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BUILDING ROBUST DISTRIBUTED INFRASTRUCTURE NETWORKS

by

Brendan Lane Benshoof

Under the Direction of Robert Harrison

Abstract

Many competing designs for Distributed Hash Tables exist exploring multiple models of

addressing, routing and network maintenance. Designing a general theoretical model and

implementation of a Distributed Hash Table allows exploration of the possible properties of

Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on

utilizing Delaunay triangulation in a given metric space to maintain the networks topology.

We will show that utilizing this model we can produce network topologies that approximate

existing DHT methods and provide a starting point for further exploration. We will use our

generalized model of DHT construction to design and implement more efficient Distributed

Hash Table protocols, and discuss the qualities of potential successors to existing DHT

technologies.
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Chapter 1

Introduction

As more and more systems are growing using existing Peer to Peer (P2P) technology, we are

building services usable by the public (and exploring even more possibilities) based on a P2P

system called a Distributed Hash Table(DHT). While current DHTs are a incredibly effective

and a robust solution to maintain a shared state in a P2P system in a scalable fashion, little to

no improvement has been provided over the initial Chord[56] and Kademlia[42] DHTs. This

dissertation explores improvements and applications of Distributed Hash Tables to provide

the capacity for future robust and distributed systems infrastructures and services.

1.1 The Ship of Theseus

The ship wherein Theseus and the youth of Athens returned from Crete had thirty
oars, and was preserved by the Athenians down even to the time of Demetrius
Phalereus, for they took away the old planks as they decayed, putting in new
and stronger timber in their places, in so much that this ship became a standing
example among the philosophers, for the logical question of things that grow; one
side holding that the ship remained the same, and the other contending that it
was not the same.

-Plutarch, Theseus

What has attracted me to the design and applications of Distributed Hash Tables is that

they encourage thinking on a global scale and require designs that operate with minimal

human intervention on time scales beyond those normally considered by computer science.

In traditional engineering and design we conceive of an object, that while having parts
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replaced in the course of maintenance, will largely remain a single static object comprised

of the same material of which it was formed until it is disposed of. When considering a

Distributed Hash Table, we are intentionally designing a system like the Ship of Theseus,

where on the scale of millions of devices are added and lost on a daily basis, often amounting

to up to half of the constituent parts of a globe spanning system being replaced in a day.

It is our task to design a pattern of behavior for each of these parts that allows the system

to respond to queries despite constant in-progress failure and replacement and to constantly

propagate the information stored in the system onward to new storage before the current

storage fails.

Despite the challenge involved in building such a system, barring dramatic change to our

expectations of the future, the existing Distributed Hash Tables will be able to persist as a

public utility indefinitely. I present that the answer to the Paradox of the Ship of Theseus

is, “I don’t care as long as the ship still floats”.

1.2 What is a DHT?

At the core of maintaining a distributed system is establishing a shared state in the form of

a table of key-value pairs. DHTs provide a mechanism for agreeing upon a very large shared

state with tolerable inconsistency (records are sometimes lost, and if mutable they may be

inconsistent in value). While other techniques of consensus provide higher confidence, DHTs

scale to awesome levels of storage capacity because they are highly tolerant of the failure of

nodes within themselves. In practice, DHTs and similar distributed systems’ performance

are bound by the CAP Theorem[14].

1.3 What are the currently existing DHTs?

Chord [56] and Kademlia [42] are the most commonly used DHTs in practice. Chord has been

favored by researchers because it was designed with a series of proofs to show its consistency

in the face of churn. These proofs have been shown to be incorrect[63] without modification
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to the established protocol.

1.3.1 Chord

Chord is a peer-to-peer (P2P) protocol for file sharing and distributed storage that guarantees

a high probability log2N lookup time for a particular node or file in a network with N

nodes. It is highly fault-tolerant to node failures and churn, the constant joining and leaving

of nodes. It scales extremely well and the network requires little maintenance to handle

individual nodes. Files in the network are distributed evenly among its members.

As a Distributed Hash Table (DHT), each member of the network and the data stored

on the network is mapped to a unique m-bit key or ID, corresponding to one of 2m locations

on a ring. The ID of a node and the node itself are referred to interchangeably.

In a traditional Chord network, all messages travel in one direction- upstream hopping

from one node to another with a greater ID until it wraps around. A node in the network

is responsible for all the data with keys above or upstream his predecessor, up through and

including its own ID. If a node is responsible for some key, it is referred to as being the

successor of that key.

Robustness in the network is accomplished by having nodes backup their contents to

their s (often 1) immediate successors, the closest nodes upstream. This is done because

when a node leaves the network or fails, the most immediate successor would be responsible

for its content.

Each node maintains a table of m shortcuts to other peers, as shown in Figure 1.1, called

the finger table. The ith entry of a node n’s finger table corresponds to the node that is the

successor of the key n + 2i−1 mod 2m. Nodes route messages to the finger that is closest

to the sought key without going past it, until it is received by the responsible node. This

provides Chord with a highly scalable log2(N) lookup time for any key[56].

As nodes enter and leave the ring, the nodes use their maintenance procedures to guide

them into the right place and repair any links with failed nodes. Full details on Chord’s
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Figure 1.1: A Chord ring 16 nodes where m = 4. The bold lines are incoming edges. Each node
has a connection to its successor, as well as 4 fingers, some of which are duplicates.

maintenance cycle are beyond the scope of this paper and can be found here[56].

1.3.2 Kademlia

Kademlia is currently the most popular DHT methodology. It powers the trackerless bit-

torent mainline DHT, and the C implementation related to that project is likely the greatest

cause of its popularity. Many other distributed systems utilize modified versions of Kademlia

as a means of peer management and as a key-value store.

Kademlia is built in a non-Euclidian metric space. Locations are represented by a large

integer (160 bit is most common) and the distance between locations is calculated by the

XOR metric. This means Kademlia’s metric space is a generalization of a binary tree, where

the locations are mapped to leaf nodes and distance between nodes is the distance required

to traverse between them on that tree.

Because of the geometric awkwardness of its metric, Kademlia uses a modified k-nearest

neighbors approach to approximate a node’s Voronoi regions and Delaunay peers. If nodes

are evenly distributed through the space, Kademlia’s metric provides an O(log(n)) diameter

network.
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1.4 What are DHTs used for

DHTs are designed to be used to store data in a distributed system that would normally

be centrally stored in other systems, like a database or other records. In practice, they also

double as a mechanism for peers discovery and network management. Many P2P services

use a DHT as part of their infrastructure:

• Bittorrent [30] uses a DHT to store tracking information, which allows users to down-

load a file using an identifier hash.

• CJDNS [25] uses the Chord DHT to provide an efficient routing structure for packets.

• I2P [62] uses a DHT as a shared data store for many P2P applications.

• IPFS [9] uses a DHT to store Merkel tree hashes of shared files and peering information

similar to Bittorrent. FreeNet [17] uses a DHT as a global datastore similarly to I2P.

1.5 Dissertation Roadmap

This dissertation tracks my exploration though appreciations of and improvements to Dis-

tributed Hash Tables.

Chapter 2 describes ChordReduce [48] which demonstrates the application of a Chord

DHT to organizing a large scale distributed computation in the MapReduce [21] paradigm.

This exploration lead to considerations of how to generalize the concept of DHTs. Where

there were 3 distinct DHT mechanisms (Chord [56], Kademlia [42], and CAN [46]) I was

interested in find a more generic model of DHT behavior.

In search of a tool to allow the abstraction of DHT behavior I developed DGVH [10]

(described in Chapter 3) which permitted me to easily build a DHT protocol to operate

using any system of coordinates and distance function that I wished.

In order to build practical systems for testing, we needed a software system that could

easily be modified to implement new DHT behaviors. UrDHT [49] is an open source software
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project documented in Chapter 4, which allows us to rapidly prototype and test new DHT

methods of organization.

Intended for use with UrDHT, Chapters 5 and 6 discuss mutually exclusive optimizations

of DHT behavior. Chapter 6 discusses a mechanism for reactively storing copies of data such

that it is highly unlikely data will ever be lost.

Chapter 7 discusses a method of assigning participants to specific points in a DHT such

that the latency between peers and across the network is minimized
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Chapter 2

MapReduce on a Chord Distributed Hash Table

Google’s MapReduce [21] paradigm has rapidly become an integral part in the world

of data processing and is capable of efficiently executing numerous Big Data programming

and data-reduction tasks. By using MapReduce, a user can take a large problem, split it

into small, equivalent tasks and send those tasks to other processors for computation. The

results are sent back to the user and combined into one answer. MapReduce has proven to

be an extremely powerful and versatile tool, providing the framework for using distributed

computing to solve a wide variety of problems, such as distributed sorting and creating an

inverted index [21].

Popular platforms for MapReduce, such as Hadoop [1], are explicitly designed to be

used in large datacenters [2] and the majority of research has been focused there. These

MapReduce platforms are highly centralized and tend to have single points of failure[54] as

a result. A centralized design assumes that the network is relatively unchanging and does

not usually have mechanisms to handle node failure during execution or, conversely, cannot

speed up the execution of a job by adding additional workers on the fly. Finally deploying

these systems and developing programs for them has an extremely steep learning curve.

We were motivated to start exploring a more abstract deployment for MapReduce, one

that could be deployed in a much wider variety of contexts, from peer-to-peer frameworks to

datacenters. Our framework cannot and does not rely on many common assumptions, such

Previously published at ICA Conference 2014
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as a dedicated and static network of homogeneous machines. Nor do we assume that failed

nodes will recover [2]. Finally, our framework needed to be easy to deploy and simple to use.

We used Chord[56], a peer-to-peer distributed hash table, as the backbone for developing

our system. This chapter presents these contributions:

• We define the architecture and components of ChordReduce and demonstrate how

they fit together to perform MapReduce jobs over a distributed system without the

need of a central scheduler or coordinator, avoiding a central point of failure. We also

demonstrate how to create programs to solve MapReduce problems using ChordReduce

(Section 2.3).

• We built a prototype system implementing ChordReduce and deployed it on Amazon’s

Elastic Cloud Compute. We tested our deployment by solving Monte-Carlo computa-

tions and word frequency counts on our network (Section 2.4).

• We prove that ChordReduce is scalable and highly fault tolerant, even under high levels

of churn and can even benefit from churn under certain circumstances. Specifically, we

show it is robust enough to reassign work during runtime in response to nodes entering

and leaving the network (Section 2.5).

• We contrast ChordReduce with similar architectures and identify future areas of fruitful

research using ChordReduce (Sections 2.6 and 2.7).

2.1 Background

ChordReduce takes its name from the two components it is built upon. Chord[56] provides

the backbone for the network and the file system, providing scalable routing, distributed

storage, and fault-tolerance. MapReduce runs on top of the Chord network and utilizes

the underlying features of the distributed hash table. This section provides background on

Chord and MapReduce.
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2.1.1 MapReduce

At its core, MapReduce [21] is a system for division of labor, providing a layer of separation

between the programmer and the more complicated parts of concurrent processing. The

programmer sends a large task to a master node, who then divides that task among slave

nodes (which may further divide the task). This task has two distinct parts: Map and

Reduce. Map performs some operation on a set of data and then produces a result for each

Map operation. The resulting data can then be reduced, combining these sets of results into

a single set, which is further combined with other sets. This process continues until one set

of data remains. A key concept here is the tasks are distributed to the nodes that already

contain the relevant data, rather than the data and task being distributed together among

arbitrary nodes.

The archetypal example of using MapReduce is counting the occurrence of each word in a

collection of documents, called WordCount. These documents have been split up into blocks

and stored on the network over the distributed file system. The master node locates the

worker nodes with blocks and sends the Map and Reduce tasks associated with WordCount.

Each worker then goes through their blocks and creates a small word frequency list. These

lists are then used by other workers, who combine them into larger and larger lists, until the

master node is left with a word frequency list of all the words in the documents.

The most popular platform for MapReduce is Hadoop [1]. Hadoop is an open-source

Java implementation developed by Apache and Yahoo! [45]. Hadoop has two components,

the Hadoop Distributed File System (HDFS) [13] and the Hadoop MapReduce Framework

[34]. Under HDFS, nodes are arranged in a hierarchical tree, with a master node, called the

NameNode, at the top. The NameNode’s job is to organize and distribute information to

the slave nodes, called DataNodes. This makes the NameNode a single point of failure [54]

in the network, as well as a potential bottleneck for the system [55].

To do work on Hadoop, the user stores their data on the network. This is handled by the

NameNode, which equally apportions the data among the DataNodes. When a user wants
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to run some analysis on the data or some subset the data, then that function is sent by the

NameNode to each of the DataNodes that is responsible for the indicated data. After the

DataNode finishes processing, the result is handled by other nodes called Reducers which

collect and reduce the results of multiple DataNodes.

2.2 ChordReduce

Popular platforms for MapReduce, such as Hadoop, are extremely powerful, but have some

inherent limitations. These platforms are designed to be deployed in a data center. Their

architecture relies on multiple nodes with specific roles to coordinate the work, such as the

NameNode and JobTracker. These nodes perform necessary scheduling and distribution

tasks and help provide fault-tolerance to the network as a whole, but in doing so become

single points of failure themselves.

ChordReduce is designed as a more abstract framework for MapReduce, able to run on

any arbitrary distributed configuration. ChordReduce leverages the features of distributed

hash tables to handle distributed file storage, fault tolerance, and lookup. We designed

ChordReduce to ensure that no single node is a point of failure and that there is no need for

any node to coordinate the efforts of other nodes during processing.

Our central design philosophy was to implement additions to the Chord protocol by

leveraging the existing features of Chord. By treating each task or target computation as an

object of data, we can distribute them in the same manner as files and rely on the protocol

to route them and provide robustness.

We have created various services to run on top the network, such as a file system and

distributed web server. Our file system is capable of storing whole files or splitting the file up

among multiple nodes the ring. Our MapReduce module is a service that runs on top of our

Chord implementation, similar to the file system (Figure 2.1). We avoided any complicated

additions to the Chord architecture; instead we used the protocol’s properties to create the

features we desired in our MapReduce framework.
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Figure 2.1: The basic architecture of a node in ChordReduce. MapReduce runs as a service on top
of each node.

Marozzo et al. [41] shows that adding additional fault-tolerance features to a MapReduce

architecture is worth the added cost of maintenance, as the time lost due to node failures is

greatly reduced.

2.2.1 File Storage

The design of a distributed file system is closely tied to the design of the accompanying

implementation of MapReduce [23] [13]. Our system uses CFS [20], short for Cooperative

File System, to store files. Everything in Chord, be it data or a node, is given a hash

identifier or key. The ID of a node is the hash of their IP address and port, while the key

for a file is the hash of its filename. In the initial version of Chord, the entire file would be

stored in the node with the ID equal or closest upstream to the file’s key.
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Dabek et. al found that by splitting the file into blocks and storing each block in a

different node greatly improved the system’s load balancing when compared to storing the

entire file on a single node[20]. ChordReduce implements the same system. Files are split

into approximately equally sized blocks. Each block is treated as an individual file and

is assigned a key equal to the hash of its contents. The block is then stored at the node

responsible for that key.

The node which would normally be responsible for the whole file instead stores a keyfile.

The keyfile is an ordered list of the keys corresponding to blocks containing portions of the

file and is created as the blocks are assigned their respective keys. When the user wants

to retrieve a file, they first obtain the keyfile and then request each block specified in the

keyfile.

2.2.2 Decentralized MapReduce and Data Flow

In ChordReduce’s implementation of MapReduce, each node takes on responsibilities of both

a worker and master, much in the same way that a node in a P2P file-sharing service acts

as both a client and a server. To start a job, the user contacts a node at a specified hash

address and provides it with the tasks. This address can be chosen arbitrarily or be a known

node in the ring. The node at this hash address is designated as the stager.

The job of the stager is to divide the work into data atoms, which define the smallest

individual units that work can be done on. This might represent a block of text, the result

of a summation for a particular intermediate value, or a subset of items to be sorted. The

specifics of how to divide the work are defined by the user in a stage function. The data

atoms also contain the Map and Reduce functions defined by the user.

