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ABSTRACT 

Current stereo matching techniques are challenged by restricted searching space, occluded 

regions and sheer size. While monocular depth estimation is spared from these challenges and can 

achieve satisfactory results with monocular cues, the lack of stereoscopic relationship renders the 

monocular prediction less reliable on its own especially in highly dynamic or cluttered 

environments. To address these issues in both scenarios, an optic-chiasm-inspired self-supervised 

binocular depth estimation method is proposed in thesis, wherein vision transformer with gated 

positional cross-attention layer is designed to enable feature-sensitive pattern retrieval between 

views, while retaining the extensive context information aggregated through self-attentions. This 

crossover design is biologically analogous to the optic-chasma structure in human visual system 

and hence the name, ChiTransformer. It leverages strengths of both monocular and binocular 

approaches. Our experiments show this architecture yields substantial improvements on self-

supervised stereo approaches by 15% and can be used on both rectilinear images and fisheye 

images.  
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1 INTRODUCTION  

 

Transformer has been proven to be very effective in various vision tasks. Recently, vision 

transformer is exploited to depth estimation and achieves superior results. In this paper, we push 

its capability further to stereo vision tasks and non-rectilinear settings.  

 

In the context of computer vision, nowadays almost all mainstream depth estimation 

methods are deep learning based and can be roughly categorized into two prevalent methodologies, 

namely, stereo matching and monocular depth estimation. Stereo matching has traditionally been 

the most investigated area due to its strong connection to the human visual system. The task is to 

find or estimate the correspondences of all the pixels of two rectified images [3, 4, 51]. Virtually, 

all the current works resort to convolutional neural network (CNN) based methods to calculate the 

matching cost since its first introduction to the task by [14,68] in 2015. Following the work of 

FlowNet [14], more than 150 papers have been published using CNN-related methods [36], 

pushing the performance forward by more than 50%. Some deep-seated issues such as thin 

structures, large texture-less areas, and occlusions have been mitigated or addressed [29, 70] over 

time. So far, stereo matching is the most adopted technique in majority of passive stereo 

applications.  

 

However, the applications that entail depth estimation grow increasingly demanding as 

visual systems are greatly downsized and installed on platforms with higher mobility (e.g., UAV, 

commercial robots). This indicates a more congested, cluttered and dynamic operating 

environment where the once side issues become major ones, i.e., large disparity, large occlusion 
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and non-rectilinear images might be involved. Most existing stereo matching methods are not set 

up for this new trend and hence fail to address these issues properly.  

 

On the other hand, monocular depth estimation (MDE) is spared from these issues as depth 

is estimated from a single view. Current works, following [17], leverage deep learning models to 

derive more descriptive cues to achieve superior predictions. More recent works focus on fusing 

multi-scale information to further improve the pixel level depths [37, 41]. Lately, vision 

transformer is exploited in the task and yields globally organized and coherent predictions with 

finer granularity [5,48].  

 

State-of-the-art MDE methods can achieve impressive results with relative accuracy δ3 

surpasses 0.99 by supervised training [19, 24, 40, 66]. However, the reliability of MDE estimation 

is essentially based on the assumption that the scenes in the real world are mostly regular. 

Therefore, due to the lack of stereo relation, the MDE is more delimited to its dataset and 

susceptible to “unfamiliar” scenes. This renders the MDE alone not reliable in safety-critical 

applications such as autonomous driving and visual-aided UAV.  

 

Up to this point, we can see that the limitations and advantages of stereo matching and 

MDE are complementary. Following this observation, we propose a novel method that jointly 

addresses their limitations by crossing over the stereo and depth estimation approaches such that 

stereo in- formation can be injected into the MDE process to rectify and improve the estimation 

made from depth cues.  



3 

 

We introduce ChiTransformer, an optic-chiasm-inspired dense prediction transformer. 

ChiTransformer adopts the recently published vision transformer (ViT) [13] as backbone and 

extends the encoder-only transformer to an encoder-decoder structure similar to the transformer 

models [12, 56] for natural language processing (NLP). Unlike the end-to-all connection in NLP 

transformer, ChiTransformer adopts an interleaved connection for cross-attention to progressively 

instill the encoded depth cues and contextual information from the nearby view to the master view 

in a self-regressive process. Our main contribution is the design of a retrieval cross-attention layer. 

