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ABSTRACT

Deep learning models have increasingly become computationally intensive, necessitating

specialized hardware and significant runtime for both training and inference. In this work,

we introduce DynaLay, a versatile and dynamic neural network architecture that employs a

reinforcement learning agent to adaptively select which layers to execute for a given input.

Our approach introduces an element of introspection into neural network architectures by

enabling the model to recompute the results on more difficult inputs during inference, bal-

ancing the amount of expelled computation, optimizing for both performance and efficiency.

The system comprises a main model constructed with Fixed-Point Iterative (FPI) layers,

which can approximate complex functions with high fidelity, and an agent that chooses

among these layers or a no-operation (NOP) action. Unique to our approach is a multi-

faceted reward function that combines classification accuracy, computational time, and a

penalty for redundant layer selection, thereby ensuring a harmonious trade-off between per-

formance and cost. Experimental results demonstrate that DynaLay achieves comparable

accuracy to conventional deep models while significantly reducing computational overhead.

Our approach represents a significant step toward creating more efficient, adaptable, and

universally applicable deep learning systems

INDEX WORDS: Foundational Model, Dynamic Neural Networks, Fixed-Point It-
eration, Computational Efficiency, Multi-Task Learning, Model-
Agnostic Framework, Implicit Differentiation, Backpropagation,
Agent-Based Modeling
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The rapid advancements in deep learning have led to transformative changes across various

disciplines, including natural language processing, computer vision, and reinforcement learn-

ing Schmidhuber (2015)Vaswani et al. (2023)Hochreiter (1995). Despite these monumental

strides, we are confronted with persistent challenges related to computational inefficien-

cies and architectural rigidity of traditional deep learning models. These challenges are

especially pronounced in resource-restricted environments, which demand a more nuanced,

context-sensitive approach.

Our work introduces an introspective architecture that aims to bridge this gap. We

employ a reinforcement learning agent to dynamically and adaptively select layers to exe-

cute in a deep neural network. This architecture imbues the model with the capability to

self-optimize in real-time, providing a fine balance between computational efficiency and clas-

sification accuracy. The introspective architecture is particularly beneficial for applications

where computational resources are at a premium, yet high performance is non-negotiable.

The backbone of our architecture features Fixed-Point Iterative (FPI) layers. These layers

are known for their prowess in approximating complex functions while being computationally

efficient Arya et al. (2023)Kidger (2022). The role of the reinforcement learning agent is to

judiciously choose among these FPI layers, or alternatively, to select a no-operation (NOP)

action based on the characteristics of the given input. One of the most critical aspects of
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our work is the introduction of a nuanced reward function. This function considers a blend

of metrics—classification accuracy, computational time, and a penalty for redundant layer

selection. This multifaceted approach ensures that the agent makes context-aware decisions,

thereby optimizing both performance and computational resources.

1.2 Research Objectives and Contributions

The thesis is focused on achieving the following objectives:

• Development and empirical validation of an introspective architecture, combining a

reinforcement learning agent with FPI layers for dynamic layer selection.

• Introduction and analysis of a nuanced reward function designed to balance classifica-

tion accuracy, computational efficiency, and decision-making diversity.

• Extensive experiments and comparative studies to validate the effectiveness of our

approach against traditional deep learning models.

Our research culminates in a novel, introspective architecture that not only achieves

comparable performance to conventional models but does so with significantly reduced com-

putational overhead.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides the necessary

background on FPI layers and reinforcement learning, especially in the context of deep

learning. Chapter 3 elaborates on the proposed introspective architecture, detailing its
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components and operational mechanisms. Chapter 4 covers the experimental design, setup,

and results, while Chapter 5 concludes the thesis by summarizing the contributions and

suggesting avenues for future research.
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CHAPTER 2

RELATED WORK

In the ever-evolving landscape of machine learning and artificial intelligence, a multitude of

methods has emerged, aiming to enhance the performance, scalability, and efficiency of deep

learning models. This chapter aims to provide a comprehensive review of the literature that

is pertinent to the themes presented in this thesis. We delineate the seminal works, recent

advancements, and the intersectionalities that contextualize our contributions in a broader

academic discourse.

2.1 Fixed-Point Iteration in Deep Neural Networks

Fixed-Point Iteration (FPI) has its origins in numerical analysis and has evolved into a

versatile and powerful tool in the field of deep learning. Researchers have applied FPI in

various applications, including stabilizing training algorithms, enhancing convergence rates,

and incorporating structured prior knowledge into neural networks. FPI has been used in

differentiable forward and backward fixed-point iteration layers, which facilitate the use of

more complex operations in deep networks Arjovsky et al. employed FPI in the context

of Wasserstein GANs to calculate Wasserstein distances, stabilizing the gradient landscape

during adversarial training. However, such works primarily utilize FPI as an auxiliary com-

ponent for specialized tasks or challenges, and they often don’t explore its full potential in

neural architecture design. Our work distinguishes itself by embedding FPI layers as a central

element within the neural network architecture. These layers are not merely supplementary

but foundational, designed to approximate complex functions with fewer parameters. Fur-
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thermore, we extend the utility of FPI layers by incorporating a reinforcement learning

agent that adaptively selects which layers to execute based on the incoming data. This ap-

proach represents a significant leap in making neural networks more versatile, efficient, and

context-aware. In addition to the aforementioned applications, FPI has been used in vari-

ous other contexts, such as automating the FPI inspection process using machine learning

and overcoming challenges in fixed-point training of deep convolutional networks. However,

these works focus on specific applications and do not fully explore the potential of FPI in

the broader context of deep learning. By embedding FPI layers as a central component in

neural network architectures, we aim to unlock the full potential of FPI in deep learning.

