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ABSTRACT

Building query graphs from questions is an important step in complex question answering
over knowledge graph (Complex KGQA). In general, a question can be correctly answered if
its query graph is built correctly and the right answer is then retrieved by issuing the query
graph against the KG. Therefore, this paper focuses on query graph generation from natural
language questions. Existing approaches for query graph generation ignore the semantic
structure of a question, resulting in a large number of noisy query graph candidates that
undermine prediction accuracies. In this paper, we define six semantic structures from
common questions in KGQA and develop a novel Structure-BERT to predict the semantic
structure of a question, and then rank the remaining candidates with a BERT-based ranking
model. Extensive experiments on two popular benchmarks MetaQA and WebQuestionsSP

demonstrate the effectiveness of our method as compared to state-of-the-arts.

INDEX WORDS: Question Answering over Knowledge Graph, BERT, Ranking
Model, Classification
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CHAPTER 1
INTRODUCTION

Knowledge graph (KG) is a graph structured database Miller (1995), in which nodes rep-
resent entities (e.g., Hedgehog in the Fog, Sergei Kozlov), and edges reflect the relations
between entities (e.g., Hedgehog in the Fog - written_by - Sergei Kozlov). Users can get
crisp answers by querying KGs with natural language questions, and this process is called
Question Answering over Knowledge Graph (KGQA). Recently, consumer market witnesses
a widespread application of this technique in a variety of virtual assistants, such as Apple
Siri, Google Home, Amazon Alexa, and Microsoft Cortana, etc.

Early works Bordes et al. (2015); Golub and He (2016) on KGQA mainly focus on simple
questions, such as where is the hometown of Obama? This question only involves in one
relation path (e.g., hometown or birth-place) in KG, and is relatively easy to solve. However,
many questions in daily QA sessions are often more complex, manifested by multi-hop rea-
soning or questions with multiple constraints. Therefore, recently there is a flurry of interests
on complex KGQA Shi et al. (2021); Yadati et al. (2021).

There are two types of complexity when dealing with complex KGQA, i.e., multi-hop
questions and questions with multiple constraints (See Figure 1.1 for example). Question
1 in Figure 1.1 is a typical multi-hop question, to which the answer is related to Yuriy
Norshteyn with two-hop relations: directed.by.reverse and written.by. In response to
this challenge, Xu et al. (2019) enhances the traditional Key-Value Memory Neural Networks

(KV-MemNNs) Miller et al. (2016) for multi-hop question answering. They design a query



Question 1: Which person wrote the films directed by Yuriy Norshteyn?

Q directed_by_reverse 7\ written_by O
_/

Topic entity Answer
Yuriy Norshteyn Hedgehog in the Fog Sergei Kozlov

Question 2: What is Cher's son's name?

Q person.children /N  person.gender ‘O

Topic entity Answer Constraint
Cher Chaz Bono Male

Figure 1.1 (Q1) Example question involving multi-hop reasoning, and (Q2) Example question
with constraints

updating strategy to decompose the question and predict the relevant relation paths at
each hop. TransferNet Shi et al. (2021) is an effective and transparent model for multi-hop
questions; it attends to different parts of the question at each hop and computes activated
scores for relation path prediction. Despite the promising results, it’s still challenging for
these models to predict relation paths accurately at each hop, and thus suffer from error
propagation over multi-hop reasoning. Similarly, Question 2 in Figure 1.1 is an example
of question with constraints. Apparently, there is a single relation path between the topic
entity Cher and the answer Chaz Bono, but the constraint of person.gender=Male must be
satisfied. To handle this type of complex questions, many works built on the idea of query
ranking are proposed Yih et al. (2015); Lan and Jiang (2020); Chen et al. (2020), which
rank candidate queries by the similarity scores between question and candidate queries.
Specifically, these ranking methods use query graphs to represent queries, and explore various

strategies to generate candidate query graphs for ranking. Typical strategies assume the



answers are within n hops of topic entity, and enumerate all the relation paths within n
hops to generate candidate query graphs. Although this candidate generation strategy can
yield all valid query graphs from a topic entity, they have two main limitations: (1) The
generated candidate query graphs are very noisy. As shown in Figure 1.2(a), a candidate
query graph with an incorrect structure is presented; this candidate query graph is generated
by the traditional enumeration strategy but lacks of the constraint on person.gender, which
can incur considerable error in query graph ranking (See Table 5.3). For the example in
Figure 1.2(a), both parent and birth.place are relevant to the question; even though this
candidate query graph has an incorrect semantic structure (to be defined in Sec. 3.2), it is
still challenging for ranking models to demote it below the correct query graph — the one in
Figure 1.2(b). (2) When building a ranking model to rank query graphs, recent works Lan
and Jiang (2020) treat the candidate query graph and question as a sequence of words and
leverage BERT Devlin et al. (2018) to extract feature representation from its pooled output.
However, this pooled output is usually not a good representation of the semantics of the
input sequence Khodeir (2021). Therefore, improved ranking models are to be developed.
To mitigate the aforementioned issues, this paper proposes SSKGQA, a Semantic Struc-
ture based framework for complex KGQA. We represent both the multi-hop questions and
questions with constraints in a way similar to query graphs' and rank the generated can-
didate query graphs by the similarity scores between question and candidate query graphs.