Instead of attending and curing over multi-level contextual relations from the encodings like 

regular multi-head attention (MHA), the cross-attention mechanism of ChiTransformer aims to 

retrieve depth cues with strong contextual and feature coincidence from the other view. To achieve 

this, we condition the initial state (query) with a self-adjoint operator G without breaking the 

convergence rule of modern Hopfield network [47]. The positive-definite G is spectrally decom- 

posed to enable polarized attention within the encoded feature space to emphasize on certain cues 

while preserving as much of the original information as possible. We show that this design 

facilitates reliable retrieval and leads to finer feature-consistent details on top of the globally 

coherent estimations. Moreover, the model can be further extended to non-rectilinear images such 

as fisheye by using gated positional embedding [10]. We model the epipolar geometry with 

learnable quadratic polynomials of relative positions. Considering the per-pixel labeled data is 

challenging to acquire at scale and let alone for the non-rectilinear images, we choose to train the 

model with self-supervised learning strategy tailored from the work in [23].  

Experiments are conducted on depth estimation tasks that provide stereo pairs. Our result 

shows that ChiTransformer delivers significant improvement by more than 15% compared to the 

top-performing self-supervised stereo methods. The architecture is also tested on stereo tasks to 
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evaluate the gain brought by stereo cues and the underlying reliability yielded by the instilled 

stereo information. To show the potential of ChiTransformer in non-rectilinear images, we train 

our model to predict the distances on the translated synthetic fisheye sequences from [16] and 

achieve visually satisfactory results.  

 

In contrast to traditional stereo methods, our approach foregoes pixel-level matching 

optimization but leverages the context-infused depth cues of both images to improve the overall 

depth prediction accordingly. With a global receptive field, ChiTransformer is not restricted to 

certain epipolar geometry such as the horizontal collinear epipolar lines of rectified regular stereo 

pairs. It is also able to treat large disparity. Furthermore, with the inherent capability of depth 

estimation within a single image, estimation at large occluded area can be properly handled rather 

than being masked out, interpolated, or left untreated. Enhanced from current MDE methods, our 

approach provides reliable prediction with guided cues in stereo pair which makes ChiTransformer 

more suitable for complex and dynamic environments.  
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2 RELATED WORKS 

Since the publication of [17] (2014) and [18] (2015), end-to-end trainable CNN-based 

models have been the prototypical architecture for dense depth [22, 23, 49] or dis- parity estimation 

[26, 28, 53, 64]. The principal idea is to leverage learned representation to improve matching cost 

[33,51] or depth cues [6] with appropriately large local contextual information. The prevalent 

encoder-decoder structure enables progressive down-sampling and up-sampling of representation 

at different scales [9, 15, 41, 63, 71]. Intermediate results from previous layers are often reused to 

recover fine-grained estimations while ensuring sufficiently large context.  

 

After showing exemplary performance on a broad range of NLP tasks, attention and, in 

particular, transformer has demonstrated competitive or superior capability in vision tasks such as 

image recognition [13,54], object detection [8, 73], semantic segmentation [65], super-resolution 

[62], image impainting [69], image generation [50], text-image synthesis [1], etc. The successes 

also sparked interest in the community of stereo and depth estimation. [60] leveraged cascaded 

attentions to calculate the matching cost along the epipolar lines and achieved competitive results 

among self-supervised stereo matching methods [2, 31, 39, 72]. More recently, vision transformer 

was leveraged in place of convolution network as backbone for dense depth prediction in [48] and 

achieved significant improvement by 28% compared to the state-of-the-art convolutional 

counterparts. In [5], a mini-ViT block is employed in the refinement stage to facilitate the adaptive 

depth bin calculation. The work tops KITTI [21] and NYUv2 [52] leaderboards. Inspired by [48], 

our method leverages the capability of ViT in learning long range complex context information to 

help rectify depths cue instead of performing stereo matching.  
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Most works mentioned above are fully supervised, which necessitate pixel-wise labeled 

ground truth for training. However, it is challenging to acquire varied real-world setting at a large 

scale. One of the workarounds is to adopt self-supervised learning. For stereo training, usually 

pixel disparities of synchronized stereo pairs are predicted [2, 31, 39, 63, 72], while for monocular 

training, not only depth but also camera pose has to be estimated to help reconstruct the image and 

constrain the estimation network [7, 22, 57, 67, 72]. Considering the versatility and the potential 

application environment of our method, we choose self-supervised training for ChiTransformer. 

