 sT

s S

 =


1

s

 ·


1

s


T

(2.13)

Reformulation can be done based on the following theorem [53].

Theorem 1


1 sT

s S

 � 0 and rank S = 1⇔ S = ssT .

Notice that the constraint rank S = 1 is non-convex, by removing it we have the SDP relax-

ation as follows.
minimize

x,X,s,S
Q • X + qT x + bT s

subject to zd = Hds

Acx = 0

Sii − si = 0 i = 1, 2, . . . ,N
1 xT

x X

 � 0


1 sT

s S

 � 0

(2.14)

(2.14) is a standard form of SDP which can be solved efficiently using interior-point algorithms

in various solver packages [54], [55]. Note that the known Linear Programming (LP) relaxation
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technique can also be applied here, however, SDP relaxation meets our requirement because it

is superior to LP relaxation in terms of approximation quality. In fact, a small error in topology

identification of power grid can mislead the system operations significantly. Detail derivation can

be found in [56]. The comparison of LP and SDP relaxation is summarized in [57].

The optimal objective value of LP, SDP relaxation and original integer program are repre-

sented by v(LP), v(SDP), v(IP) respectively.

Theorem 2 The SDP relaxation gives a tighter lower bound than LP relaxation with respect to

the original interger program such as: v(LP) ≤ v(SDP) ≤ v(IP).

Another point needs attention is that the result of the SDP relaxation problem (2.14) offers a soft

decision on the topology pattern, i.e., a continues value between 0 and 1 for each circuit breaker.

Hence, we need to recover the exact topology pattern from this soft decision. This problem is

investigated in the next section.

2.1.4 Combining Sparsity with SDP Relaxation

Inspired by the compressive sensing idea [58], we shall add the `1-norm term in the SDP

relaxation in order to further improve the accuracy of our topology identification approach. Recall

that we assume every breaker has a much higher probability staying in one state than the other. We

consider the state with higher probability to be common state, and the other one is uncommon state

for each breaker. It implies that in each topology identification process, the solved topology pattern

should not change too much from the expected “common” topology pattern that every breaker is

in its common state. This property enables us to employ `1-norm regularization to achieve better

performance. We explain this idea in a formal way as follows. We first add the term λ ‖s − su‖1 into

(2.14) with the constrains unchanged (in (2.15)). su is the vector of common status of the breakers.

‖s − su‖1 is the regularization function used to incorporate the rarity of event that circuit breakers

change from common status to uncommon one. λ is the regularization parameter, which controls

the sparsity of the status change vector s − su. The above idea is characterized in the following

optimization problem:
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minimize
x,X,s,S

Q • X + qT x + bT s + λ ‖s − su‖1

subject to zd = Hds

Acx = 0

Sii − si = 0 i = 1, 2, . . . ,N
1 xT

x X

 � 0


1 sT

s S

 � 0

(2.15)

(2.15) is not a standard SDP due to the non-linearity of ‖s − su‖1. However, we can convert it into a

standard SDP with the introduction of extra variable vector t. ‖s − su‖1 is replaced by 1T t and two

more constraints are added in (2.15): diag(t − s + su) � 0 and diag(t + s − su) � 0.

Numerical Tests In this section, the novel topology identification approach is tested on

IEEE 14-bus system in Fig. 2.3. The network model parameters and system state are obtained us-

ing MATPOWER [59]. The measurements are from PMUs and circuit breaker monitors. They are

assumed to be independent and the analog PMU measurement error is modeled as zero Gaussian

with standard deviation σ = 0.05. We consider three scenarios that 1/3, 1/2 and 2/3 number of

all states and breaker status are randomly selected as our measurement pool. The probability of

uncommon status for each circuit breaker is set to be 0.05, 0.1, 0.3, 0.5. 50 different topologies are

simulated with each topology having a certain number of uncommon breaker status according to

different prior distributions. Our proposed method in is solved by CVX, an optimization package

targeted for solving convex optimization problems [55]. The evaluation performance with different

prior distributions and measurement ratios is illustrated in Table. 2.1.

The simulation results in Table 2.1 are compliance with our expectation. Notice that when

the probability of uncommon status occurring is equal to 0.5, it is the situation that we have no

prior information on the breaker status, which is equivalent to the case that only the measurement
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Figure (2.3) The IEEE 14-bus system modeled at the substation level [2]. Solid (hollow) squares
indicate closed (open) circuit breakers, and thick (thin) lines correspond to transmission lines
(breaker connections).

Table (2.1) Average Success Rate for Topology Identification

Prob of uncommon status Ratio = 1
3 Ratio = 1

2 Ratio = 2
3

0.05 96% 98% 98%
0.1 91% 92% 95%
0.3 76% 82% 90%
0.5 63% 71% 80%

data is available for topology inference. However, incorporating prior information in our designed

framework is shown to be able to improve the accuracy of topology identification. Studying the

proposed scheme for practical power network dimensions is currently under investigation.

Summary A novel circuit breaker identification scheme was proposed in this section. By

exploiting the prior distribution on breaker status which can potentially enhance the identifica-

tion performance, we formulated the topology detection problem as a MAP estimation problem.

To efficiently solve the optimization problem thus obtained, a SDP relaxed problem was further

proposed. Leveraging the premises of compressive sampling, the aforementioned objective was

regularized by the `1-norm of selected vectors to further account for prior information on breakers.

Numerical tests on the IEEE 14-bus model verified the effectiveness of the novel scheme.
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2.2 Distributed Power-Line Outage Detection

A key aspect of situational awareness in the power grid is the knowledge of transmission line

status. Lessons learned from the 2003 northeastern blackout in United States reveal that accurate

line monitoring in real-time is required throughout the whole power grid [60]. Fortunately, the

development of real-time synchronized PMUs enables the direct usage of PMU-provided mea-

surements to detect events within the power grid. At present, PMU-based line outage detection has

been considered as a promising approach to facilitate effective fault identification.

2.2.1 Related Work

Existing PMU-based line outage detection methods typically use the internal-external net-

work model for the whole interconnected system in which the goal is to identify external line

outages using only measurements within the internal system [11], [12], [13], [14], [15]. Specifi-

cally, [13] formulates line outage detection as a best match problem, which contains an exhaustive

searching process for the most likely outage line. Thus, it can only handle the single-line outage

scenario. Building upon the work of [13], double-line outage detection is considered in [14], while

it restricts to the case with exactly a double-line outage in the system. A similar exhaustive search

is also applied in [14], but the searching space is much larger than that of the single-line case,

which, thus, is very computationally expensive. Another method for line outage identification

employs a Gauss–Markov graphical model of the power network and is capable of dealing with

multiple outages at a moderate complexity [16] despite requiring a grid-wise measurement. An

alternative sparse overcomplete representation-based algorithm was proposed in [15], which can

also handle multiple line outages. Then, Chen et al. developed a global stochastic optimization

technique based on cross-entropy optimization [17]. The algorithm in [17] does not require prior

knowledge of the parameters used in [15], whose selection can significantly affect solution accu-

racy. Wu et al. proposed an ambiguity group-based location recognition algorithm, which claims

to be faster and shows higher accuracy than the algorithm in [15] for multiple line outage detection

[18]. Banerjee et al. exploited the fact that the line outage is persistent and studied the problem of
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line outage detection and identification in the framework of the theory of quickest change detection

[19]. However, the aforementioned methods all carry out the processing in a centralized manner,

which is vulnerable in practice. Further, these existing approaches need to transmit raw data in the

system and, thus, may raise privacy issues. Huge recent interest in research and applications fall

into distributed methods for diagnosing faults in complex distributed systems. In [20], a distributed

fault detection method was devised for rail vehicle suspension systems in which the observers are

co-operated mainly by the state estimation errors. A hidden Markov random field-based distributed

fault detection algorithm was invented for wireless sensor networks [21].

In this section, we aim at proposing a scheme to detect power-line outage in a distributed

manner. The proposed scheme relies on a wide area measurement system (WAMS), which can be

seen as a network of sensors that cooperatively measure the status of the grid. The proposed scheme

is expected to work based on WAMS as follows. First, the raw measurements from different PMUs

are collected in the corresponding phasor data concentrators (PDCs) for processing; second, the

line outage detection is performed among the PDCs in a distributed fashion; finally, the results after

detection (instead of the raw data) are transmitted to the WAMS center, which provides critical

information to the system operators.

PMU 

PMU PMU 

PMU 

PMU 

PDC PDC 

WAMS 

Figure (2.4) Hierarchical architecture of a wide area measurement system (WAMS) in a smart grid.
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Specifications for the Proposed Framework Our main idea is to devise a distributed and

robust protocol that can be performed in WAMS for smart grid monitoring application. In this

section, the assumptions and problem settings in the proposed method will be described.

Sensor Network Model Our proposed method is based on the hierarchical network of

WAMS (as shown in Figure 2.4), which consists of a hierarchical structure, as follows. In each

area, a certain number of PMUs are installed in the bus substations of the power grid. In the middle

level, there is a set of phasor data concentrators (PDCs). Each PDC can share information with

the PDCs in neighborhoods. In the top level, there is a WAMS center, which collects information

from PDCs supporting the system-wide monitoring task. As a result, we can naturally see that in

each area with a PDC, it is a local control area or sub-system [61].

Sensor Measurement Settings We consider a linear physical equation describing the re-

lation between the measurable quantity and the set of unknown variables. The set of unknown

variables is related to the sensor reading through the measurement matrix. In this paper, the branch

currents are considered as the unknown quantities, and the measurements we use are bus voltage

phasors and all the branch-current phasors that are incident to the bus if a PMU is installed in the

bus substation. Our algorithm recognizes faulty/normal lines by determining whether their linear

physical measurement equations are valid or not. Furthermore, an additional assumptions is made:

• For our purpose of detecting possible faulty lines, the number of measurements we have is

relatively smaller than the number of unknown variables, which implies that the measure-

ment matrix is under-determined.

2.2.2 Problem Formulation

In this section, we describe the detailed measurement equation and centralized line outage

detection solution adopted in this paper. The proposed novel algorithm will be built upon them.

PMU Measurement Equation In a typical power transmission system, the synchrophasor

measurements at the n-th PDC area, expressed in rectangular coordinates, are collected in a vector
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ȳn, and they satisfy the following linear model:

ȳn = H̄nx + ḡn (2.16)

where x is the unknown vector to be estimated containing all branch currents, H̄n ∈ R
Mn×2Nl is

the measurement matrix, Mn is the number of measurements within the n-th PDC area, Nl is the

number of transmission lines in the whole system and ḡn ∼ N(0,Λn) denotes the additive Gaussian

noise vector. For notational convenience, we multiply with Λ−1/2
n on both sides of Equation (2.16)

to yield:

yn = Hnx + gn (2.17)

where yn = Λ
−1/2
n ȳn, and the other terms are manipulated similarly. Using Equation (2.17), the

weighted least squares form: ∥∥∥Λ−1/2
n (ȳn − H̄nx)

∥∥∥2

2

is replaced by the regular least squares ‖yn −Hnx‖22. We will use this notation in the following

sections.

Now, we first introduce some basic concepts on electrical circuits:

• Kirchhoff’s current law: at any node (junction) in an electrical circuit, the sum of currents

flowing into that node is equal to the sum of currents flowing out of that node.

• Kirchhoff’s voltage law: the sum of all voltage drops and rises in a closed loop equals zero.

The laws above are two approximate equalities that deal with the current and voltage differ-

ence in electrical circuits [62].

Let v = Re(v) + Im(v) be the Nb × 1 vector of complex nodal voltages with Nb the number

of buses in the system. By writing down the node equations of Kirchhoff’s current law (KCL) and

Kirchhoff’s voltage law (KVL) at each node, we can derive the vector of complex currents injected

on each line as follows:
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ifl = x = Yflv (2.18)

where Yfl describes the line-to-bus admittance matrix. The matrices H̄n in Equation (2.16) can be

expressed as:

H̄n =



QnRe(Y−1
fl ) −QnIm(Y−1

fl )

QnIm(Y−1
fl ) QnRe(Y−1

fl )

eT
n 0T

0T eT
n


(2.19)

where Qn is the selection matrix according to the n-th PDC.

At this point, our problem is equivalent to using a distributed method to determine whether

the linear model in Equation (2.16) is valid. A conventional and straightforward way to solve this

problem would be:

(1) In each PDC area, estimate the unknown variables locally.

(2) Communicate and share the estimates with other PDCs.

(3) Perform a fusion of estimates in each PDC.

(4) Apply a likelihood ratio test to detect faulty lines.

This above method will work well when there are sufficient measurements (more than the

number of unknown variables) available in each PDC [63]. However, in some scenarios, for exam-

ple in the smart grid system that we focus on in this paper, fetching sufficiently-sized measurements

may be infeasible or costly. Consequently, a framework that can make accurate decisions with

fewer data sets will be of practical importance. From the next section, we are going to describe our

solution for this purpose.
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2.2.3 Possible Centralized Solution for Line Outage Detection

In this paper, we combine the measurements and the prior information on the branch currents

to do the line outage detection. We consider a Bayesian framework, where the branch current

variables are random vectors with Gaussian distribution N(xp,Λp). We assume that, in practice,

the mean vector xp and covariance matrix Λp can be estimated from historical data [64656465].

The variables are assumed to be independent, and thus, the covariance matrix Λp is diagonal.

Inspired by the idea of compressive sensing, we can have a sparse solution for a certain under-

determined system by adding the `1-norm regularization [58]. Since most of the components of

the item in the `1-norm term is pushed into zero, we make the unknown vector x to compare with

its nominal model in the `1-norm term in order to create “sparse” faulty branches. Now, suppose

that there are k transmission line outages in the system. Then, the maximum likelihood (ML)

estimation in a single control center can be formulated as:

minimize
x

1
2
‖y −Hx‖22

subject to:
∥∥∥Λ−1/2

p (x − xp)
∥∥∥

0
= k

(2.20)

where x is the unknown vector of the system defined in Equation (2.16). y denotes the measure-

ments collected in the single center, and H is the corresponding measurement matrix of the system.

It contains the global topology and impedance information. Note that ‖·‖p means p-norm. Here,

the faulty lines can be identified by non-zero components in the vector x − xp. Based on the opti-

mization theory [54], there exists a λ that makes the following equation equivalent to the problem

formulation (2.20):

min
x

1
2
‖y −Hx‖22 +λ

∥∥∥Λ−1/2
p (x − xp)

∥∥∥
0

(2.21)

where λ > 0 is an application-dependent pre-defined parameter. It quantizes the tradeoff of effects

between the two objectives in Equation (2.21). The selection of λ will be discussed in a later

section.

Both Equations (2.20) and (2.21) are non-convex, which means it is hard to solve them exactly

in a reasonable time. We employ the `1-norm approximation in [58] to replace the zero-norm term
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in Equation (2.21), which leads to the convex optimization problem shown below:

min
x

1
2
‖y −Hx‖22 +λ

∥∥∥Λ−1/2
p (x − xp)

∥∥∥
1

(2.22)

Remark 1 The centralized grid-wise measurement data collection the computation in implement-

ing Equation (2.22) are inefficient due to bandwidth and time constraints or infeasible because of

data privacy concerns; thus, distributed computations are strongly preferred or demanded.

2.2.4 Distributed Line Outage Detection

In this section, we striveto solve the optimization problem in Equation (2.22) in a distributed

manner. Note that if we decompose Equation (2.22) into N PDC areas, then Equation (2.22) can

be expressed in the following:

min
xn

N∑
n=1

fn(xn) (2.23)

in which function fn(xn) denotes the “cost function” for each PDC, and it is given by:

fn(xn) =
1
2
‖yn −Hnxn‖

2
2 + λ

∥∥∥Λ−1/2
pn (xn − xpn)

∥∥∥
1

(2.24)

where xn, Hn, xpn and Λpn correspond to the unknown variables associated with the n-th PDC.

Each PDC in the area can choose to minimize Equation (2.24) individually, but this method is

clearly sub-optimal, since the overlapping variables are not taken into account.

Remark 2 The criterion in Equation (2.24) will force some entries of the vector of branch cur-

rents (xn) equal to their mean values (corresponding entries of xpn), which implies that they are

consistent with their statistical distribution, and thus, these branches are recognized as in the nor-

mal condition. On the other hand, if certain entries of the branch currents fail to be equal to their

mean values, then the associated branches are considered to be possibly faulty or abnormal.

Distributed Power-Line Change Detection Solution Denote xn as the sub-vector of x,

which contains the unknown variables involved in the n-th PDC. Furthermore, denote xnm as the
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Figure (2.5) An example of a phasor data concentrator (PDC) network.

value of the shared variables between neighboring n-th and m-th PDC (a sub-vector of xn or xm).

Then, the estimate of overlapping unknown variables by neighboring PDCs should be same. Then,

Equation (2.23) can be reformulated as:

minimize
xn

N∑
n=1

fn(xn)

subject to: xnm = xmn, m ∈ Nn; n,m ∈ P

(2.25)

where Nn is the set of neighboring PDCs of the n-th PDC and P is the set of PDCs. For instance,

in Figure 2.5, Node 1 and Node 4 share the edge (1,4). This means that these two PDC areas

have overlapping unknown variables. As a result, Node 1’s estimate of the branch current on (1,4)

should be the same as Node 4’s estimate on (1,4).

In this paper, the proposed formulation for line outage detection in Equation (2.25) is solved

by resorting to the so-called ADMM. To briefly illustrate the general ADMM algorithm [66],

consider the prototype problem:

minimize f (x) + g(z)

subject to: Ax + Bz = c
(2.26)
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with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. Functions f and g are

assumed to be convex. As in the method of multipliers, the augmented Lagrangian can be formed:

Lρ(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) + (ρ/2) ‖Ax + Bz − c‖22 .

ADMM consists of the iterations:

xk+1 := argmin
x

Lρ(x, zk, yk) (2.27a)

zk+1 := argmin
z

Lρ(xk+1, z, y) (2.27b)

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c), (2.27c)

where ρ > 0 is the predefined augmented Lagrangian parameter and y is the Lagrangian multiplier

(dual variable) of the constraint in Equation (2.26). The ADMM algorithm is considered to have

three steps: an x-minimization Equation (2.27a), a z-minimization step Equation (2.27b) and a dual

variable update Equation (2.27c).

Let us now apply the method of ADMM in [66] to solve the line outage detection problem

formulated in Equation (2.25) using a distributed mechanism. We introduce auxiliary variables ϑnm

and zn in order to fit the ADMM framework. Then, Equation (2.25) can be alternatively expressed

as:

minimize
xn,ϑnm,zn

N∑
n=1

fn(xn)

subject to: xnm = ϑnm, m ∈ Nn; n,m ∈ P

xn − xpn = zn

(2.28)

We also introduce variable νnm to denote the Lagrangian multiplier for the first constraint in

Equation (2.28) and sn to denote the multiplier for the second constraint in Equation (2.28). Note

that by using ADMM in our problem, there are three primal variables: xn, ϑnm and zn; two dual
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variable: νnm and sn. The augmented Lagrangian function can be obtained as:

Lρ(xn, ϑnm, zn, νnm, sn)

=

N∑
n=1

{
fn(xn) +

∑
m∈Nn

(νT
nm(xnm − ϑnm)

+ (ρ/2) ‖xnm − ϑnm‖
2
2) + sT

n (xn − xpn − zn)

+ (ρ/2)
∥∥∥xn − xpn − zn

∥∥∥2

2

}
(2.29)

Let k be the iteration index; then, the ADMM algorithm consists of the following update rules:

xk+1
n = argmin

xn

Lρ(xn, ϑ
k
nm, z

k
n, ν

k
nm, s

k
n) (2.30a)

(ϑk+1
nm , z

k+1
n ) = argmin

ϑnm,zn

Lρ(xk+1
n , ϑnm, zn, ν

k
nm, s

k
n) (2.30b)

νk+1
nm = νk

nm + ρ(xk+1
nm − ϑ

k+1
nm ) for all n,m. (2.30c)

sk+1
n = sk

n + ρ(xk+1
n − xpn − zk+1

n ) (2.30d)

To simplify the presentation, we combine the linear and quadratic terms in the augmented

Lagrangian in Equation (2.29) that can be applied in Equations (2.30a) and (2.30b) by ignoring the

terms independent of the decision variables:

Lρ(xn, ϑnm, zn, ν
k
nm, s

k
n) =

N∑
n=1

(
fn(xn) +

∑
m∈Nn

(ρ/2)
∥∥∥xnm − ϑnm + (1/ρ)νk

nm

∥∥∥2

2

+ (ρ/2)
∥∥∥xn − xpn − zn + (1/ρ)sk

n

∥∥∥2

2

)
(2.31)

Now, we are concerned about how to implement the updates in Equations (2.30a)–(2.30d)

efficiently. Since Equations (2.30c) and (2.30d) are simple linear updating equations, we only need

to focus on the deduction of Equations (2.30a) and (2.30b). To solve Equation (2.30a), several

algebraic manipulations are used to enable the simplification of the analysis. We define:
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(1) Dn as a diagonal matrix with its (m,m)-th entry being 1;

(2) rk
n = ϑk

n − (1/ρ)νk
n;

(3) In denotes an identity matrix with its dimension being the number of states in n-th area.