Inspired by Chen et al. (2020), if the structure of a question is known in advance, the noise

'For example, one candidate query graph for Question 1 in Figure 1.1 can be written as
Yuriy.Norshteyn — directed.by.reverse — y — written.by — x.



Question: What is the birth place of Queen Isabella 's mother?

Answer: Lisboa

| Queen Isabella | [ Queen Isabella ]
parent parent

| Juan Il dg Castilla | | Isabel d(; Portugal
birth place birth place

| Tc‘)'ro | | Lisi)oa |

(a) (b)

Figure 1.2 Example two-hop candidate query graphs for a question with constraints. (a) A
candidate query graph with an incorrect semantic structure, (b) A candidate query graph
with a correct semantic structure.

in candidate query graphs can be reduced significantly by filtering. Thus, SSKGQA first
predicts the semantic structure of a natural language question, which is then used to filter
out noisy candidate query graphs (which have incorrect structures).

Specifically, we define six semantic structures based on the question topology that is
introduced by Srivastava et al. (2021). With the defined semantic structures, our SSKGQA
processes a natural language question in two stages. In the first stage, we develop a novel
Structure-BERT to predict the semantic structure of a natural language question, which
is then used to filter out noisy candidate query graphs and produce a set of query graph
candidates that match the predicted structure. In the second stage, we rank the remaining
candidate query graphs of a question by a BERT-based ranking model and identify the top-
1 candidate query graph, which is then issued to retrieve the final answer from a KG. Our
experiments demonstrate that this semantic structure based query graph prediction strategy
is very effective and enables SSKGQA to outperform state-of-the-art methods.

Our main contributions are summarized as follows. (1) We propose SSKGQA, a semantic

structure based method to predict query graphs from natural language questions. SSKGQA



can handle both multi-hop questions and questions with constraints and is a unified frame-
work for complex KGQA. (2) We develop a novel Structure-BERT to predict the semantic
structure of each question, and a BERT-based ranking model with a triplet loss to identify
the top-1 query graph candidate. (3) Compared to state-of-the-arts methods, our SSKGQA

demonstrates superior performance on two popular complex KGQA benchmarks.



CHAPTER 2
RELATED WORK

2.1 Multi-hop Question Answering

Current works on multi-hop question answering mainly focus on how to retrieve answers
by calculating the relation paths step by step. In general, a right answer can be retrieved
if the relation paths are identified correctly at each hop. Xu et al. (2019) enhances the
traditional Key-Value Memory Neural Networks (KV-MemNNs) Miller et al. (2016) and
designs a query updating strategy to decompose the question and predict the relevant relation
paths at each hop. TransferNet Shi et al. (2021) calculates the relation path scores based
on an updated question at each hop, but they leverage the attention mechanism to update
question representations over multiple hops. More recently, Cai et al. (2021) introduces the
dual process theory to predict the relation paths at each hop. Although these methods
achieve promising results, they suffer from error propagation when predicting the relation
paths step by step. To mitigate this issue, SSKGQA identifies the top-1 query graph by
directly calculating the similarity scores between question and candidate query graphs (or
similarly relation paths).

On the other hand, Sun et al. (2019a, 2018) incorporate external corpus to enhance the
performance of KGQA. They focus on how to get the answers by constructing a subgraph
for each question. A challenge of this method is that it is difficult to construct a subgraph
around topic entity because we need to identify relevant entities from external corpus, and

this process is error-prone. Saxena et al. (2020) predicts the answers by utilizing the KG



embedding model. However, complex questions with long relation paths can reduce the
learnability of KG embedding significantly. Our SSKGQA does not need external corpus
to improve prediction accuracies and can solve complex multi-hop questions by a semantic

structure based ranking.

2.2 Complex Questions with Constraints

For questions with constraints, a sequence of works focus on how to reach the answers by
generating query graphs. Yih et al. (2015) enumerates all possible entities and relation
paths that are connected to a topic entity to generate candidate query graphs, and uses
a CNN-based ranking model to identify the query graph. Following a similar candidate
query graph generation of Yih et al. (2015), Maheshwari et al. (2019) propose a novel query
graph ranking method based on self-attention. Qin et al. (2021) introduces a query graph
generation method by using their proposed relation subgraphs. However, these methods
largely ignore the noise when generating the candidate query graphs, which undermines the
predictive performance during query graph ranking. To mitigate this issue, SSKGQA first
predicts the semantic structure of a question, which is then used to reduce the noise in

candidate query graphs.