Details are discussed in section 3.  
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3 METHOD 

This section introduces the overall architecture of the ChiTransformer with elaboration on 

the key building blocks. We follow the successful configuration of the vision transformer [13] as 

the backbone and maintain the prevalent overall encoder-decoder structure for their repeatedly 

verified success in various dense prediction tasks. We show the interplay of the encoded 

representations or cues between a stereo pair in ChiTransformer and how they can be effectively 

converted into dense depth predictions. The intuition for the elicitation and success of this method 

is discussed.  

 

3.1 Architecture 

3.1.1 Overview 

The complete architecture is shown in Figure 1. ChiTransformer employs a pair of hybrid 

vision transformers as backbone with ResNet-50 [25] for stereo pair patch embedding. The 

parameters of the two ResNet tower are shared to ensure consistency in representation. The 2D-

arranged patch embeddings are first projected to 768 dimensions, then flattened and summed with 

positional embeddings before fed into attention blocks. For an image of size H × W, if the 

embedding size is (P, P), the result would be a set T = {t0, ..., tNp}, where Np = H·W/ P2 and t0 is 

the class token. Here, patches are in the role of ‘words’ for transformer. We will address patches 

as “tokens” or use them interchangeably here- after. The attention block for the reference view 

closely follows the design in [13] with “classification token” included. Whereas master tokens are 

self-attended in the first multiple layers followed by cross-attention (CA) and self-attention (SA) 

layers in an interleaved fashion with CA layer being inserted after every other SA layer. The output 

tokens of the master ViT (and reference ViT in training) are then reassembled into an image-like 
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arrangement. Feature representations Is at different scales s ∈ S are progressively aggregated and 

fused into the final depth estimation in the fusion block, which is modified by RefineNet [42]. 

Fusion block is shared for both views in training phase but dedicated to the master view in 

inference.  

 

Figure 1. Architecture of ChiTransformer 

A stereo pair (left:master, right:reference) is initially embedded into tokens through a 

Siamese ResNet-50 tower. The 2D-organized tokens from the two images are flattened and then 

augmented with learnable positional embeddings and an extra class token, respectively. Then 

tokens are fed into two self-attention (SA) stack of size lSA in parallel. After that, tokens are fed 

into a series lDCR of depth rectification blocks (DCR) in each of which tokens of reference image 

go through an SA layer while tokens of master go through a polarized cross-attention (CA) layer, 

followed by an SA layer. In the polarized CA layer, relevant tokens from the output of reference 

SA are fetched to rectify the master's depth cues. Tokens from different stages are afterwards 

reassembled into an image-like arrangement at multiple resolution (blue) and progressively fused 

and up-sampled through fusion block to generate a fine-grained estimation. 
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3.1.2 Attention layers 

Self-attention layer is the crucial part for transformers and other attention-based methods 

to achieve superior performance over their non-attention competitors. The key advantage is that 

complex context information can be gathered in a global scope. With multilayer of SA, encodings 

get progressively tempered with the context information as it goes deeper into the attention layers. 

It is this mechanism that beget globally coherent predictions. There- fore, instead of putting 

immediate connection to the CA layer, we place multiple (lSA = 4) SA layers at the output of the 

embedder. Cues with appropriate amount of context information result in more reliable pattern 

retrieval in the subsequent CA layers. This design improves both training convergence and 

prediction performance. 

 

The cross-attention layer is our key contribution in Chi- Transformer. It is the enabler of 

the stereopsis through the fusion of high-level depth cue expressions from two views. We argue 

that the effectiveness of the traditional 4-step strategy would be largely weakened as the sources 

of ill-posedness such as occlusion, wider and closer range of depth, depth discontinuity and 

nonlinearity become increasingly frequent or prominent. Current deep learning- based methods 

rely on the learned rich representation to construct cost volume which is then regularized to make 

estimation. The output quality, in this case, largely de- pends on both the quality of the 

representation and the conformity of the scene to the matching regularizing assumptions [51]. 

While good representations can be learned with many approaches, there are few ways to fix up an 

impaired cost volume when scenes are far away from being appropriate for stereo matching. 

