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ABSTRACT 

Protozoa of the Class Kinetoplastida include clinically-relevant pathogens such as 

Leishmania and Trypanosoma. Although specific mechanisms or biological significance of 

programmed cell death (PCD) have yet to be established in these organisms, morphological and 

biochemical characteristics similar to mammalian PCD have been observed when triggered by 

various stressors. Crithidia fasciculata is a trypanosomatid that does not infect humans and is a 

model for studying cell death pathways. This study identifies orthologous proteins potentially 

involved in PCD in C. fasciculata and clinically-relevant species. Oxidative stress, thermal 

stress, rotenone, and starvation were used to induce PCD-like processes. Morphological and 

nuclear features were assessed by fluorescent microscopy with annexin-V, Hoechst, and 

propidium iodide. Oncosis-like and apoptosis-like features emerged following cellular stress. 

Additionally, monodansylcadaverine staining of vacuoles suggests autophagic processes occur. 

The results establish that cell death pathways in C. fasciculata share features with but are distinct 

from mammalian PCD. 
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1 INTRODUCTION  

1.1 Trypanosomatids 

1.1.1 Trypanosomatids, a global burden 

The Family Trypanosomatidae is comprised of exclusively parasitic species that 

frequently infect insects (1). Although the majority of the species are monoxenous and infect 

only a single host species during their life-cycles, some trypanosomatids are dixenous and have 

secondary hosts including mammals and plants (2). Arguably the most relevant dixenous 

trypanosomatid species for human health are pathogens belonging to the genera Leishmania and 

Trypanosoma. 

 Leishmania spp. are responsible for leishmaniasis and are widespread among tropical 

and subtropical regions. They are found in nearly 100 countries in Africa, Asia, Europe, North 

America, and South America (3). Leishmaniasis is considered by the World Health Organization 

(WHO) to be one of seven most important tropical diseases, affecting more than 12 million 

people, and placing more than 350 million at risk. These parasites are transmitted via bites of 

phlebotomine sand flies and cause various clinical forms of the disease in humans (4,5). 

Depending on the species of infection, leishmaniasis can range from mild dermatologic 

discomfort to fatality (6). For example, L. major and L. mexicana cause cutaneous leishmaniasis 

(CL) while L. donovani and L. infantum species can cause visceral leishmaniasis (VL) (7). 

Cutaneous leishmaniasis is the most common form of the disease and affects 600,000 to 1 

million people a year (8). Although CL does not lead to death, it is characterized by localized 

ulcers that oftentimes result in scarring and social stigma (9). Visceral leishmaniasis is the most 

severe clinical manifestation, resulting in more than 40,000 deaths annually (10). It is 
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characterized by hepatomegaly, splenomegaly, lymphadenopathy, anemia, leukopenia, 

thrombocytopenia, fever, and other systemic symptoms (11). Management of the disease 

depends on species and clinical presentation. Treatment of CL can include topical, oral, 

systemic, therapy, photo, and laser therapy. There, is however, no established regimen, and 

evidence of the effectiveness of these therapies are limited and patient-specific (12,13). 

Treatment of VL involves antiparasitic and antifungal drugs. Drug toxicities, cost, and drug 

resistance are notable limitations (14-16).  

Trypanosoma cruzi, the etiological agent for American trypanosomiasis (Chagas’ 

disease), is endemic to about 20 Latin American countries (17). Transmission of the parasite is 

most commonly via bite of the vector “kissing bugs”. It is also spread by blood transfusion and 

ingestion of contaminated foods (18). Collectively, the disease affects 6 to 8 million people 

worldwide, puts up to 100 million at risk, and is responsible for approximately 50,000 deaths 

annually (19,20). Trypanosomiasis is characterized by two successive phases: the high 

parasitemia-associated acute phase that clinically presents asymptomatically or with anorexia 

and fever, and the chronic phase that manifests with progressive digestive, cardiac, and 

neurologic complaints (21). Acute phase disease can be cured in 50-80% of patients with 

effective early action (22). Unlike leishmaniasis, trypanosomiasis that progresses to the chronic 

phase is asymptomatic for the majority of cases (23). Of these cases, up to 40% develop 

digestive, cardiac, or neurologic issues after 10 to 30 years (24). Severe cases of chronic phase 

disease can involve advanced chronic heart disease and cardiomyopathy in which the only 

treatment course is heart transplantation (25). Treatment of trypanosomiasis involves 

antiparasitic drug therapy for acute phase disease and symptomatic care for chronic phase 
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disease (26). Available antiparasitic drugs pose serious side effects and frequently are 

discontinued during the treatment course (21,27).  

Trypanosoma brucei, the etiological agent for human African trypanosomiasis (HAT, or 

sleeping sickness), is endemic to about 35 sub-Saharan African countries and is transmitted via 

the bite of tsetse flies (28). Approximately 11,000 people are infected with T. brucei with an 

additional 70 million individuals at risk and, as of 2016, about 2,000 new cases annually (29-31). 

Similar to Chagas’ disease, HAT evolves through two clinically distinct phases. The first stage 

begins after a bite that is often accompanied by localized dermatologic symptoms and is 

followed by intermittent fevers and a combination of lymphatic, endocrine, hepatic, splenic, and 

cardiac symptoms as parasitemia develops (32,33). The second stage ensues after a few weeks 

post-infection, when the parasite crosses the blood-brain barrier and invades the central nervous 

system. This stage is characterized by encephalopathy, headaches, altered mental status and 

eventually results in a somnolent mental state (33,34). If untreated or mismanaged, the infection 

is eventually fatal (35). The first stage of HAT is managed well with pharmacologic therapy, 

albeit with mild toxicity and side effects (32,36). The only treatment of the second stage of 

infection is an intravenous drug that is considered painful and highly toxic with risk of serious 

complications and 5-9% post-treatment fatalities (32,36).  

Leishmaniasis, trypanosomiasis, and African sleeping sickness are all classified as 

neglected tropical diseases given the paucity of financial support despite the overwhelming 

public health burden and poor health outcomes faced by underserved, low-income, and rural 

regions (11). Despite extensive research efforts globally to better understand trypanosome 

biology, the arsenal of tools for diagnostics and treatment remains unfortunately limited. Critical 

research advances including improved in vitro cultivation, whole-genome sequencing, and tools 
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for genetic modification within the last few decades are being leveraged to better study parasite 

and vector biology. Additional efforts towards expanding translational and pre-clinical 

applications continue to be warranted (37-40).  

1.1.2 Trypanosomatid biology  

Trypanosomatids are organisms with unique organelles and physiology. They use a single 

anterior flagellum to propel themselves in corkscrew-like motions. They possess a single, large 

mitochondrion that has different morphologies based on life stages (41). For example, T. brucei 

can have mitochondrion that feature abundant cristae and interconnecting networks of branches 

that undergo fission and fusion processes. On the other hand, the mitchondrion can be much 

simpler with unbranched tubules and few cristae (42). The complexity of the organelle is directly 

related to cellular function. The insect forms of trypanosomatids possess enlarged cristae and 

elaborate mitochondrial networks, reflecting the necessity for high aerobic respiration rates (43). 

In contrast, blood stream T. brucei derive energy from glucose in the host blood and produce 

ATP by substrate level phosphorylation. As such, the mitochondrion is simpler (44,45).  

Belonging to the Class Kinetoplastida, trypanosomatids are all characterized by 

kinetoplasts, a disk shaped “mitochondrial nucleoid” located in the mitochondrion at the base of 

flagellum that is essentially a network of genetic material termed kinetoplast-DNA (kDNA). The 

kDNA network is comprised of a few dozen maxicircles and thousands of minicircles, both of 

which are interlocking circles of DNA of about 20 kb and 1 kb, respectively (46,47). These 

encode important mitochondrial genes, including ribosomal RNA and respiratory complex 

subunits (46). Furthermore, replication of the kDNA is an essential part of the cell cycle and is 

initiated in G1, prior to nuclear replication (48).  



5 

 

During each phase of their life cycle, these parasites differentiate to various 

morphological forms, adapting to their environment. For example, while in the human host, T. 

brucei exhibit slender forms with special coats that evade the host immune response. They then 

differentiate to stumpy forms that promote transmission to their insect hosts upon bloodmeal of 

the mammalian host. Once the parasites have entered the insect gut, they again change into 

another form with another distinctive cellular coating that allows for adherence. Finally, they 

migrate to the salivary glands and proliferate and develop the original special coating in 

preparation for transmission into the human host (49,50). Each life cycle stage is also  

characterized by the position of the kinetoplast, which shifts to a specific region in the cell 

depending on the stage. Although the specific reason for the positioning of the kinetoplast is 

unknown, it is understood that it is required for the progression of cell division, as it is 

synchronous with nuclear replication (50). 

1.1.3 Crithidia fasciculata as a model organism 

Crithidia are monoxenous trypanosomatids that infect a broad range of insects and are 

non-pathogenic to humans. Crithidia fasciculata infect mosquitoes and be found on flowers and 

fruit, or in water after being voided with feces by infected insects (51). The parasite has two life 

stages: the amastigote and choanomastigote (52). Amastigotes are non-motile, round cells with a 

short flagellum and infect mosquitoes when the insects feed on nectar (52). C. fasciculata 

adheres to the mosquito gut and differentiates into choanimastigotes. Choanimastigotes are 

stumpy, free-swimming cells with long flagellum. After colonizing the mosquito gut, 

choanimastigotes differentiate to amastigotes.  

Choanimastigotes are further divided into two developmental forms, the non-motile 

haptomonad and the swimming nectomonad. Haptomonads are rounder and have shortened 
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flagellum used to adhere to the mosquito hindgut and rectal papillae (53). These adherent cells 

undergo cell division and form large clusters called “rosettes”. Eventually, cells  break free from 

the rosette and develop into nectomonads (54). Brooker (1971) discovered that both nectomonad 

and haptomonad forms of C. fasciculata can be cultivated in vitro and that haptomonads attach to 

artificial surfaces such as cellulose esters and polystyrene (55).  

Crithidia fasciculata has been investigated as a model organism for human pathogenic 

kinetoplastids because the species is not a threat to human health, is easily cultivated in scalable 

quantities, and is genetically tractable (56). Though the release of the C. fasciculata genome has 

been published (Stephen Beverely, Washington University School of Medicine), the key 

molecular players in various biological functions remain largely unexplored (57). Genetically, L. 

major, T. brucei, T. cruzi, and C. fasciculata share 6,000 orthologous genes (38). 

Physiologically, these parasites share many traits including the flagellar attachment and rosette 

formation of haptomonads, kinetoplast biology and mechanisms, and mitochondrial architecture, 

biogenesis, and biology (54,58,59).  

1.2 Regulated Cell death 

Programmed or regulated cell death (PCD, RCD, cell suicide) are cellular pathways 

defined by a series of molecular events that lead to organized cell demise. The scientific 

discovery of apoptosis, the first defined pathway, marked the beginning of the era dedicated to 

investigation of RCD. Schweichel et al. (60) classified RCD into three distinct categories based 

on morphological profiles . The first was apoptosis, which was characterized by shrinkage of the 

cell, formation of apoptotic bodies, membrane blebbing, chromatin digestion, and DNA 

fragmentation. The second was autophagy-related cell death, characterized by autophagic 

vacuolization of cytosol and organelles. The third was necrosis, characterized by membrane 
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rupture, swelling of the cell, and swelling of organelles. Since then, there has been a plethora of 

scientific work performed to better understand these cell death pathways as well as the discovery 

of multiple other unique pathways. This section provides a brief overview of various PCD 

pathways, associated morphological characteristics, and molecular machinery of these.  

1.2.1 Autophagy  

Autophagy is a regulated cell process that provides nutrients to maintain vital functions in 

response to stressful conditions such as nutrient deprivation and hypoxia (61). Although 

autophagy has homeostatic functionality, it is also recognized as a regulated cell death pathway. 

Initially, autophagic cell death (ACD) described cells that showed evidence of autophagy during 

cell death however recently ACD implicates the mechanistic decision-making that leads to cell 

death (62,63). Autophagy’s association with PCD is however constantly questioned, particularly 

its role as a true causative factor, whether it is an effect on PCD, or if it solely just a survival 

mechanism during PCD (64). It is also complicated by evidence that autophagy can activate 

other cell death pathways such as apoptosis and necroptosis.  

Autophagic cell death, death that is dependent of autophagic machinery and without 

involvement of other cell death processes, is characterized as sequestration of the cytoplasm and 

its contents by structures termed autophagosomes that become fused with and degraded by 

lysosomes (65,66). Morphologically, ACD is characterized uniquely by accumulation of 

autophagosomes and autophagic vacuolization (67). It can also share morphological 

characteristics with other RCD such as plasma membrane rupture, minor changes to the nucleus 

and chromatin, and enlargement of other organelles such as the mitochondria (67).  