As a result, the term
∑

m∈Nn

(ρ2 )
∥∥∥∥xnm − ϑnm + ( 1

ρ
)νk

nm

∥∥∥∥2

2
in Equation (2.30a) can be expressed as:

(ρ/2)
∥∥∥Dn(xn − rk

n)
∥∥∥2

2
. Then, after manipulating via matrix calculus, we obtain the minimizer of

Equation (2.30a) as follows:

xk+1
n =

(
HT

n Hn + ρDn + ρIn
)−1

×

(
HT

n yn + ρ(Dnrk
n + xpn + zk

n − (1/ρ)sk
n)
) (2.32)

Regarding solving Equation (2.30b), it is known that the optimality conditions satisfy when

the zero vector belongs to subdifferentials of Equation (2.30b) with respect to variable ϑnm and zn

[67]. We first consider the minimization with ϑnm; the following Theorem is derived in order to

conclude the updates of ϑnm.

Theorem 3 For each pair of n,m in Equation (2.30c), the following holds for the updating La-

grange multipliers: νk
nm + νk

mn = 0

Proof 1 In Equation (2.30b), we note that the optimization task will be performed in n-th and m-th

PDC in parallel for each adjacent pair (n,m). Thus, we can obtain the following result by solving

Equation (2.30b) for (n,m) and (m,n), respectively:

ϑk+1
nm = xk+1

nm + (1/ρ)νk
nm

ϑk+1
mn = xk+1

mn + (1/ρ)νk
mn

(2.33)

where ϑnm and ϑmn are the same variable; then, averaging the both sides of the two equations in

Equation (2.33) implies:

ϑk+1
nm = (

xk+1
nm + xk+1

mn

2
) + (

νk
nm + νk

mn

2ρ
) (2.34)



27

In a similar manner, we can express ϑk+1
nm and ϑk+1

mn by using Equation (2.30c). The calculations

are:
ϑk+1

nm = xk+1
nm + (1/ρ)νk

nm − (1/ρ)νk+1
nm

ϑk+1
mn = xk+1

mn + (1/ρ)νk
mn − (1/ρ)νk+1

mn

(2.35)

Finally, averaging both sides of Equation (2.35) yields:

ϑk+1
nm = (

ϑk+1
nm + ϑk+1

mn

2
)

= (
xk+1

nm + xk+1
mn

2
) + (

νk
nm + νk

mn

2ρ
)

− (
νk+1

nm + νk+1
mn

2ρ
)

(2.36)

By comparing the right side of Equations (2.34) and (2.36), we find that the only different

part is the last item in Equation (2.36), which turns out to be zero. Theorem 3 is then proven.

At this point, it is clear to see that by using Theorem 3, Equation (2.34) can be reduced to:

ϑk+1
nm =

(xk+1
nm + xk+1

mn )
2

(2.37)

Next, we are concerned about how to address the updates of zn. Note that due to the `1-norm

term, Equation (2.30b) is not differentiable everywhere, but sub-differentiable with respect to zn

[67]. As mentioned previously, we take the sub-differential over Equation (2.30b) with respect to

zn and the optimality condition becomes:

0 ∈ ∂λ
∥∥∥Λ−1/2

pn zn
∥∥∥

1
+ ρ

(
zn − (xk+1

n − xpn + (1/ρ)sk
n)
)

By using the soft thresholding operator defined in [66], for instance, the i-th component zk+1
n [i]

(scalar) is updated as:

zk+1
n [i] = S (λ/ρ)Λ−1/2

pn [i][i](x
k+1
n [i] − xpn[i] + (1/ρ)sk

n[i])

In a similar way, a closed-form solution for the updates of zn is obtained as follows:
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zk+1
n = S (λ/ρ)Λ−1/2

pn
(xk+1

n − xpn + (1/ρ)sk
n) (2.38)

where:

S b(a) =


a − b, a > b;

0, |a| ≤ b;

a + b, a < −b.

(2.39)

Note, here, component-wise updating is applied, such that the i-th component of zn is updated

according to the i-th entry of the rest of the vectors in Equation (2.38) and the (i, i)-th entry of the

diagonal matrix Λ−1/2
pn .

Now, the ADMM updating in Equations (2.30a)–(2.30d) for each processor can be summa-

rized in Algorithm 1.

Algorithm 1 Distributed line change detection (D-LCD).
1: Input: yn,Hn,Λn,Λpn, xpn,Dn, λ > 0, ρ > 0, k = 0.
2: Initialize: xn, ϑnm, zn, νnm, sn.
3: while not converged or stopping criterion not reached do
4: k ← k + 1.
5: Update xk+1

n based on Equation (2.32).
6: Exchange xk+1

nm with its neighbors.
7: Update ϑk+1

nm , zk+1
n via Equations (2.37) and (2.38), respectively.

8: Update νk+1
nm and sk+1

n through Equations (2.30c) and (2.30d).

2.2.5 Distributed Line Change Detection with Warm Start

The most computational-intensive step in Algorithm 1 is the update of xn given in Equation

(2.32), which, in essence, requires matrix inversion and multiplication for each PDC in every

iteration. Nevertheless, a detailed look shows that the variables in Equation (2.32) may not change

significantly within two consecutive iterations. The previous ADMM iteration xk
n often provides

a good approximation to the results, which can be used as a warm start to update xk
n. The warm

start process reduces the complexity in computing xk+1
n , since the computation starts from a more

appropriate initialization instead of from zero (or some other fixed and default initialization) [66].
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Now, if we look at the the minimization step in Equation (2.30a) along with its minimizer in

Equation (2.32), it actually can be regarded as solving a system of linear equations:

Ax = b (2.40)

The least squares solution of Equation (2.40) is [68]:

x = (AT A)−1AT b (2.41)

We observe that Equation (2.32) is equivalent to finding the least squares solution with matrix

A and vector b formed in the following:

A =


Hn

√
ρIn

√
ρDn


(2.42)

b =


yn

√
ρ(xpn + zk

n −
1
ρ
sk

n)

√
ρrk

n


(2.43)

At this point, we have changed the problem of xn-update in Equation (2.32) into finding a

method to solve linear equations in Equation (2.40) with A and b defined in Equations (2.42) and

(2.43), respectively. To this end, we adopt the LSQR algorithm in this paper. Recall that In, Dn

are diagonal matrices and that Hn is sparse in general. Thus, matrix A is also sparse. LSQR thus

fits our need, since it is very efficient for solving sparse linear equations [69]. Interested readers,

please refer to [69] for the details. We omit its introduction, here due to space limitation. In short,

the modified distributed line detection algorithm with a warm start is described in Algorithm 4.

Selection of the Tuning Parameter In our proposed centralized and distributed algorithms

stated in Equation (2.22) and Algorithm 1, we have to choose the parameter λ first. As discussed
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Algorithm 2 D-LCD with a warm start.
1: Input: yn,Hn,Λn,Λpn, xpn,Dn, λ > 0, ρ > 0, k = 0.
2: Initialize: xn, ϑnm, zn, νnm, sn.
3: while not converged or stopping criterion not reached do
4: Assemble A and b according to (2.42) and (2.43).
5: Solve linear equations Ax = b using LSQR procedure with initial value xk

n.
6: k ← k + 1.
7: Update xk+1

n based on the solution in Step 5.
8: Exchange xk+1

nm with its neighbors.
9: Update ϑk+1

nm , zk+1
n via (2.37) and (2.38), respectively.

10: Update νk+1
nm and sk+1

n through (2.30c) and (2.30d).

in Section 4.2, `1-norm term in Equation (2.22) will force the item in the norm to be sparse, and

λ determines the importance of this objective. If λ is very large, most of the components in the

`1-norm would be zeros. In other words, the tuning parameter λ specifies the sparsity level of

the solution. In addition, the selection of λ depends on the specific application we are working

on. Thanks to the help of the cross-validation technique, we can have some portion of data for

model validation. The optimized λ is then derived in terms of prediction accuracy. By using the

“one-standard-error” rule, one can also have the largest value of λ, such that the error is within one

standard-error of the minimum [70].

Numerical Tests To evaluate the proposed centralized and distributed line change detection

algorithms, we use an Intel Duo Core at 1.8 GHz (1.5 GB RAM) computer with MATLAB for

numerical testing. The branch current phasors and the PMU measurements are obtained from

MATPOWER [59]. To solve the centralized algorithm in Equation (2.22), we used CVX, a package

for specifying and solving convex optimization problems [55]. The PMU measurement noise is

simulated as an independent zero-mean Gaussian with its covariance matrix Λn = 0.002In. The

covariance matrix Λp is set to 0.003Ip, where Ip is an identity matrix with the same dimension as

the unknown vector.

WSCC Nine-Bus Test Case In this section, the WSCC nine-bus test case system was used

for our simulation. The diagram of the system is demonstrated in Figure 2.6. There are three
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generators (G1,G2,G3), three transformers (T1,T2,T3) and nine lines in which the line parameter

information is listed in Table 2.2.

Table (2.2) Line parameters of the WSCC nine-bus system.

Line Resistance (p.u) Reactance (p.u)

1–4 0.0000 0.0576
4–5 0.0170 0.0920
5–6 0.0390 0.1700
3–6 0.0000 0.0586
6–7 0.0119 0.1008
7–8 0.0085 0.0720
8–2 0.0000 0.0625
8–9 0.0320 0.1610
9–4 0.0100 0.0850

Figure (2.6) WSCC nine-bus test case system.

From Table 2.2, the line-to-bus admittance matrix Yfl can be formed, which is used for con-

structing the measurement matrix H in Equation (2.22). In this case, the size of the unknown vector

is nine by one, and we place two PMUs at Bus 4 and Bus 6 with their line current measurements

in (1–4), (4–5), (9–4), (5–6), (3–6), (6–7). The system is assumed to be at steady state before and

after the line change. We made the line change on the reactance of line (1–4), which was altered
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Figure (2.7) Centralized line outage detection.
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Figure (2.8) Distributed line outage detection.
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Figure (2.9) Comparison of detection performance for the IEEE 118-bus system.

from 0.0576 to infinity. Then, we ran a DC power flow in MATPOWER to obtain the branch cur-

rents in normal conditions and the measurements after change. The above are all of the quantities

considered as the input to our centralized line change detection algorithm. The result in Figure 2.7

shows that the faulty line (1–4) has been correctly detected by the algorithm. Note that here, λ

from 0.35 − −0.45 can guarantee the accurate decision in this case.

We also tested our D-LCD algorithm on this nine-bus system, and the results of first nine

ADMM iterations are captured in Figure 2.8. Note that initially, Branches 1–3, 5 and 9 have

positive values, which means that they are all seen as a group of possible faulty lines. During

Iteration 2–4, the values of Branches 1–3, 5 and 9 are actually decreasing, while an interesting

point is that the decreasing speed of Branches 2, 3, 5 and 9 is much faster than Branch 1’s. This

observation is conformed with the theory part discussed previously, that the most likely set of

branches should survive for the next iteration. From Iteration 5, Branch 1 is almost the only one

standing out. This implies that Branch 1 is considered to be faulty by our distributed line change

detection algorithm. In other words, the distributed algorithm almost converges to the centralized

version result (we assume it as a benchmark) in Figure 2.7 in just five iterations.
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IEEE 118-Bus System The IEEE 118-bus system is tested here for evaluating our algo-

rithms in the case of a large network. There are 186 branches in the test system, which will result

in over 17, 200 possible faulty topologies in just a double-line outage scenario. All of the single

line outage possibilities and 300 double-line outage cases are randomly chosen for testing. We

adopt the method in [71] as our pool of measurements and randomly select two thirds the number

of measurements from it. The exhaustive search algorithm in [13141314] is compared with our

proposed methods in Figure 2.9 in terms of the percentage of the correctly detected outage pattern.

Note that the exhaustive search scheme is considered as the benchmark here since it is “op-

timal” in the statistical sense. It is impressive that both the centralized and distributed line outage

detection methods perform very close to this optimal criterion.

IEEE 300-Bus System The running times of the developed algorithms are also tested on

the IEEE 300-bus test system. Following a Monte Carlo simulation method, the results for single

and double-line outages are listed in Table 2.3.

In both the single- and double-line outage cases, D-LCD and D-LCD with warm start outper-

form the rest of algorithms, which is within expectations. It is found that as the system size and the

number of line outages increases, the advantage of the warm-started D-LCD over distributed LCD

becomes more sharper in terms of computational time. However, the exhaustive search approach

does not scale well, as its running time jumps up in an order much higher than the others.

Table (2.3) Running time comparison for the IEEE 300-bus system.

Algorithm Single-Line Outage Double-Line Outage

Exhaustive Search 0.50 s 28 s
Centralized LCD 0.37 s 0.95 s
Distributed LCD 0.12 s 0.31 s
Warm-started D-LCD 0.053 s 0.14 s

Discussion In this paper, the proposed algorithms are assumed to work in transmission net-

works. Nevertheless, theoretically, they can also apply to distribution networks. The current dis-
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tribution networks usually lack measurements and have a low level of monitoring capabilities. As

smart grids develop, the proposed algorithms have the potential to work in distribution networks

once the the infrastructure of “smart” sensor networks has been deployed.

Our proposed distributed algorithms involve the communication of neighboring PDCs. Each

PDC only communicates with its neighbors by its estimates of the shared unknown variables.

Hence, if the PDC is unable to collect the neighbors’s information, it will keep its value of estimates

unchanged. In this paper, the proposed distributed algorithms are more robust than the centralized

ones in the following sense: for the centralized algorithms, if the sole processing center is attacked

or fails, all of the information will be lost, and the system cannot obtain a solution for the outage

detection function. However, for the proposed distributed algorithms, the probability of having

similar serious conditions is much smaller.

Summary A novel distributed line outage detection algorithm was developed based on

WAMS, which has been an important component of smart grids. The proposed approach al-

lows multiple line outage identification using limited PMU measurements. The feature of low-

complexity distributed processing in the proposed framework can enhance the efficiency, security

and privacy level in smart grid monitoring. Numerical tests demonstrated the merits of the pro-

posed schemes in coordinating the discovery of multiple line outages in a power grid.

2.3 Microgrid Reconfiguration Strategy

As an important content of smart grid, the concept of smart microgrid has been proposed

recently. Unlike traditional power grid, microgrid has three important features. First, it owns a

small-scale group of generation resources and local customers itself. Second, microgrid is able to

manage its energy system in a cooperative fashion based on two-way communications and bidi-

rectional electricity paths. Third, microgrid is a promising way to integrate distributed generations

(DGs) (i.e., renewable energy resources (RES)) on the local community in order to diversify energy

supply and improve efficiency [72].

Microgrids belong to an area where the cyber and physical worlds meet. It is an application
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of the Cyber-Physical System (CPS) in which sensing, networking, and computing are tightly

coupled with the control of the physical power grid. In the cyber-layer, one of the challenges is

distributed resource management. Fortunately, the advances in information infrastructure such as

“smart sensors” provide opportunities to better cope with this issue [73]. Based on the collected

information on loads, generators and transmission lines, etc., system operator can have the potential

of continuous decision-making and monitoring over the grid.

2.3.1 Related Work

At present, a lot of research efforts have been conducted on conventional distribution sys-

tem and microgrid reconfiguration. In [22], [23], [24], [25], minimizing the active power loss (or

total power loss) was considered as the sole objective. Multi-objective formulation of the recon-

figuration problem was investigated in [26]. Besides the objective of minimization of the total

power loss, [26] also considers minimizing both the nodes voltage deviation and the violation of

line current limit. Consequently, it is a more advanced and realistic formulation comparing to the

single-objective ones. However, in case of an emergency, power accessibility is a more important

issue than economical reasons. Thus, the main goal in such scenarios should be to serve as much

critical total loads as possible in the system. Recent work of reconfiguration for quick service

restoration in distribution systems or microgrids were discussed in [27], [28], [29]. However, like

all the aforementioned frameworks, they are not suitable for microgrids since the presence of RES

is not considered, which is an important feature of future smart microgrids. Considering all the

issues above, we are thus motivated to design a new microgrid restoration framework.

2.3.2 System Architecture and Problem Statement

System Architecture Fig. 2.10 depicts the system architecture for the microgrid reconfig-

uration. The houses can be residential households or other consumers (i.e., hospitals). The green

arrows are bidirectional energy paths between two neighboring units. There are conventional DERs

and renewable energy for the power supply. More importantly, microgrid “controllers” (e.g. var-

ious smart sensors) are installed in the physical units across the grid. For example, the microgrid
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Figure (2.10) An example microgrid CPS required for self-reconfiguration.

control center can adjust the wind turbine based on the wind profile (captured by its controller) to

achieve higher efficiency. In short, the control center can perform grid resource management (such

as grid reconfiguration, load balancing) based on the timely information provided by this cyber

system.

Problem Description We consider a microgrid as a graph in this paper. The vertices rep-

resent the buses in the power grid. Each bus has load and generation units (i.e., conventional dis-

tributed generation units and renewable energy generators). The set of edges denotes the branches

in the microgrid. It is assumed that all branches have circuit breakers. The load in each bus is

also assumed to have circuit breaker attached modeling the possible action of load shedding. The

loads in the system have different priorities. This means that some loads (i.e., medical services)

are more critical than others (i.e., residential households). Our reconfiguration scheme is expected

to guarantee these critical loads served first. The reconfiguration is modeled as a decision problem

simultaneously maximizing the loads served and the operation reliability. Relevant notations are

listed in table 2.4.

Objectives in the Problem Formulation We first describe the two different objectives

adopted in the presenting paper.

Total Loads Served We consider the microgrid reconfiguration for service restoration. It

is usually taken place after the fault occurrence. Hence an important goal is to restore the power
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Table (2.4) Notations

PGi conventional DG units power generation on i-th bus.
PRi RES power generation on i-th bus (random variable).
PLi actual power consumption on i-th bus.
Pti j power flow between i-th bus and j-th bus.
S li circuit breaker status at the load of i-th bus.
λMi weighting factor for the load of i-th bus.
N the set of buses in the microgrid.
B the set of branches in the microgrid.
Ni the set of neighboring buses to i-th bus.
ci j the power flow limit in branch (i, j).

Pmin
Gi

minimum amount of DG units power generation on i-th bus.
Pmax

Gi
maximum amount of DG units power generation on i-th bus.

Pmin
Li

minimum required actual power consumption on i-th bus.
Pmax

Li
maximum actual power consumption on i-th bus.

supply service to the loads in the system [25], [28]. Specifically, the objective of total loads served

can be expressed as:
|N|∑
i=1

λMiS li PLi (2.44)

where the parameter λMi accounts for the priority of load i. Specifically, in objective (2.44), the set

of λMi helps put the loads with high priority to be supplied first.

Reliability of Reconfiguration Operation In the reconfiguration process, it is reasonable

and meaningful to take the operating reliability into account since it is highly required to avoid

service interruption again in a short period. We define the reliability of reconfiguration operation

using the mathematical expression as follows.

min
(i, j)∈B

{
ci j −

∣∣∣Pti j

∣∣∣} (2.45)

Equation (2.45) is to first compute the distance of actual power flow to its limit for each

branch, and find the minimum distance among them. This measure is important since operating

power flow close to its limit will greatly increase the probability of failure and be more vulnerable

to contingencies. A simple example in Fig. 2.11 shows cases with different values of operation
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Power Generation Appliance Loads 

Transmission Line 
Power Flow: 100 MW 

Transmission Line 
Power Flow: 0 MW 

Power Generation Appliance Loads 

Transmission Line 
Power Flow: 50 MW 

Transmission Line 
Power Flow: 50 MW 

Line Flow Limit: 
100 MW 

Figure (2.11) Illustration of measuring the reliability of reconfiguration operation under two dif-
ferent cases. The power generation source needs to supply 100 MW to the appliance loads and
there are two transmission lines between them. The upper case solution has reliability value 0 MW
while the bottom one has reliability value 50 MW based on the definition in (2.45). It is stated
that the upper one is more vulnerable than the bottom one since one of the lines in upper case is
reaching the line flow limit.

reliability.

Uncertainty in Renewable Energy Generation Another distinct assumption made in our

reconfiguration problem is that renewable energy generators are involved in supplying power to the

grid. They are considered to be widely used and installed in each bus. Unfortunately, the energy

output of renewable generators (denoted as random variables PRi in this paper) will fluctuate around

its forecasted values due to e.g., fast-varying weather conditions [7], [8]. Thus, at some time, the

power supply available at some buses might not satisfy their power required. As a result, it is

essential to perform a grid reconfiguration that is capable of limiting this kind of risk.
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Microgrid Reconfiguration Formulation Based on the system model described above, we

formulate the microgrid reconfiguration as the optimization problem (P1) as follows.

