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ABSTRACT

This paper introduces a novel approach to explore longitudinal changes in brain func-

tional network connectivity (FNC) and gray matter (GM) in adolescents, utilizing data from

the Adolescent Brain and Cognitive Development (ABCD) study. The study focuses on mul-

tivariate patterns of FNC changes over a two-year period, identifying structured Functional

Change Patterns (FCPs). One noteworthy finding is the strengthened functional connec-

tivity between visual (VS) and sensorimotor (SM) domains as participants age. Moreover,

the research highlights gender-specific variations in these patterns. This approach offers a

robust means of assessing whole-brain functional changes longitudinally.

Additionally, the paper presents two complementary techniques for analyzing whole-brain

structural and functional changes with age. The first method links Functional Change Pat-

terns (FCPs) to voxel-wise ∆GM, revealing significant correlations for two components. The

second technique investigates the connections between FCP and Structural Change Patterns

(SCP). These methods provide valuable insights into the linked changes between functional

connectivity and GM during adolescence, contributing to a comprehensive understanding of

brain development.
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CHAPTER 1

LITERATURE REVIEWS

Human brain is considered as the most active organ which consumes about 20% of the

energy from entire body - (Uludağ & Roebroeck 2014). Structural analysis shows that brain

activities depend on different types of cells such as pyramidal neurons, interneurons, and

glia. These cells distribution and connections between cells are developed via predetermined

biological pathways. To analyze the complex structure of brain, there is a growing research

interest in neuroimaging study. The ongoing research on Neuroimaging is playing vital

role in different research fields, specially in the clinical diagnosis, and biomedical domains.

The application of different neuroimaging technique has been grown rapidly in the past

two decades. According to the imaging mode, neuroimaging technique is able to give both

structural and functional images. Structural image can be used to visualize the structure of

the brain for diagnosing the brain diseases like brain tumors or brain trauma. Functional

image can be used to visualize how the brain metabolizes while carrying out certain tasks,

including sensory, motor, and cognitive functions. Functional image is generally used in

neuroscience and psychological research, but day by day it is going to be a new way to

diagnosis clinical-neurology. Modern neuroimaging methods is able to reveal the relationship

between the cognition and behavior in healthy subjects and its dysfunction in patients.

1.1 Magnetic Resonance Imaging (MRI) Basic

Neuroimaging can be considered as an umbrella for multiple methods, technologies, and

modalities which is able to provide both structural and functional data regarding neu-
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ral mechanisms. The most commonly used imaging technologies are magnetic resonance

imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and

single-photon emission computed tomography (SPECT). Among them, Magnetic resonance

imaging (MRI) is one of the widely used approaches in neuroimaging study. MRI has been

utilized for demonstrating regional, time-varying changes in brain metabolism - (Bandet-

tini et al. 1992; Kwong et al. 1992; Ogawa et al. 1990). Human brain used oxygen during

metabolic activity; therefore, blood in the vicinity of metabolically active tissues will have a

different proportion of oxygenated to deoxygenated hemoglobin (Hb) than that surrounding

tissue - (Buxton et al. 1998; Davis et al. 1998). These two forms of Hb have different magnetic

properties which creates the BOLD response. In the stimulated condition, increased blood

flow causes the Hb to be swept out and replaced by HbO2, causing a BOLD signal increase.

To capture these activities, MRI has been considered as one of the widely used tools. The

MRI technique became popular as it is non-radioactive, non-invasive (does not require in-

jection of a radioisotope or other pharmacologic agent), relatively low cost, and versatile. It

has derived many unique imaging modalities, including diffusion-weighted imaging, diffusion

tensor imaging, susceptibility-weighted imaging, and spectroscopic imaging. Each modality

provides valuable and different types of information about brain structures and activity.

In MRI, there are two different approaches i) structural MRI, and ii) functional MRI to

analyze the brain functionality. Structural MRI is used to analyze the brain morphometry.

Meanwhile, functional MRI can be used to visualize how the brain metabolizes while car-

rying out certain tasks, including sensory, motor, and cognitive functions. Both structural
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and functional MRI has been used extensively in neuroimaging study. In earlier studies,

researchers considered functional and structural measures independently to analyze brain.

But, recent studies are more focused to find the well-established links between the structural

and functional neuronal level - (Chalfie et al. 1985; Gray et al. 2005). Recently, the prac-

tice to utilize the combined information of structural and functional MRI has been growing

rapidly - (Rykhlevskaia et al. 2008).

1.2 Multimodal Fusion

Multimodal fusion is one of recently used neuroimaging techniques where it combines two

or more data sets acquired from multiple imaging modalities and multiple techniques. This

approach is mainly used to improve the understanding of the structure and function of the

brain by utilizing complementary physical and physiological sensitivities. It also helps to

overcome the fundamental limitations of individual modalities so as to understand brain

dynamics with greater detail - (Calhoun & Sui 2016; Sui et al. 2014; Zhang et al. 2011). The

main goal of multimodal fusion is to increase the strength of each modality in a joint anal-

ysis, rather than a separate analysis of each. However, despite improvements in individual

modalities, it is becoming increasingly clear that the most effective research approaches will

utilize multi-modal fusion, which takes advantage of the fact that each modality provides a

limited view of the brain.

In neuroimaging studies, multimodal is a broadly used approach. The use of Multiple

modalities from MRI data that has been collected from the same individual has been gaining
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popularity day by day. Practically, it is proved that multimodal brain imaging studies are

able to provide more complete understanding of the brain and its disorders, such as, it can

provide information about how brain structure reflects the brain function, how brain are

impacted by psychopathology and which functional or structural aspects of physiology could

drive human behavior and cognition. Generally, there are 3 types of multimodal neuroimag-

ing: (a) visual inspection: it is a unimodal analysis where results are visualized separately;

(b) data integration: In data integration, obtained data from each unimodal technique are

analyzed individually and then overlaid to prevents any interaction between different types

of data - (Calhoun & Sui 2016) and (c) data fusion - (Sui et al. 2011) Data fusion can be

categorized as asymmetric (one modality will constrain another modality) or symmetric (all

modalities will be analyzed jointly). Each data fusion category uses a variety of techniques,

including principal component analysis (PCA), independent component analysis (ICA), and

general linear models.

1.3 Multivariate Methods for Multimodal Fusion

1.3.1 Joint ICA

In order to examine and analyze the shared information between the features found in the

different imaging modalities, the joint analysis methods using the fusion technique is a must

needed tool now a days. Joint ICA is one of the multivariate approaches which can be used to

increase the covariation across datasets and maintains the high dimensionality in integrated

modalities. Joint ICA is typically applied on two different imaging modalities and extracts
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the spatially independent maps for each modality. Usually, these maps are coupled together

by a shared loading parameter (the same mixing matrix). This approach has already been

successfully used to combine different modalities such as fMRI-sMRI (GM) - (Calhoun et al.

