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ABSTRACT 

THREE ESSAYS ON THE IMPACT OF THE AFFORDABLE CARE ACT EXPANSION OF 
DEPENDENT COVERAGE FOR YOUNG ADULTS 

By 

YANLING QI 

AUGUST, 2015 

Committee Chair: Dr. James H. Marton 
Major Department: Economics 

 To achieve the goal of universal coverage of health insurance for the Americans, in 
March 2010, the Patient Protection and Affordable Care Act (ACA) was signed into law. The 
ACA targets at providing help to improve access to affordable health coverage for everyone and 
protect consumers from abusive insurance company practices. One of the precedent mandates, 
implemented in September 2010, is to expand coverage on young adults of age 19 to 26, who 
may lose insurance coverage due to the remove from their parents’ plan after age 18 and lacking 
of productivity to bargain with employers in the labor market. 
 This dissertation looks into the impact of the ACA health insurance coverage expansion 
for young adults on the subsequent health outcomes, health care utilization, and further social 
impact on traffic fatalities. Difference-in-differences models are used with different treatment 
groups and corresponding control groups. Chapter I uses survey data (BRFSS) to evaluate health 
care access, health behavior and self-assessed health status. The results suggest an improvement 
in health care access and self-assessed health but more risky behavior. Chapter II uses hospital 
discharge data (NIS) to estimate avoidable hospitalization in order to assess primary care 
utilization. The result shows that less primary care was consumed, which leads to more avoidable 
hospitalization but health may have been improved by using more hospital care. The results from 
both chapters imply potential ex ante moral hazard among young adults in the policy targeting 
age group. Thus, chapter III uses accident records data (FARS) to examine the impact of the 
health insurance expansion on traffic fatality for young adults, to see whether young drivers 
perform ex ante moral hazard through risky behavior like drunk and/or reckless driving after they 
get covered by the health insurance expansion policy. Primary result shows that there is an 
increase in traffic accidents and fatalities for those younger adults as a result of the ACA 
dependent coverage expansion. 
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INTRODUCTION 

To achieve the goal of universal coverage of health insurance for the Americans, in 

March 2010, the Patient Protection and Affordable Care Act (ACA) was signed into law. The 

ACA targets at providing help to improve access to affordable health coverage for everyone and 

protect consumers from abusive insurance company practices. One of the precedent mandates, 

implemented in September 2010, is to expand coverage on young adults of age 19 to 26, who 

may lose insurance coverage due to the remove from their parents’ plan after age 18 and lacking 

of productivity to bargain with employers in the labor market. The expansion shows an increase 

of 3.1 million in coverage for young adults by December 2011. 

This dissertation looks into the impact of the ACA health insurance coverage for young 

adults on the subsequent health outcomes, health care utilization, and further social impact on 

traffic fatalities. The first essay uses survey data to evaluate health care access, health behavior 

and self-assessed health status. The results suggest an improvement in health care access and 

self-assessed health but more risky behavior. The second essay uses hospital discharge data to 

estimate avoidable hospitalization in order to assess primary care utilization. The primary result 

shows that less primary care was consumed, which leads to more avoidable hospitalization but 

health may have been improved by using more hospital care. The results from both essays imply 

potential ex ante moral hazard among young adults in the policy targeting age group. Thus, the 

third essay uses accident records data to examine the impact of the health insurance expansion on 

traffic fatality for young adults, to see whether young drivers perform ex ante moral hazard 

through risky behavior like drunk and/or reckless driving after they get covered by the health 

insurance expansion policy. Primary result shows that there is an increase in traffic accidents and 

fatalities for those younger adults as a result of the ACA dependent coverage expansion. 
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CHAPTER I 

Impacts of the ACA Dependent Coverage Provision on Health-Related Outcomes of Young 
Adults1 

I. Introduction 

 The Patient Protection and Affordable Care Act (ACA) of March 2010 aimed to achieve 

nearly universal coverage in the United States through a combination of mandates, subsidies, 

Medicaid expansions, and health insurance exchanges (Gruber, 2011). Although the majority of 

the ACA’s provisions just took effect in 2014, one important component of the law – a 

dependent coverage provision – was implemented on September 23rd, 2010. This provision 

allows dependents to remain on a parent’s private health insurance plan until the start of the first 

plan year after they turn 26 years old. Previously, private insurers often dropped non-student 

dependents at age 19 and student dependents at age 23 (Anderson et al., 2012 and 2014). 

Many states already had some form of dependent coverage mandate before the ACA, but 

the state laws are typically weaker. Most state laws have an age threshold below 26 or require 

additional criteria, such as being a full-time student, living with one’s parents, or not being 

married. Moreover, state laws do not apply to self-funded benefit programs, and more than half 

of private sector workers with employer-provided health insurance are in self-funded plans 

(Monheit et al., 2011). Perhaps because of these limitations, Monheit et al. (2011) and Levine et 

al. (2011) find that state dependent coverage mandates only lead to small increases in dependent 

coverage that are offset by a decline in young adults holding their own policies. In contrast, the 

ACA provision applies to all young adults under age 26 and all private plans. It therefore has the 

                                                             
1 This chapter is coauthored with Silvia Barbaresco and Charles Courtemanche. Reprinted from Journal of Health 
Economics, 40, Impacts of the Affordable Care Act Dependent Coverage Provision on Health-Related Outcomes of 
Young Adults, 54-68, Copyright (2015), with permission from Elsevier. 
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potential to dramatically affect young adults across the country, including in states with a pre-

existing dependent coverage provision. 

The ACA dependent coverage expansion provides a unique opportunity to study the 

impacts of a health insurance intervention specific to young adults, the age group with the 

highest uninsured rate (Levine et al., 2011). Prior to the ACA, the uninsured rate was 29% 

among individuals ages 18-24 and 27% among those 25-34, compared to 19% for 35-44 year 

olds and 14% for 45-64 year olds (DeNavas-Walt et al., 2010). Since any attempt to obtain 

universal coverage necessarily involves large coverage expansions among young adults, it is 

important to understand the effects of insurance on this group. It is unclear the extent to which 

results from other contexts – such as Medicaid, Medicare, or the Massachusetts health care 

reform of 2006 – are applicable. Young adults are generally healthier than the populations 

covered by these programs, and therefore may experience smaller gains from health insurance. 

Alternatively, young adults may be relatively poor and therefore respond strongly to reduced out-

of-pocket costs of medical care.2  

Given the short amount of time since its implementation, researchers are only beginning 

to study the impacts of the ACA dependent coverage provision. Cantor et al. (2012) and 

Sommers and Kronick (2012) show that the mandate increased health insurance coverage for 

young adults across all racial groups and regardless of employment status. Sommers et al. (2013) 

find that the provision increased insurance coverage among young adults, while reducing delays 

in getting care and care foregone because of cost. Akosa Antwi et al. (2013) again find an 

increase in insurance coverage, but they also present evidence of labor market consequences 

such as young adults shifting from full-time to part-time jobs. Akosa Antwi et al. (2014) show 

                                                             
2 Aside from age, the ACA dependent coverage mandate is also a unique coverage expansion in that it represents an 
expansion of private rather than public insurance, and that, since it only affects those whose parents have insurance, 
the treated population may be of higher socioeconomic status than that of other interventions. 
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that the mandate increased young adults’ utilization of inpatient care, particularly for mental 

illness. Chua and Sommers (2014) do not find any evidence that the provision affected health 

care use, but they do find a reduction in out-of-pocket medical expenses and increases in 

excellent self-reported physical and mental health.   

These papers all share a common general research design: comparing changes in 

outcomes among the treated age range 19-25 to those of other young adults. The age range used 

for the control group varies across these studies, with some including individuals up to 34 years 

old (Sommers and Kronick, 2012; Sommers et al., 2013; Chua and Sommers, 2014). Slusky 

(2013) questions the validity of this approach, arguing that different age groups are often subject 

to different economic shocks. He runs placebo tests using data from before the mandate and 

artificial “treatment” dates, finding that the same specification estimates significant “effects” 

more often than could be attributed to chance. He suggests narrowing the age bandwidths of the 

treatment and control groups as a possible solution.  

We contribute to this literature on the ACA dependent coverage provision in four ways. 

First, we consider a number of new outcomes. Using data from the Behavioral Risk Factor 

Surveillance System (BRFSS), we investigate 18 outcomes related to health care access, 

utilization of preventive care, risky health behaviors, and self-assessed health. The health care 

access measures include having insurance, a primary care doctor, and any foregone care because 

of cost. Our preventive care measures are dummies for recent flu vaccinations, well-patient 

checkups, and pap tests. The health behavior outcomes reflect smoking, drinking, body mass 

index, exercise, and pregnancy. The self-assessed health variables relate to overall, mental, and 

physical health as well as health-related functional limitations. Of these outcomes, only 

insurance coverage, foregone care because of cost, and self-assessed physical and mental health 
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are studied in other papers in the literature. To our knowledge we are the first to investigate the 

ACA dependent coverage provision’s impact on preventive care or health behaviors. Moreover, 

although Chua and Sommers (2014) examine self-assessed physical and mental health, their 

measures and ours are meaningfully different. They use dummies for self-reporting excellent 

physical and mental health, so their estimates only capture changes at the upper end of the health 

distribution. In contrast, we utilize five measures that should together capture changes at various 

parts of the distribution. A dummy for excellent overall health reflects the high end, a dummy for 

very good or excellent health reflects a somewhat lower portion, and three more severe outcomes 

– number of days of the past 30 not in good physical health, not in good mental health, and with 

health-related limitations – reflect an even lower portion. This distinction will prove critical to 

the results.  

Our second contribution is to push further than prior studies toward addressing the 

methodological concerns raised by Slusky (2013), both by using narrow age ranges for the 

treatment and control groups and by validating these selections through placebo testing. Our 

treatment group consists of individuals ages 23-25, slightly below the dependent coverage 

provision’s age cutoff, and our control group consists of those slightly above the cutoff at ages 

27-29. We run placebo tests checking for “effects” of artificial interventions in the pre-treatment 

period. Our classifications perform well in the placebo tests, whereas the wider age ranges 

commonly used in the literature prove more problematic.  

Another contribution is that we use over three full years of post-treatment data (2011 

through 2013, plus a few months after implementation at the end of 2010). To our knowledge, 

none of the prior papers in the ACA dependent coverage provision literature have used more 

than one full year of post-treatment data, which leaves the estimates susceptible to confounding 
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from temporary age-specific shocks and fluctuations. If estimated effects persist with three years 

of post-treatment data, we can be more confident that they are not driven by transitory 

movements in unobserved characteristics. 

Finally, we contribute to the literature by testing for heterogeneous effects. Of the 

outcomes included in our paper, heterogeneity in the effects of the ACA dependent coverage 

provision has only previously been evaluated for insurance coverage (Akosa Antwi et al., 2013; 

Sommers et al., 2013) and cost being a barrier to care (Sommers et al., 2013). We will find 

important heterogeneous effects on other outcomes as well, such as self-assessed health. 

Moreover, although Akosa Antwi et al. (2013) and Sommers et al. (2013) evaluate whether 

effects differ by certain demographic characteristics, neither paper tests for heterogeneous effects 

by socioeconomic status.3 We will find that the effects of the dependent coverage provision vary 

considerably by education level. 

Our difference-in-differences results from the full sample suggest that the ACA 

dependent coverage provision improved health care access for young adults, had little effect on 

preventive care use, had mixed effects on risky health behaviors, and improved self-assessed 

health at the high end of the distribution. Specifically, we document improvements in four of the 

eighteen outcomes: health insurance coverage, access to a primary care doctor, excellent self-

assessed health, and body mass index. However, we find evidence of an increase in risky 

drinking, and no clear effects in either direction on the remaining thirteen outcomes.  

We evaluate heterogeneity in the effects of the mandate through subsample analyses,  

finding the greatest improvements in outcomes for men and college graduates. The increase in 

                                                             
3 Sommers et al. (2013) note that testing for heterogeneity by educational attainment is difficult because many 
individuals in their treatment group – 19 to 25 year olds – are still in the process of completing their education. 
Another advantage of using a narrow age range for the treatment group – 23 to 25 year olds – is that excluding the 
prime college ages largely ameliorates this concern.    
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health insurance coverage was greater for men than women, and only men experienced 

statistically significant gains in any outcomes beyond health insurance: primary care access, 

exercise, and overall self-assessed health. Stratifying by education reveals that the insurance 

expansions were similar for college graduates and non-college graduates. However, only college 

graduates experienced significant gains in any other outcomes besides insurance – specifically, 

primary care access, cost being a barrier to care, body mass index (BMI), obesity, and overall 

self-assessed health. Young adults with different education levels therefore appear to respond 

differently to exogenously obtaining health insurance.  

II. Health Insurance and Health-Related Outcomes 

 The most obvious theoretical implication of health insurance is that by lowering the 

effective price of health care, health insurance should increase its utilization. However, increased 

health care utilization does not necessarily improve health. Diminishing marginal returns suggest 

that health care can only improve health up to a certain level (e.g. Grossman, 1972). Whether the 

additional consumption of medical care induced by insurance generates substantial gains in 

health therefore depends on the initial level of health capital. Since the uninsured can often 

obtain essential needs by paying directly or receiving charity care, these individuals need not 

have low baseline levels of health. Moreover, the marginal returns to health care differ for 

different outcomes. Risky health behaviors such as smoking, excessive drinking, and overeating 

might be particularly difficult to improve through health care, as they require lifestyle changes. 

Medical professionals’ ability to influence health behaviors is generally limited to providing 

accountability, information, strategies, and sometimes drugs to make behavioral changes easier. 

Another relevant issue when evaluating the impact of health insurance on health is that 

obtaining insurance could induce individuals to take more health risks, since the provision of 
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health insurance decreases the financial losses associated with sickness. This concept is known 

as ex ante moral hazard (Ehrlick and Becker, 1972). Theoretically, ex ante moral hazard could 

both increase risky behaviors and reduce investments in preventive care.  

Finally, exogenous provision of health insurance could lead to income effects for 

individuals who used to purchase their own insurance policy but now are able to receive free or 

subsidized coverage, or for the newly-insured if their out-of-pocket medical expenses drop. The 

available evidence from natural experiments suggests that additional income increases health 

care utilization (Acemoglu et al., 2013), either increases BMI or has no effect (Lindahl, 2005; 

Schmeiser, 2009; Cawley et al., 2010), increases smoking along the intensive but not extensive 

margin (Apouey and Clark, 2014), and increases drinking (Apouey and Clark, 2014). The 

income effect may therefore improve health via medical care but worsen health via risky 

behaviors. Accordingly, evidence of income’s causal effect on overall health is mixed, with 

Lindahl (2005) and Frijters et al. (2005) finding that it improves self-assessed health, Apouey 

and Clark (2014) finding that it improves mental health but not overall health, and Snyder and 

Evans (2006) showing that it raises mortality risk among seniors. 

In sum, the effects of insurance on preventive health care utilization, risky health 

behaviors, and overall health status are theoretically ambiguous. Insurance may improve these 

outcomes through direct price effects, worsen them through ex ante moral hazard, or affect them 

in either direction through income effects. The net effects could differ for different outcomes. 

For instance, direct price effects might dominate for primary care utilization but moral hazard 

might dominate for risky behaviors. Empirical analysis is necessary to resolve this ambiguity. 

Causally interpretable evidence generally confirms the prediction that insurance increases 

health care utilization for U.S. adults. Manning et al. (1987) analyzed the randomized RAND 
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Health Insurance Experiment, finding that lower copayments increased doctor visits. Medicaid 

and Medicare expansions have been shown to increase utilization of primary and hospital care 

(Currie and Gruber, 1996a; Finkelstein et al., 2012; Taubman et al., 2014; Lichtenberg, 2002; 

Card et al., 2008). Other evidence suggests that the Massachusetts universal coverage initiative 

of 2006 increased preventive services while reducing emergency room utilization, avoidable 

hospitalizations, and medical needs unmet because of cost (Miller, 2011; Kolstad and Kowalski, 

2012; Miller, 2012; Van der Wees et al., 2013). More directly relevant to our study population, 

Anderson et al. (2012 and 2014) exploit the sharp drops in coverage on parents’ insurance at 

ages 19 and 23 to show that losing coverage reduced young adults’ emergency room and hospital 

visits. Finally, as mentioned previously, Akosa Antwi et al. (2014) show that the ACA dependent 

coverage provision increased hospital admissions, although Chua and Sommers (2014) find no 

significant effects on survey measures of hospital, primary care, or prescription drug utilization.  

 The evidence of health insurance’s effect on health is mixed. The RAND experiment only 

found that better insurance coverage improved health for certain subgroups (Brook et al., 1983). 

Medicaid expansions increase self-reported overall, physical, and mental health and reduce 

mortality, but have no statistically detectable effects on laboratory-measured health outcomes 

(Currie and Gruber, 1996b; Finkelstein et al., 2012; Sommers et al., 2012; Baicker et al., 2013). 

Card et al. (2009) find a reduction in the mortality rate among recently hospitalized Medicare 

recipients, but Finkelstein and McKnight (2008) find no significant effect of Medicare on the 

mortality rate of seniors in general. Evidence suggests that the Massachusetts reform improved 

self-assessed overall, physical, and mental health, while decreasing functional limitations, joint 

disorders, and mortality (Van der Wees et al., 2013; Courtemanche and Zapata, 2014; Sommers 
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et al., 2014). As mentioned previously, Chua and Sommers (2014) find that the ACA dependent 

provision increased the probabilities of self-reporting excellent physical and mental health. 

 Evidence on the causal effects of health insurance on risky health behaviors is also mixed. 

Brook et al. (1983) find no evidence that insurance affected smoking or body weight in the 

RAND experiment. Dave and Kaestner (2009) report that Medicare decreased physical activity 

while increasing smoking and drinking. Finkelstein et al. (2012) do not find any significant 

impacts of Medicaid on smoking or BMI. Courtemanche and Zapata (2014) find that the 

Massachusetts reform reduced body mass index and did not affect smoking or physical activity.  

 In sum, there is little prior evidence on the effects of health insurance on young adults’ 

access to care, preventive care utilization, risky health behaviors, or health. Given the theoretical 

ambiguities and variation in empirical findings discussed above, we cannot assume prior results 

from other contexts such as Medicaid and Medicare generalize. For instance, young adults’ 

relatively high baseline levels of health might lead them to have relatively inelastic demand for 

health care or a low marginal effect of health care on health. On the other hand, young adults’ 

demand for health care could be relatively elastic given their generally low income and wealth 

levels. Moreover, one might expect young adults to be the most susceptible to ex ante moral 

hazard since this is often the life stage in which opportunities to engage in particular risky 

behaviors (e.g. binge drinking) are introduced. 

III. Data 

 Our main data source is the BRFSS, a telephone survey conducted by state health 

departments in conjunction with the U.S. Centers for Disease Control and Prevention to collect 

information on health and health behaviors. The survey is conducted monthly through a random 

digit dialing method that selects a representative sample of respondents from the non-
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institutionalized population of adults at least 18 years old. The BRFSS provides several 

advantages for our analyses. First, it contains a wide range of appropriate outcome variables. 

Second, it includes demographic characteristics as well as state, month, and year identifiers that 

allow us to construct the treatment variable and jointly control for many different factors. Next, it 

contains a much larger number of observations than other datasets with the necessary variables.  

Finally, the BRFSS includes a number of pre-treatment waves that allow for detailed testing of 

differential trends in the outcomes between treatment and control groups.  

 Our primary analysis sample consists of the 2007-2013 waves, which include the year the 

ACA dependent coverage mandate took effect plus three years on both sides. One reason we 

exclude the years before 2007 is to limit our sample to years of relatively poor economic 

performance. This reduces the possibility of confounding from differential impacts of 

macroeconomic shocks on the health-related outcomes of different age groups. However, 

robustness checks and placebo tests will utilize data as far back as 2001. We do not use any 

waves before 2001 because the BRFSS made major changes to the survey in that year. Many of 

the questions used to construct our outcome variables are either not available in earlier years or 

differ in non-trivial ways.  

 Most of our analyses use ages 23-25 as the treatment group and ages 27-29 as the control 

group. Following much of the prior literature, 26 year olds are excluded because their treatment 

status is ambiguous: they may still be covered by the ACA mandate depending on their birthdate 

and the start date of their parents’ insurance plan year (Akosa Antwi et al., 2013). Although the 

prior literature uses 19-25 as the treatment group, we prefer 23-25 for two reasons.4 First, prior to 

the ACA, insurers most commonly dropped non-student dependents from parents’ plans at age 

                                                             
4  Studies in the literature utilize somewhat different control groups. Cantor et al. (2012) use 27-30 year olds; 
Sommers and Kronick (2012), Sommers et al. (2013), and Chua and Sommers (2014) use 26-34 year olds; Akosa 
Antwi et al. (2013) use 16-18 and 27-29 year olds; and Akosa Antwi et al. (2014) use 27-29 year olds.   
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19, but most commonly dropped student dependents at age 23. Excluding 19-22 year olds 

therefore results in a “cleaner” treatment group, i.e. a higher proportion of the treatment group 

actually being affected by the treatment. Accordingly, Akosa Antwi et al. (2014) show that the 

ACA dependent coverage provision’s impact on having insurance was more than twice as large 

for 23-25 year olds as for 19-22 year olds. Second, Slusky (2013) shows that the models from 

prior papers with ages 19-25 as the treatment group lead to poor placebo test results for insurance 

and labor market outcomes. He suggests narrowing the age bandwidth as a potential solution. 