(P1) max
V

[
|N|∑
i=1
λMiS li PLi , min

(i, j)∈B

{
ci j −

∣∣∣Pti j

∣∣∣} ]T

(2.46a)

s.t. − ci j ≤ Pti j ≤ ci j, (i, j) ∈ B (2.46b)

− S ti j × ci j ≤ Pti j ≤ S ti j × ci j, (i, j) ∈ B (2.46c)

Pmin
Gi
≤ PGi ≤ Pmax

Gi
, ∀i ∈ N (2.46d)

S li × Pmin
Li
≤ PLi ≤ S li × Pmax

Li
, ∀i ∈ N (2.46e)

S li ∈ {0, 1}, ∀i ∈ N (2.46f)

S ti j ∈ {0, 1}, (i, j) ∈ B (2.46g)

Pr

PGi + PRi −
∑
j∈Ni

Pti j ≥ PLi ,∀i ∈ N

 ≥ 1 − ε (2.46h)

where V := {PGi , PLi , Pti j , S li , S ti j} contains all the decision variables. Specifically, the objective

function (2.46a) takes accounts of two different aspects, namely, the total power served and the

index of operational reliability; Constraint (2.46b) illustrates that the power flow along the lines

should conform with their line limits; Constraint (2.46c) ensures that the power will flow through

the bus pair (i, j) only when the breaker on this branch is closed; Constraint (2.46d) represents the

generator capacity in each bus; Constraint (2.46e) models the possible action of load curtailment

by the system operator. Furthermore, constraints (2.46f) and (2.46g) represent the binary state

of circuit breakers in the buses (for the loads) and the branches respectively; Finally, constraint

(2.46h) requires that the actual power supply at each bus satisfies its demand with probability no

less than 1 − ε, where ε is a pre-selected threshold.

Unfortunately, solving (P1) is computationally difficult for the following reasons:

r1: The bilinear term S li PLi in (2.46a) renders (P1) nonconvex, which implies that (P1) is difficult

to solve optimally and efficiently in general;

r2: Due to the binary variables {S li , S ti j}, solving (P1) is NP-hard;
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r3: The probabilistic constraint (2.46h) is generally in a computationally intractable form.

We propose an approach to cope with r1-r3 in the ensuing section with a computationally

tractable reformulation of (P1).

2.3.3 Computationally Tractable Reformulation

We first derive an alternative problem formulation of (P1) that has linear objectives as follows.

(P2) minimize
V′

[
t1 , t2

]T

(2.47a)

subject to: (2.46b) - (2.46h) and (2.47b)
|N|∑
i=1

λMiS li PLi ≥ −t1 (2.47c)

− (ci j + t2) ≤ Pti j ≤ (ci j + t2), (i, j) ∈ B (2.47d)

whereV′ := {PGi , PLi , Pti j , S li , S ti j , t1, t2} collects the reconfiguration decision variables.

A closer look into (P1) and (P2) reveals the following theorem.

Theorem 4 The problems in (P1) and (P2) are equivalent.

Proof 2 In the first place, the objective in (2.46a) is equivalent to the following:

min
[
−
|N |∑
i=1
λMiS li PLi ,−min

(i, j)∈B

{
ci j −

∣∣∣Pti j

∣∣∣} ]T

Second, we start with the trick of introducing two auxiliary variables t1 and t2 that serve as the

upper bounds on the two objectives respectively. Thus, the above objective can be cast as (2.47a)

with two extra constraints as follows:

−

|N |∑
i=1

λMiS li PLi ≤ t1

−min
(i, j)∈B

{
ci j −

∣∣∣Pti j

∣∣∣} ≤ t2
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Here, the first constraint is the same as (2.47c). The second constraint means that the minimum

value of ci j−
∣∣∣Pti j

∣∣∣ among all branches (i, j) ∈ B is at least −t2. In other words, every branch (i, j) ∈

B satisfies the condition that ci j −
∣∣∣Pti j

∣∣∣ is greater or equal to −t2, that is ci j −
∣∣∣Pti j

∣∣∣ ≥ −t2, (i, j) ∈ B.

It can become (2.47d) after several steps of algebraic manipulations.

Note that the vector optimization problem (P2) can be decomposed into two single-objective

problems. The first single-objective problem in (P2) has objective function t1 and the second

problem has objective function t2, which are linear objectives. Besides, the two problems have

the same constraints. Thus, in this section, which is dealing with difficult constraints arising from

r1-r3 of the optimization program, all the involving implicit objective functions are linear.

Convex Relaxation of Bilinear Inequalities (for r1) Bilinear inequalities such as (2.47c)

can be categoized into the form of so-called Bilinear Matrix Inequalities (BMIs). Problems involv-

ing BMIs have been a focus in mathematical programming as wells as the robust control theory.

Unfortunately, BMIs are known to be nonconvex constraints. They are computationally complex

and hard to be solve [74]. The BMI Feasibility Problem is even shown to be NP-hard [75]. To relax

this problem, one way is to search for a convex set which includes BMIs and closely approximates

the BMIs. Replacing BMIs by such a set, the optimization problem becomes convex and therefore

tractable [76].

To address r1, we adopt the convex relaxation method in [74] to approximate the non-convex

set specified by the constraint in (2.47c).

We first define a new variable Qi = PLiS li , ∀i ∈ N. Then (2.47c) is equivalent to the following:

|N|∑
i=1

λMi Qi ≥ −t1 (2.48a)

Qi = PLiS li , ∀i ∈ N (2.48b)
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By applying the convex relaxation advance in [74], (2.48b) is replaced by:

Qi ≤ PLiS li + PLiS li − PLiS li , ∀i ∈ N (2.49a)

Qi ≤ PLiS li + PLiS li − PLiS li , ∀i ∈ N (2.49b)

Qi ≥ PLiS li + PLiS li − PLi S li , ∀i ∈ N (2.49c)

Qi ≥ PLiS li + PLiS li − PLi S li , ∀i ∈ N (2.49d)

where PLi , PLi are the minimum and maximum values of variable PLi respectively. Similarly, S li , S li

are the minimum and maximum values of variable S li , which are known constants. In our problem,

according to the formulation in previous, PLi = 0, PLi = Pmax
Li

, S li = 0, S li = 1. Putting those facts

into constraints (2.49a)-(2.49d) yields:

Qi ≤ PLi , ∀i ∈ N (2.50a)

Qi ≤ Pmax
Li

S li , ∀i ∈ N (2.50b)

Qi ≥ 0, ∀i ∈ N (2.50c)

Qi ≥ PLi + Pmax
Li

(S li − 1), ∀i ∈ N (2.50d)

Now, the constraint in (2.47c) containing bilinear term is replaced by (2.48a) and (2.50a)-

(2.50d). Note that (2.48a) and (2.50a)-(2.50d) are linear constraints with respect to decision vari-

ables {Qi, PLi , S li}.

SDP Relaxation of 0-1 Integer Constraint (for r2) Regarding the issues in r2, we use

the semidefinite relaxation technique in [53] to obtain a convex-relaxed version of binary variable

constraints in (2.46f) and (2.46g). In the following, we will present the detailed derivation of the

aforementioned conversion.

Background on SDP Relaxations In general, SDP relaxation is a subfield of convex re-

laxation techniques. Particularly, it has been applied to many difficult problems in combinatorial

optimization, signal processing, and control theory. SDP relaxation is proven to provide a very
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tight bound for several classes of nonconvex problems [53].

To briefly illustrate the SDP relaxation technique, we consider the binary quadratic problem

as follows.
minimize sT Ws

subject to s = {0, 1}n
(2.51)

where matrix W is semidefinite. The 0-1 quadratic program is a well-known difficult optimization

problem since it is shown to be equivalent to Max-Cut [77], which is in the class of NP-hard

problems (many of its problem instances would be intractable).

The cost function in (2.51) can be rewritten as:

sT Ws = 〈W, ssT 〉 (2.52)

where 〈·〉 indicates inner product operation. Following the idea of linearization, we introduce a

matrix variable S to take the role of ssT . The binary constraint in (2.51) is equivalent to:

s2
i = si, ∀i ∈ N (2.53)

It implies that the main diagonal of matrix S is equal to s. Then the binary constraint can be

expressed as follows:

diag(S) = s (2.54a)

S = ssT (2.54b)

Further, it can be proved that (2.54b) is equivalent to the following [53]:

S � 0, rank(S) = 1 (2.55)

Here, A � B is meant that matrix A − B is positive semidefinite. The first constraint in (2.55) is

linear with respect to variable S while the rank constraint is not. In fact, the difficulty in r2 arises
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from the nonconvexity of the rank constraint. By dropping it, we obtain the following relaxed

version of the original quadratic program:

minimize
s,S

〈W,S〉

subject to diag(S) = s

S � 0

(2.56)

Relaxation for r2 Now, we go back to our problem. Define s =
[
S l1 , · · · , S li , · · · , S l|N |

]T
as

a |N| × 1 vector and introduce a new matrix SL = ssT . Then the binary constraint in (2.46f) can be

relaxed to:
SL

ii − si = 0, ∀i ∈ N

SL � 0
(2.57)

Constraint (2.46g) can be addressed in a similar manner. We order the transmission lines and

define vector t =
[
t1, · · · , ti, · · · , t|B|

]T
, where ti is the circuit breaker’s status on i-th transmission

line, and |B| is the number of transmission lines in the system. Let matrix variable St = ttT . Then

constraint (2.46g) can be replaced by:

St
ii − ti = 0, i = 1, 2, . . . , |B|

St � 0
(2.58)

Notice that (2.46f) and (2.46g) are replaced by (2.57) and (2.58) respectively which contain

only linear and semidefinite cone constraints. These constraints are known to be convex and are

conformed with the formulation of SDP [54]. For now, the only issue left is r3 (since we have

approximated the constraints in r1, r2 with convex ones). As long as we have a tight approximation

of probability constraint in (2.46d) by using linear constraint, the original problem formulation (P1)

can be relaxed into a SDP 1. In addition, it is known that several off-the-shelf efficient interior point

methods can be used to solve SDPs [78].

1Please note that all the other constraints are linear.
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Table (2.5) Matrix-wise Definitions

PG |N|-dimensional vector where PGi is the i-th element.
PL |N|-dimensional vector where PLi is the i-th element.
Pt |B|-dimensional vector collecting power flows on all lines.
A |N| × |B| oriented incidence matrix of the grid graph.
c |B|-dimensional vector collects power flow limits on all lines.
C |B| × |B| matrix equals diag(c).

Pmin
G |N|-dimensional vector where Pmin

Gi
is the i-th element.

Pmax
G |N|-dimensional vector where Pmax

Gi
is the i-th element.

Pmin
L |N|-dimensional vector where Pmin

Li
is the i-th element.

Pmax
L |N|-dimensional vector where Pmax

Li
is the i-th element.

PLmin |N| × |N| matrix equals diag(Pmin
L ).

PLmax |N| × |N| matrix equals diag(Pmax
L ).

λM |N|-dimensional vector where λMi is the i-th element.
Q |N|-dimensional vector where Qi is the i-th entry.

PR
k |N|-dimensional vector where Pk

Ri
is the i-th entry.

Approximation of Probability Constraint (for r3) We aim to deal with r3 in the next step,

based on the so-called scenario-based convex approximation [79]. In the first place, (2.46h) can be

rewritten as:

Pr

PLi − PGi − PRi +
∑
j∈Ni

Pti j ≤ 0,∀i ∈ N

 ≥ 1 − ε (2.59)

To briefly describe the general scenario-based convex approximation method, consider the proto-

type probability-constrained problem:

minimize
λ∈Λ

cTλ

subject to Pr {φ ∈ Φ : f (λ, φ) ≤ 0} ≥ 1 − ε
(2.60)

Here λ is the “design parameter” and φ denotes the “uncertainty factor” which is a random vari-

able. To be specific, in our problem (in (2.59)), the set of design parameters λ =
{
PGi , PLi , Pti j

}
,

uncertainty factor φ =
{
PRi

}
. In this case, notice that f (λ, φ) : Λ × Φ → Rn is convex in λ, for any

fixed value of φ ∈ Φ. Thus, the Assumption 1 in [79] is met. Then (2.60) can be approximated by
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the scenario-based approximation method as follows.

minimize
λ∈Λ

cTλ

subject to f (λ, φk) ≤ 0, k = 1, . . . ,M
(2.61)

where φ1, φ2, . . . , φM are M independently generated samples of φ. To apply the scenario-based

convex approximation method, we first independently generate M samples P1
Ri
, P2

Ri
, . . . , PM

Ri
, and

replace the chance-constraint (2.59) with the linear constraints as follows.

PLi − PGi − Pk
Ri

+
∑
j∈Ni

Pti j ≤ 0, k = 1, . . . ,M, ∀i ∈ N (2.62)

Notice that we select the constraints f (λ, φk) ≤ 0 in a random manner, thus the optimal solution λ̂

depending on the multi-sample extraction (φ1, φ2, . . . , φM) is actually a random variable. Therefore,

λ̂ can be a ε-level solution for a given random extraction and not for another. Let parameter β

bounds the probability that λ̂ is not a ε-level solution (feasible for problem in (2.60)). Thus, β

can be seen as the risk of failure associated to the randomized solution algorithm. It is said that

if M (specified by the following condition) random scenarios are drawn, the optimal solution in

the approximated problem achieves ε-level feasibility for the original probability-constrained one

with probability no less than 1 − β [79].

M ≥
⌈
2
ε

ln
1
β

+ 2nλ +
2nλ
ε

ln
2
ε

⌉
(2.63)

where nλ is the number of design variables, and d·e denotes the ceil function. Tailoring (2.63) to

our problem, the minimum sample size M̃ can be provided based on the theorem as follows.

Theorem 5 Given the power imbalance probability threshold ε, and the lower bound

M ≥ M̃ :=
⌈
2
ε

ln
1
β

+ 2(2|N | + |B|) +
2(2|N| + |B|)

ε
ln

2
ε

⌉

then the solution to the reformulated problem with constraint (2.62) is feasible for the original
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problem with constraint (2.59), with probability at least as 1 − β.

At this point, a convex-relaxed program of (P2) can be obtained. For simplification, we have some

new definitions in table 2.5.

Now we can express our computationally tractable reformulation as follows.

(P3) minimize
D

[
t1 , t2

]T

(2.64a)

subject to: (2.57) - (2.58) and (2.64b)

−c � Pt � c (2.64c)

−Ct � Pt � Ct (2.64d)

Pmin
G � PG � Pmax

G (2.64e)

PLmins � PL � PLmaxs (2.64f)

λM
T Q ≥ −t1 (2.64g)

0 � Q � PL (2.64h)

PL + PLmaxs − Pmax
L � Q � PLmaxs (2.64i)

− c − t21T � Pt � c + t21T (2.64j)

PL − PR
k − PG + APt � 0, k = 1, . . . ,M (2.64k)

where D := {PG,PL,Pt,Q, t, s,SL,St, t1, t2} contains all the decision variables (for convenience,

“�” is a component-wise operator in 21b-21k). For a practical use, (2.64k) can be replaced by the

following to reduce the number of constraints.

PL − PG + APt � min
k=1,...,M

PR
k (2.65)

where min
k=1,...,M

PR
k is the vector that its i-th element corresponds to the minimum value of PRi among

the M samples. Note that (P3) is a SDP relaxed reformulation for our proposed microgrid recon-

figuration. To solve (P3), a weighted-sum method based scheme is presented next.
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2.3.4 Multi-objective Optimization and Rounding Mechanism

Multi-objective programming is concerned with optimization problems seeking to optimize

more than one objective function simultaneously. A general form is casted as follows.

minimize C(u) = [c1(u), c2(u), . . . , cm(u)]T

subject to: u ∈ Ω
(2.66)

whereΩ = {u ∈ Rn : f (u) ≤ 0, l(u) = 0} denotes the feasible solution region. ci(u) represents the i-

th objective, u is the unknown variable, m is the number of the objectives, and f (u) and l(u) account

for the involving constraints (inequality and equality) in the problem. Note that, the objectives in

the problem have tradeoffs among them (otherwise it becomes a single-objective program), thus no

unique best decision exists. Specifically, the so-called Pareto optimal solution is used to represent

the set of “optimal” solutions of the multi-objective problem. A formal definition is introduced

below.

Pareto optimal solution: A feasible solution u∗ of the optimization program (2.66) with no

any another feasible solution u ∈ Ω satisfying ci(u) ≥ ci(u∗) for every index i, and for at least an

index j that c j(u) > c j(u∗) .

Solving the multi-objective problem (P3) We used the weighted-sum method in this paper

to solve (P3). It naturally transforms the vector of objectives into a scalar form, which can be posed

as follows.

minimize
u∈Ω

m∑
i=1

wic′i(u)

subject to
m∑

i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . ,m

(2.67)

where wi denotes the preference of the i-th objective, and c′i(u) is the normalized version of ob-

jective function ci(u). It has been proved that if ci(u), i = 1, 2, . . . ,m and Ω are all convex, then

applying the weighted-sum method in (2.67) can generate any Parteo solution of (2.66) [80].

Based on the facts above, the optimization problem (P3) can be converted in an alternative
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way as follows.

(P4) minimize
D

w1

N1
t1 +

w2

N2
t2

subject to: (2.64b) - (2.64k) and

w1 + w2 = 1, w1,w2 ≥ 0

where N1,N2 are the known normalization factors of objectives t1 and t2 respectively.

We see that (P4) is our final SDP-based microgrid reconfiguration formulation. However, in

the results of (P4), the binary variables s∗ and t∗ denoting the status of the circuit breaks might

have values between 0 and 1. Thus the next step is to convert these solutions to obtain the valid

Boolean status, often referred to as “rounding”.

Variable Threshold Rounding Regard s∗ and t∗ as the values of s and t in the optimal

solution of (P4) respectively. Let sr and tr represent the solutions after rounding. Then we adopt a

simple rounding mechanism as follows.

We drop the obtained matrices
(
SL

)∗
and

(
St)∗, keeping only the vectors s∗ and t∗, and round

their elements to 0 or 1. It is stated as:

sr
i =sign(s∗ − µ), i = 1, 2, . . . , |N|

tr
i =sign(t∗ − µ), i = 1, 2, . . . , |B|

(2.68)

where µ ∈ (0, 1) is a predefined threshold and the function sign is:

sign(y) =


+1, y ≥ 0;

−1, y < 0.
(2.69)

After the rounding process for the breakers status variables s and t, we can plug them into (P4) and

run the optimization again to obtain the rest of the decision variables inD.
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Figure (2.12) Example of 7-node Test Feeder

2.3.5 Performance Evaluation

In this section, a modified 7-node test feeder (shown in Fig. 2.12) [29] was considered to

study the performance and properties of the proposed approach. The grid reconfiguration problem

formulated in (P4) was solved by the package CVX ([55]) in MATLAB. The power imbalance

probability is set to ε = 0.01(1%), and the parameter β in theorem 2 is 0.05. According to theorem

aforementioned, approximately at least 2183 samples are required. In this study, we used 5000

samples of renewable energy generation for each PRi at i-th node. The renewable energy generation

PRi is modeled as a Gaussian distributed random variable for each node i following distribution

N(2, 0.2). The threshold µ is set to 0.6. The matrix A can be formed based on the connectivity

topology in Fig. 2.12. The other parameter settings are illustrated in the ensuing context. We first

study an initial case with the parameter setting in TABLE 2.6. Fig. 2.13 shows the pareto points

generated from the solution of (P4). The average number of iterations for the interior-point solver

of CVX were 20 and the computation time was 1.2 seconds on a machine with Intel Duo Core

1.8GHZ. For the system operator, if the objective of total loads served has higher preference than

the reconfiguration operation reliability, then the points around the right lower corner of Fig. 2.13

might be good choices. In contrast, if the operation reliability is seen more important than the total

loads served, then the points around the left upper corner become right options.

TABLE 2.7-2.8 illustrate the best solutions obtained by SDP approach for minimizing the
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Table (2.6) Parameter Setting of 7-node test feeder (initial case)

Parameter Initial Setting
c [2, 2, 2, 2, 2, 2]T (kW)

Pmin
G [0, 0, 0, 0, 0, 0, 0]T (kW)

Pmax
G [1, 0, 2, 6, 6, 6, 6]T (kW)

Pmin
L [2, 2, 2, 2, 2, 2, 2]T (kW)

Pmax
L [5, 5, 5, 5, 5, 5, 5]T (kW)
λM [1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.1]T
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Figure (2.13) Pareto points of reconfiguration problem with initial setting

negative of total loads served (t1) and the negative of reconfiguration operation reliability (t2),

respectively under the initial setting case. From TABLE 2.7-2.8, it can be observed that the tradeoff

between objectives of total loads served and reconfiguration reliability do exist. In particular, the

value of t2 in TABLE 2.7 is extremely close to zero, which means at least one branch almost

reaches its power flow limit. This verifies our concern that if only the objective of total loads

served is considered, the power flows in branches might reach their limits which will significantly

increase the risk of power-line fault/outage.