2006b; Specht et al. 2008; Choi et al. 2008), fMRI-EEG - (Jorge et al. 2014; Calhoun et al.

2006a; Eichele et al. 2009; Calhoun et al. 2010), fMRI-DTI (FA) - (Franco et al. 2008; Teipel

et al. 2010), GM-WM - (Xu et al. 2009). This provides a model-free approach to identify

latent factors in complex datasets across vastly different data structures.

Joint ICA(JICA) fusion method has several advantages. Fusing data across modalities is

important for disorders like schizophrenia where functional and structural deficits are widely

reported, but the link between them has not yet been established fully. Thus, joint ICA is

important to study the function/structure relationships of SZ patients. Second, Joint ICA

shows a good spatial and temporal resolution in case of fusing fMRI, and EEG modalities

together, and that is because fMRI has a good spatial resolution and EEG has a good

temporal resolution.

1.3.2 Multimodal CCA

Multimodal CCA, as a technique, permits the use of distinct mixing matrices for each modal-

ity and aims to discover a transformed coordinate system that maximizes the covariance

across two datasets - (Correa et al. 2008). This approach involves breaking down each

dataset into a set of components, such as spatial areas in the case of fMRI/sMRI or tem-

poral segments for EEG, along with their corresponding mixing profiles known as canonical

variates (CVs). These CVs exhibit varying levels of activity among different subjects and
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are considered linked when they exhibit similar modulation patterns across subjects. Fol-

lowing this decomposition, the CVs demonstrate correlations, but only for the same indices,

and these correlations are referred to as canonical correlation coefficients (CCCs). In con-

trast to jICA, which enforces a shared mixing matrix for two or more features, mCCA offers

more flexibility by permitting both common and distinct levels of connection between two

features. However, it’s important to note that the associated source maps may not exhibit

spatial sparsity, especially when the CCCs are not distinct enough - (Correa et al. 2010a;

Krol & Gimi 2020). Multimodal CCA is insensitive to variations in the data type ranges,

making it suitable for jointly analyzing highly diverse data types. Furthermore, it can be ex-

panded into multi-set CCA to accommodate more than two modalities - (Correa et al. 2010a;

Li et al. 2009). It’s worth mentioning that multimodal CCA operates on the second-level

fMRI feature, specifically contrast maps. In contrast, multi-set CCA is capable of working

with raw 4D fMRI data.

1.3.3 Linked ICA

Linked ICA is a probabilistic technique grounded in a modular Bayesian framework, devel-

oped to concurrently model and discover common features among various data modalities

- (Groves et al. 2011). These combined modalities may exhibit distinct units, noise levels,

spatial characteristics, and intensity distributions. Linked ICA offers two configurations:

”linked tensor ICA” groups modalities from the same source with similar spatial properties,

allowing them to share a common modality map. For example, FA, mean diffusivity (MD),

and tensor mode (MO) can be configured as a tensor (DTI group data) to link GM. The
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other configuration, ”linked flat ICA,” assigns each modality its own spatial map but shares

the same subject-mixing matrix. In both scenarios, Bayesian tensor ICA - (Beckmann &

Smith 2005) is employed to model each modality (group). This approach differs from tradi-

tional ICA methods like fastICA - (Oja & Hyvarinen 2000) and Infomax - (Bell & Sejnowski

1995) by incorporating dimensionality reduction directly into the ICA method through the

use of automatic relevance determination (ARD) priors on components - (Bishop 1999) and

by operating on the full-dimensional data.

1.3.4 mCCA+jICA

In the realm of brain connectivity studies that merge functional and structural aspects -

(Rykhlevskaia et al. 2008; Camara et al. 2010), it is reasonable to hypothesize that compo-

nents derived from each modality exhibit some level of correlation in their mixing profiles

across subjects. The mCCA+jICA approach is a blind data-driven model specifically op-

timized for such a scenario - (Sui et al. 2011). It excels at achieving both flexible modal

associations and source separation, making it a robust choice for handling various levels of

modality connections. This approach leverages the strengths of two complementary tech-

niques: mCCA and jICA. mCCA enhances the reliability of jICA by providing a closer initial

alignment through correlation, while jICA further dissects the remaining mixtures within the

associated maps and relaxes the requirement for distinct canonical correlation coefficients.

Importantly, the mCCA+jICA method does not significantly increase computational

complexity. However, in simulations designed to mimic real-world brain imaging data fusion,

it outperforms both mCCA and jICA when used in isolation. Furthermore, mCCA+jICA is
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not limited to two-way fusion; it has the potential to extend to three-way or N-way fusion

involving multiple data types. This can be achieved by substituting multimodal CCA with

multi-set CCA - (Li et al. 2009). For instance, it can be applied to combine fMRI, sMRI, and

genetic data to construct a comprehensive function-structure-genetics network, highlighting

its broad applicability and potential widespread use.

1.3.5 Parallel ICA

The strict regularization enforced by the jICA framework can be relaxed in various ways

to introduce more flexibility into the estimation process. One such approach is known as

parallel ICA. This method serves as a framework for exploring data integration from two

different imaging modalities, aiming to identify independent components in both modalities

and establish connections between them by enhancing inherent interrelationships - (Liu &

Calhoun 2007). The algorithm seeks to maximize the cost function, which considers both

entropy and correlation terms. It proceeds by maximizing the independence of components

within each data set separately. If the mixing profile correlations of certain components

surpass a threshold, they are selected and employed to modify the demixing matrix update

based on the correlation constraint, using suitable stopping criteria. It’s important to note

that the threshold is determined empirically and may vary for different combinations of data

types. Due to its ability to enhance the inter-modality correlation of one or more components,

parallel ICA is considered a semi-blind method. It has been applied to link fMRI with genetic

data (specifically single nucleotide polymorphism arrays, SNP) - (Liu et al. 2009), as well as

sMRI with SNP data - (Jagannathan et al. 2010). The results demonstrate that paraICA
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yields stable outcomes and can accurately identify linked components with a relatively high

level of precision - (Liu et al. 2008a).

1.3.6 CC-ICA

Coefficients-constrained ICA (CC-ICA) is designed to enhance the sensitivity of component

extraction to detect group differences and improve decomposition accuracy. It’s important

to note that joint ICA is a blind method that does not incorporate prior diagnostic informa-

tion and, therefore, is not optimized for identifying group differences. When the objective

is to effectively identify potential disease biomarkers, incorporating prior membership infor-

mation can significantly boost the method’s sensitivity to detect relevant group differences.