This approach could lead to more efficient and versatile neural networks, capable of handling

complex tasks and adapting to various contexts.

2.2 The Advent of Adaptive Networks

The concept of adaptivity in neural networks has been a subject of keen interest, particu-

larly in the optimization of resource allocation during inference. Adaptive neural networks

can adjust their structure and parameters based on data inputs, allowing them to respond

immediately to changes in the data input and adapt to changes in the environment. This

adaptability is crucial for improving the accuracy of pattern recognition and prediction.

Existing methods for adaptivity in neural networks usually involve architecture adjust-

ments in a static manner, either during pre-training or the training phase. While these

methods are capable of architecture adjustments, they do not enable real-time, introspective
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adjustments during inference, which could optimize both performance and computational

efficiency. Our approach takes adaptivity a step further by enabling real-time, introspective

adjustments during inference, optimizing for both performance and computational efficiency.

Introspective agents can recognize the extent to which their internal perceptual experiences

deviate from the actual states of the external world. By incorporating introspective inference

into neural networks, we can create systems that are more aware of their own limitations

and can adapt accordingly.

In our approach, we incorporate a reinforcement learning agent that adaptively selects

which layers to execute based on the incoming data. This allows the neural network to make

real-time adjustments during inference, optimizing resource allocation and improving overall

performance. By enabling real-time, introspective adjustments, our approach represents a

significant leap in making neural networks more versatile, efficient, and context-aware.

2.3 Temporal Dynamics: Pondering Networks and Deep Equilibrium Networks

2.3.1 Adaptive Computation in Neural Networks: Pondering Networks and
Deep Equilibrium Networks

The question of adaptive computation—how much computational resource should be al-

located to each input—has been the focus of several significant works, notably Pondering

Networks ?? and Deep Equilibrium Networks (DEN) ?.

Pondering Networks introduce a unique approach to adaptive computation by allowing

the network to allocate different amounts of processing time for each input. In essence,

the model ’ponders’ over more complex inputs and rushes through simpler ones, thereby
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achieving a form of computational efficiency. However, this adaptability is largely temporal;

it doesn’t offer a mechanism for adapting the network’s architecture or selecting specific

layers based on the input’s characteristics.

Deep Equilibrium Networks (DEN), on the other hand, involve a more complex iterative

solving mechanism at each layer of the network. By doing so, they aim to capture intricate

dependencies between inputs and outputs, enhancing the model’s performance on complex

tasks. However, similar to Pondering Networks, DEN does not inherently provide layer-wise

adaptivity. The model adjusts the length of computations but does not dynamically alter

its architecture based on the input.

While both Pondering Networks and DEN offer intriguing methodologies for adaptive

computation, they fall short in a few key areas. First, they do not offer layer-wise adaptivity,

meaning they can’t dynamically select or skip specific layers based on the input. Second, they

are not designed to perform the kinds of complex operations that FPI layers are capable of,

limiting their applicability in scenarios that require such operations for optimal performance.

Our work stands apart by addressing these limitations and providing a more comprehen-

sive solution. Our architecture not only allows for adaptive computation but goes a step

further by introducing layer-wise adaptivity through a reinforcement learning agent. This

agent can dynamically choose which layers to execute, adding a new dimension of adapt-

ability. Moreover, our architecture incorporates Fixed-Point Iterative (FPI) layers, enabling

the network to perform complex operations that are otherwise computationally expensive or

infeasible.
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By combining the strengths of FPI layers and reinforcement learning, our architecture

achieves a harmonious balance between computational efficiency and performance, making

it a robust, versatile solution for a wide array of deep learning applications. It opens up new

avenues for research into how neural networks can be made more adaptable and efficient,

not just in terms of computational time but also in architectural complexity and functional

capability.

2.4 Neuronal Diversity: A New Frontier

The notion of neuronal diversity stems from the idea that different neurons or nodes within a

network can specialize in various functions, akin to biological neural networks. This concept

has been particularly useful in applications that require the network to learn complex, non-

linear mappings, such as physical simulations, financial modeling, and multi-modal data

interpretation ??.

In the realm of physics, the introduction of neuronal diversity has led to machine learning

models capable of understanding complex physical laws and phenomena with higher accuracy

and lesser computational requirements ?. This offers exciting possibilities for real-world

applications where computational efficiency and model performance are critical.

While neuronal diversity as a concept does not directly intersect with our current focus on

fixed-point iterations and adaptivity through reinforcement learning, it offers an intriguing

avenue for future research. One can envision a model that not only adaptively selects which

layers to activate but also which types of neurons within those layers would be most effective
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for a given input. This would add another layer of adaptability and specialization to our

architecture, making it even more efficient and capable.

Integrating neuronal diversity into our architecture could also open the door to tackling

more complex problems that require a nuanced understanding of various features within the

data. It could be particularly useful in scenarios where the data is multi-modal or where

different types of computations are better suited for different aspects of the data. However,

integrating neuronal diversity into an already complex architecture would not be without

its challenges. It could introduce additional hyperparameters to tune and complicate the

training process. Moreover, the increase in complexity would need to be justified by a

commensurate improvement in model performance and efficiency to warrant the additional

computational burden.

2.5 Differentiable Optimization Layers: Prior Knowledge Meets Differentiation

Embedding optimization problems as layers within a neural network provides a novel way to

incorporate prior knowledge or constraints into the learning process ?. The general idea is to

frame a layer in the neural network as an optimization problem, often formulated as a convex

or non-convex optimization, that the network solves during the forward and backward passes.

This approach has similarities with our work in that both aim to make neural networks

more flexible and capable by incorporating more complex operations. However, there are

key differences. Our work focuses on Fixed-Point Iteration (FPI) layers, which allow for

computationally efficient approximation of complex functions. In contrast, optimization
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layers often involve solving complex problems that may require iterative methods and can

thus be computationally expensive.