Therefore, instead of clinging to the matching strategy, we propose a novel pattern retrieval 

mechanism inspired by associative memory to retrieve the correspondent pattern from the other 
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view. We assume that a set of patterns can be learned to separate well such that each pattern can 

be retrieved in at least meta-stable state, i.e., fixed average of similar patterns [47]. Modeled by 

modern Hopfield network [11, 35], the retrieval rule of the associative memory elegantly coincides 

with the attention mechanism of the transformer. Naturally, we lever- age cross-attention layer to 

retrieve patterns (tokens) from reference view to master view. To facilitate reliable effective 

retrieval, we devise a new attention mechanism – polarized attention, which enables feature 

sensitive retrieval while preserving the context information contained in the pattern without 

breaching the convergence rule. From [60], we observe that direct attention over representations 

at the output of CNN reduces to cosine similarity-based matching. Without position-dependent 

context information over extensive scope, patterns are liable to ill-posedness and low separability.  

 

Given a retrieved token pair (mti, 
mt i′), ∀i = 1, · · ·, Np from the preceding CA layer and the 

class token pair (mt0 , 
mt′0 ), where m indicates master view, depth cues are then rectified through 

the following blending process:  

 
(1) 

 
(2) 

where GELU is used for MLP nonlinearity, LN is layer normalization, P_ai is the vector 

of attention scores of mti, and Heat(·) is the confidence score calculated with stabilized attention 

entropy, 

 

(3) 

 and 

 
(4) 
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Heat is set to 1 for class token. Clamping function g(·) can be sigmoid or smooth-step 

function with temperature τ and offset c. By doing so, tokens retrieved back in fixed state, i.e., 

with a very low entropy, would be securely rectified whereas those with high entropy are inhibited 

from being updated as they are very likely to reside in occluded area. Thus, the depth in occluded 

or “uncertain” areas are left to the power of SA layers to speculate its value with context 

information and rectified cues from non-occluded areas.  

 

3.1.3 Fusion block 

Our convolutional decoder follows the refinement block in [42, 48]. The output of attention 

layers t ∈ (Np +1)×D is reassembled into an image-like arrangement  H′×W′×D′ through a four-step 

operation:  

RSB = (rescale ◦ reshape ◦ MLP ◦ cat)  
 

(5) 

The class token is concatenated with all other tokens before being projected to dimension 

D′ to get t\0. Then it is reshaped into 2D shape as per the original arrangement of the image 

embedding. Finally, t\0 is re-sampled to size H/P ·Sl × W/P ·Sl × Dl for different scales at level l. Re-

sampling method is 2D transposed convolution (deconv) for Sl > 1, and strided 2D convolution for 

Sl < 1. For our model, features from level lattn = {12, 8, 4} in attention block and level lres = {1, 0} 

in ResNet50 are reassembled. The re- assembled feature maps from consecutive levels are finally 

fused through customized feature fusion block from RefineNet [42]. At each level, feature map is 

up-sampled by a factor of 2 and finally reaches half the resolution of the input images.  

 

The architecture of ChiTransformer is structurally similar and biologically analogous to 

the optic-chiasma structure in our visual system (figure 2), where visual field covered by both eyes 
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is fused to enable the processing of binocular depth perception by stereopsis [51], hence the name 

of our model.  

 
 

Figure 2. Optic-chiasma. Transformations of the visual field toward the visual map on the primary 

visual cortex in vertebrates. U=up; D=down; L=left; R=right; F=fovea 

 

 

3.2 Polarized Attention 

We propose a new attention mechanism to highlight or suppress features, which is very 

much like signal polarization but in channel domain. Ideally, for a set of tokens represented in 

tensor t = (t1, · · ·, tN) that is well separated, highlighting or suppressing can be potentially achieved 

in token-wise granularity. However, ideal separability is hard to achieve in practice and the 

attention tensor A for regular attention mechanism is calculated as,  
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(6) 

which is prone to be noisy with joint activation over all channels and hard to learn directly for W’s. 

While the prevalent MHA seeks for multi-level context instead of retrieval as tokens are mapped 

to different (sub-)spaces for each head that generates its own attention weights and output with the 

projected tokens. However, to enforce the retrieval behavior with MHA by aggregating attention 

weights of all heads before output calculation simply reduces MHA to a regular attention. 

