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ABSTRACT 

Titanium dioxide (TiO2) attracts extensive attention due to its widespread technological 

and environmental applications. This study seeks to investigate the surface charging behavior of 

the two TiO2 polymorphs, anatase and rutile, using Flow Adsorption Microcalorimetry (FAMC). 

FAMC allows direct quantitative measurement of the heat of a surface reaction; these calorimetric 

heats are directly proportional to the surface charge. Determining the magnitude of positive and 

negative charges at the surface over a range of pHs allows for the determination of the point of 

zero net charge (PZNC) via a unique calorimetric method that removes many of the shortcomings 

related to the other analytical techniques used for such measurements.  
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1 INTRODUCTION  

The interface between mineral surfaces and aqueous solutions plays an important role in 

numerous environmental and energy related applications. Metal-oxide (MO) minerals are of 

particular importance due to their natural abundance and wide range of surface reactivities (Vohs, 

2013). In the presence of aqueous solutions, under-coordinated oxygen and metal ions at the MO 

surface react with water molecules in solution to form surface hydroxyl functional groups: 

≡SOH (where ≡S represents a metal in the mineral structure and OH is the hydroxylated surface 

oxygen) (O’day, 1999). The protonation and deprotonation of surface hydroxyl groups in response 

to solution pH results in the formation of a net charge at the MO surface (Meyers, 1999).  The pH 

dependent surface charge gives rise to an electrified region at the interface between the mineral 

and bulk solution, referred to as the electric double layer (EDL), where the condition of 

electronuetrality is achieved by the accumulation of counter-ions (ions of opposite charge to that 

of the surface) in a compact region near the surface and a diffuse region of counter- and co-ions 

(ions of the same charge to that of the surface) which decays to the bulk solution (Hunter, 1988). 

It is this retention (or release) of ions at MO/solution interface that has been the subject of interest 

in a wide variety of disciplines ranging from material science to geochemistry. MOs are employed 

as catalytic materials and used in the production of industrial chemicals and fuel cells often 

requiring ion adsorption processes from impregnation solutions (Rudzinski, 2000; Vohs, 2013). 

The adsorption or release of chemical species by charged MO surfaces plays a fundamental role 

in a number of geochemical processes including the mobility and fate of contaminants in 

subsurface environments (Smith, 1999). Some MOs exhibit large adsorption capacities for toxic 

heavy metals, organics, and/or oxyanions which make them ideal absorbents for remediation 

applications (Zhang et al., 2008). Optimization and development of these applications rely on the 
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ability to accurately model these interfacial systems. Increasing the accuracy of predictive models 

would provide immense benefits. For example, the models can better anticipate the movements of 

toxic heavy metals in groundwater environments and hence  improve the technology implemented 

in the remediation efforts of these contaminants. Modeling MO/solution interfaces, which are 

fundamental to catalytic processes used in the majority of industrial applications, would cut time, 

energy, and cost when seeking to develop and improve production methods. Ultimately, the 

construction of comprehensive predictive models requires a mechanistic understanding of 

interfacial processes under a range of realistic conditions in which they occur (Kabengi et al., 

2006).   

Numerous experimental and computational methods have been applied to various 

MO/solution systems in order to investigate surface charge development and ion adsorption 

processes. The results of these investigations are typically understood using surface complexation 

models (SCMs), which are founded on chemical and electrostatic descriptions of the EDL (O’Day, 

1999). Although SCMs have proven to be useful for understanding macroscopic adsorption data, 

they demand an extensive amount of parameters to constrain their complexities (Goldberg, 2014). 

Many of these parameters are not perfectly known and are often adjusted to fit experimental data, 

“thus it may not be surprising that equilibrium data will fit a number of the models equally well 

(Sparks, 2001).” Acquiring as many realistic modeling inputs as experimentally possible over a 

range of MO-solution interfaces and in a variety of conditions is necessary to accurately 

parameterize surface complexation models, as well as to provide a point of reference for quantum 

calculations that are essential in computational methods targeted to improve model accuracy. 

Constructing comprehensive predictive models of these interfacial systems requires collecting data 

from many different experimental techniques (Fenter et al., 2000).    
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1.1 Metal Oxide-Solution Systems 

 Surface Charge 

As mentioned above, the formation of net charge on the MO surfaces results from the 

protonation and/or deprotonation of surface hydroxyl groups in response to solution pH. The 

mechanisms of charge development can be described by surface ionization models, including the 

two-pK model where the surface functional group, ≡SOH, undergoes protonation (Eq. 1) and 

deprotonation (Eq. 2): 

≡SOH + H+↔ ≡SOH 2
+                                                       [1] 

≡SOH ↔ ≡SO-+H+                                                          [2] 

Other models include the one-pK model, based on the concept that each surface site 

undergoes only one protonation reaction  

    ≡SOH
1

2
− + H+↔ ≡SOH 2

1

2
+

                 [3] 

 The multisite complexation model (MUSIC) model identifies different sites based on 

crystal structure such that various types of surface hydroxyl groups can exist on MO surfaces 

(Hiemstra et al., 1996).  According to the MUSIC model, the type(s) of surface groups depends 

on the number of coordinating structural metal ions (i.e. ≡S). For example, oxygen or OH 

species may be coordinated to one, two, or three structural metal atoms (denoted as singly, 

doubly, or triply coordinated surface hydroxyl groups, respectively) and will consequently 

exhibit different chemical reactivities (Hiemstra et al., 1989; Hiemstra and VanRiemsdijk, 1999; 

Sparks, 2003).   
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The number of hydroxyl groups that can potentially protonate (or deprotonate) and the 

degree to which they react with protons is a function of the valence and coordination of the metal 

cation in the mineral structure (Essington, 2011).  In other words, the pH dependent surface 

charge generated from the adsorption of H+ or OH- , termed potentially-determining ions, is a 

surface charge characteristic that is intrinsic to the mineral itself (Sposito, 2008).This pH-

dependent charge, often referred to as the net proton density charge, H, is net positive under 

acidic conditions due to the uptake of protons by surface functional groups and is net negative in 

basic conditions owing to the release of protons by surface groups (Goldberg, 2007). Any deficit 

or excess of charge present at the surface is neutralized by the distribution of ions in the 

interfacial region between the solid and bulk liquid phases giving rise to the EDL (Sparks, 2003).  

 The Electric Double Layer 

Figure 1.1 depicts a simplified schematic of the EDL which is generally considered to 

include at least one compact (Stern) layer of concentrated counter-ions located closest to the 

surface and a diffuse layer further out from the interface of counter- and co-ions whose 

concentrations decrease exponentially from the surface out into the bulk solution (Fenter, 2000; 

Wesolowski, 2008).  



5 

 

 

Figure 1.1. Simplified schematic of the Electric Double Layer (EDL) (modified from 

Kenichi et al., 2015). 

 

The accumulation of counter-ions near the surface generates an excess electrical potential 

which also decreases with distance from the surface until it becomes zero in the bulk solution 

(Hunter, 1981).  The distribution of charge within the EDL, i.e. the distribution of the electric 

potential, is dependent on the magnitude of the surface charge (Hunter, 1981).   

 Ion Adsorption  

Ions in solution can be retained at the interface through different mechanisms such as inner-

sphere complexation, outer sphere complexation, or retention in the diffuse swarm (Essington, 

2011). If a surface functional group reacts with an ion in solution to form a stable molecular unit 

(a surface complex) the reaction is termed surface complexation (Sposito, 2008). Inner- sphere 

complexes form when ions bind directly to surface functional groups such that no water molecules 

exist between them (Sparks, 2003). Outer-sphere complexes form where ions retain some or all of 

their hydration waters and electrostatically bind to surface functional groups (Sparks, 2003). The 

electrostatic retention of ions not bound as surface complexes, but that are nonetheless associated 
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with the surface, are said to be adsorbed in a delocalized sense in the diffuse ion “swarm” (Sposito, 

2008). These ions are freely mobile but hover near the surface to balance any excess surface charge 

contributed by the mineral structure (H) and by immobilized ions adsorbed as surface complexes 

(is  and os): 

H  +  is  + os +d  = 0                                                                                             [4] 

where, H is net proton charge, is and  os refer to the net charge of ions adsorbed in inner-sphere 

(is) and outer-sphere complexes (os), respectively, and  d  is the charge of counter ions retained 

in the diffuse ion swarm needed to achieve surface charge balance (Essington, 2011; Sparks, 2003; 

Sposito, 2008). Inner-sphere complexes involve strong ionic and/or covalent bonding and thus are 

said to be “specifically” adsorbed. (Smith, 1999). Outer-sphere complexation and diffuse ion 

screening involve weaker electrostatic mechanisms and are said to be “non-specifically” adsorbed, 

making them less stable than inner-sphere complexes and more readily exchangeable (Essington, 

2011). In acidic pH conditions, the net positive surface charge results in the attraction of anions in 

solution, whereas in basic conditions the net negative surface charge attracts cations (Cheng, 

2014).  

 Points of Zero Charge 

There exists several pH values associated with specific conditions imposed on one or more 

of the surface charge densities defined above (Eq. 4). These are termed the points of zero charge 

whereby for example, the point of zero net proton charge (PZNPC) is the pH at which H is equal 

to zero and the point of zero salt effect (PZSE) is the pH at which (H /I) is zero (Sposito, 1981).  