Table (2.7) Best Solution for the negative of total loads served

Results Min. t1

PG [1.00, 0.00, 1.79, 5.79, 5.80, 5.49, 5.47]T

PL [4.27, 5.00, 5.00, 5.00, 5.00, 5.00, 5.00]T

Pt [−2.00,−1.92,−1.90,−1.90,−1.12,−1.13]T

[t1, t2] [−18.77, 1.02E-08]T
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Figure (2.14) Pareto points of reconfiguration problem (case 2)

Table (2.8) Best Solution for the negative of reconfiguration reliability

Results Min. t2

PG [1.00, 0.00, 2.00, 5.12, 5.12, 5.15, 5.14]T

PL [2.10, 2.00, 3.55, 5.00, 5.00, 5.00, 5.00]T

Pt [0.17,−0.17,−0.17,−0.17,−0.17,−0.17]T

[t1, t2] [−13.19,−1.83]T

The effect of changing parameter Pmax
G For investigating the impact of variation of param-

eter Pmax
G on the pareto points, we consider the second test case. We use the same parameters as

in the initial case except that Pmax
G = [1, 0, 2, 4, 4, 4, 4]T . The resulting solution is depicted in Fig.

2.14. We find that the value of t1 in the right lower extreme point is higher than its counterpart in

Fig. 2.13. It implies that the best solution for total loads served in case 2 is inferior to the best

solution in the initial case. This phenomenon can be expected since the parameters of maximum

power generations of DGs in node 4 − 7 have been reduced in case 2.

The effect of changing parameter Pmin
L Fig. 2.15 illustrates the pareto optimal points ob-

tained through various values of vector Pmin
L . Lmin=1.5 means the minimum load required for

each node is 1.5 kW (every component of Pmin
L equals 1.5). We first note that the generated points

belong to a same pareto front. This is because in these scenarios, the amount of minimum loads

required is relatively small comparing to the power generations. For each node, the “actual” load

supplied can always be greater than the minimum limit (Lmin=3.0). Thus, cases with Lmin=2.0,
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Figure (2.15) Comparison of Pareto points with different values of Pmin
L

2.5, 3.0 are within the solution set of Lmin=1.5. Fig. 2.15 also implies that when each node wants

more energy for its minimum consumption, the reconfiguration operation would be less reliable.

Another thing can be expected is that, for example, if node 1 and node 2 do not have enough

generations to satisfy their own minimum loads and the lines connecting node 1 and node 2 with

the rest of the network do not have enough capacity to transmit power for satisfying at least their

minimum loads, these two nodes might isolate themselves from the network 2. Due to space

limitation, we omit the detailed results on this scenario.
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Figure (2.16) Comparison of Pareto fronts with different values of Pmax
L

2The breakers status are all obtained to be closed in this paper.
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The effect of changing parameter Pmax
L In a similar way as section VI-B, we perform tests

on different values of vector Pmax
L . In Fig. 2.16, we notice that with larger value of maximum load

needed for each node, the pareto front is lower. We observe that if the system can supply at least

some nodes with their maximum loads wanted (most satisfied situation for the nodes), the total

objective value with larger Lmax is superior to its counterpart with smaller one.
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Figure (2.17) Comparison of Pareto fronts with different variances of RES generation

The effect of RES generation uncertainty We also study the effect of RES generation

uncertainty on the Pareto front. The variances of the renewable energy generation PRi for each

node i are set to 0.2, 0.15, 0.05, 0.002 (the mean value is kept the same). The other settings are the

same as the initial case in TABLE 2.6. The simulated results in Fig. 2.17 show that larger variance

of RES generation results in less efficient reconfiguration operation. The reason for that might be as

follows. If the variance of RES generation is large, the optimal operation would be “conservative”

to use RES (since the algorithm is “very unsure” on the RES generation and its amount might be

underestimated), which will decrease the total efficiency. Nevertheless, the proposed algorithm

would rather sacrifice the efficiency to reduce the probability of power imbalance.

The level of RES penetration in total power generation In this section, we assess the

effect of changing the level of RES penetration in each node. To this end, we fixed the maximum
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Figure (2.18) Comparison of Pareto fronts with various levels of RES penetration

power generation capacities of the 7 nodes to [4, 3, 5, 7, 7, 7, 7], respectively. The statistical means

of RES generation are set to 0.2, 1, 2, 3, and the maximum conventional DG generation vector

Pmax
G is changed accordingly. The variances are set to 5% of their means. As shown in Fig. 2.18,

an interesting fact is that as the level of RES penetration grows, the efficiency measured by the total

objectives decreases. In other words, in these reliability-concerned microgrid restoration problems,

the proposed algorithm might prefer more “reliable” power sources (i.e. conventional DG) to RES.
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Figure (2.19) Comparison of Pareto points of the SDP-based method and NSGA-II
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Comparison of the SDP-based method and NSGA-II Finally, in Fig. 2.19, we do com-

pare our proposed SDP-based approach with a widely used multi-objective evolutionary algorithm,

called Nondominated Sorting Genetic Algorithm II (NSGA-II) [81] on the initial case (described

in TABLE 2.6). We test NSGA-II with population size 100 and obtain the pareto fronts at gen-

eration 100, 500, and 1000 respectively. It is observed in Fig. 2.19 that the SDP-based method

generate slightly less number of solutions than NSGA-II. Nevertheless, our proposed method has

better solutions in general (also reaches two extreme points). And it avoids the problem of the

clustering of the solution points appearing in NSGA-II.

Summary A novel multi-objective microgrid reconfiguration scheme was proposed in this

chapter. To overcome the difficulties in solving the resultant optimization problem, the convex

relaxation techniques and the scenario approximation approach were adopted to obtain a compu-

tationally tractable SDP reformulation. The generated Pareto-optimal points from the SDP re-

formulation in various tests illustrated its correctness and meliority in providing critical planning

information to system decision-makers.
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PART 3

IN-SITU SEISMIC TOMOGRAPHY COMPUTING

In this part, we propose several frameworks for in-situ data computing in seismic imaging sys-

tem. In the first, we develop two ADMM-based decentralized algorithms, one is synchronous and

the other is asynchronous, which is more fault-tolerant. Next, a gradient-based method has been

proposed, which reduces the computational complexity of the ADMM-based algorithm. Consid-

ering the characteristics of seismic imaging application, we design a platform with asynchronous

updating manner and broadcasting communication pattern, which is most suitable in real-world

seismic tomography computing system.

3.1 ADMM-based Decentralized Approach

We propose two in-situ seismic imaging methods on decentralized large-scale seismic imag-

ing system based on the technique of ADMM. They enjoy the nature of distributed and fully de-

centralized computing and gossip between neighbors only. One is synchronous and the other is

asynchronous. They exhibit the following merits: (i) Simple implementation and no data fusion

center or coordinator required; (ii) Close to “optimal” (centralized algorithm is considered as the

benchmark) imaging quality even in sparse networks with severe packet loss, which are scenarios

often occur in volcano monitoring; (iii) Guaranteed linear rate approaching to consensus optimal

solution for every node; (iv) Lower communication cost comparing to other potential distributed

methods in the literature.

3.1.1 Synchronized Distributed Seismic Tomography Algorithm-sDSTA

Problem Formulation In this section, we give the formal formulation of decentralized seis-

mic tomography computation problem. We assume the event location and ray tracing steps are

completed. Let t∗i = [t∗i1, t
∗
i2, . . . , t

∗
iJ]T , where t∗i j is the travel time experienced by node i in the j-th
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event. The travel time of a ray is the sum of the slowness in each block times the length of the ray

within that block, i.e., t∗i j = Ai[ j, h] · s∗[h] where Ai[ j, h] is the length of the ray from the j-th event

to node i in the h-th block and s∗[h] is the slowness of the h-th block. Let t0
i = [t0

i1, t
0
i2, . . . , t

0
iJ]T be

the unperturbed travel times where t0
i j = Ai[ j, h] · s0[h]. We can thus have the following compact

form:

Ais∗ − Ais0 = Ais (3.1)

Let ti = [ti1, ti2, . . . , tiJ]T denotes the travel time residual such that ti = t∗i − t0
i , equation (3.1) is

equivalent to:

Ais = ti (3.2)

We now have a linear relationship between the travel time residual observations, ti, and the

slowness perturbations, s. Since each ray path intersects with the model only at a small number

of blocks compared with n, the design matrix, Ai, is sparse. The seismic tomography inversion

problem is to solve a linear system of equations:

As = t (3.3)

where A ∈ Rm×n, t ∈ Rm and s ∈ Rn is the vector to be estimated. This system is usually organized

to be over-determined (let the number of rays (the number of measurements) m is larger than n)

and the inversion aims to find the least-squares solution s such that,

s = arg min
s
‖ As − t ‖2 (3.4)

Since vector t is usually noise-corrupted, the system is inconsistent. In consequence, one

needs to solve a regularized least-square problem (the regularization term can vary, we use

Tikhonov regularization here since it is the most popular one in seismic inversion problem):

min
s

1
2
‖As − t‖22 + λ2‖s‖22 (3.5)
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From (3.2), we can equivalently express (3.126) as follows.

min
s

p∑
i=1

ci(s) (3.6)

where p sensor nodes are considered in the system, ci(s) = 1
2‖Ais − ti‖

2
2 + λ2

i ‖s‖
2
2. The i-th sensor

node has the knowledge of Ai and ti only. We can see (3.6) is meant a problem that each sensor

node jointly optimizes (using their private local functions ci’s) to reach a consensus on the global

common interest s that minimizing the total cost. Notice that minimizing each local function ci

respectively is clearly a sub-optimal solution since only partial information is utilized and the

result would be inevitably biased.

Algorithm Desgin To fit the generic two-block ADMM framework, a natural reformulation

of (3.6) can be posed as:

min
{si}

p∑
i=1

ci(si)

s.t. si = s j, j ∈ Ni,∀i

(3.7)

where si is the local estimate of the global variable s at i-th sensor node, and Ni is the set of

neighbors of node i. The constraints in (3.7) are consensus constraints that lead the neighbors to

have agreement on the decision variable s. However, in the constraints of (3.7), the estimate si is

directly coupled with neighboring nodes, a parallel processing of the optimization problem is not

possible.

To overcome this issue, we introduce auxiliary variables qi j, then the constraints in (3.7) are

decomposed equivalently into the following form (e.g. see [83]):

min
{si,qi j}

p∑
i=1

ci(si)

s.t. si = qi j, s j = qi j, j ∈ Ni,∀i

(3.8)

Let k be the iteration index and the generic ADMM solution of (3.8) consists of updates in
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(3.10a)-(3.10d). Denote Lρ as the augmented Lagrangian of optimization problem (3.8) given by:

Lρ(si,qi j, yi j, zi j) =

p∑
i=1

{
ci(si) +

∑
j∈Ni

{yT
i j(si − qi j)+

zT
i j(s j − qi j) +

ρ

2
‖si − qi j‖

2
2 +

ρ

2
‖s j − qi j‖

2
2}
} (3.9)

where ρ > 0 is a predefined parameter. Note that yi j and zi j are the Lagrangian multipliers for the

first and second constraint in (3.8), respectively.

sk+1
i = argmin

{si}

Lρ(si,qk
i j, y

k
i j, z

k
i j) (3.10a)

qk+1
i j = argmin

{qi j}

Lρ(sk+1
i ,qi j, yk

i j, z
k
i j) (3.10b)

yk+1
i j = yk

i j + ρ(sk+1
i − qk+1

i j ) (3.10c)

zk+1
i j = zk

i j + ρ(sk+1
j − qk+1

i j ) (3.10d)

(3.10a)-(3.10d) are over every node i and all its neighbours j ∈ Ni. Typically, each node i up-

dates its variables in (3.10a)-(3.10d) and performs only local communications with its immediate

neighbors.

Notice that the generic ADMM in (3.10a)-(3.10d) requires sensor node i to update variables

{si,qi j, yi j, zi j} in each iteration, where each variable is the same size as si. It is evidently a huge

burden when the size of variable si is large. Fortunately, a simplified efficient version for our

problem can be obtained as follows (only needs to transmit si for sensor i).

sk+1
i =

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1(
AT

i ti − uk
i + ρ′

(
|Ni|sk

i +
∑
j∈Ni

sk
j

))
(3.11a)

uk+1
i = uk

i + ρ′
(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

)
(3.11b)

where |Ni| represents the cardinality of set Ni. ρ′ = ρ/2.

Theorem 6 For the problem in (3.8), the updates of (3.10a)-(3.10d) are equivalent to (3.11a)-
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(3.11b).

Proof 3 The goal here is to reduce the original ADMM steps (3.10a)-(3.10d) to (3.11a)-(3.11b).

To this end, we first focus on (3.10b). A closer look reveals that a closed-form solution of (3.10b)

can be obtained as follows:

qk+1
i j =

1
2ρ

{
ρ(sk+1

i + sk+1
j ) + (yk

i j + zk
i j)

}
(3.12)

Adding both sides of (3.10c) and (3.10d) yields:

yk+1
i j + zk+1

i j = (yk
i j + zk

i j) + ρ(sk+1
i + sk+1

j ) − 2ρ · qk+1
i j (3.13)

After plugging (3.12) into the right side of (3.13), we obtain the following result:

yk+1
i j + zk+1

i j = 0 (3.14)

Consequently, by plugging (3.14) back into (3.12), we have

qk+1
i j =

1
2
(
sk+1

i + sk+1
j

)
(3.15)

We now re-express (3.10a) removing all the independent items with respect to variable si:

sk+1
i = argmin

{si}

{
ci(si) +

∑
j∈Ni

(yk
i j)

T si +
ρ

2

∑
j∈Ni

‖si − qk
i j)‖

2
2

}
= argmin

{si}

{
ci(si) +

∑
j∈Ni

(yk
i j)

T si +
ρ

2

∑
j∈Ni

‖si −
1
2

(sk
i + sk

j)‖
2
2

} (3.16)

Let uk
i =

∑
j∈Ni

(yk
i j). Since function ci is differentiable with respect to si, (3.16) is equivalent to solving

the following equation:

∇ci(sk+1
i ) + uk

i + 2ρ|Ni|sk+1
i − ρ′

(
|Ni|sk

i +
∑
j∈Ni

sk
j

)
= 0 (3.17)
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where ∇ denotes the gradient of the function. Plugging ci(sk+1
i ) = 1

2‖Aisk+1
i − ti‖

2
2 + λ2

i ‖s
k+1
i ‖

2
2 into

(3.17) yields the following equation, which becomes (3.11a) immediately.

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)
sk+1

i = AT
i ti − uk

i + ρ′
(
|Ni|sk

i +
∑
j∈Ni

sk
j

)
(3.18)

Now we need to derive the updating equation for ui. Substituting (3.15) into (3.10c), we can

have (consider uk+1
i ):

uk+1
i =

∑
j∈Ni

(yk+1
i j )

=

{∑
j∈Ni

(yk
i j)

}
+
ρ

2

(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

)
= uk

i +
ρ

2

(
|Ni|sk+1

i −
∑
j∈Ni

sk+1
j

)
(3.19)

Define ρ′ = ρ/2, then (3.11b) follows. Interested readers are referred to [84] and [85] for similar

derivations of the average consensus problem and the sparse linear regression problem, respec-

tively.

Note that obtaining sk+1
i in (3.11a) is solving a linear system of equations. Theoretically, we

can use any solver while considering the property of tomography inversion problem, we adopt

Bayesian Algebraic Reconstruction Technique (BART) method in this paper [86].

A closer look into (3.11a) and (3.11b) reveals that for node i, the information needed is only

the summation of its neighbors’s current estimates sk
j, j ∈ Ni. Thus a natural implementation is

that: in every iteration, all the nodes broadcast their current estimates to all their neighbors. After

receiving all the neighbors’s estimates, the sensor nodes can perform local updates in parallel.

When all the nodes finish their computations, they will broadcast their new estimates again. The

idea is summarized in Algorithm 1.

Note that in step 5 of Algorithm 1, the minimization of sk
i is not carried out exactly. In this sit-

uation, the proposed ADMM-based algorithm will still converge provided certain mild conditions

[87](pp.26). More importantly, solving the minimization of sk
i to a very high accuracy, especially at

the initial iterations, may not be worthwhile. The reason is two-folds: first, at the initial iterations

(communications), node i has limited information (even no information) about the whole structure
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Algorithm 3 Synchronized Distributed Seismic Tomography Algorithm (sDSTA)
1: Initialization: Input Ai, ti for sensor i, ∀i.

Initialize s0
i = 0, u0

i = 0, ∀i. Set parameters ρ′ > 0 and λi, ∀i.
2: At each iteration k, (k = 0, 1, . . .), every sensor i broadcasts its sk

i to its neighbors j ∈ Ni.
3: Once every head i receives all its neighbors’s estimates,

do the following local updating.
4: Compute uk

i based on (3.11b).
5: Update sk+1

i by running a finite number of BART iterations on (3.11a), with initial value sk
i .

6: When all the nodes finish their primal updates sk+1
i ,∀i,

broadcast them to all neighbors, and repeats step 4-6
until certain stopping criterion has been satisfied.

due to its nature of local communication with immediate neighbors. In this situation, the solution

si may has a large deviation from the true solution no matter how hard we try for the solution. In

addition, solving sk
i is an iterative process and might require a large amount of time (iterations) to

have a solution with very small relative error.

Regarding the communication cost of this proposed scheme, we see that it depends on the

network topology. The quantitive relation can be described in theorem 2.

Theorem 7 The communication cost of sDSTA for each node is o(k) and the total communication

cost is at most o(kN(N − 1)) (complete network) and can be as low as o(2kN) (ring network) with

respective to network size N and communication round k.

In addition, the convergence speed of the proposed iterative method also depends on the

communication topology. In general, network with larger average degree is expected to converge

faster. We will discuss it in detail in Section 6.

3.1.2 Asynchronous Distributed Seismic Tomography Algorithm-aDSTA

We can recall that the updating in sDSTA requires each sensor node to wait until receiving

the solution of its slowest neighbor. While in some cases, it might be desirable to update with less

coordination and in an asynchronous fashion such that every node can independently determine its

own actions. In this section, we provide a solution methodology to address this problem.
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Component 1: Adaptive Communication One major motivation of this adaptive commu-

nication scheme is that: in sensor network applications such as our distributed seismic tomography,

communication is the most energy-consuming component. In each iteration, sensor nodes need to

broadcast their local estimates si’s, which is a long vector (e.g. in real data of Mount St.Helens,

the size could be around 768,000). Thus it is highly demanded to design a mechanism that can

reduce the communication overhead for the proposed distributed algorithm [88]. Specifically, as-

sume a coordinator exists requiring all the nodes to perform m iterations. However, some node

may already owns a good enough solution in less than m iterations, and its value does not change

much for several successive iterations. In this situation, it would be a waste if these nodes con-

tinue to communicate and update. To address this problem, an adaptive communication scheme is

proposed in the following context.

Each sensor node should be able to determine if it needs to communicate and computing. In

each iteration, each node will compute an index which depends on the relative-updates. If this

index is greater than a threshold, then the node will stop grabbing updates of its neighbors.

Proposed Scheme: For sensor node i, if the following two conditions satisfied:

‖sk
i − sk−1

i ‖

‖sk−1
i ‖

≤ ϕi and
∥∥∥uk

i − uk−1
i

∥∥∥ ≤ µi (3.20)

then cti = cti + 1, otherwise cti = 0, where cti is a counter of node i and define Ei as a threshold for

node i. When cti > Ei, sensor node i stops updating, which also means that it stops querying the

estimates from its neighbors. When node i stops updating, its neighbors can still ask for the latest

value of node i to improve their accuracy. Notice that in this situation, once node j obtains the

last update of node i, it will not need more transmissions from i since the estimate of node i will

not change. Note that the stopping criterion (3.20) is different from those of conventional ADMM

methods where all the sensors shall stop computations at the same time using a common stopping

criteria and common primal and dual tolerances. Stopping criteria (3.20) allows a sensor i to stop

its computation asynchronously and independently from other sensors. However, these criteria

themselves are insufficient for asynchronous implementation. Synchronization is still required for
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dual and primal variable updates at iteration k + 1 due to their dependencies on values of k-th

iteration.

Algorithm 4 Asynchronous Distributed Seismic Tomography Algorithm (aDSTA): For sensor
i

1: Initialization: Input Ai, ti.
Initialize s0

i = 0, u0
i = 0, cti = 0. Set parameters ρ′ > 0, ϕi, µi, Ei and λi.

2: while criterion cti > Ei is not satisfied do
3: At new iteration k + 1, sensor i selects a neighbor j

according to the probability distribution in (3.21).
4: Sensor i contacts j to obtain j’s current value s j.
5: Compute uk

i based on (3.11b) with replacing∑
j∈Ni

s j by |Ni| · s j.