Therefore, without loss of generality, we stick to the Hopfield network update rule to ensure 

retrieval behavior and initialize the query pattern with a self-adjoint operator, G ∈ D×D, 

 
(7) 

where β is the scale factor set to be sqrt(D). We assume the constraint that the query and memory 

should stay in the same space which is satisfied by G decomposed as G = M⊤M. It can further be 

spectrally decomposed to get:  

 
(8) 

where U is an orthogonal matrix and Λ is a positive diagonal matrix.  

 

To achieve feature sensitive retrieval while factoring in all the information in the 

embeddings, we desire diag(Λ) not to be zero abounded, i.e., feature selection. To achieve that and 

also enable multi-modal retrieval, multiple Λs are learned and we desire ∏i=1Λi close to the identity 

matrix such that if one feature is highlighted in one mode it should be suppressed in other modes. 

As such, the new attention mechanism becomes  

 

(8) 
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For our model, ξ is the tokens from the master view, t is the tokens from reference view, s 

= 2, W projects tokens back to its original dimension and ξ′ is the retrieved tokens from the 

reference view.  

 

3.3 Learnable Epipolar Geometry 

Token separability may be limited by the memory size and image content (e.g., existence 

of repetitive or uniform texture in the image). To further ensure secure retrieval without corrupting 

the encoded information, we constrain the attention mechanism with epipolar geometry through 

gated positional cross attention (GPCA) following [10]. In GPCA, positional embedding is 

modeled as trainable quadratic polynomial of relative positional encoding vpos
⊤rij. For regular 

stereo that is rectified, candidate retrievals reside within collinear horizontal lines. Therefore, we 

set vpos = −α(0,0,0,0,0,1,...,0), r = (1,δ1,δ2,δ1δ2,δ1
2,δ2

2,0,...,0), WQ = WK = 0, WV =I.  

 

In the equations above, r is the position vector of (δ1, δ2) which are the relative coordinates 

with respect to the query.  

The locality strength α > 0 determines how focused attention is along the horizontal line δ2 

= 0. The positional attention scores are calculated as softmax normalized L2 distance between the 

attended tokens and the query:  

 
(9) 

With the learnable gating parameter λ, the GPCA attention scores are calculated as:  

 
(10) 
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(11) 

where 𝜎 is the sigmoid function, and Acnt,ij is the content attention score calculated by polarized 

attention. To avoid GPCA from being stuck at λ >> 1, we initialize λ = 1 for all layers. 

 

3.4 Regularization  

Matrix U has to be orthogonal to guarantee that query and memory are attended in the same 

space. However, U in each layer is trainable parameter; even though it can be initialized with 

orthogonal matrices, during training process the orthogonality may not hold. Therefore, we 

introduce an orthogonality regularization loss to U as:  

 

(12) 

where d is the size of U and ∥·∥F is the Frobenius norm of matrix. Although U can be 

orthogonalized through Cayley’s parameterization, it is computational expensive for large matrix 

as inversion is involved and we found it is more difficult to converge and unstable in our case.  

 

To induce the diagonal matrix Λ to be trained into the desired form, we modified Hoyer 

regularizer [29] to mitigate the proportional scaling issue and at the same time to pull Λ away from 

being identity matrix. We introduce the following regularization: 

 

(13) 

where | · |e is the element-wise absolute function. 
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3.5 Training 

In this section, we provide details of the training method we used. We closely followed the 

self-supervised stereo training method provided in [24]. The model is trained to predict the target 

image from the other viewpoint in a stereo pair. Unlike classical binocular and multi-view stereo 

methods, the image synthesis process in our case is constrained by predicted depth instead of 

disparity as an intermediary variable. Specifically, given a target image It, a source image It', and 

the predicted depths Dt, through the relative pose between two views Tt→t’ calculated with the 

provided stereo base width (0.54m for KITTI) and calibration information, the correspondent 

coordinates between two images can be calculated. Following [32], the target image can be 

reconstructed from source image using bilinear sampling, which is sub-differentiable. 

 

The depth prediction should minimize the photometric reprojection error constructed for 

both master and reference view as follows: 

 
(14) 

where ωm (ωr) is the weight for master (reference) view, and pe(·) is the photometric reconstruction 

error [63]: 

 

(15) 

κ= 0.85 and It’ → t is the reprojected image: 

 
(16) 

where K is the pre-computed intrinsic matrix, proj(·) is the resulting image coordinates projected 

from source view through 



17 

 

 
(17) 

and bi-sample〈·〉 is the bilinear sampler. 