It is not uncommon, under specific experimental conditions (for e.g. 1:1 electrolytes, low ionic 

strengths) to achieve equality between 2 or more points of zero charge conditions. For instance, 

the PZSE = PZNPC if the only specifically adsorbed species are the potentially determining ions, 
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H+ and OH- (Appel et al., 2002). 

There exists a pH, referred to as the point of zero charge (PZC), where the charge changes 

sign, such that the sum of the positive surface charge balances the sum of all the negative surface 

charge (Marcano-Martinez, 1989). The PZC is a reflection of the bulk mineral structure and 

considered an important characteristic feature of mineral surfaces (O’Day, 1999).   

    The ability to accurately model the metal-oxide solution systems relies on understanding 

the pH-dependent charge development of MO surfaces, and the accompanying arrangement of 

ions at MO-solution interfaces. The mechanisms of protonation/deportation of surface functional 

groups, electrostatic parameters and descriptions of the EDL, ion adsorption mechanisms (IS, OS, 

or diffuse screening) and the points of zero charge are just some examples of the data and equations 

used to parametrize SCMs.  

 Surface Complexation Models 

Representing adsorption with empirical approaches (adsorption isotherms) results in over 

simplified and purely descriptive models that are not predictive beyond the conditions at which 

they were measured because they are not able to account for effects of variable chemical conditions 

(pH, ionic strength, etc.) on adsorption reactions (Goldberg, 2007). The most widely accepted 

models used to describe pH and ionic strength dependent charge development (and thus ion 

adsorption), are the site-binding electrostatic models known as surface complexation (SCM) 

models (Tombácz, 2009). SCMs are “chemical models that are based on molecular descriptions of 

the EDL using equilibrium-based adsorption data (Goldberg, 1992).” SCMs can describe 

adsorption on mineral and soil surfaces over a range of geochemical conditions because they are 

mechanistic models which can account for the effects of variable chemical conditions by directly 

describing aqueous and surface speciation and distribution (Zheng and Selim, 2013). SCMs 
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generally have the following in common: an adsorption model which identifies the type(s) and 

reactivity of surface sites and an electrostatic model of the EDL that describes the distribution of 

ions in one or more planes adjacent to the surface and identifies the relationship between charge 

and potential for each plane (Tadanier and Eick, 2002).  Differences in SCMs lie in their 

descriptions of the EDL such as the number of planes in the interface and location of complexes 

in relation to the mineral surface (Sposito, 1984).  A few common SCMs (Basic Stern, Triple Layer 

Model, and CD-MUSIC) are described below. 

The Basic Stern (BS) model depicts the interface with two layers, the compact and diffuse, 

where the compact layer is divided into two charged regions: the 0-plane (containing surface 

hydroxyl groups) and 1-plane (outer Helmholtz plane (OHP)) marking the start of the diffuse layer 

(Bourikas et al., 2014). Counter ions at the OHP are considered weakly bound outer sphere 

complexes (Tombácz, 2009). Ions in this model are restricted from approaching the surface too 

closely due to both their hydration shell layers and layers of water adsorbed at the surface 

(Bourikas et al., 2014). This results in an uncharged layer which sits between the 0-plane and 1-

plane. This impels the layer to behave as a plate capacitor, with a given capacitance, C, that is 

related to the distance between the 0- and 1-plane, d, by the equation:  

C = ε0εr/d 

 Where ε0 is the dielectric constant of the uncharged layer and εr is the mean relative 

dielectric constant of the layer. The dielectric constant is an expression of the ability of a substance 

to store electrical energy in an electric field (Brown et al., 1999). 
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Figure 1.2. Basic Stern (BS) model (left) and Triple Layer Model (TLM) (right) 

(Modified from Bourikas et al., 2014). 

 

  The Triple Layer Model (TLM) differs from the BS model only by the addition of the 

inner Helmhotz plane (IHP) between the surface and the OHP. Inner-sphere complexes are 

considered to be located in the IHP, now considered plane 1, and outer sphere complexes in the 

OHP, now plane 2 (Guichet, 2006). Figure 1.2 depicts the division of the interface into three layers, 

the surface-IHP, IHP-OHP, and the diffuse layer, of the TLM (Bourikas, 2014). The surface-IHP 

and IHP-OHP layers are considered to have separate capacitance values which are related to the 

total capacitance by:  

1/C = 1/C 1+1/C2 

where, C1 and C2 represents the capacitance values of layers 1 and 2, respectively (Bourikas et al., 

2014). 

The Charge Distribution Multi-Site Surface Complexation (CD-MUSIC) model is one 

of the more modern and realistic models commonly used today. The CD-MUSIC model accounts 
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for the specific types of oxygen atoms known to exist from structural analysis data (Hiemstra et 

al., 1996; Bourikas et al., 2014). The model employs the concept of charge neutralization of an 

oxygen by a metal ion based on the actual bond valence to predict the proton affinity of individual 

surface groups (Hiemstra, 1996). Bond valence (v) is defined as the charge of the metal ion (z) 

divided by its coordination number (CN): 

v = 
𝑧

𝐶𝑁
 

This is used to calculate the excess charge of surface oxygens by the sum of its charge (z = -2) 

plus the bond valances of all coordinated metal ions and the number of proton accepting and 

donating hydrogen bonds (Σv m):  

surface oxygen charge = z + Σv m 

Oxygens coordinated to different numbers of metal ions will have different charge values. 

Combining this description of surface protonation with the distribution of charge for adsorbed ions 

between surface and Stern planes results in the CD-MUSIC model.  CD-The MUSIC model 

provides one of the more realistic molecular scale representations of the complex processes 

occurring at the MO-solution interface.  

 The mechanistic approach taken by SCMs makes them more flexible in their application 

to geochemical processes than most empirical models (Goldberg, 2007). However, in order to 

specify adsorption mechanisms and define specific surface complexes for all adsorbing ions, 

SCMs require an extensive amount of parameters to constrain their complexities and many of these 

parameters are not perfectly known (Goldberg, 2014). Thus, SCMs are often “poorly constrained, 

and the electrostatic parameters and equilibrium constants may be highly covariant (Ridley, 

2009).” This can lead to the use of multiple adjustable parameters being employed to fit 
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experimental data, resulting in a number of models that fit equilibrium data equally well (Sparks, 

2001). For example, Westall and Hohl (1980) applied acid-base titration data on TiO2 and -Al2O3 

to the Constant Capacitance Model (CCM) and TLM and found that each model fits the data 

reasonably well and thus concluded that one model was about as good as another (Westel and 

Hohl, 1980). However, just because good fitting can be accomplished it does not mean the model 

provides any realistic or relevant insight into the processes taking place (Tombacz, 2009). To 

improve predictive capabilities of SCMs and minimize the amount of adjustable parameters, it is 

important to determine as many realistic modeling inputs as experimentally possible over a range 

of MO-water interfaces and under a variety of conditions (Machesky, 2015). Data from a variety 

of experimental methods and improvements in molecular modeling simulations and quantum 

mechanics calculations will continue to provide the macroscopic and molecular scale information 

on which to build more effective and realistic SCMs (Machesky, 2015).  

Various electrochemical and spectroscopic techniques have been applied to investigate the 

MO/electrolyte solution interface (Kallay 2010). Microscopic scale evidence of ion adsorption 

mechanisms can be obtained from direct experimental methods including spectroscopic and 

scattering techniques (Goldberg, 2014). For example, X-ray absorption spectroscopy (XAS) can 

be used to determine structural information of absorbed ions such as whether an ion is bound in an 

inner-sphere or outer-sphere complex as well as the denticity of the complex (Goldberg, 2014).  

This type of micro scale structural information is used to help constrain SCMs.  

Ion adsorption mechanism and surface charge can also be determined from indirect 

macroscopic information from PZC shifts and ionic strength dependence experiments (Goldberg, 

2014). Electrophoretic mobility titrations measure the movement of charged particles in solution 

when an electric field is applied (McFadyen, 1993). Zero mobility indicates the zero net surface 
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charge known as the isoelectric point (IEP) (Kosmulski, 2009). The PZC will shift if specific 

adsorption of ions in inner-sphere complexes occurs (Hunter, 1981).  Potentiometric titration 

involves obtaining titration curves at various ionic strengths. When the titration curves are plotted 

together a common intersection point indicates the PZSE. The PZSE is the pH where the charge 

densities of potentially determining ions (H+ and OH-) are independent of ionic strength (Appel, 

2002). It is common for studies to incorporate a number of these techniques to achieve the 

maximum amount of molecular and macroscopic data possible in order to successfully apply 

SCMs. Wesolowski et al. (2008) successfully described cation adsorption data from pH titrations 

of rutile with the Gouy-Chapman Stern model constrained using the inner-sphere binding 

mechanisms observed from X-ray studies and computational modeling.   

The equations used to parameterize SCMs, acquired from surface protonation and ion 

adsorption experiments for a given solid may differ for several reasons. This can be seen in the 

range of PZC values tabulated of numerous MOs, from both theoretical calculations and 

experimental measurements. The differences results from the surface neutral condition being 

defined as PZC, i.e. the type of point of zero charge, as well as the experiment used to determine 

it (Davis and Kent, 1990; O’Day, 1999; Kosmulksi, 2002; Sverjensky, 2005). For example, the pH 

of the PZSE is the intersection point of surface titration curves obtained at different ionic strengths, 

which for some solids can be dependent on ionic strength and electrolyte type used in the 

experiments. Thus the pH of PZSE may not equal the PZC (Lützenkirchen, 1998). The isoelectric 

point (IEP) determined at low ionic strengths from electrokinetic experiments is considered to be 

more representative of the PZC than the pHPZSE (Lützenkirchen, 2012).  However, at low surface 

charge, the movement of the particle under the influence of the electric field may be retarded and 

hence the IEP may also misrepresent the PZC. 