Moreover, while optimization layers are often problem-specific and need to be designed

with the task at hand in mind, FPI layers are more general-purpose. They can be embedded

into a wide range of neural network architectures without requiring substantial modifications,

making them a more versatile option for many applications. However, such integration would

come with its own set of challenges, including but not limited to computational complexity

and the risk of overfitting. The use of optimization layers often involves additional complex-

ities such as the need for hyperparameter tuning specific to the optimization problem and

the potential for local minima during training. These challenges highlight the advantages of

our approach, which uses FPI to achieve similar ends but in a more computationally efficient

and straightforward manner.

Our work sits at the confluence of several evolving themes in deep learning—fixed-point

iterations, adaptivity, computational efficiency, and model introspection. By integrating a

reinforcement learning agent with FPI layers, we not only contribute a novel architecture but

also propose a multi-faceted reward function that ushers in a new paradigm for balancing

performance against computational cost. This positions our work as a significant step forward

in the quest for more efficient, versatile, and intelligent deep learning systems.
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CHAPTER 3

METHOD

Our approach is based on simple recurrent backpropagation, which we extend to incorporate

a more complex and flexible architecture using implicit differentiation through convergent

loops. Our goal is to train deep learning models that perform a fixed number of computations

for each input regardless of its difficulty. Unlike other papers that find fixed points on the

same number of layers for every computation, we aim to build an efficient architecture that

first determines which layer will require a fixed point depending on the input before starting

computation.

3.1 Background

3.1.1 Fixed-Point Iterative Layers in Deep Learning

Fixed-point iterative (FPI) Bolte et al. (2022b)Werbos (1990) methods are a class of tech-

niques commonly used to solve equations of the form f(x) = x, where x is a fixed point

Habiba & Pearlmutter (2021) of the function f . In deep learning, FPI layers are designed to

find a fixed point z that satisfies:z = f(z, x). Here, f is the neural network layer’s function,

x is the input to the layer, and z is the fixed-point that we want to compute. The general

iterative scheme for finding this fixed point can be expressed as: z(k+1) = f(z(k), x) where

z(k) is the estimate at iteration k. The process begins with an initial guess z(0) and iterates

until convergence, i.e., ||z(k+1) − z(k)|| < ϵ where ϵ is a small tolerance.

we also define x̂ which is the fixed point of g, which satisfies x̂ = g(x̂), where x̂ is the
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Figure 3.1 Main Model Architecture: A) Schematic representation of the DynaLay archi-
tecture, highlighting its key components and the flow of data.B) The figure illustrates how
the agent dynamically selects layers for Fixed-Point Iteration, where Ai for the same i are
parameter tied Chatziafratis et al. (2022)Habiba & Pearlmutter (2021)

converged vector of g function. Few important concepts to define fixed point iterations

involves Contrastive MappingBolukbasi et al. (2017)MacKay et al. (2018).

Theorem 1 (Contraction mappings for fixed point operation). Consider a function f : X→

X where X is a complete metric space. Let g(x, θ, l) be the output when using layer l in our

neural network with input x and parameters θ. Assume that f is a contraction mapping on

X, i.e., there exists a β ∈ [0, 1) such that: d(f(x), f(y)) ≤ β · d(x, y), ∀x, y ∈ X

where d(·, ·) is a distance metric on X.
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Under these conditions, our adaptive layer selection mechanism Jeon et al. (2020)Ra-

jeswaran et al. (2019) that minimizes ||f(x, θ) − g(x, θ, l)||22 will converge to a unique fixed

point x∗ in X, such that:

x∗ = f(x∗)

It is especially valuable since we relate β to the chosen layer, which makes the contraction

faster based on layer attributes.

We define the computational cost of our model as the sum of time take for each layer

computation after applying fixed point iteration on it as C(n, t) =
∑n

i=1 ti, where n: Num-

ber of layers in the neural network, ti: Time taken for computation at the ith layer and

C(n, t): Computational cost of our model, defined as the sum of time taken for each layer

computation. Our model introduces a layer-selection mechanism to achieve the aforemen-

tioned objective where, for each input, the model employs an agent that uses the current

activation’s and the inherent characteristics of the data to selectively choose a subset of

layers S from the available layers n. this can be represented as: C(S, t) ≤ C(n, t) < C0.

The computational graph then proceeds only through the layers in S, thereby avoiding the

computational cost of the unselected layers. The agent responsible for layer selection is

trained to make these decisions by optimizing a trade-off between computational cost and

task performance. This enables the model to make choices that are not just computationally

efficient but also effective in terms of the task at hand.

We empirically validate the computational efficiency of our model by measuring C(n, t)

across multiple data points. Our results indicate that, on average, C(n, t) is consistently less
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than C0, thereby confirming the computational advantages of our approach.

3.1.2 Benefits of Avoiding Solvers and Adherence to Contraction Mapping

One of the unique features of our approach inDynaLay is the deliberate avoidance of explicit

fixed-point solvers , such as those based on the Banach fixed-point theorem Agarwal et al.

(2018), commonly employed in methods like Deep Equilibrium Models (DEQs) Bai et al.