6: Update sk+1
i by running a finite number of BART iterations on (3.18) with replacing

∑
j∈Ni

s j

by |Ni| · s j.
Use sk

i as the initial guess.
7: When sensor i finishes its primal updates sk+1

i , go to the following:
8: if criterion in (3.20) is satisfied then
9: cti = cti + 1

10: else
11: cti = 0

Component 2: Randomized Gossiping To ensure full asynchronous implementation, the

update of each node should be performed in a randomized manner (otherwise there must be some

predefined order for updating). To this end, we use the doubly stochastic matrix, T ∈ Rp·p for

deciding the communications among sensors, where Ti j is the probability that a sensor i contacts

another sensor j at any iteration. In a mathematical form, we can have

Ti j =


h(di j), j ∈ Ni;

0, otherwise.
(3.21)

where di j, { j ∈ S : j ∈ Ni} is the distance between sensor i and j. S is the set of sensors. h(·) is a

function of di j. At iteration k + 1, sensor i may need to ask only one of the neighbors j to send its

estimate to i, unless i’s stopping criteria are already satisfied, whereas sensor j can be contacted by
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more than one sensor, even when both of j’s stopping criteria are satisfied.

Observation: In seismic tomography, each station has the ray information coming from the

events to the station. Thus, the closer the two stations are, the higher the similarity between their

obtained ray information is. Based on this observation, we can design the probability Ti j in the

following way: At each iteration, for sensor i, the probability of selecting its neighbor sensor j

is proportional to their distance di j. Since we give more weight to the neighbor that contributes

more new information to sensor i, our proposed scheme is expected to converge faster than the

method selecting its neighbor with uniform distribution (since the unequal weighting might help

the sensors reach consensus).

The communication scheme for sensor i can be described as follows. When the conditions

in (3.20) are not satisfied, sensor i selects a neighbor j according to the probability distribution of

Ti j. Upon contacting j, sensor i pulls the current value of s j from j. During the computation, first

update dual variable ui by replacing
∑

j∈Ni

s j with |Ni|s j. Second, for updating primal variable si, in

the right side of (3.18), the item
∑

j∈Ni

s j is replaced by |Ni|s j. After updating the primal variable si,

sensor i will again do the similar randomized communication process for receiving new s j. Sensor

i repeats the above steps until conditions in (3.20) are already satisfied. The algorithm with this

proposed communication scheme is illustrated in Algorithm 2.

Note that the set of neighbors Ni of sensor i in fact contains the sensors within the commu-

nication range of node i. That is, if all the sensors except sensor i in the network are within the

communication range of sensor i, then they are all considered as neighbors of sensor i.

3.1.3 Convergence Analysis of sDSTA and aDSTA

Convergence rate is a critical factor in designing our proposed methods since faster conver-

gence means less communication rounds and more bandwidth saving. In this section, we exploit

markov chain and spectral theory to derive the convergence speed of sDSTA and aDSTA. We find

that both methods can achieve linear convergence rate in theory.

Theorem 8 The proposed sDSTA and aDSTA methods converge to an optimal solution at a linear

rate O(αk) for some α < 1, in terms of the per-node communications k.
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In the following section, we will discuss in detail the proof of Theorem 1 in the convergence

analysis. Our analysis tool is similar to that in [84] [III.A] where it considers the problem of

average consensus, which is different from our seismic tomography problem defined in (3.126).

The attack plan is construct a linear system capturing the dynamics of the solution and utilize the

properties of markov chain (described in Lemma 1 and 2) to obtain the convergence rate [89].

Convergence Rate Analysis In order to obtain the convergence rate of proposed aDSTA

framework, The first step is to describe the linear systems described in aDSTA (we will see that

sDSTA is a special case under this framework). To this end, we first focus on the state update for

sensor i.

Recall that in aDSTA, the original updating equation for sk+1
i in (3.18) is modified by replacing∑

j∈Ni

s j with |Ni| · s j, for some random neighbor j. According to the distribution in (3.21), the

expected value of |Ni| · s j is:

|Ni| ·
∑
j∈Ni

Ti js j (3.22)

At this point, we can rewrite the updating of sk+1
i in aDSTA as follows.

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)
sk+1

i − ρ′|Ni|sk
i

− ρ′|Ni| ·

{∑
j∈Ni

Ti jsk
j

}
+ uk

i − AT
i ti = 0

(3.23)

The updating rule for sk
i can be obtained accordingly:

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)
sk

i − ρ
′|Ni|sk−1

i

− ρ′|Ni| ·

{∑
j∈Ni

Ti jsk−1
j

}
+ uk−1

i − AT
i ti = 0

(3.24)

Also, (3.11b) can be rewritten as:

uk+1
i = uk

i + ρ′|Ni|sk+1
i − ρ′|Ni ·

{∑
j∈Ni

Ti jsk+1
j

}
(3.25)
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Combining the previous three equations (3.23)-(3.25) yields:

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)
sk+1

i =(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)
sk

i + 2ρ′|Ni| ·

{∑
j∈Ni

Ti jsk
j

}
− ρ′|Ni|sk−1

i − ρ′|Ni| ·

{∑
j∈Ni

Ti jsk−1
j

} (3.26)

In a clearer form, the state update for sensor i can be expressed as:

sk+1
i = sk

i + 2ρ′|Ni| ·
(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1
·{∑

j∈Ni

Ti jsk
j

}
− ρ′|Ni|

(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1
sk−1

i

− ρ′|Ni| ·
(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1
{∑

j∈Ni

Ti jsk−1
j

} (3.27)

Now the matrix form for the linear system in aDSTA is:

E
[
vk+1

]
= E

[
M

]
· vk (3.28)

M =

 F G

I 0

 (3.29)

where F, G, I and 0 are all p× p dimensional block matrices respectively. vk+1 =
[
s̄k+1, s̄k

]T
, where

s̄k stacks all the sensor solutions at iteration k. For notation convenience, we drop E
[
·
]

in (24) in

the later context.

Regarding matrix F, the entry Fii = I and entry (i, j) is: Fi j = 2Ti jPi. With respect to matrix

G, we have Gii = −Pi, Gi j = −Ti jPi, where Pi = ρ′|Ni|
(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1
.

The state update (24) is valid for k > 0. Notice that in aDSTA we initialize s0
i = 0,u0

i =

0,∀i. By plugging in these initial conditions into (3.23), it is shown that s1
i =

(
AT

i Ai + (2λ2
i +

2ρ′|Ni|)I
)−1

AT
i ti.
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Thus the initial state vector v1 can be expressed as:

v1 =
[
R1, · · · ,Rp, 0, · · · , 0

]T
(3.30)

where Ri =
(
AT

i Ai + (2λ2
i + 2ρ′|Ni|)I

)−1
AT

i ti.

Before approaching our final claim, we state two properties of matrix M, which will help

derive the convergence rate of proposed algorithms.

Lemma 1 Matrix M has an eigenvalue equals 1.

Proof 4 First, in the second row of matrix M, the summation is I, thus in the lower part, the

summation of every row is 1. Now we look at the upper part, considering the facts in about

matrices F and G, the summation of i-th row can be expressed as:

Fii + Gii +
∑
j∈Ni

Fi j +
∑
j∈Ni

Gi j

=I − Pi +
∑
j∈Ni

2Ti jPi −
∑
j∈Ni

Ti j · Pi

=I − Pi +
∑
j∈Ni

Ti jPi

(3.31)

Recall that matrix T is defined as a doubly stochastic matrix yielding
∑

j∈Ni

Ti j = 1. Hence the above

equation equals I. Consequently, both the upper and lower part of matrix M satisfies the condition

that the summation of each row is 1. Based on this fact, it is straightforward to show Lemma 1 (the

corresponding eigenvector contains scaling factor for each element in a row).

Lemma 2 There exists a selection of value ρ′ and matrix T such that the second largest eigenvalue

of matrix M is smaller than 1.

Proof 5 Based on Lemma 3.51, we can construct the corresponding left and right eigenvectors

denoted by l1
v and r1

v , respectively (also scale the eigenvectors such that l1
vr1

v=1). Next, we need

to find a limiting point of the state transition matrix. From the definition, we can have l1
vM =

l1
v ,Mr1

v = r1
v . Consequently,

lim
k→∞

Mk = r1
v l1

v
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The above fact implies that r1
v l1

v = M∞ is a limiting point [89]. Akin to the techniques used in [90],

it can be shown that once the following condition is satisfied, all the other eigenvalues of matrix

M is less than 1. Thus Lemma 2 is verified.

‖M −M∞‖2 < 1 (3.32)

Here ‖ · ‖2 is the spectral norm of a matrix.

Since the state transition matrix M has the two above properties, based on the classical con-

vergence analysis in [89], the convergence rate can be obtained as:

‖vk+1 − v∞‖2 6 Cσk−J+1
2 (3.33)

where C is a constant, J is the size of the largest Jordan block of M. σ2 denotes the second largest

eigenvalue of matrix M. Theorem 1 is thus verified.

Observation: Recall that in (3.22), if we assign the probability Ti j in a uniform distributed

manner such that:

Ti j =
1
|Ni|

(3.34)

Then we have,

|Ni| ·
∑
j∈Ni

Ti js j =
∑
j∈Ni

s j (3.35)

This implies that in this case the convergence rate of aDSTA is the same as sDSTA in expectation.

Considering the convergence rate in (3.33), we see that the second largest eigenvalue of matrix

M is an important factor, which depends on the value of ρ′ and the selection of matrix T. In fact,

besides our T matrix selection rule in III-B (given a certain feasible value ρ′), another strategy is

to minimize σ2 by solving the following optimization problem (akin to the fastest mixing Markov

chain problem [91]):

minimize
t,T

t

subject to − tI �M(T) −M∞ � tI
(3.36)
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Here M(T) indicates the transition matrix M is a function of T. M∞ is a limiting point of M. The

symbol � in A � B means matrix B − A is positive semidefinite.

3.1.4 Performance Evaluation

In this section, we evaluate the performance and characteristics of sDSTA and aDSTA re-

spectively. Our experiments are performed through MATLAB and network emulators [92]. In the

performance study, both synthetic and real seismic imaging data sets are tested.
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Figure (3.1) Convergence behavior of sDSTA.

Synthetic Data (2-D Model) The performance analysis here is based on the data set gener-

ated using code in [93]. We create a 2-D seismic tomography test problem with an N · N domain,

using n sources located on the right boundary and p receivers (seismographs) scattered along the

left and top boundary. The rays are transmitted from each source to each receiver. We know that

the regularization parameter λ depends on the application and data sets, which means for specific

scenario, λ is chosen based on the understanding and knowledge of the application. For simplicity,

we fix λ2 = 1 and λ2
i = 1/p in our experiments. The parameter ρ′ is set to be 0.5.

Convergence behavior of sDSTA We first study the performance of sDSTA with a case

that {N = 16 (tomography resolution is 16 × 16), n = 64, p = 32}. The associated communicate

network is a complete network (every node can communicate with all the other nodes) and there is
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Figure (3.2) Seismic Tomography Comparison (noisy data). Centralized solution in (b) is obtained
by running 50 iterations of BART. (c) is the tomography in Node 1 after 50 message communica-
tions assumed in a complete network. (d) is Node 1’s tomography after 100 message communica-
tions assumed in a ring network.

no noise in the data. Note that in this scenario, the size of matrix A is 2048 × 256 and the size of

each sub-matrix Ai is 64 × 256.

In Figure 3.1, we plot the error (measured by ‖s − st‖2, st refers to the ground truth) and

residual (measured by ‖As − t‖2) for sensor 1 - sensor 8 (first 8 nodes) in the system. It shows that

these 8 nodes finally reach consensus after around 25 iterations. It is worth noting that one iteration

here means one message communication for every node. For the seismic tomography application

investigated in this paper, our key concern is to find a communication efficient algorithm since in

this problem communication for each node is much more expensive than computation within each

node.
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Figure (3.3) sDSTA vs aDSTA. (a) is the relative error plot. (b) shows the objective value curves.
(c) & (d) are tomography results.

Tomography results of sDSTA Now we consider a larger data size model with {N = 32

(tomography resolution is 32×32), n = 128, p = 64}. A 5% gaussian noise is added into data vector

t. The tomography results are depicted in Figure 3.2. Since noise is included, both centralized

and sDSTA results are less accurate comparing to the noiseless case. Nevertheless, the outline

of the fault zone (the brown part in (a)) is almost recovered. Another interesting point is that

when connectivity ratio of the communication network is low (as the ring network in (d)), more

communications among the neighbors are required in order to achieve similar results as the high

connectivity ratio ones (e.g. (c)). This validates our claim in the last paragraph of Section 3.3.

Performance comparison: sDSTA vs aDSTA. We study a case with {N = 32, n = 256,

p = 128}. Noise level is the same as the previous example. A random communication network

is created and on average each sensor node has only 3 neighbors. This setting is to emulate the
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situation in real that the sensor network is widely spread in the field to cover a large area and for

each sensor node, there are very few number of nodes are within its communication range.

In Figure 3.3, we compare the performance of two proposed algorithms sDSTA and aDSTA.

In particular, though the tomography is a bit worse, the convergence speed of aDSTA is shown to

be close to sDSTA (in (a)-(b)). This observation is conform to the theoretical analysis in Section

5.2. In fact, if the application has a base station or a coordinator, and is not very real-time sensitive,

synchronized-based sDSTA will meet the requirement. In other situations, aDSTA might be more

suitable.

Remark 3 We conclude that aDSTA can provide comparable tomography solution with sDSTA

and has less communication and coordination.

In the later context, we will focus on the performance evaluations of aDSTA.
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Figure (3.4) Performance of aDSTA with different strategies of choosing probability matrix T.

Impact of probability matrix T on aDSTA It is also interesting to study the effect of using

different selection rules for probability matrix T. In Figure 3.4, “Proposed mix” refers to the rule

suggested in Section 4.2 (eq. (3.21)) and “SDP-based mix” is the method described in (3.36).

For each method, we run 5 realizations of aDSTA and average the solutions. We find that “SDP-

based mix” is slightly better than “Proposed mix” in terms of convergence rate. Nevertheless, the

distinction between them is not that obvious. In addition, solving (3.36) might need optimization
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solver installed in the nodes. In short, if solving (3.36) is not available or wanted in the application,

the simple “Proposed mix” can be a good alternative.
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Figure (3.5) Convergence performance comparison: aDSTA, DGD, EXTRA, D-NG.

Compare aDSTA with other methods in the literature We compare aDSTA with three

recently developed general distributed optimization algorithms: Decentralized Gradient Descent

(DGD) [94], EXTRA [95] and D-NG method [96]. All of these three methods are tested using

hand-tuned optimal parameters, respectively. Figure 3.5 demonstrates that aDSTA (blue curve)

significantly outperforms the other methods. Recall that in Figure 3.3(a)-3.3(b), sDSTA is very

close to aDSTA, which insinuates that sDSTA is also faster than DGD, EXTRA and D-NG. This

comparison conveys a message that the proposed sDSTA and aDSTA algorithms might be more

suitable for our communication-sensitive distributed seismic tomography.

Synthetic Data (3-D Model) We generate a synthetic 3-D model data set and visualize our

solutions in Fig 3.6 and 3.7. The synthetic model consists of a magma chamber (low velocity area)

in a 10 km3 cube. 100 stations are randomly distributed on top of the cube and form a network.

To construct the matrix A and vector b, 650 events are generated and we compute the travel times

from every event to each node based on the ground truth, and send the event location and travel

time to corresponding node with white Gaussian noise.
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(c) aDSTA

Figure (3.6) Vertical slices of tomography model. The ground truth in (a) is generated by simulat-
ing seismic data on resolution 1283 and 650 events are used. Centralized and aDSTA methods are
simulated with resolution 323 and 400 events.
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(b) 10% packet loss
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(c) 30% packet loss

Figure (3.7) Effect of packet loss in aDSTA.

Comparison of tomography results Figure 3.6 demonstrates that aDSTA is close to cen-

tralized method in tomography quality. Another interesting point is that aDSTA almost reconstructs

the surface of magma even in a much lower resolution comparing to the ground truth.

Data loss-tolerance of aDSTA We evaluate the robustness of aDSTA in Figure 3.7. Two

packet loss ratios 10% and 30% are tested in the emulator. We can find that even for 30% packet

loss ratio, the distinction between the result without packet loss is relatively small. This validates

the robustness of aDSTA in dealing with severe packet loss situations.

Real Data (3-D Model) To study the performance of the two proposed algorithms in re-

alistic scenarios, we use ten years (2001-2011) real seismic event data of Mount St. Helens in

Washington, USA for the experiment. The data were collected from 78 stations and a 3-D velocity
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model is used, which assumes the velocity in the volcano changes along x-axis, y-axis and depth.

Notice that unlike synthetic data used in previous section, there is no ground truth in this real data

scenario. In other words, the true velocity structure of volcano Mount St. Helens is currently un-

known. Hence we focus on the comparison of the proposed methods with centralized processing

scheme, which can be seen as a benchmark that fully utilize the data available.

(a) Centralized (b) sDSTA (c) aDSTA

(d) Centralized (e) sDSTA (f) aDSTA

(g) Centralized (h) sDSTA (i) aDSTA

Figure (3.8) Real data tomography inversion results comparison. Figure (a)-(c) are results of layer
depth 0.9 km. Figure (d)-(f) are results of layer depth 2.9 km. Figure (g)-(i) are results of layer
depth 4.9 km.
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Comparison of tomography results in real data Figure 3.8 illustrates vertical slices of

tomography model with various depths. The range of x-axis is from 65 km to 95 km, and the range

of y-axis is from 80 km to 120 km. The underlying resolution is 160 × 200 × 24. The color in

Figure 3.8 represents the relative velocity perturbation in specific location. More red means larger

(negative) value of perturbation. More blue means larger (positive) value of perturbation. It is

shown in Figure 3.8 that both sDSTA and aDSTA (at the solution of 300 iterations) can effectively

invert the tomography model close to the benchmark (centralized algorithm) using real data.

Centralized aDSTA
0

1

2

3

4

5

6
x 106

  sDSTA 
Scenarios

C
om

m
un

ic
at

io
n 

V
ol

um
e 

(b
yt

es
)

(a) Total Communication Cost

246810121416

2

4

6

8

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

x 10
4  

XY

 

N
um

be
r 

of
 m

es
sa

ge
s

1.8

1.9

2

2.1

2.2

2.3

x 10
4

(b) Communication Distribution

Figure (3.9) Communication cost comparison.

Communication cost evaluation in real data Figure 3.9 visualizes the communication cost

characteristics of aDSTA. Figure 3.9(a) shows that sDSTA and aDSTA need much less amount of

communication than the centralized method and aDSTA is more efficient than sDSTA. Figure

3.9(b) illustrates the communication distribution of aDSTA on each node with a heat map. We

can see that, unlike synchronized sDSTA, in aDSTA some nodes stop communication earlier than

others, which saves the bandwidth. Second, the cost disparities between several high cost nodes

and the lowest one are around 18%, which implies that the communication load is still balanced

over the network.

Summary The work proposed in this chapter opens a relatively under-exploited area where

seismic tomography inversion is done over a sensor network in a distributed, decentralized fashion.
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This paper presents novel designs for in-network travel-time seismic imaging in cyber-physical

sensor systems under synchronous and asynchronous communication scenarios. The performance

and features are verified with experiments in both synthetic and real data sets through network em-

ulators. There are two potential benefits of using our proposed algorithms for seismic tomographic

inversion problem. First, both sDSTA and aDSTA can be easily modified to accommodate prob-

lems with constraints on solution s. Second, they can deal with different regularizations (as long

as it is convex). For instance, an efficient distributed algorithm can still be derived for the `1-norm

regularized inversion problem in [97]. The merits of the proposed methods elucidate that they are

promising solutions for real-time in-situ seismic tomography in the near future.

3.2 Fast Gradient-based Decentralized Optimization

Recent advances in convex optimization provide models and algorithms for decentralized Big

Data computing problems, while minimizing the related computation and communication [98].

The problem in this paper has a general form as follows. Consider an undirected connected network

G = (V,E) where V is the node set and E is the edge set. The size of network is m = |V| and

two nodes i, j are called neighbors if (i, j) ∈ E. Now each node (sensor or agent) i privately holds

an objective Fi : Rn → R which describes the data and acquisition process at the node. Here we

assume Fi is proper, convex, and continuously differentiable, and its gradient ∇Fi has Lipschitz

constant Li > 0. The goal is to find the consensus solution x ∈ Rn of the minimization problem

min
x∈Rn

F(x) :=
m∑

i=1

Fi(x)

 , (3.37)

while each node can only communicate with its direct neighbors. The problem is called decentral-

ized since the data is acquired and processed in a distributed network, and the nodes are required to

collaboratively solve for a consensus solution. Our proposed framework is designed to leverage the

computational power of all the sensor nodes. It performs in-network processing such that the “big

data” stored in the nodes are processed locally. In addition, each node transmits its local estimate

of the whole solution instead of the raw sensor data to its direct neighbors. Different from cen-
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tralized approach, this kind of distributed and decentralized mechanism is much more scalable and

fault-tolerant, and is a paradigm-shifting approach to solve a class of Big Data problems arising

from distributed systems.

The aforementioned decentralized consensus problem attracts much attention recently, espe-

cially in distributed machine learning, multi-agent optimization, etc. For solving the problem in

(3.74), several (sub)gradient-based methods have been proposed [34353738393435373839343537383934353738393435373839].

