
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Computer Science Dissertations Department of Computer Science 

8-9-2016 

Real-time In-situ Seismic Tomography in Sensor Network Real-time In-situ Seismic Tomography in Sensor Network 

Lei Shi 

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss 

Recommended Citation Recommended Citation 
Shi, Lei, "Real-time In-situ Seismic Tomography in Sensor Network." Dissertation, Georgia State University, 
2016. 
doi: https://doi.org/10.57709/8940136 

This Dissertation is brought to you for free and open access by the Department of Computer Science at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by 
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/8940136
mailto:scholarworks@gsu.edu


REAL-TIME IN-SITU SEISMIC TOMOGRAPHY IN SENSOR NETWORK

by

LEI SHI

Under the Direction of Wenzhan Song, PhD

ABSTRACT

Seismic tomography is a technique for illuminating the physical dynamics of the Earth

by seismic waves generated by earthquakes or explosions. In both industry and academia,

the seismic exploration does not yet have the capability of imaging seismic tomography in

real-time and with high resolution. There are two reasons. First, at present raw seismic

data are typically recorded on sensor nodes locally then are manually collected to central

observatories for post processing, and this process may take months to complete. Second,

high resolution tomography requires a large and dense sensor network, the real-time data



retrieval from a network of large-amount wireless seismic nodes to a central server is virtually

impossible due to the sheer data amount and resource limitations. This limits our ability to

understand earthquake zone or volcano dynamics.

To obtain the seismic tomography in real-time and high resolution, a new design of

sensor network system for raw seismic data processing and distributed tomography compu-

tation is demanded. Based on these requirements, three research aspects are addressed in

this work. First, a distributed multi-resolution evolving tomography computation algorithm

is proposed to compute tomography in the network, while avoiding costly data collections

and centralized computations. Second, InsightTomo, an end-to-end sensor network emula-

tion platform, is designed to emulate the entire process from data recording to tomography

image result delivery. Third, a sensor network testbed is presented to verify the related

methods and design in real world. The design of the platform consists of hardware, sensing

and data processing components.

INDEX WORDS: Sensor Network, Seismic Tomography, Distributed Computing, In-
network Processing.
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PART 1

INTRODUCTION

Volcanic eruption is one of the most dangerous threats to life on the Earth. In re-

cent years, more volcano activities have drawn the attention of public and scientists. Most

existing volcano monitoring systems employ expensive broadband seismometer as instru-

mentation. Also at present raw seismic data are typically collected at central observatories

for post processing. Seismic sampling rates for volcano monitoring are usually in the range

of 16-24 bit at 50-200 Hz. With such high-fidelity sampling, it is virtually impossible to

collect raw, real-time data from a large-scale dense sensor network, due to severe limita-

tions of energy and bandwidth at current, battery-powered sensor nodes. As a result, at

some most threatening, active volcanoes, fewer than 20 nodes [1] are thus maintained. With

such a small network and post processing mechanism, existing system do not yet have the

capability to recover physical dynamics with sufficient resolution in real-time. This limits

our ability to understand volcano dynamics and physical processes inside volcano conduit

systems. Substantial scientific discoveries on the geology and physics of active volcanism

would be imminent if the seismic tomography inversion could be done in real-time and the

resolution could be increased by an order of magnitude or more. This requires a large-scale

network with automatic in-network processing and computation capability.

To date, the sensor network technology has matured to the point where it is possible to

deploy and maintain a large-scale network for volcano monitoring and utilize the computing

power of each node for signal processing and distributed tomography inversion in real-time.

The methods commonly used today in the procedure of seismic tomography computation

cannot be directly employed under field circumstances proposed here because they rely on

centralized algorithms and require massive amounts of raw seismic data collected on a cen-

tral processing unit. Thus, real-time seismic tomography of high resolution requires a new
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mechanism with respect to system design, information processing and tomography inversion

computation.

In this chapter, we first give an introduction on seismic tomography. Then we present

the background and focus of this work and the organization of this dissertation.

1.1 First-arrival Traveltime Tomography

Seismic tomography is a technique for imaging the subsurface of the Earth with seismic

waves produced by earthquakes or explosions. The first-arrival traveltime tomography uses

P-wave first arrival times at sensor nodes to derive the internal velocity structure of the

subsurface. The basic workflow of traveltime tomography illustrated in Figure 1.1 involves

four steps.

Event Location Ray Tracing Tomography Inversion

Sensor Node

Seismic Rays

Estimated Magma Area

Blocks on Ray Path
Magma

Estimated Event Location

Earthquake Event

(b) (c) (d)

P-wave Arrival Time Picking

P-wave

(a)

Figure 1.1 Workflow of 3D First-arrival Traveltime Tomography.

(a) P-wave Arrival Time Picking. Once an earthquake event happens, the sensor nodes

that detect seismic disturbances record the signals. The P-wave arrival times need to be

extracted from the raw seismic data.

(b) Event Location. The P-wave arrival times and locations of sensor nodes are used to

estimate the event hypocenter and origin time in the volcanic edifice.

(c) Ray Tracing. Following each event, seismic rays propagate to nodes and pass through

anomalous media. These rays are perturbed and thus register anomalous residuals. Given

the source locations of the seismic events and current velocity model, ray tracing is to find

the ray paths from the event hypocenters to the nodes.

(d) Tomography Inversion. The traced ray paths, in turn, are used to image a 3D

tomography model of the velocity structure. As shown in Figure 1.1 the volcano is partitioned
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into small blocks and the seismic tomography problem can be formulated as a large, sparse

matrix inversion problem.

1.2 Research Background and Focus

This work is part of the project VolcanoSRI (Volcano Seismic Realtime Imaging). This

project aims to create a new paradigm for imaging 4D (four-dimensional) tomography of an

active volcano in real-time. VolcanoSRI is a large-scale sensor network of low-cost geophysical

stations that analyzes seismic signals and computes real-time, full-scale, three-dimensional

fluid dynamics of the volcano conduit system within the active network. The computed 4D

tomography model will illuminate complex, time-varying dynamics of an erupting volcano,

providing a deeper scientific understanding of volcanic processes, as well as a basis for rapid

detection of volcanic hazards.

Figure 1.2 Sensor Network for Seismic Tomography.

Realizing the VolcanoSRI system requires a transformative study on the science of

complex volcano systems and the design of large-scale sensor networks. Our approach in-

tegrates innovations on distributed tomographic algorithms, collaborative signal processing

and situation-aware networking technology for large-scale real-time sensor systems. The dis-

tributed tomography algorithm disperses the computational burden to the sensor nodes and
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performs real-time tomographic inversion within the network. Such an approach has never

been attempted before and represents a major achievement for both earth and computer

science. The team is composed of computer and earth scientists including early pioneers of

wireless sensor networks as applied to volcano monitoring. Figure 1.2 shows the idea for

real-time in-situ 3D tomography computation with VolcanoSRI.

The rest of this dissertation is organized as follows. In chapter 2, we give a survey

of the related works. In chapter 3, we propose the distributed multi-resolution evolving

tomography algorithm for tomography computation. In chapter 4, we present InsightTomo

- an in-situ seismic tomographic imaging system framework in sensor network. In chapter 5,

we give the design and implementation of the testbed system platform. Finally we conclude

this dissertation in chapter 6.
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PART 2

RELATED WORKS

In this chapter we discuss the related works in the literature of seismic tomography,

solutions for event location, ray tracing, arrival time picking and the least-squares problem.

Static tomography inversion for 3D structure, applied to volcanoes and oil field explo-

rations, has been explored since the late 1970’s [2] [3] [4]. In volcano applications, tomogra-

phy inversion used passive seismic data from networks consisting of tens of nodes, at most.

The development and application to volcanoes include Mount St. Helens [5] [6] [7], Mt.

Rainier [8], Kliuchevskoi, Kamchatka, Russia [9], and Unzen Volcano, Japan [10]. At the

Coso geothermal field, California, researchers have made significant contributions to seismic

imaging by coordinating tomography inversions of velocity [11], anisotropy [12], attenua-

tion [13] and porosity [14].

Sensor network has been deployed for monitoring in many different areas. In [15], the

sensor network was deployed to collect dense environmental and ecological data about popu-

lations of rare species and their habitats. Another sensor system was used by the researchers

to monitor the habitat of the Leach’s Storm Petrel at Great Duck Island [16]. The Ze-

branet [17] project uses sensor network nodes attached to zebras to monitortheir movements

via GPS. It is composed of multiple mobile nodes and a base station with occasional radio

contact. The sensor network was also used to monitor the bridge health [18] [19] and weather

condition as well [20].

For volcano monitoring, The first volcanic monitoring work using WSN was developed

in July 2004 [21], by a group of researchers from the Universities of Harvard, New Hamp-

shire, North Carolina, and the Geophysical Institute of the National Polytechnic School at

Reventador in Ecuador. Data collection was performed with continuous monitoring during

19 days. In 2008, a smart solution was proposed for collecting reliable information aiming to
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improve the collection of real-time information. The sensor network was deployed on Mount

St. Helens [1] for volcano hazard monitoring and run for months.

P-wave arrival picking has been studied by the community. One widely used approach is

the STA/LTA method [22] that has been using in real deployment [1] on volcano monitoring.

The STA/LTA method continuously monitors the ratio of short-term average over long-

term average on a signal. Since it is based based on RSAM (Realtime Seismic Amplitude

Measurement), which is calculated on raw seismic data samples every second, the accuracy

of STA/LTA method is not enough for tomography computation. Some methods either

determined through joint AR modeling of the noise and the seismic signal [23] or based on

in-network collaborative signal processing [24] are proposed. In seismic tomography, the

event location can also be formulated as a least-squares problem by Geiger’s Method [25].

This problem can be solved by conjugate gradient method or row action method [26]. For ray

tracing, each node can trace the ray paths based on a reference model with either bending

or shooting methods [27] [28] [29] [30] [31]. This can be naturally distributed since the ray

tracing computation is entirely local.

The methods to solve least-squares problem mainly fall into two categories, direct meth-

ods and iterative methods. Iterative methods for solving large sparse linear systems of equa-

tions are advantageous over the classical direct solvers, especially for huge systems [32].

Methods of parallelizing least-squares solutions on distributed memory architecture have

been studied for both direct and iterative methods, but there are few studies on distributing

the least-squares solutions from a wireless sensor network point of view.

A class of direct solver for least-square problem is through QR decomposition. Straková,

Gansterer and Zemen investigate randomized algorithms based on gossiping for the dis-

tributed computation of the QR factorization [33]. The algorithm is based on modified

Gram-Schmidt orthogonalization (mGS). To distribute the mGS algorithm, they pursue a

randomized decentralized QR factorization algorithm based on gossiping. Gossip-based (or

epidemic) algorithms are characterized by asynchronous randomized information exchange,

usually only within the local neighbors of each node. The advantage of this method is that
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the communication is entirely local, the problem is gossiping based algorithm converges slow

and after QR decomposition a back back substitution is required to get the least-square

solution where the nodes need to perform the computation sequentially.

More works have been done on parallelizing iterative algorithms. Renaut proposed a

multisplitting solution of the least-squares problem [34] where the solutions to the local

problems are recombined using weighting matrices to pick out the appropriate components

of each subproblem solution. This algorithm updates the solution by finding the optimal

update with respect to the weights of the recombination. The problem to distribute this

algorithm in the network is that it requires each node to broadcast the residual updates per

iteration. Yang and Brent describe a modified CGLS (MCGLS) method to reduce inner

products global synchronization points, respectively, then improve the parallel performance

accordingly [35]. This can also be potentially distributed over the network but the broadcast

communication is still required per iteration.