(2019). Iterative solvers can introduce numerical instabilities, particularly for ill-conditioned

problems. Our architecture, by adhering to contraction mapping principles as mentioned in

Theorum 1, guarantees stability. Formally, if T : X → X is a contraction mapping, then

for every x, y ∈ X, d(T (x), T (y)) ≤ k × d(x, y) where 0 < k < 1, ensuring stability. The

absence of a solver simplifies both the architecture and the training algorithm, making the

model easier to implement and tune. Our method is rooted in the principles of contraction

mapping, providing a robust theoretical foundation that guarantees both the existence and

uniqueness of a fixed-point solution without necessitating an explicit solver as mentioned in

Equation 3.1:

If T : X → X is a contraction, then ∃!x∗ ∈ X : T (x∗) = x∗ (3.1)

Our layer selection mechanism is designed to synergize with Theorem 1 adhering to its

principles to ensure the model’s stability and convergence. This obviates the need for a

solver while still offering robust theoretical guarantees as explained in next section.
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3.1.3 Layer Selection Mechanism

In traditional architectures and equilibrium networksBai et al. (2019), the network essentially

learns a single fixed point. It may not always adapt well to the diverse computational needs

of different inputs. Bai et al. (2019) assumes that all layers have the same computational

requirements, which may not always be the case.

On the other hand, Banino et al. (2021) introduces a more dynamic approach to network

architecture by adding or pruning neurons or layers based on the problem at hand. While

this approach offers a more flexible model, it comes with its own set of challenges. The

most significant challenge is the risk of making the architecture unstable using ACT Graves

(2017), which in turn can lead to decreased performance in actual predictions. Additionally,

the process of modifying the architecture may be computationally expensive.

Our approach aims to combine the best of both worlds. We introduce an agent-based

mechanism for layer selection that dynamically decides which layers of the network to use

for each input sample as seen in Figure 3.1. This allows the network to adapt its complexity

based on the specific computational needs of each input, without the need to alter the

underlying architecture. As a result, our method maintains the stability of the architecture

while offering a tailored approach to problem-solving.

3.2 Model Architecture

In this work, we present an innovative neural network architecture, termed DynaLay (Dy-

namic Layer Selection), illustrated in Figure 3.1. Unlike traditional architectures, DynaLay
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incorporates an element of introspection by utilizing an adaptive layer-selection mechanism.

This mechanism allows the model to selectively activate different layers for different inputs,

thereby optimizing both computational efficiency and performance.

DynaLay consists of multiple layers, each capable of performing complex transformations

on the input data. These layers are potential candidates for activation as the input data

propagates through the network. However, not all layers are activated; instead, an agent A

dynamically chooses which layers are most suitable for each input sample x(i).

The role of the agent A is pivotal in DynaLay. The agent receives input activations and

employs a decision-making algorithm to determine the most pertinent layer or set of layers l

to be activated for each sample x(i) in a batch. This adaptive layer selection is not random

but based on learned policies that evaluate the characteristics of each input sample to make

an informed decision.

The dynamism of layer selection culminates in the formation of a composite function

g : (x(i), a) → y(i), where g represents the neural network and y(i) is the output. Here, a

refers to the actions taken by agent A, essentially the selection of layers l. The function g

is unique for each input x(i) because it incorporates dynamically chosen layers, effectively

making the network adaptive at the granularity of individual samples.

The agent A is trained to minimize an objective function that balances computational

efficiency and task performance. Specifically, the objective function comprises two terms:

one for the error in the task (e.g., classification error) and another for computational cost,

enabling the model to make choices that are both accurate and efficient.
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The agent A is trained concurrently with the neural network using reinforcement learning.

Every time the agent makes a decision, it receives a reward or penalty based on the objective

function, updating its policy to make better future decisions.

By integrating this adaptive layer-selection mechanism, DynaLay offers a level of flexibil-

ity and efficiency that is unprecedented in traditional neural network architectures. It allows

the model to adapt in real-time to the unique characteristics of each input, thereby offering

a more nuanced and effective approach to complex machine learning tasks.

3.3 Architectural Overview

The DynaLay architecture is designed as a modular neural network system comprised of

multiple interconnected layers. These layers are not just limited to traditional ones like

convolutional or fully connected layers but also include advanced Fixed-Point Iterative (FPI)

layers. The architecture is augmented with an intelligent agent A responsible for dynamically

selecting the most appropriate layers for each input sample.

3.3.1 Fixed-Point Iterative (FPI) Layers

These layers are specialized for approximating complex functions and are particularly useful

for tasks that require a strong incorporation of prior knowledge. They are computationally

efficient and can improve the network’s convergence behavior.

DynaLay is designed to be computationally efficient. By activating only a subset of layers

for each input, it significantly reduces the computational burden. The agent A is trained

to make this selection not just based on performance but also on the computational cost,
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thereby achieving an optimal trade-off.

Both the main neural network and the agent A are trained end-to-end using backpropa-

gation and reinforcement learning, respectively. Gradients from the task loss and the agent’s

reward function are back-propagated through the entire network to update the model pa-

rameters and the agent’s policy.

The effectiveness of DynaLay is evaluated based on task-specific performance metrics

such as accuracy, precision, and recall. Additionally, computational efficiency metrics like

time complexity and computational cost are also assessed to validate the model’s efficiency.

DynaLay is designed to be both interoperable and scalable. It can easily integrate with

existing neural network architectures and can scale up to handle more complex tasks and

larger datasets without a significant increase in computational cost.

Through this comprehensive architecture, DynaLay successfully introduces a layer of

introspection into neural networks, offering an unprecedented balance between computational

efficiency and performance across a wide array of machine learning tasks.

In these architectures, we aim to achieve the same decision-based modeling in the original

network. Our decision model should perform the following computation on the original

network: Let’s consider the network diagram above with a 3-layer model.

1. If the token is considered ”easy,” then it should proceed linearly from the input to the

output through the original network without any modification. (this is our base case)

2. If the decision model determines which layer requires a fixed point:

(a) Convergent loops are iterated through the first layer only.
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(b) Convergent loops are iterated through the first two layers, and the result of this

is passed to the third layer and then to the output.

(c) All three layers are iterated as one 3-layer model.

