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ABSTRACT 

Cancer, a complex group of diseases characterized by abnormal cell growth, presents a 

significant global health challenge. Accurate classification of cancer types is vital for effective 

treatment and improved patient outcomes. This master’s thesis addresses the crucial issue 

associated with accurate cancer classification. It analyzes transcriptomic data of RNA 

sequencing, from six cancer subtypes (breast, colorectal, glioblastoma, hepatobiliary, lung, 

pancreatic) and a healthy control group. This research utilizes several machine learning 

algorithms to construct accurate cancer classification models using gene expression profiles and 

gene count data. The study incorporates advanced techniques such as feature selection, data 

preprocessing, and model optimization. The primary objective is to enhance our understanding of 

transcriptomic signatures distinguishing one cancer type from another, with potential 

applications in early diagnosis, treatment selection, and biomarker discovery. Through the power 

of machine learning, this research contributes to advancing effective cancer classification and 

management strategies in this ongoing battle. 
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1 INTRODUCTION  

Cancer, characterized by the uncontrolled growth of abnormal cells, remains a formidable global 

health challenge. Based on statistics from the WHO, every year, more than 8.2 million people die 

from cancer, accounting for approximately 13 percent of deaths worldwide, indicating that 

cancer is one of the most threatening diseases in the world [1]. 

 

Recent years have witnessed a revolutionary convergence of machine learning algorithms and 

gene expression data, accompanying in profound insights and innovations in the field of biology 

and healthcare. These studies have marked a significant paradigm shift in how we understand 

and utilize gene expression profiles, shaping the landscape of recent research in genomics. 

The most important function of transcriptome profiling is to determine the differentially 

expressed genes occurring in a body or detect variations in genes at different levels [2]. 

However, analyses of RNA gene expression data are quite complex because of their high 

dimensions, complexity, and the existence of duplications in feature values [3]. Therefore, a need 

for automatic feature extractions exists, which may be addressed through machine learning 

algorithms [4]. Machine learning is a branch of artificial intelligence which is used to identify 

associations among data by finding underlying patterns using experience and learning [6]. 

Machine learning models have helped in differentiating cancer subtypes based on gene 

expression patterns, facilitating more accurate diagnosis and personalized treatment strategies. 

Furthermore, they have accelerated the discovery of noble biomarkers associated with any 

diseases, including cancer, enhancing early disease detection. Machine learning has also helped 

with the process of drug discovery by predicting the effectiveness of drug compounds based on 

their influence on gene expression patterns. 
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This master’s thesis undertakes the critical issue of accurate cancer classification, building on the 

foundation of recent studies involving machine learning algorithms and gene expression data. It 

centers its analysis on transcriptomic data obtained through RNA sequencing, from six cancer 

subtypes: breast, colorectal, glioblastoma, hepatobiliary, lung, and pancreatic cancer, and a 

health control group. By using gene expression profiles and gene count data, the research utilizes 

several arrays of machine learning algorithms to construct highly accurate cancer classification 

models. The study's methodology uses advanced techniques, including feature selection, data 

preprocessing, and model optimization which helps with increasing the accuracy of the 

classification models. The implications of this work extend to early cancer diagnosis, 

personalized treatment selection and the discovery of potential biomarkers, thereby contributing 

to the advancement of effective cancer classification and management strategies. Through the 

power of machine learning, this study embodies hope in the ongoing battle against cancer that 

continues to be a major impact on global health.  

1.1 RNA Sequencing: An Introduction 

RNA Sequencing (RNA-Seq) is a new and popular technique that is used to detect new 

isoforms and transcripts by providing more normalized and less noisy data for prediction and 

classification purposes [4,5]. It has changed our understanding of gene expression, and helped in 

elucidating the complexities of gene regulation, uncovering novel insights into the molecular 

mechanisms of diseases, and allowing the discovery of potential therapeutic targets. Compared to 

previous Sanger sequencing and microarray-based methods, RNA-Seq provides far higher 

coverage and greater resolution of the dynamic nature of the transcriptome [5]. The principle of 

RNA sequencing involves the conversion of RNA molecules into a library of cDNA fragments, 

which are then sequenced using high throughput sequencing platforms. By mapping the resulting 
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sequence reads to a reference genome or transcriptome, researchers can quantify gene expression 

levels, identify alternative splicing events, detect novel transcripts, and conduct post 

transcriptional modifications. In addition to polyadenylated messenger RNA (mRNA) 

transcripts, RNA-Seq can be applied to investigate different populations of RNA, including total 

RNA, pre-MRNA, and noncoding RNA, such as microRNA and long ncRNA [5]. Table 1.1 

shows a comprehensive overview highlighting the strengths and considerations associated with 

RNA Sequencing. 