Autophagy begins with formation of autophagosomes and proceeds ultimately to fusion 

of autophagosomes with lysosomal compartments. This is a complex process and involves over 
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30, autophagy-related genes (ATG) (68). The TORC1 complex (TORC1-Atg13) inhibits 

autophagic induction and is inactivated by starvation (and other stressors). The Atg1/ULK 

complex (Atg1-Atg11-Atg13-Atg17-Atg29-Atg-31) regulates induction of autophagosome 

formation. The Atg9 system (Atg-2-Atg9-Atg18) assists in membrane delivery of the expanding 

autophagosome. The Ptdlns3K complex (Vps15-Vps34-Vps30-Atg14) is involved in vesicle 

nucleation. The Atg12 (Atg-7-Atg10-Atg12-Atg16) and Atg8 (Atg3-Atg3-Atg7-Atg8) systems 

are involved in autophagosome expansion.  Following completion of the autophagosome, the 

vesicle will dock and fuse with autolysosomes and become degraded (69-72).  

1.2.2 Necroptosis 

Necroptosis is defined as a regulated process of necrosis and was initially described as a 

process that shares both apoptotic and necrotic features alongside inhibition of classical apoptotic 

pathways (73). Morphologically, cells undergoing necroptosis largely mimic necrosis, 

characterized by cellular swelling, chromatin condensation followed by nuclear decondensation, 

rupturing of the plasma membrane, and release of intracellular contents (74-77).  

Necroptosis is initiated by signaling from ligation of death molecules to death receptors 

(FAS/FASL, TNF1/TNF2, TRAILR1/TRALR2). Complex I (TRADD-TRAF2/TRAF5-RIP1-

cIAPs-NEMO-CLYD) is a signaling complex and cellular checkpoint that is formed thereafter 

and can either result in nuclear factor-κB (NF-κB) pathway activation and cell survival, or in 

formation of the death-inducing signaling complex (DISC, or complex II) that promotes cell 

death (78,79). When caspase 8 is uninhibited, the cell executes apoptotic cell death (80). When 

caspase 8 is inhibited, however, cIAP1 ubiquinates RIPK1, causing  RIPK1 and RIPK3 to form 

complex II (i.e. necrosome) (81). Complex II leads to the phosphorylation of MLKL, a key step 

in the execution of necroptosis (82,83). The execution of necroptosis is reported to occur in 
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multiple ways including events like production of ROS, overactivation of the DNA repair and 

transcription regulatory PARP1, release of the apoptosis-inducing factor (AIF) from the 

mitochondria to the nucleus to initiate DNA fragmentation, promotion of pore formation, and 

PGAM5-induced mitochondrial fragmentation (84-88).  

1.2.3 Apoptosis 

Apoptosis is considered the most understood PCD pathway and is evolutionarily 

conserved in metazoans. Apoptosis relies on activation of caspases and proteins that degrade 

organelles in preparation for controlled cell death (89). Morphological hallmarks of apoptosis are 

membrane blebbing, cell shrinkage, DNA condensation, DNA fragmentation, and formation of 

non-lytic apoptotic bodies. This death process is notably non-inflammatory and thus does not 

damage or stress surrounding cells (90).  Intrinsic and extrinsic stimuli can induce apoptosis, and 

the distinct pathways responsible for these are thus termed the intrinsic pathway and the extrinsic 

pathway (91,92). Though these pathways differ in induction, they share the same execution 

phase. 

The intrinsic pathway is mediated by the family of Bcl proteins including the pro-

apoptotic Bax proteins and the anti-apoptotic Bcl-2 proteins (93). The pro-apoptotic pore-

forming proteins BAX and BAK are mitochondrial membrane proteins in the outer membrane 

and cause outer membrane permeabilization (MOMP) when activated by pro-apoptotic BH3-

only proteins (BID, PUMA, BAD, BIK, BIM, BMF, Hrk, and Noxa) (94,95). MOMP releases 

apoptosis-inducing proteins from the inner mitochondrial membrane (91). These proteins, such 

as cytochrome c, activate caspases and inhibit caspase-inhibitor proteins. Of particular 

importance is activation of caspase 9 and the executionary caspases 3, 6, and 7 (96,97). Because 

apoptosis results in death of cells, there are multiple anti-apoptotic proteins that keep the 
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pathway tightly regulated. Some of these proteins include BCL-2 proteins (BCL-2, BCL-XL, 

BCL-W, BFL1, and MCL1) which inhibit the release of cytochrome c (94). These proteins bind 

to BIM and BID, preventing BAX and BAK activation.  

The extrinsic pathway involves death receptors that interact with specific adaptor 

proteins. These death receptors are characterized by a conserved domain termed the “death 

domain” and includes members of the tumor necrosis factor (TNF) family in addition to other 

ligands and receptors such as Apo3L/DR3, Apo2L/DR4, FasL/FasR, and TNFα/TNFR1 (98). In 

general, recruitment of FADD, TRADD, and RIP allows for association with procaspase-8, 

forming a complex called the DISC (98,99). At this point, apoptosis is executed with caspase-8 

and caspase-8 cleaving the executionary caspase-3 (100). Some inhibitors for this pathway also 

exist, including c-FLIP and Toso (101,102).  

1.2.4 Ferroptosis 

First proposed in 2012, ferroptosis is a non-apoptotic form of PCD directly associated 

with iron-dependence and abundance of lipid ROS (103). Notably, ferroptosis does not share 

morphological hallmarks of necrosis (cellular swelling and rupture of the plasma membrane) or 

apoptosis (cellular shrinkage, chromatin condensation, or apoptotic body formation) (103,104). 

Instead, cells undergoing ferroptosis exhibit mitochondrial shrinkage, reduction or dissolution of 

mitochondrial cristae, and increased membrane density (103,105). In mammalian cells, 

ferroptosis occurs when glutathione (GSH) is depleted, resulting in decreased glutathione 

peroxidase 4 (GPX4) activity and accumulation of lipid peroxides (105). As a consequence, iron-

dependent oxidation of lipids occurs and excessive ROS is produced (105). Multiple molecular 

systems of ferroptosis have been implicated (106). For example, the Xc- system (SLC7A11-

SLC3A2), an amino acid anti-transporter localized to plasma membrane, has antioxidative roles 
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(107). Cysteine, an amino acid regulated by this system, plays a role in GSH synthesis. 

Therefore, when system Xc- is inhibited, GSH cannot reduce ROS via glutathione peroxidases, 

leading to accumulation of lipid ROS. Additionally, any suppression of GPX4, such as with the 

inducer of ferroptosis RSL3, results in accumulation of lipid ROS. Excessive ferrous iron can 

also lead to initiation of ferroptosis due to lipid-peroxidation and production of ROS (108). 

There have been connections with other cellular processes as well such as autophagy, the 

mevalonate pathway, and sulphur-transfer pathways (107-109).  

1.2.5 Paraptosis 

Paraptosis, first described in 2000, is another non-apoptotic pathway (112). Paraptosis 

lacks caspase involvement, mitochondrial and endoplasmic reticulum (ER) swelling, and 

significant cytoplasmic vacuolization (110). Unlike apoptosis, paraptotic cells do not exhibit 

nuclear fragmentation or membrane blebbing (111). The molecular mechanism of paraptosis is 

unknown. Inhibition of gene expression with actinomycin D and cycloheximide prevent 

paraptosis (110).  

1.2.6 Oxeiptosis 

Oxeiptosis is an RCD program triggered exclusively by elevated ROS. Accumulation of 

ROS can cause oxidative damage to the intracellular ROS sensor KEAP1, leading to 

conformational change of the protein and impairing its ability to bind to the transcription factor 

NRF2.  NRF2 then translocates to the nucleus to express cytoprotective genes to protect the cell 

anti-oxidatively (112,113). Apparently, when ROS levels are excessive, oxeiptosis is triggered 

and KEAP1 is displaced from the mitochondria, disassociating from the protein PGAM5. 

PGAM5 internalizes into the mitochondrion from the outer membrane and dephosphorylates 

AIFM1 to trigger caspase-independent cell death (114,115). Morphological details of cells 
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undergoing oxeiptosis are largely unexplored. It was identified as a unique cell death process 

given it is caspase-independent, non-inflammatory, RIPK3-independent, ROS-induced, and 

KEAP1-PGAM5-AIFM1 dependent (115).  

1.2.7 Pyroptosis 

Pyroptosis is a lytic inflammatory pathway (the inflammasome pathway) that occurs in 

immune cells in the innate immune system and is triggered upon infection by intracellular 

pathogens. It has been associated with regulated lysis of cells infected by viruses, bacteria, 

fungus, and protozoans (118). Although initially thought to be a form of apoptosis given its 

shared caspase involvement, DNA fragmentation, and nuclear condensation, pyroptosis is now 

recognized as having a unique morphologic profile centered on its pro-inflammatory outcome 

following cellular swelling and plasma membrane rupture (116-119). The process is induced by 

caspase-1, caspase-4, caspase-5, and caspase-11 (120). Assembly of the inflammasome complex 

occurs in response to pathogen-associated molecular patterns (PAMPs) and exogenous pathogens 

and endogenous damage-associated molecular patterns (DAMPs) and endogenous damage 

(121,122). Sensors for assembly induction include NLRP1, NLRp3, NLRC4, AIM2, and pyrin. 

Once the sensors are activated by PAMPs and DAMPs, the inflammasome complex (CARD-

procaspase-1-NLRP3-PYD) forms, caspase-1 become active and cleaves the executioner 

gasdermin D (GSDMD), ultimately leading to cell membrane perforation (120,123,124).  

1.2.8 Parthanatos 

Parthanatos, a pathway identified only a decade ago, is based on genomic stress and the 

protein poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that repairs DNA and is 

involved in transcription (125). Parthanatos shares similar morphological features with apoptosis 

and necrosis (nuclear disruption, chromatin condensation, cell lysis, and DNA fragmentation) 



13 

 

(126). PARP-1 associates with poly(ADP-ribose) (PAR), a molecule that binds to target proteins 

to regulate processes such as DNA repair and transcription (126). When there is DNA damage, 

PARP-1 becomes active, leading to ADP-ribosylation of transcription factors, single-strange 

break repair factors, and base-excision repair factors (127). When excess genotoxic stress is 

apparent in the cell, PARP-1 becomes overexpressed and produces excessive PAR (125). The 

execution of cell death is thought to be caused by depletion of NAD+ and ATP, as overactivation 

of PARP-1 has resulted in fatal energy loss (128). The overactivation of PARP-1 has also been 

linked to release of AIF from the mitochondria and its associated effects on nuclear apoptosis, as 

mentioned previously in necroptotic pathways (87).  

1.3 Cell Death in Trypanosomatids  

Programmed cell death in trypanosomatids was first observed in 1995 in T. cruzi during 

in vitro differentiation and was characterized by cytoplasmic changes, nuclear changes, and 

DNA fragmentation (129). Since then, various features of PCD have been observed in numerous 

trypanosomatid species. Recently, Menna-Barreto reviewed the current evidence of cell death 

pathways in pathogenic trypanosomatids, collectively reiterating that trypanosomatids exhibit 

apoptotic-like phenotypes, undergo autophagy, and exhibit necrosis and emphasizing the 

following questions: (1) what is the biological relevance of PCD in unicellular protozoans? and 

(2) what molecular machinery is involved in PCD pathways (130)? There has been evidence that 

Trypanosoma spp. and Leishmania spp. exhibit numerous hallmarks of apoptosis and oncosis. 

These characteristics include DNA fragmentation (129), phosphatidylserine externalization 

(131), loss of mitochondrial potential (ΔΨm) (132), cytochrome c release (133), chromatin 

condensation (134) , and plasma membrane disruption (135). Additionally, evidence supports the 

biochemical presence of autophagy as characterized by Atg participation, formation of 
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phagophores and autophagosomes, and the activity of lysosomes (136). Furthermore, many stress 

conditions well understood in other models have also prompted cell death responses. These 

include drug treatment, thermal stress, oxidative stress, starvation, and hypoxia (129,131,137-

141). Trypanosomatids also exhibit apoptosis-like features during parasite differentiation (129).  