If the user wants to perform a MapReduce job over data on the network, the stager locates

the keyfile for the data and creates a data atom for each block in the file. Each data atom

is then sent to the node responsible for their corresponding block. When the data atom

reaches its destination node, that node retrieves the necessary data and applies the Map
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function. The results are stored in a new data atom, which are then sent back to the stager’s

hash address (or some other user defined address). This will take log2 n hops traveling over

Chord’s fingers. At each hop, the node waits a predetermined minimal amount of time to

accumulate additional results (In our experiments, this was 100 milliseconds.) Nodes that

receive at least two results merge them using the Reduce function. The results are continually

merged until only one remains at the hash address of the stager.

MapReduce jobs don’t rely on a file stored on the network, such as a Monte-Carlo ap-

proximation, to create data atoms specified by the user in the stage function. The data

atoms are then each given a random hash and sent to the node responsible for that hash

address, guaranteeing they are evenly distributed throughout the network. From there, the

execution is identical to the above scenario.

Once all the Reduce tasks are finished, the user retrieves his results from the node at the

stager’s address. This may not be the stager himself, as the stager may no longer be in the

network. The stager does not need to collect the results himself, since the work is sent to the

stager’s hash address, rather than the stager itself. Thus, the stager could quit the network

after staging, and both the user and the network would be unaffected by the change.

Similar precautions are taken for nodes working on Map and Reduce tasks. Those tasks

are backed up by a node’s successor, who will run the task if the node leaves before finishing

its work (e.g. the successor loses his predecessor). The task is given a timeout by the node.

If the backup node detects that the responsible node has failed, he starts the work and backs

up again to his successor. Otherwise, the data is tossed away once the timeout expires. This

is done to prevent a job being submitted twice.

An advantage of our system is the ease of development and deployment. The developer

does not need to worry about distributing work evenly, nor does he have to worry about any

node in the network going down. The stager does not need to keep track of the status of

the network. The underlying Chord ring handles that automatically. If the user finds they

need additional processing power during runtime, they can boot up additional nodes, which
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would automatically be assigned work based on their hash value. If a node goes down while

performing an operation, his successor takes over for him. This makes the system extremely

robust during runtime.

All a developer needs to do is write three functions: the staging function, Map, and

Reduce. These define how to split up the work into manageable portions, the work to be

performed on each portion to obtain results, and how to combine these results into a single

result, respectively.

2.2.3 Fault-Tolerance

Due to the potentially volatile nature of a peer-to-peer network, ChordReduce has to be

able to handle an arbitrary amount of churn. When a node fails or leaves Chord, the failed

node’s successor will become responsible for all of the failed node’s keys. As a result, each

node in the ChordReduce network relies on their successor to act as a backup.

To prevent data from becoming irretrievable, each node periodically sends backups to its

successor. In order to prevent a cascade of backups of backups, the node only passes along

what it considers itself responsible for. What a node is responsible for changes as nodes

enter and leave the network. If a node’s successor leaves, the node sends a backup to his

new successor. If the node fails, the successor is able to take his place almost immediately.

This scheme is used to not only backup files, but the Map and Reduce tasks and data atoms

as well.

This procedure prevents any single node failure or sequences of failures from harming

the network. Only the failure of multiple neighboring nodes poses a threat to the network’s

integrity. Furthermore, since a node’s ID in the network does not map to a geographical

location, any failure that affects multiple nodes simultaneously will be spread uniformly

throughout, rather than hitting successive nodes. This means if successive nodes do fail

simultaneously, they did so independently.

This concept can be extended to provide additional robustness. Suppose that each node
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has failure rate r < 1 and that the each node backs up their data with s successive nodes

downstream. If one of these nodes fails, the next successive node takes its place and the

next upstream node becomes another backup. This ensures there will always be s backups.

The integrity of the ring would only be jeopardized if s + 1 successive nodes failed almost

simultaneously, before the maintenance cycle would have a chance to correct for the failed

nodes. The chances of such an event would be rs+1, as each failure would be independent.

A final consequence of this is load-balancing during runtime. As new nodes enter the

network, they change their successor as the maintenance cycle guides them into the correct

location in the ring. When a node n changes his successor, n asks if the successor is holding

any data n should be responsible for. The successor looks at all the data n is responsible for

and sends it to n. The successor maintains this data as a backup for n. Because Map tasks

are backed up in the same manner as data, a node can take the data and corresponding tasks

he’s responsible for and begin performing Map tasks immediately.

2.3 Experiments

In order for ChordReduce to be a viable framework, we must show these three properties:

1. ChordReduce provides significant speedup during a distributed job.

2. ChordReduce scales.

3. ChordReduce handles churn during execution.

Speedup can be demonstrated by showing that a distributed job is generally performed more

quickly than the same job handled by a single worker. More formally we need to establish

that ∃n such that Tn < T1, where Tn is the amount of time it takes for n nodes to finish the

job.

To establish scalability, we need to show that the cost of distributing the work grows

logarithmically with the number of workers. In addition, we need to demonstrate that the
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larger the job is, the number of nodes we can have working on the problem without the

overhead incurring diminishing returns increases. This can be stated as

Tn =
T1
n

+ k · log2(n)

where T1
n

is the amount of time the job would take when distributed in an ideal universe and

k · log2(n) is network induced overhead, k being an unknown constant dependent on network

latency and available processing power. To demonstrate robustness, we need to show that

ChordReduce can handle arbitrary node failure in the ring and that such failures minimally

impair the overall speed of the network.

2.3.1 Experimental Deployment

We built a fully functional implementation of ChordReduce in Python. Our implementation

implements all the routing and maintenance procedures defined by Chord[56], the file storage

capabilities of CFS [20], and a MapReduce service built on top of the system. We ran our

experiments using Amazon’s Elastic Compute Cloud (EC2) service. Amazon EC2 allows

users to purchase an arbitrary number of virtual machines and pay for the machines by

the hour. Each node was an individual EC2 small instance [3] with a Ubuntu 12.04 image

preconfigured with Git and a small startup script which retrieves the latest version of the

code.

We can choose any arbitrary node as the stager and tell it to run a MapReduce process.

We found that the network was robust enough that we could take a node we wanted to be

the stager out of the network, modify its MapReduce test code, have it rejoin the network,

and then run the new code without any problems. Since only the stager has to know how to

create the Map tasks, the other nodes do not have to be updated and execute the new tasks

they are given. However, this process was extremely tedious and time consuming.

We created an additional node to help configure the experiment, which we call the ‘in-
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strumentation node’. We avoid calling it the ‘manager’ or ‘coordinator’ as we don’t want to

create the false impression that the instrumentation node actively participates in the exper-

iments or is a member of the Chord ring. The instrumentation node’s role is to aid in the

generation and collection of data.

First, the instrumentation node gives us an easy way to change experimental variables

in between runs without having to manually reset each node. These variables range from

the job size to defining the specific job. The instrumentation node also is responsible for

managing churn. The instrumentation node keeps a list of all “active” and “failed” nodes

in the network and decides when each active node fails (and abruptly drops out of the

network) and when each failed node should join the ring. Finally, each node collects data

on its individual CPU utilization and bandwidth usage and sends this information to the

instrumentation node as part of the experiment.

2.3.2 Experiment Configuration

We tested our framework by running two different MapReduce jobs: a Monte-Carlo approx-

imation of pi and a word frequency count. Both jobs were tested under multiple network

configurations; we varied the initial size of the network1, the size of the job, and the rate of

churn.

Our Monte-Carlo approximation of π is largely analogous to having a square with the top-

right quarter of a circle going through it (Figure 2.2), and then throwing darts at random

locations. Counting the ratio of darts that land inside the circle to the total number of

throws gives us an approximation of π
4
. The more darts thrown, i.e. the more samples that

are taken, the more accurate the approximation. 2

We chose this experiment for a number of reasons. The job is extremely easy to distribute.

This also made it very easy to test scalability. By doubling the amount of samples to collect,

1The network size changes throughout due to churn, but is unlikely to drastically vary, as the chances of
joins and failures are equal.

2This is not intended to be a particularly good approximation of π. Each additional digit of accuracy
requires increasing the number of samples taken by an order of magnitude.
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Figure 2.2: The ”dartboard.” The computer throws a dart by choosing a random x and y between
0 and 1. If x2 + y2 < 12, the dart landed inside the circle. A and B are darts that landed inside
the circle, while C did not.

we could double the amount of work each node gets without having to store new files on the

network. Each Map job is defined by the number of throws the node must make and yields

a result containing the total number of throws and the number of throws that landed inside

the circular section. Reducing these results is then a matter of adding the respective fields

together.

Our word frequency experiment counts the occurrence of each word in a corpus stored

on the Chord network using CFS [20]. We also varied the block size used for CFS to see

what effect that had on computation.

To perform a word frequency count, the stager obtains the keyfile for the desired corpus

and creates a data atom containing the map and reduce functions for each key listed in the

keyfile. Each node receives a data atom for each block they are responsible for and create a

word frequency count for each of their specified blocks. Those results are reduced by simply

combining the word frequency tables.
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Figure 2.3: For a sufficiently large job, it was almost always preferable to distribute it. When the
job is too small, such as with the 107 data set, our runtime is dominated by the overhead. Our
results are what we would expect when overhead grows logarithmically to the number of workers.

2.4 Results

Figure 2.3 and Figure 2.4 summarize the experimental results of job duration and speedup.

Our default series was the 108 samples series. On average, it took a single node 431 seconds,

or approximately 7 minutes, to generate 108 samples. Generating the same number of

samples using ChordReduce over 10, 20, 30, or 40 nodes was always quicker. The samples

were generated fastest when there were 20 workers, with a speedup factor of 4.96, while

increasing the number of workers to 30 yielded a speedup of only 4.03. At 30 nodes, the

gains of distributing the work were present, but the cost of overhead (k · log2(n)) had more

of an impact. This effect is more pronounced at 40 workers, with a speedup of 2.25.

Since our data showed that approximating π on one node with 108 samples took ap-

proximately 7 minutes, collecting 109 samples on a single node would take 70 minutes at

minimum. Fig. 2.4 shows that the 109 set gained greater benefit from being distributed

than the 108 set, with the speedup factor at 20 workers being 9.07 compared to 4.03. In

addition, the gains of distributing work further increased at 30 workers and only began to

decay at 40 workers, compared with the 108 data set, which began its drop off at 30 workers.

This behavior demonstrates that the larger the job being distributed, the greater the gains

19



Figure 2.4: The larger the size of the job, the greater the gains of distributing with ChordReduce.
In addition, the larger the job, the more workers can be added before we start seeing diminishing
returns. This demonstrates that ChordReduce is scalable.

of distributing the work using ChordReduce.

The 107 sample set’s run time grows with logarithmic behavior. At that size, it is not

effective to run the job concurrently and we start seeing overheard acting as the dominant

factor in runtime. This matches the behavior predicted by our equation, Tn = T1
n

+k ·log2(n).

For a small T1,
T1
n

approaches 0 as n gets larger, while k · log2(n), our overhead, dominates

the sample. The samples from our data set fit this behavior, establishing that our overhead

increases logarithmically with the number of workers.

Since we have now established that Tn = T1
n

+ k · log2(n), we can estimate how long

a job that takes an arbitrary amount of time to run on a single node would take using

ChordReduce. Our data points indicated that the mean value of k for this problem was

36.5. Fig. 2.5 shows that for jobs that would take more than 104 seconds for single worker

to complete, we can expect there would still be benefit to adding an additional worker, even

when there are already 5000 workers already in the ring. Fig. 2.6 further emphasizes this.

Note that as the jobs become larger, the expected speedup from ChordReduce approaches

linear behavior.

Table 2.1 shows the experimental results for different rates of churn. These results show

the system is relatively insensitive to churn. We started with 40 nodes in the ring and
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Figure 2.5: The projected runtime using ChordReduce for differently sized jobs. Each curve projects
the expected behavior for job that takes a single worker the specified amount of time.

Figure 2.6: The projected speedup for different sized jobs.

Churn rate per second Average runtime (s) Speedup vs 0% churn
0.8% 191.25 2.15
0.4% 329.20 1.25

0.025% 431.86 0.95
0.00775% 445.47 0.92
0.00250% 331.80 1.24

0% 441.57 1.00

Table 2.1: Runtime and Speedup versus Churn Rate
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generated 108 samples while experiencing different rates of churn, as specified in Table 2.1.

At the 0.8% rate of churn, there is a 0.8% chance each second that any given node will leave

the network followed by another node joining the network at a different location. The joining

rate and leaving rate being identical is not an unusual assumption to make [41] [52].

Our testing rates for churn are an order of magnitude higher than the rates used in the

P2P-MapReduce simulation [41]. In their paper, the highest rate of churn was only 0.4%

per minute. Because we were dealing with fewer nodes, we chose larger rates to demonstrate

that ChordReduce could effectively handle a high level of churn.

Our experiments show that for a given problem, ChordReduce can effectively distribute

the problem, yielding a substantial speedup. Furthermore, our results showed that the larger

the problem is, the more workers could be added before diminishing returns were incurred.

During runtime, we experienced multiple instances where plot would fail to run and the

stager would report socket errors, indicating that it had lost connection with a node in the

ring. Despite this turbulence, every node managed to reestablish connection with each other

and report back all the data. This further demonstrated that we were able to handle the

churn in the network.

2.5 Related Work

Marozzo et al. [41] investigated the issue of fault tolerance in centralized MapReduce archi-

tectures such as Hadoop. They focused on creating a new P2P based MapReduce architecture

built on JXTA [24] called P2P-MapReduce. P2P-MapReduce is designed to be more robust

at handling node and job failures during execution.

Rather than use a single master node, P2P-MapReduce employs multiple master nodes,

each responsible for some job. If one of those master nodes fails, another will be ready as a

backup to take its place and manage the slave nodes assigned to that job. This avoids the

single point of failure that Hadoop is vulnerable to. Failures of the slave nodes are handled

by the master node responsible for it.
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Experimental results were gathered via simulation and compared P2P-MapReduce to

a centralized framework. Their results showed that while P2P-MapReduce generated an

order of magnitude more messages than a centralized approach, the difference rapidly began

to shrink at higher rates of churn. When looking at actual amounts of data being passed

around the network, the bandwidth required by the centralized approach greatly increased as

a function of churn, while the distributed approach again remained relatively static in terms

of increased bandwidth usage. They concluded that P2P-MapReduce would, in general, use

more network resources than a centralized approach. However, this was an acceptable cost

as the P2P-MapReduce would lose less time from node and job failures [41].

Lee et al.’s work [35] draws attention to the fact that a P2P network can be much more

than a way to distribute files and demonstrates how to accomplish different tasks using

Map and Reduce functions over a P2P network. Rather than using Chord, Lee et al. used

Symphony [38], another DHT protocol with a ring topology. To run a MapReduce job over

the Symphony ring, a node is selected by the user to effectively act as the master. This

ad-hoc master then performs a bounded broadcast over a subsection the ring. Each node

repeats this broadcast over a subsection of that subsection, resulting in a tree with the first

node at the top.

Map tasks are disseminated evenly throughout the tree and their results are reduced

on the way back up to the ad hoc master node. This allows the ring to disseminate Map

and Reduce tasks without the need for a coordinator responsible for distributing these tasks

and keeping track of them, unlike Hadoop. Their experimental results showed that the

latency experienced by a centralized configuration is similar to the latency experienced in a

completely distributed framework.

Both of these papers have promising results and confirm the capability of our own frame-

work and both solely examine P2P networks for the purpose of routing data and organizing

the network. ChordReduce uses Chord as a means of efficiently distributing responsibility

throughout the network and uses its existing features to add robustness to nodes working on
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Map and Reduce tasks, in addition to the routing and organizing capabilities. Our frame-

work was successfully deployed and tested, operating under high rates of churn without a

centralized source for organization.

2.6 Conclusion and Future Work

We presented ChordReduce, a framework for MapReduce that is completely decentralized,

scalable, load balancing, and highly tolerant to churn and node failure at any point in the

network. We implemented a fully functional version of ChordReduce and performed de-

tailed experiments to test its performance. These experiments confirmed that ChordReduce

is robust and effective. ChordReduce is based on Chord, which is traditionally viewed as

a P2P framework for distributing and sharing files. Instead, we demonstrated that it can

also be used as a platform for distributed computation. Chord provides log2 n connectiv-

ity throughout network and has built-in mechanisms for handling backup, automatically

assigning responsibility, routing, and load balancing.