13 

 

 Differences in measured SCM parameters can arise, even for a given solid using the same 

experimental technique, if employing different electrolyte solutions. Ion adsorption equilibrium 

constants have been predicted to vary for different electrolyte ions and solids. For example, the 

expected equilibrium constants of any particular cation decrease with decreasing dielectric 

constant of the solid, imparting greatly different behaviors for solids with low and high  dielectric 

constants (Sverjensky, 2005). Equilibrium constants of the high dielectric constant solids, such as 

rutile (TiO2; εk = 114), decrease with increasing cation size in the sequence Li+ > Na+ > K+ > Rb+ 

and Cs+, whereas low dielectric constant solids such as quartz (εk = 4.6) follow the opposite trend 

(Sverjensky, 2005). For a given high (or low) dielectric solid the difference in ion adsorption 

equilibrium constants result in differences in surface charge depending on the identity of the 

electrolyte utilized in the experiment. However, intermediate dielectric constant solids are not 

known to demonstrate an ion binding preference; ions typically adsorb on these solids to a similar 

degree (Sverjensky, 2005). The other major TiO2 polymorph, anatase, is considered an 

intermediate dielectric constant solid (anatase: εk = 18.6). Thus, the two TiO2 phases should 

theoretically have very different charging behaviors.  In this study, the development of surface 

charge was investigated on the high εk solid, rutile, and the intermediate dielectric constant solid, 

anatase. It should be expected that the above cation selectivity series will be followed for rutile 

while anatase should not show any significant cation affinity.   

1.2 Titanium Dioxide 

 The use of TiO2 in technological applications has continued to increase in recent years due 

to its natural abundance, low toxicity, chemical stability, and most notably its photocatalytic 

properties. TiO2 nanoparticles are drawing significant attention as photocatalysts used in the 

remediation of organic contaminants (Wypch, 2014). Understanding the charging behavior of TiO2 
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is critical for making accurate predictions about its behavior under various conditions to facilitate 

its use in industrial and environmental applications. As mentioned above the two major 

polymorphs of TiO2 are rutile and anatase. Anatase is largely considered to exhibit higher 

photocatalytic activity compared to rutile because of its higher specific surface area and hence 

reactivity.  

   Anatase and Rutile 

Both anatase and rutile crystals are formed by chains of distorted TiO6 octahedra (CN=6) 

(Figure 1. 3a). The tetragonal structure of anatase (Fig. 1.3b) contains four TiO2 units while the 

tetragonal structure of rutile (1.3.c) conventionally contains two TiO2 units in its unit cell.  

a)  

b)                                  c)  

Figure 1.3. Bulk structure of anatase and rutile. Ti atoms (grey) are coordinated to six oxygen 

atoms (red): (a) Distorted TiO6 octahedron of anatase and rutile, (b) Tetragonal structure of  

anatase, and (c) Tetragonal structure of rutile.  
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It is the stacking of the octahedra in the bulk structure that differentiate the two polymorphs 

(Fig. 1.4). In the anatase structure, each octahedron is in contact with eight neighboring octahedra 

linked by four common edges, while in the rutile structure each octahedron is in contact with 10 

neighboring octahedron where two common edges are shared (Hiemstra, 1996).  

 

Figure 1.4. Bulk structure of anatase (left) and rutile (right).  

 

The structural oxygen atom in both anatase and rutile is coordinated to three titanium atom, 

≡Ti3O
o, by a long (apical) and two short bonds (equatorial).  

 

 Surface Charge and Ion Adsorption 

According to the MUSIC model, the oxygen atoms receive a bond valence of +2/3 from 

the Ti atom. The mineral surfaces of TiO2 can have three surface hydroxyl groups, i.e. singly, 

doubly, and triply coordinated. Hiemstra (1996) applied the bond valence approach in the MUSIC 

model to anatase and rutile and calculated the affinity of the different types of surface groups on 

the faces of rutile and anatase shown in table 1.1 and 1.2, respectively.   
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Table 1.1. Affinity Constants for Rutile Calculated with the MUSIC Model (Hiemstra, 

1996) 

 
≡TiO (a and b), two types of singly coordinated groups based on short (a) and long (b) Ti-O bond distances. 

≡Ti2O (2a and ab), two types of doubly coordinated groups having a combination of short (a) and long (b) Ti-O bond distance 

(ab) or two short distances (2a). 

Ns, site density in nm-2. 

 

 

Table 1.2. Affinity Constants for Anatase Calculated with the MUSIC Model (Hiemstra, 

1996) 

 
≡TiO (a and b), two types of singly coordinated groups based on short (a) and long (b) Ti-O bond distances.. 

≡Ti2O (2a and ab), two types of doubly coordinated groups having a combination of short (a) and long (b) Ti-O bond distance 

(ab) or two short distances (2a). 

 

 

The (110) (Figure 1.5 top left) and (101) (Figure 1.5 bottom left) are the dominant and 

most stable faces on rutile and anatase, respectively.  
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Figure 1.5. Crystal morphology of Rutile (top left) and Anatase (bottom left). Circles are 

drawn to indicate the dominant face. Atomic surface structure for a clean surface of the 

dominant (110) face for rutile (top middle) and (101) face for anatase (bottom middle). 

Atomic surface structure for dissociated water states on dominant surfaces in aqueous 

solution for rutile (top right) and anatase (bottom right). Grey represents titania atoms and 

red oxygen atoms. TO, refers to the terminal oxygen, bonded to one underlying Ti atom and 

BO, the bridging oxygen, bonded to two underlying Ti atoms. 
 

  

Most surface and interfacial chemistry studies have focused on the (110) rutile face while 

the (101) face on anatase receives much less attention (Bandura, 2004; Bourikas, 2014; Brown, 

1999; Machesky, 2006; Predota, 2004; Zhang, 2004). Figure 1.5 depicts the dissociated water of 

surface groups on the dominant faces of rutile (top right) and anatase (bottom right). Oxygen atoms 

bonded to one underlying Ti atom are termed terminal oxygens (TO) and oxygen atoms bound to 

two underlying Ti atoms are referred to as bridging oxygens (BO).  Panagiotou (2008) investigated 

the charging behavior of a titania sample (containing anatase (80% w/w) and rutile (20% w/w)) by 

using potentiometric titrations data (over a wide range of pH), electrophoretic mobility 

      Rutile  
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measurements, and streaming potential measurements along with ab initio calculations. By 

applying the “three plane” model to estimate the charge on Ti and O atoms at various exposed 

faces, maps of TiO(H) and Ti2O(H) surface groups at various ionic strength were obtained.  Figure 

1.6 illustrates the map obtained at 0.1 M ionic strength.  

 
Figure 1.6. A map of of titania surface groups at 0.1 M ionic strength (modified from 

Panagiotou, 2008). 

 

 At pHs > than pzc practically all TO (i.e. TiO) groups are nonprotonated (represented in 

green in Figure 1.6). The nonprotonated TO groups also dominate at pHs < than the PZC, although 

a small fraction of protonated TOs appears at pHs lower than 5 (shown in grey on Figure 1.6). At 

low pHs, the majority of BO (i.e. Ti2O) groups are protonated (shaded yellow in Figure 1.6), 

although a small portion of the BO groups start to deprotonate around pH 5 and this continues with 

increasing pH (shown in white in Figure 1.6).   
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1.3 Flow Adsorption MicroCalorimetry 

 Instrumentation and Operation 

Flow microcalorimetry (FAMC) allows direct, continuous, and quantitative measurement 

of the heat of a reaction. FAMC is an ideal method for investigating interfacial interactions and 

has been used to investigate the surface reactivity of a number of MOs (Kabengi, 2006; Rhue, 

2002; Schneider, 1997).   FAMC can be used in conjunction with other techniques to uncover 

information about surface reactions and charging behavior that cannot be easily acquired by 

conventional methods.  The flow microcalorimeter consists of a column packed with a known 

amount of solid material (between 1 to 50 mg). An electrolyte solution flows through the column 

until thermal equilibrium is reached; producing a steady baseline. The input solution is changed to 

one of different composition (or pH, ionic strength, etc.).  The new chemical solution reacts with 

the solid producing a change in the temperature of the solution flowing through the column. A pair 

of thermistors, one upstream and one downstream from the solid, form one half of an electronic 

bridge and sense temperature changes in the solution as it passes through the column. The change 

in solution temperature produces a differential output voltage from the bridge which, when 

amplified, is plotted as a function of time. Figure 1.7 shows a schematic of the FAMC set up. 
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Figure 1.7 Schematic of the Flow Adsorption Microcalorimeter (FAMC). 