This led to the development of CC-ICA - (Sui et al. 2009b), which formulates the integra-

tion of a group difference criterion into the traditional ICA cost function. This adaptive

constraint on the mixing coefficients of specific components serves to enhance the detection

of group differences. CC-ICA can be combined with principal component analysis with ref-

erence (PCA-R) - (Caprihan et al. 2008; Liu et al. 2008b), providing a general approach for

identifying disease biomarkers - (Sui et al. 2009a; Kim et al. 2010). One advantage of this

approach is its ability to offer a unified and succinct representation of a particular group

discriminative feature from multitask/multimodal data within a single component. CC-ICA

can be applied to various multimodal combinations similar to joint ICA.
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CHAPTER 2

WHOLE-BRAIN FUNCTIONAL NETWORK CHANGE PATTERNS

2.1 Introduction

The resting-state human brain can be used to reveal time-varying functional connectiv-

ity (FC) dynamics -(Chang & Glover 2010; Saha et al. 2020; Calhoun et al. 2014; Saha

et al. 2019). There are various neuroimaging techniques that can be used to quantify FC.

Functional magnetic resonance imaging (fMRI) is the most commonly used technique for

the computation of the temporally coherent between brain blood oxygenation dependents.

The FC between two brain regions from resting-state functional magnetic resonance imag-

ing (rfMRI) data can be computed via a measure of pairwise statistical dependency (most

commonly Pearlson correlation) between the time courses. Data-driven decomposition tech-

niques such as independent component analysis (ICA) can be used to extract co-activated

brain networks, whose time courses can be used to calculate the functional network connec-

tivity (FNC) - (Jafri et al. 2008).

There is a growing research interest in estimating age-related anatomical and functional

changes. Spontaneous blood oxygenation level-dependent (BOLD) signals have been fre-

quently used to identify the regional FC and investigate the changes in a variety of neurolog-

ical and psychiatric disorders - (Chen et al. 2011). During the adolescence period, the human

brain exhibits remarkable changes both in function - (Vértes & Bullmore 2015; Stevens 2016)

and structure - (Whitaker et al. 2016; Váša et al. 2018). Several studies have reported age-

related FC changes during the adolescence period, but the obtained results are somewhat
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inconsistent - (Váša et al. 2020). Small data size, the absence of longitudinal data, variation

in fMRI data preprocessing, and the choice of different analysis methods contribute to this

inconsistency. Vasa et al., have investigated changes in human brain function during adoles-

cence and found two distinct modes (disruptive and conservative) of age-related change in

FC. Age-related changes in FC have been studied including findings showing a progressive

reduction in FC among different age groups - (Farras-Permanyer et al. 2019). The impact

of aging on functional networks has also been reported in - (Geerligs et al. 2015). How-

ever, there has been little work in evaluating multivariate patterns of change in functional

(network) connectivity with development.

In our work, we propose a new technique to visualize within-individual changes in whole-

brain FNC with increased age. We estimate the FC change patterns (FCPs) by first comput-

ing cellwise within the individual ∆FNC matrix and then estimating covarying multivariate

patterns via ICA on the ∆FNC matrices. A one-sample t-test on the resulting component

loading parameters reveals several FCPs showing significant longitudinal differences. To the

best of our knowledge, our proposed procedure is the first approach to estimate multiple

overlapping brain functional change patterns (FCPs) over a two-year period in the develop-

ing brain. The remainder of the research paper is organized as follows. In the materials and

methods section, we introduced the data preprocessing and the analysis procedures. Next,

in the result section, we show brain functional coupling changes with age. Finally, we discuss

the findings in the conclusion section.
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2.2 Materials and Methods

2.2.1 Summary of ABCD data

The study utilized data from release 2.01 of the Adolescent Brain Cognitive Development

(ABCD) study, accessible through its official website 1. This dataset incorporates information

from more than 11,800 children aged between 9 and 11 years, who underwent multiple MRI

scans during two image sessions: the baseline and the second-year follow-up. The dataset

includes a comprehensive collection of demographic and health-related information obtained

with full written informed consent from the parents and assent from the children. These

procedures were conducted under protocols approved by the Institutional Review Board

(IRB). The ABCD dataset is shared through the National Institute of Mental Health Data

Archive (NDA) website 2, which hosts open-source datasets sourced from various research

endeavors spanning diverse scientific fields. This platform aims to facilitate collaborative

scientific endeavors and enable exploration and discovery across multiple domains. For this

study, data from 3,489 subjects who underwent scanning at both baseline and a two-year

follow-up visit were utilized for analysis.

2.2.2 Data Preprocessing

The raw fMRI data underwent preprocessing using a combination of the FMRIB Software

Library v6.0 (FSL) toolbox and the Statistical Parametric Mapping 12 (SPM) toolbox within

the MATLAB 2019b environment. Initially, rigid body motion correction was applied us-

1https://abcdstudy.org/)
2https://nda.nih.gov/
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ing FSL to rectify subject head motion. Subsequently, distortion in the fMRI images was

corrected using field map files acquired with phase encoding in the anterior-posterior (AP)

direction and volumes with phase encoding in the posterior-anterior (PA) direction. Fol-

lowing distortion correction, the fMRI data were standardized into the standard Montreal

Neurological Institute (MNI) space with spatial resolutions set at 3 × 3 × 3 and were then

subjected to Gaussian smoothing with a full width at half maximum (FWHM) of 6 mm.

For this study, the Neuromark network templates were utilized to extract comparable

Intrinsic Connectivity Networks (ICNs) through a fully automated spatially constrained

ICA approach across subjects sourced from the ABCD dataset. The Neuromark framework

employed two healthy control datasets, namely the Human Connectome Project (HCP)

with 823 selected subjects and the Genomics Superstruct Project (GSP) with 1005 selected

subjects, to construct the priors. More information regarding the Neuromark framework

and templates can be found in - (Du et al. 2020). Additionally, research has shown that

the selected spatial priors maintain high reliability across different pipelines and between

datasets involving both adults and adolescents - (DeRamus et al. 2021).

2.2.3 Models

In our study, we worked with subject-specific Functional Network Connectivity (FNC) data

obtained from both baseline and two-year scans. Initially, we computed cell-wise differences

between the baseline and two-year FNC datasets, resulting in the creation of change ma-

trices termed ∆FNCs. Subsequently, in pursuit of recognizing longitudinal brain functional

coupling and capturing correlated patterns of alterations, referred to as Functional Change
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Figure 2.1: Block diagram of the FCP analysis workflow

Patterns (FCPs), we employed Independent Component Analysis (ICA) utilizing the infomax

algorithm - (Bell & Sejnowski 1995) to decompose the ∆FNC matrices. In this particular ex-

periment, we estimated 5 components through this decomposition. To illustrate, the model

equation for the ICA can be expressed as:

X = A · S (2.1)

Here, X = Subjects (3489) × ∆FNC cells (1378 cells from the upper triangle of the

symmetric matrix); A = subjects (3489) × component number (5) and S = component

number (5) × ∆FNC cells (1378)

This effectively models the input data as:

∆FNC =
5∑

i=1

aiFCP (2.2)

Here, ∆FNC = F0 - F2, F0 is the baseline FNC data, F2 is the two-year FNC data,

FCP, the source matrix, represents maximally independent functional change patterns, and



15

ai are the subject-specific loading parameters for each component. The sources represent

maximally independent covarying patterns of functional change.