Using Chord as the middleware for ChordReduce establishes its effectiveness for dis-

tributed and concurrent computation. The effectiveness of Chord opens up new approaches

for tackling other distributed problems, such as supporting databases and machine learning

for Big Data, and exascale computations. We intend to further optimize the performance of

ChordReduce and extend the middleware to other applications.
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Chapter 3

A Distributed Greedy Heuristic for Computing Voronoi Tessellations With

Applications Towards Peer-to-Peer Networks

Voronoi diagrams [5] have been used in distributed and peer-to-peer (P2P) applications

for some time. They have a wide variety of applications. Voronoi diagrams can be used as

to manage distributed hash tables [60], or in coverage detection for wireless networks [15].

Additionally, Massively Multiplayer Online games (MMOs) can use them to distribute game

states and events between players at a large scale [27] [26] [6].

Computing the Voronoi tessellation along with its coprime problem, Delaunay Trian-

gulation, is a well-analyzed problem. There are many algorithms to efficiently compute a

Voronoi tessellation given all the points on a plane, such as Fortune’s sweep line algorithm

[22]. However, many network applications are distributed and many of the algorithms to

compute Voronoi tessellations are unsuited to a distributed environment.

In addition, complications occur when points are located in spaces with more than two

dimensions. Computing the Voronoi tessellation of n points in a space with d dimensions

takes O(n
2d−1

d ) time [61]. Distributed computations often have to resort to costly Monte-

Carlo calculations [8] in order to handle more than two dimensions.

Rather than exactly solving the Voronoi tessellation, we instead present a fast and accu-

rate heuristic to approximate each of the regions of a Voronoi tessellation. This enables fast

and efficient formation of P2P networks, where nodes are the Voronoi generators of those

Previously published at DPDNS Workshop IPDPS 2015
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region. A P2P network built using this heuristic would be able to take advantage of its

available fault-tolerant architecture to route along any inaccuracies that arise. This chapter

presents the following contributions:

• We present our Distributed Greedy Voronoi Heuristic (DGVH). The DGVH is a fast,

distributed, and highly accurate method, whereby nodes calculate their individual re-

gions described by a Voronoi tessellation using the positions of nearby nodes. DGVH

can work in an arbitrary number of dimensions and can handle non-Euclidean dis-

tance metrics. Our heuristic can also handle toroidal spaces. In addition, DGVH can

accommodate the calculation of nodes moving their positions and adjust their region

accordingly, while still maintaining a high degree of accuracy (Section 3.1). Even where

small inaccuracies exist, DVGH will create a fully connected graph.

• We discuss how P2P networks and distributed applications can use DGVH (Section

3.2). In particular, we show how we can use DGVH to build a distributed hash table

with embedded minimal latency.

• We present simulations demonstrating DGVH’s efficacy in quickly converging to the

correct Voronoi tessellation. We simulated our heuristic in networks ranging from size

500 nodes to 10000 nodes. Our simulations show that a distributed network running

DGVH accurately determines the region a randomly chosen point falls in 90% of the

time within 20 cycles and converges with near 100% accuracy by cycle 30 (Section 3.3).

• We present the related work we have built upon to create our heuristic and what

improvements we made with DGVH (Section 3.4).

3.1 Distributed Greedy Voronoi Heuristic

A Voronoi tessellation is the partition of a space into cells or regions along a set of objects

O, such that all the points in a particular region are closer to one object than any other

object. We refer to the region owned by an object as that object’s Voronoi region. Objects
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Figure 3.1: An example Voronoi diagram for objects on a 2-dimensional space. The black lines
correspond to the borders of the Voronoi region, while the dashed lines correspond to the edges of
the Delaunay Triangulation.

which are used to create the regions are called Voronoi generators. In network applications

that use Voronoi tessellations, nodes in the network act as the Voronoi generators.

The Voronoi tessellation and Delaunay triangulation are dual problems, as an edge be-

tween two objects in a Delaunay triangulation exists if and only if those object’s Voronoi

regions border each other. This means that solving either problem will yield the solution

to both. An example of a Voronoi diagram is shown in Figure 3.1. For additional infor-

mation, Aurenhammer [5] provides a formal and extremely thorough description of Voronoi

tessellations, as well as their applications.

3.1.1 Our Heuristic

The Distributed Greedy Voronoi Heuristic (DGVH) is a fast method for nodes a P2P network

to define their individual Voronoi region (Figure 6.1). If each node is assigned a location,

DGVH builds an approximation of the nodes it is required to connect to such that it can
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Figure 3.2: Distributed Greedy Voronoi Heuristic

1: Given node n and its list of candidates.
2: Given the minimum table size
3: short peers← empty set that will contain n’s one-hop peers
4: long peers← empty set that will contain n’s two-hop peers
5: Sort candidates in ascending order by each node’s distance to n
6: Remove the first member of candidates and add it to short peers
7: for c in candidates do
8: if Any node in short peers is closer to c than n then
9: Reject c as a peer

10: else
11: Remove c from candidates
12: Add c to short peers
13: end if
14: end for
15: while |short peers| < table size AND |candidates| > 0 do
16: Remove the first entry c from candidates
17: Add c to short peers
18: end while
19: Add candidates to the set of long peers
20: if |long peers| > table size2 then
21: long peers← random subset of long peers of size table size2

22: end if

accurately discern it’s Voronoi region. This is done by selecting the nearby nodes that would

correspond to the points connected to it by a Delaunay triangulation. The rationale for

this heuristic is that, in the majority of cases, the midpoint between two nodes falls on the

common boundary of their Voronoi regions.

During each cycle, nodes exchange their peer lists with a current neighbor and then

recalculate their neighbors. A node combines their neighbor’s peer list with its own to create

a list of candidate neighbors. This combined list is sorted from closest to furthest. A new

peer list is then created starting with the closest candidate. The node then examines each

of the remaining candidates in the sorted list and calculates the midpoint between the node

and the candidate. If any of the nodes in the new peer list are closer to the midpoint than

the candidate, the candidate is set aside. Otherwise the candidate is added to the new peer

list.
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DGVH never actually solves for the actual polytopes that describe a node’s Voronoi

region. This is unnecessary and prohibitively expensive [8]. Rather, once the heuristic has

been run, nodes can determine whether a given point would fall in its region.

Nodes do this by calculating the distance of the given point to itself and other nodes it

knows about. The point falls into a particular node’s Voronoi region if it is the node to which

it has the shortest distance. This process continues recursively until a node determines that

itself to be the closest node to the point. Thus, a node defines its Voronoi region by keeping

a list of the peers that bound it.

This heuristic has the benefit of being fast and scalable into any geometric space where a

distance function and midpoint can be defined. The distance metric used for this chapter is

the minimum distance in a multidimensional unit toroidal space. Where ~a and~b are locations

in a d-dimensional unit toroidal space:

distance =

√∑
i∈d

(min(|ai − bi|, 1− |ai − bi|))2

Whether or not distance corresponds to actual physical distance or some virtual distance on

an overlay depends on the application.

Our heuristic can be overaggressive in removing candidate nodes. For example, if a node

is located between two other nodes, such that their midpoint does not fall upon the shared

face of their Voronoi regions, then this heuristic will not link the blocked peers. This is

demonstrated in Figure 3.3. Our algorithm handles these cases via our method of peer

management (Section 3.1.2).

3.1.2 Peer Management

Nodes running the heuristic maintain two peer lists: Short Peers and Long Peers. This is

done to mitigate the error induced by DGVH and provide robustness against churn1 in a

1The disruption caused to an overlay network by the continuous joining, leaving, and failing of nodes.
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Figure 3.3: The edge between A and B is not detected by DGVH, as node C is closer to the
midpoint than B is. This is mitigated by peer management polices.

distributed system.

Short Peers are the set of peers DGVH judged to have Voronoi regions adjacent to the

node’s own. Using a lower bound on the length of Short Peers corrects for errors in the

approximation as it forces nodes to include peers that would otherwise be omitted. Previous

work by Beaumont et al. [8] has found a useful lower bound on short peers to be 3d + 1.

Should the number of short peers generated by DGVH be less than the lower bound, the

nearest peers not already included in Short Peers are added to it, until Short Peers is of

sufficient size.

There is no upper bound to the number of short peers a node can have. This means in

contrived cases, such as a single node surrounded by other nodes forming a hypersphere, this

number can grow quite high. Bern et al. [11] found that the expected maximum degree of a

vertex in a Delaunay Triangulation is

Θ(
log n

log log n
)

where n is the number of nodes in the Delaunay Triangulation. This bound applies to a
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Delaunay Triangulation in any number of dimensions. Thus, the maximum expected size of

Short Peers is bounded by Θ( logn
log logn

), which is a highly desirable number in many distributed

systems [56] [42].

Long Peers is the list of two-hop neighbors of the node. When a node learns about

potential neighbors, but are not included in the short peer list, they may be included in

the long peer list. Long Peers has a maximum size of (3d + 1)2, although this size can be

tweaked to the user’s needs. For example, if Short Peers has a minimum size of 8, then Long

Peers has a maximum of 64 entries. We recommend that members of Long Peers are not

actively probed during maintenance to minimize the cost of maintenance. A maximum size

is necessary, as leaving it unbounded would result in a node eventually keeping track of all

the nodes in the network, which would be counter to the design of a distributed and scalable

system.

How nodes learn about peers is up to the application. We experimented using a gossip

protocol, whereby a node selects peers from Short Peers at random to “gossip” with. When

two nodes gossip with each other, they exchange their Short Peers with each other. The node

combines the lists of short peers2 and uses DGVH to determine which of these candidates

correspond to its neighbors along the Delaunay Triangulation. The candidates determined

not to be short peers become long peers. If the resulting number of long peers exceeds the

maximum size of Long Peers, a random subset of the maximum size is kept.

The formal algorithm for this process is described in Figure 3.4. This maintenance

through gossip process is very similar to the gossip protocol used in Beaumont et al.’s

RayNet [8].

3.1.3 Algorithm Analysis

DVGH is very efficient in terms of both space and time. Suppose a node n is creating its short

peer list from k candidates in an overlay network of N nodes. The candidates must be sorted,

2Nodes remove themselves and repetitions from the candidates they receive.
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Figure 3.4: Gossiping

1: Node n initiates the gossip.
2: neighbor ← random node from n.short peers
3: n candidates← n.short peers ∪ n.long peers ∪ neighbor.short peers
4: neighbor candidates← neighbor.short peers ∪ neighbor.long peers ∪ n.short peers.
5: n and neighbor each run Distributed Greedy Voronoi Heuristic using their respective
candidates

which takes O(k · lg(k)) operations. Node n must then compute the midpoint between itself

and each of the k candidates. Node n then compares distances to the midpoints between

itself and all the candidates. This results in a cost of

k · lg(k) + k midpoints + k2 distances

Since k is bounded by Θ( logN
log logN

) [11] (the expected maximum degree of a node), we can

translate the above to

O(
log2N

log2 logN
)

In the vast majority of cases, the number of peers is equal to the minimum size of Short

Peers. This yields k = (3d + 1)2 + 3d + 1 in the expected case, where the lower bound and

expected complexities are Ω(1).

Previous work [8] claims constant time approximation. The reality is that RayNet’s

leading constant is in the order of thousands. Our algorithm has a greater asymptotic worst

case cost, but for all current realistic network sizes it will be more time efficient then RayNet’s

approximation.

3.2 Applications

As we previously discussed in Section 3, Voronoi tessellations have many applications for

distributed systems [15] [27] [26] [6]. We focus our discussion on the two extremes of ap-

plications: DHTs, which work with overlay networks, and wireless networks, which need to
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Figure 3.5: Lookup in a Voronoi-based DHT

1: Given node n
2: Given m is a message addressed for loc
3: potential dests← n ∪ n.short peers ∪ n.long peers
4: c← node in potential dests with shortest distance to loc
5: if c == n then return n
6: elsereturn c.lookup(loc)
7: end if

take literal physical constraints into account.

3.2.1 Distributed Hash Tables and Voronoi tessellation

Arguably all Distributed Hash Tables (DHTs) are built on the concept of a Voronoi tessel-

lation. In all DHTs, a node is responsible for all points in the overlay to which it is the

“closest” node. Nodes are assigned a key as their location in some keyspace, based on the

hash of certain attributes. Normally, this is just the hash of the IP address (and possibly

the port) of the node [56] [42] [46] [50], but other metrics such as geographic location can be

used as well [47].

These DHTs have carefully chosen metric spaces such that these regions are very simple

to calculate. For example, Chord [56] and similar ring-based DHTs [39] utilize a unidirec-

tional, one-dimensional ring as their metric space, such that the region for which a node is

responsible is the region between itself and its predecessor.

Using a Voronoi tessellation in a DHT generalizes this design. Nodes are Voronoi gener-

ators at a position based on their hashed keys. These nodes are responsible for any key that

falls within its generated Voronoi region.

Messages get routed along links to neighboring nodes. This would take O(n) hops in

one dimension. In multiple dimensions, our routing algorithm (Algorithm 3.5) is extremely

similar to the one used in Ratnasamy et al.’s Content Addressable Network (CAN) [46],

which would be O(n
1
d ) hops.

DGVH can be used in a DHT to quickly and scalably construct both the Voronoi tessel-
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lation and links to peers. In addition, gossip-based peer management policies are extremely

efficient in proactively handling node joins and failures. The act of joining informs other

nodes of the joiner’s existence. This can be done by the joiner contacting each peer in the

peer lists of the node previously responsible for the joiner’s location.

Node failures can be handled without much effort. When a node attempts to route to or

gossip with a node and discovers it no longer exists, it should remove the node from its peer

lists and inform all of the nodes it knows to do the same. Since routing is how a node would

make a decision on whether a point belongs to a particular Voronoi region, failed nodes don’t

have any impact on the network’s accuracy.

Because the algorithm is defined in terms of midpoint and distance functions, it is not

bound to any particular topology or metric space. Our heuristic can be used to create a DHT

that uses any arbitrary coordinate system which defines a midpoint and distance definition.

For example, we could use latency as one of these metrics by using it to approximate node

locations in the network. This would allow messages to be routed along minimum latency

paths, rather than along minimal hop paths. We intend to model this using a distributed

spring model.

3.2.2 Wireless Coverage

Cărbunar et al. [15] demonstrated how Voronoi tessellations could be used to solve the

coverage-boundary problem in wireless ad-hoc networks. The coverage-boundary problem

asks which nodes are on the physical edge of the network. This knowledge provides useful

information to networks. For example, ad-hoc networks operating in no infrastructure or

have been set up temporarily can use this knowledge to define the reach of the network’s

coverage.

The authors showed how a Voronoi tessellation using the nodes as Voronoi generators

could solve the coverage-boundary problem. They proved that the node’s Voronoi region

was not completely covered by the node’s sensing radius if and only if the node was on the
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network’s boundary [15].

Chen et al. [16] extended this property for sleep scheduling in wireless sensor networks.

A node is allowed to go to sleep and conserve power so long as the area it is detecting can

be covered by other nodes. Using Voronoi tessellations, a node knows it can conserve power

and not affect the network if and only if it is not on the boundary of the network and its

Voronoi vertices3 are covered by other nodes.

Cărbunar et al.’s algorithm relies on a centralized computation for Voronoi tessellation,

as the distributed computation they examined only relied on forming the Delaunay triangu-

lation between nodes within a certain radius, nor could it handle moving nodes. DGVH is

not limited to handling nodes within a specified radius, since the peer management spreads

information about nodes by gossiping. In addition, so long as a node moving to a new loca-

tion is treated as an entirely new node by the rest of the network, DGVH can handle moving

nodes.4

3.3 Experiments

We implemented two sets of experiments for DGVH. The first compares the Voronoi tessel-

lations created by DGVH to an actual Voronoi tessellation. Our second set of experiments

demonstrates that any errors computed by DGVH are negligible when building distributed

and fault-tolerant systems.

3.3.1 Experiment 1: Voronoi Accuracy

To test the accuracy of our heuristic, we have generated the graphs produced DGVH and

a Delaunay triangulation generated by the Triangle [53] library. We test in 2-dimensional

Euclidean space and measured the number of edges in the graph generated by DGVH that

3Voronoi vertices are the points at which the edges of 3 or more Voronoi cells converge.
4A specific node and a specific location must be bound together into a single identity. This means when

a node tries to route to a node that has moved using the node’s previous location, it should fail, as though
that specific node no longer exists. Failure to do this would cause a node to incorrectly determines what
falls within its Voronoi region.
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Figure 3.6: As the size of the graph increases, we see approximately 1 error per node.

differ from the graph generated by a Delaunay Triangulation. We test networks of 100,

500, 1000, 2000, and 5000 nodes and found that the graphs by DGVH differed from the

graph generated Delaunay triangulation by approximately 1 edge per node. Our results are

summarized in Figure 3.6.