Indeed, we will show that wider age ranges lead to problematic placebo test results for our 

outcomes as well, and that our narrower age range performs better.  

 We utilize eighteen different health-related dependent variables. The first three relate to 

health care access: dummy variables reflecting whether the respondent has any health insurance, 

has a primary care physician, and had any medical care needed but not obtained because of cost 

in the previous year. Unfortunately, the BRFSS does not include more detailed questions on 

health insurance, such as the source of coverage. The next three outcomes – dummies for having 

a flu vaccination (shot or spray), a well-patient doctor check-up visit (e.g. physical), and a pap 

test (for women) in the previous year – reflect preventive care utilization.5 The next category of 

variables relates to risky health behaviors: a dummy for whether the individual currently smokes, 

number of alcoholic drinks in the past 30 days, a dummy for being a risky drinker (more than 30 

drinks total or at least one occasion with four or more drinks for women, more than 60 drinks 

total or at least one occasion with five or more drinks for men),6 body mass index (BMI=weight 

                                                             
5 Other preventive care variables typically studied in the literature, such as mammograms and prostate exams, are 
not relevant for our study population of young adults. 
6 The dummy for risky drinker is created to come as close as the BRFSS data will allow to the National Institute on 
Alcohol Abuse and Alcoholism’s definition of at-risk drinking: more than 7 drinks per week total or at least one 
occasion with three or more drinks for women, and more than 14 drinks per week total or at least one occasion with 
four or more drinks for men. See http://pubs.niaaa.nih.gov/publications/womensfact/womensfact.htm. 
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in kg/height in m2),7 a dummy for obese (BMI≥30), a dummy for whether an unmarried female 

respondent is pregnant (the only proxy for risky sexual activity available in the BRFSS), and a 

dummy for obtaining any recreational exercise in the past 30 days.8 Finally, we include several 

variables related to self-assessed health status: a dummy for whether overall health is very good 

or excellent, a dummy for whether overall health is excellent, and days of the last 30 not in good 

mental health, not in good physical health, and with health-related functional limitations. 

Although self-assessed health is subjective, research has repeatedly found it to be correlated with 

objective measures of health such as mortality (e.g. Idler and Benyamini, 1997; DeSalvo et al., 

2006; Phillips, Der, and Carroll, 2010). Self-assessed health is also a global measure of health 

that captures the full range of possible diseases and limitations (Idler and Benyamini, 1997).9  

 We also utilize a wide array of control variables. These include dummy variables for each 

year of age, gender, race/ethnicity, marital status, education, household income category, number 

of children in the household, whether the respondent reports her primary occupation as student, 

and whether the respondent is unemployed. Additionally, we control for monthly state 

unemployment rate, obtained from the Bureau of Labor Statistics. As mentioned previously, we 

are concerned about different impacts of the recession on different age groups, so controlling for 

several variables related to economic conditions at both the individual and aggregate levels could 

potentially be important. We also control for whether the respondent’s state had any dependent 

coverage mandate covering her age*marital status*student status group in the survey year based 

                                                             
7 Body mass index is based on self-reported height and weight, which are prone to measurement error (Cawley, 
2004). Researchers have repeatedly found that this measurement error does not affect the signs and significance of 
regression estimates with BMI as a dependent variable, though it may slightly attenuate the magnitude of the 
estimates (e.g. Lakdawalla et al., 2002; Courtemanche et al., 2014; Courtemanche et al., forthcoming). 
8 Unfortunately, the more detailed BRFSS questions on physical activity are only available in odd numbered survey 
years and changed dramatically in 2011, so they are not useful for our analyses. 
9 Moreover, other commonly-used measures of health are not practical in our context. Mortality rates are likely too 
low among young adults to estimate effects of coverage expansions with meaningful precision, while measures of 
avoidable hospitalizations confound insurance’s impact on health with the reduction in effective prices. 
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on information from the National Conference of State Legislatures (2010).10 Additionally, in the 

flu vaccination regressions we control for interactions of the age fixed effects with the number of 

positive influenza tests in the country during the particular flu season (a proxy for severity of the 

flu season). Flu seasons in the post-treatment years were much more severe than those in the pre-

treatment years, so adding these interactions prevents the estimates from being confounded by 

differential responses to flu season severity by young adults of different ages.11  

 Finally, we include a dummy for whether the respondent is part of a “cell phone only” 

component of the sample, added in 2011 (this variable is 0 for all respondents before 2011). The 

fact that individuals who only used cell phones were not explicitly included in the sample until 

2011 raises the question of whether our sample makeup meaningfully changed at about the same 

time the post-treatment period began. To address this issue, we not only control for “cell phone 

only” users but also utilize the BRFSS sampling weights in all analyses. We found that these 

weights eliminate any sharp changes in sample demographic characteristics in 2011. 

Additionally, this issue would only bias our regression estimates if the relationship between the 

outcomes of landline and cell phone users is different among 23-25 year olds than among 27-29 

year olds, and in a way that is not captured by the controls. It is not obvious why this would be 

the case. Accordingly, we have verified (results available upon request) that dropping individuals 

who only use cell phones from our sample has very little effect on the coefficient estimates, 

though it does generally increase the standard errors due to the reduced sample size. 

                                                             
10 Note that not everyone coded as a 1 for state mandate is actually “treated” by such a mandate. Additional 
qualifiers beyond age, student status, and marital status exist in some states, while young adults whose parents’ 
employers self-insure are also not covered by state mandates.  
11 Specifically, for the pre-treatment years 2007, 2008, and 2009, there were 23,753, 39,827, and 27,682 positive 
influenza test results in the corresponding flu seasons 2006-2007, 2007-2008, and 2008-2009. For the post- or 
during-treatment years 2010, 2011, 2012, and 2013, there were 157,449, 55,403, 27,012, and 75,342 number of 
influenza test results in the corresponding flu seasons 2009-2010, 2010-2011, 2011-2012, and 2012-2013 (CDC, 
2014). The large 2009-2010 flu season number largely reflects the swine flu pandemic, but two of the three 
subsequent seasons were still relatively strong. Our results suggest that younger young adults respond more strongly 
to flu season severity than older young adults; therefore, omitting these interactions would lead to biased estimates.  
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After excluding observations with missing data for any of the control variables, Table 1.1 

reports the sample sizes for the regressions for each dependent variable, along with the numbers 

of individuals in the treatment and control groups. The sample sizes differ slightly across 

dependent variables for two reasons. First, each health-related variable is missing for a different 

number of respondents. Second, the health-related variables have different “reflection periods;” 

some apply to the present (e.g. current smoker), while others refer to a 30-day period (e.g. 

number of alcoholic drinks in the past 30 days) and others to a one-year period (e.g. any well-

patient doctor visit in the past year). We are concerned that short-run estimates would be 

misleading for variables with a long reflection period.12 We therefore drop respondents surveyed 

during this period of ambiguity; e.g. for well-patient doctor visit in the past year we drop October 

2010 through September 2011, while for drinks in the past 30 days we drop only October 2010.13  

Table 1.2 lists the control variables and compares the pre-treatment (January 2007 

through September 2010) summary statistics of the treatment and control groups. Individuals in 

the treatment group are less likely to be married, have a college degree, earn a high income, and 

have children in the household, and they are more likely to be students or employed.  

Table 1.3 reports the pre- and post-treatment sample means of the outcome variables for 

the treatment and control groups, and calculates the simple difference-in-difference of means. 

Prior to the ACA dependent coverage provision, the uninsured rate was higher for young adults 

in the treatment group than those in the control group. The treatment group had lower rates of 

health care utilization and health care access than the control group; higher drinking and 

                                                             
12 For example, suppose a respondent is surveyed in November 2010, the second month of the post-implementation 
period. The respondent would be classified as post-treatment, but her answer about well-patient doctor visits in the 
past year would reflect only two months of the post-treatment period and ten months of the pre-treatment period. 
13 For flu vaccinations in the past year, we only drop October 2010 through December 2010, as opposed to dropping 
a full year. We feel a shorter reflection period is appropriate in this case because flu vaccinations are typically 
administered in the fall. For instance, if someone surveyed in March 2011 reports being vaccinated in the past year, 
that vaccine almost certainly occurred during the post-treatment period (October 2010 or later).   
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unmarried pregnancy rates but healthier levels of risky drinking, BMI, obesity, and exercise; and 

broadly similar levels of smoking and self-assessed health. Comparing changes in the post- and 

pre-treatment means for the treatment and control groups, the difference-in-differences are 

positive and significant for any insurance, primary care doctor, excellent health, and risky 

drinker; negative and significant for body mass index and obesity; and insignificant for the other 

outcomes – including all those in the preventive care category. 

Simple difference-in-differences estimates account for fixed differences in unobservable 

characteristics between the treatment and control group, but are still susceptible to bias from 

time-varying observables and unobservables. Figures 1-3 show that at a first glance the pre-ACA 

trends for the treatment and control groups appear generally similar for most outcomes, 

providing preliminary evidence that changes over time in observables and unobservables may 

not be substantially different for 23-25 year olds and 27-29 year olds. We next turn to regression 

analyses that adjust for changes in observables. Later, we will also conduct more formal tests of 

the assumption of common trends in unobservables. 

IV. Average Effects of the ACA Dependent Coverage Mandate 

A. Baseline Model  

We estimate the effects of the ACA dependent coverage provision on the eighteen health-

related outcomes using reduced-form difference-in-differences regressions. While it is tempting 

to estimate instrumental variables models using the mandate as an instrument for having 

insurance coverage, we are not confident that the exclusion restriction would hold in such 

models because there are several other mechanisms through which the mandate could affect 

health-related outcomes besides the extensive margin of health insurance coverage. Other 
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possible mechanisms include the intensive margin of coverage (switching from high deductible 

catastrophic coverage to more comprehensive coverage), income effects, and peer effects.  

Our baseline regression is of the form 

ܻ௦௧ = ߚ + ݐܽ݁ݎଵ൫ܶߚ ∗ ௧൯ݐݏܲ + ࢚࢙ࢍࢄࢼ 
ᇱ + ߙ + ߮௧ + ௦ߪ +  ௦௧                   (1)ߝ

where ܻ௦௧  is the health-related outcome for individual i of age g living in state s in time t, 

expressed in a month/year combination.14 ܶݐܽ݁ݎ is a dummy variable for whether age g is in the 

treated age range 23-25 as opposed to the control age range 27-29. ܲݐݏ௧  indicates whether 

period t is after the implementation of the provision (October 2010 or later). ߚଵ is the difference-

in-differences coefficient and it captures the difference between the effects of the mandate on the 

treatment and control groups. ࢚࢙ࢍࢄ
ᇱ  is a vector of the aforementioned control variables for sex, 

race, marital status, education, income, children, cell phone survey, student status, individual and 

state unemployment, and state dependent coverage mandate. We also include fixed effects for 

each year of age, month/year of time (e.g. January of 2007), and state, denoted by ߙ, ߮௧, and ߪ௦, 

respectively. ߝ௦௧  is the error term.15 We do not separately include ܶݐܽ݁ݎ  and ܲݐݏ௧  in the 

model because ܶݐܽ݁ݎ is perfectly collinear with the age fixed effects while ܲݐݏ௧ is perfectly 

collinear with the month/year fixed effects. 

We report heteroskedasticity-robust standard errors clustered at the level of treatment: 

age. Following convention when there are a small number of clusters (six in our case), for 

hypothesis testing we use a t-distribution with degrees of freedom equal to the number of clusters 

minus one. The critical values used in our hypothesis tests are therefore considerably more 

                                                             
14 Even though most of our outcomes are binary or non-negative count, we estimate linear models because they 
typically give reliable estimates of average effects (Angrist and Pischke, 2008). In unreported regressions (available 
upon request), we verify that the average treatment effects are very similar using probit regressions for the binary 
outcomes and negative binomial regressions for the count outcomes.  
15 In unreported regressions (available upon request) we have verified the results remain virtually identical if we 
replace the state fixed effects with fixed effects for each state-by-year combination.  
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stringent than those using the standard normal distribution. It is possible that even using stringent 

critical values might not be sufficient to eliminate the tendency to over-reject when the number 

of clusters is small (Cameron et al., 2008). However, the placebo tests in the next section will 

reject the null hypothesis even fewer than the expected number of times, suggesting that our 

hypothesis tests are sufficiently conservative. One of our robustness checks will also address this 

issue. 

The key identifying assumption in a difference-in-differences model is common 

counterfactual trends between the treatment and control groups; i.e. in the absence of the 

intervention the treatment and control groups would have experienced the same changes in 

outcomes. Slusky (2013) argues that this assumption is problematic when studying the impact of 

the ACA dependent coverage provision on labor market-related outcomes (e.g. sources of health 

insurance coverage, employment status, and work hours) since cyclical fluctuations in the 

economy have different effects on different age groups. Since economic fluctuations are related 

to health, 16  Slusky’s concern could also apply to health-related outcomes. As discussed 

previously, this is one of our main reasons for using narrow age bandwidths of 23-25 and 27-29.  

B. Robustness Checks 

We also estimate several variations of (1) as robustness checks. First, we run regressions 

including only the demographic controls (the sex, age, race, children, and marital status dummies) 

and fixed effects, excluding the economic controls since they may be endogenous to the 

dependent coverage provision. Obtaining access to parents’ insurance could potentially influence 

a young adult’s decisions about employment and education, which would then affect income. 

                                                             
16 Research generally shows that recessions are associated with improvements in health and health behaviors (e.g. 
Ruhm, 2000, 2002, 2005), although recent evidence suggests that the countercyclical nature of health observed in 
prior recessions may not have been present during our sample period (Ruhm, 2013; Tekin et al., 2013). 
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Including covariates related to employment, education, and income might therefore “control 

away” part of the causal effect of the policy.  

Our next several robustness checks vary the time period included in the sample. In order 

to verify that the results are not driven by our chosen length of the pre-treatment period, we 

consider two alternatives: starting the sample in 2004 and 2001. Additionally, we run regressions 

dropping March 2010 through December 2010, as these months are somewhat ambiguous with 

respect to their treatment status. We drop March-September because the ACA was passed in 

March, so some insurance plans may have complied preemptively prior to the dependent 

coverage provision’s official implementation in September. We drop October-December because, 

even though the mandate was implemented in September, insurers did not have to comply until 

the start of the next plan year, which is often January.17  

Our final robustness check addresses the potential concern that standard errors may be 

understated because of autocorrelation given the small number of clusters. We collapse the data 

into one observation for each year of age in the pre-treatment period and one observation for 

each year of age in the post-treatment period, for a total of twelve observations. We then estimate  

തܻ௧ = ߛ + ݐܽ݁ݎଵ൫ܶߛ ∗ ௧൯ݐݏܲ + ݐܽ݁ݎଶܶߛ + ௧ݐݏଷܲߛ + ସߛ  തܺ௧ +  ௧            (2)ߝ

where the lines above variables indicate averages across all individuals of age ݃ in time period 

(pre- or post-treatment) ݐ, weighted by the individual BRFSS sampling weights. Since the small 

sample size prevents all the control variables from being separately included, തܺ is a single 

variable that summarizes the influence of all the controls. തܺ is computed by regressing outcome 

ܻ on the controls using the individual-level pre-treatment data, then predicting ܻ for the whole 

sample based on the coefficient estimates, then aggregating in the same manner described above.  
                                                             
17 Akosa Antwi et al. (2013) include two treatment variables to separately model the effects of the mandate during 
the implementation period and after full implementation. We have considered this specification in unreported 
regressions and the estimated post-implementation effects remain very similar. 
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C. Results 

Table 1.4 presents the results for the baseline model and robustness checks. In addition to 

reporting estimated treatment effects and standard errors, for the baseline regressions we also 

report (in brackets) the treatment effects expressed in standard deviations of the dependent 

variables to provide some comparability of effect sizes across the different outcomes.  

The results suggest sizeable improvements in health care access along at least some 

dimensions. We estimate that the ACA dependent coverage provision statistically significantly 

increased the insurance coverage rate of 23-25 year olds by between 5.5-6.7 percentage points, 

depending on the model. This is somewhat larger than the around 3-5 percentage point increase 

estimated by previous studies that use the broader treated age range of 19-25 (Cantor et al., 2012; 

Sommers and Kronick, 2012; Akosa Antwi et al., 2013; Sommers et al., 2013).18 Additionally, 

the mandate increased the probability of having a primary care doctor by 2.0-3.4 percentage 

points and decreased the probability of having any care needed but foregone because of cost by 

1.6-2.3 percentage points. The effect on primary care doctor access is statistically significant in 

all specifications, but the effect on care foregone because of cost is never significant.  

Despite this improved access, we do not find any evidence of increased preventive care 

utilization. We estimate a total of eighteen models across the three preventive care measures, and 

none of these models reveal a statistically significant positive effect of the dependent coverage 

provision. The estimated effects on flu vaccinations and pap tests are negative in most 

specifications and occasionally statistically significant. The estimates for well-patient checkup 

are all positive but never significant.  

                                                             
18  This discrepancy is consistent with Akosa Antwi et al.’s (2014) finding that the mandate’s impact on the 
probability of having any coverage was around twice as large for 23-25 year olds than 19-22 year olds (4 compared 
to 2 percentage points). Alternatively, estimates using the treated age range 19-25 could be biased downward given 
the problems documented in our placebo tests and those of Slusky (2013). 



21 
 

We find mixed evidence regarding the dependent coverage provision’s impacts on risky 

health behaviors. No significant estimates are observed for smoking, pregnancy, or alcoholic 

drinks per month. However, the mandate statistically significantly increased the probability of 

risky drinking (excessive drinks per month or any binge drinking) in all specifications, with 

magnitudes ranging from 0.8-1.4 percentage points. The dependent coverage expansion therefore 

appears to affect drinking at only the high end of the distribution, which is consistent with an ex 

ante moral hazard explanation since mild to moderate drinking generally does not increase the 

need for medical services. In contrast, the dependent coverage provision appears to improve 

weight-related behaviors. The mandate reduces BMI in all six specifications, with magnitudes 

ranging from -0.098 to -0.175. All but one of the six estimates for BMI are significant, with the 

remaining one being nearly significant. The effect on obesity is also negative in all six models, 

though it is only significant in three. The effect on probability of having any exercise is positive 

in all specifications but only significant in one. It is possible that our inability to measure 

exercise in greater detail – e.g. calories burned per day from physical activity – prevents the 

emergence of further significant results. It is also possible that the reduction in BMI is coming 

via reduced caloric intake, which we are unable to measure in the BRFSS.      

It is theoretically conceivable that insurance coverage could increase risky drinking but 

reduce weight. Health care access may be more helpful for losing weight than reducing drinking. 

Gains in information and accountability may both be greater for weight control than drinking: 

dieting strategies can be complicated and benefit greatly from professional advice, and 

accountability is greater for weight since patients are weighed at each visit. Additionally, the ex 

ante moral hazard effect could be stronger for risky drinking than weight-related behaviors. 

Binge drinking has a non-trivial chance of resulting in immediate medical needs, either from 
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alcohol poisoning, drunk driving accidents, or other injuries.19 In contrast, expenditures to treat 

diseases associated with obesity typically occur years down the road. Perhaps uninsured young 

adults assume that they will be insured by time these downside risks are realized, in which case 

ex ante moral hazard would not apply. In short, the direct price effect could dominate for BMI, 

while the ex ante moral hazard effect could dominate for drinking. Income effects may play a 

role as well, especially for alcohol consumption given the aforementioned evidence of a positive 

causal effect of income on drinking (Apouey and Clark, 2014).  

Turning to the self-assessed health outcomes, the mandate increased the probability of 

young adults reporting excellent overall health by 1.3-1.5 percentage points and very 

good/excellent health by 1.1-1.8 percentage points. However, only the estimates for excellent 

health are significant, as the standard errors for very good/excellent health are larger. We do not 

find any evidence of effects on the variables representing more severe health problems: days not 

in good mental health, not in good physical health, and with health-related functional limitations. 

The lack of effects on our mental and physical health outcomes is particularly interesting in light 

of Chua and Sommers’ (2014) finding that the ACA dependent coverage provision increased the 

probabilities of reporting excellent mental and physical health. Chua and Sommers’ mental and 

physical health variables emphasize changes at the high end of the health distribution and may 

therefore correspond more closely to our variable for excellent overall health than our physical 

and mental health variables, which focus on “not good” health. In other words, both our results 

and those of Chua and Sommers are consistent with the provision’s effects on mental and 

physical health being concentrated in the high end of the health distribution.  

                                                             
19 In the US, approximately 80,000 cases of alcohol poisoning and 10,322 alcohol-impaired driving crashes occur 
annually, with these incidents disproportionately involving young adults (CDC, 2012; NHTSA, 2014). 599,000 
alcohol-related injuries occur annually among 18-24 year old college students (NIAAA, 2013). 
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 Finally, we provide a brief discussion of the relative magnitudes of the effects on 

different outcomes by comparing the treatment effects expressed in standard deviations of the 

dependent variables. Not surprisingly, the largest effect of 0.13 standard deviations is on the 

probability of having any health insurance coverage. The next largest statistically significant 

effect is on primary care doctor access (0.065 standard deviations), then excellent health (0.032 

standard deviations), then risky drinker (0.026 standard deviations), then finally BMI (-0.017 

standard deviations). The largest statistically insignificant effects are on flu vaccinations (-0.033 

standard deviations) and very good/excellent health (0.031 standard deviations).  