In the literature of signal processing, there are a few studies on consensus-based Dis-

tributed Least Mean Square (D-LMS) algorithms [36] [37] [38] [39] [40] [41] in sensor net-

works. These algorithms adopted the weighted sum of local estimations to achieve consensus.

Each sensor node maintains its own local estimation and, to reach the consensus, needs to

continuously exchange the estimation with only its neighbors in the network. Since if the pro-

cess is ergodic and stationary, the least-square estimator approaches the least mean square

estimator as the size of the data set grows, this can also be used for least-square solutions sta-

tistically. The problem is that the consensus-based methods can be slow [42] on convergence

and the communication cost increases along the the estimation vector dimension increases

(in our problem, high resolution seismic has a high-dimension estimation s). Besides, in a

large-scale sensor network, the hop distance between two sensor nodes might be very long.

In such situation, to achieve consensus, any pair of nodes need to exchange high-dimension

estimations frequently. This not only means high communication overhead but also intro-

duces long delays involving many multi-hop communications. Sayed and Lopes developed a

Distributed Recursive Least-Squares (D-RLS) strategy by appealing to collaboration tech-
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niques that exploit the space-time structure of the data, achieving an exact recursive solution

that is fully distributed [43]. This method requires a cyclic path in the network to perform

the computation on the nodes sequentially and exchanging a dense matrix between nodes.

The most popular iterative method was proposed by Kaczmarz (KACZ) [44] which

is a form of alternating projection method. This method is also known under the name

Algebraic Reconstruction Technique (ART) in computer tomography [45]. This algorithm

do not require the full design of matrix to be in memory at one time and can incorporate new

information (ray paths), on the fly. The vectors of unknowns are updated after processing

each equation of the system and this cycle repeats till it converges. The other variants of

iterative methods are symmetric ART (symART) [46] and Simultaneous ART (SART) [47].

In SymART, one cycle in ART is followed by another cycle in reverse order while in SART,

block of equations are projected instead of just single equation. All these methods are

centralized and cannot be directly applied to distributed seismic tomography.

The block parallel versions of ART have also been proposed and widely used algorithms

among them are component averaging (CAV) [48], Block Iterative- Component Averaging

(BI-CAV) [49] and component-averaged row projections (CARP) [50]. These block-parallel

algorithms use string averaging technique to combine the intermediate result of each block by

taking regular weighted average. The main idea here is to utilize the sparsity of the system

matrix as the weight for averaging. A survey paper comparing various block parallel methods

based on their performance on GPU’s are discussed in [51]. From the above methods, CARP

is more generalized and places no restriction on the system matrix or the selection of blocks.

CARP does not require any pre-processing or pre-ordering of the matrix and provides very

robust method unlike any other block parallel algorithm for solving large sparse linear system.

In CARP, a finite number of KACZ method is applied in each block and the resulting point

in each block is averaged to get next iterate. It is also proved to converge for large scale

systems [50].

In [52] we proposed an algorithm called component average distributed multi-resolution

evolving tomography (CA-DMET) which involved modification of component average type
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algorithms such as CAV and CARP for seismic tomography. This was the first algorithm

which was designed to run distributedly to solve tomography problem. Although they were

able to obtain the image it failed to deliver images with sufficient resolution and the conver-

gence stalled after certain iteration. Moreover, their algorithm was developed using regular

grids i.e. the partial differential equation is discretized over a regular cell of same dimensions.

In this paper, our main goal is to show that regular grid partition is not suitable for dis-

tributed tomography and we develop irregular grid method which outperforms CA-DMET in

terms of convergence and also communication overhead. Adaptive mesh refinement (AMR)

has been studied widely and has been used as discretization tool for partial differential equa-

tion as early as 1980 [53]. However, only until early 90’s it was used by seismology community

to solve inverse problem on small set of data [54]. [31] used SVD to interactively change the

boundaries while, [55] used genetic algorithm to optimize the parametrization. These al-

gorithms were suitable for small size data sets and required high computational power to

run efficiently. [56] came up with a less computation intensive solution to parametrize the

coefficient and this algorithm could run efficiently even for large matrices. However, this

algorithm is only suitable for centralized architecture and is not feasible to be implemented

in a distributed scenario.

Here is an analysis of the communication upper bound to distribute some of the methods

mentioned above. For more details about how to distribute the algorithms and the commu-

nication analysis, please refer to our technical report on a survey of distributed least-square

computing in networks [57]. Consider a linear system Ax = b where A ∈ Rm×n(m ≥ n)

and x ∈ Rn and b ∈ Rm, a least-squares problem is defined as minx∈Rn ||Ax− b||2. The dis-

tributed least-square algorithms can be implemented in a multi-hop networks with N nodes

and converge in O(k) iterations. In D-LMS algorithm, Davg denotes the average node degree

of the network. All the methods above have been proved to be convergent mathematically,

but there are several system design problems for directly applying them in the wireless sensor

networks. In the seismic tomography inversion problem, we intend to solve a large sparse

system (n may be as large as tens of thousands even millions) in a large-scale network (hun-
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Algorithm Communication Cost
1 distributed QR O(kNn2)
2 Multisplitting O(kN2m)
3 distributed MGLS O((k + 1)N(m+ n))
4 D-LMS O(kN(Davg + 1)n)
5 D-RLS O(Nn2)
6 CARP O(2kNn)

Table 2.1 Communication Cost Analysis

dreds of nodes), usually N � m and N � n. Considering this, the communication cost of

Multisplitting method and CARP is less than other methods if the iteration numbers are in

the same order among these algorithms. But it is hard to bound the iteration numbers of the

methods since it highly depends on the system itself (matrix condition number). Besides,

except for the D-LMS method, other methods either requires broadcast communication per

iteration or a path in the network to perform the computation sequentially on the nodes.

Broadcast communication brings not only high communication cost but also difficulties to

maintain a stable protocol for communication. Since the convergence analysis of these meth-

ods is based on the information completeness, the result is unpredictable if data loss happens

in the communication among iterations. On the other hand, sequential computation along

a path in the network or too many iterations with communication will introduce delays and

may not meet the real-time requirement of the system. In next chapter, we will discuss how

to address these challenges and present an distributed least-square solution which avoids

long-term broadcast communication and delay, at the same time, can still approximate the

least-square solution.
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PART 3

DISTRIBUTED MULTI-RESOLUTION EVOLVING TOMOGRAPHY

ALGORITHM

In this chapter, we first give the formulation of the seismic tomography computation.

Then we present the distributed multi-resolution evolving tomography algorithm and gives

the formal description of the algorithm. Also, we give an initial evaluation of the proposed

algorithm on correctness, computation and communication cost and tolerance at the end of

this chapter.

3.1 Problem Formulation

Based on the first-arrival traveltime tomography principle discussed in chapter 1. In To-

mography Inversion the volcano is partitioned into small blocks and the seismic tomography

problem can be formulated as a large, sparse matrix inversion problem.

Suppose that there are N nodes and J earthquakes, we consider a perturbation approach

here. Let s∗ be the slowness (reciprocal of velocity) model of the volcano with resolution M

(blocks). s∗ can be assumed to be a reference model, s0, plus a small perturbation ∆s, i.e.,

s∗ = s0 + ∆s. For simplicity, we use s denote ∆s in the following discussion. The initial

reference model is usually given by the interior layered structure of the earth in seismic

tomography.

We can estimate the ray travel times in Event Location by the arrival times and esti-

mated event origin times. Let t∗i = [t∗i1, t
∗
i2, . . . , t

∗
iJ ]T , where t∗ij is the travel time experienced

by node i in the j-th event. Based on the ray paths traced in Ray Tracing, the travel time of

a ray is the sum of the slowness in each block times the length of the ray within that block,

i.e., t∗ij = Ai[j,m] · s∗[m] where Ai[j,m] is the length of the ray from the j-th event to node

i in the m-th block and s∗[m] is the slowness of the m-th block. Let t0i = [t0i1, t
0
i2, . . . , t

0
iJ ]T
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be the unperturbed travel times where t0ij = Ai[j,m] · s0[m]. In the rest of this section, we

use observed travel time and predicted travel time to indicate the same meanings of t∗ij and

t0ij. In matrix notation we have the following equation,

Ais
∗ −Ais

0 = Ais (3.1)

where Ai[j,m] represents the element at the j-th row and m-th column of matrix Ai ∈ RJ×M .

Let ti = [ti1, ti2, . . . , tiJ ]T be the travel time residual such that ti = t∗i − t0i , equation (3.1)

can be rewritten as,

Ais = ti (3.2)

We now have a linear relationship between the travel time residual observations, ti,

and the slowness perturbations, s. Since each ray path intersects with the model only at

a small number of blocks compared with M , the design matrix, Ai, is sparse. The seismic

tomography inversion problem is to solve the system,

As = t (3.3)

where A = [AT
1 ,A

T
2 , . . . ,A

T
N ]T and t = [tT1 , t

T
2 , . . . , t

T
N ]T . This system is usually overdeter-

mined and the inversion aims to find the least-squares solution s such that,

s = arg min
s
‖ t−As ‖2 (3.4)

In seismic tomography, the event location can also be formulated as a least-squares

problem by Geiger’s Method [25], and the estimation vector is of length 4 (event origin time

and 3D coordinates). Since the dimension of the estimation vector is fixed and small, a

centralized solution can be applied in the network for this problem. In Ray Tracing, each

node traces ray path based on a reference model. This can be naturally distributed since the

ray tracing computation is entirely local. The fourth step is the most computationally inten-

sive and time consuming aspect of high resolution seismic tomography. The sparse system
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can be solved by conjugate gradient method or row action method [26]. However, designed

for high-performance computers, these centralized approaches need significant amount of

computational/memory resources and require the knowledge of global information. As a

result, they cannot be directly distributed in wireless sensor network. Thus, the key research

challenge here is how to solve the least-squares problem in Tomography Inversion distribut-

edly under the severe constraints of wireless sensor network. In this chapter, we focus on

distributed tomography inversion algorithm, while assuming that the event arrival timing

at each node has been extracted from the raw seismic data by each node itself [23] [24], as

well as that the event location and ray tracing have been done. We will discuss more about

arrival timing, event location and ray tracing in chapter 4.

3.2 Algorithm

We developed a new tomography partition and computation distribution algorithm with

a multi-resolution evolving scheme to distribute the computation load, reduce the communi-

cation cost and approximate the least-squares solution of the seismic tomography inversion

problem in the network. To distribute the computation load, we first partition the volcano

structure geometrically and the system As = t correspondingly. Then some nodes are se-

lected as landlords to compute part of the tomography model. The computation on each

landlord is entirely local so that the communication cost is bounded. Since the computa-

tion on each landlord only uses part of the system As = t, the result is not equivalent to

the solution of the original system. To approximate the optimal solution, we introduce the

multi-resolution evolving scheme: the network initially computes a coarse resolution tomog-

raphy without partition when small amount of earthquake events arrive; as more and more

earthquake events arrive, the network will compute finer and finer resolution tomography

with more partitions. The intuition behind this is that the network first computes an outline

of the volcano structure in an low resolution then fills up with finer details inside. With the

multi-resolution evolving scheme, we do not need to wait for all computation done and can

retrieve the intermediate results under low resolutions in a real-time manner.
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In this section, first we use an example to show the idea of the tomography partition

and the computation distribution over the network; second we introduce the multi-resolution

evolving scheme and give the description of the algorithm.

3.2.1 Tomography Partition

The example in Figure 3.1 illustrates that how to partition the volcano structure geo-

metrically (vertically) and the corresponding system As = t for distributing the computation

in the network.