However, bounded (sub)gradients are usually assumed in analyzing the convergence results in most

of the above algorithms. In addition, they cannot converge to an optimal solution of (3.74) if fixed

step size is used [40]. In order to guarantee to converge to an optimal solution, Chen [38] and

Jakovetic [39] thus adopt diminishing step sizes in their algorithms. More related algorithmic de-

velopments can be found in [41424344454647414243444546474142434445464741424344454647414243444546474142434445464741424344454647].

Jakovetic [39] proposed a D-NC algorithm showing an outer-loop convergence rate of O(1/k2)

in terms of objective error, leveraging Nesterov’s acceleration, which is the best theoretical rate

known so far. However, significant consensus iterations are required per outer-loop iteration.

Without bounded gradient, [48] derives a correction method based on mixing matrix for regu-

lar decentralized gradient decent method and obtains O(1/k) convergence rate without diminishing

step sizes. In this work, we present a fast decentralized gradient descent method and prove that

this new method can reach optimal convergence rate of O(1/k2) where k is the number of commu-

nication/iteration rounds.

3.2.1 Algorithm Design

Notation. Let x ∈ Rn be a column vector in problem (3.74), and x(i) ∈ Rn be the local copy

held privately by node i for every i ∈ V. Without further remark, vectors are all column vectors. A

vector v = (v1, · · · , vn)T ∈ Rn is sometimes written in short as [vi]. Let W ∈ Rn×n be a symmetric

positive semidefinite matrix and ‖v‖W is the (semi-)W-norm of v. If v = (v(1), · · · , v(m))T ∈ Rm×n

where each v(i) ∈ Rn, then ‖v‖W =

√∑m
i=1 ‖v(i)‖2W. Subscript k is outer iteration number, which is

also the number of communication.
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Proposed Algorithms and Interpretation The decentralized gradient descent (DGD) is a

standard approach for solving (3.74). Recall that if regular gradient descent is applied at each node

i to minimize its own objective Fi independent of other nodes, then a solution x(i) ∈ argminx Fi(x)

can be severely biased due to the insufficient information in data at i. Moreover the solutions x(i)

will not be all equal, and their average is not the solution to (3.74) in general. Instead, it is more

sophisticated for each node i to request private copies x( j) from its immediate neighbors to gather

more information and proceed with its next update of x(i). Motivated by this idea, the DGD iterates

x(i)
k+1 =

m∑
j=1

wi jx
( j)
k − αk∇Fi(x(i)

k ) (3.38)

at every node i for k = 0, 1, 2, · · · . Here x(i)
k is the local copy held by node i at iteration k, αk is the

step size that satisfies αk ≤ 1/L, where

L := max
1≤i≤m
{Li} (3.39)

and Li is the Lipschitz constant of ∇Fi. The prescribed symmetric mixing matrix W = [wi j] ∈ Rm×m

is nonnegative, wi j = 0 if (i, j) < E and i , j, and Wv = v if and only if v ∈ Rm is consensual, i.e.,

all its components are equal, due to the intuition that the mixing should not make changes if all

x(i) are already identical. Therefore, each node i collects x( j)
k sent from its immediate neighbors j,

mixes them with its own x(i)
k using weights wi j, and performs a gradient descent at x(i)

k in iteration

k.

To simplify notation, we define x := (x(1), · · · , x(m))T ∈ Rm×n, F(x) =
∑m

i=1 Fi(x(i)) ∈ R, column

vector ∇Fi(x) ∈ Rn, and ∇F(x) = (∇F1(x(1)), · · · ,∇Fm(x(m)))T ∈ Rm×n, then the decentralized

minimization (3.74) is equivalent to a consensus optimization problem

min
x∈Rm×n

{F(x) : Wx = x} , (3.40)

where the constraint Wx = x requires that a solution x∗ = (x(1), · · · , x(m))T needs to be consensual,

i.e., x(1) = x(2) = · · · = x(m) = x∗, for some solution x∗ ∈ Rn to (3.74), namely x∗ satisfies
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∑m
i=1 ∇Fi(x∗) = 0. Furthermore, the DGD algorithm (3.38) can be written as

xk+1 = Wxk − αk∇F(xk). (3.41)

One can immediately observe that αk → 0 is a necessary condition for the convergence of xk to

a solution x∗ using (3.41), otherwise there will be ∇F(x∗) = (∇F1(x∗), · · · ,∇Fm(x∗))T = 0 upon

convergence xk → x∗, implying ∇Fi(x∗) = 0 for all i, which is not true in general.

Algorithm 5 Fast Decentralized Gradient Descent (FDGD) with known Lipschitz constant L

Initialize y0 = 0 and arbitrary x0, set xag
0 = x0.

for k = 0, 1, · · · , do

yk+1 = yk + (W̃ −W)xk (3.42)

xmd
k = (1 − θk)xag

k + θkW̃xk (3.43)

xk+1 = W̃xk − yk+1 −
1

Lθk
∇F(xmd

k ) (3.44)

xag
k+1 = (1 − θk)xag

k + θkxk+1 (3.45)

Output xag
k+1

In this chapter, we develop a fast decentralized gradient descent method which does not re-

quire diminishing step size and the method is accelerated to reach an optimal O(1/k2) convergence

rate for general convex differentiable functions Fi. We adopted the idea of Nesterov’s optimal gra-

dient method for centralized smooth optimization [99100101102991001011029910010110299100101102]

and mixing matrix method in network gossip and consensus averaging algorithms [1034810348],

and developed the following fast decentralized gradient algorithm (Algorithm 5) to solve the seis-

mic tomography problem (3.40). In Algorithm 5, k is the (outer) iteration number which also

indicates the number of rounds of communications. Every node privately holds its local copies

y(i), x(i),md, x(i), x(i),ag and Fi. At iteration k, each node i sends its current x(i)
k to all its immediate

neighbors { j : (i, j) ∈ E} and receives x( j)
k from them (one round of communication), then per-

forms weighted sums using wi j and w̃i j (according to multiplications Wxk and W̃xk), and updates
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its y(i), x(i),md, x(i) and x(i),ag. The result x(i),ag is output as the final reconstruction.

Algorithm 6 Fast Decentralized Gradient Descent with Backtracking (FDGD-BT)

Initialize y0 = 0 and arbitrary x0, set xag
0 = x0.

for k = 0, 1, · · · , do
1.

yk+1 = yk + (W̃ −W)xk (3.46)

2.
xmd

k = (1 − θk)xag
k + θkW̃xk (3.47)

3. For each node i, find the smallest integer j(i)
k = 0, 1, 2, · · · such that

Fi(x(i),ag
k+1 ) ≤ Fi(x(i),md

k ) + 〈∇Fi(x(i),md
k ), x(i),ag

k+1 − x(i),md
k 〉 +

L(i)
k ρ

j(i)k

2
‖x(i),ag

k+1 − x(i),md
k ‖2 (3.48)

where
xk+1 = W̃xk − yk+1 −

1
θk

L−1
k ∇F(xmd

k ) (3.49)

xag
k+1 = (1 − θk)xag

k + θkxk+1 (3.50)

Here (x(i),md
k+1 )T is the i-th row of xmd

k+1, (x(i),ag
k+1 )T is the i-th row of xag

k+1 and Lk =

diag(L(i)
k ρ

j(i)k ).
Output xag

k+1

In Algorithm 5, the superscript “ag” stands for “aggregated”, and “md” stands for “middle”.

Matrix W̃ = (I + W)/2 is a half-mixing matrix based on W. A few remarks about this algorithm

are in place. Firstly, Algorithm 5 is a first-order method since only ∇F is required in each iter-

ation, and hence the subproblem has low computation complexity. Secondly, we do not need to

use diminishing step sizes which converge to 0 but still can ensure both of convergence and con-

sensus. Thirdly, if θk = 1 for all k, then Algorithm 5 reduces to a version very similar to regular

decentralized gradient descent (3.41). However, by the choice of θk = O(1/k) as below, the change

from input xmd
k to output xag

k+1 is faster than that from xk to xk+1. This implies that Algorithm 5 will

converge faster than regular DGD. The last remark explains intuitively why the multi-step scheme

defined in (3.43), (3.44), and (3.45) could potentially accelerate the convergence of Algorithm 1.

A practical issue with Algorithm 5 is that either the Lipschitz constant L(i) of ∇Fi or the

maximum Lipschitz constant L defined in (3.39) may not be available to the nodes. To overcome
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this issue, we design a backtracking strategy so that each node can search for its own L(i)
k at iteration

k by gradually increasing its previous L(i)
k with multiples of ρ > 1 until (3.48) is satisfied. Note

that such searching is guaranteed to finish in finitely many times for each iteration k, and the total

number of searches is bounded by dlogρ(L
(i)/L(i)

0 )e at each node i for the entire computation. The

resulting algorithm with such backtracking strategy is presented in Algorithm 6.

Remark: From a sensor network point of view, the communication operation in Algorithm

1 & 2 is more costly than the computations within each k round (usually communication is more

energy-consuming for sensors). Thus it is preferable to evaluate our algorithm performance in

terms of the number of communication rounds to reach desirable results. Notice that in both

Algorithm 1& 2, only one communication is needed in one outer k round.

3.2.2 Convergence Analysis

In general we have the following convergence result for Algorithm 6 (Theorem 1). Before the

analysis of Theorem 1, we would like to first prove the following Lemma.

Lemma 3 Suppose x̂ is a solution of min
x

(
`F(x; y) + L

2 ‖x− z‖2
)

with some given y, z and L. Then we

have

`F(x̂; y) +
L
2
‖x̂ − z‖2 6 `F(x; y) +

L
2
‖x − z‖2 −

L
2
‖x − x̂‖2 (3.51)

where `F(x; y) is defined as `F(x; y) = F(y) + ∇F(y)T (x − y).

Proof 6 Let g(x) = `F(x; y) + L
2 ‖x− z‖2, then we see that g(x) is convex and ∇g(x) = ∇F(y) + L(x−

z),∇g(y) = ∇F(y) + L(y − z). Hence ‖∇g(x) − ∇g(y)‖ = L‖x − y‖, which implies that ∇g(x) has

Lipschitz constant L. In consequence, we can have

g(x̂) 6 g(x) + ∇g(x)T (x̂ − x) +
L
2
‖x − x̂‖

Since x̂ is a minimizer of function g(x), ∇g(x) = 0. We then have ∇g(x)T (x̂ − x) = (∇g(x)T −

∇g(x̂)T )(x̂ − x) = −L‖x − x̂‖2. Plugging this fact into the previous inequality yields (3.51).
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Theorem 9 Suppose x∗ is a solution of (3.41), and the parameters {θk} in Algorithm 5 satisfies

θ0 = 1, θk ∈ (0, 1],
1
θ2

k

≥
1 − θk+1

θ2
k+1

, (3.52)

then the iteration {xag
k } satisfies

F(xag
k ) − F(x∗) ≤

Lθ2
k

2(1 − θk)

(
‖x0‖

2
W̃−W

+ ‖x∗ − x0‖
2
W̃

)
(3.53)

and
∞∑

k=1

‖(I −
1
m

11T )xag
k ‖

2 < ∞, (3.54)

where I ∈ Rm×m is identity matrix and 1 = (1, · · · , 1)T ∈ Rm.

Proof 7 By the backtracking criterion in Algorithm 6 for each node i and definition of F, we have

F(xag
k+1) ≤F(xmd

k ) + 〈∇F(xmd
k ), xag

k+1 − xmd
k 〉

+
1
2
‖xag

k+1 − xmd
k ‖

2 (3.55)

By the definition of `F we have

F(xag
k+1) ≤ `F(xag

k+1; xmd
k ) +

1
2
‖xag

k+1 − xmd
k ‖

2

= (1 − θk)`F(xag
k ; xmd

k ) + θk`F(xk+1; xmd
k )

+
θ2

k

2
‖xk+1 − W̃xk‖

2

≤ θk

(
`F(xk+1; xmd

k ) +
θk

2
‖xk+1 − W̃xk‖

2
)

(3.56)

+ (1 − θk)F(xag
k )
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Recall the update of xk+1 implies the optimality condition

xk+1 = arg min
x

(
`F(xk+1; xmd

k ) + 〈yk+1, xk+1〉

+
θk

2
‖xk+1 − W̃xk‖

2
) (3.57)

Hence by Lemma 1 we have

`F(xk+1; xmd
k ) + 〈yk+1, xk+1〉 +

θk

2
‖xk+1 − W̃xk‖

2

≤ `F(x; xmd
k ) + 〈yk+1, x〉 +

θk

2
‖x − W̃xk‖

2 (3.58)

−
θk

2
‖x − xk+1‖

2

Substitute this back into

F(xag
k+1) ≤ θk

(
`F(x; xmd

k ) + θk〈yk+1, x − xk+1〉

+
θk

2
‖x − W̃xk‖

2 −
θk

2
‖x − xk+1‖

2
)

+ (1 − θk)F(xag
k )

(3.59)

Now we set x to any solution x∗, subtract F(x∗) and divide θ2
k on both sides to obtain

1
θ2

k

(
F(xag

k+1) − F(x)
)
≤

1 − θk

θ2
k

(
F(xag

k ) − F(x)
)

−
1
θk
δF(x; xmd

k ) + 〈yk+1, x − xk+1〉 +
1
2
‖x − W̃xk‖

2

−
1
2
‖x − xk+1‖

2 (3.60)

where δF(x∗; xmd
k ) is defined as δF(x∗; xmd

k ) := F(x∗) − `F(x∗; xmd
k )(≥ 0),∀x∗.

From the update of (3.42) we can see that

yk+1 = (W̃ −W)sk (3.61)
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where

sk =

k∑
t=0

xt (3.62)

for each k = 1, 2, · · · . Furthermore, due to the fact that x∗ is consensual and (W̃ −W)1 = 0, we

have

〈yk+1, x∗ − xk+1〉 = 〈(W̃ −W)sk, x∗ − xk+1〉

= − 〈(W̃ −W)sk, xk+1〉

=〈sk − sk+1, (W̃ −W)sk〉 (3.63)

=
1
2

(
〈(W̃ −W)sk, sk〉 − 〈sk+1, (W̃ −W)sk+1〉

+ 〈sk − sk+1, (W̃ −W)(sk − sk+1)〉
)

=
1
2

(
〈sk, (W̃ −W)sk〉 − 〈sk+1, (W̃ −W)sk+1〉

+ 〈xk+1, (W̃ −W)xk+1〉

)

Note that here

〈xk+1, (W̃ −W)xk+1〉 − ‖x∗ − xk+1‖
2

=〈xk+1, (W̃ −W)xk+1〉 − 〈x∗ − xk+1, x∗ − xk+1〉

=〈x∗ − xk+1, (W̃ −W)(x∗ − xk+1)〉

− 〈x∗ − xk+1, x∗ − xk+1〉 (3.64)

= − 〈x∗ − xk+1, (I + W − W̃)(x∗ − xk+1)〉

= − 〈x∗ − xk+1, W̃(x∗ − xk+1)〉

Moreover, we know the consensual solution x∗ satisfies W̃x∗ = x∗, hence there is

‖x∗ − W̃xk‖
2 = ‖W̃(x∗ − xk)‖2 = 〈x∗ − xk, W̃2(x∗ − xk)〉

= 〈x∗ − xk, W̃(x∗ − xk)〉 − 〈x∗ − xk, (W̃ − W̃2)(x∗ − xk)〉 (3.65)
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Substitute the results we obtained above to, we have

1
θ2

k

(
F(xag

k+1) − F(x∗)
)
−

1 − θk

θ2
k

(
F(xag

k ) − F(x∗)
)

+ 〈x∗ − xk, (W̃ − W̃2)(x∗ − xk)〉

≤
1
2

(
〈sk, (W̃ −W)sk〉 − 〈sk+1, (W̃ −W)sk+1〉

)
+

1
2

(
〈x∗ − xk, (W̃ −W)(x∗ − xk) − 〈x∗ − xk+1,

(W̃ −W)(x∗ − xk+1)〉
)

(3.66)

Due to the setting of θk, we take the sum of k = 0, 1, · · · , k and obtain

1 − θk+1

θ2
k+1

(
F(xag

k+1) − F(x∗)
)

+

k∑
t=0

〈x∗ − xt,

(W̃ − W̃2)(x∗ − xt)〉

≤
1
2

(
〈s0, (W̃ −W)s0〉 − 〈sk+1, (W̃ −W)sk+1〉

)
+

1
2

(
〈x∗ − x0, (W̃ −W)(x∗ − x0) − 〈x∗ − xk+1,

(W̃ −W)(x∗ − xk+1)〉
)

(3.67)

Note that W̃ ≥W and that F > −∞, we obtain

−∞ <
1 − θk+1

θ2
k+1

(
F(xag

k+1) − F(x∗)
)

+

k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 (3.68)

≤
1
2

(
〈s0, (W̃ −W)s0〉 − 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉

)
Since W̃ ≥ W̃2, this inequality implies

k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 < ∞
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and that

F(xag
k+1) − F(x∗) ≤

θ2
k+1

2(1 − θk)

(
〈s0, (W̃ −W)s0〉

− 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉
)

Since there is

W̃ − W̃2 = W̃(I − W̃) =
I + W

2
·

I −W
2

=
1
4

(I −W2) (3.69)

the first inequality implies

1
4

k∑
t=0

〈(I −W2)xt, xt〉

=

k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 < ∞ (3.70)

We decompose each xt into two parts, namely 11T xt and (I−11T )xt, then the first part is in Null(I−

W) and hence the inequality above implies

1
4

(1 − µ(W)2)
k∑

t=0

‖(I − 11T )xt‖
2

≤
1
4

k∑
t=0

〈(I −W2)xt, xt〉 < ∞ (3.71)

where µ(W) denotes the second largest singular value of matrix W (since W is symmetric stochas-

tic matrix, µ(W) < 1). The above fact means that the nonconsensual part of xt is suppressed to 0.

Since

xag
k =

k∑
t=1

txt

k∑
t=1

t
, f or k = 1, 2, 3, . . . (3.72)

we know xag
k tends to be consensual as well.
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Due to the setting of θk, we can readily show that

θk ≥
2

k + 2
, and

θ2
k

1 − θk
≤

2
k(k + 2)

(3.73)

for all k = 1, 2, · · · , by induction. This implies that

F(xag
k+1) − F(x∗) ≤

1
k(k + 2)

(
〈s0, (W̃ −W)s0〉

− 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉
)
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Figure (3.10) FDGD convergence behavior in 2D synthetic seismic data set. (a) is the plot of
average objective value comparing FDGD with EXTRA, D-NG and D-NC methods. (b) is the
relative error comparison plot.

Table (3.1) Summary of data set parameter settings

Data set Size of A Resolution λ

Synthetic 2D 16,384x4,096 64x64 1.0
Synthetic 3D 40,000x32,768 32x32x32 10−4

Real data 3D 18,161x768,000 160x200x24 1.0
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Figure (3.11) Convergence behavior comparison of FDGD and FDGD-BT in 2D synthetic data set.
(a) and (b) depict the FDGD and FDGD with backtracking line search implementation in terms of
average objective value and relative error, respectively.

Table (3.2) Network settings in the data sets

Data set # of nodes Avg node degree
Synthetic 2D 32 3
Synthetic 3D 100 3
Real data 3D 11 2

3.2.3 Numerical Tests

In this section, we perform experiments on the seismic tomography problem using a regu-

larized least squares model: minx
1
2‖Ax − b‖22 + λ‖x‖22, where λ is the regularization parameter.

Simulations are performed on three different datasets: 2D synthetic dataset, 3D synthetic dataset

and 3D real seismic tomography datasets. All methods are implemented in MATLAB, and experi-

ments are performed on a PC with an Intel i5-3.0G HZ CPU and 8GB memory. In this experiment,

we compare

1. Three recent decentralized methods: EXTRA [48], D-NG & D-NC [39] with our proposed

FDGD algorithm.

2. FDGD and FDGD with backtracking line search.
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Figure (3.12) FDGD tomography results of 2D synthetic data set. (a) describes the 2D seismic
model we used. (b) shows the ground truth of original seismic image. (c)-(d) exhibit the tomogra-
phy results using centralized solution and FDGD, respectively.
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Figure (3.13) Comparison of convergence performance in 3D synthetic data set. (a)-(b) are com-
paring FDGD with EXTRA, D-NG and D-NC methods.

We plot the results of average objective value ( 1
m

∑m
i=1 f (xk

i )), relative error (
√∑m

i=1 ‖x
k
i −x∗‖22∑m

i=1 ‖x
0
i −x∗‖22

) and

tomography images for all the three data sets, where x∗ is a pre-computed centralized solution.