Following the ICA estimation, we proceeded to assess the loading parameters and source

matrix to identify Functional Change Patterns (FCPs) exhibiting significant longitudinal

changes in comparison to zero. This involved conducting one-sample t-tests on the loading

parameters and determining their statistical significance at a 95% confidence level, corrected

for multiple comparisons. Additionally, we created scatter plots of the loading parameters

and generated spatial maps representing the Functional Network Connectivity (FNC) ma-

trices. A graphical representation of this analysis workflow is depicted in Figure 2.1 within

a block diagram format.

2.3 Results

The Neuromark template identified 53 replicable brain networks, which were subsequently

grouped into 7 domains based on their anatomical and functional characteristics. These

domains encompassed subcortical, auditory, sensorimotor, visual, cognitive control, default

mode, and cerebellar networks (Du et al. 2020). Figure 2.2 visually presents the brain net-

work template, with each color in the composite maps representing an intrinsic connectivity

network in individual subplots

The experimental results for the Functional Connectivity Profiles (FCPs) are presented

in Figure 2.3. This figure illustrates the 5 estimated components along with their associ-

ated T-values. The findings suggest a notable degree of modularity in the results, indicating
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Figure 2.2: Visualization of Neuromark network template - (Du et al. 2020)

structured changes related to age. Notably, components 2 and 4 exhibit the highest positive

and negative T-values, respectively. The T-values provide insights into the degree of expres-

sion of each FCP in the data, whether positively or negatively. A high negative (positive)

T-value signifies an increased (decreased) expression of the respective FCP with age.

Specifically, Component 4 stands out with the most negative T-value of -14.02, indicating

a strong negative expression in the data. In the plot, it’s observed that the visual domain

(VSN) - sensorimotor domain (SMN) and cerebellar domain (CBN) - subcortical domain

(SCN) pairs display the most substantial negative values, suggesting increased brain func-

tional coupling over a two-year span. Conversely, VSN-CBN and SMN-SCN domains exhibit

decreasing change patterns with age.
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Figure 2.3: FNC component plot. In the figure, we observe the FCPs for components 2 and
4 have the highest positive (component 2) and negative (component 4) T-values.

For Component 2, there is a noticeable decrease in functional connectivity coupling be-

tween the default mode domain (DMN) and SMN as individuals age. The associated T-value

for Component 2 is positive at 11.47, indicating a strong positive expression in the data. Ad-

ditionally, increased functional coupling is observed between the CBN and DMN regions over

the two-year period.

Loading scores were depicted using a raincloud plot, which provides a clear overview

of the data distribution and its relationships through medians and confidence intervals.

Figure 2.4 illustrates that Component 4 displays higher variance in loading parameters and

a significantly negative mean value.
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Figure 2.4: Scatter plot of loadings parameters. In the Y axis, we present five loadings and
in the X axis, we present the scores of the corresponding loadings.

Finally, a two-sample t-test was conducted on each loading parameter based on sex

information. The analysis revealed that males and females exhibit opposing effects on Com-

ponents 4 and 5, with males showing smaller FCP changes for Component 4 and females

showing smaller FCP changes for Component 5.

In summary, the study employed a template-based approach to identify consistent brain

networks and investigated their relationships with age and gender, providing valuable insights

into the functional connectivity profiles of these networks.
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2.4 Discussion and Conclusion

In this research paper, we present an innovative method for analyzing multiple overlapping

patterns of brain functional changes using Functional Network Connectivity (FNC) matrices.

We specifically focus on the delta FNC matrix to illustrate alterations in brain functional con-

nectivity associated with age. Our findings reveal several Functional Connectivity Patterns

(FCPs) that exhibit significant changes over a two-year timeframe. Notably, we observe

heightened functional connectivity between the Visual Network (VSN) and Sensorimotor

Network (SMN) domains, alongside a reduction in anticorrelation between the Sensorimotor

and Cognitive/Default Mode Network domains as individuals age. Furthermore, our inves-

tigation identifies both common and distinct patterns of brain functional changes in males

and females. Specifically, males and females display adverse effects on components 4 and 5,

but the direction of these effects differs between the genders. Our method holds promise as

a robust tool for assessing comprehensive changes in brain function in longitudinal studies.
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CHAPTER 3

FUNCTIONAL AND STRUCTURAL LONGITUDINAL CHANGE
PATTERNS

3.1 Introduction

Magnetic resonance imaging (MRI) is one of the widely used approaches to capture brain

structural and functional information from health control and patients - (Radua et al. 2014).

Recently, Functional magnetic resonance imaging (fMRI) has been successfully utilized to

compute the functional connectivity (FC) among different brain networks. FC can be quanti-

fied by spontaneous blood-oxygenation-level-dependent (BOLD) signal fluctuations between

different brain regions obtained from resting-state functional magnetic resonance imaging

(rfMRI) - (Fox & Raichle 2007). Functional connectivity is defined as the pairwise statistical

dependency (most commonly Pearson correlation) between different brain areas - (Friston

et al. 1993). Current studies have reported that functional connectivity between different

brain regions changes during childhood and adolescence - (Fair et al. 2009; Kelly et al. 2009;

Supekar et al. 2009; Thomason et al. 2008).

Recent studies are focused on finding the age-related anatomical and functional brain

changes. The human brain experiences notable changes during adolescence, both in terms

of function - (Stevens 2016; Vértes & Bullmore 2015) and structure - (Váša et al. 2018;

Whitaker et al. 2016). Several studies have reported the connection between FC and struc-

tural connectivity (SC), such as the convergence of FC and SC in the default mode network

(DMN) - (Greicius et al. 2009; Horn et al. 2014; Zhu et al. 2014), FC and SC properties vary
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between groups, such as schizophrenic patients and controls - (Skudlarski et al. 2010; Zhou

et al. 2008). There is a great deal of interest in understanding the brain by mapping its

anatomical and functional connections. While some studies - (Andrews-Hanna et al. 2007;

Betzel et al. 2014; Fjell et al. 2017b; Zimmermann et al. 2016) reported that age-related de-

cline in functional connectivity is dependent on structural connectivity, some other studies

found that structural connectivity only weakly restrains age-related changes in functional

connectivity - (Fjell et al. 2017a; Tsang et al. 2017). However, there has been little work

in estimating multivariate patterns of change in functional (network) connectivity and gray

matter with increased age.

In this work, we propose two complementary approaches: 1) links between multivariate

functional change patterns (FCPs) and voxel-wise gray matter (DGM) data and 2) multi-

variate change patterns (linking between FCP and structural change patterns (SCP)) to view

within-individual alterations in whole-brain structure and function with increased age. In

each individual, we calculate cell-wise DFNC and DGM matrix before estimating covarying

multivariate patterns (FCPs) and (SCPs) via independent component analysis (ICA). With-

out a priori restrictions to particular seed regions, we computed the voxel-wise correlation

between the loading parameters of functional data and DGM data. The second approach

includes computing the correlation between the loading parameters of FC and GM data to

visualize the relation between functional and structural change patterns. The remaining

sections of this paper are structured as follows. In the method section, we will discuss the

data preprocessing and workflow. Next, in the result section, we will present the obtained
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results from functional and anatomical brain changes. Finally, we discuss our key findings

in the conclusion section.