C1

C6
C2

C3

C5

C7

C8C4

1
2

3 4

6
75

8

9
10

11
12

13
14

15

16

a1

a2

a3

a4

E

Figure 3.1 Tomography Partition. The resolution of cube E is 2× 2× 2 (8 blocks C1 to C8)
and 16 sensor nodes are deployed on top of E.

In this example, cube E is vertically partitioned into 4 parts (E1 to E4) and there are 4

sensor nodes in each partition, e.g., node 1, 2, 3 and 4 are on top of E1 consisting of blocks C1

and C2. Suppose that one earthquake happens in block C5 and node 1, 6, 12 and 15 detect

this event. Once the event location is done, these 4 nodes do ray tracing individually and

get 4 ray paths a1, a2, a3 and a4. Assume that a1 penetrates C5, C1 and C2, a2 penetrates

C5, C1, C3 and C4, a3 penetrates C5 and C6, and a4 penetrates C5, C7 and C8. These 4 ray
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paths can form a system As = t as following,


a1,1 a1,2 0 0 a1,5 0 0 0

a2,1 0 a2,3 a2,4 a2,5 0 0 0

0 0 0 0 a3,5 a3,6 0 0

0 0 0 0 a4,5 0 a4,7 a4,8


·
[
s1, s2, s3, s4, s5, s6, s7, s8

]T
=
[
t1, t2, t3, t4

]T
where al,m is the intersecting length of the l-th ray path and the m-th block, sm is the

slowness perturbation of m-th block, and tl is the travel time residual observation of the

l-th ray path. Notice that each column in A contains the lengths of all the ray paths which

penetrate the corresponding block. So the vertical partition of cube E can be mapped to a

column partition on the system As = t,

[
a1,1 a1,2 0 0 a1,5 0 0 0

]
·
[
s1 s2 s3 s4 s5 s6 s7 s8

]T
=
[
t1,1 + t1,2 + t1,3 + t1,4

]
where tl,m is the partial travel time residual of the l-th ray path in the m-th block. The

system can be expressed as,

[A1,A2,A3,A4] · [s1, s2, s3, s4]T = [t1 + t2 + t3 + t4]

where Ap is column partition of A corresponding to tomography partition p, tp is the partial

time residuals for Ap, and sp is the partial slowness perturbation model of the blocks in

partition p. Then in each partition, one node is selected as the landlord, e.g., 3, 7, 12 and

14 are landlords in Figure 3.1. The landlord in partition p solves the subsystem Ap · sp = tp,
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and the global tomography can be obtained by combining all sp.

Next is how to partition the travel time residual of each ray. Since the travel time

residual is based on the observation of P-wave arrival time which usually contains noise,

it is difficult to partition the travel time residual exactly for each partial ray. Here an

approximation method is employed to derive the partial travel time residuals based on the

reference model. For example, assume that the reference slowness model for E in Figure 3.1

is s0 = [ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6, ŝ7, ŝ8]
T . Let T2 be the observed travel time of ray a2 and the

predicted travel time of a2 is T2(0) = a2 · s0, thus the travel time residual t2 = T2 − T2(0).

Then the partial predicted travel time can be approximated by the reference slowness model,

T2,1(0) = ~a2,1 · [ŝ1, ŝ2]T T2,2(0) = ~a2,2 · [ŝ3, ŝ4]T

T2,3(0) = ~a2,3 · [ŝ5, ŝ6]T T2,4(0) = ~a2,4 · [ŝ7, ŝ8]T

where T2,1 is the partial travel time of ray a2 in partition E1, ~a2,1 is the part of ray path a2

in E1. The travel time residual then is proportionally partitioned according to the predicted

travel time,

t2,1 = t2 ·
T2,1(0)

T2(0)
t2,2 = t2 ·

T2,2(0)

T2(0)

t2,3 = t2 ·
T2,3(0)

T2(0)
t2,4 = t2 ·

T2,4(0)

T2(0)

Here we formalize the estimation of the partial travel time residuals. Let ~al,p be the

partial ray path of the l-th ray in partition Ep and let tl,p be the corresponding partial travel

time residual, tl,p can be estimated as,

tl,p = tl ·
Tl,p(0)

Tl(0)

where Tl,p(0) is the predicted travel time of l-th ray in partition Ep. Assume that ŝp(0) is
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the partial slowness reference model of partition Ep then,

Tl,p(0) = ~al,p · ŝp(0)

since tl = Tl − Tl(0) and Tl(0) = al · s0, the partial travel time residual tl,p is,

tl,p = Tl ·
~al,p · ŝp(0)

al · s0
− ~al,p · ŝp(0)

The previous discussion explains how to partition the tomography as well as As = t.

Next we will show that how the partition and the computation distribution can be done in the

network. First, after the ray tracing done, each node needs to send the partial ray path and

the estimated partial travel time residual to the corresponding landlords for constructing

the subsystems. Then each landlord can compute the partial slowness perturbation and

broadcast it to the network so that each node can update its reference model part by part

for future ray tracing. So there are two communication patterns in the network, unicast for

sending partial rays and broadcast to synchronize the reference model. Both of them only

happen once in one computation round.

3.2.2 Multi-resolution Evolving Tomography

In this section, we discuss the details about the multi-resolution evolving scheme and

give the description of the proposed algorithm. Figure 3.2 illustrates how the multi-resolution

evolving scheme works following the example in Figure 3.1. Notice that the computation

of the partial travel time residuals highly depends on the slowness reference model. In the

multi-resolution evolving scheme, the tomography model is not partitioned initially so that a

good initial guess of the slowness model can be derived. This initial guess is used to estimate

the partial travel time residuals later for approximating the optimal solution.

Suppose that the resolution of the tomography model is d×d×d in the beginning, a single

landlord (node 10 in the example) will compute the first perturbation for the reference model.

Then the resolution increases to 2d× 2d× 2d, and the tomography model is partitioned into
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4 parts and distributed to 4 landlords (node 3, 7, 12 and 14) for computation as illustrated in

Figure 3.2. Notice that, here the resolution of each partition is d×d×2d. The aforementioned

partition procedure will be recursively applied in each partition when sufficient more new

earthquake events arrive, until the required resolution is achieved. Thus, at the (r + 1)-th

(r = 0, 1, 2, . . .) resolution, the tomography model has resolution 2rd × 2rd × 2rd and is

partitioned into 4r parts and evenly distributed to max(N, 4r) landlords.
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Figure 3.2 Multi-resolution Evolving Tomography.
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Algorithm 1 Distributed Multi-resolution Evolving Tomography

Initialize

1: Node ID id, the resolution level q and dimension d
2: Landlord lists {H1,H2, ...,Hq}
3: r ← 0, Qr ← d× d× d, Pr ← 1
4: Slowness reference model s0 of resolution Qr

5: Set landlord list to H1, p
′ ← the partition index this node locates

6: if id is equal to hp′
7: rc← 0, set the time out threshold Tth
8: endif

Repeat

1: Upon the detection of an event
2: Trace the ray path al, compute ~al,p and tl,p for 1 ≤ p ≤ Pr
3: Send ~al,p and tl,p to landlord hp.
4: Upon the reception of ~al,p and tl,p
5: if id is equal to hp
6: if rc is equal to 0
7: rc← rc+ 1, start timer Tc
8: else
9: if Tc < Tth
10: Add ~al,p and tl,p to Ap′sp′ = tp′
11: else
12: Solve least-squares problem Ap′sp′ = tp′
13: Broadcast sp′ to all other nodes
14: rc← 0, reset Tc, clear system Ap′sp′ = tp′
15: endif
16: endif
17: else
18: Transfer ~al,p and tl,p to hp
19: endif
20: Upon the reception of sp from landlord hp
21: Update the corresponding part of s0 with sp
22: if all sp(1 ≤ p ≤ Pr) have been received
23: if r + 1 is equal to q
24: TERMINATE
25: else
26: r ← r + 1, Q← 2rd× 2rd× 2rd, P ← 4r

27: Increase the resolution of s0 to Q
28: Partition the tomography model into Pr parts
29: Set landlord list to Hr+1

30: p′ ← the partition index this node locates
31: if id is equal to hp′
32: rc← 0, set time out threshold Tth
33: endif
34: endif
35: endif
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Now we give the formal description of the Distributed Multi-resolution Evolving Tomog-

raphy (DMET) algorithm, see Algorithm 1. Suppose that there are q different resolution

levels in our multi-resolution scheme, let d be the initial resolution dimension.

At the (r + 1)-th resolution, the tomography model E with resolution Qr is vertically

and evenly partitioned into Pr different parts, then the p-th part Ep contains Qr/Pr blocks

(Qr = 2rd × 2rd × 2rd and Pr = 4r). The system As = t can be partitioned by columns

accordingly,

[A1,A2, . . . ,APr ] · [s1, s2, . . . , sPr ]T = [t1 + t2 + . . .+ tPr ]

and for Ep the following subsystem is constructed on a landlord,

Apsp = tp

where 1 ≤ p ≤ Pr.

Initialize line 1-4: Each node initialize its ID, the resolution level q and initial dimen-

sion d. Besides, each node initializes a landlord list {H1,H2, ...,Hq} where Hr+1 is a node

list {hp|1 ≤ p ≤ Pr} and hp indicates the landlord for partition p at the (r+1)-th resolution.

This tells each node where to send the partial ray information. Then the resolution and

partition parameters and a slowness reference model for ray tracing are initialized.

Initialize line 5-8: Set the landlord list as H1 (only one landlord in it). If this node

is the landlord, it also initializes a ray counter and a time out threshold Tth which controls

the waiting time for a landlord to receive partial ray information from other nodes. Because

it is hard to know how many partial rays will be received by the landlord since the event

activity is unpredictable.

Repeat line 1-3: After the initialization, each node will act based on the event de-

tection and message reception. Once an event is detected by a node, either a landlord or a

common node, it will trace the ray path (as assumed in previous discussion, the event loca-

tion has already been estimated in the network and every node knows it). Then the node

computes and sends the partial ray information to the corresponding landlords according
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the landlord list Hr+1.

Repeat line 4-19: If the node is a landlord in partition p′, when it receives the

first partial ray for current resolution, the node will start a timer Tc. Otherwise, if the

timer is less than the threshold Tth, the landlord will add the received partial ray into the

subsystem Ap′sp′ = tp′ . Once the timer Tc is out, the node will compute the partial slowness

perturbation sp′ from constructed Ap′sp′ = tp′ . Then the landlord broadcasts sp′ to all other

nodes and reset the parameters. If the node is not a landlord, it will transfer the received

partial ray information to the corresponding landlord.

Repeat line 20-35: Once a node receives the slowness perturbation sp from landlord

hp. It will update the corresponding part of the slowness reference model s0 with sp. After

the partial slowness perturbations from all landlords have been received, i.e., the entire

slowness reference model has been updated. The algorithm will TERMINATE if the required

resolution is met; otherwise, the node will set r to r + 1, calculate current Qr and Pr, and

increase the resolution of reference model s0 to Qr. There are different ways to increase the

resolution of the model, e.g., all the blocks in higher resolution just use the slowness value of

the block it belongs to in the lower resolution. Then each node will partition the model into

Pr parts. Also, the node will set the appropriate landlord list. If the node is a landlord at

(r + 1)-th resolution, it will initial a ray counter and set a timeout threshold (the threshold

is larger in higher resolution since more rays are needed for higher resolution tomography

computation).

Notice that the algorithm here is based on a cube tomography model, in reality the

model is not always a cube and the partition may depend on the deployment of the sensor

network. This algorithm can be applied to different models, it only needs to change the

resolution evolving and partition scheme, i.e., how to set Qr and Pr in resolution level r.

3.3 Evaluation and Validation

We implemented and evaluated the algorithm with our InsightTomo emulation system,

we will discuss more details about this in next chapter, here we only validate that the
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proposed algorithm not only balances the computation load, but also achieves low commu-

nication cost and good data loss tolerance.