In our simulations, the regularization parameter λ is fixed and the corresponding parameter

λi for each node i is set to 1/p, where p is the total number of nodes in the system. In each

data set, the centralized solution of optimization problem minx
1
2‖Ax − b‖22 + λ‖x‖22 is obtained by

LSQR method. The centralized solution is taken as our benchmark comparing to the decentralized

methods tested. The matrix A and vector b is constructed by stacking the sub-matrices of all the

nodes. The resolution means the number of blocks along the x, y and z-axis. The communication
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Figure (3.14) Convergence behavior comparison of FDGD and FDGD-BT in 3D synthetic data set.
(a) and (b) depict the FDGD and FDGD with backtracking line search implementation in terms of
average objective value and relative error, respectively.
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Figure (3.15) Vertical slices of 3D synthetic model tomography. Fig. (a)-(c) are results of layer
14 along y-axis and Fig. (d)-(f) are results of layer 18. Left-most column is the ground truth,
the middle column shows the centralized solution and the right-most column contains the solution
using our proposed FDGD algorithm.

network is generated randomly with certain number of average node degree. The parameters are

described in table 3.1 and 3.2.

Synthetic Data (2D Model) The performance analysis here is based on the data set gener-

ated using code in [93]. We create a 2D seismic tomography test problem with a square domain,

using sources located on the right boundary (green dots) and receivers (seismographs) scattered

along the left and top boundary (blue squares). The rays are transmitted from each source to

each receiver (red lines) (see Figure 3.12(a)). The experiment results are demonstrated in Figure

3.10-3.12.
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Figure (3.16) Real data tomography inversion results comparison. (a)-(b) are comparing FDGD
with EXTRA, D-NG and D-NC methods. (c) and (d) show peformances of FDGD and FDGD with
backtracking line search implementation. (e)-(f) describe the solutions of vertical slices of at depth
0.9 km (left:centralized, right:FDGD). (g)-(h) exhibit the tomography results at depth 4.9 km.

Synthetic Data (3D Model) In this section, the evaluation of algorithm is illustrated by

simulating seismic data on a synthetic model of resolution 323 consisting of a magma chamber

(low velocity area) in a 10 km3 cube. 100 stations are randomly distributed on top of the cube

and form a network. To construct the matrix A and vector b, 400 events are generated and we

compute the travel times from every event to each node based on the ground truth, and send the

event location and travel time to corresponding node with white Gaussian noise. Figure 3.13-3.15

illustrate the experiment results in this data set.

Real-world Data (3D Model) To study the performance of the two proposed algorithms in

realistic scenarios, we use ten years (2001-2011) real seismic event data of Mount St. Helens in

Washington, USA for the experiment. The data were collected from 78 stations and we construct

them into 11 clusters and form a network based on the clusters. Notice that unlike synthetic data

used in previous section, there is no ground truth in this real data scenario. Hence we focus on the

comparison of the proposed methods with centralized processing scheme, which can be seen as a

benchmark that fully utilize the data available. Results are shown in Figure 3.16-3.18.

Remark: Previous simulation results have demonstrated the superiority of proposed FDGD
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Figure (3.17) Convergence behavior comparison of FDGD and FDGD-BT in 3D real data set. (a)
and (b) show performances of FDGD and FDGD with backtracking line search implementation.

(a) (b) (c) (d)

Figure (3.18) Seismic tomography comparison of the 3D real data set. (a)-(b) describe the solutions
of vertical slices of at depth 0.9 km (left:centralized, right:FDGD). (c)-(d) exhibit the tomography
results at depth 4.9 km. The range of x-axis is from 65 to 95 km and the y-axis is from 80 to
120 km. The color in the figure represents the relative velocity perturbation in specific location.
More red means larger (negative) value of perturbation. More blue means larger (positive) value
of perturbation

over other existing methods. In all the data sets, FDGD can obtain near “optimal” (the central-

ized approach) solution with reasonable number of communication rounds even in extremely low-

connectivity networks. The performance of FDGD-BT is almost the same as FDGD implying we

can still achieve similar results without knowing Lipschitz constant L. Please note that the value

of regularization parameter λ also determines the convexity property of the objective function. We

do observe linear convergence rate of EXTRA for strongly convex functions as claimed in [48].

However, we found that in the simulated synthetic data sets, smaller λ is better and more suitable

for image recovery. In the real data case, since no “ground truth” is available, for simplicity, we
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also choose λ = 1 in our experiments. In fact, λ = 1 is relative small comparing to the data fitting

term such that the objective function is not quite “strongly convex”. That explains why EXTRA

does not show linear convergence in our results. To show an example of this scenario, we also

perform the experiment on 2D synthetic data set with λ = 20 (see Fig. 3.19).
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Figure (3.19) Convergence behavior comparison of 2D synthetic data set with regularization pa-
rameter λ = 20.

Summary Distributed and decentralized optimization is well suited to Big Data applica-

tions, and in particular to analytics in distributed architectures. In this chapter we developed a

novel fast decentralized gradient descent method whose convergence does not require diminishing

step sizes as in regular decentralized gradient descent methods, and prove that this new method

can reach optimal convergence rate of O(1/k2) where k is the communication/iteration number. In

the seismic tomography application, we conducted experiments on synthetic and real-world sensor

network seismic data. The results exhibit that the proposed algorithms significantly outperform the

current state-of-the-arts.
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3.3 Asynchronous Broadcast-based Decentralized Algorithm

3.3.1 Motivation

First, in tough environment like the volcano, node failures can happen all the time. It is

highly demanded to design an asynchronous algorithm such that each sensor node can determine

its operation independently and it does not have to wait the slowest neighbor for updating. Second,

when deploying wireless sensor systems into field, it is highly beneficial to save communication

cost and energy by choosing broadcast communication in order to leverage the wireless medium.

Asynchronous broadcast-based algorithm is most practical for seismic tomography problem.

A number of synchronous methods have been proposed to fully distributed (decentralized)

consensus optimization problem [34], [35], [36], [37], [38], [96], [41], [42], [45], [46], [47], [95]

and etc. To apply the aforementioned algorithms into sensor network, synchronization among

neighboring nodes is required. Furthermore, for each node, it needs to wait for its slowest neighbor

in order to perform update.

Distributed optimization methods for asynchronous models have been designed in [49], [50]

and [43]. Wei [49] and Iutzeler [50] leverage ADMM for the computation part, and in each itera-

tion, one node needs to randomly wake up one of its neighbors to exchange information. However,

the communication schemes in these two works are based on unicast, which is much less preferable

than broadcast communication, especially in real-world wireless sensor network scenario. Tsitsik-

lis [43] proposed an asynchronous model for distributed optimization, while in its model each

node maintains a partial vector of the global variable. It is different from our goal of decentralized

consensus such that each node contains an estimate of the global common interest.

The first broadcast-based distributed/decentralized consensus method was proposed in [104]

for consensus average problem. However, the consensus solution generated can not guarantee

to be the true average. Inspired by the push-sum algorithm in [105], several works have been

done recently to overcome the issue [106], [107] and [108]. Iutzeler [106] applies the push-sum

algorithm in [105] into the broadcast gossip model in [104]. The algorithm developed in [106]

requires the node to broadcast a pair of variables (instead of only the solution variable) in the
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communication stage. The method enjoys not only the similar convergence speed as the broadcast

gossip in [104], but also the guarantee of converging to the true average. The broadcast-based

works above are developed for consensus average problem while it is also essential to investigate

problems with “real” objective functions.

Nedic [109] first filled this gap by considering general decentralized convex optimization

under the asynchronous broadcast setting. It adopted the asynchronous broadcast model in [104]

and developed a gradient-based update rule for its computation. In this work, we modify Nedic’s

algorithm [109] in order to fit the purpose of seismic tomography in sensor networks. From sensor

network point of view, communication is more time and energy consuming than computation,

thus it is more important to reduce the communication cost for this application. Note that there

is a trade-off between the computational complexity and communication cost for decentralized

optimization methods. Hence in order to obtain a more suitable platform for seismic imaging, we

propose a scheme, which needs less communication rounds than Nedic’s method by sacrificing its

computational complexity (higher complexity than Nedic’s algorithm but it is not the main concern

here since the computation time in general is much less comparing to the communication time in

seismic tomography).

Algorithm Settings and Assumptions The problem in this paper has a general form as

follows. Consider an undirected connected network G = (V,E) where V is the node set and E is

the edge set. The size of network is m = |V| and two nodes i, j are called neighbors if (i, j) ∈ E.

Now each node (sensor or agent) i privately holds an objective Fi : Rn → R which describes the

data and acquisition process at the node. The goal is to find the consensus solution x ∈ Rn of the

minimization problem

min
x∈Rn

F(x) :=
m∑

i=1

Fi(x)

 , (3.74)

Setting 1: Each sensor node has its local clock that ticks at a user-customized Poisson rate

for unit time, which is independently of the clocks of the other nodes.

Setting 2: Each node broadcasts its current estimate to its neighbors at each tick of its local

clock.
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Setting 3: During broadcasting, each sensor receives neighbor’s information subject to link

failure. For example, when node i broadcasts, its neighbor j will receive j’s iterate with probability

pi j.

The asynchronous model adopted in this paper is similar to the one in [103] and [104]. The

difference is that we consider link failure instead of assuming reliable link (setting 3) in this work.

Remark 4 It is equivalent to consider a virtual global clock existing in the network for the algo-

rithm analysis. Since the Poisson clock of each node (suppose rate = 1) is independent of each

other, it is same as a global clock with Poisson rate m. We can then analyze the problem given that

in each global iteration only one node broadcasts its value.

Assumption 1: The network G = (V,E) is uniformly strongly connected.

Assumption 2: The solution set of (3.74) is nonempty. The private local function Fi, i ∈ V

is convex.

Assumption 3: The (sub)gradient of function Fi is bounded such that ‖∇Fi‖ ≤ G, where

G > 0 is some positive number.

3.3.2 Algorithm Design

Notation. Let x ∈ Rn be a column vector in problem (3.74), and x(i) ∈ Rn be the local copy

held privately by node i for every i ∈ V. Without further remark, vectors are all column vectors.

Subscript k is outer iteration number, which is also the number of communication.

Proposed Algorithm In this section, we first describe the asynchronous broadcast-based

algorithm. Assume in iteration k (according to the virtual global Poisson clock), one node ik is

randomly chosen from V and broadcasts its value xik
k to a subset Jk of its neighbors N(ik). Then

the nodes i ∈ Jk performs the following computation using its own Fi:

xi
k+1 = argmin

x∈Rn

{
1

2αi,k
‖x − (θxik

k + (1 − θ)xi
k)‖

2 + Fi(x)
}

(3.75)

where θ ∈ (0, 1) (e.g. θ = 1
2 ) is the weight factor and Fi is the objective function at node i. For

nodes i < Jk and node ik, there is no update performed.
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The step size αi,k is set to 1/Γk(i), where Γk(i) is the number of updates performed at node i

up to iteration k (same as the one in [109]).

To begin with, we set Jk = N(ik),, which indicates reliable broadcast communication. Later on

we construct Jk such that it consists only nodes j where the broadcast from ik successfully arrives

at j with probability pi j.

An optimal solution of (3.74) should be consensual and optimized at the same time. Hence

two important measures must be considered for analyzing our algorithm. The measures should

be versus iteration number k, which corresponds to the number of broadcast rounds in the entire

network.

1. Optimal objective: it determines whether the objective function of the averaged solution

reaches the optimal objective value.

m∑
i=1

Fi(x̄k), where x̄k = (1/m)
m∑

i=1

xi
k (3.76)

2. Nodes consensus: it measures how close every node in the network reaches the consensus

solution.
m∑

i=1

‖xi
k − x̄k‖

2 (3.77)

Remark 5 From a sensor network point of view, the communication operation is more costly than

the computation within each round (usually communication is more energy-consuming for sen-

sors). Thus it is preferable to evaluate our algorithm performance in terms of the number of

communication rounds to reach desirable results.

To summarize, our proposed algorithm can be expressed in a formal way:

1. Initialization: Each sensor node is equipped with a local Poisson clock (rate 1), which is

independent of other clocks. Set the weight factor θ.

2. Communication: Assume the local clock of node i ticks (only one tick at the same time in

the whole network). Node i broadcasts its estimate xi to its neighbors. The neighbors receive

the information with probability pi j, j ∈ N(i).
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3. Update: The neighbors who receive node i’s broadcast will perform updating as follows.

Node i and the other nodes who do not receive node i’s iterate keep unchanged.

x j ← argmin
x∈Rn

{
1

2α j
‖x − (θxi + (1 − θ)x j)‖2 + F j(x)

}
(3.78)

where α j is the step size defined in previous.

4. Repeat: The network stays silent until a local clock ticks and repeats steps 2-3.

3.3.3 Algorithm Interpretation

Remember that the major goal and challenge of the seismic imaging problem is to reduce the

total communication cost since we are highly constrained by the physical bandwidth and energy

consumption. We realize that the in the decentralized consensus problem, a trade-off exists between

the computational effort and the communication cost. That is, for any decentralized algorithm, if

we prefer to have less communication rounds to achieve the desirable result, the computational

complexity in each update round should be higher. It is reasonable to see that if the update stage

can be done more completely and then it should provide a better estimate, which can speed up the

convergence of the network after broadcasting. Another consideration is that the total time consists

of the communication and the computation while the latter is much less than the former in general.

Hence designing an algorithm, which is better in terms of communication cost, would be more

meaningful in the application of seismic imaging.

Our proposed algorithm is similar to Nedic’s in [109]. In below, we describe the differences

and improvements of the proposed method over Nedic’s. Nedic’s update rule can be expressed

as follows assuming nodes i ∈ Jk receive the estimate xik
k−1 (ik is the index of the node selected at

iteration k).

yi
k = θxik

k−1 + (1 − θ)xi
k−1

xi
k = yi

k − αi,k∇Fi(yi
k) (3.79)
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The first step in the last equation is the consensus-like step. It is a mechanism to align nodes

estimates toward a common point. The second step is the local gradient-based equation. It is used

to minimize its own objective function. To better analyze the algorithm, we equivalently convert

(3.79) into its compact form:

xi
k+1 = argmin

x∈Rn

{
1

2αi,k
‖x − yi

k‖
2 + 〈∇Fi(yi

k), x〉
}

= argmin
x∈Rn

{
1

2αi,k
‖x − (θxIk

k−1 + (1 − θ)xi
k−1)‖2 + 〈∇Fi(yi

k), x〉
}

(3.80)

Comparing (3.80) with our developed algorithm in (3.75), we can see that the difference is on

the second term within the argmin function. In fact, the inner product item in (3.80) is a lineariza-

tion of Fi(x) at point yi
k. The effect is that in each round of update, Nedic’s algorithm performs

an approximation to the solution of the local minimization problem. Instead, our designed method

needs to solve the local optimization problem “completely” in each update round. According to

the trade-off (between computation complexity and communication cost) we observed, our pro-

posed algorithm is thus expected to outperform Nedic’s in terms of communication cost and total

execution time, which are considered to be our goals for implementing seismic imaging system.

3.3.4 Convergence Analysis

In this section, we analyze the convergence behavior of the proposed algorithm in terms of

consensus and optimal solution measure. We follow the idea in [109] to derive the analysis of our

developed scheme.

Before conducting the analysis, we can rewrite the proposed algorithm (3.75) in a form that

similar to Nedic’s method as follows.

yi
k = θxik

k−1 + (1 − θ)xi
k−1

xi
k = yi

k − αi,k∇Fi(xi
k) (3.81)
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Note that the second equation of (3.81) comes from the optimality condition of (3.75):

xi
k − yi

k

αi,k
+ ∇Fi(xi

k) = 0 (3.82)

Since the above inequality holds for any x ∈ Rn, the left part in the inner product has to be equal to

0. This turns out to be the second equation in (3.81).

A compact form for all k and i ∈ V can be expressed as:

yi
k =

m∑
j=1

[Wk]i, j x j
k−1

xi
k = yi

k −
[
yi

k − αi,k∇Fi(xi
k)
]

I(i ∈ Jk) − yi
kI(i ∈ Jk) (3.83)

where I(·) is the indicator function and matrix Wk is defined as:

[Wk]i,i = 1 − θ f or i ∈ Jk, [Wk]i,i = 1 otherwise

[Wk]i,ik = θ f or i ∈ Jk, [Wk]i, j = 0 otherwise. (3.84)

In addition, three lemmas which would be used later are described here.

Lemma 4 ([110]: lemma 11) Assume σk, ϕk, ωk, and εk are nonnegative random variables and

assume the following hold

E (σk+1/Ωk) ≤ (1 + ωk)σk − ϕk + εk almost surely,
∞∑

k=0

ωk < ∞ almost surely,
∞∑

k=0

εk < ∞ almost surely.

where E (σk+1|Ωk) represents the conditional expectation given all the past history of σk, ϕk, ωk,

and εk up to iteration k. Then it concludes that

σk → σ almost surely,
∞∑

k=0

ϕk < ∞ almost surely.

where σ ≥ 0 is some random variable.
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Lemma 5 ([109]:lemma 2) The random matrix Wk −
1
m11T Wk is independent and has identical

distribution with each other.

µ := µ

E
(Wk −

1
m

11T Wk

)T (
Wk −

1
m

11T Wk

) < 1 (3.85)

where µ denotes the largest eigenvalue of the following matrix.

Lemma 6 ([109]) The upperbounds of step size αi,k are obtained as follows when k is large enough

(k > k̃(m, q))

αi,k ≤
2

kδi
, α2

i,k ≤
4m2

k2 p2
∗

,
∣∣∣αi,k − 1/kδi

∣∣∣ ≤ 2

k
3
2−q p2

∗

. (3.86)

where δi is the total probability that node i updates. p∗ denotes the minimum among all pi j’s.

q ∈
(
0, 1

2

)
is some constant. k̃(m, q) is certain integer determined by the number of nodes m and q.

Consensus We first show that the disagreement of each node’s solution to the average of all

the nodes’s converges to zero almost surely.

Theorem 10 Let
{
xi

k

}
,∀i ∈ V, k ≥ 0 be the sequence generated by the algorithm in (3.75) and

given that all the assumptions are satisfied. Then we can have:

∞∑
k=1

1
k
‖xi

k−1 − x̄k−1‖ < ∞, and lim
k→∞
‖xi

k − x̄k‖ = 0 almost surely. (3.87)

Proof: We define st
k to be the vector with components

[
xi

k

]
t
,∀i ∈ V, where

[
xi

k

]
t

is the t-th

element of node i’s estimate at iteration k. Using the second equation in (3.83) we can have:

st
k = Wkst

k−1 + dt
k (3.88)

Here dt
k is defined as a vector with

[
dt

k
]
i =

[
−αi,k∇Fi(xi

k)
]

t
f or i ∈ Jk,

[
dt

k
]
i = 0 otherwise. (3.89)
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From the definition of st
k, it can be shown that:

[x̄k]t =
1
m

1T st
k (3.90)

where 1T denotes a row vector containing all 1’s. In addition, plugging (3.90) into (3.88) yields:

[x̄k]t =
1
m

(
1T Wkst

k−1 + 1T dt
k

)
(3.91)

Combing (3.88) and (3.91) derives the following.

st
k − [x̄k]t 1 =

(
Wk −

1
m

11T Wk

)
st

k−1 +

(
I −

1
m

11T

)
dt

k (3.92)

where I represents the identity matrix. Based on the definition and leveraging the stochasticity of

matrix Wk, it can be shown that Wk1 = 1. Hence we can have:

(
Wk −

1
m

11T Wk

)
[x̄k−1]t 1 = 0 (3.93)

Adding the right part of (3.93) into both sides of (3.91) yields:

st
k − [x̄k]t 1 =

(
Wk −

1
m

11T Wk

) (
st

k−1 − [x̄k−1]t 1
)

+

(
I −

1
m

11T

)
dt

k (3.94)

To simply the notation, we define Qk = Wk −
1
m11T Wk and U = I − 1

m11T .

The next step is to take the norm and conditional expectation on both sides of (3.94):

E
[∥∥∥st

k − [x̄k]t 1
∥∥∥ |Ωk−1

]
≤ E

[∥∥∥Qk
(
st

k−1 − [x̄k−1]t 1
)∥∥∥ |Ωk−1

]
+ E

[∥∥∥Udt
k

∥∥∥ |Ωk−1

]
(3.95)

where E is the expectation operator and Ωk is the σ-algebra containing the past history up to

iteration k, i.e.

Ωk =
{
xi

0, it, jt,∀i ∈ V, t = 0, 1, · · · k
}

(3.96)

By using Lemma 5 (µ is the largest eigenvalue mentioned there), we can upper bounding the first
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term in the right hand side of (3.95) as follows.

E
[∥∥∥Qk

(
st

k−1 − [x̄k−1]t 1
)∥∥∥2
|Ωk−1

]
≤ µ

∥∥∥st
k−1 − [x̄k−1]t 1

∥∥∥2
(3.97)

Based on the property that E [‖z‖] ≤
√

E
[
‖z‖2

]
, (3.97) can be transformed to:

E
[∥∥∥Qk

(
st

k−1 − [x̄k−1]t 1
)∥∥∥ |Ωk−1

]
≤
√
µ
∥∥∥st

k−1 − [x̄k−1]t 1
∥∥∥ (3.98)

The remaining part is that we need to upper bound the second item in the right hand side of

(3.95). We find that U is a projection matrix since:

U1 =

(
I −

1
m

11T

)
1 = 0 (3.99)

Then the norm of matrix U is 1. In consequence, we can obtain the following (also from the

definition of dt
k in (3.89)):

∥∥∥Udt
k

∥∥∥2
≤

∥∥∥dt
k

∥∥∥2
≤

∑
i∈Jk

∥∥∥αi,k∇Fi(xi
k)
∥∥∥2

(3.100)

The bound of αi,k is shown in Lemma 6, thus the right hand side of (3.100) can be further bounded

as follows.