Table 1.1 Comparison of Advantages and Challenges in RNA Sequencing 
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1.1.1  Importance and Role in Genomics 

Genomic data, such as RNA-Seq have become widely available due to the popularity of high 

throughput sequencing technology [6]. As an important part of next generation sequencing, RNA 

sequencing has made great contributions in various fields, especially cancer research, including 

studies on differential gene expression analysis and cancer biomarkers, cancer heterogeneity and 

evolution, cancer drug resistance, the cancer microenvironment and immunotherapy, 

neoantigens, etc [7]. In genomics research, RNA-Seq helps in deciphering how genes are 

activated under multiple conditions in different cell types. It also helps in showing the roles of 

non-coding RNA molecules, revealing disease expression patterns, and capturing the dynamics 

of gene expression over time. By providing a deeper comprehensive view of the transcriptome, 

RNA-Seq allow researchers to explore the functional elements of the genome, identify novel 

transcripts, and explore the impact of genetic variations on gene expression. As RNA-Seq 

techniques continues to advance and providing new insights and innovations it also helps 

genomics grow by facilitating the identification of disease biomarkers, therapeutic targets, and a 

deeper understanding of the molecular mechanisms supporting biological processes. 

1.1.2 Transcriptomics and Understanding RNA 

Transcriptomics is a branch of molecular biology and genomics that focuses on the study of 

RNA transcripts in a cell. It involves the analysis of the complete set of RNA molecules, 

produced in a specific cell or tissue. Understanding RNA, a fundamental molecule, is the focus 

of transcriptomics research. RNA molecules are essential for interpreting the functional elements 

of the genome and understanding development and disease [8]. The transcriptome has a high 

degree of complexity and encompasses multiple types of coding and noncoding RNA species. 

Messenger RNA (mRNA) molecules were the most frequently studied RNA species because 
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they encoded proteins via the genetic code. In addition to protein coding mRNA, there is a 

diverse group of noncoding RNA (ncRNA) molecules that are functional [8]. Previously most 

known ncRNAs fulfilled basic cellular functions such as ribosomal RNAs and transfer RNAs 

involved in mRNA translation, small nuclear RNA (snRNAs) involved in splicing and small 

nucleolar RNAs (snoRNAs) involved in the modification of rRNAs [9]. The first transcriptomics 

studies were performed using hybridization-based microarray technologies, which provide a high 

throughput option at relatively low cost [10]. Transcriptomics helps identify alternative splicing 

events, post transcriptional modifications and non-coding RNAs (microRNAs and long non-

coding RNAs) helps in gene regulation.  

By researchers studying the transcriptome, they can gain a deeper understanding of the 

molecular mechanisms allowing several biological processes, development stages, disease states, 

and responses to environmental changes. RNA sequencing (RNA-Seq), microarray analysis, and 

quantitative polymerase chain reaction(qPCR) are part of transcriptomics techniques and are 

used to explore gene expression and transcriptomic profiles. Understanding the several functions 

and roles of RNA is important in deciphering complex biological processes, revealing the 

mechanisms of diseases and contributing to the advancement of genetic research. 

1.2 RNA Sequencing Technologies  

RNA sequencing technologies have allowed scientists to gain a deeper knowledge of 

gene expression and transcriptomics with precedented accuracy. Next-generation platforms such 

as llumina and Ion Torrent have been helpful in this process. These platforms generate vast 

amounts of sequence data, providing a comprehensive view of the transcriptome. In principle, 

any high-throughput sequencing technology can be used for RNA-Seq [10]. It has also been 

helpful in revealing the role of non-coding RNA molecules such as microRNAs and long non-
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coding RNAs, in gene regulation. Single-cell RNA sequencing, an extension of this technology 

has an added a new dimension by allowing the study of individual cells, revealing cellular 

heterogeneity, and aiding in the understanding of complex biological processes. Table 1.2 gives a 

better overview of each RNA Sequencing Technologies and a comparison of each of them with 

key information. 