3.2 Materials and Methods

3.2.1 ABCD Data Summary

The investigation relied on the Adolescent Brain Cognitive Development (ABCD) study

dataset, accessible via the official ABCD website 1. The primary goal of the ABCD project

is to track developmental changes in the human brain from childhood to adolescence. This

trial involved approximately 11,800 children aged between 9 and 11, who underwent multi-

ple MRI scanning sessions and provided health and demographic information. Access to the

ABCD dataset is facilitated through the National Institute of Mental Health Data Archive

(NDA) 2, which collates data from diverse research projects spanning various scientific do-

mains. The NDA makes the ABCD dataset openly available to foster collaborative research

endeavors and exploration. The fMRI data underwent preprocessing using a robust inde-

pendent component analysis (ICA)-based framework called Neuromark, designed to identify

brain networks by comparing data across subjects while accommodating individual variabil-

ity within these networks - (Du et al. 2020). For this investigation, a subset comprising

2,734 participants with available baseline and two-year follow-up scans for both functional

network connectivity (FNC) and gray matter data was utilized from this trial.

1https://abcdstudy.org/
2https://nda.nih.gov/
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3.2.2 Preprocessing of fMRI Data

The data underwent preprocessing using a combination of the FMRIB Software Library v6.0

(FSL) toolbox and the Statistical Parametric Mapping 12 (SPM) toolbox within MATLAB

2019b. Initially, rigid body motion correction was applied using the FSL MCFLIRT tool to

address subject head motion. Following this correction, distortion in the fMRI images was

rectified using field map files obtained by capturing volumes with phase encoding in both

the anterior-posterior (AP) and posterior-anterior (PA) directions using the FSL tool topup.

The output field map coefficients obtained from the FSL tool applytopup were utilized to

rectify the distortion in the fMRI volume. Subsequently, the fMRI data underwent Gaussian

smoothing with a full width at half maximum (FWHM) of 6 mm and were warped to the

standard Montreal Neurological Institute (MNI) space with spatial resolutions of 3× 3× 3.

For the analysis, a fully automated spatially constrained Independent Component Anal-

ysis (ICA) technique was employed to extract intrinsic connectivity networks (ICNs) and

their corresponding time courses (TCS) across subjects from the ABCD dataset. This ex-

traction was facilitated using the Neuromark network templates, derived from replicated

networks obtained from two datasets of healthy controls: the Human Connectome Project

(HCP) consisting of 823 individuals post-subject selection and the Genomics Super Struct

Project (GSP) comprising 1005 subjects post-subject selection. Further information about

the Neuromark templates can be found at 3 and within the GIFT toolbox - (Du et al. 2020).

Notably, studies have demonstrated that the chosen spatial priors exhibit high reliability

3http://trendscenter.org/data



24

across pipelines, datasets encompassing both adults and adolescents, and diverse popula-

tions, while also accounting for individual subject variability - (DeRamus et al. 2021).

3.2.3 Preprocessing of sMRI Data

The sMRI data underwent preprocessing utilizing statistical parametric mapping (SPM124)

within the MATLAB 2020b environment. The initial step involved segmenting the structural

images into distinct components such as gray matter, white matter, and cerebrospinal fluid

(CSF), while also incorporating modulation by the Jacobian. This segmentation process

resulted in voxel-wise maps representing gray matter volume (GMV). Subsequently, the

GMV maps underwent a smoothing procedure using a Gaussian kernel with a full width at

half maximum (FWHM) set at 6 mm.

3.2.4 Models

In our investigation, we utilized subject-specific fMRI and sMRI data obtained from both

baseline and two-year scans. To generate altered Functional Network Connectivity (FNC)

and Gray Matter (GM) matrices, we initially computed cell-wise differences between the

baseline and two-year FNC and GM data. Subsequently, employing Independent Component

Analysis (ICA) using the infomax technique - (Bell & Sejnowski 1995), we decomposed the

∆FNC and ∆GM matrices. This allowed us to capture correlated patterns of change termed

as Functional Change Patterns (FCPs) and Structural Change Patterns (SCPs). These

patterns aimed to recognize the longitudinal coupling between brain function and structure.

4http://www.fil.ion.ucl.ac.uk/spm/
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In our experiment, we estimated thirty components for GM data and five components for

the FNC data, determined based on the elbow criteria. Specifically, the equation for this

secondary-level ICA model can be expressed as:

X = A · S (3.1)

Here, the dimensionality of the data matrix X is 2734 (subjects) × cells (for fMRI, the

upper triangle elements of the ∆FNC matrix; for sMRI, the number of voxels). Also, A is

2734 × components and S is components × cells.

This effectively models the functional input data as:

∆FNC =
5∑

i=1

aiFCP (3.2)

∆GM =
5∑

i=1

aiSCP (3.3)

Here, ∆FNC=F0 -F2 and ∆GM=G0 -G2, where F0 and F2 are the baseline and two-

year FNC data, G0 and G2 represent the baseline and two-year GM data respectively. FCP

and SCP are the source matrix, reflecting functional change patterns and structural change

patterns respectively with the greatest degree of independence, and ai and bj are each com-

ponent’s subject- specific loading parameters of FNC and GM data respectively. The sources

for FNC and GM data depict FCPs and SCPs, respectively, that are optimally independent

and covarying.
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Figure 3.1: Block diagram of the functional and structural change patterns analysis workflow

We pursued two distinct methods to uncover the relationship between functional and

structural changes, aiming to identify their respective change patterns. Firstly, one ap-

proach involved computing voxel-wise correlations between the ∆GM data and the loading

parameters obtained from the ICA estimation of functional data. This allowed us to scru-

tinize the covariation of functional change patterns across the loading parameters of each

component. Secondly, employing a different strategy, we conducted statistical analyses to

ascertain the connection between the loading parameters derived from altered functional and

GM data. Additionally, we visualized the Structural Change Patterns (SCPs) of GM data

through spatial maps for components 1, 2, 4, and 26. A graphical representation of the

analysis workflow is illustrated in Figure 3.1.
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3.3 Results

The experimental results, as illustrated in Figure 3.2, display spatial maps indicating the

relationships between multivariate Functional Connectivity Patterns (FCPs) and voxel-wise

Gray Matter (GM) data. In this figure, five FCP components are plotted alongside spatial

maps depicting the correlations between GM data and FCP loadings, with a focus on their

associations with increasing age. The findings suggest substantial connections between FCPs

and voxel-wise GM data. Additionally, the co-variation between the loading parameters was

explored, revealing a correlation value of -0.38 between loadings 4 and 2 of FCPs. The

spatial map figure shows that component 2 is significantly positively correlated, while the

sub-cortical domain (SCN) exhibits a widespread negative correlation with altered GM data.