 

We also enforce edge-aware smoothness in the depths to improve depth-feature 

consistency defined as where dt
* = d/mean(dt) is the mean-normalized inverse depth in [60]. 

 

Unlike existing self-supervised stereo-matching methods that rely on predicted values to 

generate confidence map to detect occlusions, e.g., left-right consistency check, ChiTransformer 

detects occluded area on the fly in the form of heat map in rectification stage. During training, heat 

map from the last GPCA layer is up-sampled to the output resolution and used as a mask mh in 

loss computation. For stereo training, static camera and synchronous movement between objects 

and camera are not issues, hence we do not apply the binary auto-masking to block out the static 

area in the image. 

 

During inference, only the master ViT output is up-scaled and refined to make the 

prediction. While in the training stage, both ViT towers in ChiTransformer are trained in tandem 

to predict depth and calculate their own losses Lp and Ls. 

 

Final Training Loss 

By combining the reconstruction loss, per-pixel smoothness from two views and the 

regularizations for the matrices U and Λ, the final training loss is: 

 
(18) 

where μ* are the hyperparameters that balance the contributions from different loss terms. 
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Our models are implemented in PyTorch. With pretrained resnet-50 patch feature extractor 

and partial refinement layers from [50], the model is trained for 30 epochs using Adam [36] with 

a batch size of 12 and input resolution of 640 ×192. We use learning rate 1e-5 for the ResNet-50 

and 1e-4 for the rest part of the network in the first 20 epoch and then decayed to 1e-5 for the 

remaining epochs. We set ωm = 0.6, ωr = 0.4, μs=1e-4, μo=1e-7 and μΛ =1e-3.  
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4 EXPERIMENTS 

The model is trained on KITTI 2015 [22]. We show that our model significantly improves 

accuracy compared to its top CNN-based counterparts. Side-by-side comparisons are given in this 

section with the state-of-the-art self-supervised stereo methods [41, 61, 62].  Ablation study is 

conducted to validate that several features in ChiTransformer contribute to the improved prediction. 

Finally, we extend our model to fisheye images and yield visually satisfactory result as shown in 

figure 7. 

Table 1. Quantitative Results 

 

Comparison of our model to the state-of-the-art self-supervised binocular stereo methods. Lower 

is better for all metrics. 
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4.1 KITTI 2015 Eigen Split 

We divide the KITTI dataset following the method of Eigen et al. [18]. Same intrinsic 

parameters are applied to all images by setting the camera principal point at the image center and 

the focal length as the average focal length of KITTI. For stereo training, the relative pose of a 

stereopair is set to be pure horizontal translation of a fixed length (0.54m) according to the KITTI 

sensor setup.   For a fair comparison, depth is truncated to 80m according to standard practice [23] 

 

4.2 Quantitative Results 

We compare the results of the two different configurations of our model with state-of-the-

art self-supervised stereo approaches. ChiT-8 has 4 SA layers followed by 4 rectification blocks, 

while ChiT-12 has 6 SA layers and 6 rectification blocks. The results in Table 1 show that 

ChiTransformer outperforms most of the existing methods, particularly in the prediction of the 

foreground regions. This trait is as expected that foreground regions are more likely to be abounded 

by distinctive features that benefit depth cue rectification. We show qualitative result in Figure 5-

6. With content information from both views, ChiTransformer provides more details consistent to 

the image features compared to existing self-supervised methods. 

We also compare our method with top self-stereo-supervised MDE methods to show the 

reliability gain in terms of accuracy improvement. For a fair comparison, we choose the models 

that are trained on KITTI with stereo supervision. Methods trained over multiple datasets are not 

considered. Quantitative results are shown in Table 2. Side-by-side prediction comparison is 

shown in Figure 2-4. 
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Left Image 

 
Monodepth2 

 
ChiTransformer-12 

 
Figure 3. Sample results compared with self-stereo-supervised fully-convolutional network 

Monodepth2.  ChiTransformer shows better global coherence (e.g., sky region, sides of image) 

and provides feature consistent details. 
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Monodepth2 

 
ChiTransformer-12 

 

Figure 4. Sample results compared with self-stereo-supervised fully-convolutional network 

Monodepth2.  ChiTransformer shows better global coherence (e.g., sky region, sides of image) 

and provides feature consistent details. 
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Monodepth2 

 
ChiTransformer 

 
Figure 5. Sample results compared with self-stereo-supervised fully-convolutional network 

Monodepth2.  ChiTransformer shows better global coherence (e.g., sky region, sides of image) 

and provides feature consistent details 
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Table 2. Comparison with Stereo Self-supervised Monocular Methods 

 
All models listed in the table above are trained with self-supervised methods using stereo pair.  