3.3.2 Experiment 2: P2P Convergence and Routing

Our second set of experiments examines how DGVH could be used to create a DHT and

how well it would perform in this task. Our simulation demonstrates how DGVH can be

used to create a stable overlay from a chaotic starting topology after a sufficient number

of gossip cycles. We do this by showing that the rate of successful lookups approaches 1.0.

We compare these results to RayNet [8], which proposed that a random k-connected graph

would be a good, challenging starting configuration for demonstrating convergence of a DHT

to a stable network topology.

During the first two cycles of the simulation, each node bootstraps its short peer list by
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Figure 3.7: Routing Simulation Sample

1: start← random node
2: dest← random set of coordinates
3: ans← node closest to dest
4: if ans == start.lookup(dest) then
5: increment hits
6: end if

appending 10 nodes, selected uniformly at random from the entire network. In each cycle,

the nodes gossip (Figure 3.4) and run DGVH using the new information. We then calculate

the hit rate of successful lookups by simulating 2000 lookups from random nodes to random

locations, as described in Figure 3.7. A lookup is successful when the network correctly

determines which Voronoi region contains a randomly selected point.

Our experimental variables for this simulation were the number of nodes in the DGVH

generated overlay and the number of dimensions. We tested network sizes of 500, 1000, 2000,

5000, and 10000 nodes each in 2, 3, 4, and 5 dimensions. The hit rate at each cycle is hits
2000

,

where hits are the number of successful lookups.

Our results are shown in Figures 3.8a, 3.8b, 3.8c, and 3.8d for each dimension. Our

graphs show that the created overlay quickly constructs itself from a random configuration

and that our hit rate reached 90% by cycle 20, regardless of dimension. Lookups consistently

approached a hit rate of 100% by cycle 30. In comparison, RayNet’s routing converged to a

perfect hit rate at around cycle 30 to 35 [8]. As the network size and number of dimensions

each increase, convergence slows.

3.4 Related Work

While there has been previous work on applying Voronoi regions to DHTs and peer-to-

peer (P2P) applications, we have found no prior work on how to perform embedding of an

inter-node latency graph.

Backhaus et al.’s VAST [6] is a Voronoi-based P2P protocol designed for handling event

messages in a massively multiplayer online video game. Each node finds its neighbors by con-
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(a) This plot shows the accuracy rate of
lookups on a 2-dimensional network as
it self-organizes.

(b) This plot shows the accuracy rate of
lookups on a 3-dimensional network as
it self-organizes.

(c) This plot shows the accuracy rate of
lookups on a 4-dimensional network as
it self-organizes.

(d) This plot shows the accuracy rate of
lookups on a 5-dimensional network as
it self-organizes.

Figure 3.8: These figures show that, starting from a randomized network, DGVH forms a stable
and consistent network topology. The Y axis shows the success rate of lookups and the X axis
show the number of gossips that have occurred. Each point shows the fraction of 2000 lookups that
successfully found the correct destination.
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structing a Voronoi diagram using Fortune’s sweepline algorithm [22]. VAST demonstrated

that Voronoi diagrams could be used as the backbone to large-scale applications, although

their work focused specifically on using 2-dimensional Voronoi diagrams.

The two DHT protocols developed by Beumont et al., VoroNet [7] and RayNet [8] are

two-dimension DHTs that we intend to extend using our technique. VoroNet is based off

Kleinberg’s small world model [32] and achieves polylogarithmic lookup time. Each node in

VoroNet solves its Voronoi region to determine its neighbors and also maintains a link to a

randomly chosen distant node. VoroNet focused specifically on the two-dimensional Voronoi

computations and the techniques used would be too expensive in higher dimensions and were

not resilient to churn [8].

RayNet [8] was based on the work done on VoroNet and used a heuristic to calculate

Voronoi tessilations. Like our DGVH, RayNet’s heuristic does not solve for Voronoi regions,

as that is prohibitively expensive. RayNet uses a Monte-Carlo method to approximate the

volume of a node’s Voronoi region in constant time. While effective at estimating the Voronoi

region, the volume-based Monte-Carlo approximation is expensive and requires multiple

samples. This gives the runtime of RayNet’s heuristic an enormous leading constant. RayNet

does mention the idea of mapping attributes to each axis, but how this can be exploited is

left as future work.

3.5 Conclusion and Future Work

Voronoi tessellations have a wide potential for applications in ad-hoc networks, massively

multiplayer games, P2P, and distributed networks. However, centralized algorithms for

Voronoi tessellation and Delaunay triangulation are not applicable to decentralized systems.

In addition, solving Voronoi tessellations in more than 2 dimensions is computationally

expensive.

We created a distributed heuristic for Voronoi tessellations in an arbitrary number of

dimensions. Our heuristic is fast and scalable, with a expected memory cost of (3d + 1)2 +
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3d+ 1 and expected maximum runtime of O( log2N
log2 logN

).

We ran two sets of experiments to demonstrate DGVH’s effectiveness. Our first set

of experiments demonstrated that our heuristic is reasonably accurate and our second set

demonstrates that reasonably accurate is sufficient to build a P2P network which can route

accurately.

Our next step is to create a formal protocol and implementation for a Voronoi tessellation-

based distributed hash table using DGVH. We can use this DHT to choose certain metrics

we want to measure, such as latency, or trust, and embed that information as part of a

node’s identity. By creating an appropriate distance measurement, we can route along some

path that minimizes or maximizes the desired metric. Rather than create an overlay that

minimizes hops, we can have our overlay minimize latency, which is the actual goal of most

routing algorithms.
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Chapter 4

UrDHT: A Unified Model for Distributed Hash Tables

We present UrDHT, an abstract model of a distributed hash table (DHT). It is a unified

and cohesive model for creating DHTs and P2P applications based on DHTs.

Distributed Hash Tables have been the catalyst for the creation of many P2P applications.

Among these are Redis [51], Freenet [17], and, most notably, BitTorrent [18]. All DHTs use

functionally similar protocols to perform lookup, storage, and retrieval operations. Despite

this, no one has created a cohesive formal DHT specification.

Our primary motivation for this project was to create an abstracted model for Distributed

Hash Tables based on observations we made during previous research [10]. We found that

all DHTs can cleanly be mapped to the primal-dual problems of Voronoi Tessellation and

Delaunay Triangulation.

UrDHT builds its topology directly upon this insight. It uses a greedy distributed

heuristic for approximating Delaunay Triangulations. We found that we could reproduce

the topology of different DHTs by defining a selection heuristic and rejection algorithm for

the geometry the DHT. For every DHT we implemented, our greedy approximation of De-

launay Triangulation produced a stable DHT, regardless of the geometry. This works in

non-Euclidean metrics such as XOR (Kademlia) or even a hyperbolic geometry represented

by a Poincarè disc.

The end result is not only do we have an abstract model of DHTs, we have a simple

Under consideration by ICPP 2016 at time of writing
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framework that developers can use to quickly create new distributed applications. This sim-

ple framework allows generation of internally consistent implementations of different DHTs

that can have their performance rigorously compared.

To summarize our contributions:

• We give a formal specification for what needs to be defined in order to create a func-

tioning DHT. While there has long existed a well known protocol shared by distributed

hash tables, this defines what a DHT does. It does not describe what a DHT is.

We show that DHTs cleanly map to the primal-dual problem of Delaunay Triangulation

and Voronoi Tessellation. We list a set of simple functions that, once defined, allow

our Distributed Greedy Voronoi Heuristic (DGVH) to be run in any space, creating a

DHT overlay for that space (Section 4.1).

• We present UrDHT as an abstract DHT and show how a developer would modify the

functions we defined to create an arbitrary new DHT topology (Section 4.2).

• We show how to reproduce the topology of Chord and Kademlia using UrDHT. We

also implement a DHT in Euclidean geometry and a hyperbolic geometry represented

by a Poincarè disc (Section 4.3).

• We conduct experiments that show building DHTs using UrDHT produced efficiently

routable networks, regardless of the underlying geometry(Section 4.4).

• We present some efforts and projects that are similar to our own (Section 4.5).

• We discuss the ramifications of our work and what future work is available (Section

4.6).
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4.1 What Defines a DHT

A distributed hash table is usually defined by its protocol; in other words, what it can do.

Nodes and data in a DHT are assigned unique1 keys via a consistent hashing algorithm. To

make it easier to intuitively understand the context, we will call the key associated with a

node its ID and refer to nodes and their IDs interchangeably.

A DHT can perform the lookup(key), get(key), and store(key, value) operations.2

The lookup operation returns the node responsible for a queried key. The store function

stores that key/value pair in the DHT, while get returns the value associated with that key.

However, these operations define the functionality of a DHT, but do not define the re-

quirements for implementation. We define the necessary components that comprise DHTs.

We show that these components are essentially Voronoi Tessellation and Delaunay Triangu-

lation.

4.1.1 DHTs, Delaunay Triangulation, and Voronoi Tessellation

Nodes in different DHTs have, what appears at the first glance, wildly disparate ways of

keeping track of peers - the other nodes in the network. However, peers can be split into two

groups.

The first group is the short peers. These are the closest peers to the node and define

the range of keys the node is responsible for. A node is responsible for a key if and only if

its ID is closest to the given key in the geometry of the DHT. Short peers define the DHTs

topology and guarantee that the greedy routing algorithm shared by all DHTs works.

Long peers are the nodes that allow a DHT to achieve faster routing speeds than the

topology would allow using only short peers. This is typically O(log(n)) hops, although

polylogarithmic time is acceptable [32]. A DHT can still function without long peers.

Interestingly, despite the diversity of DHT topologies and how each DHT organizes short

1Unique with astronomically high probability, given a large enough consistent hashing algorithm.
2There is typically a delete(key) operation too, but it is not strictly necessary.
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Figure 4.1: The DHT Generic Routing algorithm

1: function n.lookup((key))
2: if key ∈ n’s range of responsibility then
3: return n
4: end if
5: if One of n’s short peers is responsible for key then
6: return the responsible node
7: end if
8: candidates = short peers + long peers
9: next← min(n.distance(candidates, key))

10: return next.lookup(key)
11: end function

and long peers, all DHTs use functionally identical greedy routing algorithms (Algorithm

4.1):

The algorithm is as follows: If I, the node, am responsible for the key, I return myself.

Otherwise, if I know who is responsible for this key, I return that node. Finally, if that is

not the case, I forward this query to the node I know with shortest distance from the node

to the desired key.3

Depending of the specific DHT, this algorithm might be implemented either recursively

or iteratively. It will certainly have differences in how a node handles errors, such as how to

handle connecting to a node that no longer exists. This algorithm may possibly be run in

parallel, such as in Kademlia [42]. The base greedy algorithm is always the same regardless

of the implementation.

With the components of a DHT defined above, we can now show the relationship between

DHTs and the primal-dual problems of Delaunay Triangulation and Voronoi Tessellation.

An example of Delaunay Triangulation and Voronoi Tessellation is show in Figure 3.1.

We can map a given node’s ID to a point in a space and the set of short peers to

the Delaunay Triangulation. This would make the set of keys a node is responsible for

correspond to the node’s Voronoi region. Long peers serve as shortcuts across the mesh

formed by Delaunay Triangulation.

3This order matters, as some DHTs such as Chord are unidirectional.
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Thus, if we can calculate the Delaunay Triangulation between nodes in a DHT, we have

a generalized means of creating the overlay network. This can be done with any algorithm

that calculates the Delaunay Triangulation.

Computing the Delaunay Triangulation and/or the Voronoi Tessellation of a set of points

is a well analyzed problem. Many algorithms exist that efficiently compute a Voronoi Tes-

sellation for a given set of points on a plane, such as Fortune’s sweep line algorithm [22].

However, DHTs are completely decentralized, with no single node having global knowl-

edge of the topology. Many of the algorithms to compute Delaunay Triangulation and/or

Voronoi Tessellation are unsuited to a distributed environment. In addition, the computa-

tional cost increases when we move into spaces with greater than two dimensions. In general,

finding the Delaunay Triangulation of n points in a space with d dimensions takes O(n
2d−1

d )

time [61]. We use DGVH as the base algorithim for building UrDHT

Candidates are gathered via a gossip protocol as well as notifications from other peers.

How long peers are handled depends on the particular DHT implementation. This process

is described more in Section 4.2.1.

The expected maximum size of candidates corresponds to the expected maximum degree

of a vertex in a Delaunay Triangulation. This is Θ( logn
log logn

), regardless of the number of the

dimensions [11]. We can therefore expect short peers to be bounded by Θ( logn
log logn

).

The expected worst case cost of DGVH is O( log4 n
log4 logn

) [10], regardless of the dimension

[10].4 In most cases, this cost is much lower. Additional details can be found in our previous

work [10].

We have tested DGVH on Chord (a ring-based topology), Kademlia (an XOR-based tree

topology), Euclidean space, and even on a hyperbolic surface. This is interesting because not

only can we implement the contrived topologies of existing DHTs, but more generalizable

topologies like Euclidean or hyperbolic geometries. We show in Section 4.4 that DGVH

works in all of these spaces. DGVH only needs the distance function to be defined in order

4As mentioned in the previous footnote, if we are exchanging only short peers with a single neighbor

rather than all our neighbors, the cost lowers to O( log2 n
log2 logn

).
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for nodes to perform lookup operations and determine responsibility. We will now show how

we used this information and heuristic to create UrDHT, our abstract model for distributed

hash tables.

4.2 UrDHT

The name UrDHT comes from the German prefix ur, which means “original.” The name is

inspired by UrDHT’s ability to reproduce the topology of other distributed hash tables.

UrDHT is divided into 3 broad components: Storage, Networking, and Logic. Storage

handles file storage and Networking dictates the protocol for how nodes communicate. These

components oversee the lower level mechanics of how files are stored on the network and how

bits are transmitted through the network. The specifics are outside the scope of the chaper,

but can be found on the UrDHT Project site [49].

Most of our discussion will focus on the Logic component. The Logic component is what

dictates the behavior of nodes within the DHT and the construction of the overlay network.

It is composed of two parts: the DHT Protocol and the Space Math.

The DHT Protocol contains the canonical operations that a DHT performs, while the

Space Math is what effectively distinguishes one DHT from another. A developer only needs

to change the details of the space math package in UrDHT to create a new type of DHT.

We discuss each in further detail below.

4.2.1 The DHT Protocol

The DHT Protocol (LogicClass.py) [49] is the shared functionality between every single

DHT. It consists of the node’s information, the short peer list that defines the minimal

overlay, the long peers that make efficient routing possible, and all the functions that use

them. There is no need for a developer to change anything in the DHT Protocol, but it

can be modified if so desired. The DHT Protocol depends on functions from Space Math in

order to perform operations within the specified space.
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Many of the function calls should be familiar to anyone who has study DHTs. We will

discuss a few new functions we added and the ones that contribute to node maintenance.

The first thing we note is the absence of lookup. In our efforts to further abstract DHTs,

we have replaced lookup using the function seek. The seek function acts a single step of

lookup. It returns the closest node to key that the node knows about.

Nodes can perform lookup by iteratively calling seek until it receives the same answer

twice. We do this because we make no assumptions as to how a client using a DHT would

want to perform lookups and handle errors that can occur. It also means that a single

client implementing lookup using iterative seek operations could traverse any DHT topology

implemented with UrDHT.

Maintenance is done via gossip. Each maintenance cycle, the node recalculates its De-

launay (short) peers using its neighbors’ peer lists and any nodes that have notified it since

the last maintenance cycle. Short peer selection are done using DGVH by default. While

DGVH has worked in every single space we have tested, this is not proof it will work in every

single case. It is reasonable and expected that some spaces may require a different Delaunay

Triangulation calculation or approximation method.

Once the short peers are calculated, the node handles modifying its long peers. This is

done using the handleLongPeers function described in Section 4.2.2.

4.2.2 The Space Math

The Space Math consists of the functions that define the DHT’s topology. It requires a way

to generate short peers to form a routable overlay and a way to choose long peers. Space

Math requires the following functions when using DGVH:

• The idToPoint function takes in a node’s ID and any other attributes needed to map

an ID onto a point in the space. The ID is generally a large integer generated by a

cryptographic hash function.
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• The distance function takes in two points, a and b, and outputs the shortest distance

from a to b. This distinction matters, since distance is not symmetric in every space.