 

 Data Interpretation 

A calibration heat pulse of known energy is given and recorded. Peak areas of the exchange 

reactions are obtained by integrating the signal over time and are converted to energy units by 

comparing with the calibration heat pulses. Five different input lines merge at a central manifold 

connected to the column containing the solid. The solid can be exposed to any order of different 

chemistries. The calorimeters operate in either continuous or pulse-injection mode and possess 

high sensitivity, low thermal drift, good signal-to-noise ratios and can detect temperature changes 

on the order of 10-5 – 10 -6 ˚C. 
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1.4 Objectives 

The overall objectives of this research was to investigate the charging development on TiO2 

polymorphs, anatase and rutile, and to probe the interface using the heats of ion exchange to 

provide experimental data needed to improve predictive modeling efforts.  This overall goal was 

achieved by undertaking the following specific objectives: 

1. Compare surface charge development on both anatase and rutile. 

2. Probe the differences in surface reactivity for each polymorph at various pH conditions and 

hence obtain the PZNC defined in this experiment as the pH where the total negative charge 

equals the total positive charge. 

3. Investigate the effect of different ion pair exchanges on charge development on rutile.  
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2     MATERIALS AND METHODS 

2.1 Chemical Reagents 

All chemicals used in the experiment were ACS reagent grade and were used as received 

from Fisher Scientific (Fairlawn, NJ). Solutions of 50 mM NaCl, NaNO3, KCl, KNO3, and RbCl 

were prepared using 18.2 MΩ deionized water. Solutions were adjusted to desired pHs using one 

of the following acids as appropriate to the particular experimental protocol: 5 M HCl, HNO3, 

NaOH, KOH, and RbOH.   

2.2 Mineral Phases 

The anastase used in this experiment was obtained from Ishikhara Techno Corporation 

(Osaka, Japan) in nanometer powder form with the designated name ST-01(Ridely et al., 2006). 

The rutile sample was obtained from Tioxide Specialties Ltd. (Cleveland, UK) (Machesky et al., 

1994). Prior to being used, both samples were subjected to multiple washing-centrifuging cycles 

in deionized water to reduce the presence of impurities. The N2-BET specific surface area (SSA) 

of both samples was determined by the Brunauer-Emmet-Teller N2-BET gas adsorption isotherm 

method.  The SSAs of the anatase and rutile samples were 306.7 m2/g and 17.0 m2/g, respectively.  

2.3 Flow Adsorption Microcalorimeter 

The flow adsorption microcalorimeter in this study is comprised of a glass micro-column 

sealed inside an airtight vessel submerged in 50 L of water and maintained at room temperature. 

A calibrating resistor and two thermistors are attached to the glass micro-column. The sample was 

packed into the column and an electrolyte solution was passed through the assembly at a flow rate 

between 0.25 and 0.35 mL/min. One thermistor, located upstream from the solid, sensed the 

temperature of the incoming solution. The other thermistor, located downstream from the solid, 

sensed the temperature of the solution after interacting with the sample. The electrolyte solution 
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was passed through the column at a constant flow rate until a steady baseline was achieved. Then, 

the composition of the input solution was changed as dictated by the experimental protocol.  The 

pair of thermistors detected the accompanying temperature changes in solution as it was passed 

through the column and interacted with the packed solids. The change in temperature produced a 

differential output voltage, which was amplified and sent to a computer for processing. The signal 

was measured every 5.0 s and plotted against time. The area of each calorimetric peak was obtained 

by integrating the signal over time using Graph Utility, a data processing software custom designed 

for FAMC data collected in the Kabengi laboratory. Peak areas were converted to energy units 

(mJ) by comparison with peak areas generated from calibration heat pulses of known energy 

obtained by energizing the calibrating resistor at a known current, voltage, flow rate and time. 

2.4 Heats of Ion Exchange 

Experiments were conducted using a known mass (approximately 40 mg) of solid, either 

anatase or rutile, packed into the column. Anions, Cl- and NO3
-, were used to probe the positive 

surface charge, whereby the sample was initially saturated with 50 mM NaCl solution until a steady 

baseline was achieved. The input solution was switched to 50 mM NaNO3 and the heat of exchange 

generated from the displacement of Cl- by NO3
- , hereafter referred to as C/N, was recorded. Once 

the signal returned to baseline, the input solution was changed back to 50 mM NaCl, and the peak 

produced from the heat of the displacement of NO3
- by Cl-, referred to as N/C, was recorded. The 

exchange of C/N produced an exothermic heat signal while N/C generated an endothermic signal. 

The process of obtaining one C/N and one N/C exchange constituted one exchange cycle. Several 

(4-10) cycles were carried out. The peak areas of the C/N exotherms and N/C endotherms were 

averaged separately and subsequently used to calculate the heat of the ion exchange reactions (in 

mJ/mg). Cations, Na+ and K+, were used to probe the positive surface charge in a similar fashion. 
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Heats of exchange were obtained by changing between 50 mM NaCl and 50 mM KCl solutions. 

Table 1.3 lists the abbreviations and calorimetric signals for each ion exchange.  

 

Table 2.3 Ion  Exchange Abbreviations 

Surface Charge 

Probed by 

Exchange 

Y/X Ion (Y±) on the surface/ 

exchanged with ion  (X±) in solution 

Sign of Calorimetric 

Signal 

Positive 

N/C NO3
- Cl- (+) Endothermic 

C/N           Cl- NO3
- (-) Exothermic 

Negative 

K/Na         K+          Na+ (+) Endothermic 

Na/K         Na+          K+ (-) Exothermic 

 

 Point of Zero Net Charge Determination 

The heats of Cl- and NO3
- exchanges and K+ and Na+ exchanges were measured using the 

procedure above with solutions at pH 3.25, 5.8 and 11.0. First, the experiment was run with 

unbuffered solutions with a pH value of about 5.8. After 5-10 acceptable cycles were recorded, the 

experiment was repeated at pH 3.25, where NaCl and KCl solutions were adjusted using 5M HCl 

and NaNO3 solutions were adjusted with 5M HNO3. Once 5-10 several acceptable cycles were 

recorded, the solutions were adjusted to pH 11.0 using 5M NaOH for NaCl and NaNO3 solutions 

and 5M KOH for KCl solutions. A 12 N NaOH solution was used to ensure the solutions were not 

contaminated with carbonate. Changes in ionic strength resulting from pH adjustments were 

determined to be less than ≤1%.  It is noteworthy to note that for each pH change, the sample 

surface was flushed at the new pH for a couple of days to ensure the surface was at the new pH 

before beginning the collection of exchange cycles. The pH of the influent and effluent solutions 

were monitored daily to ensure they remained consistent ± 0.2. The PZNC was determined by 
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plotting the heats of exchange (mJ/mg) verus solution pH. The pH at which the heats were equal 

was taken to indicate the PZNC, i.e., the pH where the net negative charge equals the net positive 

charge (Moghimi et al., 2013; Marcano-Martinez, 1989).  

 Additional Experiments on Rutile 

The analysis of the rutile data revealed some observations that warranted additional 

investigations, as it will made clear in the next chapter. To further investigate these observations, 

additional experiments were performed on the rutile sample. The calorimetric heats of Na+ and K+ 

exchange were further measured under three additional experimental conditions. In addition to the 

solution pHs mentioned above, the heats of Na+ and K+ exchanges were also determined at pH of 

2.0 using cycles of 50 mM NaCl and 50 mM KCl solutions.  

To assess the potential impact of Cl- on creating negative charge, a second experiment on 

rutile was performed, whereby the heats of Na+ and K+ exchanges were determined with NO3
- as 

the background anion specie instead of Cl-. Cycles of 50 mM NaNO3 and 50 mM KNO3 solutions 

were carried out under the same series of pH values used in the experiments ran in Cl- (pH 2.0, 

3.25, 5.8, and 11.0) 

To explore the discrepancy between the heats of Na/K and K/Na exchange observed at 

high pHs on rutile, the heat of exchange of a third cation, Rb+, was investigated. Cycles of 50 mM 

RbCl and 50 mM NaCl were performed to determine the heats of Na and Rb exchanges, while 

cycles of 50mM RbCl and 50mM KCl were used to measure the heats of K and Rb exchanges. 

The experiment was performed with unbuffered solution with an approximate pH of 5.8 and then 

again at pH 11.0. KCl and NaCl were adjusted to pH 11.0 as mentioned above and the RbCl 

solution was adjusted using 5M RbOH.   
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2.5 Ion Adsorption Density 

The quantities of ion adsorbed, in mol/mg, for each leg of the exchange cycles, were 

determined in a method designed to mimic the experimental conditions and complement the heat 

data from the flow experiments.  Outside the calorimeter, approximately 40 mg of sample was 

packed into a glass column cell (identical to those used inside the calorimeter) of known weight. 

A programmable syringe pump was used to flush the samples surface with 50mM NaCl to saturate 

the exchange sites with Na+ and Cl- at same flow rates as the ones used to collect the heat data. 

The column was then removed, dried, and reweighed to determine the amount of excess NaCl that 

was entrained in the TiO2 sample. Then, 50 mM NaNO3 solution was pumped through the column 

and the effluent collected in a vial of known weight. The column was again removed, dried, and 

reweighed to determine the amount of entrained NaNO3 solution. Similarly, cation adsorption 

density measurements were obtained by performing the above procedure with 50 mM NaCl and 

50 mm KCl on the same sample. The concentration of NO3
-, Cl-, K+, and Na+ in the effluent was 

measured by High Pressure Liquid chromatography. The amount of anion or cations absorbed on 

the surface (µmol/mg) was calculated after correcting for the excess solution entrained in the 

sample. These ion adsorption densities were determined at pH 5.8, 3.25 and 11.0.  
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3     RESULTS AND DISCUSSION 

3.1 Heats of Ion Exchange and Surface Charge 

 Anatase 

Figure 3.8 presents representative raw data (calorimetric signal versus time) for C/N and 

N/C. The heat signals of the Cl- endotherm and NO3
- exotherm on anatase at pH 5.8 were similar 

in terms of reaction times, shape and peak area as expected for a reversible ion exchange reaction. 