V. Placebo Tests  

 We next provide a series of placebo tests to evaluate whether the previous results can 

credibly be interpreted as causal effects of the ACA dependent coverage provision. Following 

Slusky (2013), we estimate variants of equation (1) that test for “effects” of artificially-timed 

“treatments” during pre-treatment years. We estimate models for three different seven-year 

windows of pre-treatment data (to match the seven years used in our main 2007-2013 analyses): 

2003-2009, 2002-2008, and 2001-2007. Since the first month after the implementation of the 

actual dependent coverage mandate was the 46th month (October 2010) of our 2007-2013 sample, 

in each placebo test sample we date the implementation of the artificial intervention to the 46th 

month (e.g. October 2006 for the 2003-2009 sample). We estimate (1) for each of the eighteen 

dependent variables in each of the three placebo test samples. 

 Table 1.5 reports the coefficient estimates of interest from these placebo tests. We run 

three tests for each of the eighteen dependent variables, though a test is not possible for checkups 

using 2001-2007 data since the checkup question was not asked until 2005. This leaves a total of 

53 regressions. Given the large number of estimates, we would expect some significant results 
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even for valid models. Specifically, approximately 0-1 estimates should be significant at the 1% 

level, about 2-3 at the 5% level, and about 5 at the 10% level. We obtain numbers even smaller 

than these. No estimated “treatment effects” are significant at the 1% level, 2 (3.8%) are 

significant at the 5% level, and 3 (5.7%) are significant at the 10% level. Moreover, we do not 

obtain more than one placebo test rejection for any outcome. In other words, it is not clear that 

there are any outcomes for which our baseline difference-in-differences model is inappropriate. 

In the interest of contributing to the broader debate in the literature about the 

appropriateness of different age bandwidths when using difference-in-differences models to 

estimate the effects of the ACA dependent coverage provision, we also run the same set of 

placebo tests for the most common age ranges used in the literature: treatment group 19-25 and 

control group 26-34 (Sommers and Kronick, 2012; Sommers et al., 2013; and Chua and 

Sommers, 2014). We obtain 4 placebo test rejections (7.5%) at the 1% level, 7 (13.2%) at the 5% 

level, and 11 (20.8%) at the 10% level. The full table of results is available upon request.  

VI. Heterogeneity 

 Having established our baseline results and assessed the validity of our model, we next 

turn to an examination of heterogeneity in the treatment effects. We considered stratifications by 

sex, race/ethnicity, education, and state pre-ACA dependent coverage law status, but we did not 

observe any statistically significant differences in effects across the subgroups for race/ethnicity 

and pre-ACA law, so we only report the results for the stratifications by sex and education. For 

education, we stratify into two groups: college graduates and non-college graduates.20  

Theoretically, the ACA dependent coverage provision could have heterogeneous effects 

on health-related outcomes for three reasons. First, there could be heterogeneous effects on the 

                                                             
20 Further stratification by education led to estimates that were too imprecise to be useful. Note that we do not 
include a separate category for current students because our sample only includes those 23 and older, so the 
proportion of our respondents reporting “student” as their primary occupation is low.   
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probability of having insurance coverage. In the pre-treatment portion of sample, females were 

more likely to have insurance than males (76% versus 67%), and college graduates were much 

more likely to have insurance than non-college graduates (88% versus 64%). One might 

therefore expect larger gains in coverage among males and non-college graduates. On the other 

hand, young adults of high socioeconomic status may be more likely to have parents with 

employer-provided coverage, so the gains in coverage could potentially be larger for college 

graduates.  

A second possible source of heterogeneity is that, even if the gains in health insurance are 

the same among all groups, different groups could respond differently to receiving coverage. For 

instance, Grossman (1972) argues that education enables individuals to become more efficient 

producers of health. More education may therefore better equip individuals to make the most out 

of the newly-acquired insurance (e.g. more easily find providers who accept the insurance, ask 

better questions at doctor’s appointments, or better follow medical advice). Alternatively, the 

price elasticity of medical care could be strongest among low-income individuals, in which case 

the effects of obtaining insurance on health care utilization and health could be largest for non-

college graduates. The price elasticity of medical care could also differ by sex. For instance, 

evidence suggests that females are more risk averse than males (e.g. Jiankoplos and Bernasek, 

1998). One might therefore expect females to be more likely to obtain medical care regardless of 

its price, whereas males might only utilize care if the cost is minimal; i.e. males might have 

stronger price elasticities. Indeed, in our pre-treatment data uninsured females had higher rates of 

primary care doctor access, flu vaccination, and well-patient checkups than uninsured males.  

Third, as discussed at the beginning of Section IV, the dependent coverage provision 

could affect health-related outcomes through mechanisms besides the extensive margin of 
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insurance coverage – particularly the intensive margin of coverage – and there could be 

heterogeneous effects along these dimensions. For instance, suppose part of the reason females 

and college graduates had lower pre-ACA uninsured rates was because they were more likely to 

privately purchase a bare-bones, catastrophic plan if they did not have access to employer-

provided coverage. In that case, the ACA dependent coverage provision may lead to larger gains 

along the intensive margin of coverage for women and college graduates, leading to larger 

improvements in health-related outcomes among these groups.   

 The first two columns of Table 1.6 report the results for females and males. Males 

experienced a 2.9 percentage point larger gain in health insurance coverage than females, and the 

difference is significant at the 1% level. Moreover, only males experienced statistically 

significant favorable effects on any outcomes besides insurance coverage. Specifically, males’ 

rates of primary care doctor access, having any exercise, reporting very good/excellent health, 

and reporting excellent health increased substantially – by 4.6, 1.9, 2.9, and 3.1 percentage points, 

respectively. These effects are all significantly different from zero, and three of the four (all but 

very good/excellent health) are also statistically different from the corresponding effects on 

females. The only statistically significant result for females (besides insurance coverage) is an 

adverse effect on days with health-related limitations. In sum, the results suggest that males 

experienced larger improvements in health-related outcomes from the ACA dependent coverage 

provision than females, and that there appear to be multiple reasons for this heterogeneity. Gains 

in insurance coverage were larger for males, consistent with them having a higher pre-ACA 

uninsured rate. Responses to obtaining insurance coverage also appear to have been stronger for 

males, perhaps indicating a larger price elasticity of demand for medical care.  
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 The last two columns of Table 1.6 report the results stratifying by college degree 

attainment. Both groups experienced similar gains in insurance coverage as a result of the ACA 

dependent coverage provision. However, statistically significant improvements in outcomes 

besides health insurance are only observed for college graduates. The mandate led to large and 

significant gains for college graduates in the following outcomes: primary care doctor access (5.1 

percentage points), cost being a barrier to care (reduction of 3.4 percentage points), BMI 

(reduction of 0.25 units), obesity (reduction of 1.7 percentage points), and excellent self-reported 

health (increase of 3.7 percentage points). Besides insurance, the only significant effects for non-

college graduates are unfavorable: a 2.2 percentage point reduction in flu vaccinations and a 1.6 

percentage point increase in risky drinking. In short, college graduates experienced greater 

improvements in health-related outcomes than non-college graduates, and this appears to be due 

to heterogeneous effects of coverage rather than heterogeneous effects on coverage. This is 

consistent with a Grossman-style story in which education enables individuals to better take 

advantage of their health care opportunities. However, the results could also be partly 

attributable to greater gains along the intensive margin of coverage for college graduates, which 

we cannot measure in our data. Regardless of the reason, these results suggest that the mandate 

increases SES-based disparities in health.    

VII. Discussion 

The first major insurance expansion under the ACA – a provision requiring insurers to 

allow young adults to remain on their parents’ health insurance until turning 26 – was 

implemented in September 2010. This paper uses data from the BRFSS to examine the effects of 

this mandate on various outcomes related to health care access, preventive care utilization, risky 

health behaviors, and self-assessed health. We implement a difference-in-differences model with 
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individuals slightly below the mandate’s age cutoff (ages 23-25) as the treatment group and those 

slightly above the cutoff (ages 27-29) as the control group.  

We first estimate average effects for the entire sample. The results suggest that the ACA 

dependent coverage provision increased health care access but not utilization of preventive care, 

had mixed effects on risky health behaviors, and improved health at the high end of the 

distribution. Specifically, we observe significant and robust favorable effects on health insurance, 

access to a primary care doctor, probability of having excellent self-assessed health, and BMI. 

However, we also find an adverse effect on risky drinking consistent with ex ante moral hazard 

and no clear effects on the other outcomes. We then validate our model through a series of 

placebo tests and show that our classifications of treatment and control groups perform better in 

these tests that the wider age bandwidths common in the literature. Finally, we conduct 

subsample analyses, finding particularly striking improvements in outcomes for men and college 

graduates. Men had larger gains in health insurance coverage than women, and only men 

experienced statistically significant gains in any outcomes beyond health insurance – specifically 

primary care access, exercise, and overall self-assessed health. Insurance expansions were 

similar for college graduates and non-college graduates, but only college graduates experienced 

significant gains in any other outcomes: primary care access, cost being a barrier to care, BMI, 

obesity, and overall self-assessed health.  

The ACA dependent coverage mandate provides a unique opportunity to study a health 

insurance intervention specific to young adults as opposed to seniors (Medicare), the poor 

(Medicaid), or the uninsured population at large (the Massachusetts reform). In general, our 

results suggest that health insurance affects health-related outcomes of young adults more 

modestly than prior studies have observed for these other populations. First, we find no evidence 
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of increased preventive care utilization, in contrast to prior results from both Medicaid 

(Finkelstein et al., 2012) and the Massachusetts reform (Kolstad and Kowalski, 2012). Second, 

we only find statistically significant improvements in overall self-assessed health at the top of the 

distribution, as reporting of excellent health increases but there is no clear evidence of an effect 

on reporting very good or excellent health. We do not observe any gains in the variables 

reflecting more severe health conditions: days not in good physical health, days not in good 

mental health, and days with functional limitations. This contrasts the clear gains in these same 

outcomes observed for both Medicaid (Finkelstein et al., 2012) and the Massachusetts reform 

(Van der Wees et al., 2013; Courtemanche and Zapata, 2014). Interestingly, Chua and Sommers 

(2014) find that the ACA dependent coverage provision increased the probabilities of self-

reporting excellent physical and mental health. Combining their results with ours suggests that 

physical and mental health did improve, but only at the high end of the distribution.  

While our results suggest that health insurance expansions for young adults are less 

impactful than those for other age groups, it is still important to emphasize that we do observe 

some improvements in important outcomes, including health care access, excellent self-assessed 

health, and BMI. One might have initially worried that a coverage expansion for young adults 

would not lead to any health improvements given the generally good baseline health of this age 

group. 

An important contribution of our paper is that we provide, to our knowledge, the first 

empirical investigation of ex ante moral hazard that focuses specifically on young adults. We 

find evidence consistent with ex ante moral hazard in only one domain: risky drinking (binge 

drinking or excessive number of drinks per month). In contrast, we find evidence that the 



30 
 

dependent coverage improved weight-related behaviors while not affecting smoking and 

pregnancies. Our results therefore suggest that ex ante moral hazard is domain-specific.  

Another interesting result is that, since the improvement in health is concentrated among 

college graduates, the ACA dependent coverage provision appears to increase SES-based 

disparities in health. This is contrary to the usual impacts of public policies to expand health 

insurance. Medicaid has been shown to improve at least some health outcomes (Currie and 

Gruber 1996a and 1996b; Finkelstein et al., 2012; Sommers et al., 2012), implying reduced 

income-based disparities in health. The Massachusetts reform also appears to have reduced 

income-based disparities, as Courtemanche and Zapata (2014) found the largest gains in self-

assessed health among low-income individuals. 

Several caveats to our analyses provide directions for future research. First, since we 

study eighteen different dependent variables, we might expect one or two results to emerge as 

significant at conventional levels simply by chance. We did not employ multiple hypothesis test 

adjustments in this paper because, even though such adjustments control the Type I error rate 

(probability of falsely rejecting any null hypotheses), they do so at the cost of substantially 

increasing the Type II error rate (probability of failing to reject false null hypotheses).21 However, 

future research should revisit our questions using different data to see if any of our findings 

could be attributable to chance rather than genuine causal effects of the mandate.     

                                                             
21 For instance, the simple Bonferroni correction involves multiplying all p-values by the number of hypotheses 
being tested, which is eighteen in our case. This would make it virtually impossible to reject any null hypothesis in 
regressions that already demand quite a bit of the data by including fixed effects and clustering at an aggregated 
level. It is not clear to us that it would be preferable to, for example, fail to reject five false null hypotheses for the 
sake of not rejecting one true null hypothesis. This seems especially true in cases such as ours, where null results are 
an important part of the story. Moreover, we view our analyses as testing for eighteen distinct effects, some of which 
are more plausible theoretically than others, as opposed to testing for one effect that may manifest itself through 
eighteen different measures. It is not clear why, for instance, we should inflate the p-values in the health insurance 
regressions merely because we also study smoking, pregnancies, etc. 
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Next, we focus on estimating the ACA dependent coverage provision’s effects on 23-25 

year olds, ignoring possible effects on 19-22 year olds because of the greater difficulty in finding 

a suitable control group and the weaker ex ante expectations of significant effects. Further 

understanding whether benefits accrue to young adults besides 23-25 year olds is obviously 

important in order to fully evaluate the policy.  

Further research is also necessary to understand the mechanisms through which the 

mandate improves health. Increased health care utilization is an obvious possibility, but early 

evidence on the ACA provision’s impact on health care consumption is mixed. Akosa Antwi et 

al. (2014) report a rise in hospitalizations using administrative data, but Chua and Sommers 

(2014) find no evidence of changes in survey-based measures of hospital care, primary care, or 

prescription drug utilization, while we find no significant increases in preventive care. Another 

possible explanation is that self-assessments of health improve due to a “warm glow” from the 

peace of mind of having insurance. Finkelstein et al. (2012) proposed this as an explanation for 

their finding from the Oregon Medicaid experiment that most of the gains in self-assessed health 

appeared to occur before changes in utilization. 

Finally, and critically, our results should not be interpreted as providing a full accounting 

of the benefits of expanding insurance coverage among young adults. The primary purpose of 

insurance is to protect individuals from financial risk, and gains along this dimension may be 

especially substantial for young adults given their relatively low income and wealth levels. 

Moreover, expanding coverage among young adults is an important component of the overall 

strategy behind the ACA since it is necessary to offset the additional costs of insuring older and 

sicker individuals under community rating. In other words, the costs and benefits of the different 
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components of the ACA need to be evaluated together, as the different pieces of the reform are 

designed to work synergistically. 

  



33 
 

Table 1.1 – Sample Sizes for Different Outcomes 

Outcome Variable Total Treatment 
(23-25) 

Control    
(27-29) 

Health care access    
     Any health insurance coverage 126,702 53,057 73,645 
     Any primary care doctor 118,392 49,520 68,872 
     Cost prevented care in past year 107,831 45,041 62,790 
Preventive care utilization    
     Flu vaccination in past year 118,394 49,502 68,892 
     Well-patient checkup in past year 107,931 45,085 62,846 
     Pap test in past year (women only)+ 26,919 10,799 16,120 
Risky health behaviors    
     Currently smokes cigarettes 125,616 52,607 73,009 
     Alcoholic drinks in past 30 days 120,958 50,521 70,437 
     Risky drinker in past 30 days 120,037 50,110 69,927 
     Body mass index 120,373 50,529 69,844 
     Obese 120,373 50,529 69,844 
     Any exercise in past 30 days 122,720 51,337 71,383 
     Pregnancy (unmarried women only) 39,499 19,610 19,889 
Self-assessed health    
     Overall health very good or excellent 126,662 53,102 73,560 
     Overall health excellent 126,662 53,102 73,560 
     Days of last 30 not in good mental health 124,773 52,386 72,387 
     Days of last 30 not in good physical health 124,861 52,387 72,474 
     Days of last 30 with health-related limitations 125,365 52,615 72,750 
+The pap test variable is only available in even-numbered years, reducing the sample size for that outcome. 
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Table 1.2 – Pre-Treatment Means and Standard Deviations for Control Variables 

Control Variable Treatment (Ages 23-25) Control (Ages 27-29) 
Age dummies (age=23 is omitted)   
     Age=24 0.349 (0.477) -- 
     Age=25 0.322 (0.467) -- 
     Age=27 -- 0.310 (0.462) 
     Age=28 -- 0.343 (0.475) 
     Age=29 -- 0.347 (0.476) 
Female 0.505 (0.500) 0.508 (0.500) 
Race/ethnicity dummies (non-Hispanic white is omitted) 
     Non-Hispanic black 0.112 (0.316) 0.116 (0.320) 
     Hispanic 0.224 (0.417) 0.209 (0.407) 
     Other than black, Hispanic, or white 0.087 (0.282) 0.077 (0.266) 
Currently married 0.305 (0.460) 0.564 (0.496) 
Education dummies (less than high school degree is omitted) 
     High school degree but no further 0.283 (0.450) 0.257 (0.437) 
     Some college but no four-year degree 0.299 (0.458) 0.271 (0.444) 
     College graduate 0.303 (0.459) 0.364 (0.481) 
Household income dummies (less than $10,000 is omitted) 
     Between $10,000 and $15,000 0.068 (0.252) 0.049 (0.216) 
     Between $15,000 and $20,000 0.102 (0.303) 0.077 (0.267) 
     Between $20,000 and $25,000 0.116 (0.321) 0.097 (0.296) 
     Between $25,000 and $35,000 0.144 (0.351) 0.129 (0.335) 
     Between $35,000 and $50,000 0.166 (0.372) 0.165 (0.371) 
     Between $50,000 and $75,000 0.143 (0.350) 0.187 (0.390) 
     $75,000 and over 0.186 (0.389) 0.240 (0.427) 
Number of children in household dummies (0 is omitted) 
     One child 0.230 (0.421) 0.235 (0.424) 
     Two children 0.159 (0.366) 0.233 (0.423) 
     Three children 0.055 (0.229) 0.110 (0.313) 
     Four children 0.018 (0.133) 0.038 (0.192) 
     Five or more children 0.008 (0.090) 0.016 (0.124) 
Cell phone only  0.703 (0.457)+ 0.678 (0.467)+ 

Student 0.109 (0.312) 0.054 (0.226) 
Unemployed 0.111 (0.314) 0.093 (0.290) 
State unemployment rate 7.032 (2.615) 7.186 (2.666) 
Pre-ACA state mandate 0.220 (0.415) 0.033 (0.179) 
Notes: BRFSS sampling weights are used. Means are reported, with standard deviations in parentheses. + indicates 
the summary statistics are from 2011-2013, since the variable is 0 for all respondents in all prior years.
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Table 1.3 – Means and Standard Deviations for Outcome Variables 

 Pre-Treatment Period Post-Treatment Period Difference-in-
Differences 

Outcome Variable Treatment (Ages 
23-25) 

Control (Ages 27-
29) 

Treatment (Ages 
23-25) 

Control (Ages 27-
29) 

Health care access      
     Any health insurance coverage 0.680 (0.466) 0.753 (0.431) 0.709 (0.454) 0.708 (0.455) 0.073 (0.018)*** 
     Any primary care doctor 0.564 (0.496) 0.641 (0.480) 0.519 (0.500) 0.558 (0.497) 0.038 (0.010)** 
     Cost prevented care in past year 0.241 (0.427) 0.216 (0.411) 0.240 (0.427) 0.235 (0.424) -0.020 (0.014) 
Preventive care utilization      
     Flu vaccination in past year 0.225 (0.418) 0.246 (0.431) 0.239 (0.426) 0.265 (0.441) -0.006 (0.009) 
     Well-patient checkup in past year 0.521 (0.500) 0.545 (0.498) 0.524 (0.499) 0.529 (0.499) 0.019 (0.011) 
     Pap test in past year 0.693 (0.461) 0.724 (0.447) 0.614 (0.487) 0.647 (0.478) -0.002 (0.013) 
Risky health behaviors      
     Currently smokes cigarettes 0.260 (0.432) 0.249 (0.432) 0.257 (0.437) 0.254 (0.435) -0.009 (0.012) 
     Alcoholic drinks in past 30 days 17.359 (43.926) 13.883 (34.703) 19.481 (43.947) 16.841 (40.916) -0.836 (0.889) 
     Risky drinker in past 30 days 0.775 (0.418) 0.807 (0.394) 0.749 (0.434) 0.769 (0.422) 0.013 (0.005)* 
     Body mass index 26.404 (5.807) 27.253 (6.031) 26.167 (6.019) 27.192 (6.142) -0.177 (0.050)** 
     Obese 0.222 (0.415) 0.262 (0.440) 0.197 (0.398) 0.252 (0.434) -0.014 (0.003)*** 
     Any exercise in past 30 days 0.810 (0.392) 0.799 (0.401) 0.819 (0.385) 0.799 (0.401) 0.009 (0.005) 
     Pregnancy 0.048 (0.215) 0.043 (0.203) 0.044 (0.205) 0.040 (0.195) -0.001 (0.004) 
Self-assessed health      
     Overall health very good/excellent 0.607 (0.488) 0.610 (0.488) 0.608 (0.488) 0.589 (0.492) 0.022 (0.011) 
     Overall health excellent 0.255 (0.436) 0.257 (0.437) 0.250 (0.433) 0.236 (0.425) 0.017 (0.003)*** 
     Days not in good mental health 4.050 (7.638) 3.844 (7.680) 4.410 (8.067) 4.165 (8.063) 0.040 (0.162) 
     Days not in good physical health 2.240 (5.526) 2.303 (5.815) 2.446 (5.999) 2.484 (6.170) 0.025 (0.053) 
     Days with health-related limitations 1.589 (4.757) 1.664 (5.177) 1.727 (5.131) 1.739 (5.332) 0.063 (0.104) 
Notes: Standard errors, heteroskedasticity-robust and clustered by age, are in parentheses. BRFSS sampling weights are used. Means are reported, with standard 
deviations in parentheses. *** indicates the difference-in-difference is significant at the 1% level; ** 5% level; * 10% level.
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Table 1.4 – Difference-in-Difference Regression Estimates of Effects of ACA Dependent Coverage Mandate  