The prime example of this is Chord, which operates in a unidirectional toroidal ring.

• We use the above functions to implement getDelaunayPeers. Given a set of points,

the candidates, and a center point centers, getDelaunayPeers calculates a mesh that

approximates the Delaunay peers of center. We assume that this is done using DGVH

(Algorithm 6.1).

• The function getClosest returns the point closest to center from a list of candidates,

measured by the distance function. The seek operation depends on the getClosest

function.

• The final function is handleLongPeers. handleLongPeers takes in a list of candidates

and a center, much like getDelaunayPeers, and returns a set of peers to act as the

routing shortcuts.

The implementation of this function should vary greatly from one DHT to another.

For example, Symphony [38] and other small-world networks [32] choose long peers

using a probability distribution. Chord has a much more structured distribution, with

each long peer being increasing powers of 2 distance away from the node [56]. The

default behavior is to use all candidates not chosen as short peers as long peers, up to a

set maximum. If the size of long peers would exceed this maximum, we instead choose

a random subset of the maximum size, creating a naive approximation of the long

links in the Kleinberg small-world model [32]. Long peers do not greatly contribute to

maintenance overhead, so we chose 200 long peers as a default maximum.
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4.3 Implementing other DHTs

4.3.1 Implementing Chord

Ring topologies are fairly straightforward since they are one dimensional Voronoi Tessella-

tions, splitting up what is effectively a modular number line among multiple nodes.

Chord uses a unidirectional distance function. Given two integer keys a and b and a

maximum value 2m, the distance from a to b in Chord is:

distance(a, b) =


2m + b− a, if b− a < 0

b− a, otherwise

Short peer selection is trivial in Chord. Rather than using DGVH for getDelaunayPeers,

each node chooses from the list of candidates the candidate closest to it (predecessor) and

the candidate to which it is closest (successor).

Chord’s finger (long peer) selection strategy is emulated by handleLongPeers. For each

of the ith bits in the hash function, we choose a long peer pi from the candidates such that

pi = getClosest (candidates, ti)

where

ti = (n+ 2i) mod 2m

for the current node n. The getClosest function in Chord should return the candidate with

the shortest distance from the candidate to the point.

This differs slightly from how selects its long peers. In Chord, nodes actively seek out

the appropriate long peer for each corresponding bit. In our emulation, this information is

propagated along the ring using short peer gossip.
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4.3.2 Implementing Kademlia

Kademlia uses the exclusive or, or XOR, metric for distance. This metric, while non-

euclidean, is perfectly acceptable for calculating distance. For two given keys a and b

distance(a, b) = a⊕ b

The getDelaunayPeers function uses DGVH as normal to choose the short peers for node

n. We then used Kademlia’s k-bucket strategy [42] for handleLongPeers. The remaining

candidates are placed into buckets, each capable holding a maximum of k long peers.

To summarize briefly, node n starts with a single bucket containing itself, covering long

peers for the entire range. When attempting to add a candidate to a bucket already con-

taining k long peers, if the bucket contains node n, the bucket is split into two buckets, each

covering half of that bucket’s range. Further details of how Kademlia k-buckets work can be

found in the Kademlia protocol paper [42].

4.3.3 ZHT

ZHT [36] leads to an extremely trivial implementation in UrDHT. Unlike other DHTs, ZHT

assumes an extremely low rate of churn. It bases this rationale on the fact that tracking

O(n) peers in memory is trivial. This indicates the O(log n) memory requirement for other

DHTs is overzealous and not based on a memory limitation. Rather, the primary motivation

for keeping a number of peers in memory is more due to the cost of maintenance overhead.

ZHT shows, that by assuming low rates of churn (and infrequent maintenance messages as

a result), having O(n) peers is a viable tactic for faster lookups.

As a result, the topology of ZHT is a clique, with each node having an edge to all other

nodes. This yields O(1) lookup times with an O(n) memory cost. The only change that

needs to be made to UrDHT is to accept all peer candidates as short peers.
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4.3.4 Implementing a DHT in a non-contrived Metric Space

We used a Euclidean geometry as the default space when building UrDHT and DGVH [10].

For two vectors ~a and ~b in d dimensions:

distance
(
~a,~b
)

=

√∑
i∈d

(ai − bi)2

We implement getDelaunayPeers using DGHV and set the minimum number of short

peers to 3d+ 1, a value we found through experimentation [10].

Long peers are randomly selected from the left-over candidates after DGVH is performed

[10]. The maximum size of long peers is set to (3d+ 1)2, but it can be lowered or eliminated

if desired and maintain O( d
√
n) routing time.

Generalized spaces such as Euclidean space allow the assignment of meaning to arbitrary

dimension and allow for the potential for efficient querying of a database stored in a DHT.

We have already shown with Kademlia that UrDHT can operate in a non-Euclidean

geometry. Another non-euclidean geometry UrDHT can work in is a hyperbolic geometry.

We implemented a DHT within a hyperbolic geometry using a Poincarè disc model. To

do this, we implemented idToPoint to create a random point in Euclidean space from a

uniform distribution. This point is then mapped to a Poincarè disc model to determine the

appropriate Delaunay peers. For any two given points a and b in a Euclidean vector space,

the distance in the Poincarè disc is:

distance(a, b) = arcosh

(
1 + 2

‖a− b‖2

(1− ‖a‖2)(1− ‖b‖2)

)
Now that we have a distance function, DGVH can be used in getDelaunayPeers to

generate an approximate Delaunay Triangulation for the space. The getDelaunayPeers and

handleLongPeers functions are otherwise implemented exactly as they were for Euclidean

spaces.

Implementing a DHT in hyperbolic geometry has many interesting implications. Of
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particular note, embedding into hyperbolic spaces allows us to explore accurate embeddings

of internode latency into the metric space [33] [19]. This has the potential to allow for

minimal latency DHTs.

4.4 Experiments

We use simulations to test our implementations of DHTs using UrDHT. Using simulations

to test the correctness and relative performance of DHTs is standard practice for testing and

analyzing DHTs [42] [38] [56] [64] [8]

We tested four different topologies: Chord, Kademlia, a Euclidean geometry, and a

Hyperbolic geometry. For Kademlia, the size of the k-buckets was 3. In the Euclidean and

Hyperbolic geometries, we set a minimum of 7 short peers and a maximum of 49 long peers.

We created 500 node networks, starting with a single node and adding a node each

maintenance cycle.5

For each topology, at each step, we measured:

• The average degree of the network. This is the number of outgoing links and includes

both short and long peers.

• The worst case degree of the network.

• The average number of hops between nodes using greedy routing.

• The diameter of the network. This is the worst case distance between two nodes using

greedy routing.

We also tested the reachability of nodes in the network. At every step, the network is

fully reachable.

5We varied the amount of maintenance cycles between joins in our experiments, but found it had no effect
upon our results.
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Figure 4.2: This is the average and maximum degree of nodes in the Chord network. This Chord
network utilized a 120 bit hash and thus degree is bound at 122 (full fingers, predecessor and
successor) when the network reaches 2120 nodes.

Results generated by the Chord and Kademlia simulations were in line with those from

previous work [42] [56]. This demonstrates that UrDHT is capable of accurately emulating

these topologies. We show these results in Figures 4.2 - 4.5.

The results of our Euclidean and Hyperbolic geometries indicate similar asymptotic be-

havior: a higher degree produces a lower diameter and average routing. However, the ability

to leverage this trade-off is limited by the necessity of maintaining an O(log n) degree. These

results are shown in Figures 4.6 - 4.9.

While we maintain the number of links must be O(log n), all DHTs practically bound

this number by a constant. For example, in Chord, this is the number of bits in the hash

function plus the number of predecessors/successors. Chord and Kademlia fill this bound

asymptotically. The long peer strategy used by the Euclidean and Hyperbolic metrics ag-

gressively filled to this capacity, relying on the distribution of long peers to change as the

network increased in size rather than increasing the number of utilized long peers. This ex-

53



Figure 4.3: This is the number hops required for a greedy routed lookup in Chord. The average
lookup between two nodes follows the expected logarithmic curve.

Figure 4.4: This is the average and maximum degree of nodes in the Kademlia network as new
nodes are added. Both the maximum degree and average degree are O(log n).
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Figure 4.5: Much like Chord, the average degree follows a distinct logarithmic curve, reaching an
average distance of approximately three hops when there are 500 nodes in the network.

plains why the Euclidean and Hyperbolic spaces have more peers (and thus lower diameter)

for a given network size. This presents a strategy for trade-off of the network diameter vs.

the overhead maintenance cost.

4.5 Related Work

There have been a number of efforts to either create abstractions of DHTs or ease the

development of DHTs. One area of previous work focused on constructing overlay networks

using system called P2 [37]. P2 is a network engine for constructing overlays which uses

the Overlog declarative logic language. Writing programs for P2 in Overlog yields extremely

concise and modular implementations of for overlay networks.

Our work differs in that P2 attempts to abstract overlays and ease construction by using

a language and framework. while UrDHT focuses on abstracting the idea of a structured

overlay into Voronoi Tessellations and Delaunay Triangulations. This allows developers to

define the overlays they are building by mathematically defining a short number of functions.
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Figure 4.6: Because the long peers increase linearly to the maximum value (49), degree initially
rises quickly and then grows more slowly as the number of long peers ceases to grow and the size
short peers increases with network size.

Figure 4.7: The inter-node distance stays constant at 1 until long peers are filled, then rises at the
rate of a randomly connected network due to the distribution of long peers selected
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Figure 4.8: The Hyperbolic network uses the same long and short peer strategies to the Euclidean
network, and thus shows similar results.

Figure 4.9: Like the Euclidean Geometry, our Poincarè disc based topology has much shorter
maximum and average distances.
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Our use case is also subtly different. P2 focuses on overlays in general, all types of

overlays. UrDHT concerns itself solely with distributed hash tables, specifically, overlays

that rely on hash functions to distribute the load of the network and assign responsibility in

an autonomous manner.

One difficulty in using P2 is that it is no longer supported as a project [37]. P2’s concise

Overlog statements also present a sharp learning curve for many developers. These present

challenges not seen with UrDHT.

The T-Man[29] and Vicinity [58] protocols both present gossip-based methods for orga-

nizing overlay networks. The idea behind T-Man is similar to UrDHT, but again it focuses

on overlays in general, while UrDHT applies specifically to DHTs. The ranking function is

similar to the metrics used by UrDHT using DGVH, but DGVH guarantees full connectivity

in all cases and is based on the inherent relationship between Voronoi Tessellations, Delaunay

Triangulations, and DHTs.

UrDHT uses a gossiping protocol similar to the ones presented by T-Man and Vicinity

due to they gossip protocol’s ability to rapidly adjust changes in the topology.

4.6 Applications and Future Work

We presented UrDHT, a unified model for DHTs and framework for building distributed

applications. We have shown how it possible to use UrDHT to not only implement traditional

DHTs such as Chord and Kademlia, but also in much more generalized spaces such as

Euclidean and Hyperbolic geometries. The viability of UrDHT to utilize Euclidean and

Hyperbolic metric spaces indicates that further research into potential topologies of DHTs

and potential applications of these topologies is warranted.

There are numerous routes we can take with our model. Of particular interest are the

applications of building a DHT overlay that operates in a hyperbolic geometry.

One of the other features shared by nearly every DHT is that routing works by minimizing

the number of hops across the overlay network, with all hops treated as the same length.
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This is done because it is assumed that DHTs know nothing about the state of actual

infrastructure the overlay is built upon.

However, this means that most DHTs could happily route a message from one continent

to another and back. This is obviously undesirable, but it is the status quo in DHTs. The

reason for this stems from the generation of node IDs in DHTs. Nodes are typically assigned

a point in the range of a cryptographic hash function. The ID corresponds to the hash of

some identifier or given a point randomly. This is done for purposes of load balancing and

fault tolerance.

For future work, we want to see if there is a means of embedding latency into the DHT,

while still maintaining the system’s fault tolerance. Doing so would mean that the hops

traversed to a destination are, in fact, the shortest path to the destination.

We believe we can embed a latency graph in a hyperbolic space and define UrDHT such

that it operates within this space [33] [19]. The end result would be a DHT with latency

embedded into the overlay. Nodes would respond to changes in latency and the network

by rejoining the network at new positions. This approach would maintain the decentralized

strengths of DHTs, while reducing overall delay and communication costs.
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Chapter 5

Replication Strategies to Increase Storage Robustness in Decentralized P2P

Architectures

Robustness in the face of a dynamic network is a central issue for secure and reliable

storage of data in a peer-to-peer (P2P) network with a distributed hash table (DHT) infras-

tructure. A DHT’s robustness will degrade if the churn rate (the rate of participants leaving

and joining the network) increases to such a level that data is lost or the network is broken

into disconnected segments. DHTs use “replication strategies” to proactively place copies of

a record (called replicas) in the network to be used if the original is lost.

This chapter describes a variety of strategies that have been proposed to increase the

robustness of storage in P2P systems that that use a DHT as the organization mechanism.

Each strategy will be described, analyzed, and finally compared and contrasted with other

strategies.

We judge the long term efficacy of each strategy by calculating a “half-life” value for

records in that strategy in terms of the baseline rate of churn and the number of replicas

placed using the strategy. Using half-life measurements, systems designers can consider the

long term behavior of records in the network.

We propose and analyze a novel reactive update strategy where the effective half-life can

be made arbitrarily long with minimal impact on DHT efficiency and overhead. Rather than

sending potentially unnecessary queries and updates, we send exactly the required messages

Under consideration by IEEE MilCom 2016 at time of writing
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to maintain the desired level of robustness. Our approach differs from existing approaches in

that they estimate at time of implementation the frequency of replication required to attempt

to maintain robustness. This strategy has the potential to practically remove record loss due

to churn in P2P systems built on a DHT.

5.1 Robustness

Most DHTs focus their efforts on preventing record loss due to churn. Churn is the constant

entry and exit of participants of the P2P network over time. Established systems like Main-

line DHT can see a daily net fluctuation of 10,000,000 nodes per day [59] (about half the

size of the network).

Churn complicates record maintenance because nodes currently hosting data are con-

stantly leaving without warning and new nodes are constantly arriving and needing data

assigned to them. Records are lost to churn under two conditions: the node hosting the

record leaves the network or the node with a record ceases to be responsible for the record

due to a new node joining the network and claiming that portion of the address space.

We will describe churn as a “Replacement ratio”: Rc, which is measured over a period of

time (most often a day). Rc is related to the more conventional churn rate metric exits+joins
2·size

but provides more information on the volatility of records. This value describes the portion

of a DHT’s metric space that is maintained by a different node at the end of the period.

This is equivalent to the percentage of records that would ideally have new owners. Ensuring

these records migrate to the appropriate new owners and thus providing robustness is the

primary concern of this work.

5.1.1 Robustness and network partitions

Network partitions occur when a failure results in the network separating into multiple

non-connected networks. Network partitions form from a cut over the graph inter-node

connectivity. Failures in either the underlay network or in the overlay network can result in
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a network partition. Unlike the churn based failures the failure of nodes is not independent

with network partitioning. For example, if two previously connected regions of the Internet

cease to be connected due to disaster or political intervention, there will be two new smaller

networks. Each smaller network will have just lost access to all the nodes in the other

partition. Therefore active robustness methods based on periodically restoring records will

degrade into passive methods if the network partitioning places all of the active parties in

one partition.

Underlay Partitions

An underlay partition failure can be the result of a failure in the infrastructure, manipulation

of BGP, or governmental action. The effect of these, would be to isolate geographic or

political regions from each other. Assuming the overlay network of the DHT has been

constructed independently from the topology of the underlay network, the failures due to

the underlay partitioning will occur at apparently random locations in the overlay network.

While this may resemble how failure occurs during churn, the failures will all occur almost

instantaneously to a potentially large segment of the population of the network. Kademlia’s

topology is likely to recover from such an event, however searching the network will be

impaired while new connections are established. Chord’s consistent topology proof is built

upon an invariant that any join or exit from the network is occurring when the majority

of the network is consistent. The sudden failure of nodes in a underlay partition situation

violates this assumption and may destroy the ability of the remaining Chord network to

form a searchable overlay topology.