 
      Figure 3.8. Heat Signals of Cl- and NO3

- Exchange at pH 5.8 on Anatase. (Y/X represents 

the exchange of ion Y by ion X). 

 

The energy of the calorimetric heats of C/N and N/C exchange, Qexch (mJ/mg), were 

converted to Hexch (kJ/mol) using the measured sorption density, ΓX (µmolX/mg), of the incoming 

ion in the exchange reaction (X). Table 3.4 lists these values determined from probing  the positive 

and negative surface charge of anatase at pH 5.8.    

   

Table 3.4. Heats of Ion Exchange and Surface Charge Values for Anatase at pH 5.8. 

Surface 

Charge 
Probe 

Qexch
 b 

(mJ/mg) 

ΓX  

(µmolX/mg)c 

± ΔH exch 

(kJ/mol)e 
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Positive (+) 

N/Ca 0.14 (0.01)d 0.040 (0.002) 3.5 (0.2) 

C/N 0.16 (0.01) 0.042 (0.009) 3.9 (0.8) 

Negative (-) 
K/Na 0.28 (0.02) 0.082  (0.008) 3.5 (0.3) 

Na/K 0.32 (0.01) 0.096 (0.005) 3.4 (0.2) 

 
a Y/X, The exchange of ion Y by ion X used to probe the ± surface charge. 
b Qexch, Calorimetric heat of  ion exchange probe Y/X.   
c ΓX, Sorption density (µmolX /mg), amount (µmol) of probing ion (X) adsorbed on the surface (mg-1) during the exchange. 
d Numbers in parenthesis corresponds to ± one standard deviation. 
e ± ΔH exch, Molar enthalpy of ion exchange probe.  

 

At pH 5.8, N/C exchange produced an endotherm with an average energy (Qexch) of 0.14 

± 0.01 mJ/mg. The reverse exchange,  C/N,  was exothermic with Qexch of - 0.16 ± 0.01 mJ/mg, 

essentially the same as the C/N. Using  an average adsorption density of 0.041 ±0.005 µmolC(N)/mg 

(because of the equivalence of Q and Γ), the Hexch for N/C and C/N on anatase was found to be  

equal to 3.7  ± 0.5 kJ/mol., with an understanding that although reported without a sign, the Hexch 

will be negative for the exothermic leg (C/N) and positive for the endothermic portion (N/C) of 

the exchange cycle. While, to my knowledge, there are no other reported values of heats of chloride 

and nitrate exchange on anatase, this value falls in the range measured by Kabengi and Rhue (2006) 

who reported heats of Cl- and NO3
- exchanges ranging from 3.0 - 7.3 kJ/molc for amorphous 

aluminum hydroxide and by Gale et al. (2015) who reported a similar heat of 3.2 ± 0.5 kJ/molc on 

boehmite.  

The cation exchanges (CE) exhibited similar characteristics to anion exchanges (AE), 

whereby the endotherm and exotherm were comparable in reaction times, shape and peak area 

(figure 3.9).  



29 

 

 
 

Figure 3.9. Representative heats Signals of K+ and Na+ Exchange at pH 5.8 on Anatase. 

 

 The exothermic exchange, Na/K, generated nearly the same amount of energy (- 0.32 ± 

0.01 mJ/mg) as the endothermic exchange, K/Na, (+ 0.28 ± 0.02 mJ/mg). The Q (mJ/mg) values 

are slightly larger but comparable to the heat of Na+ and K+ exchange (0.15  ± 0.01 mJ/mg) 

measured by Gale (2013) using FAMC on a TiO2 (P25) sample. This discrepancy can be explained 

by variation in sample composition whereby the P25 sample was found to be composed of ~ 86% 

anatase and ~14% rutile and hence with a significantly smaller SSA (~50 m2/g) than the pure 

anatase sample used in this experiment. The ΓNa and  ΓK  were similar with an average of 0.089 ± 

0.010 µmolNa(K)/mg resulting in a H exchange value of 3.4 ± 0.2 kJ/mol.  At pH 5.8, both heats 

of CE and AE were detectable indicating that anatase bore positive as well as negative charge. 

However, the QCE (mJ/mg) and the measured cation adsorption densities, ΓC
+, were approximately 

two times larger in magnitude than that of the QAE and anion adsorption densities,  ΓA
-.  
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While the published literature on the Hexch for both cations and anions exchange and 

adsorption remains somehow limited, the values obtained in this study are consistent to previous 

values obtained on MOs with FAMC and generally similar to other exchanges obtained through 

other methods and on other materials. For example, Gast (1972) reported calorimetric heats of 

exchange for alkali metal cations on Chambers montmorillonite ranging from a high of 10.4 kJ/mol 

for Li/Cs exchange, to a low of 0.4 kJ/mol for Li/Na exchange. Other researchers (Appel et al., 

2003; Goudling and Talibudeen, 1984; Sparks and Jardine, 1981) have reported a H for the K/Ca 

exchange on a variety of soils ranging from 3.3 to 16.3 kJ/molc. More pertinently, using titration 

calorimetry Machesky et al. (1991) measured the adsorption enthalpies of fluoride, iodate and 

phosphate onto goethite at pH 4.0 and found them to range from -25 kJ/mol to + 5 kJ/mol 

depending on surface coverage. While these are somewhat similar to the ranges obtained here, it 

is important to note that the anions reported in Machesky et al (1991) are expected to interact more 

strongly with MO surfaces and hence the enthalpies reported are for specific adsorption not 

exchange. Similarly higher values are also obtained when FAMC is used to measure adsorption 

enthalpies (Saburet al., 2015; Kabengi et al., 2006).  

 Rutile 

Table 3.5 lists Qexch, ΓX, and  H exch determined for rutile at pH 5.8. Figure 3.10 displays 

representative heat signals of Cl- and NO3
- exchanges.  

 

 

Table 3.5. Heat of Exchange and Surface Charge Values at pH 5.8 on Rutile. 

Surface 

Charge 
Probe 

Qexch
 b 

(mJ/mg) 

ΓX  

(µmolX/mg)c 

± ΔH exch 

(kJ/mol)e 
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Positive (+) 
N/Ca 0.042 (0.003)d 0.015 (0.003) 2.9 (0.6) 

C/N 0.056 (0.002) 0.014 (0.002) 2.5 (0.5) 

Negative (-) 
K/Na   0.042 (0.0004) 0.060 (0.011) 0.7 (0.1) 

Na/K 0.062 (0.001) 0.044 (0.012) 1.5 (0.2) 

 

a Y/X, The exchange of ion Y by ion X used to probe the ± surface charge. 
b Qexch, Calorimetric heat of  ion exchange probe Y/X.   
c ΓX, Sorption density (µmolX /mg), amount (µmol) of probing ion (X) adsorbed on the surface (mg-1) during the exchange. 
d Numbers in parenthesis corresponds to ± one standard deviation. 
e ± ΔH exch, Molar enthalpy of ion exchange probe. 

 

 
  Figure 3.10.  Heat Signals of Cl- and NO3

- Exchange at pH 5.8 on Rutile. 

 

C/N exchange was found to be exothermic producing an average energy of - 0.056 ± 0.002 

mJ/mg, and N/C exchange was endothermic with an average energy of +0.042 ± 0.003 mJ/mg. 

Using an adsorption density of 0.015 ±0.003 µmolNO3/mg, the Hexch of C/N was -2.9 ± 0.6 

kJ/molc and using adsorption density of 0.014 ±0.002 µmolCl/mg, the Hexch of N/C was +2.5 

± 0.5 kJ/molc.   
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Figure 3.11 shows representative heat signals of Na+ and K+ exchanges.   

 
          Figure 3.11. Heat Signals of Na+ and K+ Exchange at pH 5.8 on Rutile. 

 

The exothermic Qexch of Na/K was - 0.062 ± 0.001 mJ/mg, and the endothermic Qexch of 

K/Na was + 0.042 ± 0.0004 mJ/mg. The Na/K exchange produced approximately 30% more 

energy than the reverse K/Na reaction. The significant difference in heats indicates that the 

endothermic reaction, K/Na, was considerably less energetic than the exothermic reaction, Na/K, 

at pH 5.8. The adsorption density measurements also showed a similar but inverse deviation, 

whereby more Na+ (0.060 ±0.011 µmolNa
+/mg) is shown to have absorbed on the rutile surface 

than K+ (0.044 µmolK
+/mg). Taking into account the respective  ΓNa and  ΓK, the H exch for K/Na 

was + 0.7 ± 0.1 kJ/mol and that for Na/K was -1.5  ± 0.2 KJ/mol. The larger ΔH exch of Na/K 

suggests the displacement of Na+ by K+ is more energetic than the displacement of K+ by Na+ in 

the reverse K/Na reaction. 
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Similarly, to anatase, Qexch and ΓX for both cations and anions were detectable for rutile at 

pH 5.8 suggesting the surface bore both positive and negative charge. However, some notable 

differences between anatase and rutile were observed. On anatase, the Qexch and ΓX for cations 

were two times larger than those for anions. On rutile, however, the Qexch of anions and Qexch of 

cations were much more comparable, the ΓC
+ were significantly higher, almost by a factor of 5, 

compared to the ΓA
-. Furthermore, on rutile the heat of Na/K exchange was significantly higher 

than that of K/Na exchange, while there was no significant incongruence in Qexch on anatase. The 

differences between rutile and anatase can be related to the proximity of the experimental 5.8 pH 

to the PZC of each surface, whereby the magnitude of either the positive or negative charge 

changes in a different manner according to which sites are protonating and deprotonating. 