Table 1.2 Comparison of RNA Sequencing Technologies 

 

 

 

1.2.1 Next-Generation Sequencing (NGS) Platforms 

The development of high-throughput next-generation sequencing (NGS) has revolutionized 

transcriptomics by enabling RNA analysis through the sequencing of complementary DNA 
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(cDNA) [11]. This technological development eliminated many challenges posed by 

hybridization-based microarrays and Sanger sequencing-based approaches that were previously 

used for measuring gene expression. It has also transformed our ability to decode and understand 

the genetic information in DNA and RNA. A typical RNA-Seq experiment consists of isolating, 

RNA, converting it to complementary DNA (cDNA), preparing the sequencing library, and 

sequencing it on NGS platform. [11]. NGS platforms such as Illumina, Ion Torrent, and Oxford 

Nanopore, have several methodologies but share the same common feature of generating 

massive amounts of sequence data. Ilumina sequencing is known for its accuracy, and it is a 

popular technology used in RNA-Seq it relies on the generation of clusters of DNA fragments 

and sequences these clusters. Ion Torrent sequencing technology is valued for its speed and 

scalability making it possible to target sequencing. It directly measures pH changes as 

nucleotides are used during DNA synthesis. Oxford Nanopore sequencing gives the advantage of 

long read sequencing, help with the study of complex genomic regions, and real time 

sequencing. It also can pass single DNA molecules through nanopores and read the sequence as 

they pass. 

1.2.1.1 Advantages and Challenges 

Although RNA-Seq is still a technology under active development, it offers several key 

advantages over existing technologies. First unlike hybridization-based approaches, RNA-Seq is 

not limited to detecting transcripts that correspond to existing genome sequence [11]. RNA-Seq 

can reveal the precise location of transcription boundaries to a single-base resolution [11]. 

Furthermore, 30-bp short reads from RNA-Seq give information about how two exons are 

connected, whereas longer reads or pair-end short reads should reveal connectivity between 

multiple exons [11]. It is also not restricted to known genes, making it acceptable for the 
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discovery of novel and unannotated transcripts. A second advantage of RNA-Seq relative to 

DNA microarrays is that RNA-Seq has very low, if any, background signal because DNA 

sequences can be unambiguously mapped to unique regions of the genome [11]. While RNA-Seq 

provides many advantages it also has some challenges. The cost of RNA-Seq experiments can be 

higher than technologies like microarrays that have been used in studies for many years. Another 

challenge is the need for high quality RNA, since contamination can lead to biased results. 

Although there are only a few steps in RNA-Seq, it does involve several manipulation steps 

during the production of cDNA libraries, which can complicate it use in profiling all types of 

transcripts [11]. 

1.3 Aim and Objectives 

The fundamental aim of this research is to gain a better comprehension of the unique 

transcriptomic signatures defining six specific cancer subtypes, including breast, colorectal, 

glioblastoma, hepatobiliary, lung, and pancreatic cancers, along with a healthy control group, 

through the analysis of RNA-Sequencing datasets. The main objective is to assess the 

classification accuracy of machine learning algorithms in distinguishing these cancer subtypes 

and the healthy control group based on their gene expression patterns. This study focuses on 

evaluating the performance of various machine learning models in accurately classifying the 

specified cancer subtypes and healthy controls. The overall goal is to contribute to a deeper 

understanding of the molecular foundation of different cancers, enhancing the potential for 

precise and efficient cancer subtype classification. 
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2 CONCEPTS AND BACKGROUND 

2.1 Differential Gene Expression 

Differential gene expression analysis is one of the most common tools of RNA 

sequencing [12]. Samples from different backgrounds (different species, tissues and periods) can 

be used for RNA sequencing to identify differentially expressed genes, revealing their function 

and potential molecular mechanisms [13]. More importantly differential gene expression analysis 

facilitates the discovery of potential cancer biomarkers [14]. It involves comparing RNA 

transcripts between two or more experimental groups such as healthy vs. diseased tissues. To 

detect differential expression, a variety of statistical methods have been designed specifically for 

RNA-Seq data. A popular tool to detect differential expression is Cuffdiff, which is part of the 

Tuxedo suite of tools (Bowtie, Tophat, and Cufflinks) developed to analyze RNA-Seq data [15]. 