3.3.1 Experiment Setup and Implementation

Our evaluation uses synthetic magma and earthquake events data. First, a data gen-

erator is implemented to generate a magma area and earthquake events. Assume that the

tomography model is a cube of dimension 10×10×10 km. Then we set a predefined magma

area as the ground truth as shown in Figure 3.3. The velocities of seismic waves inside

and outside the magma area are V and 0.9V where V is 4.5km/s which is a typical P-wave

velocity.

Figure 3.3 3D Model in the Simulation.

In InsightTomo emulator, a network of 100 nodes is deployed on the top of the mon-

itoring area. We set the target tomography resolution to be 32 × 32 × 32 = 32768 where

each block is of size 0.3215 km3. The data generator then generates earthquake events with

random location and time, and calculates ray travel times from event locations to all sensor

nodes. To simulate the event location estimation and ray tracing errors, a White Gaussian

Noise is added to the travel time to generate the sensor node observation (arrival times).
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Each node can calculate the predicted travel time based on the initial model in different

resolutions.

Notice that based on the predefined slowness model for the cubic area, the generator

is supposed to calculate the exact travel time for each ray. But the magma area itself is a

discrete model and the surface shown in Figure 3.3 is constructed from a discrete data set.

So the generator partitions the cube area with a much higher resolution 128× 128× 128 as

the ground truth and assigns the slowness value to the blocks according whether their center

points are in the magma area or not.

100 stations are randomly distributed on top of the cube and form a mesh network

as shown in Figure 3.4(a) (the black triangles indicate the landlords in different resolution

levels). 650 events are similarly distributed, Figure 3.4(b) which shows the vertical view of

the event sources distribution.
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Figure 3.4 Stations and Events Distribution

We evaluate the algorithm starting with resolution 83 and one partition, evolving to

resolution 163 with 4 partitions and complete at resolution 323 with 16 partitions. 50, 100

and 400 events are generated for resolution from low to high to make sure the system is
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overdetermined. To simulate the event location estimation and ray tracing errors, a White

Gaussian Noise is added to the travel time to generate the sensor node observations (arrival

times).

To simulate the sensing behavior of the nodes in the network, two subnetworks are built

in the emulator. One is the wireless mesh network in Figure 3.4(a) with a link and physical

layer connectivity model. The other is a simple wired network where one generator node

wired connects with each node in the mesh network. This generator node will generate event

at random time, compute the travel times from this event to each node based on the ground

truth, and send the event location and travel time to corresponding node with noise (suppose

that the event location has been done as we discussed above). So the nodes in mesh network

are blind to the event activity and thus simulate the sensing behaviour.

The Bayesian version of ART method [58] is used in the experiments to compute the

tomography. We use the relative update of the estimation between two sweeps (one sweep

means that all the ray paths in the system are used once for estimation update) as the

stopping criteria. Besides, a centralized collection scheme (one node collects all the ray

information and perform centralized computation) is implemented in the emulator with

the same data set to compare with our DMET algorithm. Notice that the Bayesian ART

method solves the system As = t to minimize ‖ t−As ‖2 +λ2 ‖ s ‖2 where λ is the trade-off

parameter that regulates the relative importance we assign to models that predict the data

versus models that have a characteristic, a priori variance.

3.3.2 Correctness and Accuracy

To validate the correctness and accuracy of the algorithm, we first visualize the tomog-

raphy result in vertical slices in Figure 3.5. Each row of figures shows the same tomography

slice on corresponding layer along with X or Y axes (the total layers of each figure is equal

to the resolution dimension of the result). The black polygons give the cross section outline

of the magma chamber surface. We can see that at the lowest resolution 83, the result can

hardly indicate the outline of the magma chamber since the block size is big, especially for
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the small cross section in the first row. But it gives a good start point for the higher resolu-

tion to further refine the result. At resolution dimension 16, the result can closely show the

outline of the magma chamber. The result in column (c) at resolution 323 is already very

close to the centralized solution in column (d).
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Figure 3.5 2D Tomography Rendering.

Using s̃, s∗ and s̄ to represent the synthetic model, the reconstructed model and the

mean value of s∗ respectively, we use the following quantitative measures of distance from
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Figure 3.6 Measures of Distance from Synthetic Model.

the synthetic model provided in [26] to evaluate the estimation quality,

e1 = (
∑n

i=1
(s̃i − s∗i )

2/
n∑
i=1

(s∗i − s̄)2)
1
2

e2 =
∑n

i=1
|s̃i − s∗i |/

∑n

i=1
|s∗|

e3 = max |s̃i − s∗i |

These represent the normalized root mean squared distance, the average absolute value

distance and the worst case distance respectively. The result is shown in Figure 3.6,

DMET(8) means that the distance analysis of DMET algorithm with resolution 83 and

CENT(32) indicates the result of centralized algorithm. First we observe that in DMET al-

gorithm, the distances are decreasing along with the increase of the resolution. The distances

in DMET(32) are even smaller than CENT(32), this is because that we use the relative up-

date as the stop criteria in Bayesian ART method and the centralized algorithm may stop

before the distance is small enough. This analysis can imply that the multi-resolution evolv-

ing scheme can give a good approximation on each resolution level for estimating partial

travel times and the computation can approximate the centralized solution while not diverg-

ing in the local computation in each partition.
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3.3.3 Communication and Computation

From the experiment result and analysis, it is validated that DMET gives a good result

to approximate the tomography compared with the centralized algorithm. Next, we will

compare the communication and computation cost between DMET and the centralized al-

gorithms. Since the ray tracing algorithm is very expensive to perform, we assume that each

node does ray tracing itself and sends the indexed ray path to a base station (centralized)

or to the corresponding landlords. Also, after centralized computation done on the base

station, it will broadcast the model to the network for future ray tracing since the whole

tomography process is iterative.
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Figure 3.7 Communication and Computation Cost Analysis.

Figure 3.7 gives the communication and computation cost analysis where DMET(T) is

the total cost for DMET algorithm, CENT(M) and CENT(C) are the cost of centralized

algorithm when the base station is in the center and the corner of the network respectively.

In Figure 3.7(a), we can see that the total unicast cost of DMET is much less than centralized

algorithm (about one third of CENT(C)) since the centralized data collection will cause more

interference and congestion when the data rate is high. At the same time, the broadcast cost

of DMET is more than centralized algorithm because multiple nodes need to broadcast in

DMET. By counting the arithmetic operations in the computation of the base station and
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landlords, Figure 3.7(c) gives the computation cost for centralized algorithm and DMET.

The total cost of DMET is higher than centralized since we partition and distribute the

system to landlords, and the computation on landlords are entirely local and it is lack of the

global information to constraint the problem for fast convergence.
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Figure 3.8 Communication and Computation Load Balance.

The experiment results above have shown that the total communication cost of DMET

is less than the centralized algorithm while the total computation cost is higher. Next, we

count the communication and computation cost on each node in the network to show that

DMET balances the communication and distribute the computation load in the network.

Figure 3.8(a), (b) and (c) visualize the communication cost on each node in the network

for 3 different scenarios with heat maps. From Figure 3.8(a) and (b), we can see that the

communication cost in centralized scenario for the nodes near the base station (either in the

center or corner) are much higher than other nodes since all the messages need to be delivered



29

through them. The communication cost on each node in our algorithm shown in Figure 3.8(c)

is more balanced. In Figure 3.8(d), the first column is the computation load on node 1 for

CENT(C) algorithm, all other columns are the computation load on corresponding landlords

of DMET algorithm. We can see that although the total computation cost of DMET is higher

but the computation load is much more balanced.

3.3.4 Data Loss Tolerance and Robustness

We did an evaluation on the robustness of DMET. The algorithm runs with the same

data set and two different packet loss ratios of 10% and 40% set in the emulator. Figure 3.9

gives part of the 2D slice rendering along Y axes with packet loss. From Figure 3.9, we can

see that with 10% or even 40% packet loss, compared to the result without packet loss there

is not much difference in terms of the magma area outline. This validate the robustness of

DMET algorithm which can be tolerant to a severe packet loss.
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Figure 3.9 2D Tomography Rendering with Data Loss.
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PART 4

END-TO-END SYSTEM DESIGN AND EMULATION

In traditional seismology, the raw seismic data is collected for manual analysis including

P-wave arrival time picking on the seismograms. Then centralized methods will process the

data and compute seismic tomography. Keep in mind that our goal is to design a system

which can deliver 3D tomography in real-time over a large-scale sensor network by utilizing

the limited communication ability in the network and the computation power on the sensor

node. To reach this goal, first no raw seismic data should be transmitted over the network,

which requires a light weighted algorithm that can accurately pick the P-wave arrival time

on the sensor nodes locally inside the network. Second, an efficient distributed tomography

computation method is needed for processing data and inverting volcano tomography in the

network while avoiding both costly data collections and centralized computations.

In this chapter we present InsightTomo - an in-situ seismic tomographic imaging system

framework in sensor network. The design of InsightTomo consists of a series of algorithms

and network design to automatically process the seismic data, pick the P-wave arrival time,

identify seismic events and compute the seismic tomography in-situ in real-time. The system

design is evaluated with real data from the San Andreas Fault (SAF) on Parkfield.

4.1 System Overview

4.1.1 System Model

The mesh network architecture is employed in the design of InsightTomo. Each sensor

node in the network is equipped with a seismic sensor (e.g., single or three component

geophone) that continuously samples and records the signal in an external storage (e.g., SD

memory card). Also, the sensor node has a low power MCU (e.g., MSP-430 or Imote series)

that has limited computation resources but keeps a very low power profile. Besides, all
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the sensor nodes have GPS modules on board [1] such that the clocks on sensor nodes are

time-synchronized so are the time pickings. A powerful computation unit (e.g., BeagleBone

Black board, cellphone or tablet) is also installed on each node; the unit can complete the

computation-intensive tasks including the event location and tomography inversion.

4.1.2 System Architecture

In this section, we will give an overview of the system architecture and the data flow

of InsightTomo respect to the design requirements mentioned above. InsightTomo consists

of several algorithms running on sensor nodes and coordinator nodes, and a bundle layer

protocol is proposed to improve the performance of communication. Figure 4.1 illustrates the

architecture and dataflow of InsightTomo system. There are three steps in the architecture

corresponding to the workflow of seismic tomography.
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Figure 4.1 The Architecture of InsightTomo System.

(1) Sensor node receives the signal from the sensor and analyze the signal with P-wave

arrival time picking algorithm. The algorithm will continuously monitor the samplings and

alarm if an event is detected, then the picking algorithm will pick the P-wave arrival time.

After the arrival time picking done, the sensor node only needs to send the arrival time to

coordinator node. Refer to section 4.2.1 for more details.
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(2) The coordinator (could be any sensor node) receives the P-wave arrival times from

sensor nodes that detected events. The only information received by the coordinator node

is a series of arrival time pickings. Based on these pickings, the coordinator first needs to

identify which arrival times are corresponding to the same event. The reason is that not all

the sensor nodes can detect one specific event due to the event intensity, event position, sensor

instability and so on. After the event is identified, the coordinator node can compute event

location and origin time, then send the event location and origin back to the corresponding

nodes that detected it. Refer to section 4.2.2 for more details.

(3) This step consists of several in-network computation and communication tasks.

We put them together since they are all parts of the distributed tomography computation

mechanism. Once the sensor node receives one event location from the coordinator node, it

can trace the ray path from the event location to itself. Based on our distributed tomography

algorithm, the sensor node sends ray paths to corresponding landlord node that will be in

charge of the tomography computation. After the computation done, each landlord will

broadcast the partial tomography model to the network so that each sensor node can update

its model for future ray tracing and computation. Refer to section 4.2.3 for more details.