Little is known about the responsible molecular mechanisms responsible for PCD in 

trypanosomatids as deep genome analysis has not produced homologs of important apoptosis-

involved molecules. Various potential players have been investigated.  In 1998, Welburn and 

Murphy identified the trypanosome homologs for prohibitin, a transcriptional modulator, and 

activated protein kinase C (RACK), a regulator of cell cycle progression (142). They emphasized 

the upregulation of these genes in T. brucei undergoing concanavalin A-induced cell death. It has 

been proposed that this correlation between RACK, prohibitin, and the apoptotic phenotype is 

evidence for the convergence between mammalian and parasite pathways (142). Zangger et al. 

demonstrated that Leismania parasites exhibit DNA fragmentation, a late-stage event of 

apoptosis, and correlated this with presence of internucleosomal nuclease activity by two 

specific, unidentified nucleases (143). They additionally reported that DNA fragmentation was 

independent of typical cofactors of mammalian nucleases (Ca2+ or Mg2+) and caspase activity. It 

is known that trypanosomatids lack caspase-activity. Metacaspases, cysteine proteases that are 

analogous to caspases, induce PCD in plants and fungi (144). Although trypanosomatids 

metacaspases share the same folding pattern to mammalian caspases, there is no evidence to date 

that these proteins are involved in PCD (132). In accordance with this, there are multiple studies 

demonstrating that the parasites die in a metacaspase-independent manner with association with 

other proteins such as endonuclease G (145), inosine 5’ monophosphate dehydrogenase (146), 

and cysteine proteases CPA and CPB (143).  
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Similar to mammalian models, it is apparent the trypanosomatids mitochondrion plays an 

important role in cell death (147). Conditions such as H2O2, starvation, heat stress, ER stress, and 

antiparasitic drugs have been shown to induce cell death across various trypanosomatids and 

additionally results in loss in ΔΨm (132,134,148,149). This is further supported by evidence of 

induction of apoptosis-like death with Ca2+ imbalance and chemical inducers of ROS production 

(148). Smirlis et al. reviewed two present suggested pathways that describe the interplay of Ca2+
, 

ROS, and ΔΨm (150). The first pathway involves cytosolic Ca2+
 elevation, which enters the 

mitochondria and disrupts the ΔΨm and ROS production. Excessive mitochondrial Ca2+ 

accumulation and cell death ensue in T. cruzi following treatment of parasites to fresh human 

serum. The second pathway involves induction of ROS production which triggers lipid 

peroxidation. The peroxidation of lipids thereafter results in membrane fluidity and functionality 

of Ca2+ channels, leading to excess accumulation of Ca2+ and loss of ΔΨm (151). This pathway 

was seen in L. donovani parasites following treatment with complex II inhibitor thenyltrifluoro-

acetone and H2O2 (151). Downstream effects that follow ΔΨm disruption of either pathway result 

in the execution of apoptosis include protease and nuclease activation. 

Menna-Barreto concluded their review by reiterating the fact that there are currently no 

biochemical or molecular tools catered to protozoa for investigating programmed cell death. 

There are no streamlined or commercially-available tools exist to track these apoptotic-like or 

autophagic events. The magnitude of the mystery that is PCD in trypanosomatids continues to 

warrant investigation given the established clinical burden of these parasites.  
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2 RATIONALE 

2.1 Hypothesis 

Given the evolutionary and phylogenetic relationship of Crithidia fasciculata with human 

pathogens of Trypanosoma and Leishmania, I hypothesize that C. fasciculata will exhibit 

apoptosis-like and oncosis-like morphological characteristics in response to thermal stress, 

oxidative stress, rotenone, and nutrient deprivation. I also hypothesize that these parasites will 

largely lack homologs for key molecules involved in established cell death pathways as seen in 

mammalian systems.  

2.2 Specific Aims 

2.2.1 Identify trypanosomatid homologs of potential proteins involved in cell death 

As apoptosis and autophagy are well characterized systems, the search for key molecules 

involved in these pathways has previously been conducted in trypanosomatids. Limited data 

have been published on protein partners involved in more novel cell death pathways. This project 

aims to perform a comprehensive analysis of trypanosomatids genomes for all major molecules 

involved in eight different regulated cell death pathways. To achieve this, I: 

• Performed BLASTp analysis of trypanosomatid genomes for homologs of key molecules 

involved in various PCD pathways 

• Reviewed the literature to understanding roles of homologs in trypanosomatids, and 

• Connected existing key molecules and physiological profiles to determine possible 

existing PCD’s in C. fasciculata 
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2.2.2 Determine methods to induce and measure cell death in C. fasciculata 

Thus far,  there have been little data published on methods to induce cell death in C. 

fasciculata. Although certain stressors and their effects have been explored in pathogenic 

trypanosomatids, differences in treatment conditions have been observed between these species. 

For example, apoptosis-like death in T. cruzi in response to H2O2 occurs in the micromolar range 

however in L. donovani, optimal treatment is in the millimolar range (132,152). Given there 

seem to be specific pathways in higher eukaryotes to combat specific triggers of cell death, it is 

critical to investigate how cells react to individual stressors. To investigate patterns of cell death, 

I aim to: 

• Optimize the staining conditions of Hoechst 33342, propidium iodide, annexin-V, and 

monodansylcadaverine 

• Determine conditions to induce cell death (but not necrosis) 

• Determine the ranges of temperatures at which C. fasciculata undergo necrosis 

• Determine concentrations at which H2O2and rotenone are cytotoxic 

• Determine the conditions at which C. fasciculata form autophagic vacuoles 

 

2.2.3 Characterize cellular morphology during cell death 

Each cell death pathway is characterized by cellular morphological profiles. Although 

some features may be shared between RCD pathways, analyzing a morphological profile during 

cell death can be useful in identifying the pathway at hand. Rather than functionally investigate 

molecular partners responsible for certain cell death pathways, this study aims to determine the 

various morphological characteristics that C. fasciculata display when undergoing cell death. 

Characterization of morphological profiles involved: 
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• Capturing and identifying morphological patterns when cells were stressed 

• Describing a morphological “sequence” of cell death 

• Identifying instances of mammalian hallmarks such as cell shrinkage and swelling 

• Comparing witnessed morphological profiles to those of existing regulated cell death 

pathways 

 

2.2.4 Characterize nuclear changes during cell death 

Many PCD pathways involve damage to DNA and understanding  processes that occur in 

the nucleus can help in characterizing differences in cell death pathways. It has previously been 

shown that some trypanosomatids display different nuclear changes from mammals, despite 

attempts at mimicking specific stressors applied in mammalian systems (148). Furthermore, little 

is known about the role of the kinetoplast during cell death processes. Thus far, no studies 

address nuclear morphology of C. fasciculata in response to stress. In order to characterize 

nuclear changes, the following steps were taken: 

• Determine the optimal method of staining and analyzing DNA bodies 

• Identify patterns of nuclear changes during cellular stress 

• Identify instances of mammalian hallmarks such as DNA fragmentation and chromatin 

condensation 

• Compare nuclear morphological profiles to those of existing regulated cell death 

pathways 
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3 METHODS 

3.1 Reagents 

Brain heart infusion (BHI) media was obtained from Becton Dickinson. Fetal bovine 

serum (FBS) was obtained from Atlanta Biologicals. Penicillin-streptomycin was obtained from 

CellGro. Hemin was obtained from Alfa Aesar. GeneJet Genomic DNA Purification Kit, SYBR 

Safe DNA Stain, and 1Kb Plus DNA ladder were obtained from Thermo Scientific. Agarose and 

phenol/chloroform/isoamyl alcohol, chloroform, and absolute ethanol was obtained from Fisher 

Bioreagents. Poly-l-lysine, propidium iodide, monodansylcadaverine, and rotenone were 

obtained from Sigma Aldrich. Hoechst 33342 was obtained from Invitrogen. The Annexin V 

Fluorescence Microscopy kit was obtained from BD Biosciences. Three percent (3%) hydrogen 

peroxide was obtained from Walmart. Sixteen percent (16%) paraformaldehyde was obtained 

from Electron Microscopy Sciences. Isoamyl alcohol was obtained from Mallinckrodt.   

3.2 Parasite culture 

Wild type Crithidia fasciculata (Cf-Cl strain generously provided by Dan Ray, UCLA) 

were typically grown at room temperature and shielded from light in non-treated tissue culture 

flasks. Cells were maintained in BHI media supplemented with FBS, hemin (2.5 µg mL-1), and 

penicillin-streptomycin (100 IU / 100 µg mL-1). Regular cell maintenance typically involved 

passage of 500 µL of cells into 5 mL complete media every 5-7 days. When preparing for 

morphology experiments, cells were passaged to a new cell culture flask and incubated at room 

temperature (RT) on an orbital tabletop shaker under a sheet of aluminum foil (58). Experiments 

were conducted on cells in mid-log phase, approximately 108 cells mL-1. For cultures grown in 

static conditions, this was typically achieved in 24-48 hours. For rotating cultures, this was 

typically achieved in 24 hours. Cell density was determined by counting on a hemocytometer.  
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3.3 Bioinformatics analysis 

Literature review was conducted to identify relevant molecules involved in apoptosis, 

necroptosis, ferroptosis, oxeiptosis, paraptosis, pyroptosis, autophagy, and parthanatos. 

Accension numbers of each protein and the respective amino acid sequences were obtained from 

the UniProt database (153). For autophagy, protein from Saccharomyces cerevisiae were used as 

query sequences for BLASTp with the exception of ATG25 from Pichia angusta. For all other 

pathways, Homo sapiens proteins were used. FASTA-formatted, amino acid sequences were 

used for BLASTP against TriTrypDB (v.56) (144) with target organisms Crithidia fasciculata 

strain Cf-Cl, Leishmania major strain Friedlin, Trypanosoma cruzi strain CL Brener Esmeraldo-

like, and Trypanosoma brucei strain TREU927 (154,155). The maximal e-value was set to 10, 

and the maximum descriptions/alignments was set to 50. The low complexity filter was enabled. 

Homologs were determined by assessing significance of e-values (less than e-4) and score 

(greater than 40). When it was apparent that multiple homologs may exist, the trypanosomatid 

sequences were reverse-searched by submission to NCBI’s BLASTp function against H. sapiens 

(or the respective yeast for autophagy). In order to qualify as a homolog, the query protein 

needed to be the top hit.  

3.4 Stress treatments  

Prior to stress treatments, cells were passaged at least twice to ensure a healthy, active 

culture. Twenty four hours (rotating cultures) or 48 hours (static cultures) after passage, cells 

density was determined to ensure mid-log phase. Inside the biosafety cabinet, cells were 

generally washed once with room temperature, sterile PBS and resuspended in complete BHI 

media at the original volume prior to treatment. All washing steps involved centrifugation at 

8,000 RCF for 5 minutes at room temperature.  
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3.4.1 Thermal stress 

Depending on the volume of the sample of cells, heat stress was applied via three 

different methods: (1) tabletop heat block, (2) thermal cycler, (3) or water bath. Cells were 

suspended in complete BHI media at the appropriate volume and exposed to constant heat at 

specified temperatures. Following treatment, cells were washed once with PBS before staining.  

For heat shock treatments, similar steps were taken with the exception of shortening the 

exposure time to 15 minutes and allowing cells to rest at RT, without shaking, and shielded from 

light for 4 hours.  

3.4.2 Starvation 

Starvation involved washing cells with sterile PBS three times to remove residual media. 

Cells were then resuspended in either BHI media depleted of FBS or sterile PBS. Flasks were 

then left at RT, without shaking, and shielded from light for the set period of time.  

3.4.3 Oxidative stress  

Cells were centrifuged  and resuspended in complete BHI with hydrogen peroxide at 25, 

50, 100, 250, and 500 mM. Because stock hydrogen peroxide was 0.88 M (3% in water), a large 

volume of peroxide had to be added to attain higher doses. Thus, of the total sample volume in 

some cases, 56% of the total volume was water added with the peroxide. To account for possible 

cell volume stress, the percent of water for each sample was controlled by adding water to the 

same final concentration in the control and all treatments. Following treatment, cells were 

washed twice with PBS to remove residual H2O2. This prevented continued exposure to drug 

when moving to staining and slide preparation. 
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3.4.4 Rotenone 

Rotenone was made by dissolving in 100% ethanol to a 2.5 mM (1 mg mL-1) solution. 

Cells in fresh complete BHI media were treated with the appropriate concentrations of rotenone 

(2 µM and 10 µM). As ethanol can be toxic towards the parasites, rotenone treatments involved 

adding low volumes of solubilized drug (0.08% to 0.4% of total volume). Treatments were 

performed at RT, static, shielded from light, for 24 hours. Following treatments, cells were 

washed twice with PBS to remove residual drug. 