While many established architectures MacKay et al. (2018) Vaswani et al. (2023) Hochre-

iter (1995) He et al. (2015) utilize mechanisms such as skip connections or attention to opti-

mize performance, these techniques are often task-dependent and do not adapt to individual

samples within a dataset. DynaLay diverges from this approach. Our core innovation

lies in the model’s introspective ability to recompute the results on more diffi-

cult inputs during inference and adaptively select layers for each sample based

on its unique activation profile, optimizing both accuracy and computational ef-

ficiency. Unlike previous work such as Adaptive Computation Time (ACT) Graves (2017),

which focuses on adjusting the number of recurrent steps for each sample in a sequence

model, DynaLay offers finer granularity in layer-wise adaptivity and considers the nuanced

contributions of different layers to the final model output for each individual sample.

In contrast, DynaLay not only allows for dynamic layer selection in both sequence and

feed-forward architectures like CNNs Hochreiter & Schmidhuber (1997), but also provides a

more nuanced approach by considering the activation profiles of each layer for every sample.

Let L = {l1, l2, ..., ln} be the set of layers in the Main Network, and Ai be the activation

output from layer li. The Agent Network is designed to take {A1, A2, ..., An} as input

and output a probability distribution P = [p1, p2, ..., pn] defined as pi = AgentNet(Ai),

where
∑n

i=1 pi = 1. A layer l is adaptively chosen based on this probability distribution P ,
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formalized as l = Sample(P ).

Our reward function R is defined as

R = α×Classification Accuracy−β×Computational Cost×Consecutive Layer Count (3.2)

, with α and β as hyperparameters. This guides the Agent Network’s decision-making process

to optimize both classification accuracy and computational efficiency.

The loss function L for the entire architecture incorporates this reward function as Equa-

tion 3.3:

L = Cross-Entropy Loss− γ ×R (3.3)

where γ is a hyperparameter.

This architecture allows DynaLay to not only provide dynamic layer selection in both

sequence and feed-forward architectures, but also offers a more nuanced approach by consid-

ering the activation profiles of each layer for every sample. This results in a more effective

and computationally efficient model that adapts to the complexities of individual samples

across a wide range of tasks.

3.3.2 Backward Pass

One of the key challenges in training DynaLay is the efficient computation of gradients

during the backward pass. Given our architecture’s dynamic nature and the presence of FPI

layers, traditional backpropagation methods prove to be suboptimal.
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3.3.3 Gradient Accumulation for Dynamic Layer Selection

For each sample, we have a unique set of layers Ls = {l1, l2, ..., lk} chosen by the Agent

Network. During backpropagation, we accumulate the gradients for each chosen layer l

using a modified gradient accumulation technique, described in [Gradient Accumulation for

Dynamic Neural Networks](https://arxiv.org/abs/2210.08572) as specified in Equation 3.4

https://arxiv.org/abs/2106.04350

∂L

∂Wl

=
∑
s∈S

∂Ls

∂Wl

for each l ∈ Ls (3.4)

where S is the set of all samples, Ls is the loss for sample s, and Wl are the parameters

of layer l.

3.3.4 Optimized Backpropagation for FPI Layers

For the FPI layers Jeon et al. (2020), we adapt the methodology proposed in Bolte et al.

(2022a). This method allows us to compute the gradients implicitly, thereby reducing the

computational complexity. Let (F (x) = 0 represent the fixed-point equation for the FPI

layer as shown in Equation 3.5. Then the gradient ∂F
∂x

can be computed implicitly as:(
I − ∂F

∂x

)−1
∂F

∂W
= − ∂F

∂W
(3.5)

where I is the identity matrix and W are the parameters of the FPI layer. Typically, we

would calculate ∂F
∂x

during backpropagationRumelhart et al. (1986). However, this approach

can be highly inefficient and unstable. Instead, we use orthogonal over-parameterization
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Arya et al. (2023)Metz et al. (2022) to find a more effective representation as shown in

Equation 3.6:

∂L

∂W
= O

(
∂L

∂W̃

)
(3.6)

where O is the orthogonal matrix and W̃ is the over-parameterized representation of W Metz

et al. (2022)

The backpropagation algorithm in DynaLay is a cornerstone for optimizing both the main

model and the AgentNet. To elucidate the methodological complexity, we first describe the

gradient flow within the architecture, followed by the advanced techniques incorporated Liao

et al. (2019),

3.3.5 Gradient Flow in DynaLay

In DynaLay, the gradient flow is bifurcated between the main model and the AgentNet.

Given a loss function L, the gradient ∇mainL for the main model is computed as follows:

∇mainL =
∂L

∂Wmain

where Wmain are the weights of the main model. (3.7)

For the AgentNet, the gradient ∇agentL is isolated from affecting the main model’s pre-

diction and is computed independently as:

∇agentL =
∂L

∂Wagent

where Wagent are the weights of the AgentNet. (3.8)
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Following the work by Arya et al. Arya et al. (2023), we employ automatic differentiation

that caters to the discrete randomness introduced by layer selection. The gradients are

computed as:

∇discreteL = E
[

∂L

∂Wdiscrete

]
(3.9)

We draw from Bolte et al. Bolte et al. (2022b) to handle nonsmooth iterative algorithms,

using subdifferentials ∂ to calculate the gradients as:

∇nonsmoothL = ∂L(Wnonsmooth) (3.10)

To improve the scalability, we adapt the asynchronous methods from Barham et al.

Barham et al. (2022). The gradients for each layer l in an asynchronous setting are calculated

as:

∇l,asyncL = ∇lL+∆async (3.11)

where ∆async is the asynchronous correction term. Echoing the sentiments of Metz et al.