Notably, the voxel-wise correlation map indicates that components 2 and 4 of FCP exhibit

similar correlations with altered GM data, but with opposite directions.

Furthermore, a strong positive correlation (r = 0.35) is observed between loadings 4 and 5

of FCPs. Similar to component 4, the voxel-wise correlation map shows a significant negative

correlation between FCPs and voxel-wise altered GM data for component 5. Conversely, the

SCN exhibits a significant positive correlation, displaying notable differences in the sub-

cortical region in the voxel-wise correlation between components 2 and 4, with component 4

exhibiting a higher voxel-wise correlation in the SCN.

After performing Independent Component Analysis (ICA) on each modality, we calcu-

lated Pearson correlations between the loading parameters of altered functional and GM data

to identify links between the FCPs and Structural Connectivity Patterns (SCPs). Figure 3.3
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Figure 3.2: FNC component plot and spatial map of voxel-wise GMV correlation with the
FCP loading parameters for each component. In the figure, we observe the voxel-wise corre-
lation for components 2 and 4 have the highest positive (component 2) and negative (com-
ponent 4) values.

illustrates the connections between multivariate change patterns. Some SCP components,

specifically 1, 2, 4, and 26, are associated with FCP components. Notably, component 1 (r =

0.055, p = 0.0040) and component 2 (r = -0.06, p = 0.0017) of GM data are correlated with

component 1 of Functional Network Connectivity (FNC) data. Additionally, component 4 (r

= -0.052, p = 0.0065) and component 26 (r = 0.053, p = 0.0056) of GM data are correlated
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Figure 3.3: Spatial maps of gray matter data for components 1, 2, 4, and 26. Components
1 and 2 of SCP are linked with component 1 of FCP and components 4 and 26 of SCP are
linked with component 5 of FCP.

with component 5 of FNC data. Based on these correlation values, it can be concluded that

there is an association between FCP and SCP. Furthermore, by considering gender infor-

mation, a two-sample t-test was conducted on the loading parameters of components 1, 2,

4, and 26 of GM data. The analysis reveals that males exhibit smaller SCP changes for

component 2, while females exhibit smaller SCP changes for component 1.
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3.4 Discussion and Conclusions

In this paper, we introduce two complementary methods aimed at exploring comprehensive

whole-brain structural and functional changes, as well as their relationships with the aging

process. We leverage functional and gray matter data from the ABCD study to analyze

our models. The first method involves establishing links between Functional Connectivity

Patterns (FCP) and ”raw” voxel-wise gray matter (GM) data. The second method explores

the connections between FCP and Structural Connectivity Patterns (SCP) by examining

their loadings. Our objective is to gain insights into the trends associated with aging. When

analyzing FCP components 2 and 4, we observe a widespread correlation between their

loadings and voxel-wise GM data. Furthermore, we identify connections between FCP and

SCP loadings for certain components, leading us to hypothesize that multivariate patterns of

functional network connectivity (FNC) and gray matter (GM) exhibit associations with age-

related changes. Additionally, we conducted a two-sample t-test on the loading parameters

of GM data, considering gender information. Our analysis reveals that males demonstrate

fewer significant SCP changes for component 2, while females exhibit fewer significant SCP

changes for component 1.
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CHAPTER 4

MULTIMODAL FUSION OF FUNCTIONAL AND STRUCTURAL DATA
TO RECOGNIZE LONGITUDINAL CHANGE PATTERNS

4.1 Introduction

Magnetic resonance imaging (MRI) is a widely utilized method for acquiring valuable brain

information and one of the only modalities that can visualize brain structure and func-

tion. Structural neuroimaging modalities, such as structural MRI (sMRI) and diffusion

MRI (dMRI), provide insights into the anatomical structure and tissue composition of the

brain. In contrast, functional neuroimaging modalities, such as fMRI based on blood-

oxygenation-level-dependent (BOLD) signal, indirectly measure brain function and activity

- (Abrol et al. 2017; Ogawa et al. 1990). Previous studies have predominantly examined

functional and structural measures independently when analyzing the brain. However, there

has been a rapid increase in the utilization of combined structural and functional MRI data

- (Rykhlevskaia et al. 2008). Multimodal fusion of neuroimaging data is a technique that

integrates data acquired from multiple imaging modalities and techniques. This approach

aims to overcome the inherent limitations of individual modalities and gain a deeper under-

standing of brain dynamics - (Calhoun & Sui 2016; Sui et al. 2014; Zhang et al. 2011). The

primary objective of multimodal fusion is to enhance the analytical power of each modality

through joint analysis, rather than separate analyses of each modality.

In order to analyze the shared information among the features found in different imaging

modalities, we used multiset canonical correlation analysis + joint independent component
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analysis (mCCA+jICA) method, a widely recognized and extensively used multimodal fusion

approach - (Sui et al. 2011). mCCA+jICA, is a data-driven multivariate fusion technique -

(Correa et al. 2010b; Calhoun et al. 2006b) that simultaneously analyzes multimodal data by

combining mCCA and jICA in a two-step process - (Calhoun & Sui 2016). In the first step,

mCCA is utilized to identify highly correlated components between multiple modalities - (Sui

et al. 2011, 2013). This is followed by the application of jICA in the second step to decompose

these correlated components into spatially independent components, known as ICs. The

mCCA+jICA algorithm has been employed - (Sui et al. 2011) to combine fMRI contrast

maps and diffusion tensor imaging (DTI) fractional anisotropy (FA) maps for examining

group differences among healthy controls (HCs), schizophrenia patients (SPs), and bipolar

patients (BPs). Importantly, that study found that the combined algorithm yielded increased

accuracy in group classification compared to using the constituent algorithms individually.

Ouyang et al. have used the mCCA+jICA approach to identify patterns of gray matter

(GM) and white matter (WM) covariance in patients with Alzheimer’s disease - (Ouyang

et al. 2015). Similarly, Kim et al. utilized mCCA+jICA with multimodal sMRI and DTI data

from patients with obsessive-compulsive disorder and HCs, revealing significant alterations

in the interconnected networks of GM and WM - (Kim et al. 2015). But, to the best of our

knowledge, no previous studies have been conducted to estimate the changes in sex-related

multivariate patterns coupling in FNC and GM associated with age progression using the

mCCA+jICA multimodal fusion analysis method.

In this study, we propose a novel approach to investigate the relationship between within
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subject age-related changes in whole-brain structure and function at an individual level. For

each participant, we calculate cell-wise differences (∆FNC and ∆GM) and then estimate

covarying multivariate patterns (functional change patterns (FCPs) and structural change

patterns (SCPs)) using the mCCA+jICA multimodal fusion method. By performing a one-

sample t-test on the loading parameters of the resulting multimodal components, we identify

several FCPs and SCPs that exhibit significant longitudinal differences. Furthermore, we

explore the interaction between functional and structural changes in both males and females.