Outcome Variable                Baseline Model Demographic 
Controls Only Start in 2004 Start in 2001 Drop 3/10-12/10 Collapsed Data 

Health care access       
     Any health insurance 0.061 (0.017)** [0.130] 0.067 (0.018)** 0.059 (0.013)*** 0.055 (0.012)*** 0.064 (0.016)*** 0.061 (0.015)*** 
     Any primary doctor 0.032 (0.010)** [0.065] 0.034 (0.010)** 0.020 (0.006)** 0.021 (0.006)** 0.033 (0.009)** 0.029 (0.011)** 
     Cost prevented care -0.019 (0.014) [-0.044] -0.019 (0.014) -0.022 (0.015) -0.023 (0.015) -0.020 (0.015) -0.016 (0.011) 
Preventive care utilization       
     Flu vaccination -0.014 (0.007) [-0.033] -0.011 (0.008) -0.017 (0.009) -0.018 (0.008)* -0.014 (0.008) -0.020 (0.006)** 
     Well-patient checkup 0.013 (0.011) [0.026] 0.015 (0.010) 0.011 (0.010) 0.011 (0.010) 0.017 (0.010) 0.011 (0.006) 
     Pap test -0.004 (0.015) [-0.009] -0.003 (0.014) -0.019 (0.010) -0.025 (0.015)** -0.015 (0.015) 0.002 (0.008) 
Risky health behaviors       
     Currently smokes 0.003 (0.007) [0.007] -0.006 (0.010) -0.001 (0.004) -0.008 (0.005) -0.001 (0.006) 0.005 (0.007) 
     Drinks per month 0.120 (0.906) [0.003] -0.468 (0.887) -0.429 (0.604) -0.597 (0.590) 0.083 (0.840) 0.011 (0.929) 
     Risky drinker 0.011 (0.003)** [0.026] 0.008 (0.004)* 0.009 (0.003)** 0.009 (0.007)** 0.014 (0.003)*** 0.009 (0.003)** 
     Body mass index -0.098 (0.029)** [-0.017] -0.175 (0.045)** -0.124 (0.062) -0.169 (0.061)** -0.173 (0.074)* -0.118 (0.033)*** 
     Obese -0.009 (0.008) [-0.022] -0.014 (0.005)** -0.010 (0.007) -0.011 (0.008) -0.013 (0.006)* -0.010 (0.004)** 
     Any exercise 0.003 (0.004) [0.008] 0.008 (0.007) 0.005 (0.003) 0.004 (0.004) 0.001 (0.005) 0.007 (0.003)** 
     Pregnancy -0.003 (0.005) [-0.014] -0.002 (0.005) -0.004 (0.004) -0.002 (0.004) -0.003 (0.005) -0.002 (0.004) 
Self-assessed health       
     Very good/exc. Health 0.015 (0.011) [0.031] 0.018 (0.010) 0.016 (0.011) 0.015 (0.008) 0.011 (0.010) 0.014 (0.009) 
     Excellent health 0.014 (0.005)** [0.032] 0.014 (0.003)*** 0.013 (0.004)** 0.014 (0.005)** 0.014 (0.006)* 0.015 (0.004)*** 
     Days not good mental 0.081 (0.158) [0.010] 0.064 (0.144) 0.050 (0.144) 0.036 (0.116) 0.156 (0.156) 0.084 (0.127) 
     Days not good phys. 0.059 (0.068) [0.011] 0.045 (0.046) -0.022 (0.079) -0.014 (0.076) 0.075 (0.028)** 0.028 (0.063) 
     Days health limitations 0.122 (0.099) [0.025] 0.102 (0.093) 0.073 (0.109) 0.065 (0.094) 0.201 (0.107) 0.101 (0.086) 
Notes: *** indicates significant at the 1% level; ** 5% level; * 10% level. Standard errors, heteroskedasticity-robust and clustered by age, are in parentheses. All 
regressions include the controls plus age, state, and time fixed effects. BRFSS sampling weights are used. For the baseline regression, effect sizes in  standard 
deviations of the dependent variable (for the treatment group in the pre-treatment period) are in brackets.  
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Table 1.5 – Placebo Regressions 

Outcome Variable 
2003-2009 

Treatment 10/06 
2002-2008 

Treatment 10/05 
2001-2007 

Treatment 10/04 
Health care access    
     Any health insurance coverage -0.002 (0.005) 0.002 (0.008) -0.009 (0.007) 
     Any primary care doctor -0.008 (0.014) 0.002 (0.007) 0.019 (0.011) 
     Cost prevented care in past year -0.007 (0.011) -0.017 (0.013) -0.013 (0.007) 
Preventive care utilization    
     Flu vaccination in past year -0.013 (0.016) -0.007 (0.008) -0.001 (0.007) 
     Well-patient checkup in past year 0.002 (0.014) -0.008 (0.014) -- 
     Pap test in past year -0.012 (0.014) -0.024 (0.022) -0.027 (0.025) 
Risky health behaviors    
     Currently smokes cigarettes -0.019 (0.007)** -0.006 (0.009) -0.007 (0.008) 
     Alcoholic drinks in past 30 days -1.648 (1.035) -0.659 (0.584) -1.146 (0.788) 
     Risky drinker in past 30 days -0.001 (0.006) -0.014 (0.007)* -0.009 (0.011) 
     Body mass index -0.001 (0.146) -0.023 (0.196) -0.082 (0.145) 
     Obese 0.002 (0.008) 0.005 (0.011) 0.0005 (0.009) 
     Any exercise in past 30 days 0.008 (0.008) 0.008 (0.005) -0.004 (0.005) 
     Pregnancy 0.011 (0.010) 0.005 (0.012) -0.002 (0.007) 
Self-assessed health    
     Overall health very good/excellent 0.011 (0.003)** 0.002 (0.009) 0.004 (0.009) 
     Overall health excellent 0.004 (0.005) 0.009 (0.005) 0.006 (0.008) 
     Days not in good mental health -0.064 (0.174) -0.005 (0.232) -0.054 (0.143) 
     Days not in good physical health -0.041 (0.109) 0.034 (0.121) 0.165 (0.107) 
     Days with health-related limitations -0.039 (0.084) -0.043 (0.051) 0.017 (0.060) 
Notes: *** indicates significant at the 1% level; ** 5% level; * 10% level. Standard errors, heteroskedasticity-robust 
and clustered by age, are in parentheses. All regressions include the controls plus age, state, and time fixed effects. 
BRFSS sampling weights are used. 
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Table 1.6 – Heterogeneity by Sex and Education  

 Sex Education 

Outcome Variable Female Male Not College 
Graduate College Graduate 

Health care access     
     Any health insurance coverage 0.045 (0.017)** 0.074 (0.016)***+++ 0.067 (0.019)** 0.061 (0.013)*** 

     Any primary care doctor 0.016 (0.009) 0.046 (0.012)**+ 0.025 (0.012) 0.051 (0.006)***++ 

     Cost prevented care in past year -0.019 (0.021) -0.016 (0.013) -0.014 (0.017) -0.034 (0.009)** 
Preventive care utilization     
     Flu vaccination in past year -0.020 (0.012) -0.012 (0.010) -0.022 (0.008)** 0.003 (0.009) 
     Well-patient checkup in past year 0.013 (0.014) 0.013 (0.016) 0.006 (0.019) 0.035 (0.016) 
     Pap test in past year -0.004 (0.015) -- -0.007 (0.021) 0.008 (0.028) 
Risky health behaviors     
     Currently smokes cigarettes 0.011 (0.011) -0.004 (0.016) 0.001 (0.008) 0.002 (0.006) 
     Alcoholic drinks in past 30 days -0.117 (0.441) 0.359 (1.559) -0.068 (1.171) 0.398 (0.985) 
     Risky drinker 0.009 (0.012) 0.015 (0.014) 0.016 (0.004)*** -0.007 (0.007) 
     Body mass index -0.133 (0.153) 0.018 (0.160) 0.001 (0.050) -0.254 (0.096)** 
     Obese -0.010 (0.010) -0.005 (0.012) -0.004 (0.009) -0.017 (0.004)*** 
     Any exercise in past 30 days -0.010 (0.007) 0.019 (0.004)***++  0.001 (0.006) 0.010 (0.005) 
     Pregnancy -0.003 (0.005) -- -0.005 (0.006) -0.001 (0.006) 
Self-assessed health     
     Overall health very good or excellent 0.001 (0.022) 0.029 (0.009)** 0.007 (0.009) 0.029 (0.017) 
     Overall health excellent -0.003 (0.009) 0.031 (0.005)***++ 0.002 (0.006) 0.037 (0.012)** 

     Days of last 30 not in good mental health 0.100 (0.196) 0.083 (0.160) 0.259 (0.154) -0.323 (0.193)+++ 
     Days of last 30 not in good physical health 0.109 (0.081) -0.011 (0.167) 0.211 (0.145) -0.262 (0.166) 
     Days of last 30 with health-related limitations 0.347 (0.110)** -0.102 (0.206) 0.265 (0.161) -0.149 (0.096) 

Notes: +++ difference between effects on subgroups is significant at the 1% level; ++ 5% level; + 10% level. See other notes for Table 1.5. 
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Table 1.7 – Full Regression Output for Selected Dependent Variables 
Control Variable Insurance Smoker Excellent Health 
Treated*Post 0.061 (0.017)* 0.003 (0.007) 0.014 (0.005)* 
Age=24 -0.004 (0.002)* 0.007 (0.001)** -0.002 (0.001)* 
Age=25 -0.007 (0.003) 0.022 (0.001)** -0.004 (0.001)** 
Age=27 0.012 (0.010) 0.030 (0.002)** -0.016 (0.002)** 
Age=28 0.016 (0.011) 0.039 (0.002)** -0.026 (0.002)** 
Age=29 0.029 (0.011)* 0.032 (0.002)** -0.018 (0.003)** 
Female 0.070 (0.006)** -0.056 (0.005)** -0.020 (0.008) 
Non-Hispanic black -0.012 (0.010) -0.126 (0.009)** 0.006 (0.007) 
Hispanic -0.117 (0.007)** -0.183 (0.004)** -0.019 (0.005)** 
Other than black, Hispanic, or white -0.011 (0.010) -0.025 (0.013) -0.010 (0.004)* 
Currently married 0.069 (0.008)** -0.110 (0.008)** 0.027 (0.005)** 
High school degree but no further 0.110 (0.012)** -0.091 (0.017)** 0.039 (0.009)** 
Some college but no 4-year degree 0.171 (0.017)** -0.161 (0.014)** 0.051 (0.008)** 
College graduate 0.251 (0.019)** -0.310 (0.020)** 0.111 (0.009)** 
Between $10,000 and $15,000 -0.048 (0.014)* 0.007 (0.006) -0.008 (0.018) 
Between $15,000 and $20,000 -0.070 (0.018)* 0.021 (0.011) -0.007 (0.013) 
Between $20,000 and $25,000 -0.032 (0.009)* 0.007 (0.009) 0.0001 (0.009) 
Between $25,000 and $35,000 0.051 (0.010)** -0.020 (0.013) 0.026 (0.013) 
Between $35,000 and $50,000 0.120 (0.009)** -0.036 (0.014) 0.044 (0.010)** 
Between $50,000 and $75,000 0.169 (0.011)** -0.063 (0.016)** 0.058 (0.011)** 
$75,000 and over 0.179 (0.012)** -0.057 (0.015)* 0.108 (0.012)** 
One child in household 0.021 (0.007)* 0.035 (0.009)** -0.012 (0.003)** 
Two children in household 0.031 (0.005)** 0.044 (0.012)* -0.010 (0.008) 
Three children in household 0.020 (0.008) 0.055 (0.010)** -0.025 (0.011) 
Four children in household 0.017 (0.021) 0.071 (0.023)* -0.038 (0.016) 
Five or more children in household 0.065 (0.023)* 0.071 (0.018)* -0.007 (0.012) 
Cell phone only -0.013 (0.006) 0.007 (0.006) 0.011 (0.007) 
Student -0.006 (0.016) -0.035 (0.008)** 0.013 (0.009) 
Unemployed -0.164 (0.017)** 0.100 (0.010)** -0.027 (0.006)** 
State unemployment rate 0.004 (0.003) -0.009 (0.004)* 0.002 (0.002) 
Pre-ACA state mandate 0.017 (0.010) 0.001 (0.010) -0.015 (0.004)* 
Notes: ** indicates significant at the 1% level; * 5% level. Standard errors, heteroskedasticity-robust and clustered 
by age, are in parentheses. All regressions also include the age, state, and time fixed effects. BRFSS sampling 
weights are used. Separate variables for “treated” and “post” are not included because they are subsumed by the age 
and time fixed effects.  
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Figure 1.1 -- Trends in Access to Care and Preventive Care Variables by Age Group  
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Figure 1.2 -- Trends in Health Behavior Variables by Age Group 
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Figure 1.3 -- Trends in Self-Assessed Health Variables by Age Group 
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CHAPTER II 

Health Insurance and Young Adults’ Avoidable Hospitalizations 

I. Introduction 

On March 23, 2010, President Obama signed the Patient Protection and Affordable Care 

Act (ACA) into law.22 One of the first implemented provisions of the ACA was targeted at 

young adults, who often face the risk of losing their health insurance coverage as early as age 19. 

Prior to the ACA, insurance companies typically removed enrolled children from their parents’ 

plans at age 19 for non-students and 23 for full-time students (Anderson et al., 2012 and 2014).23 

Under the new law, starting in September 2010, young adults are allowed to stay on their parents’ 

plan until they turn 26 years old, with the same benefits.24 By allowing young adults to maintain 

coverage under their parents’ health plan, the law makes it easier and more affordable for them 

to get health care. 

Historically, the rate of insurance coverage for young Americans decreased at age 19, as 

these young adults may have lost their health insurance due to being ineligible to maintain 

coverage under their parents’ plan or because of their employment status (unemployed, part-time 

employment, entry-level employment or small business employment without employer-

sponsored coverage). For these reasons, young adults typically have the lowest rate of insurance 

coverage in comparison with other age groups. To be more specific, the rate of insurance 

coverage for young adults in the age group of 19-25 was only 68.6 percent in 2009, while the 

national rate was 83.9 percent (DeNavas-Walt et al., 2010). 

                                                             
22 For more information one can visit the following websites: 
http://www.whitehouse.gov/healthreform/healthcare-overview 
http://www.hhs.gov/healthcare/rights/law/index.html 
23 There was a great deal of prior state-to-state variation in dependent coverage rules, including differences in age 
limits and marital status requirements.  
24 For more on this policy see: http://www.hhs.gov/healthcare/rights/youngadults/index.html; 
http://www.cms.gov/CCIIO/Resources/Files/adult_child_fact_sheet.html. 
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Contrary to the idea that young people do not “need” health insurance, one out of six 

young adults experiences a chronic illness like cancer, asthma or appendicitis (Centers for 

Disease Control and Prevention, 2009). Also, young adults often partake in behaviors such as 

overeating, sedentary lifestyles, smoking, excessive drinking, and unprotected sex that pose 

long-term risks. Additionally, compared to insured young adults, uninsured peers are two-to-four 

times more likely to delay healthcare due to costs (Cantor, 2010). Moreover, young adults are at 

risk for their health as well as their finances: nearly half of uninsured young adults report 

problems associated with paying medical bills (Collins, 2012). Lacking health insurance as a 

young adult tends to cause health and economic problems in later adulthood (Merluzzi, 1999; 

Callahan, 2005; Nicholson, 2009). 

A recent literature has developed showing that the ACA expansion of dependent 

coverage increased the rate of insurance coverage among the targeted group of young adults 

(Cantor et al., 2012; Sommers and Kronick, 2012; Sommers et al., 2013; Akosa Antwi et al., 

2013 and 2015; Chua and Sommers, 2014; Barbaresco et al., 2015). However, there is little, if 

any, evidence on the effect of this aspect of the ACA on the quality of care received by young 

adults. The purpose of this paper is to evaluate the impact of the ACA expansion of dependent 

coverage on primary care quality by examining changes over time in the probability of having an 

avoidable hospitalization among the targeted group of young adults as compared to young adults 

just outside this age range. 

As in the Kolstad and Kowalski (2012) (hereafter as KK) study of the Massachusetts 

health care reform, I analyze the universe of hospital discharges from a nationally-representative 

sample of roughly 20 percent of all hospitals in the United States that is compiled by the Agency 

for Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP).  
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This sample is known as the National Inpatient Sample (NIS).  In addition, I also follow KK and 

use the AHRQ-provided methodology for identifying avoidable hospitalizations in the data. 

While conventional wisdom suggests that an increase in insurance coverage would result in more 

preventive care in an outpatient setting and thus fewer avoidable hospitalizations, I develop a 

conceptual model in which the impact of the expansion of dependent coverage on the probability 

of having an avoidable hospitalization is ambiguous and use that to motivate my empirical work. 

In contrast to KK’s findings for the Massachusetts reform, my primary results suggest that the 

ACA expansion of dependent coverage for young adults aged 23-25 leads to an increase in 

overall avoidable hospitalizations, which is driven by a large increase in chronic avoidable 

hospitalizations. The effects are stronger for female, whites, and the middle income quartiles of 

patient’s zip code. 

 Some would interpret this result as implying the ACA led a reduction in primary care 

quality. It may instead suggest a tradeoff between two forces likely to increase avoidable 

hospitalization rates, the moral hazard aspect of expanding insurance coverage as well as 

improved access to hospitals, and the efficiency effect associated with increasing access to 

primary care relative to hospital and emergency room care, which should reduce avoidable 

hospitalization rates. The size of this tradeoff is likely different for the young adults targeted by 

this reform as compared to older adults, children, or the elderly. 

The rest of this paper is organized as follows: Section II provides an overview of the 

relevant literature, section III describes the conceptual relationship between the ACA expansion 

of dependent insurance coverage for young adults and the number of avoidable hospitalizations, 

section IV describes my methodology, and section V describes the data. Section VI presents my 
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results and section VII provides a discussion of these results. Conclusions are given in section 

VIII. 

II. Literature Review 

In this section I review the literature on previous state policy as well as the ACA mandate 

with respect to dependent coverage and related types of coverage expansions. I focus on the 

literature dealing with the impacts of expansions of coverage on general health care utilization, 

risky behaviors, and health outcomes, as well as avoidable hospitalizations. 

A. Dependent Coverage Policies and Insurance Coverage 

Prior to the ACA, about two thirds of states implemented state-level policies allowing for 

some type of dependent coverage expansion. However, researchers found small or even no net 

impact of these policies on the number of uninsured young people (Levine et al., 2011; Monheit 

et al., 2011; Blum et al., 2012). This was due in part to the scope of these reforms being limited 

by the state definitions of a dependent, which could include restrictions related to student status, 

marital status, co-residence with parents and tax dependent status. Additionally, all state laws 

excluded self-funded benefit programs, which meant that they did not apply to around half of 

employer-provided plans. In addition, increases in dependent coverage could have been offset by 

reductions in other types of coverage.  

In contrast, the ACA dependent coverage expansion aimed to improve net coverage 

among young adults by relaxing the eligibility requirements and extending the same 

requirements to employers who have self-insured plans. Recent studies have shown that the ACA 

dependent coverage expansion has significantly increased health insurance coverage levels for 

young adults across all racial groups and for both the employed and the unemployed (Cantor et 

al., 2012; Sommers and Kronick, 2012). Other research focused on health care utilization also 
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shows significant increases in health insurance coverage (Sommers et al., 2013; Akosa Antwi et 

al., 2013 and 2015; Chua and Sommers, 2014; Barbaresco et al., 2015). This increase in 

coverage provides protection to young adults at risk of losing insurance in the absence of the law, 

especially for men, unmarried adults, non-students, and those with poor health (Cantor et al., 

2012). Thus the ACA dependent coverage reform has successfully increased health insurance 

coverage, which decreases the price of medical care faced by young adults. 

B. The Impact of the ACA Dependent Coverage Expansion on Utilization, Health 

Outcomes, and Risky Behaviors  

One would predict that increases in coverage would lead to overall increases in medical 

care access and consumption as a result of reduced medical care prices. Sommers et al. (2013) 

show that the ACA dependent coverage expansion reduces delays in getting care and care 

foregone due to costs. Akosa Antwi et al. (2015) find that the number of overall (non-birth) 

hospital visits as well as inpatient visits associated with a mental health diagnosis increase as a 

result of the ACA dependent coverage expansion.25  The authors do not find evidence of a 

noticeable impact on hospital length of stay or number of procedures. Barbaresco et al. (2015) 

find an increase in the probability of having a personal doctor as a result of the ACA dependent 

coverage expansion. However, they did not find any significant increase with respect to 

preventive care utilization. Chua and Sommers (2014) do not find any impact of the ACA 

dependent coverage expansion on inpatient or outpatient utilization. 