2.3 Query Graph Ranking

Current research on KGQA mainly focuses on how to generate the candidate query graphs,
and there are only a few works exploring how to rank the candidate query graphs. Lan and

Jiang (2020) concatenates question and candidate query graph into a single sequence, and



leverages BERT Devlin et al. (2018) to process the whole sequence for ranking. However,
Reimers and Gurevych (2019) show that this strategy is inefficient as it can incur a massive
computation due to the combinatorial nature of concatenation of question and candidate
query graphs, leading to duplicated calculation. Chen et al. (2020) explore GRUs to encode
the question and query graph information, and utilize a hinge loss to learn a ranking model.
However, GRUs can only learn a limited interaction among words in a sentence, while the
global interactions among words has proven to be critical for text representation in various
NLP applications Khan et al. (2020). To solve the aforementioned issues, SSKGQA exploits
separated BERT models to process questions and query graphs, respectively, and reuses
the extracted features to avoid duplicated calculation and leverages a triplet loss to train a

BERT-based ranking model.



CHAPTER 3
PRELIMINARIES

3.1 Query Graph

Query graph is a graph representation of a natural language question Yih et al. (2015). See
Figure 1.2 for example. A query graph usually contains four types of components: (1) a
grounded entity, which is an entity in KG and is often the topic entity of a question, e.g.,
Queen Isabella in Figure 1.2. (2) an existential variable, which is an ungrounded entity,
e.g., Isabel de Portugal in Figure 1.2. (3) a lambda variable, which is the answer to
question but usually an ungrounded entity, e.g., Lisboa in Figure 1.2. (4) some constraints
on a set of entities, e.g., gender in Figure 1.2. A question can be correctly answered if its
query graph is built correctly and the right answer can be retrieved by issuing the query

graph (represented by a SPARQL Pérez et al. (2009) command) to a KG.

3.2 Semantic Structures

As observed by Chen et al. (2020), if the structure of a question is known in advance,
the noise in candidate query graphs can be reduced significantly by filtering. Thus, in this
paper we define six semantic structures based on the question topology that is introduced
by Srivastava et al. (2021). These six semantic structures are listed in Figure 3.1 and example
questions for each semantic structure can be found in Figure 1 in Appendix. As we can see,

a semantic structure is a graph that is an abstract of the query graphs of the same pattern.



Figure 3.1 Six semantic structures defined in the paper. There are three semantic structures
for questions in MetaQA: (551, S52, §5%), and five semantic structures for questions in
WSP: (551, 552, 5S4, SS5, SS6).

MetaQA
Dataset WSP
Hop-1 Hop-2 Hop-3
Train 100 100 100 |91.37
Test 100 100 100 |77.02

Dev 100 100 100 | n/a

Table 3.1 Semantic structure coverage (%) for questions in the training, test and development
sets of MetaQA and WSP.

Typically, a semantic structure consists of four components {F,r,v,C}, where E denotes
an entity, r refers to all types of relations, v is an existential variable, and C' denotes a
constraint.

To identify the semantic structure of a question, we can train a classifier for prediction.
But first we need to annotate each training question with its semantic structure. Fortu-
nately, this annotation can be achieved readily for questions in MetaQA and WebQuestion-
sSP (WSP) since these questions are either partitioned by number of hops or accompanied
by the SPARQL commands. Details on question annotation are provided in Sec. B in Ap-
pendix. By annotating the questions in MetaQA and WSP, we found that these six semantic

structures can cover 100% of questions in MetaQA, and 77.02% of questions in the test set



of WSP as shown in Table 3.1. It is challenging to design additional semantic structures to
cover 100% of questions in WSP because there are some unusual operators in WSP, such as
Or and <=, which are difficult to map to a common semantic structure. Even though there
is only a 77.02% coverage on the WSP test questions, our experiments show that SSKGQA
already outperforms state-of-the-art methods on WSP. As a future work, we plan to explore

new techniques to cover the remaining 22.98% of questions in WSP.
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CHAPTER 4

THE PROPOSED METHOD

We first provide an overview of SSKGQA, and then discuss its main components: (1)

Structure-BERT and (2) query graph ranking in details.

4.1 Overview

The overview of our proposed SSKGQA is depicted in Figure 4.1. Given a question g,
following previous works Saxena et al. (2020); Chen et al. (2020); Cai et al. (2021) we
assume the topic entity of ¢ has been obtained by preprocessing. Then the answer to g is
generated by the following steps. First, the semantic structure of ¢ is predicted by a novel
Structure-BERT classifier. For the example in Figure 4.1, ¢ is a 2-hop question and the
classifier predicts its semantic structure as SS2. Second, we retrieve all the candidate query
graphs (CQG) of ¢ by enumeration!, and use the predicted semantic structure SS2 as the
constraint to filter out noisy candidate query graphs and keep the candidate query graphs
with correct structure (CQG-CS). Afterwards, a BERT-based ranking model is used to score
each candidate query graph in CQG-CS, and the top-1 highest scored candidate is selected
as the query graph ¢ for question ¢. Finally, the selected query graph is issued to KG to

retrieve the answer Sergei Kozlov.

'For clarify, only 1-hop and 2-hop candidate query graphs are considered in this example.



Question: Which person wrote the films directed by Yuriy Norshteyn?