Increasing differentially expressed genes are being identified by RNA sequencing and new 

potential cancer biomarkers are being continuously discovered [16]. By analyzing the sequence 

data, differentially expressed genes are discovered, making the way of molecular mechanisms 

underlying various biological processes. This information allows for a better understanding on 

the genetic basis of diseases, identifying potential biomarkers, and revealing novel therapeutic 

targets. 
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2.1.1 Gene Expression Data 

Gene expression data provides insights into the dynamic activity of genes in a biological sample. 

The data from gene expression is generated through advanced techniques like RNA sequencing 

and microarray analysis, allowing researchers to quantify and compare gene expression levels 

across different samples. Gene expression analysis is the process of identifying the number of 

transcripts present in a particular cell or tissue type to estimate the level of expressed genes. 

Gene expression data quantifies the level of transcripts produced by genes, offering insights into 

which genes are active or not. Differential expression analysis also plays a role in gene 

expression data and a brief overview of differential expression analysis is discussed above. Gene 

expression data also helps in revealing alternative splicing patterns, where a single gene can 

generate multiple mRNA isoforms. There have been many advances in gene expression analysis 

but the most recent one allows single cell RNA sequencing, providing an approach to explore 

gene expression at the individual cell level. It also provides a global view of the transcriptome, 

from protein coding genes, non-coding RNAs and other RNA species. EST libraries represent 

short fragments of mRNA obtained from a single sequencing procedure carried out from cDNA 

libraries [17]. 
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2.1.1.1 Gene Expression Datasets 

Gene expression datasets represents a complete collection of data showing the activity of genes 

in several biological samples. Some of the popular gene expression datasets includes The Cancer 

Genome Atlas (TCGA), Gene Expression Omnibus (GEO), ArrayExpess, and The Human 

Protein Atlas. These datasets are generated through techniques like RNA-Seq and microarray 

analysis. Each dataset contains measurement of gene expression levels, that allows researchers to 

explore how genes responds to specific stimuli and how they are different between healthy and 

diseased tissues. The datasets are open-source and easily accessible [18]. 

2.1.2 Microarray Data 

Microarray data is a valuable resource in genomics and molecular biology, providing a 

comprehensive view of gene expression patterns on a genome wide scale. Microarray technology 

allows researchers to measure the expression levels of large amounts of genes in a biological 

sample. These datasets are generated by hybridizing labeled RNA samples to an array of gene 

specific probes, which can reveal which genes are under expressed or over expressed in various 

tissues. Microarray data has been helpful in revealing insights into gene regulation, identifying 

biomarker for diseases, and understanding the molecular mechanisms behind several biological 

processes. Since microarray data is an older technology and next generation sequencing 

platforms has gained prominence in recent years. Microarray data remains a valuable archive, 

particularly for historical gene expression studies, and it continues to contribute to our 

understanding of genomics. 
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3 MATERIALS AND METHODS 

3.1 Datasets 

The dataset includes gene expression profiles of blood from 285 samples of patients who 

had one of the following cancer subtypes: breast cancer, colorectal cancer, glioblastoma, 

hepatobiliary cancer, lung cancer, pancreatic cancer and healthy controls. And is accessed from 

the Gene Expression Omnibus database specifically from the work of Zhang et al., (2017) [19]. 

And it is important to note that the feature included in all cancer samples is the gene identifiers. 

Brief details about these cancer types are discussed below. The detailed number of samples in 

each cancer subtype and healthy control group samples are listed in Table 3.1. 

Table 3.1 Dataset Composition 

 

3.1.1 Breast Cancer 

Breast cancer is a complex and various disease with distinct subtypes that are set apart by the 

molecular and genetic features of cancer cells. Luminal A tumors are typically hormone 

receptor-positive and HER2-negative, known for their slow growth and favorable prognosis. 