However, these differences seem to additionally reflect some inherent mechanistic differences in 

the way cations and anions interact with the surface of each polymorph as it will be discussed later 

(for example, the inner sphere complexation of Cl- with rutile surface TOs).  

Another difference between anatase and rutile is the magnitude of the incongruence between 

Na+ and K+ heats of exchange and charge densities, with rutile exhibiting significantly more heats 

and smaller adsorption densities associated with Na/K than K/Na (by a factor of ca. 1.5) than 

anatase for which the Na/K heats and adsorption densities are only 1.14 times bigger and smaller 

respectively than those of K/Na. The larger incongruence between K and Na on rutile suggests 

that the probing cation has a stronger impact on its charge development than that of anatase. This 

behavior may be related back to the discussion on the role of the mineral dielectric constants in 

section 1.2. Specifically rutile having a higher dielectric constant (114) will have significantly 

different equilibrium constants, following the order:  Li+ > Na+ > K+ > Rb+ and Cs+. Anatase on 

the other hand, is characterized as a surface with an intermediate dielectric constant and is not 
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predicted to have different equilibrium constant for different cations (Sverjensky, 2005). This 

discrepancy between anatase and rutile charging will be further explored as the same 

measurements were made at other pHs as described in the section below.  

3.2 Charging Curves and Point of Zero Net Charge  

Kabengi et al (2006) demonstrated that calorimetric heats of anion (AE) and cation 

exchange (CE) are directly proportional to the positive and negative surface charge, respectively, 

and that measuring heats of cation and anion exchanges at different pHs is a calorimetric method 

to determine the zero point of net charge.  

 Anatase  

Table 3.6 lists the heats of exchange and adsorption density values determined at pHs 

3.25, 5.8, and 11.0 for anatase.  
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Table 3.6. Heats of Exchange and Surface Charge Values at Various pHs for Anatase 

pH 
Surface 

Charge 
 Probe 

Qexch
 b 

(mJ/mg) 

ΓX  

(µmolX/mg)c 

± ΔH exch 

(kJ/mol)e 

3.25 

Positive (+) 
  N/Ca 0.49 (0.01)d 0.30 (0.01) 1.6 (0.03) 

C/N 0.50 (0.03) 0.25 (0.01) 2.0 (0.09) 

Negative (-) 
K/Na 0.090 (0.003) NDd NAe 

Na/K 0.13 (0.00) 0.037 (0.005) 3.4 (0.5) 
      

5.8 

Positive (+) 
N/C 0.14 (0.01) 0.040 (0.002) 3.5 (0.2) 

C/N 0.16 (0.01) 0.042 (0.009) 3.9 (0.8) 

Negative (-) 
K/Na 0.28 (0.02) 0.080 (0.1) 3.5 (0.3) 

Na/K 0.32 (0.01) 0.096 (0.005) 3.4 (0.2) 

      

11 

Positive (+) 
N/C 0.046 (0.003) 0.020 (0.002) 2.4 (0.3) 

C/N 0.028 (0.004) 0.023 (0.003) 1.3 (0.1) 

Negative (-) 
K/Na 2.20 (0.03) 0.69 (0.01) 3.2 (0.1) 

Na/K 2.50 (0.05) 0.69 (0.01) 3.6 (0.0) 
 

a Y/X, The exchange of ion Y by ion X used to probe the ± surface charge. 
b Qexch, Calorimetric heat of  ion exchange probe Y/X.   
c ΓX, Sorption density (µmolX /mg), amount (µmol) of probing ion (X) adsorbed on the surface (mg-1) during the exchange. 
d Numbers in parenthesis corresponds to ± one standard deviation. 
e ± ΔH exch, Molar enthalpy of ion exchange probe.  

 

Figure 3.12 displays representative calorimetric signals for C/N and N/C exchanges. As 

pH decreased from 5.8 to 3.25, the heat signals increased in peak area, indicating an increase in 

the surface positive charge. While as pH increased from 5.8 to 11.0, the calorimetric peaks 

decreased indicating a decrease in the surface positive charge. The persistence of small peaks for 

C/N and N/C exchanges demonstrate that the surface still bore some positive charge at the high 

pH of 11.0.  
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Figure 3.12. Heats signals of C/N (exotherms) and N/C (endotherms) exchange at various 

pHs on Anatase. 

 

Figure 3.13 shows the heat signals for Na/K and K/Na exchanges obtained at the three pH 

values. Heats of cation exchange showed the opposite trend to those of anion exchange. As pH 

increased, the peaks increased in size, indicating an increase in negative surface charge, while as 

pH decreased to 3.25 the peaks also decreased to reflect a decrease in the surface negative charge. 

In this case as well, the presence of small cation exchange peaks shows that the surface still bore 

some negative charge at pH 3.25. This behavior may be understood using the site density map 

obtained by Bourikas et al (2001) shown in figure 1.6. Although, it was generated for a P25 titania 

sample composed of only 80% w/w anatase in 0.1 M solution and is not an exact representation of 

the anatase and conditions of this experiment, they are reasonably close as to assume some 

similarities.  Thus, the presence of negative charge at pH 3.25 arises from the non-protonated TO 

(i.e. TiO-0.35) and positive charge at pH 11.0 on anatase from the protonated BO (Ti2OH+0.43).  
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           Figure 3.13. Heats signals of K+ and Na+ exchange at various pHs on Anatase. 

 

The PZNC was determined from a plot of the heats of exchange (mJ/mg) versus pH (Figure 

3.14). The PZNC, taken as the pH at where the heats of cation exchange (CE) and anion exchange 

(AE) were equal, was found to be 5.3.  

Kosmulski (2002) gathered over 30 published PZC values for anatase. Those ranged from 

4.8 to 6.5 with a calculated a median of 5.5 and an average of 5.9. However, the anatase used in 

most of the studies referenced in his paper had a significantly smaller specific surface area than 

the nanocrystalline sample used in this experiment. A study published by Ridley et al. (2013), who 

performed potentiometric titrations in NaCl media at similar ionic strength on the same ST-01 

anatase sample used in this experiment, found the pH of zero net proton charge (pHznpc) to be 

6.42 ± 0.02. Due to the inherent difference in the nature of what is being measured, it does not 
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seem accurate to assume equality between the PZNC measured here and the PZNPC charge 

reported in the aforementioned paper.  

 

 
Figure 3.14. Anatase charging curve. Heats of anion exchange and cation exchange (mJ/mg) 

plotted against solution pH.  The diamond indicates the PZNC (~pH 5.3). 

 

 Rutile 

Table 3.7 lists the heats of exchange and charge density values determined at pH values 

3.25, 5.8, and 11.0 on rutile. Due to the relatively small amount of anions adsorbed at pH 11.0 and 

cations at pH 3.25, some values could not be quantified analytically and are presented in the table 

as ND for non-detectable. This highlights the increased sensitivity FAMC offers in probing surface 

charge as compared to other macroscopic methods. In fact, as will become clearer in the future 
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section when titration data are evidenced, FAMC is capable of separating surface charge in various 

cations with a significantly better resolution. Figure 3.15 displays representative calorimetric 

signals of Cl- and NO3
- exchanges at each pH on rutile. As expected, increasing pH resulted in 

decreased Cl- and NO3
- peaks areas indicating a decrease in the positive surface charge. At pH 

11.0, the presence of small peaks for Cl- and NO3
- exchanges demonstrated that the surface still 

bore some positive charge, albeit being below the detection limit of a quantitative determination 

by HPLC-IC.  

Table 3.7. Heats of Exchange and Surface Charge Values at Various pHs on Rutile 

pH 
Surface 

Charge 
Probe 

Qexch
 b 

(mJ/mg) 

ΓX  

(µmolX/mg)c 

± ΔH exch 

(kJ/mol)e 

3.25 

Positive (+) 
N/Ca  0.066 (0.002)d 0.040 (0.0010) 1.4 (0.3) 

C/N 0.068 (0.001) 0.030 (0.010) 2.2 (0.7) 

Negative (-) 
K/Na 0.020 (0.001) NDf NAg 

Na/K 0.040 (0.002) 0.041 (0.004) 1.0 (0.1) 

      

5.8 

Positive (+) N/C 0.042 (0.003) 0.015 (0.003) 2.9 (0.6) 

C/N 0.056 (0.002) 0.014 (0.002) 4.2 (0.5) 

Negative (-) 
K/Na  0.042 (0.0004) 0.060 (0.011) 0.7 (0.1) 

Na/K -0.062 (0.001) 0.044 (0.012) 1.5 (0.2) 

      

11 

Positive (+) N/C 0.022 (0.001) ND NA 
C/N 0.022 (0.001) 

Negative (-) 
K/Na 0.262 (0.011) 0.101 (0.007) 2.6 (0.2) 

Na/K 0.340 (0.005) 0.085 (0.006) 4.0 (0.3) 

a Y/X, The exchange of ion Y by ion X used to probe the ± surface charge. 
b Qexch, Calorimetric heat of  ion exchange probe Y/X.   
c ΓX, Sorption density (µmolX /mg), amount (µmol) of probing ion (X) adsorbed on the surface (mg-1) during the exchange. 
d Numbers in parenthesis corresponds to ± one standard deviation. 
e ± ΔH exch, Molar enthalpy of ion exchange probe.  
f ND, Not detected. 
g NA, Not available. 
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Figure 3.15. Heat Signals of Cl- and NO3 Exchange at Various pHs on Rutile. 
            