Inpu't |—D| Structure-BERT l—»: SS2 |
question |

Enumerate all | —————— I T
_ CQG-CS
candidate query| €1 | _ 777
graphs | el-r3 I [TeT-ri-e27r2 |
el-rl-e2-r2 | el-r3-e4-rs |
: el-r3-e4-r5 | |_e_113£4_’riJl
-r3-e4-ra |
Letredd |
CQG BERT-based
. Ranker
Yuriy
Norshteyn 4 ___}____'
\ | e1-r3-e4-r5 |
Hedgehog 4 |
r

in the Fog

) Sergei Kozlov
Sergei Kozlov

Figure 4.1 Overview of SSKGQA. A subgraph related to Yuriy Norshteyn from a KG is
provided for illustration.

4.2 Structure-BERT

Given a question ¢, we first need to predict its semantic structure, which is a multi-class
classification problem that classifies question ¢ to one of the six semantic structures defined
in Figure 3.1.

Figure 4.2 depicts the architecture of Structure-BERT. The input to Structure-BERT is
question ¢ and its topic entity te. The output of Structure-BERT is a probability distribution
over six semantic structures, i.e., p(y|(q,te),d), where 6 denotes the model parameters of
Structure-BERT. Structure-BERT contains three sub-modules. Question Encoder encodes
question ¢ by a BERT language model Devlin et al. (2018), and the final hidden state
corresponding to token [CLS] is used as the question embedding e?. Entity Encoder
leverages a pre-trained knowledge embedding model, such as TransE Bordes et al. (2013) or

ComplEx Trouillon et al. (2016), to extract the entity embedding €. Next, the extracted



Full connected layer

RotatE (Eq.1)

eq
question
representation
h
1 -

(e )T ) = (Tm ) (Tor ) (T ) (Tt ) ( entity‘vector )

b

\ 4

r 3

BERT
Entity Encoder

[ Eias, ][ E, ] [ Ema2 ] [ Ema ] [ Em ] [E[SEP]] e.g., TransE
7 F F 1 t t .
(Justin) (Bieber) (Brother)([SEP])

Question g Topic entity te

Figure 4.2 Structure-BERT: given a question and its topic entity, the model predicts the
semantic structure of the question.

question embedding e? and entity embedding e” are fed to a RotatE module for information
fusion. First, we utilize a pre-trained RotatE Sun et al. (2019b) model to calculate a “tail”
embedding e’ using e” and e?, and then fuse the topic entity, question and “tail” embeddings

by combining e”, e? and e’ to a latent representation s by

_h _ _h . h
e’ =ey T e,

~q _ 4 . q
e =ep e,
_t h

o~ h S h h
e =e' xel=epef —eper,+ilen,el,+ener,)

s=c"+elté, (4.1)

where e}, (e};) denotes the lower (higher) half of vector e*. As such, €* is a complex vector



whose real (imaginary) part is from e}, (e},). Therefore, we can convert between e* and e*
readily.

Finally, the latent representation s is fed to a fully connected layer, followed by a soft-
max for classification. The whole network is fully differentiable and can be optimized by
minimizing the traditional cross-entropy loss.

To train Structure-BERT, we need to annotate questions with their semantic structures
to develop a training, validate and test set. As discussed in Sec. 3.2, this annotation can be
conducted readily for questions in MetaQQA and WSP. The details are provided in Sec. B in

Appendix.

4.3 Query Graph Ranking

Another important component of SSKGQA is a BERT-based ranking model for query graph
ranking that can be trained by a triplet loss Schroff et al. (2015). Specifically, the ranking
model has three inputs: (1) question ¢={[CLS], wy, ws, -+, wy,,, [SEP]}, where w; is the
i-th word of ¢; (2) positive query graph? g°P={[CLS], uy, us, - - -, u,, [SEP]}, where u; is the

(13X

i-th unit of a query graph that is split by space or special symbol such as “.”. For example,
given query graph (Natalie Portman, film.actor.film, v), uj=Natalie, up=Portman,
. and ug=v; and (3) negative query graph ¢" that is a candidate query graph in CQG-CS

except the positive candidate of the question.

We utilize a BERT model f(.) to extract the semantic representations f(q), f(¢”), f(g")

2The positive query graph of a question can be found from the relation paths provided in MetaQA or the
SPARQL command provided in WSP.



for q, g%, g", respectively. This BERT model is built on a pre-trained BERT from Hugging
Face?; we add one extra multi-head attention layer on top of the hidden state of the pre-
trained BERT (See the ablation study in Sec. 5). This BERT-based ranking model f(.) is

then optimized by minimizing the triplet loss Schroff et al. (2015)

max([|f(q)=f(¢") =1 (@)= (g") | +,0), (4.2)

where ||.|| denotes the Euclidean distance and « is a margin parameter, which we set to 1 as
default.

During training, the triplet loss reduces the distance between f(q) and f(g?), while
enlarging the distance between f(q) and f(g"™). At inference time, we calculate the similarity
scores between question and its candidate query graphs from CQG-CS, and choose the top-1

highest scored candidate as query graph g to retrieve final answer from KG.