Luminal B breast cancers, also hormone receptor-positive, exhibit higher proliferation markers 

and a slightly worse outlook. HER2-enriched cancers over express the HER2 gene, demanding 

HER2-targeted therapies, while triple-negative (basal-like) cancers, lacking key receptors, pose 

challenges due to limited targeted treatment options. Inflammatory breast cancer, an aggressive 
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subtype, presents with redness and swelling, requiring a multi-pronged approach. Metaplastic 

breast cancer is rare and complex, while normal-like tumors mirror Luminal A. The gene 

expression data for breast cancer was sourced from the Gene Expression Omnibus (GEO) under 

accession number GSE68086. The dataset originally comprised 39 samples; however, it is 

important to note that none of the samples were successfully downloaded due to issues such as 

file corruption or download failures.   

3.1.2 Colorectal Cancer 

Colorectal cancer is the second- and third-most common cancer in women and men [20]. The 

subtypes of colorectal cancers are categorized into microsatellite stable (MSS) and microsatellite 

instability-high with MSI-H tumors having better prognosis and responds better to 

immunotherapy. We utilized gene expression data obtained from the Gene Expression Omnibus 

(GEO) accession number GSE68086. Comprising 42 samples, the gene expression profiles of 

colorectal cancer blood tissues are important to our research.  

3.1.3 Glioblastoma Cancer 

Glioblastoma is the most common primary malignant brain tumor, comprising 16 percent of all 

primary brain and central nervous system neoplasms [21]. Glioblastoma present at a median age 

of 64 years but can occur at any age, including childhood [22]. The most common subtype is the 

classical glioblastomas, marked by EGFR augmentation and chromosome 10 deletion. Proneural 

glioblastomas, relate to PDGFRA alterations, revealing distinct molecular profile. Mesenchymal 

glioblastomas are represented by NF1 mutations that are characterized by aggressive growth and 

a specific immune signature. The datasets were obtained from GSE68086 comprising 40 

samples, these samples reflect the gene expression patterns of glioblastoma blood cancer tissues.  
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3.1.4 Hepatobiliary Cancer 

Hepatobiliary cancers are highly lethal. In 2008, approximately 21,370 persons in the United 

States were estimated to be diagnosed with liver cancer and 9520 with gallbladder cancer. 

Furthermore, approximately 18,410 deaths from liver cancer and 3340 deaths from gallbladder 

cancer were estimated to occur [23]. The subtype Hepatocellular carcinoma (HCC), is the most 

common hepatobiliary cancer that happens in the hepatocytes of the liver and is often related to 

chronic live diseases such as hepatitis B or C. Intrahepatic cholangiocarcinoma, happens in the 

bile ducts in the liver, and requires different treatment therapies. Extrahepatic 

cholangiocarcinoma happens outside of the liver and causes difficulties in treatments such as 

surgery, radiation, and chemotherapy. Gallbladder cancer is not as common as the other subtypes 

but can have more promising results through surgical removal of the gallbladder. The datasets 

are obtained from GSE68086 and consists of 14 samples. 

3.1.5 Lung Cancer 

Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and 

worldwide. About 90 percent of lung cancer cases are caused by smoking and the use of tobacco 

products. However, other factors such as radon gas, asbestos, air pollution exposures, and 

chronic infections can contribute to lung carcinogenesis [24]. During 2014, an estimated 224,210 

new cases and 159,260 deaths for lung cancer were predicted in the USA [25]. Lung cancer is 

categorized into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) with its 

own subtypes. Non-small cell lung cancer (NSCLC) subtypes are adenocarcinoma, squamous 

cell carcinoma, and large cell carcinoma. Adenocarcinoma is the most common subtypes that 

appears in the lung outer regions, while squamous cell carcinoma happens in the bronchial 

lining, and large cell carcinoma is the most aggressive subtype. Small cell lung cancer spreads 
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quickly and metastasize earlier then non-small cell lung cancer. Non-small cell lung cancer 

treatment strategies include surgery, radiation, and therapies while small cell lung cancer 

treatments include chemotherapy. The datasets obtained from GSE68086 and comprises 60 

samples. 