 

Figure 3.16 shows representative heat signals for K+ and Na+ exchange obtained at the 

three pH values. Heats of cation exchange showed the opposite trend of anion exchange. As pH 

increased, the K+ and Na+ peaks increased in size, indicating an increase in negative surface charge. 

At pH 3.25, the presence of K+ and Na+ exchange peaks shows that the surface still bore some 

negative charge, again although being unquantifiable using an HPLC-IC. It is noteworthy to 

mention the incongruence that exists between K/Na and Na/K whereby the heats associated with 

the latter exchange are significantly and consistently bigger than those of the former, and the 

sorption density values consistently and significantly lower.  
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Figure 3.16. Heat Signals of K+ and Na+ Exchange at Various pHs on Rutile. 

 

Figure 3.17 displays the charging curve for rutile. As discussed above, the heat of K/Na 

exchange was significantly smaller than the heat produced by Na/K. Consequently, the pH at 

which the PZNC occurred depending on which cation exchange reaction was used to probe the 

negative surface charge. When the heat of exchange of Na/K was used, the PZNC was found to be 

5.4 which is the same value often reported for rutile in the literature (Machesky et al., 1994; 

Kosmulski, 2002).  When the negative surface charge was probed using the heat of K/Na exchange, 

the PZNC was determined to equal 5.8. This difference in the PZNC determination highlights the 

impact the probing cation can have on the surface charge of rutile and the need for careful 

examination of the experimental protocol when comparing values from different sources. It should 

also be mentioned that although the heat of N/C was significantly different than that of C/N at pH 

5.8, their magnitudes at the other pHs were in closer agreement with each other and the overall 
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change in magnitude at pH 5.8 was not significant enough to affect the PZNC determination. 

However, the observation serves to highlight the greater impact the negative surface species 

imparts on the charging behavior of rutile over a wide range of pH values compared to the positive 

surface charge species.   

 
 Figure 3.17. Rutile charging curve. Heats of anion exchange and cation exchange (mJ/mg) 

of rutile versus solution pH. The diamond indicates the PZNC when measured with Na+ (~pH 

5.8) and the purple square indicates the PZNC when measured using K+ (~pH 5.4).  

 

3.3 Incongruence of K+ and Na+ Exchange on Rutile  

On rutile, the heat of K/Na was lower than the heat of Na/K by 50%, 33% and 23% at pHs 

3.25, 5.8 and 11.0 respectively. Since the heats of K/Na and Na/K exchange at all pH conditions 

were consistently unequal in magnitude, it seemed fair to assume that the magnitude of the surface 

negative charge was equally incongruent in Na and K and is hence depending on which cation is 
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present on the surface. The measurements of the ion sorption densities revealed that more Na+ was 

adsorbed on the surface than K+ at both pH 5.8 and 11.0 by 26% and 19 % respectively. At pH 

3.25 the sorption density measurements were not attainable analytically as they were below the 

HPLC-IC detection limit, underscoring again the fact that calorimetric heats are significantly more 

sensitive to charge and surface processes. 

Differences in rutile charging behavior in the presence of various cations sorption have 

been noted by Machesky et al. (2015) who reported charging data in a study on CD-MUSIC surface 

complexation model parameters (constrained using classical molecular dynamic (CMD) 

simulations) to describe rutile titrations in RbCl and NaCl media under a range of temperatures. 

Their results, presented in Figure 3.18, showed that the rutile surface possesses more negative 

charge in the presence of Na+ than in Rb+. The difference between the surface charge in Na+ and 

that in Rb+ becomes increasingly bigger and clearer at increasingly alkaline pH values. At pHs 

lower than 6, it seems the macroscopic titrations did not detect a difference in the surface charge 

in either cation.  Similarly, the ion sorption densities values in this study were not resolved at pH 

3.25 due to analytical obstacles. Yet the significant differences in the calorimetric heats of Na/K 

and K/Na at pH 3.25 seems to suggest the surface charge to be different in K+ than in Na+ even at 

this low pH.  
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Figure 3.18. Titration data on Rutile (Machesky et al, 2015). 

 
  

 

While the results from Machesky et al. (2015) contrast Na+ and Rb+, it is expected that K+ 

interacts with the rutile surface in a similar fashion as Rb+. In fact, the hydration radius and 

hydration enthalpy of K+ (3.31 Å, -322 kJ/mol) are more similar to those of Rb+ (3.29 Å, -293 

kJ/mol) than either are to Na+ (3.58Å, -409 kJ/mol).  Hence, the heat of Rb+ and K+ exchanges 

would be closer in magnitude than that of either Na+ with K+ and Na+ with Rb+.  

To test the validity of this assumption, the heats of Rb+ and Na+ and Rb+ and K+ exchanges 

were measured at pH 5.8 and 11.0.  Table 3.8 lists the results of these measurements and figure 

3.19 displays the representative raw calorimetric heat signals 
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Table 3.8. Heats of Rb+ Exchange with K+ and Na+ at pH 5.8 and 11.0. 

pH Probe Qexch  (mJ/mg) 
X/Yc 

Y/X 

K/Nad 

Na/K 

5.8 

Rb/Naa 0.071 (0.005)b 

0.67 0.68 
Na/Rb 0.106 (0.009) 

Rb/K 0.035 (0.003) 
0.90 

 

K/Rb 0.039 (0.002)  

11 

Rb/Na 0.144 (0.001) 

 

0.57 

 

0.77 

Na/Rb 0.251 (0.008)  

 Rb/K 
NA NA K/Rb 

a 
Y/X, the exchange of ion Y by ion X. 

b Numbers in parenthesis corresponds to  ± one standard deviation. 
c Ratio of less energetic exchange to more energetic exchange. 
d Ratio of K+ and Na+ Qexch from Table 3.7.   

 

 

 

 

The calorimetric heats of exchange of Rb+ and Na+ were found to match perfectly the 

incongruence previously measured between K+ and Na+. The energy of Rb/Na exchange was 33% 

and 26% lower than that of Na/Rb at pHs 5.8 and 11.0 respectively.  These results confirm that 

indeed Rb+ interacts with the rutile surface similarly to K+. Furthermore, energies of the Rb/K and 

K/Rb exchanges were found to be essentially the same.  

 

 

 

 

 

 

 



46 

 

 

 

   
Figure 3.19. Calorimetric heat signals of Rb+ exchanges with Na+ and K+ at pH 5.8 (top)  

and Rb+ exchanges with Na+ at pH 11.0 (bottom). 

 

The heat of exchange is the summation of many reactions: dehydration and adsorption of 

incoming species along with desorption and rehydration of the exchanged species (Ferreier et al., 

2013). Thus, the source of the incongruent behavior of ions on rutile must extend from one of these 

processes. It might be assumed that during the Na/K exchange the larger amount of Na+ 

rehydrating as it enters the solution exceeds the smaller amount of K+ dehydrating to adsorb on 
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the surface. In other words, the exothermic rehydration of Na+ leaving the surface consumes the 

endothermic dehydration of K+ adsorbing onto the surface due to the larger amount of Na+ species 

being displaced from the surface and the larger hydration enthalpy of Na+. These factors result in 

a large greater exothermic reaction. However, in the reverse exchange, K/Na, the endothermic 

dehydration of more Na+ species should consume an equal amount of the exothermic rehydration 

of K+ entering solution as it did in the reverse reaction and thus results in an overall endothermic 

displacement of K+ by Na+. The incongruence between these two repeated cycles suggests that the 

cations are not adsorbing to the rutile surface in the same way (losing different hydration waters, 

different geometries, different bond lengths to the surface, different distances from the surface, 

etc.) resulting in differences in surface charge and thus the differences in calorimetric heats of 

exchange. Similar observations were seen by Ferreier et al. (2013) when using FAMC to measure 

the heats of Na+ and Ca2+ exchange on zeolites. The data from one sample (zsm-5) displayed a 

significant dissimilarity between the endotherm and exotherm attributed to a difference in 

adsorption mechanisms whereby Na adsorbed as inner-sphere and Ca adsorbed as outer sphere 

(Ferreier et al., 2013). Although it has been shown that inner-sphere binding is favored by both 

Rb+ and Na+ at neutral and negative surface charge conditions on rutile, they do not necessarily 

bind in the same geometric configurations (Predota et al., 2013). The CMD simulations conducted 

by the same authors in a series of papers revealed that tetratdentate binding (TD) predominates as 

the inner most adsorption mode for the larger Rb+ cation at neutral and negative charge conditions 

due to the relatively ease in removal of its hydrated water molecules (Machesky et al., 2015). For 

Na+, bidentate geometry (BD) was shown to be favored at neutral charge conditions but moves 

towards TD binding with increasing negative surface charge as more hydrated water molecules are 
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able to be removed (Predota et al., 2013). Figure 3.20 shows the binding geometries of TD and 

BD sites (Wesolowski et al., 2008).  

 

 

Figure 3.20. Dominate Binding Geometry of Rb+ (left, tetradentate) and Na+ (right, 

bidentate) at negative surface charge conditions (Wesolowski et al, 2008). 