4.2 System Design

In this section, we study the design of InsightTomo step by step following the discussion

above. Our design is based on careful analysis of the real data from previous Parkfield

deployment.

4.2.1 P-wave arrival time picking

Primary waves (P-waves) are the seismic waves that travel faster than any other waves

through the earth. P-waves arrive at the seismic sensors first and the arrival time of P-waves

are essential to the first-arrival traveltime tomography. Figure 4.2 shows the seismograms

from four seismometers deployed in Parkfield when an event happens. The vertical lines

represent manual pickings of the P-wave arrival times. Due to the different wave propagation
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delays, the P-wave arrival times on sensors are different. In local seismic tomography, the

scale of the field is up to tens of kilometres and the maximum difference of the P-wave

arrival times among sensors is about several seconds, so that the accuracy of the picking is

significant. Besides, manual analysis of seismograms and picking of arrival times require post

processing of the data and are very time consuming, especially in a large sensor network.

To avoid raw seismic data transmission and meet the real-time requirements, InsightTomo

demands an on-line automatic event detection and P-wave arrival time picking method that

runs on each sensor node.

station GOBI, channel BHZ

0 1 2 3 4 5 6
Time (second), 12:18:46 to 12:18:52 Oct 4, 2001

station GULY, channel BHZ

Figure 4.2 The seismogram from BHZ channel of four seismometers in Parkfield when an
event happens. The vertical lines indicate the manual pickings of P-wave arrival times.

From the seismograms in Figure 4.2, one can see that there is a big difference on the

amplitude of the signal before and after the arrival of P-waves, the P-wave arrival time is a

change point of the variance of the signal amplitude. Based on this observation, a method is

proposed here by utilizing the maximum-likelihood (ML) estimation to estimate the variance

of the signal amplitude following a statistical model. In the following discussion, we use pre-

and post-change to describe the signals before and after the P-wave arrival.

Without loss of generality, we assume that both the pre- and post-change signals follow

a normal distribution but with different variances. Let {xi}ti=1 be the continuous sequence

of samples from 1 to t, then the pre- and post-change sample has a normal distribution with

zero mean respectively,
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pre-change sample, xi ∼ N (0, σ2
1) (4.1)

post-change sample, xi ∼ N (0, σ2
2) (4.2)

The logarithm of the likelihood function at time k is,

L =
t∑

i=k+1

ln
f2(xi)

f1(xi)
(4.3)

where f1(xi) and f2(xi) are the probability density functions (pdf) of the pre- and post-

change signals, the likelihood function then can be rewritten as,

L =
t∑

i=k+1

ln

1√
2πσ2

2

e
− x2i

2σ22

1√
2πσ2

1

e
−
x2
i

2σ21

(4.4)

=
t∑

i=k+1

[1

2
ln
σ2
1

σ2
2

− x2i
2

( 1

σ2
2

− 1

σ2
1

)]
(4.5)

(1) Event DetectionSensor Node

Sliding Window

(2) Arrival Time Picking

event
detected

accurate P-wave 
arrival time

Samplings

Figure 4.3 Two Step P-wave Arrival Time Picking.
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Figure 4.3 illustrates how the proposed method works. The method consists of two

steps, (1) Event Detection which continuously scanning the samplings from the sensor with

a sliding window, claims if there is an event (change point) happens and extract a segment of

signals around the change point; (2) Arrival Time Picking which takes the segment of signals

from step (1), picks the exact change point (arrival time) from it and send the P-wave arrival

time to coordinator node.

Event Detection The goal of event detection is to continuously check weather there

is a change point in the signal stream that is probably an event. The STA/LTA (short-

term average over long-term average) algorithm [22] [1] is employed for event detection here

because it is fast to monitor the signal and roughly find where an event happens. To describe

STA/LTA algorithm, we need to first introduce the concept of RSAM (Realtime Seismic

Amplitude Measurement), which is widely used in seismology. The RSAM is calculated on

raw seismic data samples per second. Assume the sampling rate of the signal is m (samples

per second), let {xt, · · · , xt+m−1} and {xt−m, · · · , xt−1} be the samples in the i-th and (i−1)-

th second respectively, then ei−1 =
∑t−1
j=t−m xj

m
is the average of the (i−1)-th second. The i-th

second RSAM ri is calculated as,

ri =

∑t+m−1
j=t (xj − ei−1)

m
(4.6)

In our system, the STA or LTA is continuously updated based on,

Xi =

∑n−1
j=0 ri−j

n
(4.7)

where ri is i-th second RSAM; n is the STA or LTA time window size (in seconds).

The ratio of STA over LTA is continuously monitored. Once the ratio exceeds the

threshold, an event is detected. Algorithm 2 gives the description of the event detection

method. A sliding LTA window with a STA window keep moving second by second and

calculating the STA/LTA ratio. If the threshold b is reached, a change point is detected
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Algorithm 2 Event detection algorithm

1: detected← false.
2: Set LTA window size ltaw.
3: Set STA window size staw.
4: Set STA/LTA ratio threshold b.
5: for t← w, . . . do
6: Calculate RSAM value rt−1 of second t− 1.

7: Calculate sta←
∑t−1
i=t−1−staw ri

staw
.

8: Calculate lta←
∑t−1
i=t−1−ltaw ri

ltaw
.

9: Calculate STA/LTA ratio ratio← sta
lta

.
10: if ratio > b then
11: if detected is false then
12: detected← true
13: T ← t
14: Run algorithm 3 to pick arrival in [T − a, T + b]
15: else
16: detected← false
17: end if
18: else
19: detected← false
20: end if
21: end for

at T , the signal in the window of [T − a, T + b] are extracted and the arrival time picking

algorithm will pick the accurate arrival time from it. Then the sliding window continue

moving from T and calculating the STA/LTA ratio, since the event usually lasts for a period

of time, the STA/LTA ratio will be over the threshold for a while until time T ′. In our

implementation, the STA and LTA window are 1 and 4 seconds respectively; the signal

window for picking is 3 seconds where a = 1 and b = 2. This setting with threshold 2 can

perform event detection very well for picking as shown in section 4.4.1. Figure 4.4 gives an

example of event detection result and the detection length of a real earthquake event.

Note that the T claimed here is only a change point but not necessarily an earthquake

event detection. Sometimes there might be a voltage spike from the sensor that can cause a

change point detection, see Figure 4.5. Since the spikes have much larger amplitudes than

events, to avoid the false alarm on spikes an upper threshold is set for S. If the value of S
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is over the threshold the event detection will skip this change point.
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Figure 4.4 Event detection example on an Earthquake Event during 17:39:20 to 17:39:50 Feb
7, 2002.
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Figure 4.5 Spikes that causes change point detection.

Arrival Time Picking After the event detection done, the arrival time picking al-

gorithm will find the exact change point k∗ in [T − a, T + b] which maximize the function

value of L as discussed above. The problem can be simply formulated as,

k∗ = arg max
k
L (4.8)
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From the definition of statistics for ML change point detection, we can see that σ1 and

σ2 are required to calculate the value of L. Recall that σ2
1 is the variance of the pre-change

samples in the signal, which can be considered as the noise level of the signal. This noise

level can be different for each sensor due to manufacturing, temperature and so on. So every

sensor needs to calculate its own σ2
1 using some samples generated from it while no event

happens. Let zi be such a sample at time i, σ2
1 can be calculated as,

σ2
1 =

1

n− 1

n∑
i=1

(zi − z̄)2 (4.9)

where n is the number of samples and z̄ is the mean value of these n samples. Since the

noise level of one sensor usually does not change much, the proposed method uses the σ2
1 for

a fixed period of time, e.g., one day and then update once.

Since σ2
2 represents the variance of the post-change samples, the value of σ2

2 depends

highly on the property of event. This imposes that for each k, a σ2
2 needs to be derived to

maximize L. This follows that ∂L/∂σ2
2,

∂
∑t

i=k+1

[
1
2

lnσ2
1 − 1

2
lnσ2

2 −
x2i
2

(
1
σ2
2
− 1

σ2
1

)]
∂σ2

2

= 0 (4.10)

and the σ2
2 can be expressed as,

σ2
2 =

∑t
i=k+1 x

2
i

t− k
(4.11)

The corresponding algorithm is described in algorithm 3. The vertical dashed line in

Figure 4.4 indicate the arrival time picking of the algorithm for that detected event.

4.2.2 Event Location

Based on the architecture of InsightTomo, if a sensor node detects an event and picks

the P-wave arrival time, it will send the time picking to the sensor node that acts as the

coordinator for event location. The coordinator node only receives the time pickings from

the sensor nodes and has the knowledge that which picking is from which node. In all of
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Algorithm 3 Arrival timing picking algorithm

1: Calculate σ2
1

2: l∗ ← 0, k∗ ← 0.
3: for k = T − a+ 1, . . . , T + b− 1 do
4: Calculate σ2

2 and L, l = L.
5: if l > l∗ then
6: l∗ ← l, k∗ ← k
7: end if
8: end for
9: return k∗

these pickings, there might be false alarms or some small and remote event is only detected

by few stations. As we known, to estimate an event location, at least three pickings from

different sensor nodes are required, the event detected only by one or two nodes is impossible

to be located. Also, more pickings from different sensor nodes for one event usually lead to a

better estimation. Thus there are two steps in event location, (1) Event Identification where

the coordinator node identifies how many events existing in a series of arrival time pickings

received and which pickings belong to the same event; (2) Location Estimation which uses

Geiger’s method to estimate the event location from the pickings of that event.

Event Identification Since the InsightTomo system focuses on local seismic tomog-

raphy (contrast to global tomography which focuses on spherical earth), the maximum arrival

time difference among the sensor nodes is about several seconds. The event identification is

based on two rules, (1) The maximum difference of the time pickings from the same event

should be less than a threshold β; (2) The number of time pickings from the same event

should be over a threshold θ.

Suppose that the coordinator node receives a series of time pickings and puts them in

a list C. Each item in C is a pair 〈picking,node〉 which represent the arrival picking and

the node picked it. The coordinator sorts list C increasingly according to pickings and gets

C ′. Then the coordinator will find the continuous subsequences in C ′ where the maximum

difference among the items in the same subsequence is less than β, if the length of some

subsequence is greater than θ the items in this subsequence are from the same event. Event
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identification will feed all the satisfied subsequences to step (2) that will estimate the event

locations. Figure 4.6 gives an example of the event identification based on the 629 pickings

of the P-wave arrival time picking method in section 4.2.1. In this example, the x-axis is the

arrival time picking index for sorted list C ′ and the y-axis is the time difference between two

adjacent pickings. Four events are identified (circles in the figure, β = 4.0 and θ = 14) from

this data while three of them are identified in the manual pickings.
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Figure 4.6 Sorted arrival time pickings from 30 stations with the entire day samplings on
Feb 7, 2002 in Parkfield.

Location Estimation The arrival time pickings in seismology are also called observed

arrival times. To estimate the event location, an initial reference model of the subsurface

P-wave velocities is required which can be used to calculate arrival time based on the guess

of event location, this arrival time is referred to predicted arrival time. In this work, we

adopt 1D velocity model which treats the subsurface as a layered model and is commonly

used in routine earthquake location.

For sensor node v, we designate the observed arrival times by τv and the predicted

arrival time by tv which is a function of the estimated location x, y, z and the origin time q

for the event. The residual, or the difference between the observed arrivals and the predicted

arrivals is rv = τv − χ(q, x, y, z). Then an approximate location is estimated by seeking a

small perturbation in the location that makes the residual smaller.