3https://huggingface.co/bert-base-uncased



17
CHAPTER 5

EXPERIMENTS

We evaluate the performance of SSKGQA on two popular KGQA benchmarks: MetaQA and
WebQuestionsSP (WSP), and compare it with seven state-of-the-arts methods. Ablation
study is also conducted to understand the effectiveness of different components of SSKGQA.

Our PyTorch source code is provided at https://github.com/ToneLi/SSKGQA. All our

experiments are performed on Nvidia RTX GPUs.

5.1 Datasets

e MetaQA Zhang et al. (2018) is a large scale KGQA dataset with more than 400k
questions. It contains questions with 1, 2 or 3 hops. In our experiments, we use the
vanilla version of the QA dataset. MetaQA also provides a KG from the movie domain

with 43,233 entities, 9 relations and 134,741 triples.

e WebQuestionsSP (WSP) Yih et al. (2016) is a small scale KGQA dataset with
5,119 questions which are answerable through Freebase KG. Since Freebase has more
than 338,580,000 triples, for ease of experimentation we use a light version provided by

Saxena et al. (2020). This smaller KG has 1.8 million entities and 5.7 million triples.

The statistics of training, development and test datasets of MetaQA and WSP is provided
in Table 5.1. Compared to MetaQA, WSP is relatively small QA dataset even though its

KG is much larger than that of MetaQA.


https://github.com/ToneLi/SSKGQA

Dataset Train  Dev  Test
MetaQA- hopl 96,106 9,992 9,947
MetaQA- hop2 118,980 14,872 14,872
MetaQA- hop3 114,196 14,274 14,274
WSP 3,304 - 1815

Table 5.1 Statistics of the MetaQA and WSP datasets

5.2 Hyperparameter Settings

Structure-BERT

We set the dropout rate to 0.1, batch size to 32, and use AdamW optimizer Loshchilov and
Hutter (2017) with the learning rate of 5e-8. We also apply gradient clipping to constrain the
maximum value of Ly-norm of the gradients to be 1. To extract the latent representations of
topic entities, pre-trained ComplEx Trouillon et al. (2016) and TransE Bordes et al. (2013)

are adopted for MetaQA and WSP, respectively.

BERT-based Ranking Model

We add one extra multi-head attention layer on top of the hidden state of the pre-trained
BERT. This extra multi-head attention layer contains three attention heads and a 3072-dim
fully connected layer. The dropout rate is set to 0.5. We use AdamW Optimizer Loshchilov
and Hutter (2017) with the learning rate of 2e-5. We also use gradient clipping to constrain

the max Lo-norm of the gradients to be 1.



5.3 Baselines

We compare our SSKGQA against seven state-of-the-art complex KGQA models: 1) Graft-
Net Sun et al. (2018), which answers the questions based on the subgraphs it creates. 2)
PullNet Sun et al. (2019a), which proposes a “pull” operation to retrieve the relevant infor-
mation from KG and external corpus. 3) Key-Value Memory Network (KV-MemNN) Miller
et al. (2016), which uses key-value pairs as the memory units to answer questions. 4) Embed-
KGQA Saxena et al. (2020), which proposes a knowledge embedding method for Complex
KGQA. 5) TransferNet Shi et al. (2021), which utilizes an interpretable model for complex
KGQA. 6) DCRN Cai et al. (2021), which proposes a Bayesian network to retrieve the final
answers. For MetaQA, we also include 7) VRN Zhang et al. (2018) as the baseline, which
proposes an embedding reasoning graph and utilizes variational inference to improve the

performance of Complex KGQA.

5.4 Comparison with State-of-the-Arts

Table 5.2 reports the performances of SSKGQA and seven state-of-the-art methods on
MetaQA and WSP. As can be seen, the performances of KV-MemNN are limited by the
error propagation over multi-hop reasoning, i.e., as the number of hops increases, its perfor-
mance is degraded significantly. GraftNet and PullNet perform similarly well on all datasets
(expect MetaQA-hop3) as both of them rely on subgraphs to retrieve the answers. Com-
pared to GraftNet, PullNet has much improved results on MetaQQA-hop3, indicating that

the proposed pull operation is more suitable to complex questions. EmbedKGQA achieves



Model Hop-1 Hop-2 Hop-3 WSP
KV-MemNN  96.2 82.7 489 46.7

VRN 97.5 89.2 62.5 -

GraftNet 97.0 948 777 66.4
PullNet 97.0 99.9 914 68.1
EmbedKGQA 97.5 988 94.8 66.1
DCRN 975 99.9 99.3 67.8

TransferNet 97.5 100 100 71.4
SSKGQA 99.1 99.7 996 71.4

Table 5.2 Hits@1 values of different KGQA methods on MetaQA and WSP. Hop-n denotes
the hop-n questions of MetaQA.

a good performance on MetaQA, but a relatively lower performance on WSP. This is be-
cause treating question as a relation path in a triple may introduce more noise especially
when the question is more complex. Even though DCRN achieves the best performance
on MetaQA-hop2, it still suffers from error propagation when inferring the reasoning paths.
For more complex WSP questions, DCRN has a 3.6-point lower accuracy than that of our
method. In general, TransferNet is the most competitive one to our SSKGQA. While both
methods have the best results on WSP, SKGQA has an improved performance on MetaQA-
hopl over TransferNet, and is almost neck to neck on hop-2 and hop-3. Overall, SSKGQA
outperforms or achieves comparable exact-match hits@1 performances to the other methods,

demonstrating the effectiveness of our proposed method.