There is less work considering the impact of dependent coverage expansions on health 

outcomes or risky behaviors. In terms of health outcomes, Chua and Sommers (2014) show 

significant increases in excellent self-reported mental and physical health as a result of the ACA 
                                                             
25 Rather than focusing on gains in coverage, Anderson et al. (2012 and 2014) examine the consequences of young 
adults “aging off” (age 19 and age 23 for students) of their parents’ insurance plans and find a 61 percent reduction 
in inpatient hospital admissions. 
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dependent coverage expansion. Barbaresco et al. (2015) find a statistically significant increase in 

self-reported excellent health, but no significant changes in mental health, physical health, or 

functional limitations. With respect to risky behaviors, Barbaresco et al. (2015) find mixed 

results, with increases in binge drinking, along with decreases in BMI (body mass index). 

C. Other Types of Coverage Expansions and Avoidable Hospitalizations 

Billings and Teicholz (1990) first developed the concept of using avoidable (or 

ambulatory care sensitive (ACS)) hospitalizations as an indirect indicator of problems associated 

with primary care quality and access to care. The idea here is that certain hospitalizations could 

be avoided if the patient has access to high quality primary care. Thus, this approach allows 

researchers to use hospital discharge data, which is readily available, to assess ambulatory care 

quality. 

Dafny and Gruber (2005) use such an approach to investigate the impact of the Medicaid 

expansions of the 1980s and 1990s on low income children made newly eligible for public 

coverage using data from the National Hospital Discharge Survey. They find that total 

hospitalizations increase significantly as a result of these coverage expansions. A decomposition 

of all hospital stays into those that are avoidable versus those that are unavoidable suggests that 

the increase for unavoidable hospitalizations is much larger than that for avoidable 

hospitalizations. In addition, the increase in avoidable hospitalizations they estimate is not 

statistically significant. They take this as evidence that there is an “efficiency” effect associated 

with expanding coverage, but that this efficiency effect is dominated by the “access” effect. 

In the study about the impact of a Medicaid outreach program in California the late 1990s, 

Aizer (2007) tests the hypothesis that families responding to outreach efforts will sign their 

children up before they get sick, improving their access to outpatient care, and reducing their 
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number of avoidable hospitalizations. Using California Medicaid administrative enrollment and 

claims data, she finds that increases in Medicaid take up resulted in lower hospitalization rates 

for avoidable conditions, but not others. 

Using the HCUP NIS hospital discharge data from 2004 to 2008, KK examine the impact 

of the 2006 Massachusetts health insurance reform on avoidable hospitalizations for non-elderly 

adults. After controlling for illness severity, the authors estimate a statistically significant, 

negative impact of the Massachusetts reform on avoidable hospitalizations. They attributed the 

reduction in such hospitalizations to patients with less severe medical problems. Unlike the 

previous papers described here, KK employ avoidable hospitalization definitions developed by 

the AHRQ specifically for this type of analysis. 

Taken as a whole, evidence from the literature suggests that expanding insurance 

coverage leads to more primary care utilization. Dafny and Gruber (2005), Aizer (2007), and KK 

all hypothesize that this could lead to a reduction in the need for avoidable hospitalizations. 

Dafny and Gruber (2005) refer to this as the efficiency effect. On the other hand, an increase in 

insurance coverage could lead to more hospitalizations as the price of hospital care falls. Dafny 

and Gruber (2005) call this the access effect. Both Aizer (2007) and KK find reductions in 

avoidable hospitalizations among the different populations gaining coverage in their studies. 

Their findings suggest that the efficiency effect dominates the access effect. Conversely, Dafny 

and Gruber (2005) find an increase in avoidable hospitalizations, though not as large as for total 

hospitalizations among children gaining Medicaid coverage in the mid-1980s through mid-1990s. 

Therefore, it is not obvious which effect would dominate for young adults gaining coverage 

through the ACA dependent coverage expansion. The conceptual model described in the next 
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section formalizes this discussion and introduces moral hazard as a third potential channel 

through which insurance expansions can impact avoidable hospitalization demand. 

III. Conceptual Model 

Here I derive a conceptual model of avoidable hospitalizations that will guide my 

empirical work. I posit that the probability of an avoidable hospitalization is a function ݂ of the 

price of an avoidable hospital stay ( ܲ) and the consumer’s health status ܪ, so ܲ(ܸܣ)ܾݎ =

݂( ܲ ,  Further, I assume that the price of an avoidable hospital stay is a function of the ACA  .(ܪ

mandate or law (ܮ) and that the consumer’s health status is a function of their primary care 

consumption (ܲܥ) and their engagement in risky behaviors (ܤ): 

(ܸܣ)ܾݎܲ                                               = ݂( ܲ(ܮ), ,ܥܲ)ܪ  (1)                                                  ((ܤ

Primary care consumption (ܲܥ) is going to depend on the price of primary care ( ܲ), which 

itself is a function of the ACA (ܮ), and risky behaviors (ܤ) are going to depend on the price of 

avoidable hospitalizations ( ܲ), which itself is also a function of the ACA (ܮ). Putting this all 

together gives me the following equation: 

(ܸܣ)ܾݎܲ                                 = ݂{ ܲ(ܮ), ܪ ቀܲܥ൫ ܲ(ܮ)൯, )ܤ ܲ(ܮ))ቁ}                                     (2) 

Since I am interested in the impact of the ACA dependent care coverage expansion on avoidable 

hospitalizations, I take the derivative of this function with respect to ܮ: 
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Below each term I include my assumption about its sign based largely on the literature described 

in the previous section. 

Since the ACA dependent care expansion increased insurance coverage among young 

adults, the partial derivatives of the change in health care prices with respect to the law should all 
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be negative, so ௗಲೇ
ௗ

 and ௗು
ௗ

 < 0. The law of demand suggests that as health care prices fall, we 

would expect health care consumption to increase, implying that ௗ
ௗಲೇ

 and ௗ
ௗು

 < 0 . These 

assumptions imply that the first term on the right hand side of equation (3) is positive and can be 

thought of as the access effect. The access effect suggests that as young adults gain insurance 

coverage and face lower prices for avoidable hospitalizations, their demand for avoidable 

hospitalizations will increase. 

The second term on the right hand side formalizes two additional channels through which 

a coverage expansion can influence avoidable hospitalization consumption. The first channel is 

the efficiency effect. It suggests that as the price of primary care falls, young adults will 

consume more primary care ( ௗ
ௗು

< 0) . 26  This in turn is assumed to improve their health 

( ௗு
ௗ

> 0) and reduce their demand for avoidable hospitalizations (ௗ
ௗு

< 0).27 As mentioned in 

the previous section, both Aizer (2007) and KK find that the efficiency effect dominates the 

access effect since they estimate overall reductions in avoidable hospitalizations among the 

populations they study. 

                                                             
26 Several studies have found that insurance expansions increase primary care consumption, including Manning et al. 
(1987), Currie and Gruber (1996a), Lichtenberg (2002), Card et al. (2008), and Finkelstein et al. (2012). 
27 Does more primary care really improve health? This can be a difficult question to answer with respect to 
insurance expansions as such expansions may increase primary care consumption, while at the same time also 
potentially increasing risky behavior, and both will affect health outcomes. The literature on the ACA dependent 
coverage example discussed in the previous section of this paper suggests mixed findings with respect to health 
outcomes. Brook et al. (1983) find that free care improves cholesterol levels, mental and physical health in certain 
sub-groups in the RAND health insurance experiment. Several studies suggest that Medicaid expansions reduce 
mortality and increase self-assessed overall, mental and physical health, while having no statistically significant 
effects on laboratory-measured health outcomes (Currie and Gruber, 1996b; Finkelstein et al., 2012; Sommers et al., 
2012; Baicker et al., 2013). The Medicare program has been estimated to decrease mortality rates for Medicare 
inpatients (Card et al., 2009), but no significant impact of Medicare on the mortality rate for the elderly in general 
has been found (Finkelstein and McKnight, 2008). Unanimous evidence from the 2006 Massachusetts health 
insurance reform shows increases in self-assessed overall, mental and physical health, and decreases in functional 
limitations, joint disorders and mortality (Van der Wees et al., 2013; Courtemanche and Zapata, 2014; Sommers et 
al., 2014). 
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The other channel captured by the second term on the right hand side of equation (3) can 

be thought of as representing ex ante moral hazard (Ehrlick and Becker, 1972) through the term 

 in two ways. First, a reduction in the price of avoidable hospitalizations could lead to an ܤ

increase in risky behaviors such as drinking and smoking. Second, a reduction in the price of 

avoidable hospitalizations could lead to a reduction in the demand for health promoting activities, 

such as flu vaccinations or smoking cessation program participation. Such behavior suggests 

ௗ
ௗಲೇ

< 0 and I assume that an increase in risky behavior leads to a reduction in health ௗு
ௗ

< 0. 

The moral hazard effect would thus be predicted to lead to an increase in avoidable 

hospitalizations. 

As this channel was not explicitly mentioned in the previous literature on avoidable 

hospitalizations, more discussion is warranted. First, is there evidence that reductions in the price 

of avoidable hospitalizations lead to increases in risky behaviors and reductions in health 

promoting activities? The empirical literature on these topics is mixed. Neither the RAND health 

insurance experiment nor the Oregon Medicaid study found a significant impact of insurance 

coverage on smoking or body weight (Brook et al., 1983; Finkelstein et al., 2012). While Dave 

and Kaestner (2009) find increases in smoking and drinking, and decreasing physical activity, 

associated with enrolling in the Medicare program, none of the effects are significant. 

Courtemanche and Zapata (2014) find no evidence on smoking or physical activity as a result of 

the 2006 Massachusetts health insurance reform, though they do find a significant reduction in 

body mass index.28 As mentioned, Barbaresco et al. (2015) find mixed results for risky behaviors 

with significant improvement in BMI, but increase in binge drinking. 

                                                             
28 Body mass index is a proxy of poor diets and sedentary lifestyles, and has been broadly used as one of the risky 
behaviors in the literature. However, it might not fully satisfy the narrow definition here as it can be affected through 
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As for the impact of risky behaviors on health, Mcginnis and Foege (1993) find in their 

influential study that half of the deaths in the United States in 1990 are from external modifiable 

risk behaviors. More recent studies by Mokdad et al. (2004 and 2005) also show similar results 

for the U.S. in 2000: smoking, diet, physical activity, and drinking are the main risky behaviors 

leading to death. Danaei et al. (2009) break dietary behavior into detailed categories and find 

high body mass index, physical inactivity, and high blood glucose are the three main risk factors 

leading to death, followed by a list of dietary risk factors. In general, the literature supports the 

notion that risky behaviors have an impact on health. However, young adults maybe more 

immune to the health effects of risky behaviors as compared to the elderly or to children. 

Taken together, the evidence on these terms suggests that there may be a moral hazard 

effect associated with increased insurance coverage, which would lead to a higher demand for 

avoidable hospitalizations. My conceptual model predicts that the efficiency effect would lead to 

a reduction in avoidable hospitalizations, while the access effect and the moral hazard effect lead 

to increases in avoidable hospitalizations. Thus the overall effect is ambiguous, reinforcing the 

need to analyze this issue empirically. 

IV. Methodology 

I use a difference-in-differences strategy to examine the impact of the ACA dependent 

coverage expansion on the prevalence of avoidable hospitalizations among the treatment group 

of young adults relative to the control group of slightly older young adults before and after the 

mandate’s implementation in late September of 2010. Because the group targeted by the mandate 

is 19-to-25 year olds, most previous studies on the ACA dependent coverage mandate use an age 

                                                                                                                                                                                                    
other channels (such as being suggested or reminded by the doctor during each physician visit) than the pure price 
effect of avoidable hospitalizations. 
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range of 19-25 to define their treatment group and typically use older young adults (sometimes 

including those as old as 34) as their control group. 

The key identifying assumption in any difference-in-differences model is the assumption 

that both the treatment and control groups would have experienced the same changes in 

outcomes in the absence of the intervention of interest. Slusky (2013) calls into question the 

validity of the “common trends” assumption with respect to labor market outcomes for young 

adults in the age rage typically used in the literature. He replicates previous studies with “placebo” 

treatment dates occurring several years prior to the implementation of the mandate and finds 

significant “effects”. This suggests that previous studies may be mistakenly attributing changes 

in young adult insurance coverage to the ACA that are actually driven by dynamics in the age 

structure of insurance and labor markets. He finds more reliable estimates after reducing the age 

bandwidth associated with the treatment group. 

Like Barbaresco et al. (2015), I address this concern by defining my treatment group as 

young adults aged 23 to 25 and the control group as young adults aged 27 to 29.29 Slusky’s 

concerns are arguably less important for avoidable hospitalizations than they are for labor market 

outcomes, since avoidable hospitalizations are likely less directly impacted by cyclical economic 

fluctuations. In addition, narrowing the age bandwidth associated with the treatment and control 

groups, as done here and in Barbaresco et al. (2015), should also reduce the impact of any 

differential economic shocks. Finally, relative to other studies, I use a longer pre-reform period 

(starting from 2002) in my analysis to better test for differences in pre-reform trends between the 

treatment and control groups. 

Formally, I estimate the following equation: 
                                                             
29 I follow the previous literature and exclude young adults aged 26, as it is difficult to determine whether or not the 
mandate is binding for them. It would be a function of their birthdate and the start date of their parents’ insurance 
plan for the year. 
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                   ܻ௧ = ߚ + ݐܽ݁ݎଵ൫ܶߚ ∗ ௧൯ݎ݁ݐ݂ܣ + ௧ࢄ 
ᇱ ଶߚ + ߠ + ߮௧ + ߪ + ௧ߝ ,                   (4) 

where ܻ is a dummy variable equal to one if hospital discharge ݅ is considered an avoidable 

hospitalization generated by a patient of age ݃ in hospital ℎ at time ݐ. The primary parameter of 

interest is denoted by ߚଵ . It measures the effect of the mandate after implementation on the 

targeted age group. ܶݐܽ݁ݎ is a dummy variable equal to one for any discharge generated by a 

patient in the age range of 23-25 (the treatment group). ݎ݁ݐ݂ܣ௧ is a dummy variable equal to one 

for any discharge occurring in a time period ݐ  that is after the implementation of the ACA 

mandate (October 2010 or later). The vector ܺᇱ  includes a set of patient demographic 

characteristics and a set of risk adjusters to control for patient illness severity. The terms ߠ, ߮௧ 

and ߪ capture separately age, time, and the hospital fixed effects. Finally ߝ௧ represents the 

error term. In my estimation, I use heteroskedasticity-robust standard errors clustered at the 

treatment level of the interaction of age-by-time.30 NIS sampling weights, discussed below, are 

used in the analysis. 

  To verify the validity of my findings, I perform several placebo regressions using 

treatment dates occurring several years prior to the implementation of the mandate as in Slusky 

(2013). I also perform multiple additional robustness checks. The first two checks re-estimate 

equation (4) with shorter pre-reform time frames (15 and 23 quarters versus 35) to verify that my 

results are not driven by my chosen length of the pre-reform period. The third check excludes the 

time period of April 2010 to September 2010 (Q2 2010 – Q3 2010), which is the time period 

between when the law passed and its effective date, to avoid ambiguity about the treatment status 

of hospitalized young adults during this period. 

 
                                                             
30 The estimated standard errors are similar when they are clustered on age alone.  I prefer using an interaction of 
age-by-time as it gives more clusters (Angrist and Pischke, Chapter 8). 



56 
 

V. Data 

The dataset used for this analysis is the Nationwide Inpatient Sample (NIS), which is part 

of the Healthcare Cost and Utilization Project (HCUP) administered by the Agency for 

Healthcare Research and Quality (AHRQ). Each year of the NIS is a stratified sample of 20 

percent of community hospitals in the U.S. and is nationally representative of all community 

hospitals.31 If a hospital is sampled in a given year, it provides the universe of its discharges for 

that year, regardless of payer. As in KK, I take advantage of the fact that a large fraction of 

hospitals are sampled in each year to identify within hospital changes over time. 

The NIS is a good data source to examine the impact of health insurance coverage 

reforms since it has complete payer information for each discharge. Detailed information on 

diagnoses and patients’ point of admission (directly admitted or transferred from other facilities) 

allow me to create indicators for avoidable hospitalizations. One weakness of this data is that it 

only consists of hospitalized patients, which may introduce a selection problem with illness 

severity into the analysis. I use several patient-level risk adjusters to control for this problem.  

The years I use for this analysis range from 2002 to 2011 (the most recent year 

available).32 Since the mandate was implemented in late September 2010 and NIS is a quarterly 

data, I define the time from the first quarter of 2002 to the third quarter of 2010 as the pre-reform 

period, and from the fourth quarter of 2010 to the fourth quarter of 2011 as the post-reform 

period. My sample starts with 4,813,849 discharges from the NIS for young adults aged 23-29 

over the 2002-2011 period of analysis. After excluding discharges with missing values for key 
                                                             
31 One caveat to note is that not every state participates in this endeavor. By 2011, there are 46 states reporting data 
to the HCUP database. Data from Alabama, Delaware, Idaho, and New Hampshire are not available in any year 
because they did not provide data to the NIS. Other states report incomplete data. I exclude the states of California, 
Maine and Texas from the analysis because detailed age information for patients is not available. 
32 The AHRQ redesigned the NIS sampling strategy in 2012. The new NIS is a sample of discharges from all 
hospitals participating in HCUP, rather than all discharges from a sample of participating hospitals, as in previous 
years. A consistent hospital identifier, allowing researchers to control for hospital fixed effects, will no longer be 
available. 
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variables (age, gender, principal diagnosis, quarter, year, and hospital), my sample is reduced to 

3,845,814 discharges. A total of 3,363,241 discharges occur in the pre-reform time period and 

482,573 occur in the post-reform time period. 

The main outcome I consider in this analysis is the classification of a given discharge as 

an avoidable hospitalization, which implies that it is a hospitalization for a condition or treatment 

which could have been potentially prevented by effective community outpatient / primary care or 

other early medical intervention. Thus avoidable hospitalizations serve as a proxy for primary 

care quality. Such a hospitalization is also referred to as an ambulatory care sensitive (ACS) 

hospital admission.  

One issue associated with this literature is that the definition of an avoidable 

hospitalization is often ad hoc and can differ from study to study. Given that I am using data 

from the AHRQ, I follow KK and use the AHRQ methodology for identifying avoidable 

hospitalizations. This methodology identifies twelve separate conditions / treatments considered 

to be avoidable for adults, such as an inpatient stay due to dehydration or uncontrolled diabetes.33 

The AHRQ provides software that creates flags for each of the twelve conditions / treatments, 

which they call Prevention Quality Indicators (PQIs).34  

Table 2.1 provides the summary statistics of the pre- and post-reform and corresponding 

difference-in-differences calculations for all of the PQI avoidable hospitalization indicators, as 

well as AHRQ generated composites for acute and chronic PQIs, and an overall composite. The 

definition of the acute composite indicator, PQI 91, is the union of PQI indicators 10, 11, and 12 

                                                             
33 Actually, this methodology identifies fourteen conditions, but I am not considering COPD / asthma admissions 
among older adults or low birth weight admissions. 
34 The AHRQ software generates these PQIs based on hospital discharge data by using complex algorithms. 
Essentially, the indicators first look for specific principal diagnoses, then exclude certain discharges based on their 
secondary and tertiary diagnoses. Transfers from other facilities are excluded to avoid double-counting. A diagnosis 
of pregnancy, if necessary, is also excluded in certain PQIs. For more information on the AHRQ PQI methodology, 
see: http://www.qualityindicators.ahrq.gov/Modules/PQI_TechSpec.aspx 



58 
 

(dehydration, bacterial pneumonia, and urinary tract infections). Similarly, the definition of the 

chronic composite indicator, PQI 92, is the union of PQI indicators 1, 3, 7, 8, 13, 14, 15, and 16 

(short-term and long-term diabetes complications, hypertension, congestive heart failure, angina, 

uncontrolled diabetes, adult asthma, and lower-extremity amputation). Thus it includes all PQIs 

except the previously defined acute indicators and PQI 2 (perforated appendix), because it has a 

different denominator. Finally, the overall PQI indicator (PQI 90) is defined as the union of all of 

the individual indicators except PQI 2. 

The first row of table 2.1 suggests that in the pre-reform time period, the probability of a 

discharge among a young adult in the treated group being avoidable is 3.48 percent while the 

probability of a discharge among a young adult in the control group being avoidable is 3.55 

percent. There is also a slightly lower probability of a discharge being chronic avoidable for 

young adults in the treated group than in the control group (1.81 vs 1.94 percent) in the pre-

reform time period. For the acute PQI composite, the probability of a discharge being acute 

avoidable among the treated group is 1.67 percent, while it is 1.61 percent in the control group. 

For the twelve individual PQI indicators, most discharges have a slightly higher probability of 

being avoidable in the control group in the pre-reform time period, except short-term diabetes 

(PQI 1) and urinary tract infections (PQI 12). 