3.5 Staining and Microscopy 

3.5.1 Slide preparation 

Coverslips were coated with poly-l-lysine (diluted 1:10 from stock in PBS) for 5 minutes 

followed by 15 minutes of air drying. Following treatment and the appropriate wash steps, cells 

were stained with fluorescent dyes, washed with PBS, and aliquoted onto a glass microscope 

slide. PLL coverslips were then placed onto the cells and allowed to adhere for 10 minutes. The 

perimeter of coverslips was then sealed with clear nail polish.  

3.5.2 Staining parameters 

Prior to labeling with annexin-V, cells were washed once with PBS containing calcium 

followed by an additional wash with a 1:1 ratio of annexin-V binding buffer. Cells were then 

resuspended in annexin-V binding buffer containing annexin-V (diluted 1:10 from manufacturer) 

and propidium iodide at 1.5 µM (1 µg mL-1) and incubated 15 minutes in the dark.  

Cells were stained with propidium iodide at a final concentration of 1.5 µM. Stock PI was 

prepared by dissolving in PBS at either 748 µM (0.5 mg mL-1) or 1.5 mM (1 mg mL-1). 

Monodansylcadaverine (MDC) was dissolved in DMSO, and aliquots were stored at -20 

ºC. MDC staining was at 50 µM. Due to cytotoxic properties of DMSO, MDC was dissolved at 
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2.98 mM (1 mg mL-1) to minimize the amount of DMSO added per sample. Cells were stained 

for 30 minutes in the dark. 

Hoechst 33342 (stock of 22 mM, 10 mg mL-1) staining was conducted at 4.42 mM (2 µg 

mL-1) for 30 minutes in the dark. Generally, stained cells were not washed prior to analysis.  

3.5.3 Data collection 

Phase contrast and fluorescence images were captured under non-saturating conditions 

using Axio Imager.A1 fluorescence microscope (Zeiss) with an AI-6MPCMPS digital camera 

driven by AI View software (Aiken Instruments). Filter sets for the microscope included: 

HQ545/30 + HQ610/75M (Red, Chroma), HQ480/40X + HQ535/50 (Green, Chroma), and G365 

+ BP445/50 (Blue, Zeiss). Slides were first visualized on phase contrast and frames containing 

cells were haphazardly selected for data collection. In general, if a frame had cells that were in 

the same focal plane and not overlapping with other cells, the field of view was selected for 

analysis. Following capture of phase contrast images, fluorescence images were taken. In cases 

where Hoechst 33342 was used, the Hoechst 33342 images were taken first due to the dye’s 

tendency to bleach. Care was taken to image fields not previously exposed to excitation light to 

minimize bleaching. For each slide, at least 300 cells were captured and analyzed. Clusters or 

clumps of cells, cells near the perimeter of the cover slip, or cells in air pockets were excluded 

from analysis. Post-capture modifications (e.g., sharpness, contrast, and brightness) to improve 

visibility were applied equally to all photos via PowerPoint (Microsoft). All experiments were 

performed in triplicate.  

3.6 Assessing morphology 

To assess the effects of stress on morphology of the nectomonad, swimming cells, flasks 

were cultured on a shaker as described above. They were then stressed at necrosis-inducing (46-
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50 °C) and non-necrosis-inducing (38-44 °C) temperatures for 1 hour in a heat block. Cells were 

then fixed with 4% paraformaldehyde for 15 minutes, stained with propidium iodide, and 

analyzed. Slides were first viewed under phase contrast and scanned for reoccurring cell 

phenotypes (e.g., rounding, swelling, shrinkage) across all treatment groups followed by 

capturing of fluorescence images. Post-capture, phase contrast images were first grouped 

categorically via cell phenotype followed by assessment of patterns in propidium iodide 

staining.  

To assess changes in nuclear morphology, cells were either stressed with rotenone (2 

µM) or heat stressed (44 ºC) as described above. Cells were then double-stained with Hoechst 

33342 and propidium iodide. Given the difficulty to discern differences in shapes of the nucleus 

via Hoechst staining, changes in nuclear morphology were gauged by chromatin condensation. 

To this end, it was important to begin experiments with control groups and maintain the same 

exposure and gain for all filter sets of the following treatment groups. To differentiate between 

the nucleus and kinetoplast, which are always present when staining DNA, the nucleus was 

identified as the larger, dimmer organelle, and the kinetoplast was identified as the relatively 

smaller, brighter organelle.  

3.7 DNA fragmentation assay 

To obtain genomic DNA for fragmentation analysis, each sample of parasites was grown 

in a 75 cm2, non-treated cell culture flasks with a total culture volume of 15 mL. Once the 

appropriate density and mid-log phase was reached, cells were then stressed with the treatment 

of interest. Following stress, cells were pelleted down at 1550 g at RT for 10 minutes, and the 

supernatant was removed. Pellets were stored at -80 °C until ready for nucleic acid extraction.  
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Genomic DNA extraction begun with thawing frozen cell pellets to RT and washing once 

with RT PBS. Cells were resuspended in 1000 µL GeneJET Genomic DNA purification lysis 

solution with 1/10 volume proteinase K solution and incubated at 56 °C for 4 hours. The solution 

was intermittently vortexed to promote lysis. Cell debris was pelleted down at 18,000 × g for 15 

minutes at 4 °C. After addition of 1/20 volume of RNase A solution, lysates (supernatants) were 

incubated at 37 °C for an additional hour. One volume of phenol:chloroform:isoamyl alcohol 

(25:24:1) was added to the sample and vortexed at max setting for 30 seconds. Samples were 

then centrifuged at 16,000 × g for 5 minutes at RT. The upper aqueous layer containing DNA 

was transferred and mixed with an equal volume of RT chloroform:isoamyl alcohol (24:1) by 

vortex for 30 seconds. The centrifugation step was repeated and again the upper aqueous layer 

was transferred to a new tube. DNA was precipitated by adding 1/10 volume of 3M NH4OAc 

and 2.5 volumes of ice cold 100% ethanol. Samples were incubated at -20 °C overnight. Samples 

were then centrifuged for 15 minutes at maximum speed at 4 °C, and the pellet was washed once 

with ice cold 80% absolute ethanol. The pellet was air dried for 5 minutes, resuspended in 

elution buffer, and quantified via spectrophotometer (NanoDrop).  

A 1% agarose gel was created by boiling 0.4 g of agarose in 40 mL TAE buffer. Before 

casting the gel, 4 µL of SYBR safe DNA stain (0.01%) was added and well mixed. After the gel 

solidified, 10 µg of DNA diluted with 1X loading dye (made in house) was loaded in the gel and 

electrophoresed at 135 volts and 125 milliamps. DNA was visualized with a Safe Imager Blue 

Light Transilluminator (Invitrogen), and photos were captured with a mobile phone camera. 

Post-modification of gel images (invert, desaturate, contrasts) was applied non-favorably to all 

gels via Microsoft PowerPoint. The experiment, including all treatment groups and separate 

gDNA extractions, were repeated once.  
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3.8 Statistical analysis 

Statistics were performed via Prism 9.2 (GraphPad). Data was analyzed by one-way 

analysis of variance (ANOVA), and differences between control and experimental groups were 

analyzed by t-test. p values less than 0.05 were considered statistically significant.  
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4 RESULTS 

4.1 Identification of homologs associated with cell death processes  

To determine if relevant genes involved in various cell death processes existed in 

trypanosomatids genomes, amino acid sequences of proteins from reference species were 

submitted to BLASTp analysis against reference strains of C. fasciculata, L. major, T. brucei, 

and T. cruzi (Tables 1-8). Homology was determined by TriTrypDB scoring and e-value and 

further supported, when applicable, by identification of conserved superfamily or family 

domains. Homology required single, confident results that matched the query. In instances where 

multiple hits to homologous hypothetical proteins, amino acid sequences in question were 

submitted to reverse-BLASTp search against the reference species to confirm match. In order to 

better understand the potential presence of each PCD pathway in trypanosome biology, each 

protein was generally categorized by function, members, or pathways depending on current 

understanding of each regulated cell death pathway (Figure 1).  
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Figure 1 Trypanosomatids lack key molecules involved in necroptosis, apoptosis, 

paraptosis, pyroptosis, and oxeiptosis. They however have conserved genes involved in 

ferroptosis, autophagy, and parthanatos. Molecules involved in PCD pathways were categorized 

by function, members, or pathways. Presence of homologs identified by BLASTp of C. 

fasciculata, L. major, T. brucei, and T. cruzi genomes is indicated by highlighting. Red text 

indicates homology in 1-3 parasites. Black text indicates homology in all 4 species. Grey text 

indicates homology was not identified in typanosomatid genome..  

 

Aside from ATG21, all 4 species share significant orthology for proteins involved in 

autophagic induction and signaling (ATG1, ATG20, ATG24, TOR1, TOR2), nucleation (VPS15, 

VPS34), and expansion and endpoint (ATG3, ATG4, ATG7, ATG8, ATG9, ATG18). However, 

nearly half of the ATG’s identified in the representative species S. cerevisiae are absent (Table 

1). A potential ATG21 homolog is evident in the Trypanosoma spp. genome but is absent from 

both C. fasciculata and L. major. Proteins involved in autophagic packaging were not identified 

any of the trypanosomatid genomes.  

Trypanosomatids appear to lack all key molecules involved in necroptosis, including 

proteins involved in death signaling and receptors, complex I and complex II formation, and 

 



29 

 

execution (Table 2). Additionally, ZFP36, the gene encoding for mRNA decay activator protein, 

a stabilizer of RIP1 and ripoptosome assembly, is conserved in all species except T. cruzi.  Of 

note, a single hit for TRAF2 was identified for C. fasciculata (CFAC1_220030700) due to 

identification of the TRAF superfamily domain. Similarly, a hit for TRAF5 was identified each 

in L. major (LmjF.07.0370) and T. brucei (Tb927.11.4660).  

As apoptosis is the most well defined cell death pathway, extensive BLASTp involved 

search of numerous proteins in the trypanosome genome (Table 3). In agreement with present 

data, trypanosomatids lack almost all proteins involved in extrinsic and intrinsic apoptosis aside 

from cytochrome c, 14-3-3 proteins, endonuclease G, prohibitin, and TMBIM5 (130). TMBIM5 

is involved in organization of the mitochondrial architecture and release of cytochrome c, an 

important molecule in initiating apoptosis (156). Prohibitin is known to play a role in 

mitochondrial-associated apoptosis (142). Endonuclease G is responsible for fragmenting DNA 

during apoptosis (143). Trypanosomatids lack procaspases but have conserved genes for 

metacaspases-1, -2, -3, -4, and -5, none of which have been functionally linked to regulated cell 

death in protozoans (130). 

Although only a few key molecules in parthanatos have been identified, three of these 

(PARP1, PARG, and MIF) are selectively conserved in trypanosomatids (Table 4). Leishmania 

major lacks homology for PARP1 and PARG. Trypanosoma spp. do not possess proteins 

homologous for MIF. AIF was not identified for any of the species.  

Trypansomatids possess putative homologs for multiple key molecules involved in 

ferroptosis including GPX4, FSP1, DHODH, ACSL4, SLC7A11, GSH, and GBLB (Table 5).  
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As aforementioned, the molecular machinery involved in paraptosis is largely unexplored 

though it is noted that trypanosomatids do not possess homologs for caspases-1, -4, or -5 or 

GDSMD (Table 6).  

As trypanosomatids do not possess immune systems, it could have been expected that 

they do not have conserved genes involved in pyroptosis aside from NLRP3, one of the known 

receptors responsible for initiating inflammasome assembly (Table 7).   

Although trypanosomatids possess orthologs for PGAM5, they lack orthologs for 

KEAP1, both of which encode for the two key molecules involved in oxeiptosis (Table 8). 
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Table 1. Genes involved in autophagy and identified trypanosomatid homologs  

Gene Identification numbers of relevant Saccharomyces cerevisiae molecules were identified by 

UniProt and homologs in trypanosomatids were determined via BLASTp search. ATG25 was 

represented by Pichia angusta as this gene is not present in S. cerevisiae. Orthologs between the 

four trypanosomatid species were identified by TriTrypDB version 54.  