Same as the monocular methods, ChiTransformer relies on depth cues to estimate depth, only 

with extra information from a second image. 

 

 

4.3 Ablation Study 

To understand how each major feature contributes to the overall performance of 

ChiTransformer, ablation study is conducted by suppressing or activating specific components of 

the model. We observe that each component in our model is designed to push the performance a 

bit forward which aggregates into a sizable improvement. Here we provide some insights on the 

major features based on observation. 

4.3.1 Self-attention layer 

largely improves the separability of each token with long range complex contextual 

information. Without SA layer, the retrieval process would take up a hopping behavior and render 

erroneous predictions. 

4.3.2 Polarized attention 

We learn the matrix G through its spectral decomposition to gain more control over its 

behavior. Direct learning of G tends to result in feature negligence as the major features contained 

within a token dominate or take all the reward. With the complementary feature highlighting-
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suppressing strategy as we desire ∏Λ to be close to I, the features from both parties can be 

attended. Meanwhile, since Λ is not porous with zeros, i.e., no Lasso regularization involved, all 

information contained in the token is more or less attended. 

4.3.3 Learnable Epipolar Geometry 

Intuitively, for rectified stereo a pixel pair is guaranteed to reside in the same horizontal 

line and hence the attending space should be that line. However, the slotted attention region hurts 

the inter-line connection and cause serrated effects on vertical features even that feature is 

distinctive, e.g., an edge. Whilst the learnable epipolar geometry in GPCA solves the problem by 

allowing global but focused view over the lines and at the same time further improves the inter-

line separability. Quantitative results are given in Table 3. 

Table 3. Ablation Study 

 

Evaluations for different settings of ChiTransformer (ChiT) trained on KITTI 2015 with Eigen split. “P” 

denotes the polarized attention. “G” stands for the direct learning of matrix G. “LEG” represents the 

feature of learnable epipolar geometry. “Linear” is the single line attention zone. ChiT with only P 

enabled has the lowest score due to inferior token separability. With the addition of LEG, the model: 

ChiT+P+LEG, becomes the top performer and show the advantage of P over G compared with 

ChiT+G+LEG. ChiT+P+Linear has the 2nd best performance. The serration effect due to “Linear” is 

largely mitigated by the long-range context information and SA layers.  
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Figure 6. Qualitative results on the KITTI stereo 2015 compared with existing self-supervised 

stereo matching methods. The sharp depth maps generated by our model (ChiTransformer-12 in 

the second last row) provides more reliable estimation especially in the close range as reflected 

in the error map and better global coherence consistent.  
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Figure 7. Qualitative results on the KITTI stereo 2015 compared with existing self-supervised 

stereo matching methods. The sharp depth maps generated by our model (ChiTransformer-12 in 

the second last row) provides more reliable estimation especially in the close range as reflected 

in the error map and better global coherence consistent. 
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5 CONCLUSION 

By investigating the limitations of the two prevalent methodologies of depth estimation, 

we present ChiTransformer, a novel and versatile stereo model that generates reliable depth 

estimation with rectified depth cues instead of stereo matching. With the three major contributions: 

(1) polarized attention mechanism, (2) learnable epipolar geometry, and (3) the depth cue 

rectification method, our model outperforms the existing self-supervised stereo methods and 

achieves state-of-the-art accuracy. In addition, due to its versatility, ChiTransformer can be applied 

to fisheye images without warping, yielding visually satisfactory results. 

 

 

Synthetic fisheye image 

  

Planar depth estimation 

Figure 8. Example result of ChiTransformer for fisheye depth estimation. With learnable 

epipolar curve vpos,ij = (1, a, b, c, d, e)ij (constant term is set to 1 to avoid proportional scaling) 

and circular masks, ChiTransformer can directly work on circular image without warping.  
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