  
 

 

TD sites brings cations closest to the surface where the cation is bound to two underlying 

terminal oxygens (TO) and two bridging oxygens (BO). BD sites are farther from the surface. The 

BD site where the cation is bound with one BO and one TO (denoted BOTO) sits closer to the 

surface than the outermost BD site where a cation is bound with two TO (TOTO) (Predota et al., 

2013).  It has been shown that, cations sorb at sites progressively closer to the rutile surface with 

decreasing hydration energy for any given coordination mode, thus Rb+ (and/or K+) in TD 

configuration sits closer to the Ti surface than Na+ in TD configuration (Predota et al., 2013). 

 At pH 5.8, where Rb+ sits predominately in TD and Na+ predominately BD, the 

displacement of Rb+ by Na+ results in the overall endothermic reaction of the exchange plus the 

endothermic partial-dehydration energy of (~2 water molecules on) Na+ to allow its BD binding 

and the subsequent exothermic partial-rehydration of (~4 water molecules on) Rb+ after its release 

from TD binding site.  Since that heat of exchanges between Rb+ and K+ are closer in magnitude 
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than that of Na+ and K+ then the assumption that K+ behaves similarly to Rb+ seems reasonable. 

Thus it seems that the difference in the geometry, denticity, and strength of ion binding at neutral 

and high pH values causes the observed differences in heats of K/Na and Na/K (and Na/Rb and 

Rb/Na).  

3.4 The Impact of Cl- on the Negative Surface Charge Development of Rutile  

It has been suggested in the literature that Cl- has an effect on surface charge of rutile at 

low pHs. The CMD simulations ran by Machesky et al. (2015) observed Cl- displacing some 

terminal water molecules at low pHs on rutile. The axial density profiles (figure 3.21) generated 

from their study reveals Na+ not only sits closer to the rutile 110 surface than Rb+ at positive 

surface charge, but also results in a larger concentration of Cl- ions adsorbed in an inner-sphere 

arrangement from the displacement of water molecules at terminal Ti atoms, represented by the 

inner most peak at about 3.0 Å (Machesky et al., 2015). The decrease in terminal oxygens due to 

the adsorption of Cl- would mean a decrease in the negatively charged TiO- sites for Rb+( K+) to 

bind in its dominant  tetradentate configuration and  less TOTO bidentate sites available for Na+ 

leaving the BOTO to become its dominant bidentate configuration at low pH. 
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Figure 3.21. Axial density profiles of RbCl (top) and NaCl (bottom).  Rb+ (top left) and Cl- 

(top right) for RbCl solutions and Na+ (bottom left) and Cl- (botom right)  for NaCl solutions 

at the nonhdroxylated rutile (110) surface, as function of temperature and surface charge 

density. z (Å) denotes the distance above the Ti-O surface plane (Machesky et al., 2015). 

 

The specific adsorption of Cl- at positive surface charge could explain the discrepancy in 

the heats of Na/K and K/Na exchange seen on rutile and why the phenomenon is not observed on 

anatase. It could also be related to the fact that at pH 3.25 Na/K exchange generated a significant 

amount of heat (0.040 ± 0.02 mJ/mg) almost equal to that obtained for N/C and C/N exchanges at 

pH 5.8, even though pH 3.25 is 2-3 pH units below the PZC. In an earlier section, this negative 

charge was attributed to the non-protonated TO (i.e. TiO-0.35) that start showing up below pH 4.0. 
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Yet, this does not rule an impact form Cl-. Therefore, it was deemed relevant  to investigate the 

potential role of Cl- in these two phenomena.   

To that effect, the heats of Na/K and K/Na exchange were measured at pH 2.0 to determine 

whether moving an extra 1.25 pH units below the PZNC will decrease the measured heats 

accordingly. Moreover, the heats of Na+ and K+ exchange were measured using NO3
- as the 

counter-ion instead of Cl-. These measurements were done at pH 2.0, 3.25, 5.8, and 11.0.   

Figure 3.22 displays the representative heat signals of Na/K and K/Na exchange at pH 2.0 overlain 

on the signals acquired at pH 3.25. The mass normalized heats of exchange of both reactions are 

presented in Table 3.9. 

 
          Figure 3.22. Heats Signals of Na+and K+ Exchange at pH 2.0 and 3.25 in Cl- on Rutile. 
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   Table 3.9. Heats of Na+ and K+ Exchange in Cl- at pH 2.0 and pH 3.25 on Rutile. 

pH 

Heat of K/Naa 

Exchange           

(mJ/mg) 

K/Na Heat Ratio Heat of Na/K 

Exchange           

(mJ/mg) 

Na/K Heat Ratio 

pH 2.0

pH 3.25
 

pH 2.0

pH 3.25
 

2.0 0.015 (0.001)b 

0.75  

0.032 (0.002)  

0.80 
 3.5 0.020 (0.001) 0.040 (0.002) 

a X/Y, the exchange of ion X by ion Y.  
b Numbers in parenthesis ( ), ± one standard deviation. 

 

Both Na/K and K/Na exchanges produced less heat at pH 2.0 than at pH 3.25 on rutile 

indicating a decrease in the negative surface charge available for cation exchange. Interestingly, 

the incongruence between the energies of K/Na and Na/K exchanges persisted with the former 

lower by ca.  50% than the latter.  

Table 3.10 lists the heats of Na+ and K+ exchange (mJ/mg) with NO3
- as the counter ion 

at the four pH values. Figure 3.23 displays the representative raw heat signals at the same pHs. 

Table 3.10.  Heats of Na+ and K+ Exchange in NO3
- on Rutile 

pH  Probe 
Calorimetric Heat of Exchange            

(mJ/mg) 
K/𝐍𝐚c

Na/𝐊
 

2 
K/Naa 0.066 (0.002)b 

1.2 
Na/K 0.056 (0.003) 

    

3.25 
K/Na 0.077 (0.004) 

0.88 
Na/K 0.088 (0.005) 

    

5.8 
K/Na 0.103 (0.001) 

0.66 
Na/K 0.156 (0.009) 

    

11 
K/Na 0.380 (0.006) 

0.79 
Na/K 0.408 (0.019) 

a X/Y, the exchange of ion X by ion Y.  
b Numbers in parenthesis ( ), ± one standard deviation 
c Ratio of heat (mJ/mg) of K/Na exchange to Na/K exchange. 
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             Figure 3.23. Heat Signals of Na+ and K+ Exchange in NO3

- at various pHs on Rutile. 

               

 

The heats of K/Na and Na/K exchange produced more heat at pH values near and below 

the experimental PZNC (i.e. neutral and positive charge conditions) when the background 

electrolyte species is NO3
- , which suggests that less negative charge is present in Cl- at these pH 

conditions and supports the possibility that Cl- may be replacing some terminal oxygen sites on 

rutile at low pH values. However, at pH 11.0 (negative charge) the heats of the cation exchanges 

in NO3
- are slightly smaller but still comparable to the heats of exchange in Cl-. As can be seen 

from Figure 3.23, the differences in peak size and shape between the Na/K and K/Na exchanges 

at pH 3.25 and 2.0 are less pronounced in NO3
- than they were in Cl-, where Na/K exchange 

produced approximately 50% more heat than K/Na exchanges. At pH 5.8 and 11.0 the differences 

in the Na/K and K/Na exchanges correspond to about 65% and 80%, respectively, in both NO3
- 

and Cl-, which lends further support for the possibility of the specific adsorption of Cl- to a terminal 
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Ti surface atom at low pHs. The discrepancy between the Na/K and K/Na exchanges at higher pH 

regardless of background electrolyte must result from the fact that at neutral and negative 

conditions the difference in hydration radius and enthalpy of Na+ and K+ ions plays a more 

significant role than the counter ion species.  

 

 

 

  



55 

 

4 CONCLUSIONS 

Flow calorimetry was used to measure the surface charge and PZNC of anatase and rutile. 

Surface charge is directly proportional to heats of exchange. The flow adsorption microcalorimeter 

measured heats of CE using Na+, K+, and Rb+, and AE using Cl- and NO3
-. Measuring theses heats 

of exchange at various pH values allowed for the determination of the PZC of both polymorphs. 

For anatase a PZNC of approximately 5.3 was determined, which tended to be slightly lower than 

those reported in the literature. On rutile, the PZNC depended on the cation species used to measure 

the negative surface charge. When K/Na exchange was used the PZNC was approximately 5.8, 

whereas when measured using Na/K exchange the PZNC was 5.4 which is closer to those values 

reported in literature. This discrepancy is attributed to the presence of more surface charge on rutile 

when in Na+ than when in K+ due to the dominance of the tetratdentate binding geometry of larger 

cations (i.e. K+, Rb+).  

The presence of a significant amount of negative charge at low pHs on rutile was observed. 

To further investigate the source of the negative charge at the surface the experiment was repeated 

using cation exchange at pH 2.0. Less heat was measured at pH 2.0 than at pH 3.25 indicating the 

presence of negatively charged sites on the surface itself, although the role of Cl- could not be 

ruled out. Additionally, heats of cation exchange on rutile were measured with nitrate as the co-

anion instead of chloride since it has been suggested in literature that chloride has an effect on 

surface charge at low pH values. The magnitude of the heats of cation exchange were larger when 

measured in nitrate than chloride, which seems to indicate that chloride may indeed replace some 

terminal water molecules at positive surface charge. Overall, the work highlighted the utility of 

FAMC data in probing and understanding MO interfacial processes.   
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