 
GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

VPS34 S. cerevisiae p22543 C. fasciculata CFAC1_250050500 223 3.00E-60 
   

L. major LmjF.24.2010 221 1.00E-59 
   

T. brucei Tb427.08.6210 271 7.00E-76 
   

T. cruzi TcCLB.511065.50 239 3.00E-70 

ATG1 S. cerevisiae p53104 C. fasciculata CFAC1_200027900 122 8.00E-28 
   

L. major LmjF.29.2020 120 4.00E-27 
   

T. brucei Tb927.3.4560 116 6.00E-26 
   

T. cruzi TcCLB.504089.54 117 5.00E-26 

ATG13 S. cerevisiae Q06628 None identified 

ATG6 S. cerevisiae Q02948 None identified 

ATG5 S. cerevisiae Q12380 None identified 

ATG20 S. cerevisiae Q07528 C. fasciculata CFAC1_300073200 47.4 3.00E-05 
   

L. major LmjF.35.2420 50.4 3.00E-06 
   

T. brucei Tb927.9.13380 50.8 2.00E-06 
   

T. cruzi TcCLB.510749.30 58.9 6.00E-09 

ATG17 S. cerevisiae Q06410 None identified 

VPS53 S. cerevisiae P47061 C. fasciculata CFAC1_170016900 214 1.00E-58 
   

L. major LmjF.19.0810 216 1.00E-58 
   

T. brucei Tb927.10.15540 184 3.00E-48 
   

T. cruzi 
   

ATG24 S. cerevisiae P47057 C. fasciculata CFAC1_300073200 47.4 5.00E-05 
   

L. major LmjF.35.2420 49.3 1.00E-05 
   

T. brucei Tb927.9.13380 77.8 9.00E-15 
   

T. cruzi TcCLB.510749.30 74.7 1.00E-13 

ATG11 S. cerevisiae Q12527 None identified 
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ATG19 S. cerevisiae P35193 None identified 

ATG 3 S. cerevisiae P40344 C. fasciculata CFAC1_280011000 99.8 2.00E-23 
   

L. major LmjF.33.0295 108 1.00E-26 
   

T. brucei Tb927.2.1890 67 7.00E-12 
   

T. cruzi TcCLB.510257.90 103 2.00E-24 

ATG14 S. cerevisiae P38270 None identified 

ATG4 S. cerevisiae P53867 C. fasciculata CFAC1_300048700 90.9 2.00E-19 
   

L. major LmjF.32.3890 96.7 2.00E-21 
   

T. brucei Tb927.11.16290 98.2 3.00E-22 
   

T. cruzi TcCLB.511527.50 118 3.00E-29 

ATG5 S. cerevisiae Q12380 None identified 

ATG7 S. cerevisiae P38862 C. fasciculata CFAC1_080005700 310 2.00E-94 
   

L. major LmjF.07.0010 297 8.00E-90 
   

T. brucei Tb927.10.11180 328 4.00E-101 
   

T. cruzi TcCLB.507711.150 343 7.00E-107 

ATG8 S. cerevisiae P38182 C. fasciculata CFAC1_210026000 129 1.00E-38 
   

L. major LmjF.19.1630 130 4.00E-39 
   

T. brucei Tb927.7.5900 132 1.00E-39 
   

T. cruzi TcCLB.510533.180 92 5.00E-23 

ATG10 S. cerevisiae Q07879 None identified 

ATG12 S. cerevisiae P38316 None identified 

ATG16 S. cerevisiae Q03818 None identified 

ATG21 S. cerevisiae Q02887 C. fasciculata 
   

   
L. major 

   

   
T. brucei Tb927.3.4150 55.52 5.00E-09 

   
T. cruzi TcCLB.509669.100 53 2.00E-07 

ATG27 S. cerevisiae P46989 None identified 

ATG2 S. cerevisiae P53855 None identified 

ATG23 S. cerevisiae Q06671 None identified 
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ATG22 S. cerevisiae P25568 None identified 

ATG25 P. angusta Q6JUT9 None identified 

ATG26 S. cerevisiae Q06321 C. fasciculata CFAC1_110012800 46 2.00E-04 
   

L. major 
   

   
T. brucei 

   

   
T. cruzi TcCLB.508089.20 45.1 4.00E-04 

ATG9 S. cerevisiae Q12142 C. fasciculata CFAC1_230049000 49.3 2.00E-05 
   

L. major LmjF.27.0390 57.8 5.00E-08 
   

T. brucei Tb927.11.990 44.7 1.00E-04 
   

T. cruzi TcCLB.506925.450 50.1 9.00E-06 

ATG18 S. cerevisiae P43601 C. fasciculata CFAC1_200022900 53.5 3.00E-07 
   

L. major LmjF.29.1575 59.7 4.00E-09 
   

T. brucei Tb927.3.4150 97.8 1.00E-21 
   

T. cruzi TcCLB.509669.100 90.5 4.00E-19 

ATG15 S. cerevisiae P25641 None identified 

ATG29 S. cerevisiae Q12092 None identified 

ATG31 S. cerevisiae Q12421 None identified 

VPS15 S. cerevisiae P22219 C. fasciculata CFAC1_300029500 120 6.00E-27 
   

L. major LmjF.28.1760 102 3.00E-21 
   

T. brucei Tb927.11.9190 129 1.00E-29 
   

T. cruzi TcCLB.503715.40 59.7 2.00E-08 

VPS38 S. cerevisiae Q05919 None identified 

VPS30 S. cerevisiae Q02948 C. fasciculata 
   

   
L. major 

   

   
T. brucei 

   

   
T. cruzi TcCLB.507809.119 53.5 4.00E-07 

ATG32 S. cerevisiae P40458 None identified 
   

TOR1 S. cerevisiae P35169 C. fasciculata CFAC1_280071400 627 0 

   C. fasciculata CFAC1_290074900 617 0 
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TOR2 S. cerevisiae P32600 L. major LmjF.36.6320 774 0 

   L. major LmjF.34.4530 729 0 

   
T. brucei Tb927.10.8420 812 0 

   T. brucei Tb927.4.420 644 0 
   

T. cruzi TcCLB.508231.30 844 0 

   T. cruzi TcCLB.510689.40 723 0 

 

Table 2 Genes involved in necroptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search. Orthologs among the four 

trypanosomatid species were identified by TriTrypDB version 54.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

RIPK3 H. sapiens Q9Y572 None identified 

RIPK1 H. sapiens Q13546 None identified 

MLKL H. sapiens Q8NB16 None identified 

BIRC2 H. sapiens Q13490 None identified 

BIRC3 H. sapiens Q13489 None identified 

CYLD H. sapiens Q9NQC7 None identified 

TNFA H. sapiens P01375 None identified 

CASP8 H. sapiens Q14790 None identified 

NR2C2 H. sapiens P49116 None identified 

TRAF2 H. sapiens Q12933 C. fasciculata CFAC1_220030700 48.9 9.00E-06 
   

L. major 
   

   
T. brucei 

   

   
T. cruzi 

   

TRAF5 H. sapiens O00463 C. fasciculata 
   

   
L. major LmjF.07.0370 52.8 8.00E-07 

   
T. brucei Tb927.11.4660 46.2 8.00E-05 

   
T. cruzi 

   

Fas H. sapiens P25445 None identified 
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TRAILR2 H. sapiens O14763 None identified 

TNFR1 H. sapiens P19438 None identified 

TRAILR1 H. sapiens O00220 None identified 

TRADD H. sapiens Q15628 None identified 

FADD H. sapiens O15519 None identified 

NEMO H. sapiens Q9Y6K9 None identified 

IF2B1 H. sapiens Q9NZI8 C. fasciculata CFAC1_200020600 172 1.00E-48 
   

L. major LmjF.29.1370 48.1 2.00E-05 
   

T. brucei 
   

   
T. cruzi 

   

OPTN H. sapiens Q96CV9 None identified 

JNK H. sapiens P45984 C. fasciculata CFAC1_170008200 172 1.00E-48 
   

L. major LmjF.19.0180 173 3.00E-49 
   

T. brucei Tb927.10.14800 144 6.00E-39 
   

T. cruzi TcCLB.506211.180 177 1.00E-50 

ERK2 H. sapiens P27361 C. fasciculata CFAC1_280073900 223 4.00E-69 
   

L. major LmjF.36.6470 225 2.00E-69 
   

T. brucei TcCLB.504167.30 233 1.00E-72 
   

T. cruzi Tb927.10.7780 225 1.00E-69 

ERK1 H. sapiens P28482 C. fasciculata CFAC1_280024800 221 9.00E-68 
   

L. major LmjF.10.0490 267 2.00E-86 
   

T. brucei Tb927.8.3550 254 1.00E-81 
   

T. cruzi TcCLB.509475.10 142 4.00E-40 

p38 H. sapiens Q15759 C. fasciculata CFAC1_280024800 251 2.00E-80 
   

L. major LmjF.33.1380 256 6.00E-82 
   

T. brucei Tb927.10.12040 261 4.00E-84 
   

T. cruzi TcCLB.510123.20 248 5.00E-79 

TLR4 H. sapiens O00206 None identified 

ZFP36 H. sapiens P26651 C. fasciculata CFAC1_020008000 44.3 9.00E-05 



36 

 
   

L. major LmjF.35.1040 44.7 7.00E-05 
   

T. brucei Tb927.5.1580 49.7 2.00E-06 
   

T. cruzi 
  

  

DAPK1 H. sapiens P53355 None identified 

RAC1 H. sapiens P63000 None identified 

TCAM1 H. sapiens Q8IUC6 None identified 

ZBP1 H. sapiens Q9H171 None identified 

PLAT4 H. sapiens Q9UL19 None identified 

 

Table 3 Genes involved in apoptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search. MCA1-5 were represented 

by Trypanosoma brucei. Orthologs among the four trypanosomatid species were identified by 

TriTrypDB version 54.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

NFKB1 H. sapiens P19838 None identified 

NFKB2 H. sapiens Q00653 None identified 

RelA H. sapiens Q04206 None identified 

RelB H. sapiens Q01201 None identified 

Rel H. sapiens Q04864 None identified 

TLR3 H. sapiens O15455 None identified 

TNFL6 H. sapiens P48023 None identified 

TNF12 H. sapiens O43508 None identified 

TNR25 H. sapiens Q93038 None identified 

TNF10 H. sapiens P50591 None identified 

DEDD2 H. sapiens Q8WXF8 None identified 

CFLAR H. sapiens O15519 None identified 

DIABLO H. sapiens Q9NR28 None identified 

HTRA2 H. sapiens O43464 None identified 

APAF H. sapiens O14727 None identified 

DFFB H. sapiens O76075 None identified 
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B2CL1 H. sapiens Q07817 None identified 

BCL2 H. sapiens P10415 None identified 

B2CL2 H. sapiens Q92843 None identified 

BAG1 H. sapiens Q99933 None identified 

BCL10 H. sapiens O95999 None identified 

BAX H. sapiens Q07812 None identified 

BAK H. sapiens Q16611 None identified 

BID H. sapiens P55957 None identified 

BAD H. sapiens Q92934 None identified 

BIK H. sapiens Q13323 None identified 

BBC3 H. sapiens Q9BXH1 None identified 

APR H. sapiens Q13794 None identified 

AVEN H. sapiens Q9NQS1 None identified 

MYC H. sapiens P01106 None identified 

14-3-3E H. sapiens P62258 C. fasciculata CFAC1_130009500 263 9.00E-87 

   L. major LmjF.11.0350 265 7.00E-88 

   T. brucei Tb927.11.6870 243 8.00E-81 

   T. cruzi TcCLB.506775.80 262 2.00E-86 

MCA1 S. cerevisiae Q08601 C. fasciculata CFAC1_010008300 344 2.00E-117 

   L. major LmjF.35.1580 280 3.00E-91 

   T. brucei None identified 

   T. cruzi None identified 

MCA2 T. brucei Q585F3 C. fasciculata CFAC1_300060100 273 2.00E-88 

   L. major LmjF.35.1580 295 2.00E-97 

   T. brucei Tb927.6.940 0 0 

   T. cruzi TcCLB.507537.40 384 2.00E-133 

MCA3 T. brucei Q8T8E6 C. fasciculata None identified 

   L. major None identified 

   T. brucei Tb927.6.930 0 0 
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   T. cruzi TcCLB.506531.50 405 3.00E-141 