The guess, or estimation, is designated as, x0 = {q0, x0, y0, z0} and let ∆x =

{δq, δx, δy, δz} be the small adjustments to the guess that bring X0 closer to the correct

location. The new location is represented as x = x0 + ∆x and the travel time associated
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with this location is χ = χ0 + ∆χ. We can use the total derivative of χ to get the effect of

perturbations,

∆χ = ∆q +
∂χ

∂x
∆x+

∂χ

∂y
∆y +

∂χ

∂z
∆z (4.12)

The residual calculated from the initial guess is r0v = τv − χ(q0, x0, y0, z0). The v-th

residual is thus rv = τv − (χ0v + ∆χ) = r0v −∆χv. To estimate the location, the goal is to

minimize the residual, i.e. find the perturbation that gives the least squared residual.

rv = r0v −
(

∆q +
∂χv
∂x

∆x+
∂χv
∂y

∆y +
∂χv
∂z

∆z

)
(4.13)

where the unknowns are ∆q,∆x,∆y,∆z. Then the goal is to minimize the sum of the squares

of the residuals with respect to these variables, i.e., the objective is,

min
∑
v

r2v (4.14)

Suppose there are n pickings in one event, the matrix of residuals can be written as,


1 ∂χ1

∂x
∂χ1

∂y
∂χ1

∂z

1 ∂χ2

∂x
∂χ2

∂y
∂χ2

∂z

...
...

...
...

1 ∂χn
∂x

∂χn
∂y

∂χn
∂z




∆q

∆x

∆y

∆z


=


r01

r02
...

r0n


(4.15)

this is the standard inversion of matrix equations M∆x = r. We use Bayesian ART method

(refer to section 4.2.3) to solve this equation system and get the perturbation solution ∆x.

The event location is obtained by adding ∆x to initial guess. This solution may not be close

to the real location, then we can use this as a new guess and solve the system again until

the solution is good enough.

After the event location done, the coordinator node needs to send the event location to

corresponding sensor node that has a arrival time picking on this event. InsightTomo then

can proceed to the ray tracing and tomography computation.
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4.2.3 Tomography Inversion

On the reception of event location information, the sensor nodes will trace the ray paths

and send them to the nodes that perform landlord for distributed tomography computation.

Since the ray tracing method used in this work is standard bending based method based on

1D velocity model and the distributed tomography computation method used here need to

partition the ray paths after ray tracing is done, we will focus on tomography inversion in

this section and ignore the details on ray tracing algorithms.

As discussed in chapter 3, the seismic tomography inversion problem is to solve the

system,

As = t (4.16)

where A = [AT
1 ,A

T
2 , . . . ,A

T
N ]T and t = [tT1 , t

T
2 , . . . , t

T
N ]T . This system is usually overdeter-

mined and the inversion aims to find the least-squares solution s such that,

s = arg min
s
‖ t−As ‖2 (4.17)

To solve the equation system in tomography inversion problem, there are many methods

can be used as discussed in chapter 2. In InsightTomo, we employ Bayesian ART method

which has been proved to be a good smoother for tomography inversion.

Algebraic Reconstruction Technique (ART) is a row action method to solve equation

system. As an iterative method, ART produce a sequence of estimated vectors which con-

verge to the required solution. Consider the system in tomography inversion As = t where

A ∈ RL×M and s, t ∈ RM×1. The basic ART method can compute the approximation of the

solution of the system with the following iterative formula,

s(k+1) = s(k) + ρ(k)
tl − aTl · s(k)

‖al‖2
al (4.18)

where al is the l− th row (e.g., the l− th ray path traced) of A, aTl is the transpose of al, tl

is the l− th component of vector t and ρ(k) is a relaxation parameter. ‖al‖2 = aTl ·al and (k)
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denotes the iteration number, the procedure can repeatedly operate on the equations with

l = (k) mod (L + 1). The formula above provides a simple iteration routine; if the system

is consistent basic ART is proved to converge to the minimum-norm solution.

For the inconsistent system, a Bayesian version of the basic ART is proposed by G.T.

Herman [58] for the image reconstruction in medical tomography. Suppose the system As = t

is inconsistent, then we consider the system As + u = t where u is chosen from given any

s. Then the system is transformed to a well-proposed problem, s and u can be solved

simultaneously. Bayesian ART method has the following iterative formulas,

d(k) = ρ(k)
λti − (u

(k)
i + λaTi · s(k))

1 + λ2‖ai‖2
(4.19)

s(k+1) = s(k) + λd(k)ai (4.20)

u(k+1) = u(k) + d(k)ei (4.21)

where ei is a unit vector with the i − th component equal to one, λ is the regularization

parameter. Bayesian ART method find the solution s such that,

s = arg min
s
‖ t−As ‖2 +λ2 ‖ s ‖2 (4.22)

Note that in Bayesian ART method, we need an additional vector u of length L, but in

(k)− th step only one component of u(k) needs to update locally without communications.

To compute the tomography inversion in the network, the distributed algorithm in

chapter 3 is employed to distribute the computation load, reduce the communication cost

and approximate the least-squares solution of the seismic tomography inversion problem in

the network.
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4.3 System Implementation

To conduct the InsightTomo emulator for tomography computation, the CORE1 and

EMANE2 network emulators [59] are employed to emulate the sensor network with sensor

nodes. The advantage of emulation is that the code developed over the emulator can be

transplanted to a Linux-based device, e.g., BeagleBone Black board, virtually without any

modifications.

InsightTomo is designed to compute the tomography in a wireless mesh network and

requires both unicast and broadcast communication according to the system architecture

and the algorithm requirements. On most remote deployment sites it is hard to rely on the

pre-existing infrastructures (e.g. cellular infrastructure). Therefore, we need to utilize the

wireless mesh networking which create its own infrastructure by multi hop relays. However,

such systems may experience erratic link qualities and intermittent disconnections among

nodes. These characteristics, combined with unpredictable environmental conditions, make

it difficult to maintain efficient and reliable end-to-end connectivity that spans many hops.

For example, the traditional end-to-end protocol like TCP is not suitable for a wireless mesh

network in challenging environment because the packet lost ratio is higher than a wired

network. On one hand, in a multi hop transmission the source node need to retransmit the

packet through all hops once the packet lost on the path. On the other hand, the data rate

can be very low after several hops due to packet loss and congestion control.

To address the challenges in wireless mesh networking, we adopt Disruption-Toleration

Networks (DTN) techniques to maintain efficient and reliable end-to-end connectivity that

spans many hops for data delivery. In our design, the data is buffered in a bundle and then

transferred hop by hop in a store-and-forward manner until it arrives at the destination.

Our implementation of DTN technique does not make any changes to underlying network

services, it uses TCP for one-hop reliable bundle transfer, and uses routing table to indicate

the next hop. Figure 4.7 shows the application interfaces on each node for the integration

1http://cs.itd.nrl.navy.mil/work/core/
2http://cs.itd.nrl.navy.mil/work/emane/

http://cs.itd.nrl.navy.mil/work/core/
http://cs.itd.nrl.navy.mil/work/emane/
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Figure 4.7 Bundle Layer Architecture.

of DTN and routing protocol. Figure 4.8 shows that the Bundle Layer outperforms TCP

with routing protocol. The test is done using CORE and EMANE for 100 nodes multi-hop

network settings.

Besides unicast, we implement a delay-tolerant broadcasting service based on the

NACK-Oriented Reliable Multicast (NORM) protocol3. Using NORM interface, one node

can push a bundle reliably to its one-hop neighbours. Our cache component can receive and

store this broadcast bundle, and rebroadcast it again with NORM, to the nodes that are

two hops away, and so on so forth. A redundancy check module is developed in the cache

component guarantees each node receives the same bundle at most once.

The implementation of all the algorithms in InsightTomo is in ANSI C. The event

location and tomography inversion related code are cross-compiled to run on BeagleBone

Black board. All other code can be directly ported to embedded system such as ARM-based

CPU or MCU.

3http://cs.itd.nrl.navy.mil/work/norm/

http://cs.itd.nrl.navy.mil/work/norm/
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Figure 4.8 Performance of Bundle layer vs TCP.

4.4 Evaluation

In this section, we evaluate InsightTomo performance with extensive experiments using

real data set from the deployment on SAF at Parkfield is used in the evaluations of P-wave

arrival time piking and event location. Both synthetic and real data are used to evaluate

the DMET algorithm. The system implementation and experiments validate the correctness

and accuracy for the proposed algorithms and the feasibility of InsightTomo system design.

4.4.1 P-wave Arrival Time Picking Accuracy

The raw seismic data set from the deployment on SAF at Parkfield is archived by IRIS4.

The deployment is from Jan 1, 2000 to Dec 31, 2002 with 61 stations but the archived data

we can download consists of 42 stations from Oct 2, 2001 to Oct 10, 2002. An extensive

data set is obtained from Dr. Haijiang Zhang. This data set has more stations and longer

period of data but not in seismic waves. The arrival timings in the extensive data set are

4http://www.iris.edu/data/

http://www.iris.edu/data/
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from manual analysis, and the event locations and velocity model are from the previous

computation with double-difference tomography method [60]. We use the extensive data set

for comparison in this evaluation.

station KARL, channel BHZ

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (second), 17:39:24 to 17:39:26 Feb 7, 2002

Figure 4.9 Manual pickings vs algorithm pickings on 6 stations in one event.

Figure 4.9 gives an example that compares the pickings of P-wave arrival time picking

algorithm with manual pickings, the long and short vertical lines indicate algorithm picking

and manual picking respectively. We can see that two pickings are close and the picking is

accurate.

 0

 500

 1000

 1500

 2000

 2500

 3000

0.1 0.2 0.3 0.4 0.5 0.6 <0.6

N
um

be
r 

of
 p

ic
ki

ng
s

Difference with manual picking

number of pickings

Figure 4.10 Picking Errors.

Figure 4.10 shows the algorithm picking errors in comparison with manual picks from the
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extensive data set where x-axis is the picking difference between two methods and the y-axis is

the number of pickings stand in that difference range. There are total 4478 pickings generated

by the algorithm, which has a matching in the manual picking data for the Parkfield data.

About 91% pickings from our algorithm are within 0.2 seconds of manual pickings. The

mean value and the standard deviation of the difference between our pickings and manual

pickings are 0.043 and 0.23.

4.4.2 Event Location Accuracy

As we discussed in the system design, the 1D reference velocity model is used for event

location in InsightTomo. Figure 4.11 gives the reference model used in our evaluation. Note

that this model is also used in the ray tracing and as the initial model for tomography

inversion.

3 4 5 6 7 8

−
35

−
30

−
25

−
20

−
15

−
10

−
5

0

Velocity, km/s

D
ep

th
, k

m

VEL

Figure 4.11 1D P-wave Velocity Reference Model.
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The P-wave arrival time picking and event identification algorithm generate 433 events

and 290 of them have corresponding event data in the extensive data set. The mean value

and standard deviation of the difference between the positions of our algorithm and extensive

data set are (0.33, 0.26) km respect to X, (0.46, 0.37) km respect to Y and (0.39, 0.40) km

respect to Z. Figure 4.12 shows the event location result compared with the extensive data

set.

 10

 12

 14

 16

 18

 20

 22

 24

 6  8  10  12  14

y 
(k

m
)

x (km)

(a) Event locations on XY

-2

 0

 2

 4

 6

 8

 6  8  10  12  14

z 
(k

m
)

x (km)

(b) Event locations on XZ

Figure 4.12 Event location result comparison, the empty circles and solid disc indicate the
event location from InsightTomo and the extensive data set respectively.

4.4.3 Tomography Result

Since the real structure of the Earth subsurface is unavailable, we can not directly com-

pare the tomography image from the real data with ground truth. To verify the correctness,

accuracy and the performance for DMET algorithm, here we use the real data set from

Parkfield to construct the image of seismic tomography using InsightTomo and compare

with previous research result.