∥∥∥Udt
k

∥∥∥2
≤

∑
i∈Jk

α2
i,k

∥∥∥∇Fi(xi
k)
∥∥∥2
≤

4m2

k2 p2
∗

∑
i∈Jk

∥∥∥∇Fi(xi
k)
∥∥∥2

(3.101)

Now take conditional expectation on both sides of (3.101), together with the assumed bounded

(sub)gradient condition, also the cardinality of Jk is no more than m, we obtain

E
[∥∥∥Udt

k

∥∥∥2
|Ωk−1

]
≤

4m3

k2 p2
∗

G2 (3.102)
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Using the inequality (converting (3.97) to (3.98)) again yields

E
[∥∥∥Udt

k

∥∥∥ |Ωk−1

]
≤

2m
√

m
kp∗

G (3.103)

At this point, we have all the bounds of the terms in the right hand side of (3.95). Plugging

(3.98) and (3.103) into (3.95) yields

E
[∥∥∥st

k − [x̄k]t 1
∥∥∥ |Ωk−1

]
≤
√
µ
∥∥∥st

k−1 − [x̄k−1]t 1
∥∥∥ +

2m
√

m
kp∗

G (3.104)

Since 1
k−1 >

1
k , it can be shown that

1
k

E
[∥∥∥st

k − [x̄k]t 1
∥∥∥ |Ωk−1

]
≤

1
k − 1

∥∥∥st
k−1 − [x̄k−1]t 1

∥∥∥− 1 −
√
µ

k

∥∥∥st
k−1 − [x̄k−1]t 1

∥∥∥+
2m
√

m
k2 p∗

G (3.105)

Using the second claim of Lemma 4, we can see the following almost surely for any t.

∞∑
k=1

1
k

∥∥∥st
k−1 − [x̄k−1]t 1

∥∥∥ < ∞ (3.106)

In addition, based on the definition of st
k, for any node i, it follows that

∞∑
k=1

1
k

∥∥∥xi
k−1 − x̄k−11

∥∥∥ < ∞ (3.107)

Thus the first part of theorem 10 is proved. For the second claim, we need to first show the

following almost surely.

lim
k→∞

∥∥∥st
k − [x̄k]t 1

∥∥∥ = 0 (3.108)

(3.106) implies that

lim
k→∞

inf
∥∥∥st

k − [x̄k]t 1
∥∥∥ = 0 (3.109)

In order to show (3.108), then we have to prove that the convergence of
∥∥∥st

k − [x̄k]t 1
∥∥∥ when k goes

to infinity.

We will use the first claim of Lemma 4 to prove this. First take the square norm and condi-
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tional expectation on both sides of (3.94). Further derivations are shown as follows.

E
[∥∥∥st

k − [x̄k]t 1
∥∥∥2
|Ωk−1

]
≤E

[∥∥∥Qk
(
st

k−1 − [x̄k−1]t 1
)∥∥∥2
|Ωk−1

]
+ E

[∥∥∥Udt
k

∥∥∥2
|Ωk−1

]
+ 2

√
E

[∥∥∥∥Qk

(
st

k−1 − [x̄k−1]t 1
)∥∥∥∥2
|Ωk−1

]√
E

[∥∥∥Udt
k

∥∥∥2
|Ωk−1

]
(3.110)

Plugging (3.97) - (3.98) and (3.102)- (3.103) into (3.110) yields

E
[∥∥∥st

k − [x̄k]t 1
∥∥∥2
|Ωk−1

]
≤µ

∥∥∥st
k−1 − [x̄k−1]t 1

∥∥∥2
+

4m3

k2 p2
∗

G2

+
√
µ
∥∥∥st

k−1 − [x̄k−1]t 1
∥∥∥ 2m

√
m

kp∗
G (3.111)

Using (3.106) and the first claim of Lemma 4, it is clear to see that
∥∥∥st

k − [x̄k]t 1
∥∥∥ converges almost

surely for any t. With this (3.108) is proved. Leveraging the definition of st
k one more time, the

almost sure convergence of the disagreement is verified (second conclusion). This completes the

entire proof of theorem 10.

Optimal Solution In this section, we derive the convergence analysis in term of solution of

each node xi
k.

Theorem 11 Let
{
xi

k

}
,∀i ∈ V, k ≥ 0 be the sequence generated by the algorithm in (3.75) and

given that all the assumptions are satisfied. Then the sequences converge to a same optimal point

almost surely for any node i.

Proof: We start by looking at (3.83) with i ∈ Jk. Subtracting x (some point in the feasible set)

on both sides of (3.83) and taking square norm yields the following.

∥∥∥xi
k − x

∥∥∥2
≤

∥∥∥yi
k − x

∥∥∥2
+ α2

i,k

∥∥∥∇Fi(xi
k)
∥∥∥2
− 2αi,k

(
∇Fi(xi

k)
)T (

yi
k − x

)
(3.112)

By using the equality αi,k =
(
αi,k −

1
kδi

)
+ 1

kδi
and the inequality in Lemma 6, we can bound the



110

right-most term in (3.112) as follows.

∥∥∥xi
k − x

∥∥∥2
≤

∥∥∥yi
k − x

∥∥∥2
+ α2

i,k

∥∥∥∇Fi(xi
k)
∥∥∥2

−
2

kδi

(
∇Fi(xi

k)
)T (

yi
k − x

)
+

4
k3/2−q p2

∗

∥∥∥∥(∇Fi(xi
k)
)T (

yi
k − x

)∥∥∥∥ (3.113)

Based on the fact that 2aT b ≤ ‖a‖2 + ‖b‖2, the inner product in the right hand side of the (3.113)

can be bounded as follows.

∥∥∥xi
k − x

∥∥∥2
≤(1 + βk)

∥∥∥yi
k − x

∥∥∥2
−

2
kδi

(
∇Fi(xi

k)
)T (

yi
k − x

)
+

(
α2

i,k + βk

) ∥∥∥∇Fi(xi
k)
∥∥∥2

(3.114)

where βk = 2
k3/2−q p2

∗

. By the convexity of function Fi and the bounded (sub)gradient condition, the

following inequality holds for arbitrary a, b, and c [109].

∇Fi(a)T (a − b) ≥ Fi(c) − Fi(b) −G ‖a − c‖ (3.115)

Plugging (3.115) into (3.114) with a = xi
k, b = x, c = x̄k−1 we can have

∥∥∥xi
k − x

∥∥∥2
≤(1 + βk)

∥∥∥yi
k − x

∥∥∥2
−

2
kδi

(Fi(x̄k−1) − Fi(x))

+
2G
kδi

∥∥∥yi
k − x̄k−1

∥∥∥ +
4G
kδi

∥∥∥xi
k−1 − x̄k−1

∥∥∥ + τk

∥∥∥∇Fi(xi
k)
∥∥∥2

(3.116)

where τk = 4m2

k2 p2
∗

+ βk. To bound the term
∥∥∥yi

k − x̄k−1

∥∥∥, we will use the property in [109] described in

(3.121). Now taking conditional expectation and the bounded (sub)gradient condition, it follows
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that

E
[∥∥∥xi

k − x
∥∥∥2
|Ωk−1, ik, Jk

]
≤(1 + βk)

∥∥∥yi
k − x

∥∥∥2
−

2
kδi

(Fi(x̄k−1) − Fi(x))

+
2G
kδi

∥∥∥yi
k − x̄k−1

∥∥∥ +
4G
kδi

∥∥∥xi
k−1 − x̄k−1

∥∥∥ + τkG2 (3.117)

Recall the definition of δi, it is the probability of node i updates (the event that it receives

broadcast from any of its neighbors). Hence the fact holds δi ≥
p∗
m . Then (3.117) can be modified

to

E
[∥∥∥xi

k − x
∥∥∥2
|Ωk−1, ik, Jk

]
≤(1 + βk)

∥∥∥yi
k − x

∥∥∥2
−

2
kδi

(Fi(x̄k−1) − Fi(x))

+
2mG
kp∗

∥∥∥yi
k − x̄k−1

∥∥∥ +
4mG
kp∗

∥∥∥xi
k−1 − x̄k−1

∥∥∥ + τkG2 (3.118)

Now let x = x∗ where x∗ is an optimal point of the objective function. Substituting this into

(3.118) yields

E
[∥∥∥xi

k − x∗
∥∥∥2
|Ωk−1, ik, Jk

]
≤(1 + βk)

∥∥∥yi
k − x∗

∥∥∥2
−

2
kδi

(Fi(x̄k−1) − Fi(x∗))

+
2mG
kp∗

∥∥∥yi
k − x̄k−1

∥∥∥ +
4mG
kp∗

∥∥∥xi
k−1 − x̄k−1

∥∥∥ + τkG2 (3.119)

Incorporating the case when i < Jk (xi
k = yi

k) with the current formula (which assumes i ∈ Jk), and

also with the definition that δi denotes the total probability that node i updates, we obtain

E
[∥∥∥xi

k − x∗
∥∥∥2
|Ωk−1

]
≤(1 + βk)E

[∥∥∥yi
k − x∗

∥∥∥2
|Ωk−1

]
−

2
k

(Fi(x̄k−1) − Fi(x∗))

+
2mG
kp∗

E
[∥∥∥yi

k − x̄k−1

∥∥∥ |Ωk−1

]
+

4mG
kp∗

E
[∥∥∥xi

k−1 − x̄k−1

∥∥∥ |Ωk−1

]
+ δiτkG2

(3.120)
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It can be shown that for any x the following property holds [109].

m∑
i=1

E
[∥∥∥yi

k − x
∥∥∥ |Ωk−1

]
≤

m∑
i=1

∥∥∥xi
k−1 − x

∥∥∥ (3.121)

At this point, summing up both sides of (3.122) over all the nodes i ∈ V, applying (3.121) and the

definition in (3.74) yields

m∑
i=1

E
[∥∥∥xi

k − x∗
∥∥∥2
|Ωk−1

]
≤(1 + βk)

m∑
i=1

∥∥∥xi
k−1 − x∗

∥∥∥2
−

2
k

(F(x̄k−1) − F(x∗))

+
6mG
kp∗

m∑
i=1

∥∥∥xi
k−1 − x̄k−1

∥∥∥ +

m∑
i=1

δiτkG2 (3.122)

It can be seen that the summation of βk over k (from 1 to∞) is bounded. Furthermore, the last

term in (3.122) meets the condition in Lemma 4 due to the definition of τk. From the first claim of

theorem 10, we can see that the following holds almost surely.

∞∑
k=1

6mG
kp∗

m∑
i=1

∥∥∥xi
k−1 − x̄k−1

∥∥∥ < ∞ (3.123)

Considering the last two terms in (3.122) as one item along with the fact that F(x̄k−1)−F(x∗) ≥

0, we can see that all the conditions of Lemma 4 have been satisfied. Hence it concludes that the

sequence
{∑m

i=1

∥∥∥xi
k − x∗

∥∥∥2
}

converges and

∞∑
k=k̃

1
k

(F(x̄k−1) − F(x∗)) < ∞ (3.124)

Similar as the proof in theorem 10, it can be deducted from (3.124) that

lim
k→∞

inf F(x̄k−1) = F(x∗) (3.125)

Since the sequence
{∑m

i=1

∥∥∥xi
k − x∗

∥∥∥2
}

converges and (3.125) holds for any point x∗ in the set

of optimal solutions X∗, we know that there exists a subsequence
{
x̄k j

}
(of sequence {x̄k}) such

that x̄k j → x̂ for some x̂ in the feasible set X and lim j→∞ F(x̄k j) = F(x∗). By using continuity of
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function F and the fact that x̄k j converges to x̂, it follows that lim j→∞ F(x̄k j) = F(x̂). Hence we can

have F(x̂) = F(x∗), which means x̂ belongs to the optimal solution set X∗. Now we can see the

sequence
{∑m

i=1

∥∥∥xi
k − x̂

∥∥∥2
}

converges, together with the fact that
{∑m

i=1

∥∥∥xi
k − x̄k

∥∥∥2
}
→ 0 as k → ∞

(based on the second claim of theorem 10), we know ‖x̄k − x̂‖2 converges. Since the subsequence∥∥∥x̄k j − x̂
∥∥∥2
→ 0, there is ‖x̄k − x̂‖ → 0, which shows that {x̄k} converges to an optimal point (x̂)

of the problem. Finally, using the second claim of theorem 10 again, it can be obtained that the

sequence
{
xi

k

}
generated by any node i ∈ V converges to the same optimal solution point almost

surely. The proof of the theorem is thus complete.

Mathematical Formulation of Seismic Tomography Problem In previous, we have dis-

cussed the mathematical formulation of seismic tomography problem. In the next, we will demon-

strate how the developed method fits into it.

Computing seismic tomography can be modeled as solving an inversion problem as follows.

min
x

1
2
‖Ax − b‖22 + λ2‖x‖22 (3.126)

where λ is the regularization parameter.

Notice that problem (3.126) can be decomposed since the ray information and travel-time

information in A and b are originally generated in a distributed manner. Hence the local objective

function Fi of in this scenario can be regarded as:

Fi =
1
2
‖Aix − bi‖

2
2 + λ2

i ‖x‖
2
2 (3.127)

where i-th sensor node has the knowledge of Ai and bi only.

It can be seen that assumption 2 holds given the problem formulation here. With the domain

knowledge in seismic tomography, the bounded gradient assumption 3 is also valid.
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Figure (3.20) Ground truth of the magma model

3.3.5 Experiment Results

Experiment Settings In this section, we investigate the performance of the proposed algo-

rithm, particularly on the seismic tomography problem.

We study the performance in a 3-D synthetic data set, which is constructed simulating the

problem of seismic tomography in sensor network. The proposed scheme is implemented in MAT-

LAB. Experiments are performed on a PC with an Intel i5-3.0G HZ CPU and 8 GB memory.

Regarding the problem model, we use the regularized least squares model in (3.126) men-

tioned in the last section,, where the regularization parameter λ is set to 1 in all scenarios. The

matrix A and vector t is constructed by stacking the sub-matrices (sub-vectors) of all the nodes.

The resolution means the number of blocks along the x, y and z-axis over the interested region. In

the data set, the solution of this “centralized” problem is pre-computed using LSQR method. This

centralized solution is used in the convergence measures and seen as the best benchmark for other

decentralized algorithms in terms of the tomography result.

In the presenting work, Nedic’s algorithm (as a benchmark) is compared with our designed

method. For the decentralized formulation, the corresponding parameter λi for each node i is set

to 1/p, where p is the total number of nodes in the network. The communication networks are
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generated randomly with certain average node degrees. We exam the quantitative performance of

the decentralized algorithms by using the metrics mentioned in (3.76) and (3.77).

The 3-D synthetic model has resolution 32 × 32 × 32. The model contains a magma chamber

(low velocity area) in a 10 km3 cube. The number of sensor nodes is set to 100 and they are

randomly distributed on top of the region. 400 events are generated and we compute the travel

times from every event to each node based on the ground truth, and send the event location and

travel time to corresponding node. To simulate the event location estimation and ray tracing errors,

a white Gaussian noise is added to the travel time to construct the sensor node observations (arrival

times). A is formed as a 40, 000 × 32, 768 sparse matrix. The ground truth of the magma model

with resolution 128 × 128 × 128 is depicted in Figure 3.20.
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Figure (3.21) Convergence behavior comparison in 3-D synthetic data set.

Comparison of convergence speed We conduct the experiment using a randomly gener-

ated communication network, such that each senor is assumed to have 10 neighbors on average

within its communication range. From Figure 3.21 we can see that the proposed algorithm (blue)

outperforms Nedic’s (green) in terms of objective function value and consensus measure. This is

consistent with our anlaysis before. We observe that the improvement of proposed algorithm over

the benchmark is more significant in the plot of the average objective value. In fact, this effect is

favored in system-level design since in realistic scenario, we might take the average of all the avail-
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able solutions (from working nodes) rather than randomly select one node. Thus the performance

in term of average objective value is more important than the consensus measure for real system.

Notice that the x-axis and y-axis in the figures are all in log-scale, hence the difference between

the two methods is in fact large if seen in normal linear scale visually.
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Figure (3.22) Effect of link failure in convergence behavior.

Performance under link failures We study the performance of the proposed algorithm un-

der link failures. Reliable link (pi j = 1), link connection probability pi j = 0.8, 0.6 are considered,

respectively. It is clear to find the convergence is faster if the link is more reliable (since in each

communication rounds, more nodes receive the broadcast and perform updates. This speeds up the

convergence of the network as a whole). More interestingly, the curves with link failures are kind

of “close” to the one with perfect link especially in the plot of the average objective value. This

demonstrates the robustness of the developed method under link failures. The tomography results

with link failures are illustrated in Figure 3.23.

Influence of network connectivity ratio The effect of changing network connectivity ratio

is also investigated. In Figure 3.24 we find that the higher the connectivity ratio is, the faster

the convergence in terms of average objective value and the consensus. Note that Ratio2 (node

degree = 10) is our default setting and it shows close performance to Ratio3 (node degree = 15).

Furthermore, we have demonstrated in previous that the proposed algorithm performs well in terms
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(c) Reliable link
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(d) Reliable probability =

0.6
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(f) Centralized
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(g) Reliable link
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(h) Reliable probability =

0.6

Figure (3.23) Seismic Tomography Comparison at Layer 14 (upper row) and 18 (bottom row). (a)
and (e) are the ground truth. Centralized solution in (b) and (f) are obtained using LSQR method
to the centralized formulation. (c) and (g), (d) and (h) are the tomography results of decentralized
solutions (at 10th iteration) with reliable link probability =1 and 0.6, respectively.

of tomography results with this small network connectivity ratio (100 nodes in the network). We

conclude that the developed scheme still works in very sparse networks, which can be leveraged to

cover large-scale region in seismic imaging. Note that the experiments on the influence of network

connectivity ratio are conducted as empirical study of the proposed algorithm. We will analyze the

theoretical justification as our future work.

Effect of packet loss We evaluate the robustness of our proposed algorithm from another

perspective - packet loss. We simulate packet loss by setting partial vector of the broadcast to

zero. We test with packet loss ratios 10% and 30%, respectively. The results at 50 iterations are

shown in Figure 3.25. It is clear to see that the distinction between the result without packet loss

is relatively small even at the case of 30% packet loss ratio. This validates the fault-tolerances and

robustness of our method, especially in applications like seismic tomography, which always suffers
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Figure (3.24) Influence of network connectivity ratio. Ratio1 (blue): average node degree = 5,
Ratio2 (green): average node degree = 10, Ratio3 (red): average node degree = 15.

from severe packet loss. Similar as the previous subsection, the theoretical analysis of the effect of

packet loss to the proposed algorithm is also an interesting direction to explore in the future.
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Figure (3.25) Effect of packet loss (vertical slice at layer 14).

Summary We proposed an asynchronous and broadcast-based algorithm, which does not

require any synchronization among the sensor nodes. We conducted extensive tests of proposed

algorithm on various aspects. The experiment results show that our designed method outperforms

the benchmark. The merits of the proposed methods elucidate that it is a promising solution for

real-time in-situ seismic tomography in the near future.



119

PART 4

CONCLUSIONS

This doctoral thesis proposes solutions for challenges in CPS systems based on the idea of

in-situ data analytics. We consider two important and typical study cases: Smart Grid and Seismic

Imaging System. For smart grid case, in the first stage, we developed data computing schemes

for topology identification and power-line outage detection. Our proposed methods can identify

the grid topology with high accuracy given very limited measurements. In addition, a light-weight

distributed data analytics framework was designed to overcome the high computational complex-

ity in existing literature, which limits the practical usage of outage detection only for the scenario

of single-line or double-line outages. Also the distributed platform can improve the security and

privacy for the power grids. For the seismic imaging system, we present several decentralized

optimization algorithms for the purpose of real-time in-situ seismic imaging. In the first work, we

reformulated the conventional seismic tomography problem and exploit the ADMM method to de-

sign two distributed algorithms. One is a synchronous algorithm and the other is asynchronous and

more fault-tolerant and scalable. Consider the computation complexity of the proposed ADMM-

based algorithms, we then devised a gradient descent based decentralized method, which is even

cheaper in in terms of computation. Finally, we developed an asynchronous broadcast-based de-

centralized algorithm, which is most suitable for the application of seismic imaging in practice. We

theoretically proved the convergence and rates of our proposed algorithms in terms of the number

of communication rounds. Extensive evaluations on both synthetic and real data sets demonstrated

that they not only achieve near-optimal (compare to centralized solution) high quality tomography

but also retain low communication cost even in very sparse distributed networks.
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