5.5 Ablation Study

We further investigate the effectiveness of different components of SSKGQA, including se-

mantic structure based filtering, Structure-BERT, the BERT-based ranking model, etc.



Hop-1 Hop-2 Hop-3 WSP
w/o SS 99.11 93.71 62.10 45.89
w/SS  99.26 99.03 95.69 58.51

Table 5.3 Hits@1 values of SSKGQA w/ SS and w/o SS on MetaQA and WSP.
5.5.1 Impact of Semantic Structure based Filtering

One of the core ideas of SSKGQA is the semantic structure based filtering. In this section,
we evaluate the effectiveness of this operator by enabling / disabling it and report the final
performances of SSKGQA, which correspond to the w/ SS and w/o SS results in Table 5.3.
For the purpose of illustration, when we enable the filtering (w/ SS), we assume that our
Structure-BERT classifier can correctly predict the semantic structures of all the questions
with a 100% accuracy, and therefore the impact of the filtering isn’t affected by the accuracy
of the classifier. For ease of experimentation, we use a BIGRU as the ranking model in this
experiment.

Table 5.3 reports the impacts of the semantic structure based filtering. It can be observed
that for simple questions, e.g., MetaQA-hopl, SSKGQA w/ SS and w/o SS have very similar
performances. However, when the questions are more complex, SSKGQA w/ SS achieves
significantly higher accuracies (sometimes over 10%) than SSKGQA w/o SS, demonstrating

the effectiveness of the semantic structure based filtering for complex questions.

5.5.2 Accuracy of Structure-BERT

Structure-BERT plays a critical role in SSKGQA as it predicts the semantic structure of a

question, which is then used to filter out noisy candidate query graphs. In this section, we



Model Hopl Hop2 Hop3 WSP
BiGRU 96.44 94.49 98.83 80.95
BERT 94.52 98.70 96.22 82.62
DistilBERT 95.66 98.30 97.02 83.37
CamemBERT  96.66 97.30 98.26 81.90
Structure-BERT 99.24 99.87 99.73 86.97

Table 5.4 Classification accuracies of different classifiers on predicting semantic structures of
questions from MetaQA and WSP.

evaluate the accuracy of Structure-BERT and compare it with other design choices.

Specifically, we compare the performance of Structure-BERT with four other classifiers,
including BiGRU and three pre-trained language models: BERT Devlin et al. (2018), Dis-
tilBERT Budzianowski and Vuli¢ (2019) and CamemBERT Martin et al. (2020)). For these
four classifiers, they classify a question directly to one of the six semantic structures without
considering topic entity and information fusion as in Structure-BERT.

Table 5.4 reports the classification accuracies of different classifiers on the questions from
MetaQA and WSP. As can be seen, our Structure-BERT achieves nearly 100% accuracies on
MetaQA and 86.97% accuracy on WSP, demonstrating the effectiveness of Structure-BERT
on semantic structure prediction. Further, Structure-BERT consistently outperforms all the
other classifiers by notable margins, indicating the importance of leveraging both question
and topic entity for information fusion for semantic structure prediction. We also notice
that the classification accuracy on WSP is much lower than that of MetaQA. This is likely
due to: (1) the class imbalance issue of the WSP questions, and (2) much smaller number of
training questions in WSP (3,304) than that of MetaQA (329,282). We will leave the further

improvements of Structure-BERT on WSP to future works.



5.5.3 Performance of BERT-based Ranking Model

Model Hop-1 Hop-2 Hop-3 WSP
CNN 97.70 99.21 9291 50.24
BiGRU 98.87 98.95 95.43 56.51
BERT 99.49 99.26 99.54 71.02

BERT* (ours) 99.10 99.69 99.64 71.40

Table 5.5 Hits@1 values of different ranking models on MetaQA and WSP. BERT* denotes
our BERT-based ranker.

The BERT-based ranking model decides which candidate query graph is to be used
to retrieve the final answer. Therefore, its performance is of the paramount importance
to SSKGQA. In this section, we evaluate the effectiveness of our proposed BERT-based
ranking model and compare it with other three ranking methods, including 1) CNN Yih et
al. (2015), which uses a CNN to learn the representation of question and candidate query
graph for ranking. 2) BiGRU, which uses a BiGRU to learn the representation of question
and candidate query graph for ranking. 3) BERT Devlin et al. (2018), which uses a pre-
trained BERT! to extract the representation of question and candidate query graph for
ranking.