We will discuss underlay partitions in terms of a ratio Ru that describes the fraction

of randomly distributed members of the network that remain after an underlay partition

occurs.
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Overlay Partitions

Overlay partitions occur upon the topology generated by the DHT protocol. In the case of

an overlay partition, nodes are hypothetically able to communicate with each other, but are

unable to do so due to a lack of knowledge of the remainder of the network. In practice,

overlay partitions may occur due to eclipse attacks [57] or logic errors in how the DHT

constructs the overlay (which have been documented in the Chord protocol). The most

likely cause of an overlay partition is a result of updating a DHT protocol in a non-reverse-

compatible manner, which will result in two non-communicating networks when only some

of the participants of the network update to the new protocol.

We will discuss overlay partitions in terms of a ratio Ro that describes the size of a

connected subnetwork that remains after a partition. It is worth considering, that in the

case of any partition, the ideal behavior is that both resulting partitions remain connected,

searchable, and retain discoverable replicas of all records, rather than the survival of only

one of the partitions.

5.1.2 Half Life and Time

Traditionally in statistical discussions of databases, we consider “Up-Time” as the primary

metric of reliability. However in a DHT, this metric does not mesh well with reality.

Up-Time is predicated on the idea that records will never be lost, but only temporarily

unavailable. Because a DHT sees a much higher node failure rate than the data centers,

where Up-Time is the primary factor of consideration, we consider any failure that would

result in the temporary loss of availability of a record to simply be an increase in latency.

While DHTs attempt to minimize this latency, failure is more honestly measured in the

likelihood a record will be lost forever.

Because the amount of data and rate of churn is so high, we must consider that there is

a likelihood that a record can be lost simply because all of the machines that held instances

of the record on the network have failed (or otherwise left the network). With this in mind
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we use the metrics “Half-Life” and “Mean Expected Lifetime”.

Half-Life is a unit of measure commonly used in Physics and Chemistry. It describes the

amount of time over which there is a 50% chance that an item has ceased to exist (in the

current state). This is useful for discussing the lifetime of records in the network because we

can calculate the likelihood a replica is lost due to churn over any given period of time and

then use this to calculate the half life using Equation 5.1. It is important to note that the

time unit for half-life is the sampling period of R.

− log(2)

log(1−Rperiod)
(5.1)

Given an R sampled in a given period, we can convert from the original period (PeriodA)

to a smaller or larger period (PeriodB) by applying Equation 5.2. If we treat the event being

considered as equally likely to occur any where in the period over which R was measured, the

likelihood of R is equal to the likelihood of occurrence in each smaller slices of time ORed

together.

RPeriodB = 1− (1−RPeriodA)
PeriodB
PeriodA (5.2)

This equation is based on the method of calculating a repeated OR operation on a

probability. Rather than using the equation p0 + p1 − p0p1 repetitively, we simplify the

calculation by applying De Morgan’s laws of negation and instead calculate a repeated AND

operation in the form of 1 − (1 − p)x. Where the original OR operation could only be

preformed in whole steps. This formulation allows us to perform the OR operation in partial

steps. Preforming the OR operation 1
k

times allows us to solve for the value, that if OR

operation was preformed on it k times, would equal the originally considered value. In other

words, we can consider the likelihood of failure over any time period where a record may be

particularly vulnerable given an R initially calculated over a different period.

For a single record, the half-life would represent the period after which there is a 50%
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chance the record has been lost. For a population of replicas, the half-life would represent

the period of which half of the records are expected to have been lost. For such a population,

the mean expected lifetime would describe the period required to reduce the average number

of replicas to 1 (which would describe a 50% chance of total loss). For a population of K

records, the mean expected lifetime in multiples of the period of R can be calculated using

Equation 5.3

τ =
− log(K)

log(1−Rperiod)
where τ is the lifetime. (5.3)

5.2 Existing Passive Replication Strategies

Passive strategies are those where a client writes the record and replicas to the DHT once,

after which no participant ever re-publishes the record. Because of constant churn, such

records are likely doomed to be lost as the nodes to which they were stored leave the network.

We describe passive strategies as a baseline of comparison for reaction to churn. We later

show they are identical to more active strategies in response to partition failures.

5.2.1 K-Random Replicas

The K-random node strategy is not used by any established DHT, however it provides a

simple analytic model that we can extend to the other replica strategies. In the K-random

node strategy, a file is stored at K locations chosen by chaining of a cryptographic hash.

That is, if a record is stored a location L, the first replica will be stored at location hash(L)

and the second at hash(hash(L)), etc., until a replica has been stored K different nodes.

This scheme allows for simple speedup and redundancy. Given a location L, any node

can locate the potential K backup sites and search them by order of closeness or in parallel

(effectively in order of latency). The locations of replicas are effectively random so we can

simplify our analysis for churn and partition tolerance.

The half-life due to churn for the record (a time period over which, on average, the number
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of replicas in the network will be halved) is − log(2)
log (1−Rc)

. Because the number of replicas is a

small integer, we can also consider an expected mean lifetime of a record in the network:

logK

log(2)
· − log(2)

log (1−Rc)

This value describes the time period after which the expected mean number of remaining

replicas is one. This period is the mean value because there is a 50% likelihood there are less

than 1 replica (or zero replicas, as the number of replicas is a natural number that cannot

take partial values.)

As a result we can present the average lifetime of a record in the network in terms of the

number of replicas and churn replacement rate to be O( − logK
log (1−Rc)

). This implies that while

more replicas always results in a longer expected lifetime, the return on adding additional

replicas diminishes quickly since treating Rc as constant results in the expected lifetime being

a slow growing O(logK) function, as can be seen in Figure 5.1

The K-random strategy preforms similarly in both underlay and overlay partition failures

(as the replicas in the network are effectively random in relation to each type of failure).

The expected fraction of surviving nodes is simply the R fraction of the original network

that the partition represents. The likelihood that a record is totally lost is simply the odds

that all replicas are not in the considered partition: (1−R)K .

5.2.2 K-Nearest Replicas

K-nearest replication is a common strategy in Kademlia based networks. When storing a

record, members preform a multi-beam search to discover the K closest nodes to the target

location.

This has an advantage over K-random nodes in that in many cases of failure, there is

no downtime. If the current owner of a record dies, an adjacent node that likely already

has a backup takes over responsibility. In terms of churn resistance and underlay failure, K-
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Figure 5.1: The mean expected lifetime of a passive cluster of replicas for a given number of replicas
and replacement ratios.

nearest behaves identically to K-random simply because the likelihood of loss due to churn

is independent of the replica’s location in the network.

In the case of an overlay partition, the K-nearest strategy is less robust because it is

more likely that all the nodes hosting replicas will fall on the same side of the network.

Unlike the K-random strategy, the odds that all replicas are lost is proportional to the size

of the surviving partition Ro. We treat the entire cluster of replicas as one point because

the likelihood that the cluster will be cut by the partition is negligible as the network size

becomes significantly larger than K. In this case, any O(1) number of replicas would not

provide tangible benefit. In the results of the simulation (Figure 5.4, we can see K-nearest

in the case of overlay failure performs much worse than other strategies.

5.3 Sponsorship

While the Kademlia chapter proposes a strategy for active replication [42], however in prac-

tice only the “greeting” portion (where new nodes are given the records they are now re-
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sponsible for) is implemented and Sponsorship is the strategy effectively used. Rather than

members of the DHT taking any actions for ensuring reliability, the DHT behaves as orig-

inally specified and acts only as dumb storage. To ensure that a record survives churn, a

sponsor outside the network periodically re-stores the record and replicas in the network.

In an ideal situation, this solves the problem of reliability by placing it in the hands of the

users, such that critical records will always have reliable sponsors.

From an analytic standpoint, the sponsor’s continued ability to re-store the record is

no different from the K-random strategy, admittedly with a much lower rate of node re-

placement. It is difficult to analyze the efficacy of sponsorship relative to the qualities of a

given DHT network because they are intentionally meant to be independent from the DHT.

Because there is no assurance that new sponsors will be created when existing sponsors are

lost, Sponsorship only provides a more reliable pool of nodes to be exhausted by exponential

decay. Once the sponsors have all failed, replicas will be quickly lost as discussed in passive

strategies. The half-life and expected lifetime equations of the record under active spon-

sorship is identical to passive strategies as we assume the lifetime provided by the higher

reliability will dominate the lifetime provided by passive replication. Some practical appli-

cations of DHTs like Bittorrent [18] and IFPS [9] add additional sponsors as the record is

demanded, however unpopular records are essentially as likely to be lost as passive K-random

replicas once the sponsors fail.

5.4 Active Replication Strategies

Unlike the passive replication strategies, which doomed even highly backed up records to

eventual loss, active strategies result in much higher expected record lifetimes. In active

replica strategies, records and replicas are restored as they are lost due to churn. However,

there will always be a chance that records could be lost despite all efforts to back them up.
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5.4.1 Active K-Random Replicas

The active K-random replicas strategy requires a slight modification to how the DHT stores

information. In addition to recording the key value pair, if a replica is being stored, the

original location of storage must be accessible to the node. In this strategy, all nodes in the

DHT iterate over the values stored in them (likely spread out over the span of hours or a

day) and ensures the record and all k replicas are periodically restored.

The failure state for this strategy requires that all nodes hosting the records to be removed

from the network before any one of them can restore the record. This means, likelihood of

failure over the restoration period is RK
c . This essentially dramatically increases the efficacy

of replicas in increasing the half-life of the record: τ1/2 = − log 2
log (1−RK

c )
. We can simplify this

half-life into a format more comparable using the bound log2(1 + x) ≤ x which results in:

τ1/2 ≥ (
1

Rc

)K (5.4)

Unlike the passive strategy, the addition of more replicas exponentially increases the

half-life of the record in the network. In addition, the base 1
Rc

indicates that lowering

the restoration period, and thus decreasing Rc, also causes dramatic improvements to the

reliability. We can see in figure 5.2 that while a higher rate of failure increases the number of

required replicas for a desired half-life, there is always increasing improvement from adding

more replicas.

Active K-random replicas behaves identically to passive K-random replicas in terms of

its partition tolerance (both underlay and overlay). In the K-random strategy, for each

record stored with a node, that node is required to periodically communicate with K − 1

random other nodes. Because the number of records would far exceed the number of nodes

in the network, in effect each node would be required to regularly communicate with every

other node in the network. The basic premise of the scalability of a DHT is that each node

is only required to regularly communicate with a limited number of peers, so it is clear that
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while there are benefits to active K-random replication in terms of expected lifetime, the

maintenance cost is prohibitive.

As an example, let us consider a network with Rday likelihood of a record being lost per

day. If Rday = 0.99 then the likelihood of loss in 1 minute is Rminute = 1− (1−Rday)
1

24∗60 or

Rminute = 0.0031929.

Given this Rminute and the requirement for K failures in the period to occur, the expected

half-life of the record in the network is − log(2)

log(1−RK
minute)

. If K is set to 10, the expected half-life

in minutes of the record with 10 active replicas in a network where 99% of the nodes are

replaced in a day is 6.29 · 1024 minutes or 8.7 · 108 times the age of the universe.

In practice, half-lives this large indicate that it is reasonable to expect the likelihood of

the record’s loss to be dominated by partition failures and the eventual obsolescence of the

network. Some examples of this behavior can be seen in Figure 5.2. We can see, as the rate

of replacement due to churn rises, the efficacy of replicas to prevent failures falls, requiring

more replicas of similar guarantees of robustness.

Figure 5.2: This graph shows the expected half-life of active clusters of replicas in response to
churn. Note that the value for R dramatically effects behavior.

5.4.2 Active K-nearest Replicas

The basis of this strategy can be found in the Kademlia [42] paper, however no analysis

on reliability due to the replica strategy is offered in that paper. The Active K-nearest

replicas provides a churn robustness identical to the Active K-random strategy. However

it provides an opportunity for a significantly lower maintenance overhead than K-random
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replicas. Where the random nature of backup site location effectively required the network

to act as a clique, K-nearest associates backups with those nearby to the record. These

nodes will be the peers a node is already required to communicate with regularly. This way,

the number of maintenance messages is dramatically reduced to K nearby peers (however

the size of these messages would still be determined by the number of replicas).

5.5 Summary of Comparisons

The methods discussed show 3 major classes of behavior, passive, active but inefficient, and

active and efficient. Passive strategies are very easy to implement and require essentially no

maintenance, but under realistic churn conditions records should not be expect to last more

than a day or two. All of the active strategies discussed provide the desirable − log 2
log (1−RK)

half

life. However the Active K-Random strategy is intolerably inefficient. Because the number

of records is likely much larger than the number of participants in the DHT, it is reasonable

to expect K-Random will be responsible at least one record or replica that is also stored with

every other member of the DHT. Thus nodes utilizing a K-Random strategy will need to be

constantly seeking and re-storing records to keep up with restoring the records for which they

are responsible. Compared to Active K-Random, Active K-Nearest is much more efficient

because a node will very rarely have to search for the owner of a replica, rather it restoring

backups to nodes it already knows and already periodically communicates with as part of

the DHT.

Sponsorship stands out as largely incomparable with the other methods. It is intentionally

designed to make record replication independent of the state of the DHT itself. Unlike the

passive or active methods, its efficacy is a function of the actions of human beings, rather

than a deterministic system and thus the lifetime of records when it is used will vary wildly.

When considering partition tolerance in these strategies, active strategies do not provide

improvement to handling partition failures over passive strategies. Because we only consider

survival over the partition event, which occupies a very small amount of time, only the
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1: procedure On Peer Exit(p)
2: for r in Backups received from p do
3: if I own r now then
4: Mark r as owned
5: end if
6: end for
7: Identify the now Kth closest peer NewPeer
8: Backup all records marked owned to NewPeer
9: end procedure

10: procedure On Peer Join(p)
11: for r in records marked owned do
12: if p owns r then
13: Send r to p
14: Mark r replica issued from p
15: end if
16: end for
17: end procedure
18: procedure On Self Join(p)
19: for Records r received from each peer p do
20: if I own r then
21: Mark r as owned
22: else
23: Mark r as backup from p
24: end if
25: end for
26: end procedure

Figure 5.3: Reactive K-nearest Replication Procedures

locations of replicas in the network is going to be relevant to the record’s survival.

Similarly to the passive nearest K replicas strategy, the active K-nearest strategy is

identical to K-random replicas in the case of an underlay partition and like the passive

K-replicas strategy, it is equivalent to having no backups at all in the case of an overlay

partition because the backups are clustered together. This indicates that while the active

K-nearest strategy is incredibly robust to churn and tolerably robust to underlay failure, it

is comparatively vulnerable to overlay partition failure.

72



5.6 Proposed Reactive K-nearest Replication Strategy

We present Reactive K-nearest replicas as a set of modifications to active K-nearest replicas

that allows us to gain the same benefit with a smaller window of vulnerability and with

less maintenance overhead. Reactive K nearest has the same − log 2
log (1−RK

c )
half-life as active

strategies, but has the potential for a much shorter vulnerable windows in calculating Rc.

As a result of the smaller window of vulnerability, we have a low likelihood of loss during

that window (as seen in Equation 5.2) and greater returns on adding replicas to the network.

When replicas are associated with nearby peers, it is reasonable to expect that records

will only be lost when those peers exit the network or are displaced by newly joining nodes.

Because of this, rather than attempt to track the existence of each replica, we can track the

peers with which many replicas have been stored. The DHT protocol already implements

tracking the state of nearby peers so this adds no additional overhead.

This means rather than a periodic re-store of the large number of replicas, we store the

replica once when the record is initially stored, and we react to the change in our peer list by

re-issuing the affected records. This means, the amount of overhead is exactly that required

to maintain the desired level of robustness.

We can further restrict maintenance cost by limiting responsibility of re-storing of replicas

to the initial owner of the record, and yet keep the same benefit of all K active replicas.

We do this by giving the replica owning node the responsibility to act upon the failure of

the responsible node by instantly assuming responsibility for the records closest to them

(which they already have) upon the failure of the originally responsible node. As shown in

the procedures in Figure 5.3, we only react to changes in topology, rather than periodically

re-storing replicas. Thus, if no updates are required, no resources are used to make them.

If peers are joining and exiting often, only enough messages to ensure there are always k

backups are sent.
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5.7 Experimental Validation

For each of the strategies, we simulate partition failures to validate our formal analysis. We

simulate underlay and overlay failure on the Chord DHT and report the resulting record

survival rates for each strategy. We only consider the survival of a single record and its

replicas, as this simplifies computation.