The simple difference-in-differences calculations presented in the last column of table 2.1 

compare the changes of the mean probability for the treatment relative to control group in the 

pre- and post-reform periods, showing statistically significant increases in the overall PQI 

composite, the chronic PQI composite, as well as the PQIs for short-term diabetes complications 

(PQI 1), congestive heart failure (PQI 8), dehydration (PQI 10), angina without a procedure (PQI 

13), and uncontrolled diabetes (PQI 14). The calculations also show statistically significant 
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decreases in PQI 7 and 16. This is suggestive evidence that the ACA dependent coverage 

expansion may have led to an increase in avoidable hospitalizations. 

Figure 1 shows trends in the probability that a given discharge is an overall, acute or 

chronic avoidable hospitalization separately for the treatment and control groups. The figures 

show similar trends for both groups before mandate, indicating that time-variant changes in 

observables and unobservables may not differ substantially between the two groups. This 

provides further support for implementing a difference-in-differences analysis. 

In order to isolate the impact of the ACA dependent coverage mandate, I include in my 

regression analysis a set of demographic control variables. These are dummy variables for each 

year of age, gender, race/ethnicity, and patient’s zip code in income quartile. In addition, I 

include the quarterly state unemployment rate, from the Bureau of Labor Statistics, to control for 

state level economic conditions. Following KK, I also utilize a set of risk adjusters to control for 

patient disease severity. These risk adjusters include the number of diagnoses on the discharge 

record, AHRQ comorbidity dummies for different diseases, All-Patient Refined Diagnosis 

Related Groups (APR-DRGs) classification, the APR-DRG severity of illness score, and the 

APR-DRG risk of mortality score.35 All the risk adjusters are designed to measure some level of 

illness severity and are included in my discharge level regression. 

Table 2.2 shows the pre-reform means and standard deviations for the demographic 

controls for the young adult discharges in the sample. Within both the treatment and the control 

group, the discharges are evenly distributed across the age categories. A larger share of 

discharges is generated by females (81.3 percent) than males, with similar percentages in both 

                                                             
35 The number of diagnoses is calculated by counting the number of diagnoses on each discharge record. The AHRQ 
comorbidity dummies provide 29 categories of disease comorbidity (i.e. for congestive heart failure: 1 represents 
comorbidity and 0 shows comorbidity is not present). The APR-DRG related measures, developed by 3M, are used 
to classify patients according to their degree of potential mortality and illness severity. 
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the treatment group and the control group. As for race and ethnicity, discharges from whites 

make up a slightly lower (40.9 percent vs. 43.5 percent) share for treatment group as compared 

to the control group. For the patient’s zip code income quartile, discharges associated with the 

age group 23-25 have a higher share (33.5 percent) in the two lowest quartiles, as compared to 

30.6 percent among discharges from the age group 27-29. 

VI. Results 

A. Average Effects of the ACA Dependent Coverage Expansion on the Probability of 

Avoidable Hospitalizations 

Table 2.3 provides the results of difference-in-differences estimation of the baseline 

model representing equation (4) (left panel) and a similar model including patient risk adjusters 

(right panel). The baseline model suggests a 0.12 percentage point increase in the probability of a 

discharge being avoidable, which represents a 3.4 percent increase compared to the baseline rate 

of avoidable hospitalizations.36 The composite indicator for chronic avoidable hospitalizations 

also shows a significant increase of 0.09 percentage points, which represents a 5 percent increase. 

The coefficient on the composite acute indicator, although not significant, is also positive. 

Additionally, table 2.3 lists results for each individual PQI indicator. Among the twelve 

individual indicators in the baseline model, five of them suggest statistically significant increases 

in a discharge being associated with that particular avoidable admission (short-term diabetes 

complications, congestive heart failure, dehydration, angina, and uncontrolled diabetes); two 

exhibit statistically significant reductions (hypertension and lower-extremity amputation) and the 

remaining five have no statistical significance. 

                                                             
36 Compared to the pre-reform treatment mean of 3.48 percent, the increase of 0.12 percentage point represents an 
increase of 3.4 percent. 



61 
 

To control for potential changes in the patient population in the post-reform time period, I 

estimate the same model with risk adjusters, where I use severity of disease to control for 

observable changes in the health status of the patient pool. These results are presented in the 

right panel of table 2.3. The estimates are similar to those generated by the baseline model, with 

slightly higher effects associated with overall (4.9 percent increase vs. 3.4 percent) and chronic 

avoidable hospitalizations (7.7 percent increase vs. 5 percent). This suggests that the illness 

severity of the inpatient population for young adults did not change much after the ACA mandate, 

which may due to the fact that young adults are relatively healthy in general.  

B. Placebo Tests 

 In order to test the validity of the difference-in-differences results presented in the 

previous sub-section, I estimate a series of four placebo tests that use artificial effective dates 

within the pre-reform period as in Slusky (2013). Following previous studies (Antwi Akosa et al., 

2014 and 2015; Barbaresco et al., 2015) which use a five-year period for their primary analyses, 

I use five-year windows pre-reform for my placebo tests spanning 2005-2009, 2004-2008, 2003-

2007, and 2002-2006.37 In my baseline model, there are five quarters in the post-reform time 

period, so I also use five quarters as the length of my artificial post-reform time period in each 

placebo test (e.g. the fourth quarter of 2008 is the start of the artificial post-reform time period 

for the 2005-2009 placebo test). I estimate a specification similar to my baseline model for all of 

the PQIs in each of the four placebo tests. 

Table 2.4 reports the estimates from these tests. Fifteen PQI regressions in each of the 

four sets of placebo tests generate a total of 56 regressions. Theoretically, a small number of 

significant results are expected due to the large number of regressions. Around one estimate is 

                                                             
37 In unreported placebo tests (available upon request), I estimate another five placebo tests with varying time 
windows of 2002-2009 (8 years), 2002-2008 (7 years), 2002-2007 (6 years), 2002-2006 (5 years), and 2002-2005 (4 
years). The results are similar in terms of the number of significant estimates. 
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expected to be significant at the 1 percent level, three at the 5 percent level, and six at the 10 

percent level by chance. The number of significant results reported in table 2.4 is 0 at the 1 

percent level, four (6.7 percent) at the 5 percent level, and eight (13.3 percent) at the 10 percent 

level. Note that one particular PQI, PQI 13 (angina), accounted for three of the eight significant 

results. Dropping PQI 13 from the definitions of the overall PQI avoidable hospital indicator and 

the chronic composite indicator does not lead to major changes in my primary results. Overall, 

these placebo tests suggest that my primary difference-in-differences approach is sound and there 

does not appear to be any sustained differential pre-reform trends between the treatment and 

control groups. Moreover, these placebo test results also suggest that the standard errors, which 

are clustered at the age-by-time level, are not meaningfully understated.  

C. Robustness Checks 

 Here I describe the results of multiple robustness checks that are presented in table 2.5. 

For ease of comparison, the first column of table 2.5 re-states my baseline results. Columns two 

and three restrict the period of analysis to 2007-2011 and 2005-2011 respectively. In each case 

the estimated impact of the ACA dependent coverage expansion on the likelihood that a young 

adult discharge is avoidable is very similar in terms of magnitude and statistical significance. 

The coefficient estimate in the baseline model suggests a 0.12 percentage point increase, while 

the coefficient estimate in the 2007-2011 (2005-2011) model suggests a 0.11 (0.12) percentage 

point increase. The results are similar for both the chronic and acute composite PQI indicators. 

This suggests my baseline results are not being driven by the length of the pre-reform period. 

 The next robustness check, presented in column four, drops the time period between the 

passage of the ACA and its dependent coverage expansion implementation date, which I define 
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as the second and third quarters of 2010. As above, making this change does not impact the 

coefficient estimates in a major way. 

D. Heterogeneity Tests 

 Having verified the validity of my empirical model and estimated the average effects of 

the ACA dependent coverage expansion, I next present the results of models that allow for 

heterogeneous effects for different sub-groups in my sample. There may be differences by 

gender or race in response to gaining insurance coverage. In addition, differences in 

socioeconomic status may also lead to different responses. Tables 6 and 7 present the results 

from heterogeneity regressions based on gender, race and patient’s zip code income quartile. 

 The first two columns of table 2.6 illustrate differences by gender. These results suggest 

that the statistically significant increases in the probability of an overall avoidable hospitalization 

(PQI 90) or a chronic avoidable hospitalization (PQI 92) in my baseline model are being driven 

by young females, rather than young males. Young men do statistically significantly reduce their 

probability of a hospitalization for hypertension (PQI 7) and extremity amputation (PQI 16) after 

gaining coverage, but increase their probability of a hospitalization for heart failure (PQI 8). 

 The next three columns of table 2.6 present differences by race. Black, Hispanic, Asian, 

Native American and other races compose 28 percent of the sample and are grouped together as 

non-white. The remaining sample is classified as either unknown race (30 percent) or white (42 

percent).  These results suggest that the statistically significant increases in the probability of an 

overall avoidable hospitalization (PQI 90) or a chronic avoidable hospitalization (PQI 92) in my 

baseline model are being driven by whites, rather than non-whites or those with unknown race. 

Although I find no statistically significant impact on acute avoidable hospitalizations (PQI 91) in 
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my baseline model, table 2.6 suggests that the ACA dependent coverage expansion lead to an 

increase in the probability of having such a hospitalization for non-whites. 

 Table 2.7 presents heterogeneity model results based on patient’s zip code income 

quartile.  

These results suggest that the statistically significant increase in the probability of an overall 

avoidable hospitalization (PQI 90) in the baseline model are being driven by patients coming 

from zip codes with income that fall in the second or third income quartile of the distribution.  

The increase in the probability of a chronic avoidable hospitalization (PQI 92) in the baseline 

model is being driven by patients coming from zip codes with income that fall in the third 

income quartile of the distribution. Taken together, this heterogeneity analysis suggests that there 

are important differences by gender, race, and income in response to gaining insurance through 

the ACA dependent coverage mandate. 

VII. Discussion 

The overall increase in the probability of avoidable hospitalizations suggested by my 

empirical analysis implies that the access effect and the moral hazard effect dominate the 

efficiency effect for young adults gaining coverage through the ACA dependent coverage 

expansion. This is broadly consistent with the finding in Antwi Akosa et al. (2015) that ACA 

dependent coverage expansion increases non-birth hospital admissions and admissions 

associated with a mental health diagnosis. I find some evidence of an efficiency effect for young 

adult avoidable hospitalizations as there are two individual indicators (hypertension and 

extremity amputation) that show reductions in probability after the ACA mandate. This echoes 

the results found in Dafny and Gruber (2005) for children gaining Medicaid coverage. Among 

those children there was some evidence of an efficiency effect, but this was dominated by the 
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access effect. On the other hand, Aizer (2007) finds that when eligible, but not enrolled children 

formally enroll in Medicaid coverage in California they experience a reduction in avoidable 

hospitalizations. This would suggest the efficiency effect dominates.38 

Relative to my results, studies from the Massachusetts health insurance expansion tell a 

different story for older (non-elderly) adults. KK find that the Massachusetts reform leads to a 

reduction in the probability of avoidable hospitalizations, which they implicitly attribute to the 

efficiency effect dominating the access effect. This suggests that the older adults targeted by the 

reform responded by increasing their primary care consumption, thus reducing their rate of 

avoidable hospital stays. The difference in findings for young adults from ACA expansion and 

older (non-elderly) adults from Massachusetts reform may due to several potential reasons: 

 Information or experience: Gaining health insurance coverage may lead to reductions 

in avoidable hospitalizations (i.e. the efficiency effect dominates), but that requires the 

newly insured to seek out and receive appropriate primary care. Young adults gaining 

coverage through the ACA dependent coverage expansion may not have enough 

experience with the health care system to successfully find such primary care services. 

Older adults are more likely to have this needed experience. 

 Risk attitudes: Additionally, these older adults may be more risk averse than young 

adults, as they may realize that their overall health is no longer as good as when they 

                                                             
38 Why do the results from Dafny and Gruber (2005) and Aizer (2007) regarding avoidable hospitalizations for 
children newly enrolled in Medicaid vary?  One possible explanation is that Dafny and Gruber (2005) focus on 
children made newly eligible for Medicaid, while Aizer (2007) focuses on already eligible children who are now 
formally taking up Medicaid coverage. Presumably, children made newly eligible for Medicaid did not have a 
previous source of coverage for hospital or primary care. On the other hand, families of children who are eligible, 
but not formally enrolled in Medicaid may understand that hospital care would still be covered by Medicaid, as the 
hospital likely has experience assisting such families in the Medicaid enrollment process. This is less likely to be 
true with respect to primary care. Therefore, one could consider eligible, but not formally enrolled children as 
having “conditional hospital coverage” but not “conditional primary care coverage”. Thus the children analyzed in 
Aizer (2007) experienced a greater increase in access to primary care as compared to hospital care. This increase in 
primary care access could explain why avoidable hospitalizations for this particular group of children fall. 



66 
 

were younger. Older adults may also need to protect themselves more diligently so that 

certain infectious disease (such as the flu) will not affect their family members. Therefore, 

even though the price of hospital care decreases due to expansions in insurance coverage, 

non-elderly adults do not want to face the risk of being hospitalized and so make sure 

they consume the necessary primary care. 

 Income constraints and Moral Hazard: For financial reasons, young adults may be 

more likely than the older adults to forgo insurance coverage and instead focus on lower 

cost interventions such as flu vaccines and over-the-counter medications. However, 

receiving insurance coverage alleviates the financing constraint, and as a result, young 

adults may engage in more risky behavior or invest less in their health, such as increasing 

binge drinking (Barbaresco et al., 2015). In other words, the ex ante moral hazard effect 

of obtaining coverage may be stronger for young adults than other adults. 

On the other hand, dependent health insurance coverage may also increase young adults’ 

disposable income, as some of them may no longer have to pay their own insurance premium. 

They may use this “extra” income to consume goods with adverse health consequences, such as 

cigarettes and alcohol. Barbaresco et al. (2015) show an increase in risky drinking; increases in 

drinking may lead to heart disease and diabetes in the long-run. 

This discussion illustrates the benefits of using a conceptual model to think about how the 

impact of gaining coverage might differ for individuals of different ages. While my results might 

seem at first glance to contradict the results from Massachusetts, there are several plausible 

reasons why we might expect young adults to respond differently to a gain in insurance coverage 

than older adults. 
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VIII. Conclusion 

A typical hospitalization may be characterized as an unavoidable because there is nothing 

that could have been done medically to avoid the stay, such as suffering a major injury in a car 

accident. In this paper I investigate whether or not there were changes in the probability of 

having an avoidable hospitalization – one that could have been prevented by the receipt of timely 

and appropriate primary medical care – among young adults gaining health insurance coverage 

through ACA dependent coverage expansion which was implemented in September 2010.  

Though several previous studies have examined the impact of coverage expansions on hospital 

utilization, there are many reasons why we might expect young adults to potentially respond 

differently than older adults or children. To answer this question I use HCUP NIS hospital 

discharge data and AHRQ avoidable hospitalization definitions to estimate a difference-in-

differences model with a narrow age bandwidth of age 23-25 as the treatment group and age 27-

29 as the control group. The results shown in the baseline model for the entire sample indicate 

increases in the probability of having any avoidable hospitalization as well as the chronic 

composite, but no clear effects on the acute composite index.  

Specifically, the ACA dependent coverage mandate leads to an increases in the 

probability of PQI 1 (short-term diabetes), PQI 8 (congestive heart failure), acute PQI 10 

(dehydration), PQI 13 (angina), and PQI 14 (uncontrolled diabetes).  At the same time, I estimate 

decreases in the probability PQI 7 (hypertension) and PQI 16 (lower-extremity amputation). 

Controlling for patient illness severity does not lead to major changes in these results. I then 

utilize several placebo regressions with pre-reform periods to validate the model with a narrow 

age range treatment group. Next I implement four robustness checks to confirm the effects 

shown in the baseline model are not driven by my choice of the length of the pre-reform period 
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in my analysis. Finally, I estimate the model on sub-samples of different gender, race, and zip 

code income quartiles. There are important differences by gender, race, and income in response 

to the ACA dependent coverage mandate. 
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Table 2.1 – Means and Standard Deviations for Outcome Variables 

Quality Indicators 
Pre-reform Period Post-reform Period 

Difference-in-
Difference Treatment 

(Ages 23-25) 
Control 

(Ages 27-29) 
Treatment 

(Ages 23-25) 
Control 

(Ages 27-29) 
Overall Prevention Quality Indicators 
   PQI 90 Overall Composite 0.0348 (0.1832) 0.0355 (0.1851) 0.0381 (0.1916) 0.0368 (0.1883) 0.0021 (0.0012)* 

   PQI 91 Acute Composite 0.0167 (0.1281) 0.0161 (0.1260) 0.0165 (0.1274) 0.0154 (0.1230) 0.0006 (0.0006) 

   PQI 92 Chronic Composite 0.0181 (0.1332) 0.0194 (0.1379) 0.0216 (0.1455) 0.0214 (0.1448) 0.0015 (0.0008)* 

Individual Component Measures of Prevention Quality Indicators 
   PQI 01 Diabetes short-term comp. 0.0079 (0.0885) 0.0067 (0.0814) 0.0108 (0.1033) 0.0085 (0.0917) 0.0011 (0.0005)** 

   PQI 02 Perforated appendix 0.1717 (0.3771) 0.1748 (0.3798) 0.1763 (0.3812) 0.1853 (0.3887) -0.0059 (0.0127) 

   PQI 03 Diabetes long-term comp. 0.0020 (0.0446) 0.0030 (0.0550) 0.0027 (0.0523) 0.0039 (0.0622) -0.0001 (0.0002) 

   PQI 07 Hypertension 0.0005 (0.0222) 0.0009 (0.0305) 0.0005 (0.0234) 0.0012 (0.0348) -0.0002 (0.0001)** 

   PQI 08 Congestive heart failure 0.0009 (0.0303) 0.0015 (0.0390) 0.0009 (0.0307) 0.0013 (0.0356) 0.0003 (0.0001)** 

   PQI 10 Dehydration 0.0041 (0.0642) 0.0043 (0.0655) 0.0034 (0.0585) 0.0032 (0.0561) 0.0005 (0.0002)** 

   PQI 11 Bacterial pneumonia 0.0053 (0.0728) 0.0058 (0.0757) 0.0059 (0.0752) 0.0060 (0.0772) 0.0001 (0.0005) 

   PQI 12 Urinary tract infection 0.0072 (0.0847) 0.0061 (0.0776) 0.0074 (0.0857) 0.0062 (0.0786) 0.00001 (0.0003) 

   PQI 13 Angina without procedure 0.0001 (0.0096) 0.0002 (0.0134) 0.0001 (0.0081) 0.0001 (0.0101) 0.0001 (0.00003)* 

   PQI 14 Uncontrolled diabetes 0.0008 (0.0277) 0.0009 (0.0299) 0.0008 (0.0280) 0.0007 (0.0272) 0.0002 (0.0001)** 

   PQI 15 Asthma in younger adults 0.0059 (0.0767) 0.0062 (0.0782) 0.0058 (0.0756) 0.0057 (0.0753) 0.0003 (0.0005) 

   PQI 16 Lower-extremity amputation 0.00003 (0.0053) 0.0001 (0.0082) 0.00002 (0.0042) 0.0001 (0.0113) -0.0001 (0.00003)** 

Sample Size 1,620,088 1,743,153 225,861 256,712 -- 

Notes: Means are reported, with standard deviations in parentheses. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in 
parentheses for difference-in-differences calculations. NIS sampling weights are used. *** indicates the difference-in-differences is significant at the 1% level; 
** 5%; * 10%.
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Table 2.2 – Pre-reform Means and Standard Deviations for Control Variables 

Control Variables 
Total 

(Ages 23-29) 
Treatment 

(Ages 23-25) 
Control 

(Ages 27-29) 
Age dummies (age=23 is omitted) 
     Age=24 0.161 (0.367) 0.334 (0.472) -- 
     Age=25 0.164 (0.371) 0.341 (0.474) -- 
     Age=27 0.173 (0.378) -- 0.333 (0.471) 
     Age=28 0.173 (0.378) -- 0.333 (0.471) 
     Age=29 0.173 (0.378) -- 0.334 (0.471) 
Female 0.813 (0.390) 0.813 (0.390) 0.812 (0.391) 
Race/ethnicity dummies (non-Hispanic white is omitted) 
     Black 0.130 (0.336) 0.139 (0.346) 0.121 (0.327) 
     Hispanic 0.089 (0.285) 0.094 (0.291) 0.085 (0.279) 
     Asian 0.018 (0.131) 0.015 (0.121) 0.020 (0.140) 
     Native American 0.006 (0.079) 0.007 (0.081) 0.006 (0.077) 
     Other than black, Hispanic, Asian, Native, or white 0.036 (0.185) 0.035 (0.184) 0.036 (0.186) 
     Unknown Race 0.299 (0.458) 0.301 (0.459) 0.297 (0.457) 
Patient’s Zip Code in Income Quartile dummies (First (Lowest) is omitted) 
     Second Income Quartile 0.154 (0.361) 0.158 (0.365) 0.150 (0.357) 
     Third Income Quartile 0.133 (0.340) 0.127 (0.333) 0.139 (0.346) 
     Fourth Income Quartile 0.099 (0.299) 0.084 (0.277) 0.113 (0.317) 
     Unknown Income 0.448 (0.497) 0.454 (0.498) 0.442 (0.497) 
State Unemployment Rate 6.059 (2.056) 6.041 (2.048) 6.077 (2.064) 
Notes: Means are reported, with standard deviations in parentheses. NIS sampling weights are used.
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Table 2.3 – Difference-in-Differences Estimates of Effects of ACA Dependent Coverage Mandate on Quality Indicators  