Table 5.5 reports the performances of different ranking models on MetaQA and WSP,
where BERT* denotes our proposed BERT-based ranking model that has one extra multi-
head attention layer on top of the hidden state of the pre-trained BERT. As we can see,
the BERT-based ranking models (BERT and BERT*) outperform the traditional CNN or
BiGRU based ranking models since the former can leverage large scale pre-trained BERT for

transfer learning. Our BERT* further improves the performance of the pre-trained BERT

Thttps://huggingface.co/bert-base-uncased



due to the additional attention layer which enables model to reweight the attention values
to different semantic units in the input and enhance the semantic representation of question
and candidate query graphs for ranking.

To validate the design choices of our BERT-based model, we run additional ablation
studies on different factors of our ranking model, such as number of negative query graphs
for the triplet loss based training and number of heads in the added multi-head attention

layer. The details are relegated to Sec. C in Appendix.
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CHAPTER 6

CONCLUSIONS

This paper introduces SSKGQA, a semantic structure based method to predict query graphs
from natural language questions. Compared to prior query graph prediction based methods,
SSKGQA filters out noisy candidate query graphs based on the semantic structures of input
questions. To this end, we define six semantic structures from common questions of the
KGQA benchmarks. A novel Structure-BERT classifier is then introduced to predict the
semantic structure of each question, and a BERT-based ranking model with a triplet loss is
proposed for query graph ranking. Extensive experiments on MetaQA and WSP demonstrate
the superior performance of SSKGQA over seven state-of-the-art methods.

As for future work, we plan to investigate techniques to design additional semantic struc-
tures to cover the remaining 22.98% of questions in WSP. We would like also to improve
Structure-BERT’s accuracy on WSP by addressing the class imbalance and data scarcity

issues of WSP.



Appendices



A Example Questions and their Semantic Structures

We provide six example questions and their corresponding semantic structures. These ex-
amples are selected from the MetaQA and WSP benchmarks. E denotes a topic entity, r

refers to all types of relations, v is an existential variable, and C' denotes a constraint.

1) What is the released time of The Corn is
Green?

2) What are the genres of the films which directed by
Deon Taylor?

’ [E] The Corn is Green

rl release_year

’ [E] Deon Taylor
rl directed_by_reverse

r2 has_genre

3) What are the genres of movies which share

4) What county is Greeley Colorado in?

Squirm

directors with Squirm?
@
rl

directed_by

‘ [E] Greeley Colorado

rl location.location.containedby

r2 common.topic.notable_types

US County

5) Who played Jacob Black in Twilight?

6) Where did Scott Fitzgerald go to college?

’ [E] Twilight

rl film.film.starring

r2 film.performance.actor

Jacob Black

r3 film.performance.character

. [E] Scott Fitzgerald

r1 people.person.education

common.topic.notable_types
3
r College/University

Figure 1 Examples questions and their semantic structures

B Semantic Structure Annotation for Training Questions

We need to annotate each training question to a semantic structure in order to train

Structure-BERT for semantic structure prediction. Here we describe how we can auto-



matically annotate each training question in MetaQA and WSP.

A MetaQA

Annotating semantic structure for each training question in MetaQA is straightforward.
Since training questions are organized by number of hops, all training questions with 1-hop

are labeled to SS1, the 2-hop ones to SS2, and the 3-hop ones to SS3, respectively.

B WSP

The SPARQL command for each question is provided in WSP. Thus, we can readily extract
the query graph of a question from its SPARQL command. See an example in Figure 2, where
a query graph is shown on the left and the corresponding SPARQL command is shown on
the right; the correspondences between two parts are marked by red lines. Once the query
graph is extracted, each training question can be readily annotated to a semantic structure

based on its query graph.

Q: what character did Natalie Portman play in star wars?"

Natalie Portman PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT 2x

'' OR langMatches(lang(?x), 'en'))

Figure 2 Mapping from a SPARQL command to its query graph



Number of Neg. 1 ) 10 50

hits@1 64.57 68.87 70.08 70.79
Number of Neg. 100 200 300 500
hits@1 71.29 71.23 71.29 70.58

Table 1 Hits@1 values on WSP of our BERT-based ranking model when trained with different
number of negative query graphs.

C Additional Ablation Study

Number of negative query graphs

Given a question, a plenty of negative query graphs can be generated by enumeration from
a KG. By analyzing the questions in WSP, we found that the maximal number of negative
query graphs that can be extracted for WSP is around 500. We need to determine a proper
number of negative samples to train the ranking model with the triplet loss. To this end, we
evaluate the performances of our BERT-based ranker when trained with different numbers of
negative samples. The results are reported in Table 1, where 8 different number of negative
samples are considered. As we can see, when number of negative samples is over 100, the
ranking model achieves improved hits@1 performances; when n = 100 our BERT-based

ranking model yields the best hits@1 with a good run-time performance.

Number of heads

Number of Heads 1 3 6
hits@1 71.29 71.40 70.63

Table 2 Hits@1 values on WSP of our BERT-based ranking model with different number of
attention heads in the added attention layer.