Metz et al. (2022), we incorporate auxiliary metrics M alongside gradients, optimized as:

O = ∇L+ αM (3.12)

where α is a tunable parameter.
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3.3.6 Agent Network (AgentNet )

The Agent Network serves as the linchpin in the DynaLay architecture, introducing an in-

trospective dimension uncommon in traditional neural network designs. Unlike conventional

architectures where each layer processes every sample in a uniform manner, our Agent Net-

work exercises discernment in selecting the most relevant layers for individual samples. This

adaptability optimizes both computational efficiency and model accuracy. Let x represent

the input to the architecture, and al denote the activation map for the lth layer. These

activation maps Chen & Sun (2023) are scrutinized by the Agent Network to generate a

probability distribution P over the layers. Mathematically, this distribution is expressed as:

P = Adaptive Softmax(F (a1, a2, . . . , aL))

Here, the function F integrates the activation maps a1, a2, . . . , aL from different layers,

and the Adaptive Softmax function Grave et al. (2017) transforms these into probabilities,

enabling the agent to make informed, adaptive decisions on layer selection for each specific

sample.” Here, F is the function instantiated by the Agent Network, and L is the total

number of layers in the architecture. The Pl component of P signifies the probability that

the lth layer should be activated for the specific input sample x.

To guide the training of the Agent Network, we employ a reward function R, defined as:

R = α× Acc− β × C × Consecutive Layer Count (3.13)

where α and β are hyperparameters that manage the balance between classification accuracy
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(Acc) and computational cost (C) and Layer Count is which layer is chosen. During the

training process, back propagation Rumelhart et al. (1986) is employed to not only minimize

the conventional loss L but also to maximize the reward R. The total loss function is thus

formulated as:

Total Loss = L− γ ×R

where, γ is a hyperparameter that controls the significance of the reward term in the overall

loss function.

Advanced Backward Propagation in DynaLay [1] Backwardctx, grad output z⋆, layer ←

ctx.saved tensors max iter← ctx.max iter tol← 1×10−5 dz ← Clone and detach grad output

I ← Identity matrix of dz Initialize identity matrix Initialize ∇agent Gradient for the agent

network k = 1, . . . ,max iter fz = layer(z⋆) J = ∂fz
∂z⋆

Jacobian matrix ∆J = I − J Implicit

differentiation step dznew = dz × ∆J Compute updated gradient δ = ∥dznew−dz∥
∥dznew∥ δ < tol

Break dz = dznew ∇agent = Advanced Techniques(∇agent, J,∆J) Update agent’s gradient

Update agent network using ∇agent Use optimizer to update agent dz,None,None

3.4 Forward Propagation Algorithm

In addition to the backpropagation algorithm, understanding the forward passis essential for

grasping the full scope of DynaLay. The forward process Wang (2013) Greener (2023) Wang

et al. (2019) involves solving a fixed-point equationHabiba & Pearlmutter (2021) to find a

suitable latent state z that serves as the output of the AgentNet.
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Forward Propagation in DynaLay [1] Forwardctx, input tensor, layer,max iter z ← Clone and detach input tensor

z ← Require gradient for z tol ← 1 × 10−2 k = 1, . . . ,max iter f0 ← Apply layer to z

size of f0 ̸= size of z f0 ← Interpolate to match dimensions with z ∥f0−z∥
∥f0∥ < tol Break

z ← f0 z

The algorithm performs a fixed-point iteration to find the state z that satisfies the equa-

tion z = flayer(z), where flayer is the layer’s transformation function. The iteration is per-

formed up to a maximum of max iter iterations or until the following convergence criterion

is met:

∥f0 − z∥
∥f0∥

< tol (3.14)

where tol is a predefined tolerance level set to 1× 10−2.

As the iterations progress, it is essential to ensure that the dimensions of f0 and z

are consistent Almeida (1990). By employing this forward algorithm, DynaLay achieves

a balance between computational efficiency and convergence, ensuring robust and reliable

operation across diverse tasks.
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CHAPTER 4

RESULTS

To validate the efficacy of our proposed architecture, DynaLay, we conducted experiments

on multiple datasets, including image datasets: CIFAR-10Giuste & Vizcarra (2020) and

CIFAR-100Krizhevsky (2009)and text dataset: WikiText-2 Merity et al. (2016) and IMDB

Maas et al. (2011). The primary goals of these experiments are twofold: 1) to evaluate the

classification accuracy of our model in comparison with existing state-of-the-art architectures,

and 2) to assess the computational efficiency improvements achieved through our adaptive

layer selection mechanism. We implemented all our models in PyTorch Paszke et al. (2019)

and conducted training on NVIDIA A40 GPUs with 40GB memory. For optimization, we

chose the Adam optimizer Kingma & Ba (2017), setting the learning rate at 1 × 10−3 and

the batch size at 64. Hyperparameters α, β, and γ were optimized to 0.5, 0.3, and 0.2,

respectively, through 9-fold cross-validation. All models were trained over 100 epochs. The

tolerance for fixed-point iterations in the DynaLay architecture was set to 1× 10−5.

4.0.1 Comparative Analysis

In the context of adaptivity, DynaLay incorporates an AgentNet mechanism that enables

dynamic layer selection, setting it apart from the more rigid 3-layer model and the solver-

dependent adaptivity in Bai et al. (2019) models. The AgentNet mechanism not only en-

hances adaptability but also contributes significantly to computational efficiency.

Table 4.1 offers a comprehensive comparison between DynaLay, a standard 3-layer model,

and DEQBai et al. (2019) models equipped with solvers Agarwal et al. (2018). A salient
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feature of DynaLay is its remarkable efficiency in backward pass computations. Specifically,

it outclasses both the standard 3-layer and DEQBai et al. (2019) models in backward pass

time for CIFAR10 and CIFAR100, clocking in at 87 and 90 minutes, respectively. This

efficiency is pivotal for scaling and real-time applications.