The tomography results of Parkfield delivered by InsightTomo System are all from the

raw seismic data. Followed [60], the y-axis of the tomography rotated 40 degrees counter-

clockwise from north so that it is parallel to the local strike of the SAF.

Figure 4.13 gives the P-wave velocity model around SAF at Parkfield. The tomography
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Layer 32 of 72 layers along Z

Resolution: 120x160
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Model: vp2
Layer 8 of 72 layers along Z

Resolution: 120x160

(a) Vp at depth = 1km
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Model: vp2
Layer 20 of 72 layers along Z

Resolution: 120x160

(b) Vp at depth = 4km
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Resolution: 120x160

(c) Vp at depth = 7km

Figure 4.13 Horizontal slices of the P-wave velocity at depths of 1, 4, and 7 km. The fault
is located around X=13.5km.
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in first row is centralized calculated from the extensive data with event locations (1538 events

involved). It is close to the result in [60], it is easy to see that the velocity model is different

on different side of SAF. The dots in the tomography indicate the event locations estimated

in InsightTomo system. A scientific fact is that the events often happen around the fault

which is verified by our result. The tomography in second row is centralized calculated from

the extensive data, but not all the data is used. Only 438 events happened between Oct 2,

2001 and Oct 10, 2002 are used. This is because InsightTomo only used the raw seismic data

inside that time period. It makes more sense to compare the InsightTomo result with the

centralized result on similar data set. We can see that the fault feature is easy to get from

the second row of tomography but the velocity contrast at different sides of SAF is reduced.

The third row is the result from InsightTomo based on 433 events. A two-level DMET

algorithm is applied where one landlord will start the tomography inversion with low reso-

lution and four landlords compute partial model in high resolution. From the tomography

image, except the Vp at depth 7km, the main feature of SAF can still be recognized and

comparable with the centralized result. This verifies the feasibility of InsightTomo system.
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PART 5

HARDWARE PROTOTYPE: DESIGN AND OUTDOOR EVALUATIONS

In this chapter, we present a sensor network system prototype for real-time in-situ

seismic tomography computation. The design of the sensor network consists of hardware,

sensing and data processing. This system design is evaluated both in lab environment for 3D

tomography with real seismic data set (previous deployment on San Andreas Fault (SAF)

in Parkfield) and in outdoor field test for 2D surface tomography.

5.1 System Design

In this section, we give the overview of our system architecture and the details of both

hardware and software design. According to the motivation and requirement of the system

design discussed above, the specific goals of the sensor network system design is as following:

Synchronized Sampling:

The event location and travel-time tomography requires the P-wave arrival time of

earthquake events. The P-wave arrival time analysis is based on the temporal and

spacial correlation of the recorded signals on stations. So all stations need to per-

form synchronized sampling and timestamp the record with precise UTC time. The

synchronization accuracy should be less than the time interval of sampling (e.g. 20

millisecond for 50Hz sampling rate).

Long-term Robust Deployment:

To get accurate event location and high resolution seismic tomography, the more data

recorded the better result can be potentially delivered. Since the earthquake activities

are unpredictable, the long-term robust deployment is necessary to get enough data.

Also, due to the harsh weather conditions for remote deployment, a low-cost energy

efficient station with renewable energy and weatherproof capacity is required.
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P-wave Arrival Time Picking:

As we discussed in the beginning of this chapter, this sensor network system will send

the arrival time back instead of all raw seismic data. The system must be able to

continuously monitor the signal, detect and pick arrival time in real-time.

Online Monitoring and Configuration:

To monitor the status of the network, perform the real-time signal processing and in-

situ computation, the sensor network should be able to respond to external control from

the base station for status report or node configuration. The command and control

needs to be delivered reliably in real-time.

Distributed Computation Extension:

This system is not limited to be a in-situ signal processing and data collection frame-

work. In the future, the system can be used for more complicated seismic analysis that

may include cross correlation of signals between stations, distributed computation and

so on. Those tasks will require more computation power on each sensor node. An ex-

tension for adding a computation unit is required to make this system more extensive

and general.

5.1.1 System Architecture

Our system consists of several components. Figure 5.1 shows the architecture of the

sensor network system design. First, the sensor nodes with seismometers and RF modules

form a mesh network. Each sensor continuously records the signal, once an event happened,

the sensor will detect it and pick the P-wave arrival time from the signals. Then the arrival

time along with the station coordinates is delivered to the base station. The base station is a

computer that equipped with RF module, it runs various tools to process the received data,

compute the tomography, visualize the result, monitor the network status and configure the

sensor nodes. This system can deliver either 3D tomography through event location, ray

tracing and inversion, or 2D surface tomography with Eikonal tomography method [61].
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Figure 5.1 Sensor Network System Architecture.

5.1.2 Hardware Design

Considering the system design goals, our sensor node design encapsulates all the hard-

ware components in a weatherproof plastic box. Figure 5.2 shows the configuration of the

sensor node in the field. The sensor node box connected with a 10 Watt solar panel to get

renewable energy. A single-axis 4.5Hz seismometer, GeoSpace geophone is connected as the

sensor component. We mounted a 9 dBi omnidirectional antenna on the box for the commu-

nication of a 900MHz RF module to get a reasonable line-of-sight range. All the connections

are also sealed by weatherproof connectors for the harsh environment. The total weight of

each sensor node station is about 10 pounds which can be carried by a person for remote

deployment.

Figure 5.3 shows the hardware components inside the sensor node box, with a dimension

of 0.82× 0.55× 0.31 (inch). All our components in the system are mounted on a single-layer

PCB board. The core of the system is a TI MSP430F6779 processor, 25MHz, 512KB of

program ROM and 32KB of SRAM. This processor also provides seven independent 24-bit

Sigma-Delta ADCs with different inputs and variable gain. This is one of the most powerful

low-cost and ultra-low-power micro controller from MSP430 family. Besides, there are rich

I/O interfaces to support flexible extensions on the processor, including 6 SPI, 4 UART, 2
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Figure 5.2 Sensor node in the field.

I2C and 90 GPIO pins. A JTAG interface is connected to program the board.

The low-power radionova M10478-A2 GPS interface is connected to the processor

through UART1 to provide raw GPS data, and through GPIO 40 to provide PPS (pulse-per-

second) signal capturing. The GPS interface is used to provide the coordinates information

(latitude, longitude and altitude) of the sensor node, and the timestamps for recorded data

with accurate UTC time. The accuracy of its time pulse is up to 50 ns.

For wireless communication, we employed the XBee-PRO 900HP module to provide a

low-power, low maintenance, long outdoor range and self organized wireless network. As an

commercial industry product, XBee module is easy to configure and use. It provides best-in-

class range wireless connectivity to devices. They take advantage of the DigiMesh networking
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Figure 5.3 Hardware components in the box.

protocol from Digi company. They can run on dense network operation and support for

sleeping routers for energy efficient. Besides, various point-to-multipoint configurations are

available for the network. The MSP430 is connected to XBee using UART2 with 9600

baud that provides 960 Kbps data rate. The XBee module is connected to a external 9dBi

omnidirectional antenna with a SMA connector.

Since the sensor network is designed to sense the signal, pick and send the P-wave arrival

timestamp back without transmitting the raw seismic data. All the raw data is stored in

a micro SD card for other post analysis required by seismologists. We use the DM3D-SF

connector and connect the processor with memory card through SPI0 for SPI communication

and clock, and through GPIO 68 for SPI card select pin.

The node sensor connector is designed to connect up to three channels of seismometer.

The node can connect either to a single-axis or a tri-axis geophone. Both geophones are

passive instruments and the ground motion can generate voltage which is digitized by the

ADC module in MSP430. The ADC channel 0, 1 and 3 on MSP430 are connected to channel
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Figure 5.4 Main Hardware Components Connection.

3, 2 and 1 on a tri-axis geophone or only channel 1 on a single-axis geophone.

For the distributed computation extension requirement, one BeagleBone Black (BBB)

module is connected with the expansion connector to the board through its SPI0 interface.

We use the SPI1 on MSP430 for SPI communication and clock, the GPIO 72 for SPI card

select pin and the GPIO 70 as the power switch for BBB. The main hardware components

connection relationships are shown in Figure 5.4.
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5.1.3 Sensing and Data Processing

Aim to achieve the system design goals, based on our hardware design, we give the

description of the software design for sensing and data processing on the sensor node in this

section. Figure 5.5 illustrates the framework of the sensing and data processing components

on the sensor node.

Sensing

Memory Management

SD Card

 GPS
Parse

  Event
Detection

Timer

GPS Valid 

Raw Data

Sensor XBee RTCGPS

Read  Write

Buffer full

Picking

Picking
 Buffer

Process PPS

Arrvial
 times

 Request
Responds

Figure 5.5 Sensing and Data Processing Framework.

Since the accurate event location and high-resolution tomography are depend on precise

timing by utilizing the temporal and spacial correlation of recorded signals across stations.

The first goal of our system design is synchronized sampling and precise UTC time timestamp

for the recorded data. Our collaborators from seismology requires 100Hz sampling rate on

our open nodes, thus, the synchronization error should be no more than 10 milliseconds.

Notice that, the synchronized sampling is based on time synchronization but not the same.

Synchronized sampling does not only means that all sensor nodes in the network has the

same sample interval but also sample at the same time point.

In the hardware design, each sensor node employs a low-cost GPS receiver that provides

UTC time information and PPS signal. The GPS system time from GPS signal has an
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accuracy within 50ns referenced to UTC time, it can be used for time synchronization.

The problem is that decoding and processing of the GPS message can generate delays and

degrade the synchronization accuracy. Instead, we use PPS signals to synchronize the RTC.

To achieve the synchronized sampling, we designed a Timer component to maintain RTC

with millisecond resolution. Then when the system catches the first valid PPS interrupt, the

timer is reset and keep counting on milliseconds. When next valid PPS interrupt is captured,

if the timer is not in exact thousand milliseconds, the timer will be reset and the RTC will

be synchronized properly.

Notice that, the GPS signal can disappear or the PPS signal can not fire properly.

If the time period without GPS signal or valid PPS signals is long, the sampling across

sensor nodes might not be synchronized. The sensor node tags every second of data with a

timestamp and a flag. The timestamp represents the time point corresponding to the first

sample in this second. The flag indicates whether the samples in this second is under valid

time synchronization or not. The system will tag the second of data invalid synchronization

if: (1) there is no GPS signal for 60 seconds; (2) there is no valid PPS interrupts for 20

seconds.

The Sensing component samples the sensor with 10 milliseconds sample interval accord-

ing to Timer service. There is a small circular buffer to sample one hundred samples (one

second data under 100Hz) from sensor. Once this buffer is full. The Sensing component

will send it to memory management to write the buffer into micro SD card with proper

timestamp and flag. Also, the Event Detection component takes this buffer and perform the

event detection processing, if one event is detected, the related buffered data is processed

by Picking component to get the arrival time and send it through XBee module. There is

another module Process that processes the requests from base station and send responds

back for status monitoring and network configuration. More details about this can be found

in section 5.1.4.
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5.1.4 Online Monitoring and Configuration

Considering the complexity and remoteness of environment monitoring, online status

monitoring and sensor node configuration is highly desired.

With online monitoring, users can easily get the status of the sensor nodes in the

network. This is very helpful when the deployment is initiating, one can monitor all the

sensor nodes in the network remotely without actually visiting them remotely. There are

two modes in the system, test and deploy. When the deployment starts, the node will start

with test mode, and it will report the status periodically. After a while, if the node status

is normal, users can switch the nodes to deploy mode where the sensor node only report

the status if requested. The status report consists of the GPS status (satellite numbers,

latitude, longitude, altitude), the sensing status (number of events detected, number of

seconds recorded), the power status (solar panel input voltage and battery voltage).