MCA4 T. brucei Q8T8E5 C. fasciculata None identified 

   L. major None identified 

   T. brucei Tb927.10.2440 705 0 

   T. cruzi None identified 

MCA5 T. brucei Q8IEW1 C. fasciculata None identified 

   L. major 

   T. brucei Tb927.9.14220 781 0 

   T. cruzi TcCLB.510759.160 481 7.00E-168 

EndoG H. sapiens Q14249 C. fasciculata CFAC1_040014100 112 1.00E-27 

   L. major LmjF.10.0610 105 3.00E-25 

   T. brucei Tb927.8.4040 100 1.00E-23 

   T. cruzi TcCLB.506867.10 103 1.00E-24 

PHB H. sapiens P325232 C. fasciculata CFAC1_120028100 204 3.00E-65 

   L. major LmjF.16.1610 204 9.00E-95 

   T. brucei Tb927.8.4810 218 3.00E-70 

   T. cruzi TcCLB.508837.120 214 1.00E-68 

TMBIM1 H. sapiens Q969X1 None identified 

TMBIM2 H. sapiens Q9BWQ8 None identified 

TMBIM3 H. sapiens Q7Z429 None identified 

TMBIM4 H. sapiens Q9HC24 None identified 

TMBIM5 H. sapiens Q9H3K2 C. fasciculata CFAC1_210021700 61.6 2.00E-10 

   L. major LmjF.24.1190 59.7 7.00E-10 

   T. brucei Tb927.11.5820 64 2.00E-11 

   T. cruzi TcCLB.503487.70 63.2 8.00E-11 

TMBIM6 H. sapiens P55061 None identified 

EF1A1 H. sapiens P68104 C. fasciculata CFAC1_090006400   694 0 

   L. major LmjF.17.0080 720 0 

   T. brucei Tb927.10.2090 739 0 
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   T. cruzi TcCLB.511369.20 720 0 

CASP7 H. sapiens P55210 None identified 

CASP3 H. sapiens P70677 None identified 

CASP6 H. sapiens O08738 None identified 

CASP10 H. sapiens Q92851 None identified 

DFFA H. sapiens O00273 None identified 

DFFB H. sapiens O76075 None identified 

NUMA1 H. sapiens Q14980 None identified 

SPTN1 H. sapiens Q13813 None identified 

 

Table 4 Genes involved in parthanatos and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search. Orthologs in the four 

trypanosomatid species were identified by TriTrypDB version 54.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

PARP1 H. sapiens P09874 C. fasciculata CFAC1_020022700 368 6.00E-114 
   

L. major  None identified     
   

T. brucei Tb927.5.3050 410 4.00E-130 
   

T. cruzi CFAC1_020022700 362 1.00E-111 

AIF H. sapiens O95831 None identified 

PARG H. sapiens Q86W56 C. fasciculata CFAC1_300079100 183 3.00E-48 
   

L. major  None identified     
   

T. brucei Tb927.9.12810 191 2.00E-51 
   

T. cruzi TcCLB.507013.24 189 1.00E-50 

MIF H. sapiens P14174 C. fasciculata CFAC1_230019300 42.7 4.00E-60 
   

L. major LmjF.33.1740 40.8 2.00E-05 
   

T. brucei  None identified 
  

   
T. cruzi  None identified 
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Table 5 Genes involved in ferroptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens proteins were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

GPX4 H. sapiens P36969 C. fasciculata CFAC1_290014000 80.1 1.00E-17 
   

L. major LmjF.26.0820 78.6 1.00E-17 
   

T. brucei Tb927.7.1120 87.8 5.00E-21 
   

T. cruzi TcCLB.503899.110 84.3 7.00E-20 

FSP1 H. sapiens Q9BRQ8 C. fasciculata CFAC1_110012400 45.8 5.00E-05 
   

L. major LmjF.14.0440 55.1 5.00E-08 
   

T. brucei Tb927.7.4310 54.3 8.00E-08 
   

T. cruzi TcCLB.508089.50 60.8 8.00E-10 

ACSL4 H. sapiens O60488 C. fasciculata CFAC1_050011200 318 1.00E-96 
   

L. major LmjF.01.0520 316 6.00E-96 
   

T. brucei Tb927.9.4230 332 4.00E-

102    
T. cruzi TcCLB.503575.50 315 9.00E-96 

DHODH H. sapeins Q02127 C. fasciculata CFAC1_120013000 75.9 5.00E-15 

   L. major LmjF.16.0530 71.2 2.00E-13 

   T. brucei Tb927.5.3830 78.2 3.00E-14 

   T. cruzi TcCLB.508375.50 73.6 5.00E-15 

MBOA5 H. sapiens Q6P1A2 None identified 

ALOX15 H. sapiens P16050 None identified 

SLC7A11 H. sapiens Q9UPY5 C. fasciculata CFAC1_260058200 61.1 3.00E-09 
   

L. major LmjF.14.0320 50.4 3.00E-06 
   

T. brucei TcCLB.504213.110 57.4 2.00E-08 
   

T. cruzi Tb927.6.4660 51.1 4.00E-06 

GSH H. sapiens P48637 C. fasciculata CFAC1_110019200 106 3.00E-24 

   L. major LmjF.14.0910 138 4.00E-35 

   T. brucei Tb927.7.4000 168 3.00E-45 

   T. cruzi TcCLB.506659.30 139 1.00E-35 



41 

 

GBLB H. sapiens Q8NCG7 C. fasciculata CFAC1_140007500 156 7.00E-38 

   L. major LmjF.18.0160 156 7.00E-40 

   T. brucei Tb927.10.13680 147 1.00E-46 

   T. cruzi TcCLB.507993.180 139 5.00E-39 

P62 H. sapiens Q13501 None identified  

NF2L2 H. sapiens Q16236 None identified 

TFR1 H. sapiens P02786 None identified  

 

Table 6 Genes involved in paraptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search. Orthologs between the 4 

trypanosomatid species were identified by TriTrypDB version 54. Score and e values were 

determined via TriTrypDB BLASTp parameters.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

CASP1 H. sapiens P29466 None identified 

CASP4 H. sapiens P49662 None identified 

CASP5 H. sapiens P51878 None identified 

GSDMD H. sapiens P57764 None identified 

 

Table 7 Genes involved in pyroptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosomatids were determined via BLASTp search. Orthologs among the four 

trypanosomatid species were identified by TriTrypDB version 54. Score and E-values were 

determined via TriTrypDB BLASTp parameters.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

CASP1 H. sapiens P29466 None identified 

CASP3 H. sapiens P70677 None identified 

CASP4 H. sapiens P49662 None identified 

CASP5 H. sapiens P51878 None identified 

ASC H. sapiens Q9ULZ3 None identified 

AIM2 H. sapeins O14862 None identified 

GSDME H. sapeins O60443 None identified 
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NLRC4 H. sapiens Q9NPP4 None identified 

MEFV H. sapeins O15553 None identified 

NLRP3 H. sapiens Q96P20 C. fasciculata CFAC1_290010800 76.3 
   

L. major LmjF.26.0500 63.9 
   

T. brucei Tb927.7.1430 49.5 
   

T. cruzi TcCLB.503579.20 44.7 

 

Table 8 Genes involved in oxeiptosis and their trypanosomatid homologs 

Gene Identification numbers of relevant H. sapiens molecules were identified by UniProt and 

homologs in trypanosome were determined via BLASTp search. Orthologs among the four 

trypanosomatid species were identified by TriTrypDB version 54. Score and E-values were 

determined via TriTrypDB BLASTp parameters.  

 

GeneID Organism UniProt ID Organism TriTrypDB ID Score E-value  

KEAP1 H. sapiens Q14145 None identified 

PGAM5 H. sapiens 
 

C. fasciculata CFAC1_280045600 97.8 4.00E-23 
   

L. major LmjF.36.4070 100 8.00E-24 
   

T. brucei Tb927.11.10340 136 4.00E-37 
   

T. cruzi TcCLB.510283.40 125 8.00E-33 
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4.2 Heat stress induces cell death  

Parasites were subjected to thermal stress at various temperatures (38–50 ºC) for 1 hour 

prior to staining with annexin-V and PI (Figure 3). Intuitively, there is a correlation between 

temperature and cell death (Figure 2). As temperature rises, more cells begin to die. Cells begin 

to die (~35% PI positive) around 40 ºC to 42 ºC, and PI positive cells occur 2.5 to 3-fold more 

frequently (~35% of  population) compared to cells treated at 38 ºC. At temperatures of 45 ºC, 

cell death increases to 70%. These data suggest that, once temperatures become too high, cells 

undergo unavoidable trauma and necrosis. Morphologically, cells begin to assume a teardrop-

shape phenotype when stressed at 38 ºC. Higher temperatures lead to a shift to more rounded 

cells with increased frequency of membrane rupture, cellular swelling, and changes in cellular 

translucency.  

 

Figure 2 Quantification of cells thermally stressed identify standard temperatures to 

induce necrosis. Cells were treated at a range of temperatures for 1 hour and stained with PI. 

Ppercentage of PI positive cells in a sample was determined. Data is presented as arithemetic 

mean + S.E.M. p ≤ 0.05 (n=3, one-way ANOVA p=<0.05, unpaired T-test significance p=<0.05) 
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Figure 3 Thermal stress causes morphological changes and induces cell death. 

Representative slides from samples quantified in Figure 2 illustrating cellular response to thermal 

stress as characterized by uptake of propidium iodide. Scale bars represent 10 µm.  
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4.3 Hydrogen peroxide induces cell death  

Parasites were exposed to increasing concentrations of H2O2 for 1 day prior to staining for cell 

death via PI (Figure 4). Dead cells from all treatment groups were characterized by bright, 

diffuse PI staining.  The proportion of PI positive cells increased in a dose-dependent manner 

(Figure 5). At 25 mM H2O2, cells begin to exhibit the teardrop phenotype that was seen with 

cells exposed to temperature over 38 °C. At 50 mM H2O2, cells began to exhibit rounding, and 

this morphology becomes increasingly prominent at higher concentrations. Parasites seem to be 

able to tolerate H2O2 concentrations at or below 100 mM (≤20% PI+). However, once the dosage 

reaches higher concentrations (250 and 500 mM), there is a 2 to 4-fold increase. Membrane 

rupture is observed at 50 mM and above.  

 

Figure 4 Quantification of cells oxidatively stressed present a dose-dependent response.  

Cells were treated at a range of hydrogen peroxide for 1 day and stained with PI and 

percentage of PI positive cells in a sample was determined. Data are presented as arithemetic 

mean + S.E.M. (n=3, one-way ANOVA significance p=<0.05, unpaired T-test significance 

p=<0.05) 
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Figure 5 Hydrogen peroxide causes morphological changes and induces cell death. 

Representative slides from samples quantified in figure 4 illustrating cellular response to 

oxidative stress as characterized by uptake of propidium iodide. Scale bars represent 10 µm. 
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4.4 Rotenone induces cell death 

Parasites were treated with either 2 µM or 10 µM rotenone for 1 day prior to staining 

dead cells with PI (Figure 5). There was a dose-dependent response observed, with a near 2-fold 

increase in percentage of cells staining positive for PI (Figure 6). In contrast to cells treated with  

hydrogen peroxide, rotenone treatment did not result in major changes in cell shape though PI 

positive cells continued to be rounded. There was no evidence of membrane rupture. Of note, PI 

staining in cells treated with 2 µM of rotenone was relatively dimmer and staining largely 

retained the shape of the kinetoplast and nucleus. However, in the 10 µM of rotenone sample, PI 

staining was much brighter and diffuse to the cell, with few instances of localized nuclear 

staining.  

Figure 6 Quantification of cells treated with rotenone present a dose-dependent 

response. Cells were treated at 2 different doses of rotenone for 1 day and stained with PI and 

percentage of PI positive cells in a sample was determined. Data is presented as arithemetic 

mean + S.E.M. (n=3, one-way ANOVA significance p=<0.05, unpaired T-test significance 

p=<0.05) 
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Figure 7 Rotenone causes morphological changes and induces cell death. Representative 

slides from samples quantified in Figure 6 illustrating cellular response to rotenone treatment as 

characterized by uptake of propidium iodide. Scale bars represent 10 µm. 
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4.5 Starvation induces autophagic processes  

Parasites were washed multiple times with sterile PBS to remove residual media and 

either (1) nutrient starved in PBS or (2) serum starved in media not complemented with FBS. 

After starvation, autophagic vacuoles were stained with MDC (Figure 7).  Three days after 

initiation of starvation, diffuse visualization of autophagic vacuoles were visible (data not 

shown). By day 7, cells starved in PBS exhibit formation of multiple, brightly fluorescent,  

autophagic vacuoles. In mammalian cells, a typical way to induce starvation is to deplete media 

of serum. To mimic this, cells were depleted of FBS for 1 day. Indeed, these cells began to form 

autophagic vacuoles (data not shown). To test a more time efficient method of autophagic 

induction, cells were serum starved for 1 hour. After 1 hour, autophagic vacuoles were also seen 

in the cells.  
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Figure 8 Serum depletion and nutrient starvation induces autophagic vacuole formation. 