Furthermore, DynaLay achieves competitive test accuracies of 92% and 85% on CIFAR10

and CIFAR100, respectively. This implies that the computational advantages of DynaLay do

not compromise its performance, reinforcing its utility as a robust and efficient architecture.

Table 4.1 Comparison of Computational Steps for Different Models
2*Aspect DynaLay 3 layer CNN Model DEQ with Solvers

CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10
Backward Pass Time (mins) 87 90 120 140 600

Adaptivity AgentNet None Solver-based
Test Accuracy (%) 92 85 88 82 91

4.0.2 Dynamic Layer Selection in DynaLay

During our experiments on checking the frequency at which layers are selected, remarkably,

the ”No Layer” or Straightforward option emerges as the most frequently selected, indicating

its ability to capture essential features across a broad spectrum of tasks. Conversely, Loop

functionalities on Layer1 and Layer2 are invoked 25% and 20% of the time, respectively.

The diminishing frequency of Layer3 selections implies that the model tends to minimize

reliance on this layer’s fixed-point operations as it stabilizes. Figure 4.1 elucidates the fre-

quency distribution of each layer’s selection during the evaluation process. This dynamic

layer selection mechanism substantially augments DynaLay’s computational efficiency. By

intelligently and adaptivelyBolte et al. (2022b)Jeon et al. (2020) deciding the appropriate
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Figure 4.1 Frequency distribution of layer choices during CIFAR10 training. The bar chart
quantifies the selection frequency of each layer across numerous training epochs, offering
insights into their relative importance for CIFAR10 performance.

layer for FPIRajeswaran et al. (2019) execution, DynaLay eliminates redundant compu-

tations, especially when less complex layers are sufficient for the task at hand Bolukbasi

et al. (2017). This adaptability stands in sharp contrast to traditional architectures like

CNNs and LSTMs Hochreiter & Schmidhuber (1997), which are constrained by their rigid,

predetermined structures.

4.0.3 Loss Convergence on CIFAR-10 and CIFAR-100

The convergence behavior of our model’s training and testing loss is a critical aspect of

its evaluation. Figure ?? provides a detailed insight into this aspect. The similarity in

convergence patterns between CIFAR-10 and CIFAR-100 also suggests that our model is

scalable and adaptable to different tasks and data distributions, aligning well with the core

objectives of this research project. We also showed experiments on LSTM stacked layer in

Appendix.
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4.0.4 Influence of Pre-training on DynaLay’s Efficacy

The versatility of our DynaLay architecture is further underscored by its robust performance

irrespective of whether it undergoes pre-training Han et al. (2021). To elucidate this, Fig-

ure 4.2 showcases a side-by-side comparison of key performance indicators—test accuracy

and test loss—across 100 epochs for both pre-trained and non-pre-trained configurations.

Figure 4.2 Temporal evolution of test accuracies and losses for pre-trained and non pre-
trained configurations. Subplot (a) captures the test accuracies, while subplot (b) focuses
on the test losses. Both metrics are plotted as functions of the epoch count.

The observed metrics reveal a discernible advantage when employing pre-training. Specif-

ically, the pre-trained model consistently surpasses its non-pre-trained counterpart in both

accuracy and loss metrics. This superior performance is attributed to a ”warm-up” phase

consisting of 20 epochs of pre-training for the main model. This phase aids in initializing the

activations to more optimal states, which likely catalyzes faster and more stable convergence

during subsequent training.
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4.0.5 Role of the Agent in DynaLay’s Performance and Adaptability

Our Agent network also undergoes a pre-training phase lasting the same number of epochs.

We preserve the weights Lillicrap et al. (2014) from these pre-training phases and use them as

initialization points for the comparative experiment. The findings, delineated in Figure 4.2,

validate the efficacy of this approach by showcasing noticeably improved performance metrics

for the pre-trained model.

Figure 4.3 (a) Temporal Dynamics of the Reward Function Across Training Epochs for
Distinct Random Seeds. The graph offers an incisive look into the reward function’s evolution
over the training epochs, integrating both accuracy and computational efficiency into its
formulation. Each trace corresponds to a unique random seed, thereby providing a robust
measure of the model’s resilience to varying initial conditions. (b) Interplay Between Layer
Selection Frequency, Penalty Term λ, and Validation Accuracy. This tri-axis plot delivers
a granular portrayal of how layer selection frequency and validation accuracy respond to
changes in the penalty term λ.

Figure 4.3: (a) delineates the trajectory of the average reward function throughout the

training epochs. A key observation here is the emergent stabilization of the reward function

as the training epoch count ascends. This equilibrium is indicative of the agent’s escalat-

ing competence in judiciously selecting layers that not only enhance performance but also
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optimize computational expenditure.

Further nuance in the agent’s decision-making process is captured in Figure 4.3(b). Each

curve on the plot signifies the frequency with which the agent elects to utilize a specific layer

across the spectrum of available λ penalty terms. Accompanying these curves is a dashed

line that represents the validation accuracy achieved under these conditions. Higher λ values

act as deterrents against the selection of computationally burdensome layers, compelling the

agent towards more resource-efficient alternatives.

This in-depth analysis fortifies the understanding of the agent’s role within DynaLay,

particularly its aptitude for adaptively managing computational resources without compro-

mising model performance. The agent’s proficiency in this balancing act is pivotal for the

scalability and applicability of DynaLay across a wide range of tasks and computational

settings.

4.0.6 Impact of Fixed-Point Iteration on Different Model Configurations

4.0.6.1 Objective

The primary objective of this experiment is to rigorously assess the efficacy of incorporating

Fixed-Point Iteration (FPI) into various layers of our DynaLay architecture. We focus on

four distinct configurations to perform this assessment:

1. Model 0: A straightforward architecture comprised of Layer 1 → Layer 2 → Layer 3,

devoid of FPI.