We have chosen the Chord DHT, because it is the only DHT to even theoretically ex-

perience an overlay failure during operation [63]. We simulate a partition along the chord

ring, where a continuous portion of the chord ring of size r is removed. Underlay failures

are considerably simpler to simulate, as we only randomly select the appropriate portion of

nodes and remove them from the network. A record is only considered totally lost if it and

all replicas have been removed from the network by the partition.

For each simulation we construct a simulated 10,000 node DHT. We will consider underlay

partitions of sizes 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% Each data point presented

is the average of 1000 trials run with those parameters. All simulations are run with a K of

5 replicas.

Figure 5.4: The total loss likelihood in cases of network partition
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5.8 Conclusions

We presented a novel system for increasing robustness in decentralized P2P networks imple-

mented with a DHT. This strategy dramatically improves the robustness of the system as

measured by the half-life of data records. The half-life is the time for 50% of the copies of

data to be lost and describes the characteristic time scale of data loss. Using modifications of

strategies presented in 2002 by Kademlia [42], which have remained largely unimplemented

for the past 14 years, we can build DHT networks that can reasonably be expected to never

lose records due to churn during their active use lifetime. We achieve this with lower over-

head than the currently used sponsorship strategy with a resulting half-life of − log 2
log (1−RK

c )
and

the potential for lower values of Rc than are available to active and sponsorship strategies.

A DHT is not designed to be repaired in the traditional sense, but instead to consist of

a constantly changing set of computers around the world. Like the philosophical Ship of

Theseus, it is constantly in the process of being replaced and renewed. If we can make a

DHT a highly reliable store of data and ensure it is actively participated in then a DHT has

the potential to persist longer than any other medium of storage because it is constantly self-

healing. This allows us to begin to consider the use cases of a system for storing information

that could reliably last generations.

The ability to retain information for an indefinite lifetime opens up other use cases

for new robust P2P systems based on DHTs such as a distributed credential store [40],

an archival database, a public library, or a set of reliable terrain and mapping data with

an associated historical context. It defines a mechanism to preserve any critical data for

arbitrarily long periods of time while allowing access from many locations. It also opens up

potential problems. If records do not have a fixed lifetime, then the data stored in the DHT

can grow without bound. Therefore future research should examine rigorous and secure

mechanisms for data revocation and expiry.
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Chapter 6

Online Hyperbolic Latency Graph Embedding as Synthetic Coordinates for

Latency Reduction in Distributed Hash Tables

Overlay topologies are networks built between a group of computers which are all part

of a larger network (underlay) that route messages between each other. One of the purposes

of a Distributed Hash Table (DHT) is to build and maintain a scalable overlay network

for a distributed system. A direct connection between two nodes in an overlay network in

fact uses a route on the underlay network to actually send the messages. Often, an overlay

network is constructed with little regard for the topology of the underlay network, such that

while routes may seem efficient in the overlay network, they are inefficient in the underlay

network.

Previous work by Kleinberg [33] and Papadopoulos [44] has explored the possibility of

using a hyperbolic space to assign a node’s location in a DHT, such that paths efficient

in the overlay network are also efficient in the underlay network. Because current DHTs

make no consideration of latency in building their overlay typologies, there is much room for

improvement in that regard.

Kleinberg [33] and Papadopoulos propose that future work should devise a general

method for maintaining the topology in spite of node failures and joins, also referred to as

churn. We utilize our previous work with the Distributed Greedy Voronoi Heurisitc (DGVH)

[10] to solve this problem.

Under consideration by IEEE CNS 2016 at time of writing
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In addition to lacking a maintenance mechanism, previous explorations lacked an efficient

method for new nodes to accurately insert themselves into the network. We present a simple,

first effort, technique for placing nodes in the hyperbolic space that while not optimal, is

sufficient to produce dramatically improved results.

We combine these mechanisms to show that a DHT built to minimize latency in a Hyper-

bolic Space is a viable technique that provides dramatic latency reduction over traditional

DHT techniques. We provide simulation results to demonstrate the achived latency reduction

and we show that concerns raised by Kleinberg concerning high congestion in the network

can be solved using DGVH.

6.1 Background

There is an inherent trade-off between availability and latency minimization in DHT de-

sign. A design that always ensures minimal latency routes is a clique [36] that provides one

hop lookups. However this design requires all members of the network to maintain O(n)

connections, which limits the scalability of such a system.

A Distributed Hash Table (DHT) is designed to ensure the scalability of the system by

requiring nodes to track only O(log n) nodes in the network. This necessitates higher latency

than a direct connection. We present a technique to minimize the maintenance overhead

and query latencies within the constraint of maintaining the scalability of the network.

Distributed Hash Tables form the core of many Peer-To-Peer (P2P) systems like BitTor-

rent [30], CJDNS [25], and I2P [62]. Improving the response time and efficiency of DHTsand

similar systems will provide these systems increased performance and capacity to scale to

more users.

6.1.1 Geographic Routing

Geographic routing is used in latency optimization of Content Delivery Networks and Wire-

less Sensor Networks [31]. Unlike traditional network routing mechanisms, messages can be
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routed in a network based on the location of the current node and the location of the des-

tination. While the ideal is that messages could be routed greedily, shortening the physical

distance to the destination with each step, the realities of radio and connectivity limitations

have resulted in a number of proposed algorithms of increasing complexity.

There are problems with the application of simple greedy geographic routing in practice.

Geographic locations may not accurately represent network connectivity and latency. Often

“holes” or “lakes” in the network prevent greedy routing. This requires more complex and

stateful routing methods to act as an auxiliary to greedy routing. The fundamental problem

being that due to the inability to make connections past an obstacle, we cannot create a

greedy spanning graph.

While we will take inspiration from the mechanisms of greedy geographic routing, DHTs

are not vulnerable to the problem of untraversable terrain that plagues wireless sensor net-

works. In practice, as long as a greedily traversable overlay is maintained, we can strictly

use the greedy geographic forwarding strategy to route messages. This leaves us with the

problem that locations and routes in space often do not match the throughput and latency

reality of the network. The focus of this work is building a coordinate system alternative to

geographic locations that provides the ability to leverage greedy geographic routing for both

successful and efficient routes.

6.1.2 Greedy Traversable Graphs

The idea of a Greedy Traversable Graph is that, given a distance function, a route can be

found between between any two nodes by greedy best-first search without any backtracking.

This provides efficient routing through the network without maintaining any state in the

packet or maintaining routing tables.

The property that ensures the ability to route greedily is that for every two nodes a and

b that are not adjacent in the graph, there exists some node c that is adjacent to a and c is

closer to b than a is. Essentially this ensures that if I am not adjacent to my target I can
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Figure 6.1: DGVH Algorithm

1: Given node n and its list of candidates.
2: Given the minimum table size
3: short peers← empty set that will contain n’s one-hop peers
4: long peers← empty set that will contain n’s two-hop peers
5: Sort candidates in ascending order by each node’s distance to n
6: Remove the first member of candidates and add it to short peers
7: for c in candidates do
8: if Any node in short peers is closer to c than n then
9: Reject c as a peer

10: else
11: Remove c from candidates
12: Add c to short peers
13: end if
14: end for
15: while |short peers| < table size AND |candidates| > 0 do
16: Remove the first entry c from candidates
17: Add c to short peers
18: end while
19: Add candidates to the set of long peers
20: if |long peers| > table size2 then
21: long peers← random subset of long peers of size table size2

22: end if

always take a step closer to my target.

DGVH

DGVH [10] is a technique for building a minimal Greedy Traversable Graph over points in

arbitrary metric spaces.

The DGVH Algorithm (Figure 6.1) directly ensures the Greedy Traversable property by

creating links to any node to which we do not have an intermediary step. DGVH tracks two

hop peers up to a constant limit to ensure that the overlay network is rapidly repaired when

node joins and failures occur.

DGVH essentially handles the basic tasks of ensuring network reachability and mainte-

nance. Utilizing DGVH as a basis for our system, we can focus on implementing an effective
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embedding mechanism with insurance that we cannot damage the basic function of a DHT.

6.1.3 Distributed Hash Tables

Distributed Hash Tables are a scalable system for decentralized key-value storage. DHTs

use a mapping from the key to a location in the network using a cryptographic hash and a

coordinate space. Nodes each maintain a peer list of limited size and maintain a topology

that can be greedily searched for any record. The coordinate spaces and their metrics vary

wildly between implementations of DHTs.

Importantly, DHTs are an overlay network, so we work under the assumption that an

underlying routing system will allow any node to connect to any other node. This eliminates

the issue of “holes” that was found in traditional geographic routing. Attempting to minimize

latency in a DHT means attempting to leverage the latency minimization work already done

by the underlay network.

An important refinement we present on the discussion of DHTs is the observation that all

of them work under the same basic principle. Nodes are responsible for their Voronoi region

in the given metric space and they must maintain peer links with the corresponding Delaunay

triangulation in order to ensure there is consensus on who owns which records. In addition,

DHTs form “long” connections across the metric space in addition to their Delaunay peers

to ensure that the resulting network has Kleinberg “small world” [32] properties.

Chord [56] and Kademlia [42] are the most common methods of implementing a DHT. We

use them as a baseline comparison for our improvements. Both systems maintain O(log n)

connections to peers and promise O(log n) hops between any two nodes. Because neither

attempts to minimize latency, the latency stretch is O(log n).

6.1.4 Scale Free Networks

Scale free networks are a family of tree-like networks defined by an having exponential degree

distribution and a tendency for high degree nodes to be linked to other high degree nodes.
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These properties describe a network with a O(log n) diameter, which can often be con-

sidered O(1) in large systems.

Scale free networks are of interest to us because they are a generalization of the topology

of human-built digital networks. The latency distribution of a representative sample of a

computer in the global internet should show a latency similar to that of a representative

subset of a scale free graph.

6.2 Previous Works

6.2.1 Kleinberg’s Hyperbolic Embedding

A distributed and dynamic hyperbolic embedding of latency suitable for optimizing a DHT

was envisioned by Robert Kleinberg in 2007 [33].

Greedy Embedding

The Greedy Embedding discussed by Kleinberg is inverse to the “DGVH” method of gener-

ating a Greedy Traversable Graph. Rather than being given a set of points and generating

a Greedy Traversable graph, we are given a graph and metric, then solve for points for each

node such that the resulting graph is Greedy Traversable when using those points in that

metric.

Initially discussed by Papadimitriou et al [43], a Greedy Embedding can be formally

defined as a distance function between two points d(a, b) in a given metric space and a

function f(v) that maps each vertex in the given graph such that for every pair of non-

adjacent vertices a, b ∈ G there exists a third vertex c adjacent to a such that d(c, b) < d(a, b).

Essentially, the result of this definition is that for any vertices not directly connected, there

exists a path of nodes that are iterative steps closer to the target that could be followed by

Greedy Traversal. Interestingly, graphs produced by DGVH are forced by the algorithm to

fulfill this property.

81



The Geometry of the Hyperbolic Plane

Hyperbolic space in two dimensions is defined as the surface of a hyperbola in three dimen-

sions where all paths between points are taken along the surface of the hyperbola. This

hyperbola is defined by the equation z2 = x2 + y2 + 1. Note that for any (x, y) pair there

exists two solutions for the value of z, one positive and the other negative. These two solu-

tions form two disconnected “sheets” mirrored across the xy-plane. By convention, we only

consider points on the −z sheet. All calculations and processes work effectively on either

sheet as long as all considered points are on the same sheet.

The hyperbolic plane has many differing qualities from the Euclidean plane. Most im-

portantly here is that of “relativity”. On the Euclidean plane, we can treat any point as the

“origin” and calculate new locations for every point or figure on that plane by translation,

while having all inter-point angles and distances remain the same. The Euclidean distance

equation
√

(x1 − x0)2) + (y1 − y0)2) can be interpreted as translating (x1, y1) into the refer-

ence frame where (x1, y1) is the center and using the distance metric
√
x2 + y2 to determine

the distance. Unlike this, the hyperbolic plane has a defined center. While points can be

rotated and mirrored freely over this center without changing inter-point distance and angle,

they cannot be translated. The distance between two points in the hyperboloid model is

arcosh(z0z1 − x0x1 − y0y1) where arcoshx is defined as ln (x+
√
x2 + 1).

Unlike Euclidean space, a hyperbolic plane has a Greedy Embedding for any graph.

Kleinberg presents his technique for building an arbitrary Graph Embedding in hyperbolic

spaces by building a spanning tree of the graph, then embedding the tree into the hyperbolic

space. This is effective because the circumference of the disk increases exponentially with

radius. Therefore we can trivially embed trees into the space as the available space on the

disk increases with depth correspondingly with the number of leaves in a full tree. While the

result is Greedy Traversable the resulting embedding does not provide desirable qualities in

that greedy routes are not necessarily the shortest and central nodes can receive high levels

of congestion.

82



6.2.2 Greedy Hyperbolic Embedding

Further work by Papadopoulos et al. [44] shows a greedy centralized technique for managing

the creation of a dynamic network in a hyperbolic space. Papadopoulos et al. improves on

Kleinberg’s initial work by presenting a simple strategy for handling node insertion in the

network to simulate a scale free graph and routing methods to handle node and edge failure.

Growing Network with Greedy Embedding

Papadopoulos et al. provides a sophisticated method for accurate generating a growing

scale free network in a hyperbolic space. It is important to note that they are creating

a new topology and network from scratch, rather than attempting to use existing latency

information to build a greedy embedding that represents a network topology.

Papadopoulos et al. shows that graphs with similar properties to those found in imple-

mented network topologies can be generated and have desirable greedy routing properties.

This is accomplished by randomly selecting points in the hyperbolic space such that all points

are constrained within a given disk that represents the network radius and a distribution of

radius that represents the branching factor of the scale free graph intended to be simulated.

Points are then connected together randomly, using a model weighted by inter-node distance

and angle.

Utility in building a Hyperbolic DHT

While interesting, the statistical method of peer selection described is insufficient for ensuring

a greedy embedding that can be navigated under churn. The proposed gravity-pressure

routing method requires packets maintain a nonviable amount of state information without

reasonable benefit. It begins to follow the path of geographic routing techniques with growing

sophistication in response to an environment that is not greedy routable. We are better

served by ensuring the environment is greedy routable than attempting to add overhead to

routing to manage failures of topology maintenance.
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6.3 Proposed Hyperbolic DHT

We present a technique for building a Distributed Hash Table on a hyperbolic metric space to

minimize look-up and maintenance latency within the constraints of ensuring the scalability

of the system. We show a simple greedy method for inserting nodes into the network such

that latency is congruent with the distance metric. The result of this is that nodes closer

together in the DHT overlay have shorter latency to each other. This causes maintenance

and queries to to require less latency then if peers had been selected randomly.

We show that unlike previous works indicate, no special updating of node location is

required in response to the joining or exiting of new nodes and, in fact, a constant churn

rate will help the system respond to changes in global latency distribution. We have found

that if we augment the network topology with a Greedy Traversable Graph, holes introduced

via node loss are accurately repaired and new nodes are greedily inserted at latency-ideal

locations in the network.

6.3.1 The Value of Approximation

Unlike previous work, in presenting a practical DHT description, we are dealing with differ-

ent premises than previous work with hyperbolic embedding. The largest divergence from

Kleinberg and Papadopoulos et al.’s works is that, rather than handling the embedding a

of an entire Internet sized scale free graph, we are embedding a smaller effectively random

sampling of that graph. Secondly, we will be handling constant churn of members of the

network and changes in inter-node latency over time. The consequence of this is that the

exact methods presented in previous work, which promise essentially optimal routes, cannot

be extended into reality in that fashion. Because we are bound to the scalability limitations

of a Distributed Hash Table, we will be required to induce stretch simply because we cannot

connect all nodes in the overlay network as a clique.
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6.3.2 Hyperbolic DHT Model

We establish a Hyperbolic DHT Network in the hyperbolic plane using the hyperboloid

model. While any hyperbolic plane representation will work effectively, for accurate internal

representation we utilize the x, y, z coordinates of points in the 3D hyperbolic sheet.

We chose this rather than Poincare disk or similar representations due to the inability

of floating point numbers to accurately represent values at the extremes of those models.

Differences in location on the Poincare disk of the order of ε (where 1.+ ε/2 = 1. in floating

point arithmetic) correspond to large differences in location in the hyperbolic plane. 1.− ε is

the largest radius that can be represented in single precision and corresponds to to a radius

of about 12 in the hyperbolic plane.