The rest of this paper is structured as follows: the method section describes the data pre-

processing steps, workflow, and analysis procedures. In the results section, we present the

findings related to functional and anatomical brain changes associated with age. Lastly, we

discuss the significant implications of our findings in the conclusion section.

4.2 Materials and Methods

4.2.1 Adolescent Brain Cognitive(ABCD) Data Summary

This investigation utilized the dataset derived from the Adolescent Brain Cognitive Devel-

opment (ABCD) study, available through the official ABCD website 1. The primary aim of

the ABCD project was to track changes in the human brain as individuals transition from

childhood to adolescence. It involved more than 11,800 children, aged 9 to 10 at the baseline

session, who underwent multiple MRI scans. Alongside MRI scans, their health and demo-

graphic information was collected. The ABCD dataset is accessible through the National

1https://abcdstudy.org/
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Institute of Mental Health Data Archive (NDA) website 2. The NDA serves as a repository

for data from various research initiatives across different scientific fields and provides the

ABCD data as an open-source dataset, promoting collaborative research and investigation.

To ensure data quality, the fMRI data underwent preprocessing using a robust independent

component analysis (ICA)-based framework called Neuromark. This framework compares

data across individuals to identify brain networks while accommodating variations unique

to each individual within the networks - (Du et al. 2020). For this study, a subset consisting

of 2,734 participants who had both baseline and two-year follow-up scanned data available

for both functional network connectivity (FNC) and gray matter volume was selected for

analysis.

4.2.2 Preprocessing of fMRI Data and Functional Feature Extraction

The data preprocessing involved a combination of tools: the FMRIB Software Library v6.0

(FSL) toolbox and the Statistical Parametric Mapping 12 (SPM) toolbox within MATLAB

2020b. To correct for subject head motion, the FSL MCFLIRT tool was utilized for rigid

body motion correction. Subsequently, distortion in the fMRI images was addressed using

field map files. These field maps were generated by acquiring volumes with phase encoding in

both anterior-posterior (AP) and posterior-anterior (PA) directions using the FSL tool topup.

By leveraging the output field map coefficients from the FSL tool applytopup, distortion in

the fMRI volume was rectified. The fMRI data underwent smoothing with a Gaussian

kernel of full width at half maximum (FWHM) set to 6 mm and were then transformed

2https://nda.nih.gov/
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to the standard Montreal Neurological Institute (MNI) space with a spatial resolution of

3× 3× 3.

After preprocessing, a fully automated spatially constrained Independent Component

Analysis (ICA) method was employed to extract intrinsic connectivity networks (ICNs) and

their corresponding time courses (TCS) from the ABCD dataset. This extraction was facili-

tated using the Neuromark fMRI 1.0 template -(Du et al. 2020). This template was created

by aggregating replicated networks from two datasets: the Human Connectome Project

(HCP) dataset comprising 823 selected individuals and the Genomics Super Struct Project

(GSP) dataset comprising 1005 selected subjects. More comprehensive details about the

Neuromark template can be found on the website 3 and within the GIFT toolbox. No-

tably, the selected spatial priors have demonstrated high reliability across various pipelines,

datasets inclusive of both adults and adolescents, and diverse populations - (DeRamus et al.

2021).

4.2.3 Preprocessing of sMRI Data

The sMRI data underwent preprocessing using the Statistical Parametric Mapping (SPM124)

software, operated within the MATLAB 2020b environment. Initially, the structural images

underwent segmentation to distinguish between gray matter, white matter, and cerebrospinal

fluid (CSF). This segmentation process also involved modulation by the Jacobian, resulting

in voxel-wise maps of gray matter volume (GMV). Following this, the GMV maps underwent

a smoothing procedure using a Gaussian kernel with a full width at half maximum (FWHM)

3http://trendscenter.org/data
4http://www.fil.ion.ucl.ac.uk/spm/
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Figure 4.1: Block diagram of the functional and structural change patterns recognition
workflow

of 6 mm. This smoothing step aimed to improve the spatial smoothness of the data.

4.2.4 Models

In our study, we worked with subject-specific fMRI and sMRI data collected at both baseline

and two-year scans. To understand alterations in functional network connectivity (FNC) and

gray matter (GM), we computed the differences between the baseline and two-year data for

each cell. These matrices of differences, labeled as ∆FNC and ∆GM, represented changes

in FNC and GM over the given timeframe. Subsequently, we applied the mCCA+jICA
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method to break down the ∆FNC and ∆GM matrices. This method enabled the extraction

of correlated change patterns: functional change patterns (FCPs) and structural change

patterns (SCPs), respectively. To achieve this, we derived five components for both GM and

FNC data, determining the optimal number of components using the elbow criterion. The

mCCA+jICA model equation utilized in our study is outlined below:

Xk = Ak · Sk (4.1)

In this equation, the dimensionality of the data matrix X is 2734 (subjects) × cells (for

fMRI, the upper triangular elements of the ∆FNC matrix; for sMRI, the number of voxels).

The dimensions of A are 2734 × 5 (components), S is 5 (components) × cells, and k = 2 is

the number of modalities.

This effectively models the input data as following :

Here, ∆FNC represents the difference between the baseline (F0) and two-year (F2) func-

tional network connectivity (FNC) data, while ∆GM corresponds to the difference between

the baseline (G0) and two-year (G2) gray matter (GM) data. The FCPs and SCPs source

matrices capture the most independent patterns of functional and structural changes, re-

spectively. The terms aF and aG refer to the subject-specific loading parameters for each
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component in the FNC and GM data, respectively. These loading parameters quantify the

contribution of each subject to the respective components.

Following the mCCA+jICA estimation, we analyzed the loading parameters and source

matrix. To identify significant longitudinal changes in Functional Connectivity Patterns

(FCPs) and Structural Connectivity Patterns (SCPs), one-sample t-tests were conducted

on both modalities’ loading parameters (aF and aG). We ensured a statistical significance

level of 95%, adjusted for multiple comparisons. Furthermore, we segregated the GM and

FNC data by gender and computed correlations between male and female loadings in each

modality. Assessing the difference between these correlations (female - male) allowed us to

gauge the gender-related strength of coupling between GM and FNC loadings. A notably

positive difference would imply a stronger GM-FNC coupling in females compared to males.

A graphical representation of the analysis workflow is illustrated in Figure 4.1.

4.3 Results

The Neuromark template encompasses a total of 53 replicable networks, classified into 7

domains based on anatomical and functional features: subcortical, auditory, sensorimotor,

visual, cognitive control, default mode, and cerebellar domains - (DeRamus et al. 2021). The

experimental outcomes are presented in Figure 4.2, which features spatial maps illustrating

the connections between multivariate Functional Connectivity Patterns (FCPs) and Struc-

tural Connectivity Patterns (SCPs). This figure showcases 5 components of FCPs alongside

corresponding spatial maps of SCPs components, with associated T-values indicating the
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Figure 4.2: FNC components and spatial map of GM components. Here, Component 3 from
both functional and structural data exhibits highly structured changed patterns.

degree of expression change with age - (Saha et al. 2022). The upper and lower arrows rep-

resent increasing and decreasing patterns with age, respectively. The results unveil notable

modularity, indicating structured changes occurring over the two-year period.