2. Model 1: Utilizes FPI exclusively in Layer 1.
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3. Model 2: Employs FPI in both Layer 1 and Layer 2.

4. Model 3: Applies FPI across all layers (Layer 1 → Layer 2 → Layer 3).

Our hypothesis posits that the incorporation of FPI into an increasing number of layers

will yield a commensurate improvement in key performance metrics, notably test loss and

accuracy. Specifically, we project that Model 3 will exhibit superior performance relative

to the other configurations, owing to the enhanced complexity and optimization capabilities

conferred by FPI.

For evaluation, a test set of 100 samples is employed as seen in Figure 4.4. Each of the

four model configurations is subjected to this test set, with both test loss and accuracy being

meticulously recorded. It is imperative to note that all models are trained under identical

hyperparameter settings to ensure a level playing field.

4.0.7 Text-Based Experiments with LSTMs

To further validate the effectiveness and adaptability of DynaLay, we extend our experiments

to text-based tasks employing Long Short-Term Memory (LSTM) networks Hochreiter &

Schmidhuber (1997). We experiment with two datasets: WikiText-2 for language modeling

and IMDB for sentiment analysis.

4.0.7.1 Model Configuration

Our LSTM-based DynaLay model consists of three LSTM layers. The LSTM layers are

parameterized as follows:
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Figure 4.4 Boxplots illustrating the distribution of test loss and accuracy across four distinct
model configurations. The configurations vary in the complexity and number of layers uti-
lizing Fixed-Point Iteration (FPI).

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(4.1)

In this equation, ft, it, ot are the forget, input, and output gates, respectively. ht is the

hidden state, Ct is the cell state, and xt is the input at time t.
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Figure 4.5 Boxplots representing the performance of LSTM-based DynaLay configurations
on WikiText-2 and IMDB datasets.

4.0.7.2 Experimental Results

We employ Fixed-Point Iteration (FPI) on individual LSTM layers just as in our CNN

experiments. The results are summarized in Figure 4.5, which shows that the LSTM model

with FPI on the third layer achieves the best performance in terms of both accuracy and

computational cost.

Through these experiments, we demonstrate that DynaLay’s adaptive layer selection

mechanism is equally effective for text-based tasks, thereby confirming its versatility across

different data modalities and tasks.
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CHAPTER 5

DISCUSSIONS

We introduced DynaLay, an innovative architecture designed to bring a level of introspection

to neural networks. The key feature is an intelligent agent capable of adaptively selecting the

appropriate layers for each input sample. Our empirical evidence demonstrated a meaning-

ful balance between computational efficiency and performance, validating the architecture’s

introspective capabilities.

The introspective nature of DynaLay allows the network to adapt its computational

graph in real-time based on the data it receives. This self-awareness enables the model to

make intelligent decisions about how to process each input, thereby optimizing computa-

tional resources and performance. The introspective ability also generalizes well, offering

potential applications in multiple domains where real-time adaptability is crucial, such as

autonomous systems and real-time analytics. The architecture stands out when compared to

other models, particularly in its ability to introspectively adapt to the complexity and nature

of each input, a feature largely absent in current architectures. While introspection brings

many benefits, it also adds a layer of complexity to both the architecture and the training

process. Training an agent to make introspective decisions requires careful tuning and ad-

ditional computational resources. Future work could focus on improving the introspective

agent’s decision-making algorithms, potentially incorporating more advanced reinforcement

learning techniques or even elements of meta-learning. An interesting avenue for research

would be to develop metrics for quantifying the effectiveness of the model’s introspective
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abilities, offering a standard for evaluating similar architectures in the future.



38

CHAPTER 6

CONCLUSION

In this thesis, we have presented DynaLay, a groundbreaking architecture that introduces the

concept of introspection into neural networks. Through the integration of a reinforcement

learning agent, our architecture is capable of dynamically selecting appropriate layers for each

input sample. This level of adaptability allows DynaLay to achieve an impressive balance

between computational efficiency and model performance.

6.0.1 Contributions

Our key contributions include:

1. A novel architecture that seamlessly integrates Fixed-Point Iterative (FPI) layers and

a reinforcement learning agent for dynamic layer selection.

2. A unique reward function designed to balance classification accuracy, computational

time, and decision-making diversity.

3. Empirical validation showing that DynaLay achieves comparable or superior accuracy

to traditional models while significantly reducing computational overhead.

6.0.2 Implications

The implications of this work extend beyond just improving the efficiency of neural networks.

The introspective nature of DynaLay opens the door for a new generation of intelligent sys-

tems capable of real-time adaptability and self-optimization. This is particularly impactful
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for applications in autonomous systems, real-time analytics, and edge computing where com-

putational resources are often limited.

6.0.3 Future Directions

While our results are promising, there are numerous avenues for future research:

• Refinement of the introspective agent’s decision-making algorithm, possibly incorpo-

rating more advanced reinforcement learning techniques.

• Exploration of different kinds of layers and operations that could be dynamically se-

lected, such as attention mechanisms or different types of activation functions.

• Development of metrics for quantifying the effectiveness of introspection in neural

networks.

• Extending the architecture to attention mechanism and more advanced and novel RL

methods.

• exploring real life scenarios with this model for foundational purposes to make it an

model agnostic architecture

DynaLay represents a significant advance in the ongoing quest for more efficient and in-

telligent neural networks. By leveraging introspection, the architecture sets a new standard

for what is achievable in terms of both performance and computational efficiency. As com-

putational resources continue to be a bottleneck in deploying large-scale machine learning
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models, the importance of such introspective and adaptive approaches will only continue to

grow.
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