Using a direct application of DGVH’s capacity to build Greedy Traversable overlay net-

works in arbitrary metric spaces, we can extend the contrived metric spaces of Chord and

Kademlia into a more general model. This would allow DHTs to be constructed in any

metric with the triangle inequality and symmetric distance. Conveniently, as it is the focus

of this chapter, the hyperbolic plane metric space is easy for DGVH to utilize.

We will use points on the hyperbolic plane in the hyperboloid representation [28] (3D

coordinates of points on the bottom sheet of the hyperbola) with the distance metric

arcosh(z0 · z1 − x0 · x1 − y0 · y1)

Joining and Embedding

The only divergence from a traditional DHT’s operation is in the assignment of points in

the coordinate space to joining nodes. To preserve the accuracy of the embedding, we must

place nodes in the network at a point where they have low local latency. Given that the goal

of the embedding is that paths can be routed with minimal latency, we leverage the inverse

to greedily place nodes into the network.

Given any arbitrary node in the network as a starting point, the joining has two sequential

greedy searches:

85



First the joining node greedily searches for the location 0, 0,−1 which represents the

“center” of the network. Once we have a reference to a node at the center of the network,

we perform a second greedy best first search similar to before. In the second search, rather

than looking up the next hop, we query a node for its peers. We then ping each peer of the

current best hop. If we find a best hop, such that all peers of that hop have higher latency

to us than it, we have found our best insertion position. We select a location subordinate to

this node and perform a traditional UrDHT join at this location. This search starts at the

center of the scale free graph, and navigates towards the ideal point of insertion.

6.3.3 Routing and Message Passing in the Hyperbolic DHT

Routing uses a modified “recursive” method. It is important to note that usage of the overlay

network does not provide any increase in efficiency, rather it provides an efficient mechanism

for finding the owner of a given location with minimal overhead while preserving the capacity

of the network to scale to arbitrary size efficiently.

Generally a message will be targeted to a specific location in the metric space, rather

than a specific server, and whichever server is responsible for that location will handle the

query. Often a message will originate from a user who is not a member of the DHT, but is

querying to store a value or retrieve a stored value.

A message will begin in the network at a selected “sponsor”, who hopefully is chosen

for low latency with the user. This is not required and a sponsor can simply be any known

member of the DHT. The message is passed between members of the DHT using a greedy

best first strategy, that forwards the message to the peer closest to the destination location,

in this case using the distance along the geodesic. No trace-back or hop count information

is required to ensure delivery and a node will consider itself the destination of the message

when it is closer to the destination location than any of its peers. Once the query message

is handled (often storing or retrieving a value), the response (a success notification or the

requested data) will be sent directly to the user rather than using the overlay network.
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6.3.4 Storing Records on the Hyperbolic Surface

The traditional mechanism of mapping keys to cryptographic hashes is less intuitive when

locations in the space are actual points rather than integers. The most straightforward

method is to design a pseudo-random point generator that can be seeded using the more

traditional cryptographic hash. Care must be taken to ensure that the results of this process

are evenly distributed. Using a classical pseudo-random number generator like mersenne-

twister with classical 32-bit or 64-bit data types will bound the maximum number of unique

locations to the number of unique integers the PRNG can generate and, as the distributed

system grows in size, increases to the size and format of these identifiers may be required.

As we are using the hyperboloid model of representing points in hyperbolic plane, we must

map our hash values onto the hyperbolic plane with the goal of distributing the resulting

points evenly over the portions of the plane actually occupied by nodes in the system. Given

a centered and bounded disk on the hyperbolic plane in which all nodes fall, we can expect

the distribution of nodes to be linear over the polar angle and exponentially distributed over

the radius.

Using the algorithm in Figure 6.2 to produce points will evenly distribute the random

points over the disk out to a maximum hyperbolic radius of MAXR. A maximum radius is

required because a higher share of points will be distributed to locations distant from the

origin of the space as the circumference of the space increases exponentially in response to

radius. While it would be possible to distribute points over an unbounded space statistically,

in this case the majority of points would be assigned to portions of the hyperbolic disk

increasingly distant from the embedding of the DHT nodes.

While it is perfectly possible that the network would either be smaller or larger in radius

than a pre-chosen MAXR, the disparity in load due to this is likely a preferable problem

than attempting to vary MAXR at runtime. If there is an expectation of the network’s size

at the time of establishment, an appropriate MAXR can be chosen in respect to that.

No matter what MAXR is chosen, all keys will be assigned to responsible nodes. However,
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Figure 6.2: Pseudo-random location selection Algorithm

1: SEED(HASH (key))
2: ANGLE = 2π̇RANDOM ()

3: HR = MAXR + log (1−RANDOM ())
MAXR

4: PR =
√

cosh2(HR)− 1

5: X = PR sin (ANGLE)
6: Y = PR cos (ANGLE)
7: Z = −

√
X2 + Y 2 + 1

8: Return (X, Y, Z)

if MAXRADIUS is smaller than the network radius, then it is likely nodes on the periphery

will not be assigned records. This may be ideal behavior in more general systems than a

DHT as these nodes will likely have high latency.

6.4 Analysis

We present two independent arguments that the diameter of a Greedy Traversable Graph

Embedding of a scale free graph in the hyperbolic plane is O(log n) or better.

Given that the diameter of a scale free graph is O( logn
log logn

) [12] and an efficient Greedy

Embedding has O(1) stretch over ideal latency, then the diameter of the Greedy Embedding

must be O( logn
log logn

) or better.

The greedy insertion algorithm attempts to uniformly insert nodes the hyperbolic plane

such that the Voronoi regions of these nodes are approximately equal in area. The area on a

hyperbolic plane is thus O(n), and a path drawn across it is length O(r). In terms of radius,

area of a disk on the hyperbolic plane is O(er). Because of this, we can assume an arbitrary

path drawn on the surface will cross a number of regions proportional to its length, which

is O(lnn).
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6.4.1 Expected Path Stretch

The ideal stretch ratio ( ActualPathLength
OptimalPathLength

) for the hyperbolic embedding is O(1). However

simulation shows our stretch ratio to be O(log2(n)). This stretch is caused by errors in the

embedding causing non-optimal routes to be taken. Even if the accuracy of the hyperbolic

embedding fails due to unforeseen technical problems or active attack, the properties of the

hyperbolic space ensure that the stretch factor is no worse than if nodes were connected

randomly as in a traditional DHT.

The stretch ratio observed in existing DHTs is the number of hops required to complete

a lookup. In practice, the distance between any successive hops in the lookup is expected

to be the average inter-node distance, thus the expected average stretch is O(log 2(n)) times

the average inter-node distance.

Figure 6.3: Here we see the stretch factor over time as nodes exit and join the network. Removal
of central nodes can often require a short period of readjustment, but stretch remains stable over
time.
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Figure 6.4: This data shows the experimental data points along with best fit curve and log 2(x)
curve as comparison.

6.4.2 Congestion and Route Diversity

Problematically, the latency reduction provided by hyperbolic embedding has an inherent

disadvantage [33]. This latency reduction comes from having the connectivity of the DHT

congruent to the connectivity of the underlying scale free graph. The degree distribution

and low number of central nodes in a scale free graph forces most routing paths through

high degree central nodes.

While we cannot easily decrease the maintenance overhead due to high degree, we can

manage congestion using a simple mechanism. Because DGVH maintains a list of “long-

peers”, (a size limited subset of all the “short-peers” of my “short-peers”) every node con-

nected to a central node has a random sampling of short-cuts across the network that bypass

central nodes. Only when the long-peers fail to provide a reasonable alternative is a message

routed to a higher centrality node. While this dramatically reduces the network throughput

required for central nodes, it should still be expected that central nodes will have a higher

throughput requirement than those on the periphery of the network, but less so than the

concerns of previous works [33]. This indicates for future work reducing the diameter of the

network reduces the overall work the system has to do and building short-cuts over high

degree nodes reduces the concentration of congestion around central nodes.
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Additional congestion avoidance behavior is trivial to implement because the DGVH

greedy routing can effectively route around many holes. When a node is reaching congestion

saturation, it can begin to respond to routing queries with a failure message, causing the

forwarding algorithm to bypass the overloaded node. If the overloaded node is the only

viable path to the destination, then the resulting loop that the packets follow will act as an

ad-hoc buffer. The routing loop would storing and re-trying to send messages to congested

peers until they can be accepted, effectively using the network as a memory in much the

same sense as a mercury delay line [4].

Figure 6.5: Using only short peers forces more nodes to take on higher congestion versus using long
peers which globally reduces congestion.

6.5 Simulation

We simulate the greedy construction of a hyperbolic embedding and show that they produce

very low latency stretch even as the network grows in size. Figure 6.4 shows how our stretch

factor varies with network size. This data fits the curve 0.056 log 2(x) + 0.0255 log (x) with a

r2 value of .98. This shows that our stretch factor is likely O(log 2(n)). For all DHT sizes less

than 31,952,400,000 nodes, the best fit curve indicates our greedy hyperbolic embedding will

remain more efficient than a traditional DHT. This greedy insertion method was intended

to be a low sophistication first attempt to show that even low accuracy embedding results
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Figure 6.6: Here we see the congestion when using short peers only (approximating a scale free
graph) and when utilizing randomly selected long peers. Using only short peers shows that central
nodes handle disproportionate amounts of messages.

in dramatic improvements over the status quo.

Figure 6.3 shows the results when we simulate churn in a dynamic embedding. It shows

that the embedding retains low latency stretch over time. We generate a 1000 node scale

free graph and a size 100 overlay DHT.

For 10,000 iterations:

1. Randomly select a node from the overlay and remove it.

2. Randomly select a node from the 1000 node underlay network that is not currently

being used on the overlay.

3. Greedily insert the chosen node into the network using the greedy joining method.

4. Record and log the average of all-to-all latency stretch.

The resulting network though churn has been totally replaced many times during the process

of the simulations. While the quality of the simulation degrades initially from a stretch factor

of 1.7, the stretch factor fluctuates around 2.0 as the simulation progresses. This shows that

greedy insertion is effective at maintaining the embedding under churn.
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Figure 6.6 and Figure 6.5 show the congestion in our simulated network. The values

shown for congestion are calculated by finding the all-to-all greedy routed paths between

nodes. The proportion of routes that pass through a given node describe how much con-

gestion it has. For example, a congestion ratio of 0.5 indicates that half the routes in the

network pass through a given node (and it should expect to see about half of all traffic).

Figure 6.6 shows, how without long peers the network is highly congested in centrally

located nodes. Using long-hops most traffic can bypass the central nodes by using a long

peer link to route over the potentially congested center of the network.

Figure 6.5 is a histogram that shows the distribution of load in the network. Without

long-hops, most nodes have low congestion but a small amount of nodes have very high

congestion. By adding long-hops, we lower the overall congestion and reduce the severity of

congestion on the small portion of more central nodes.

6.6 Conclusions

We have shown that a decentralized algorithm for embedding overlay networks is possible

by building a greedy traversable graph to augment a greedy embedding. This approach is

possible because we work under different assumptions than previous work, as we are attempt-

ing to approximately embed a subset of a very large scale free graph rather attempting to

perfectly embed the entire internet into a scale free graph. We have shown that even a poor

approximation of hyperbolic embedding can dramatically decrease path stretch and that a

finite amount of long-peers can dramatically reduce network congestion and disproportionate

query load in the network.

Despite their poor latency optimization, DHTs have seen increasing adoption as orga-

nizational methods in new P2P systems. Application of this technique will increase the

efficiency of systems already in common use and increase the viability of using a DHT to

organize novel systems.

We consider application of this system a straightforward practice extending previous work
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in DGVH [10], using hyperbolic embedding in a real system presents a new issue concerning

methods of backing up DHT records. Previous DHTs could store replicas of data most

efficently at points adjacent to the host in the DHT. Peers in the hyperbolic embedding are

more likely to be physically close to one another and statistical assumptions concerning the

independence of failure in adjacent nodes should be re-examined before implementation.

While we have shown that a non-optimal hyperbolic embedding brings dramatic improve-

ment to latency reduction, future research should focus on more intelligent mechanisms for

selecting an insertion location in the network. It is important to balance the capacity to

select an optimal insertion location versus the amount of work required to do so in order to

retain the ability of the network to scale.
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Chapter 7

Conclusion

When I began to focus on DHTs early in my graduate program, I received reviews cautioning

me against research into the area. It was considered a “mature” space where there was not

room for further improvement. Naturally this commentary galvanized my resolve to further

exploration of how DHTs could be applied and implemented.

Using ChordReduce [48], I have shown that DHTs can be utilized as a mechanism for

organizing tasks other than data storage. As part of this, we found that DHTs have desirable

properties for efficient one-to-all and all-to-one message passing. While the resulting software

was overall inefficient (It was written in python by novice graduate students), it showed that

with efficiency improvements DHTs could realistically be utilized to efficiently coordinate

work on a global scale.

After we showed DHTs had strong applications, I explored methods for generalizing

the behavior we saw in existing DHT mechanisms. Chord and Kademlia were generally

considered totally distinct methods of accomplishing the features required of a DHT. Using

DGVH and UrDHT I was able to show that DHTs all implemented specific instances of a

more general behavior of owning a Voronoi Region and ensuring links along the Delaunay

Triangulation. While implementing algorithms to calculate Voronoi Regions and Delaunay

Triangulation in different distance metrics was difficult, DGVH provided a quick and effective

method of doing so.

Using DGVH, we built UrDHT to prove our point with functional replicas of Chord and

Kademlia using our abstracted logic. UrDHT has show itself to have value well beyond being
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an experimental testbed for this dissertation. I look forward to seeing what the open source

community builds using UrDHT, which already boasts features never considered in this work

because it provides the capacity for others to explore variations on DHT behavior.

When implementing DHTs for practical purposes, especially ChordReduce, it made sense

to explore mechanisms for improving robustness. The idea of the Reactive K-Nearest backup

strategy was initially explored in ChordReduce and once we had a more general model for

discussing DHTs it made sense to discuss the efficacy of replication strategies. Discussing

DHT reliability in terms of Half-lives provides a method of accurately discussing the robust-

ness of DHTs and similar systems against data loss. I proposed the Reactive K-Nearest

backup strategy as an effective mechanism for robustness that has the potential to change

how DHTs are treated in terms of reliability. Reactive K-Nearest provides a way for DHTs to

go from being considered low reliability storage to high reliability and dramatically expands

DHT’s use cases.

Where before, reliably storing a record for any period of time without was not a viable

options, Reactive K-nearest allows records to be stored at very high reliability. This provides

the potential for a decentralized robust public data store that could be expected to be usable

in the longer term of human development. Future work should similarly consider the reality

that techniques and machines built by computer engineers and computer scientists soon need

to stop being disposable. We have to begin designing and implementing infrastructure and

tools in both software and hardware that will last to be utilized, maintained and understood

by our ancestors.

A fundamental concern I had when first implementing and utilizing DHTs was their

tendency to send a query’s path waltzing back and forth across the face of the earth. During

testing of ChordReduce, we linked two large populations of nodes in different Amazon AWS

[3] regions, we found that a query could bounce back and forth across the country between

Virgina and Washington state many times before finally resolving to be a in the local cluster

and the time it spent doing that dramatically impacted our performance. Minimizing latency
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while also preserving the scalability of a DHT was a challenge that proved intractable until

the capacity to generalize DHTs to operate in any metric came in the form of DGVH and

UrDHT.

Previous work by Robert Kleinberg [32] considered the possibility of using a hyperbolic

space to minimize latency, but lacked a method of usefully embedding network latency and

ensuring topology maintenance in the hyperbolic space. As I had just invented a method

of topology maintenance that I had shown functioned well in hyperbolic space it seemed

suitable to apply it to Kleinberg’s open problem. While the greedy insertion method I

present is clearly producing poorer quality embeddings than Kleinberg envisioned, it has a

clear capacity to reduce the DHT queries latency at all the network scales that I expect will

be witnessed by humans for the next few generations.

After considered a DHT’s capacity to be a long-term surviving system, I have grown

increasingly motivated by the idea that P2P systems can provide services like messaging,

file sharing, and distributed computing with an expectation of continued service far beyond

that of what any private organization could provide. A P2P system based on a DHT will

always continue to function so long as there is public interest in supporting it. I believe that

while it may be a slow process, the world’s people will select for such persistent services and

that they will only increase in usage and utility with time.
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