In the sensor node, many parameters need to be configurable. For example, the window

size and threshold in the event detection and picking algorithms. Since different kind of

events have different properties, different parameters could identify various classes of events

according the interesting of seismologists. Also, the sensing parameters such as channel,

data resolution, sensor status and reference voltage gain can also be configured.

Figure 5.6 Stream data with arrival time picking on the monitoring and configuration tool.
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In our system design, the sensor node only sends the arrival time with station infor-

mation back by default. One problem is that in different field or with different interests

for events, the parameters for event detection and picking can be varied. After deployment,

users need to know whether the arrival time picking is accurate or not. Thus, a stream

option is added into the system. When the stream option is on, the sensor node will send

the raw stream data in the picking buffer with the arrival time. Users can visualize it on

base station to check the picking accuracy on base station in real-time. Figure 5.6 shows

the stream data and arrival time picking from the monitoring and configuration tool on the

base station. Besides, seismologists might be interesting in the raw data for other analysis

in the deployment period. But they can not afford to visit the sensor node remotely all the

time. Another feature in this system is that users can download the data from any node by

specifying the start and end time point.

5.2 Data Quality and Picking Accuracy

Before the field deployment and end-to-end tomography delivery of the system. We

conducted several tests to verify the quality of recorded data with the sensor node and the

accuracy of the arrival time picking mechanism.

5.2.1 Data Quality

The scientific value of the data is the final and most important measurement of the sensor

network system. The first test here is to see weather this system can provide scientifically

meaningful data to seismologists. Since it is not easy to find a place to record earthquake

events and it might take long time to validate. With the suggestion from seismologists, we

conduct a hammer shock test that is commonly used by the experts for preliminary. This

test is to use a hammer to hit on the ground to generate seismic wave propagation. The

signal from a hammer shock is not so different from an earthquake except the energy is

smaller.

To validate the data quality, the test is conducted to compare the data recorded by
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Figure 5.7 SigmaBox Configuration.

our sensor node and a current state of the art commercial seismic acquisition system called

SigmaBox. The SigmaBox is designed by iSeis Corporation, shown in Figure 5.7. In the test,

7 sensor nodes and 4 SigmaBox are deployed. Four sensor nodes are placed with SigmaBoxes

side by side to compare the recorded data quality, see Figure 5.8. The distance between each

pair of nodes is 10 meters. We used the hammer to hit the ground near the SigmaBox 70

and sensor node 18 for 20 times. In Figure 5.9, we can see the recorded data for a hammer

shock event by our sensor node and SigmaBox. The SNR is similar between two data record

Figure 5.8 SigmaBox and sensor node deployment.
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and the seismologist were satisfied with the data quality overall.
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Figure 5.9 Waveform of a hammer shock event on sensor node 09 and SigmaBox 69.
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Figure 5.10 Spectrum of the hammer shock event on sensor node 09 and SigmaBox 69.

The spectrum of the waveform in Figure 5.9 is shown in Figure 5.10. We can see that the

spectrum distribution is similar between two signals. This further validate the data quality

of our sensor node. Notice that the SigmaBox costs about $3K, while the sensor node costs

less than $1K.
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Figure 5.11 Signal Noise Level Change

One problem in the test is that the noise level of the signal can be changed due to the

environmental or hardware problem. Figure 5.11 gives an example of the noise level change

in one of our hammer shock tests from two nodes. This test is finished on a grass area of a

community. The lower noise of the first two minutes is mostly from the air conditions and

traffic nearby. A lawn mower was operating around after a while in the test and generated

higher noise. In real world deployment, there are many factors which can influence the noise

level such as wind, rain, traffic and so on. Since the picking algorithm depends on the noise

level σ2
1, an adaptive computation for noise is necessary. Here we add an adaptive noise level

estimation base on the periodical noise level computation with a filter. Basically, the system

evaluate the noise level periodically and use the weighted average of recent noise level values

as σ2
1.

5.2.2 P-wave Arrival Time Picking Accuracy

The example in Figure 5.9 shows the arrival time picking of our algorithm on sensor

node and SigmaBox sensed data. Notice that the sampling rate of SigmaBox was 500Hz in

the test. In the example, the time difference between two pickings is 6 millisecond, which

is smaller than the sampling interval of our sensor node. The average time difference of all
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pair of pickings in this test is 4.2 millisecond. This test shows that the algorithm can deliver

similar arrival time result on different node. It only means that the recorded data quality

from two kinds of nodes is similar to perform detection and picking algorithm. To validate

the accuracy of the picking algorithm, the algorithm should perform on the real data set

with manual pickings from experts as the reference.

Figure 5.12 Audio to Sensor Channel adapter.

We used a real data set obtained from seismologists. This data set was recorded from a

previous deployment on San Andreas Fault (SAF) at Parkfield. The deployment is from Jan

1, 2000 to Dec 31, 2002 with 61 stations. The data set has been cut into short waveforms

that contain events with the manual pickings. Then the problem is that how can we send the

waveforms to sensor node for validation. We made an adapter from audio input to channel

0 as shown in Figure 5.12. Then waveforms were converted into audio wave and can be sent

to the sensor node by any audio player on a computer, cellphone or tablet.

There are totally 4326 arrival times picked by the algorithm from the data set. About

90% picking errors of our algorithm are within 0.2 seconds. The mean value and the standard
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deviation of the difference between our pickings and manual pickings are 0.044 and 0.232.

This is comparable with some recent method in seismology literature [62].

5.3 System Evaluation

In this section, we conduct two experiments to evaluate the sensor network system for

both 3D and 2D surface tomography.

5.3.1 Parkfield 3D Tomography

From the discussion of previous section, we use an adapter to send the waveform from

computer to our sensor nodes simulating the sampling process. The sensor node then process

the data, picked the arrival times and send to a base station set in the lab. After the base

station received some arrival times, it should compute the event location. Notice that this

computation is an online process, because in real deployment, one can not predict when and

how many arrival times can be received since the earthquake activity is not predictable.
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Figure 5.13 Horizontal slices of the P-wave velocity at depths of 2 and 3 km. The fault is
located around X=13.5km.

The base station only receives the arrival times from the sensor nodes and has the
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knowledge that which picking is from which node. In all of these pickings, there might be

false alarms or some small and remote event is only detected by few sensor nodes. As we

known, to estimate an event location and origin time, at least four pickings from different

sensor nodes are required, the event detected only by one or two nodes is impossible to be

located. Also, more pickings from different sensor nodes for one event usually lead to a

better estimation. Thus there are two steps in event location as we discussed, (1) Event

Identification where the base station identifies how many events existing in a series of arrival

times received and which pickings belong to the same event; (2) Location Estimation which

uses Geiger’s method to estimate the event location from the arrival times of that event.

After identified the events and computed the event locations, base station will do ray

tracing based on the event information and the station coordinates received with the arrival

times, followed by the 3D tomography inversion.

Figure 5.13 shows the tomography result from the base station. It is easy to see that the

velocity model is different on different side of SAF. The dots in the tomography indicate the

event locations estimated on base station. A scientific fact is that the events often happen

around the fault which is verified by our result. We can see that the fault feature is easy to

get from the tomography result. This result is comparable with the previous research on the

Parkfield tomography [60].

5.3.2 Hammer Shock Field Test

To verify the sensor network system in outdoor field, we conduct a field test and created

the event with hammer shock on the ground to generate the surface wave. In this case, we

can control the location of the event source and it is easy to verify if the recorded data

is meaningful, the arrival time pickings is correct and the 2D surface tomography result is

validated.

In the previous discussion, the hammer shock test has already been used for data quality

and arrival time picking validation. From that test, we found that on the soil ground, the

hammer shock can generate waves propagated up to around 30 meters, depends on how hard
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Figure 5.14 Hammer Shock Test Deployment.

the hammer hit the ground. Thus, 25 sensor nodes are deployed on a 20×20 meter area with

5 meter space between the adjacent sensor nodes. Figure 5.14 shows the deployment of 25

sensor nodes. In the area we deployed, the upper half of it covered by wet soil under the tree

while the other half is covered by drier soil under the sunshine in day time. The reason we

choose this area is that we would like to see the difference from Eikonal tomography based

on the property of the different acoustic wave propagation speed in wet and dry soil.

38 49 27 33 24

19 08 11 48 32

07 36 15 17 04

13 45 29 50 20

26 42 05 16 22

5 meters

Figure 5.15 Deployment map of sensor nodes.
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Figure 5.16 Hammer shock event captured.

After the deployment done, the base station monitored the status of all sensor nodes

and told us when all nodes stared working normally. Then we created 5 hammer shocks

(events) beside each station, totally 125 events were created. The deployment map of the

sensor nodes is shown in Figure 5.15.

Finally, after all hammer shocks done, the base station received more than 2000 arrival

times and computed the 2D surface tomography with Eikonal tomography method. Before

showing the tomography result, we take a closer look at one seismic event recorded by the

sensor network and the arrival times picked out of this event.

The hammer shock event captured in Figure 5.16 was generated by hit beside node 24,

which located on the upper right corner in the deployment map. From the recorded signal

and picked arrival times shown in Figure 5.16, node 24 got the earliest arrival time and the

further nodes got the relatively delayed arrivals, which shows the wave propagation in the

deployed area. Within such a small area, this further verified the synchronized sampling

accuracy of our sensor network system.

In this test, the base station received totally 2012 arrival times picked on the sensor

nodes. Some events are not picked on some nodes. The reason is that the sensor node can

not get good event signal, it depends on how hard the hammer hit the ground and how far
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Figure 5.17 Hammer shock event captured along the diagonal.

the sensor node is from the event location. Figure 5.17 shows an event generated beside

node 32 and the corresponding data record along the diagonal of the deployment area. We

can see that the SNR is very low on the furthermost node 22, thus it is hard to detect this

event and pick the arrival time.

km/s

Figure 5.18 2D surface wave tomography.

Out of 2012 arrival times, the base station identified 96 events with 1905 arrival times.
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Figure 5.18 shows the 2D surface wave tomography delivered by the base station. According

to the research on acoustic wave propagation in soil [63], the impedance mismatch from

the water to air is much greater than the water to soil frame. Thus, more saturated the

soil is, slower the acoustic wave propagates in it. As we discussed above, the upper side of

the deployed area contains more water in the soil. This observation is shown in the final

tomography result.
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PART 6

CONCLUSIONS

In this dissertation, three research aspects are addressed for real-time in-situ seismic

tomography in sensor network. First, we propose an innovative multi-resolution evolving

tomography algorithm that distribute and balance the tomography inversion computation

load to the network, while computing real-time high-resolution 3D tomography not only

balance the computation load, but also achieves low communication cost and high data loss

tolerance. Second, we present InsightTomo, an end-to-end emulation system that performed

in-network data processing and obtained tomography using distributed computation. Eval-

uation was carried out on real data and the obtained results are comparable with previous

research that used centralized method. Third, we designed a sensor network testbed that

performs in-situ signal processing and obtains 3D or 2D surface tomography in real-time.

The hardware and software design of the system focused on delivering a low-cost, energy

efficient and reliable system to monitor and image the earthquake zone or active volcano.

Several tests and experiments were conducted to show: (1) the recorded data quality is sim-

ilar to current commercial product; (2) the system can deliver validated tomography result.

Both the emulation and testbed platforms mark the collaboration between geophysicists and

computer scientists, which provides opportunities to introduce new technology for geophysi-

cal monitoring. The approaches presented here has broader implication beyond tomography

inversion and can be easily extended to oil and natural gas exploration.
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