Cells were either grown in regular media without FBS for 1 hour or in PBS for 7 days and 

stained with MDC. Arrows highlight clusters of autophagic vacuoles observed in single cells 

(enlarged in insets).  
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4.6 Cell death processes involve intranuclear DNA fragmentation 

To test for changes in genomic DNA patterns, parasites were stressed and gDNA was separated 

by electrophoresis (Figure 8). To mimic known inducers of necrosis in mammalian cells, cells 

were treated with Triton X-100 (157). A sample was also heat shocked at 55 ºC for 4 hours to 

also induce necrosis. Otherwise, treatments replicated previously established conditions 

including 44 ºC for 1 day, 100 mM H2O2 for 1 day, serum starvation for 3 days, and 10 µM 

rotenone. The distinctive laddering pattern seen in mammalian models is not apparent in C. 

fasciculata under any stressors. Though bands are visible between 2000 and 3000 base pairs (bp) 

for cells treated with rotenone, Triton X-100, heat shock, thermal stress, and hydrogen peroxide. 

In addition to these, there are bands between 1500 and 2000 bp as well as above 3000 bp in the 

serum starvation sample. Although necrosis is typically characterized by smearing of gDNA on 

agarose gel, the supposed positive controls for necrosis resulted in presence of fragmented bands. 

It is important to note that cell samples were not homogenous prior to gDNA extraction. That is, 

only a small percentage of the pellet were dead cells.  
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Figure 9 Variable changes in genomic pattern occur in response to cellular stress. Cells 

were stressed with 10 µM rotenone (1 day), 44°C (1 day), serum starvation (3 days), or 100 mM 

hydrogen peroxide in accordance to established conditions. In an effort to mimic necrotic 

patterns as seen in mammalian systems, cells were also treated with 0.01% Triton X-100 (4 

hours) and heat shock at 55°C (15 minutes). Ten micrograms of gDNA were separated on a 1% 

agarose gel. 
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4.7 Cellular stress induces nuclear morphology changes  

To assess chromatin condensation arising from stress, parasites were either treated with 2 

µM rotenone or 44 ºC thermal stress for 1 day prior to staining with Hoechst 33342 and PI 

(Figure 9) (158,159). Cells treated with low-dose rotenone exhibited similar representation of 

cell death as previously presented. Interestingly, these cells also had mild evidence of chromatin 

condensation as determined by Hoechst staining, as characterized by dim fluorescence. Overall, 

however, rotenone treated samples had notably less bright Hoechst staining than thermally-

stressed cells. PI positive cells also had brightly fluorescent Hoechst 33342.  
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 Figure 10 Cell death can be characterzied by chromatin condensation. Cells were either 

treated with 2 µM rotenone or at 44°C for 1 day and stained with Hoechst33342 to visualize 

changes in DNA and PI to confirm cell demise. While Hoechst 33342 is permeant to the nuclear 

and cell membrane, it only dimly stains cells at baseline (control group) but increases in 

brightness in cells undergoing cell death. Arrows highlight an example of a PI-positive and 

Hoechst 33342-positive cell in the rotenone treated group.  
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4.8 Characterizing cell death by morphological changes 

Since thermal stress is the simplest and most efficient method to induce cell death in C. 

fasciculata, heat treatments were used to assess cell morphology more closely. Cells were 

exposed to non-necrosis-inducing (38 ºC to 44 ºC) and necrosis-inducing temperatures (46 ºC to 

50 ºC) for 1 hour prior to staining with annexin-V and PI (Figure 10). Notable patterns of cell 

shape included the teardrop phenotype and cellular swelling and ballooning (Figure 10.D). The 

teardrop phenotype develops possibly as a result of sublethal stress. These cells stain neither for 

annexin-V nor PI. Cellular ballooning and swelling are described as enlarged, circular shape that 

is different from that of rounded dying cells, immotile attached cells, and shrunken cells and 

presumably present prior to membrane rupture. These cells either lacked staining of annexin-V 

and PI or had very faint annexin-V staining and staining of the nuclear bodies. Rupture of the 

plasma membrane was captured in multiple instances and is described as obvious displacement 

of the perimeter of the cell (Figure 10.H). These instances are all characterized as diffuse 

annexin-V staining and PI staining of the nuclear bodies. In a few instances in cells that appear to 

be undergoing membrane rupture, there can be observed release of intracellular contents as 

determined by both diffuse, dim “halo” staining of PI surrounding the cell as well as brightly 

stained small, punctate specks (Figure 10.F). 

Observation of the nucleus and kinetoplast with PI reveal instances of karyorrhexis 

(fragmentation of the nucleus), nuclear dissolution, and nuclear condensation. Various cells 

exhibited signs of nuclear fragmentation, described by more than two brightly stained bodies 

(Figure 10.C) against a diffusely stained cell. This event may precede or follow nuclear 

condensation, as described by larger and relatively brighter stained nuclear bodies (Figure 10.D). 



56 

 

Finally, nuclear dissolution is evident and described as fluorescence of the entire cell body 

without discernable nuclear bodies. 
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Figure 11 Distinct patterns of nuclear morphology and cell shape are observed in dying 

cells. Parasites were thermally stressed for 1 hour prior to staining with annexin-V and PI. 

Patterns of morphological changes were captured and categorized by (B) baseline, non-stressed, 

(C) nuclear fragmentation, (D) “teardropping” and ballooning, (E) DNA condensation, (F) 

release of intracellular contents, (G) dissolution of the nuclear bodies, and (H) membrane 

rupture.   
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5 DISCUSSION 

The concept of manipulating apoptosis and other regulated cell death pathways to combat 

human pathologies and disease has yielded multiple advancements in modern medicine (160). 

Since the observation of the apoptotic-like phenotype and autophagic process in trypanosomatids 

(129,133,161), many questions have been raised regarding the potential applications of these 

mysterious pathways. For example, trypanosomatids lack key molecules involved in RCD that 

are present in their human hosts, suggesting that unique, undiscovered pathways could be 

druggable targets (162). Furthermore, investigation of various organelle roles in cell death is 

another area of interest. This can involve development of antiparasitic drugs or therapies that 

prompt dysfunction of certain organelles such as the mitochondrion or endoplasmic reticulum 

and thereby execute cell death (163).  The biological relevance of the existence of these 

pathways in unicellular organisms also remains a question. Thus far, various hypotheses have 

been raised including altruism, maximizing biological fitness, population density control, and 

evasion of the host immune system (131,133,164,165). Despite the scientific interest in PCD in 

trypanosomes, there remains no comprehensive understanding of the molecular mechanisms 

underlying these processes in these parasites. Furthermore, basic questions remain regarding 

morphological characteristics of parasites undergoing programmed death and clarification of 

these features beyond the ambiguity conveyed by the term “apoptotic-like phenotype”.  

This study aimed to establish the means of utilizing C. fasciculata as a model organism to 

study cell death processes in trypanosomatids. The comprehensive goal was to align the 

morphological and genomic profile of C. fasciculata against known regulated cell death 

pathways in other systems (Figure 12). Firstly, targeted investigation of C. fasciculata, T. brucei, 

T. cruzi, and L. major genomes illustrates that key molecules involved in necroptosis, apoptosis, 
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paraptosis, pyroptosis, and oxeiptosis do not exist in trypanosomatid genomes. In contrast, 

trypanosomatids possess multiple key partners involved in ferroptosis and parthanatos. 

Additionally, multiple ATG proteins responsible for important steps in autophagy in other 

systems are present in trypanosomatids, consistent with prior studies that these parasites are 

capable of engaging in autophagy (166-171). Furthermore, it is presented here that Crithidia 

produce autophagic vacuoles in starvation conditions. These findings suggest that 

trypanosomatids may have a divergent or unique mechanism of cell death and/or engage in 

parthanatos or ferroptosis. In 2020, Teulière et al. investigated the characteristic genes associated 

with various forms of RCD across mitochondriate protists including Trypanosoma and 

Leishmania spp. (172). They concluded that presence of aerobic mitochondria was coupled with 

the conservation of apoptosis-associated genes, supporting the endosymbiotic origin pathway. 

They also suggest that selection for RCD pathways such as apoptosis are developmentally linked 

to multicellularity. Kaczanowski et al. also used bioinformatics to suggest that apoptotic 

mechanisms in protozoan parasites have diverged during evolution and existing homologs are 

shared while other key proteins are “replaced” by uncharacterized molecules with similar 

biochemical function (173). This supports the observations, both in published studies and this 

project, that protozoal parasites can undergo apoptosis-like cell death but lack the molecules 

normally thought to mediate these processes(129,174).  

Secondly, exposure of C. fasciculata to various stressors result in induction of cell death, 

but variations in the patterns suggest that multiple pathways for cell death exist. This may 

resemble RCD in multicellular organisms in which the response to stress in cells depends on the 

nature and duration of the exogenous factors of stressors (175). For example, cells respond 

differentially towards DNA damage and oxidative stress. In this study, when parasites are 
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thermally stressed below the temperatures of 46 °C, they display features of swelling, lysis, 

chromatin condensation, DNA fragmentation, nuclear dissolution, and membrane rupture, 

consistent with necroptosis. It has been suggested that thermal stress-induced death in 

mammalian systems is necroptotic (176,177). Key molecules like necroptosome forming RIPK1-

RIPK3 and cell permeabilizing protein MLKL are absent in trypanosome genomes. In addition to 

necroptosis, heat stress is also linked to various cell death pathways including apoptosis in 

mammalian cells via irreversible damage to DNA, RNA, and proteins, cessation of the cell cycle, 

and the relationship with increased ROS (178). Thermotolerance in these models is mediated by 

heat shock proteins (HSP), a family of proteins that can protect cells from multiple stressors 

including ROS and UV (179). HSPs play roles in various cell death pathways including intrinsic 

and extrinsic apoptosis and necroptosis. HSPs can regulate stress kinases JNK and ERK, control 

the release of cytochrome c, and block execution of apoptosis via caspase-3, Apaf-1, and 

cytochrome c (180,181). HSPs are well conserved in trypanosomatids and have been implicated 

in thermotolerance and survival in the host that occur as parasites adjust to temperature changes 

that occur within the environment and during life cycles (182,183). Interestingly, 

trypanosomatids also possess homologs for the MAPK stress pathway (ERK, JNK, and p38), and 

studies have identified these proteins are critical for proliferation in vivo (184,185). It is evident 

here that parasites may possess molecular mechanisms divergent from mammalian caspase-

centralized apoptosis and necroptosis. These pathways could involve HSPs and possibly the 

MAPK pathway, which can mediate cellular responses to thermal stress and lead to a cascade of 

events that is “oncosis-like”, as characterized by cell swelling and membrane rupture.   

Similar to mammalian systems, the mitochondria play a central role in RCD in 

trypanosomatids (147,151,186), and investigation of mitochondrial activity and morphology can 
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be informative in defining cell death pathways. For example, defects and dysregulation of 

complex I of the electron transport change is linked to cell death in mammalian cell models. In 

these models, rotenone inhibits oxidative phosphorylation activity of complex I, causing 

incomplete electron transfer to oxygen (187). It therefore induces apoptosis via excess 

production of mitochondrial ROS, opening of the mitochondrial permeability transition pore 

(MTP), cytochrome c release, and caspase-3 execution (188,189). Rotenone inhibits complex I 

activity in T. brucei (190). Crithidia fasciculata is also evidently sensitive to rotenone (Figure 7). 

The drug induces cell death in C. fasciculata and is associated with what appears to be nuclear 

fragmentation and chromatin condensation. However, these events are not accompanied with an 

oncosis-like phenotype. Given trypanosomatids lack homologs for caspase-3, it is unlikely that 

they share the same mitochondrial mechanism that is seen in the mammalian cell death pathway. 

Interestingly, a transmembrane Bax inhibitor-1 motif 5 homolog (TMBIM5) is present in 

trypanosomatids, suggesting a possible mechanism for executing cell death by other means. The 

mammalian, TMBIM family consists of six proteins with different subcellular localizations who 

are collectively involved in cellular Ca2+ signaling, cell survival, and stress resistance (191). In 

mammals, TMBIM5 localizes to the mitochondrion and regulates cytochrome c release in the 

context of activating intrinsic apoptosis (156). TMBIM5 is the sole representative of this protein 

family in trypanosomatid genomes. Another interesting mitochondrial protein encoded in the 

trypanosomatid genomes is endonuclease G, a protein that in mammals is involved in caspase-

independent apoptosis by degrading DNA via translocation to the nucleus as a consequence of 

oxidative stress (192). Evaluation of the endoG homolog in T. brucei and Leishmania has proven 

its functional capacity for intrinsic nuclease activity under oxidative or differentiation-related 



62 

 

stress (193). It is possible a mitochondrial, “apoptotic-like” mechanism exists in trypanosomatids 

and involves TMBIM5, endonuclease G, and cytochrome c.  