Quality Indicators Baseline Model with Risk Adjusters Pre-reform mean (treated group) 

Overall Prevention Quality Indicators 

   PQI 90 Overall Composite 0.0012 (0.0005)** 0.0017 (0.0005)*** 0.0348 
   PQI 91 Acute Composite 0.0004 (0.0004) 0.0003 (0.0004) 0.0167 

   PQI 92 Chronic Composite 0.0009 (0.0004)** 0.0014 (0.0004)*** 0.0181 

Individual Component Measures of Prevention Quality Indicators 

   PQI 01 Diabetes short-term 0.0009 (0.0003)*** 0.0010 (0.0003)*** 0.0079 

   PQI 02 Perforated appendix -0.0021 (0.0116) 0.0003 (0.0088) 0.1717 
   PQI 03 Diabetes long-term -0.0003 (0.0002) -0.00003 (0.0002) 0.0020 

   PQI 07 Hypertension -0.0003 (0.0001)*** -0.0003 (0.0001)*** 0.0005 

   PQI 08 Heart failure 0.0002 (0.0001)** 0.0003 (0.0001)*** 0.0009 

   PQI 10 Dehydration 0.0004 (0.0002)** 0.0005 (0.0002)*** 0.0041 

   PQI 11 Bacterial pneumonia 0.00002 (0.0002) -0.0001 (0.0002) 0.0053 
   PQI 12 Urinary tract infection -0.00004 (0.0002) -0.0001 (0.0002)  0.0072 

   PQI 13 Angina 0.00005 (0.00002)* 0.0001 (0.00003)* 0.0001 

   PQI 14 Uncontrolled diabetes 0.0002 (0.0001)** 0.0002 (0.0001)*** 0.0008 

   PQI 15 Asthma (younger) 0.0001 (0.0002) 0.0003 (0.0002) 0.0059 
   PQI 16 Extremity amputation -0.0001 (0.00003)*** -0.0001 (0.0002)*** 0.00003 

Sample Size 3,845,814a 3,812,595b 1,620,088 

Notes: a For PQI 2, the sample size is 48,748. b For PQI 2, the sample size is 48,275. *** indicates the difference-in-difference is significant at the 1% level; ** 
5%; * 10%. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in parentheses. All regressions include the controls plus age, 
hospital and time fixed effects. NIS sampling weights are used.  
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Table 2.4 – Placebo Regressions 

Quality Indicators 
2005-2009 

Treatment 2007 Q4 

2004-2008 

Treatment 2006 Q4 

2003-2007 

Treatment 2005 Q4 

2002-2006 

Treatment 2004 Q4 

PQI 90 0.0007 (0.0006) 0.0004 (0.0004) 0.0004 (0.0006) 0.0003 (0.0006) 
PQI 91 0.0002 (0.0004) 0.0001 (0.0004) -0.0003 (0.0004) -0.0003 (0.0004) 

PQI 92 0.0006 (0.0005) 0.0003 (0.0004) 0.0007 (0.0004)* 0.0005 (0.0004) 

PQI 01 0.0002 (0.0003) -0.0001 (0.0003) -0.00001 (0.0003) -0.0001 (0.0002) 

PQI 02 0.0128 (0.0120) -0.0272 (0.0120)** 0.0007 (0.0113) 0.0054 (0.0118) 

PQI 03 0.0002 (0.0002) -0.0003 (0.0002)** 0.0002 (0.0002) 0.0001 (0.0001) 
PQI 07 -0.0001 (0.0001) -0.00002 (0.0001) 0.0001 (0.0001) 0.00003 (0.0001) 

PQI 08 0.0001 (0.0001) 0.0002 (0.0001) 0.0001 (0.0001) 0.0002 (0.0001) 

PQI 10 0.0001 (0.0002) -0.0002 (0.0002) -0.0002 (0.0002) 0.00004 (0.0002) 

PQI 11 0.00002 (0.0003) 0.0003 (0.0002) 0.0001 (0.0002) -0.0001 (0.0002) 

PQI 12 0.00001 (0.0003) 0.0001 (0.0002) -0.0003 (0.0003) -0.0002 (0.0003) 
PQI 13 0.0001 (0.00002)** 0.0001 (0.00003)* -0.00001 (0.00003) 0.0001 (0.00004)* 

PQI 14 -0.0001 (0.0001) -0.0001 (0.0001) 0.0002 (0.0001)* -0.000003 (0.0001) 

PQI 15 0.0002 (0.0003) 0.0006 (0.0003)** 0.0002 (0.0002) 0.0003 (0.0003) 

PQI 16 0.00000 (0.00002) 0.00003 (0.00002) 0.00001 (0.00002) -0.00001 (0.00002) 
Notes: *** indicates significant at the 1% level; ** 5%; * 10%. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in 
parentheses. All regressions include the controls plus age, hospital and time fixed effects. NIS sampling weights are used.  
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Table 2.5 – Robustness Checks 

Quality Indicators Baseline Model 2007-2011 2005-2011 
Drop periods 

2010 Q2 - 2010 Q3 

PQI 90 0.0012 (0.0005)** 0.0011 (0.0006)** 0.0012 (0.0005)** 0.0012 (0.0005)** 

PQI 91 0.0004 (0.0004) 0.0004 (0.0004) 0.0005 (0.0004) 0.0004 (0.0004) 

PQI 92 0.0009 (0.0004)** 0.0007 (0.0004)* 0.0008 (0.0004)* 0.0008 (0.0004)** 

PQI 01 0.0009 (0.0003)*** 0.0009 (0.0003)*** 0.0009 (0.0003)*** 0.0009 (0.0003)*** 

PQI 02 -0.0021 (0.0116) -0.0021 (0.0121) -0.0027 (0.0118) -0.0044 (0.0118) 

PQI 03 -0.0003 (0.0002) -0.0003 (0.0002) -0.0003 (0.0002)* -0.0003 (0.0002) 

PQI 07 -0.0003 (0.0001)*** -0.0003 (0.0001)*** -0.0003 (0.0001)*** -0.0003 (0.0001)*** 

PQI 08 0.0002 (0.0001)** 0.0002 (0.0001) 0.0002 (0.0001)* 0.0002 (0.0001)** 

PQI 10 0.0004 (0.0002)** 0.0005 (0.0002)*** 0.0005 (0.0002)*** 0.0004 (0.0002)** 

PQI 11 0.00002 (0.0002) -0.0001 (0.0002) -0.0002 (0.0002) 0.00004 (0.0002) 

PQI 12 -0.00004 (0.0002) -0.00002 (0.0003) -0.00000 (0.0002) -0.00001 (0.0002) 

PQI 13 0.00005 (0.00002)* 0.00001 (0.00003) 0.00002 (0.00003) 0.00005 (0.00002)* 

PQI 14 0.0002 (0.0001)** 0.0002 (0.0001)** 0.0002 (0.0001)** 0.0002 (0.0001)** 

PQI 15 0.0001 (0.0002) 0.0001 (0.0003) 0.0002 (0.0003) 0.0001 (0.0002) 

PQI 16 -0.0001 (0.00003)*** -0.0001 (0.00003)*** -0.0001 (0.00003)*** -0.0001 (0.00003)*** 

Sample Size 3,845,814 1,975,809 2,749,374 3,645,578 

Notes: *** indicates significant at the 1% level; ** 5%; * 10%. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in 
parentheses. All regressions include the controls plus age, hospital and time fixed effects. NIS sampling weights are used.  
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Table 2.6 – Heterogeneity by Gender and Race 

Quality 
Indicators 

Female Male White Non-white 
Unknown           

Race 

PQI 90 0.0018 (0.0005)*** 0.0017 (0.0015) 0.0020 (0.0007)*** 0.0015 (0.0010) 0.0008 (0.0015) 

PQI 91 0.0004 (0.0004) 0.0001 (0.0007) -0.0003 (0.0005) 0.0011 (0.0005)** -0.0001 (0.0011) 

PQI 92 0.0014 (0.0004)*** 0.0017 (0.0014) 0.0023 (0.0005)*** 0.0004 (0.0008) 0.0009 (0.0009) 
PQI 01 0.0011 (0.0003)*** 0.0007 (0.0011) 0.0013 (0.0004)*** 0.0007 (0.0005) 0.00001 (0.0008) 

PQI 02 0.0071 (0.0121) -0.0040 (0.0103) 0.0017 (0.0114) 0.0081 (0.0128) -0.0128 (0.0245) 

PQI 03 0.00001 (0.0002) -0.0001 (0.0006) 0.0002 (0.0002) -0.0006 (0.0004)* 0.0007 (0.0003)** 

PQI 07 -0.0002 (0.0001)** -0.0005 (0.0002)** -0.0001 (0.0001) -0.0004 (0.0002)** -0.0003 (0.0002) 

PQI 08 0.0001 (0.0001) 0.0013 (0.0004)*** 0.0001 (0.0001) 0.0008 (0.0002)*** 0.0001 (0.0002) 
PQI 10 0.0006 (0.0001)*** -0.0005 (0.0005) 0.00002 (0.0002) 0.0007 (0.0003)*** 0.0011 (0.0004)** 

PQI 11 -0.0002 (0.0002) 0.0006 (0.0005) -0.00001 (0.0002) 0.0003 (0.0003) -0.0005 (0.0005) 

PQI 12 0.00002 (0.0003) -0.0001 (0.0004) -0.0003 (0.0003) 0.0004 (0.0004) -0.0007 (0.0006) 

PQI 13 0.00004 (0.0000)** 0.0001 (0.0001) 0.00003 (0.0000) 0.0001 (0.0001) 0.0001 (0.0000)*** 
PQI 14 0.0002 (0.0001)*** 0.0002 (0.0003) 0.0001 (0.0001) 0.0003 (0.0002)* 0.0003 (0.0001)** 

PQI 15 0.0003 (0.0002) 0.0001 (0.0006) 0.0007 (0.0003)** -0.0004 (0.0005) 0.0001 (0.0004) 

PQI 16 -0.00003 (0.0000) -0.0002 (0.0001)** -0.00004 (0.0000)* -0.0001 (0.0000)* -0.0001 (0.0001)* 

Sample Size 3,096,019 716,576 1,646,963 1,100,320 1,065,312 
Notes: *** indicates significant at the 1% level; ** 5%; * 10%. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in 
parentheses. All regressions include the controls plus age, hospital and time fixed effects. NIS sampling weights are used. 
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Table 2.7 – Heterogeneity by Patient’s Zip Code Income Quartile 

Quality 
Indicators 

First (Lowest) 
Income Quartile 

Second           
Income Quartile 

Third              
Income Quartile 

Fourth              
Income Quartile 

Unknown    
Income Quartile 

PQI 90 0.0001 (0.0010) 0.0022 (0.0011)** 0.0035 (0.0011)*** 0.0009 (0.0015) 0.0008 (0.0034) 

PQI 91 0.00003 (0.0008) 0.0014 (0.0008)* 0.0008 (0.0007) -0.0002 (0.0009) -0.0015 (0.0018) 

PQI 92 0.0001 (0.0009) 0.0008 (0.0008) 0.0028 (0.0009)*** 0.0011 (0.0009) 0.0023 (0.0026) 
PQI 01 0.0012 (0.0006)* -0.0006 (0.0006) 0.0013 (0.0007)* 0.0017 (0.0006)*** 0.0022 (0.0017) 

PQI 02 -0.0169 (0.0207) 0.0097 (0.0163) 0.0415 (0.0162)** -0.0364 (0.0220) 0.0484 (0.0769) 

PQI 03 -0.0008 (0.0004)** -0.0002 (0.0004) 0.0011 (0.0003)*** -0.0003 (0.0004) 0.0003 (0.0008) 

PQI 07 -0.0004 (0.0002)** -0.0002 (0.0002) -0.0003 (0.0001)** 0.0001 (0.0001) -0.0005 (0.0004) 

PQI 08 0.0008 (0.0002)*** 0.0004 (0.0002)** -0.0002 (0.0002) -0.0002 (0.0002) -0.0011 (0.0009) 
PQI 10 0.0005 (0.0003) 0.0006 (0.0004)* 0.0005 (0.0003) 0.0001 (0.0004) 0.0009 (0.0009) 

PQI 11 -0.0005 (0.0004) 0.0006 (0.0003)* -0.00002 (0.0004) 0.0002 (0.0005) -0.0013 (0.0014) 

PQI 12 0.00003 (0.0005) 0.0002 (0.0005) 0.0003 (0.0004) -0.0005 (0.0007) -0.0011 (0.0016) 

PQI 13 0.0001 (0.0001) -0.0001 (0.0001) 0.00003 (0.00003) -0.00004 (0.0001) 0.0003 (0.0001)** 
PQI 14 -0.0001 (0.0002) 0.0004 (0.0002)** 0.0004 (0.0001)*** -0.0001 (0.0001) 0.0006 (0.0008) 

PQI 15 -0.0007 (0.0005) 0.0011 (0.0005)** 0.0004 (0.0004) -0.0001 (0.0005) 0.0004 (0.0015) 

PQI 16 -0.0001 (0.0001)** 0.00000 (0.0000) -0.00004 (0.0000) -0.0001 (0.0000) 0.00001 (0.0000) 

Sample Size 698,365 639,567 565,782 409,215 1,499,666 
Notes: *** indicates significant at the 1% level; ** 5%; * 10%. Standard errors, heteroskedasticity-robust and clustered at the age-by-time level, are in 
parentheses. All regressions include the controls plus age, hospital and time fixed effects. NIS sampling weights are used.
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Figure 2.1 – Trends in Prevention Quality Indicators by Age Group 

(a) Overall Prevention Quality Indicator 

 
(b) Acute Prevention Quality Indicator 

 
(c) Chronic Prevention Quality Indicator 
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CHAPTER III 

Health Insurance and Traffic Fatalities for Young Adults 

I. Introduction 

On September 23rd, 2010, the dependent coverage expansion of the Patient Protection and 

Affordable Care Act (ACA) was implemented to increase health insurance coverage for young 

adults aged 19 to 25.  Prior to this expansion, young adults in this age range would commonly 

age off of their parents’ insurance plans and often become uninsured due to a lack of other 

sources of insurance.39 

Several studies examine the impact of ACA dependent coverage expansion on health 

insurance coverage; these studies employ different datasets and consistently find a statistically 

significant increase in coverage for young adults (Cantor et al., 2012; Sommers and Kronick, 

2012; Sommers et al., 2013; Akosa Antwi et al., 2013 and 2015; Chua and Sommers, 2014; 

Barbaresco et al., 2015). Less explored in the literature however is moral hazard, a potential 

unintended consequence associated with such an expansion in coverage. The purpose of 

insurance is to protect the insured from financial problems due to large losses (such as disease, 

accidents, loss of valuables etc.). The theory of moral hazard predicts that when the potential 

costs from these losses are borne, in whole or in part, by others, the insured have a tendency to 

take more risks. Increases in risk-taking behavior associated with a health insurance expansion 

could happen in two ways: one is through reductions in the consumption of preventive care that 

an individual might otherwise consume in order to avoid costly hospitalizations; the other is 

through increases in risky behaviors, such as smoking, binge drinking, or over eating. Excessive 

drinking may also be associated with drunk driving, which can lead to fatal traffic accidents. 

                                                             
39 For more on this policy see: http://www.hhs.gov/healthcare/rights/youngadults/index.html 
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Concerns about drunk driving leading to fatal traffic accidents are particularly important 

for young adults. According to Insurance Institute for Highway Safety (IIHS), although young 

drivers are less likely to drink and drive than adults, their crash and fatality risks are higher if 

they do, due to their relative inexperience associated with both drinking and driving.40 All fifty 

states and the District of Columbia have imposed Graduated Driver Licensing (GDL) programs 

in an attempt to reduce teen drivers’ driving risk through enhancing driving restrictions. Of 

course, reckless driving behavior, especially drinking and driving, is not easily regulated.41 

In the earlier study of the impact of the ACA young adult health insurance coverage 

expansion on health outcomes (Barbaresco, Courtemanche and Qi, 2015), we find some potential 

evidence of moral hazard among newly insured young adults, that an increase in health insurance 

coverage leads to an increase in risky drinking behavior. As described the above, another 

potential channel for moral hazard associated with new insurance coverage would be through 

increases in reckless, including alcohol-impaired driving. This, in turn, could lead to more traffic 

accidents and more traffic fatalities. 

What do we know about the rate of fatal traffic accidents for young adults during our 

timeframe of interest? According to the National Vital Statistics Reports, young adults in the age 

group of 15 to 24 have the highest number of deaths (20 percent of all ages) caused by motor 

vehicle accidents. 42 Also, motor vehicle crashes are the leading cause of death (15.9 percent of 

all causes) for young adults in the same age group (Centers for Disease Control and Prevention, 

2011). Among all the fatal accidents, alcohol related crashes make up 36 percent for all ages 

(National Highway Traffic Safety Administration, 2011). 

                                                             
40 For more information, see: http://www.iihs.org/iihs/topics/t/teenagers/topicoverview. 
41 For more information about statewide Graduated driver licensing program, see: 
http://www.iihs.org/iihs/topics/laws/graduatedlicenseintro?topicName=teenagers. 
42 The report is at: http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_04.pdf, Table7. 
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In this paper, I estimate the causal relationship between health insurance coverage and 

traffic fatalities among young adults; that is, whether or not the increase in health insurance 

coverage for young adults through the ACA dependent coverage expansion leads to more overall 

traffic fatalities and more alcohol-related traffic fatalities. My primary results suggest that for 

young adults (aged 20) who just gained health insurance from the ACA dependent coverage 

expansion increased their risky driving behavior, leading to more traffic accidents and even more 

traffic fatalities. The magnitude associated with the increase in traffic accidents is smaller when I 

restrict attention to alcohol-related accidents. The rest of this chapter is organized as follows: 

Section II presents a literature review of traffic fatalities; section III describes the data used in 

this study; section IV illustrates the methodology employed in my empirical work; section V 

presents my primary results, and section VI concludes the chapter. 

II. Literature Review 

There is a broad literature investigating the impact of specific types of insurance on 

related types of injuries. Cohen and Dehejia (2004) find that an increase in the share of drivers 

with auto insurance increases traffic fatalities and Bolduc et al. (2002) find that increase of 

generosity in worker’s compensation insurance increase injuries related to work. To the best of 

my knowledge, there is no previous research directly investigating the impact of health insurance 

coverage on traffic fatalities.  As will be discussed in more detail below, there are, however, 

established strands of the literature exploring the impact of alcohol consumption, prices changes, 

and Body Mass Index (BMI) on fatal crashes.  The ACA dependent coverage expansion has been 

shows to influence each of these factors, so it could in turn have an impact of fatal crashes.   

One strand of the literature debates on the impact of beer taxes and minimum drinking 

age laws (MDAL) on traffic fatalities. Chaloupka et al. (1993) show that increased beer taxes has 
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the largest impact on reducing youth fatality (an 11.5 percent reduction), followed by mandatory 

administrative license laws (a 9 percent reduction). The authors also indicate that MDAL reduces 

total fatalities by about 5 to 6 percent. Saffer and Grossman (1987) conclude that the elasticity of 

the motor vehicle fatality rate to the real beer tax is about 20 for young adults. This suggests that 

an increase in beer taxes could reduce the youth death rate. Similarly, Ruhm (1996) finds that, 

compared to relatively small impacts from other regulations (i.e. MDAL), increases in beer taxes 

cause larger reductions in youth fatalities. However, Dee (1999) suggests that beer taxes have a 

relatively small and statistically insignificant impact on teen drinking after controlling for cross-

state heterogeneity; while the implementation of MDAL actually leads to reductions in heavy 

teen drinking by 8 percent and reductions in traffic fatalities by at least 9 percent. This debate 

suggests that in my analysis of the impact of expansions in health insurance coverage I should 

control for the money cost of alcohol, as well as any non-pecuniary costs faced by young adults 

when attempting to acquire alcohol. In addition, I should control for potential cross-state 

heterogeneity, as state laws prior to the ACA may weaken the impact of the federal policy 

changes. 

 Another strand of the literature looks at how income changes impact traffic fatalities 

among young adults. Adams et al. (2012) show that an increase of 10 percent in the minimum 

wage has a positive correlation of 5 to 10 percent with alcohol-related accidents for teen drivers. 

Grabowski and Morrisey (2004) find that a 10-cent decrease in gasoline prices leads to an 

increase in motor vehicle fatalities over a 2-year period.  They also find that the effect is larger 

for higher-risk young adult drivers. By looking at the changes in state gasoline taxes, Grabowski 

and Morrisey (2006) suggest that plausibly exogenous increases in state gasoline taxes are 

related to fewer traffic fatalities. This strand of literature implies that income effects, such as an 
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increase in income when a young adult substitutes insurance coverage they pay for with costless 

coverage through their parents’ plan, are related to fatal traffic crashes. 