Components 2 and 3 of functional connectivity patterns (FCPs) exhibit significant changes
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with age in the developing brain. Both components show an increasing trend with age, as

indicated by their negative T-values. Component 3 reveals increased brain functional con-

nectivity between the visual domain (VS) and sensorimotor domain (SM) in the Functional

Network Connectivity (FNC) data. Correspondingly, there are decreasing changes in the

bilateral sensorimotor cortex in the structural MRI (sMRI) data over the two-year period.

Additionally, FCP component 3 shows a decreasing trend with age in the functional connec-

tivity between the VS and cerebellar domain (CB), as well as between the SM and cognitive

control domain (CO).

Following the multimodal fusion technique, Pearson correlation was calculated between

the loading parameters across all FCPs and SCPs, separately for males and females. The aim

was to investigate gender differences in coupling (subject expression-level associations). The

analysis revealed that females exhibited stronger coupling between SCP component 2 and

FCP component 1 (∆r = 0.128, FDR-corrected, P = 2.1895e−11), FCP component 3 (∆r =

0.102, FDR-corrected, P = 1.0081e−07), and FCP component 4 (∆r = 0.111, FDR-corrected,

P = 6.7136e−09) compared to males. This finding suggests that females, contributing the

most to the structural change pattern (SCP component 2), also significantly contribute to

FCPs components 1, 3, and 4. Based on the obtained correlation values, it can be concluded

that females exhibit stronger coupling between FCPs and SCPs expressions compared to

males. Additionally, a two-sample t-test based on gender information using the loading

parameters of both modalities revealed that males exhibit smaller change pattern expression

in SCP for component 2 compared to females.



41

4.4 Discussion and Conclusions

This paper introduces an innovative approach to explore the intricate relationship between

multivariate brain functional and structural change patterns by leveraging Functional Net-

work Connectivity (FNC) matrices and Gray Matter (GM) data. The main objectives of

this research involve the investigation of comprehensive structural and functional changes

across the entire brain over a span of two years, the examination of age-related trends in

these alterations, and the analysis of the interplay between structural and functional changes

with consideration to gender differences. The study employs functional and GM data sourced

from the ABCD dataset. The results highlight significant changes in various Functional Con-

nectivity Patterns (FCPs) and Structural Connectivity Patterns (SCPs) over the specified

two-year duration. Additionally, the study uncovers that females exhibit a more pronounced

coupling between functional change patterns (specifically, components 1, 3, and 4) and struc-

tural change patterns (component 2) when compared to males. These findings underscore

the potential of the proposed approach as a valuable tool for assessing comprehensive func-

tional and structural changes across the entire brain, along with their interconnections, in

longitudinal studies involving both male and female subjects.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This paper introduces a novel approach for analyzing multiple overlapping brain functional

change patterns using FNC matrices, specifically focusing on age-related brain functional

connectivity changes. The findings indicate the existence of significant changes in several

Functional Change Patterns (FCPs) over a two-year period. These changes involve height-

ened functional connectivity coupling between the Visual-Salience Network (VSN) and Sen-

sorimotor Network (SMN) domains and a reduced anticorrelation between the sensorimotor

and cognitive/default mode network domains as age increases. Moreover, it unveils gender-

specific brain functional pattern changes, with males and females exhibiting contrasting

effects on components 4 and 5. This approach shows great potential as a robust tool for

evaluating comprehensive whole-brain functional changes in longitudinal studies.

In addition, this paper presents two complementary methods: the connection between

FCP and voxel-wise Gray Matter (GM) and the relationship between FCP and Structural

Change Patterns (SCP) via their loadings. These methods aim to investigate whole-brain

structural and functional changes in relation to aging. The analysis involves Functional and

GM data from the ABCD dataset. For FCP components 2 and 4, there is a widespread

association between their loadings and voxel-wise GM. Furthermore, there is evidence of

connections between FCP and SCP loadings for certain components, suggesting that mul-

tivariate patterns of functional network connectivity (FNC) and gray matter (GM) exhibit

associations with increasing age. Additionally, a gender-based analysis reveals differences
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in SCP changes, with males showing less significant changes in SCP for component 2 and

females displaying less significant SCP changes for component 1. These methods expand

our understanding of age-related structural and functional brain changes, especially in the

context of gender differences.

I will vary the component number to observe is there more stronger coupling between

different brain region in increased component. I will also try to compute correlation between

loading parameters and variable of interests.
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Vértes, P. E., & Bullmore, E. T. 2015, Journal of Child Psychology and Psychiatry, 56, 299

Whitaker, K. J. et al. 2016, Proceedings of the National Academy of Sciences, 113, 9105

Xu, L., Pearlson, G., & Calhoun, V. D. 2009, Neuroimage, 44, 777

Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Initiative, A. D. N., et al. 2011, Neu-

roimage, 55, 856



50

Zhou, Y. et al. 2008, Schizophrenia research, 100, 120

Zhu, D. et al. 2014, NeuroImage, 102, 184

Zimmermann, J., Ritter, P., Shen, K., Rothmeier, S., Schirner, M., & McIntosh, A. R. 2016,

Human brain mapping, 37, 2645


	The Analysis of Longitudinal Change Patterns in Developing Brain Using Functional and Structural Magnetic Resonance Imaging Data
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LITERATURE REVIEWS
	Magnetic Resonance Imaging (MRI) Basic
	Multimodal Fusion
	Multivariate Methods for Multimodal Fusion
	Joint ICA 
	Multimodal CCA
	Linked ICA 
	mCCA+jICA
	Parallel ICA
	CC-ICA


	WHOLE-BRAIN FUNCTIONAL NETWORK CHANGE PATTERNS
	Introduction
	Materials and Methods
	Summary of ABCD data
	Data Preprocessing
	Models

	Results
	Discussion and Conclusion

	FUNCTIONAL AND STRUCTURAL LONGITUDINAL CHANGE PATTERNS
	Introduction
	Materials and Methods
	ABCD Data Summary
	Preprocessing of fMRI Data
	Preprocessing of sMRI Data
	Models

	Results
	Discussion and Conclusions

	MULTIMODAL FUSION OF FUNCTIONAL AND STRUCTURAL DATA TO RECOGNIZE LONGITUDINAL CHANGE PATTERNS
	Introduction
	Materials and Methods
	Adolescent Brain Cognitive(ABCD) Data Summary
	Preprocessing of fMRI Data and Functional Feature Extraction
	Preprocessing of sMRI Data
	Models

	Results
	Discussion and Conclusions

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