Another mitochondrial-associated source of cell death is oxidative stress, which is 

triggered by excess ROS production including H2O2, a byproduct of mitochondrial respiration 

and superoxide dismutase activity. Excess levels of ROS, occurring when the cell’s antioxidant 

and scavenging system are overwhelmed, causes irreversible damage to DNA and organelles, 

and leads to regulated cell death. Cytochrome c is known to play a role in regulating H2O2 

activity so that mitochondrial ROS levels are below the apoptosis-triggering threshold. 

Cytochrome c has a ROS-scavenger role as in non-apoptotic conditions. Cytochrome c released 

from the mitochondria caused by ROS production can actually have antioxidant properties (194). 

In this study, Crithidia treated with external H2O2 displayed signs of induced-cell death in an 

oncosis-like manner as characterized by nuclear dissolution, cellular swelling, membrane 

rupture, and release of intracellular contents (Figure 5). Ferroptosis is a PCD pathway that is 

triggered by failure of antioxidant systems and the subsequent accumulation of lipid peroxidation 

following ROS/free radical-associated fatty acid radical production, as catalyzed by free iron. 

Various antioxidant and ROS-scavenging properties have been identified in Leishmania and 

Trypanosoma spp. including catalase, glutathione reductase, and glutathione peroxidase (195-

197). Trypanosomatids also possess genes encoding key proteins associated with ferroptosis 

(GPX4, FSP1, DHODH, ACLS4, and SLC7A11). There has been limited investigation of 

ferroptosis in trypanosomatids. In 2018 Bocacz observed ferroptosis-like cell death in T. brucei 

and determined that tryparedoxin peroxidases, molecular relative of glutathione peroxidase 4, 

play key role in the antioxidizing of lipid-derived hydroperoxides (198). Bogacz additionally 

reported that the species is likely sensitive to iron-induced lipid peroxidation originating at the 
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mitochondrial level, as obvious morphological and biochemical changes were noted in the 

mitochondria (198). In mammalian cells, it was recently established that the protein 

dihydroorotate dehydrogenase (DHODH) plays a key role in mitigating lipid peroxidation and 

limits mitochondrially-mediated ferroptosis similar to that of the FSP1 and GPX4 (199). 

Functional investigation of Trypanosoma DHODH has been performed, establishing that is a key 

component of the pyrimidine biosynthetic pathway. However, the role of DHODH has not been 

investigated with respect to ferroptosis. This protein and other molecules involved in the 

ferroptosis system could possibly contribute to an oxidative stress-induced cell death pathway. 

Trypanosomatids additionally possess homologs for PARP and PARG, key players in the 

mitochondrial-associated, caspase-independent cell death pathway called parthanatos. This cell 

death process is triggered by oxidative stress and genotoxic damage in mammalian systems, 

resulting in DNA fragmentation and chromatin condensation (125). Investigation of PARP and 

PARG in T. brucei highlighted changes in resistance to H2O2 and genotoxic stimuli, resulting in 

cell death (200). Parthanatos is dependent on the apoptosis-inducing factor protein (AIF) in 

mammalian models. This protein was not identified in the trypanosomatid genomes in the current 

study. It is suspected that these proteins could have a mechanism different than mammalian 

models, independent of AIF, in trypanosomatids alluding towards a unique regulated cell death 

pathway. 
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Figure 12 Crithidia fasciculata’s morphological profile of cell death is evidently unique 

from currently described patterns. Literature review was conducted to determine known 

characteristics of the PCD pathways of interest. Negative (-), red boxes indicate lack of that 

particular feature. Positive (+), green boxes indicate presence of that particular feature. Question 

marks (?) indicate that current understandings of this pathway have not reviewed these features. 

In this study, multiple features were not investigated and therefore not determined (nd).  

 

In conclusion, it is evident that trypanosomatids are capable of engaging in a regulated 

cell death pathway, characterized by differential changes in the cell in response to various 

stressors. When comparing the observed nuclear and morphological changes as well as the 

homology profile of C. fasciculata with that already known in other species, it is evident that 

trypanosomatids possess unique pathways of regulated cell death inaccurately referred to as 

“apoptosis-like”. It is clear that the parasites can engage in at least two distinct pathways, one 

characterized by swelling, membrane rupture, and release of intracellular contents, and one 

without these characteristics. This study highlights multiple avenues of mystery that require 

further investigation to better understand PCD in these influential parasites.  
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APPENDICES  

Appendix A 

Table 9 Putative homologs identified in trypanosomatid genomes and associated 

functions defined in other systems 

Gene and 

synonyms 

Protein Function 

VPS34  Phosphatidylinositol 3-kinase VPS34 cytoplasm to vacuole transport (Cvt) and VPS34 

PI3-kinase complex I autophagy 

 

recruits ATG8-phosphatidylinositol conjugate and 

ATG12-ATG5 conjugate to autophagosomal 

structure 

ATG1 

(ULK1) 

Serine/threonine-protein kinase ATG1 Cvt, required for formation of autophagosomes 

 

nucleophagy, mitophagy, endoplasmic reticulum 

(ER) degradation 

VPS53 Vacuolar protein sorting-associated 

protein 53 

part of the GARP complex involved in retrograde 

transport from early to late endosomes to the 

trans-Golgi network 

ATG20, 

CVT20 

Autophagy-related protein 20 Cvt, pexophagy, mitophagy 

 

survival of cells during severe ER stress 

ATG24, 

SNX4, 

CVT13 

Sorting nexin-4 mitophagy and pexophagy  

 

retrieval of late-Golgi SNARES from post-Golgi 

endosomes for Cvt 

ATG3 Autophagy-related protein 3 E2 conjugating enzyme required for Cvt and 

autophagy, nucleophagy, mitophagy 

 

covalent binding activity of 

phosphatidylethanolamine to Gly of ATG8 

ATG4 Cysteine protease ATG4 CvT and autophagy, nucleophagy, mitophagy 

 

cleaves C-terminal AA of ATG8 

 

ATG8-PE deconjugation 

ATG7, 

CVT2 

Ubiquitin-like modifier-activating 

enzyme ATG7 

activating enzyme involved in 2 ubiquitin-like 

systems required for Cvt and autophagy 

 

activates ATG12 to conjugate with ATG5 and 

ATG8 to conjugate with 

phosphatidylethanolamine 

ATG8, 

CVT5 

Autophagy-related protein 8 Cvt and autophagosome formation, nucleophagy, 

mitophagy 

 

mediates delivery of vesicles and autophagosomes 

ATG21, 

CVT21 

Autophagy-related protein 21 -Cvt, vesicle formation, mitophagy 

 

binding phosphatidylethanolamine to ATG8 and 
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recruiting ATG to pre-autophagosomal structure 

(PAS) 

ATG26 Sterol 3-beta-glucotransferase synthesis of sterol glucoside membrane lipids 

ATG9, 

CVT7 

Autophagy-related protein 9 Cvt vesicle formation, mitophagy 

 

organization of PAS, recruits ATG23 

ATG18, 

CVT18 

Autophagy-related protein 18 proper vacuole morphology 

 

osmotically-induced vacuole fragmentation 

 

Cvt vesicle formation, pexophagy 

VPS15 Serine/threonine-protein kinase VPS15 Cvt and autophagy 

 

recruits ATG-phosphatidylinositol and ATG12-

ATG5 conjugates to PAS 

VPS30, 

ATG6 

Beclin-1-like protein limits pathogen-associated cell death response and 

autophagic activity 

 

vacuolar protein sorting 

TOR1, 

TOR2 

Serine/threonine-protein kinase TOR1, 

TOR2 

regulates multiple cellular processes controlling 

cell growth in response to nutrients 

 

regulates nutrient transport and autophagy 

TRAF2 TNF receptor-associated factor 2 regulates activation of NF-kappa-B and JNK and 

regulates cell survival and apoptosis 

 

inhibits necroptosis signaling 

TRAF5 TNF receptor-associated factor 5 links TNF receptors to signaling pathways 

 

mediates NFkB and JNK  

 

inhibits necroptosis and protects from apoptosis 

IF2B1, 

ZBP1 

Insulin-like growth factor 2 mRNA-

binding protein 1 

senses endogenous Z-form nucleic acids and 

triggers RIPK3-dependend necroptosis  

JNK, 

MAPK8 

Mitogen-activated protein kinase 8 stimulated by extracellular cytokines or physical 

stress to activate the stress-associated/JNK 

pathway 

 

regulates expression of genes and pro- and anti-

apoptotic proteins 

 

regulates TNF- and TLR’s-mediated necroptosis 

ERK2, 

MAPK1 

Mitogen-activated protein kinase 1 essential part of MAP kinase signal transduction 

pathway and MAP/ERK cascade 

 

involved in the activation of necroptosis and the 

mediating necrostatin-1 

 

regulates a broad range of cellular processes 

including proliferation, differentiation, and cell 

cycle progression 

 

ERK1, 

MAPK3 

Mitogen-activated protein kinase 3 

P38, 

MAPK11 

Mitogen-activated protein kinase 11 
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important modulators of gene expression and 

inflammatory responses 

ZFP36, 

TTP 

mRNA decay activator protein ZFP36 suppresses TNF-alpha by stimulated AU-rich 

element-mediated TNF-alpha mRNA decay 

 

stabilizes RIP1 and promotes ripoptosome 

assembly 

YWHA, 

1433 

14-3-3 protein  inhibits apoptosis and alleviates cellular stress 

 

sequesters BAD and FKHRL1 to cytoplasm 

MCA1 Metacaspase-1 mediates cell death triggered by oxygen stress, salt 

stress, and chronological age  

 

cysteine protease that cleaves after arginine or 

lysine 

MCA2 Metacaspase-2 

MCA5 Metacascpase-5 

MCA3 Metacaspase-3 may play a role in cell cycle G1/S transition of 

parasites 

 

plays a role in parasite bloodstream form growth 

and parasite virulence 

MCA4 Metacaspase-4 

ENDOG Endonuclease G fragments DNA during apoptosis 

PHB Prohibitin  broad range of cellular functions determined by 

subcellular localization 

 

translocates to mitochondrial or nucleus under 

apoptotic signals, important part of mitochondrial 

apoptotic pathway 

TMBIM5, 

GHITM 

Growth hormone-inducible 

transmembrane protein 

mitochondrial tubular network and cristae 

organization 

 

apoptotic release of cytochrome c 

DLC1, 

EF1A1 

Rho GTPase-activating protein 7 terminates downstream signaling of small 

GTPases 

 

induces mitochondrial apoptosis 

PARP Poly ADP-ribose polymerase 1 mediates parthanatos when over-activated in 

response to genomic stress 

 

synthesizes PAR, causing nuclear translocation of 

AIF 

-involved in various functions, namely DNA 

repair 

PARG Poly ADP-ribose glycohydrolase regulates PAR after synthesis by PARP 

MIF Macrophage migration inhibitory 

factor 

PARP1-dependent AIF-associated nuclease that 

cleaves genomic DNA into fragments 

GPX4 Phospholipid hydroperoxide 

glutathione peroxidase 

antioxidant peroxidase that reduces phospholipid 

hydroperoxide 

 

protects cells from oxidative damage, required to 

prevent ferroptosis 

FSP1, 

AIFM2 

Ferroptosis suppressor protein 1 NAD(P)H-dependent oxidoreductase involved in 

oxidative stress response, prevents lipid oxidative 

damage, suppressing ferroptosis 
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DHODH, 

PYRD 

Dihydroorotate dehydrogenase mitochondrial protein associated with the ETC, 

responsible for regulating bioenergetics, cell 

proliferation, ROS production, and apoptosis 

ACSL4 Long-chain-fatty-acid—CoA ligase 4 catalyzes conversion of long-chain fatty acids to 

acyl-CoA for synthesis of lipids and degradation 

via beta-oxidation, essential for ferroptosis 

execution 

SLC7A11 

xCT 

Cystine/glutamate transporter  imports cystine for glutathione biosynthesis and 

antioxidant defense 

PGAM5 Serine/threonine-protein phosphatase 

PGAM5 

substrate for KEAP1-depentent ubiquitin ligase, 

forms tri-partite complex with KEAP1 and NRF2 

 

key downstream effector of oxeiptosis pathway 

-dephosphorylates and activates MAP3K5 kinase 

  central mediator for programmed necrosis by 

TNF, ROS, and calcium ionophore 

NLRP3 NACHT, LRR, and PYD domains-

containing protein 3 

initiates formation of inflammasome polymeric 

complex in response to damage signals to initiate 

pyroptosis 
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