A third strand of the literature considers the relationship between obesity and driving 

behavior. Anderson et al. (2012) show that commercial motor vehicle operators with higher BMI 

were more likely to be in a subsequent accident. Simmons and Zlatoper (2010) find that during 

2005, accident fatalities per mile traveled was positively associated with a state’s obesity 

prevalence. Dunn and Tefft (2013) investigate the relationship between BMI and traffic fatalities 

among young adults and find that obesity tends to make the body less inebriated and helps 

decrease traffic fatalities related to alcohol consumption. As in the earlier study of the impact of 

the ACA dependent coverage expansion on health outcomes (Barbaresco, Courtemanche, and Qi, 

2015), we find that ACA dependent coverage expansion helped improve BMI among young 

adults, which may reduce traffic fatalities. 

A final strand of the literature I consider focuses on the impact of statewide Graduated 

Driver Lisensing (GDL) programs on young adults’ traffic fatalities. Dee et al. (2005) and 

Morrisey et al. (2006) find GDL regulations reduce traffic fatalities among 15-17 year olds. 

Morrisey and Grabowsky (2010) find that “good” GDL programs reduce overall traffic fatalities, 

as well as driver fatalities for the policy’s targeted age groups (teenagers from 15-17 and 18-20 

age groups). Therefore, controlling for the type of state GDL program is also important when 

evaluating other policies related to traffic fatalities of young adults. 

There are also many studies that consider show a mix of factors mentioned above and 

tend to give us an ambiguous prediction for the impact of each factor. Gallet (2007) finds that 

higher income leads to greater alcohol consumption but lowers the risk of being overweight. 

Courtemanche (2010) finds a negative relationship between gasoline prices and BMI as higher 
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gasoline prices encourage more walking and less dinning out. As the mechanism of maintaining 

sobriety by heavier weight may differ by personal physical body function, it may not be very 

efficient to be considered as a factor that can be easily influenced by policy. 

III. Data 

A. Fatality Analysis Reporting System 

Data on fatal vehicle crashes are obtained from the Fatality Analysis Reporting System 

(FARS) of the National Highway Traffic Safety Administration (NHTSA). The FARS is a 

census of all motor vehicle traffic accidents that result in a fatality for either occupants or non-

motorists. It includes detailed information on the characteristics of the vehicles, drivers, 

occupants and non-occupants involved in the crash. Because I am interested in the relationship 

between insurance coverage of young adults and traffic fatalities, I restrict attention to accidents 

resulting in a fatality caused by young drivers. As discussed in the following sub-sections, 

policies such as Minimum Drinking Age Laws and Zero Tolerance Laws associated with 

drinking, as well as Graduated Driver Licensing programs targeted at young adults below age 21, 

tried to reduce traffic fatalities caused by younger drivers. Thus, in this study, I mainly focus on 

young drivers aged 20 and below as the primary treatment group. Following Morissey and 

Grabowski (2010), by state, year, and age group of interest, I count the number of traffic 

accidents resulting in a fatality as well as the total number of fatalities associated with these 

accidents.43 These counts serve as the primary dependent variables in my analysis, which is 

focused on 2008-2013 in order to have an equal number of years before and after the ACA 

expansion of dependent coverage. 

                                                             
43 Following previous literature, I exclude Alaska, Hawaii and the District of Columbia due to the fewer 
observations. 
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The results of blood alcohol concentration (BAC) tests for those involved in traffic 

accidents are sometimes not reported.  The FARS attempts to impute these missing values and 

adopted a new method for doing so in 2001.44 Because I use imputed values of BAC test results 

in my analysis, I do not include any data prior to 2001. This insures the imputation method for 

the BAC test results is constant throughout every year in my sample. Since young adults may be 

more easily involved in an alcohol-related crash, any accident record with a BAC greater than 0 

will be counted as alcohol-related accident.45 This is consistent with the enforcement of Zero 

Tolerance Laws for young drivers below age 21. 

B. Graduated Driver Licensing Program 

Graduated driver licensing (GDL) laws have been established to help reduce traffic 

accidents among teen drivers. GDL regulation varies across states and across three distinct 

licensing stages. These three licensing stages are: learner stage (minimum entry age, mandatory 

permit holding period, and minimum amount of supervised driving), intermediate stage with 

unsupervised driving (unsupervised nighttime driving prohibition and restriction on passengers), 

and unrestricted stage (restrictions lifted age).46 

By using a standardized classification system created by the Insurance Institute for 

Highway Safety (IIHS), one can characterize GDL laws into four groups (Good, Fair, Marginal, 

and Poor) to evaluate the restrictiveness of the laws. Those criteria include the required length of 

holding a learner’s permit (usually six months), restrictions on unsupervised nighttime driving 

(usually 10pm to 5am), the number of teen passengers (usually no more than one) in the car, and 

                                                             
44 For more discussion about new imputation methodology, see: http://www-nrd.nhtsa.dot.gov/Pubs/809-450.pdf. 
45 Zero Tolerance Laws in different states have different criteria regarding acceptable BAC levels, ranging from 0.00 
to 0.02 percent. For more information, see: http://dui.findlaw.com/dui-laws-resources/underage-dui-zero-tolerance-
laws.html. 
46 For detailed regulations by states, see: 
http://www.iihs.org/iihs/topics/laws/graduatedlicenseintro?topicName=teenagers. 
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the minimum age (usually age 17) until the restrictions are lifted. The most restrictive states in 

terms of teen driving are placed in the “good” category, while state with the least restrictions are 

placed in the “poor” category. Previous studies (Morrisey et al., 2006; Morrisey and Grabowski, 

2010) find that states with GDL programs in the “good” and “fair” categories have fewer young 

adult motor vehicle fatalities. In this study, I classify state GDL programs by year according to 

the IIHS criteria and use this to control a state’s young adult driving environment. 

Following the literature, other control variables I employ include beer tax rates, gasoline 

prices, state unemployment rates, and state total population. The beer tax data were obtained 

from the Tax Foundation.47 This source provides tax rates (dollars per gallon) for beer, as well as 

other alcohol, for each state in each year. Annual average regular grade gasoline wholesale/resale 

prices (dollars per gallon) by refiners were obtained from the U.S. Energy Information 

Administration.48 Both the tax and price data were adjusted for inflation based on the 2013 

annual CPI. Annual average state unemployment rates were obtained from the Bureau of Labor 

Statistics (BLS). Total population by state, year and age were constructed using data from 

Current Population Survey (CPS).49 

IV. Methodology 

        I use a difference-in-differences approach to identify the impact of the ACA dependent 

coverage expansion on traffic accidents and fatalities.  Equation (1) below described the 

                                                             
47 For further information, see: http://taxfoundation.org/article/state-sales-gasoline-cigarette-and-alcohol-tax-rates. 
48 I use annual average wholesale/resale gasoline prices since annual average retail gasoline prices were not 
available for years after 2010.  Resale prices are usually slightly lower than retail prices as the intermediary 
businesses earn the price differences, and the price differences should stay stable over years. In the sample, 
wholesale/resale prices and retail prices for gasoline before 2011 have the same time trends. This suggests I can use 
wholesale/resale gasoline prices as a proxy for retail gasoline prices.  
49 Specific age information was not available from the Census Bureau. To validate the effectiveness of using the 
CPS, I constructed the total number of observation with weights from CPS in the corresponding age group from the 
ACS (American Community Survey). The CPS with weights has around 0.5% fewer total individuals in each age 
group as compared to the ACS. Since total population at each age serves as a state-year-age group level control, 
consistently lower number of population make it plausible to use the CPS to construct total population in each 
estimated cell.  
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empirical model I estimate with the data described in the previous section: 

௦௧ܨ = ߚ + ݐܽ݁ݎଵ൫ܶߚ ∗ ௧൯ݎ݁ݐ݂ܣ + ݈ܽ݉݁ܨଶߚ  ݁௦௧ + ௦௧݁ܿ݅ݎܲݏܽܩଷߚ + ௦௧ݔܽܶݎ݁݁ܤସߚ + ௦௧ܮܦܩହߚ

+ ܷ݊݁݉௦௧ߚ + ௦௧ܲߚ + ݁݃ܣ + ܶ݅݉݁௧ + ௦݁ݐܽݐܵ + ௦௧ߝ ,                                  (1) 

where ܨ is accident or fatality counts in age group ݃, state ݏ, and year ߚ ;ݐଵ captures the effect of 

mandates on the treatment over control group; ݈݁ܽ݉݁ܨ is a dummy variable that indicates the 

gender of the driver, the pedestrian, or the bicyclist that caused the fatal accident;  ݁ܿ݅ݎܲݏܽܩ 

represents the gasoline price for each state in each year; ݔܽܶݎ݁݁ܤ represents the beer tax for 

each state in each year; ܮܦܩ represents categories of restrictiveness of the Graduated Driver 

Licensing program in force in the state in the relevant year; ܷ݊݁݉ is the annual average 

unemployment rate for each state in each year; ܲ is the annual total population in each state in 

each year. ݁݃ܣ, ܶ݅݉݁ and ܵ݁ݐܽݐ control for age, year and state fixed effects separately for the 

drivers and the accidents they caused, and ߝ௦௧ is the error term. Standard errors are clustered at 

the treatment level of the interaction of age-by-time.50 

As mentioned above, for the main analysis, I use data from 2008 to 2013 to allow for 

three years of pre-reform data (2008-2010) and three years of post-reform data (2011-2013).51 In 

order to cleanly estimate the causal impact of the ACA dependent coverage expansion, the 

treatment group I analyze consists of young drivers aged 20, and the control group is the young 

drivers aged 18. Age 19 was excluded from the analysis as it is hard to tell whether they have 

been dropped from their parents plan due to their birth date and the renewal dates of their parents’ 

health insurance plan. Teenagers aged 15 to 17 were excluded for two reasons.  First, they should 

                                                             
50 If clustered by age alone, there are only two clusters in the regression. I prefer using an interaction of age-by-time 
as it gives more clusters (Angrist and Pischke, Chapter 8). 
51 I treat 2010 as a pre-treatment year since insurance companies may not expand the dependent coverage until 
parents for whom the reform is binding renew their health insurance coverage, normally the beginning of the next 
year. 
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not be impacted by the ACA dependent coverage expansion, since they were likely already 

eligible for insurance through their parents’ employer or for public coverage through the CHIP 

program.52 Second, most states set the minimum driving age to be no earlier than age 16, and 

some states don’t lift supervised driving restrictions until age 17 or 18.53 Since we cannot tell 

from the FARS which drivers are college students for whom the ACA dependent coverage 

mandate is not binding, I assume all drivers are not students.  This should result in lower bound 

estimates of the impact of the reform. 

The fundamental identifying assumption associated with difference-in-differences 

analysis is the parallel trends assumption for the treatment and control groups in the pre-

treatment period.  Figure 1 shows the trends for two outcomes – traffic accident counts and 

traffic fatality counts - over the entire period of study for both sets of treatment and control 

groups. Figure 2 is the corresponding figures for alcohol-related traffic accident counts and 

traffic fatality counts. Trends for the pre-treatment periods for each set of treatment and control 

groups are parallel to each other, which validates the use of the difference-in-differences 

approach in this study. 

Table 3.1 shows means and standard errors for all traffic accidents and fatalities (panel I), 

as well as alcohol-related traffic accidents and fatalities (panel II) for both the treatment and 

control group. Panel I shows that both accident counts and fatality counts for treatment group 

(age 20) have similar means as in the control group (age 18) in the pre-treatment period. After 

the ACA dependent coverage mandate, means in treatment group are much higher than the 

                                                             
52 See Marton (2007) and Marton and Talbert (2010) for more on the CHIP program. 
53 Eight states (Arkansas, Florida, Georgia, Missouri, New Jersey, Texas, Virginia, and Washington) plus 
Washington, D.C. set their full privilege minimum driving age at 18. Seven states (Connecticut, Illinois, Maryland, 
Massachusetts and Nevada; New York and Pennsylvania) have specific requirements regarding their full privilege 
minimum driving age, such as night driving restrictions or restrictions related to driver education completion, but 
also set the full privilege minimum driving age at 18. Thus age 17 will not be included in the control group of the 
main analysis, but will be included in the control groups of my robustness checks. 
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means in control group. This suggests significant net increases in accidents and fatalities 

associated with the ACA dependent coverage mandate according to the simple difference-in-

differences calculations presented in the last column. Panel II shows similar patterns when we 

restrict attention to alcohol-related traffic accidents and fatalities only, though with smaller 

magnitudes. The results in Table 3.1 reflect the trends in Figures 1 and 2. The simple difference-

in-differences calculation shows a simple, unadjusted pre and post comparison. My regression 

models will provide more precise estimates by controlling for other confounding factors that 

might influence traffic accidents and fatalities. 

V. Results 

 Table 3.2 shows regression results for both the full sample of traffic accidents and the 

alcohol-related-only sub-sample. Results from panel I and II are for full sample, and panel III 

and panel IV are for alcohol-related-only sub-samples. The first column of each table is the 

baseline regression with years 2008-2013 for age group 20 vs age 18. Results from column 1 of 

panel I show that after the implementation of the ACA dependent coverage expansion, young 

adults aged 20 experience a 4.4 percentage point (17.0 percent) increase in traffic accidents and a 

5.6 percentage point (19.4 percent) increase in traffic fatalities.  

 The next three columns are robustness checks. To show that the estimates are not affected 

by the chosen length of pre-treatment periods, column 2 and 3 of panel I are estimated with a 

longer pre-treatment period, one is from 2005, and the other is from 2001, the first available year 

in the sample.  Column 4 excludes 2010, as the ACA dependent coverage mandate was 

implemented in late 2010 and some insurance companies may have enrolled dependents in the 

last three quarters of the year in compliance with the reform. In addition, 2007 was included to 

maintain the same number of year pre and post reform.  Panel II is another set of robustness 
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checks for the full sample analysis. Column 1 restates the baseline estimation from column 1 of 

panel I. Columns 2 to 4 are estimations with broader age groups. When these robustness checks 

are applied to the full sample of traffic accidents and fatalities, the results remain stable. 

Panel III and IV present similar baseline models and robustness checks for the alcohol-

related traffic accident sub-sample.  Here I would expect a smaller impact of the ACA dependent 

coverage expansion among those aged 20 since the legal drinking age in the United States is 21. 

As expected, the coefficient estimates in panels III and IV are smaller in magnitude than the 

estimates given in panels I and II.  Results from column 1 of panel III show that young adults 

aged 20 have a 1.3 percentage point (11.9 percent) increase in traffic accidents and a 1.6 

percentage point (12.6 percent) increase in traffic fatalities. The corresponding figures for 

broader age groups are given in Figures 3.3-3.8. 

VI. Conclusion 

Young adults aged 20 who are newly insured by the ACA expansion of dependent 

coverage may be more likely to engage in risky behavior, such as reckless driving, and even 

drinking and driving, than those aged 18, who were already covered by other types of health 

insurance. This could be due to a reduction in their health insurance spending increasing their 

disposable income and allowing them to buy more alcohol and / or to drive more miles than 

before. Gaining dependent insurance coverage through a parent may also induce these young 

adults to drop out of college and/or be more willing to accept a part-time job that does not offer 

health insurance. This could potentially increase the amount of driving they do by providing 

them with more leisure time and thus increase the potential for traffic accidents. 

One caveat of using FARS for younger adults who may not be affected by the ACA 

dependent coverage expansion due to their student status is that FARS does not have education 
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information for drivers. Thus, the estimates provided in this study only show a lower bound of 

the impact of ACA dependent coverage mandate as I am assuming all the younger drivers in my 

sample are not college students. 

This study focuses on the younger adults who just obtained health insurance coverage 

from ACA dependent coverage expansion and found an increase in traffic accidents and fatalities 

for them. Older young adults who finished their education (aged 23-25) may behave differently 

from those younger peers when gaining health insurance from their parents. Future study will 

examine the impact of ACA dependent coverage expansion on older young adults.  
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Table 3.1 – Unadjusted Difference-in-Differences Estimates of the Impact of the ACA 

Dependent Coverage Expansion on Traffic Accidents and Fatalities 

Panel I: Treatment (age 20) VS Control (age 18) – All Traffic Accidents 
Outcome 
Variables 

Pre-treatment Periods  (08-10) Post-treat periods (11-13) Difference-
in-
Differences 

Treat T1 
(age 20) 

Control C1 
(age 18) 

Treat T1  
(age 20) 

Control C1 
(age 18) 

Accident Count 25.71 
 (1.62) 

25.35 
 (1.45) 

23.38 
(0.17) 

18.98 
(0.42) 

4.04* 
(2.22) 

Fatality Count 28.83 
(1.79) 

29.38 
(1.78) 

26.08 
(0.17) 

21.42 
(0.44) 

5.20* 
(2.57) 

Panel II: Treatment (age 20) VS Control (age 18) – Alcohol-Related Accidents Only 
Outcome 
Variables 

Pre-treatment Periods  (08-10) Post-treat periods (11-13) Difference-
in-
Differences 

Treat T1 
(age 20) 

Control C1 
(age 18) 

Treat T1  
(age 20) 

Control C1 
(age 18) 

Accident Count 
(alcohol-related) 

10.97 
 (0.57) 

8.89 
 (0.34) 

10.44 
(0.23) 

7.17 
(0.16) 

1.19 
(0.72) 

Fatality Count 
(alcohol-related) 

12.38 
(0.53) 

10.24 
(0.34) 

11.69 
(0.27) 

8.08 
(0.17) 

1.47* 
(0.71) 

Notes: Means are reported. Standard errors, heteroskedasticity-robust and clustered by age-by-time, are in 
parentheses. *** indicates the difference-in-differences is significant at the 1% level; ** 5% level; * 10% level. 
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Table 3.2 – Multivariate Difference-in-Differences Estimates of the Impact of the ACA 

Dependent Coverage Expansion on Traffic Accidents and Fatalities 

Panel I: All Traffic Accidents - Treatment (age 20) VS Control (age 18)  
Outcome 
Variables 

2008-2010 VS  
2011-2013 

2005-2010 VS  
2011-2013 

2001-2010 VS  
2011-2013 

2007-2009 VS 
2011-2013 

Accident 
Count 

4.368*** 
(0.278) 

4.611*** 
(0.281) 

5.425*** 
(0.389) 

4.381*** 
(0.276) 

Fatality 
Count 

5.586*** 
(0.276) 

5.606*** 
(0.375) 

6.219*** 
(0.457) 

5.518*** 
(0.278) 

N 562 848 1,231 561 
 
Panel II: All Traffic Accidents - Pre (years 2008-2010) VS Post (years 2011-2013) 

Outcome 
Variables 

Age 20 VS 
Age 18 

Age 20 VS 
Age 17-18 

Age 20-21 VS 
Age 17-18 

Age 20-22 VS 
Age 16-18 

Accident 
Count 

4.368*** 
(0.278) 

3.282*** 
(0.552) 

3.466*** 
(0.534) 

3.223*** 
(0.605) 

Fatality 
Count 

5.586*** 
(0.276) 

3.986*** 
(0.685) 

4.332*** 
(0.695) 

3.968*** 
(0.729) 

N 562 843 1,124 1,676 

Panel III: Alcohol-Related Accidents Only - Treatment (age 20) VS Control (age 18) 
Outcome 
Variables 

2008-2010 VS  
2011-2013 

2005-2010 VS  
2011-2013 

2001-2010 VS  
2011-2013 

2007-2009 VS 
2011-2013 

Accident 
Count 

1.302*** 
(0.340) 

1.128*** 
(0.356) 

1.459*** 
(0.398) 

0.783* 
(0.371) 

Fatality 
Count 

1.560*** 
(0.361) 

1.277*** 
(0.394) 

1.640*** 
(0.475) 

0.951* 
(0.458) 

N 536 816 1,191 536 
 
Panel IV: Alcohol-Related Accidents Only - Pre (years 2008-2010) VS Post (years 2011-2013) 

Outcome 
Variables 

Age 20 VS 
Age 18 

Age 20 VS 
Age 17-18 

Age 20-21 VS 
Age 17-18 

Age 20-22 VS 
Age 16-18 

Accident 
Count 

1.302*** 
(0.340) 

0.981** 
(0.391) 

0.873** 
(0.352) 

0.748** 
(0.342) 

Fatality 
Count 

1.560*** 
(0.361) 

1.051** 
(0.426) 

1.041** 
(0.431) 

0.941** 
(0.419) 

N 536 777 1,054 1,540 
Notes: *** indicates significant at the 1% level; ** 5% level; * 10% level. Standard errors, heteroskedasticity-robust 
and clustered by age-by-time, are in parentheses. All regressions include the controls plus age, state, and time fixed 
effects. 
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Figure 3.1 – Traffic Accident / Fatality Counts for Young Adults Aged 20 VS 18 

  
Figure 3.2 – Alcohol-Related Traffic Accident / Fatality Counts for Young Adults Aged 20 
VS 18 
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Figure 3.3 – Traffic Accident / Fatality Counts for Young Adults Aged 20 VS 17-18 

  
Figure 3.4 – Alcohol-Related Traffic Accident / Fatality Counts for Young Adults Aged 20 
VS 17-18 
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Figure 3.5 – Traffic Accident / Fatality Counts for Young Adults Aged 20-21 VS 17-18 

 
Figure 3.6 – Alcohol-Related Traffic Accident / Fatality Counts for Young Adults Aged 20-
21 VS 17-18 
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Figure 3.7 – Traffic Accident / Fatality Counts for Young Adults Aged 20-22 VS 16-18 

 
Figure 3.8 – Alcohol-Related Traffic Accident / Fatality Counts for Young Adults Aged 20-
22 VS 16-18 
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