Another design choice for the extra multi-head attention layer in our BERT-based ranker



is the number of attention heads. We therefore evaluate the performance of our BERT-based
ranker with 3 different number of attention heads. The results in Table 2 shows that when

the number of attention heads is 3, our BERT-based ranker achieves the best hits@1.



31

REFERENCES

Antoine Bordes, Nicolas Usunier, Alberto Garciaduran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In International
Conference on Neural Information Processing Systems, 2013.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple
question answering with memory networks. arXiv preprint arXiw:1506.02075, 2015.

Pawel Budzianowski and Ivan Vuli¢. Hello, it’s gpt-2-how can i help you? towards the
use of pretrained language models for task-oriented dialogue systems. arXiv preprint
arXiw:1907.05774, 2019.

Jianyu Cai, Zhanqgiu Zhang, Feng Wu, and Jie Wang. Deep cognitive reasoning network for
multi-hop question answering over knowledge graphs. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages 219-229, 2021.

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin Qi. Formal query building with query
structure prediction for complex question answering over knowledge base. In International
Joint Conference on Artificial Intelligence (IJCAI), 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiw preprint
arXiw:1810.04805, 2018.

David Golub and Xiaodong He. Character-level question answering with attention. arXiv

preprint arXiw:1604.00727, 2016.



Aisha Urooj Khan, Amir Mazaheri, Niels Da Vitoria Lobo, and Mubarak Shah. Mmft-bert:
Multimodal fusion transformer with bert encodings for visual question answering. arXiv
preprint arXiv:2010.14095, 2020.

Nabila A Khodeir. Bi-gru urgent classification for mooc discussion forums based on bert.
IEEE Access, 9:58243-58255, 2021.

Yunshi Lan and Jing Jiang. Query graph generation for answering multi-hop complex ques-
tions from knowledge bases. Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiw:1711.05101, 2017.

Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer,
and Jens Lehmann. Learning to rank query graphs for complex question answering over
knowledge graphs. In International semantic web conference, pages 487-504. Springer,
2019.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suédrez, Yoann Dupont, Laurent Romary;,
Eric Villemonte de la Clergerie, Djamé Seddah, and Benoit Sagot. Camembert: a tasty
french language model. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and

Jason Weston. Key-value memory networks for directly reading documents. arXiv preprint

arXiv:1606.053126, 2016.



George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39-41, 1995.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql.
ACM Transactions on Database Systems (TODS), 34(3):1-45, 2009.

Kechen Qin, Cheng Li, Virgil Pavlu, and Javed Aslam. Improving query graph generation for
complex question answering over knowledge base. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 4201-4207, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question an-
swering over knowledge graphs using knowledge base embeddings. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 4498-4507,
2020.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2015.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective
and transparent framework for multi-hop question answering over relation graph. arXiv
preprint arXiw:2104.07302, 2021.

Saurabh Srivastava, Mayur Patidar, Sudip Chowdhury, Puneet Agarwal, Indrajit Bhat-

tacharya, and Gautam Shroff. Complex question answering on knowledge graphs using



machine translation and multi-task learning. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pages
3428-3439, Online, April 2021. Association for Computational Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Magzaitis, Ruslan Salakhutdinov,
and William W Cohen. Open domain question answering using early fusion of knowledge
bases and text. arXiv preprint arXiw:1809.00782, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain ques-
tion answering with iterative retrieval on knowledge bases and text. arXiv preprint
arXiv:1904.09537, 2019.

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. arXww preprint arXiw:1902.10197,
2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In International Conference on Machine
Learning, pages 2071-2080. PMLR, 2016.

Kun Xu, Yuxuan Lai, Yansong Feng, and Zhiguo Wang. Enhancing key-value memory neural
networks for knowledge based question answering. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2019.

Naganand Yadati, RS Dayanidhi, S Vaishnavi, KM Indira, and G Srinidhi. Knowledge base

question answering through recursive hypergraphs. In Proceedings of the 16th Conference



of the European Chapter of the Association for Computational Linguistics: Main Volume,
pages 448-454, 2021.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing
via staged query graph generation: Question answering with knowledge base. 2015.

Wen Tau Yih, Matthew Richardson, Chris Meek, Ming Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), 2016.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Varia-

tional reasoning for question answering with knowledge graph. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.



	Semantic Structure based Query Graph Prediction for Question Answering over Knowledge Graph
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES 
	INTRODUCTION
	RELATED WORK
	Multi-hop Question Answering
	Complex Questions with Constraints
	Query Graph Ranking

	PRELIMINARIES
	Query Graph
	Semantic Structures

	THE PROPOSED METHOD
	Overview
	Structure-BERT
	Query Graph Ranking

	EXPERIMENTS
	Datasets
	Hyperparameter Settings
	Baselines
	Comparison with State-of-the-Arts
	Ablation Study
	Impact of Semantic Structure based Filtering
	Accuracy of Structure-BERT
	Performance of BERT-based Ranking Model


	CONCLUSIONS
	Appendices
	Example Questions and their Semantic Structures
	Semantic Structure Annotation for Training Questions
	MetaQA
	WSP

	Additional Ablation Study

	REFERENCES