3.1.6 Pancreatic Cancer 

Pancreatic ductal adenocarcinoma is a relatively uncommon cancer, with approximately 60430 

new diagnoses expected in 2021 in the US. The incidence of PDAC is increasing by 0.5 percent 

to 1.0 percent per year, and it is projected to become the second leading cause of cancer-related 

mortality by 20230 [26]. Among lifestyle risk factors, current cigarette smoking has the strongest 

association with PDAC [26]. The median age at diagnosis is the US is 17 years, and PDAC is 

slightly more common in men than in women (5.5 vs 4.0 per 100000 individuals) [27]. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common subtype and is known for how 

quick it becomes aggressive marked by mutations in genes like KRAS and TP53. While 

Pancreatic neuroendocrine tumors (PNETs) are not as aggressive and better results. The datasets 

were obtained from GSE68086 and comprises 35 samples.  
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4 ANALYSIS OF RNA SEQUENCING DATA 

Computational analysis tools for RNA sequencing have dramatically increased during the past 

decade [28].  The choice of a particular tool should be based on the purpose and accuracy of 

application [29,30,31]. The conventional pipeline for RNA-Seq data includes generating 

FASTQ-format files contains reads sequenced from an NGS platform, aligning these reads to an 

annotated reference genome, and quantifying expression of genes. [32]. Although basic 

sequencing analysis tools are more accessible than ever, RNA-Seq analysis presents unique 

computational challenges not encountered in other sequencing-based analyses and requires 

specific consideration to the biases inherent in expression data [32]. A general RNA sequencing 

data analysis process involves the quality control of raw data, read alignment and transcript 

assembly, expression quantification and differential expression analysis [32]. (Fig.4.1) gives a 

better overview of the steps and tools that are used in this process. 

4.1 Steps in Analyzing RNA Sequencing Data 

 

Figure 4.1 RNA Sequencing Data Analysis Process (Adapted from Hong, Mingye et al., 

2020 [28]) 
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4.1.1 Raw Data Assessment  

Analyzing RNA sequencing data involves multiple step process such as data quality control, 

preprocessing, read alignment, transcript assembly, and expression quantification that presents 

the transcriptomic landscape of biological samples. The first journey begins with data quality 

control, data control begins with an assessment of the raw RNA sequencing data. Assessing the 

raw data is a fundamental step in the analysis pipeline, making sure that the initial data is of high 

quality and acceptable for downstream processing. During this assessment stage, factors such as 

sequence read quality, base call accuracy, and the presence of any contaminants that can disrupt 

the process are evaluated. Quality scores are examined, potential adapter sequences are 

identified, and the distribution of read lengths are checked [33]. By following this assessment 

and addressing the issues in the raw data, researchers can enhance the reliability of subsequent 

analyses, ultimately leading to more accurate results. 

4.1.2 Quality Control Procedures 

The preprocessing of RNA Sequencing data includes critical steps to ensure the reliability and 

accuracy of downstream analyses. Following raw data assessment, the removal of low-quality 

reads becomes imperative, targeting sequencing errors and adapter contaminations. This careful 

curation improves the overall dataset quality, enhancing the precision of subsequent alignment 

and quantification processes. Additionally, handling sequence duplications is addressed, 

acknowledging their origin in library preparation and sequencing. The identification and removal 

of duplicates contribute to the mitigation of biases that could impact quantitative measurements 

and differential expression analyses. These steps collectively form a robust foundation for 

obtaining meaningful insights from RNA sequencing data. 
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4.2 Preprocessing Steps for Read Quality  

The quality of raw sequencing data significantly impacts downstream analyses, and 

therefore preprocessing is very important. This section includes crucial steps such as trimming 

adapter sequences, quality-based trimming, and length filtering. To visually depict this process, 

Figure 4.2 visualizes the trimming adapter sequences which also includes length filtering 

highlighting the removal of adapter sequences and length filtering from RNA sequencing reads 

to enhance accuracy in downstream analysis and improve overall data quality. 

 

Figure 4.2 Trimming Adapter Sequences and Length Filtering "Title of the Webpage." 

Trimming and Filtering- Data Processing and Visualization for Metagenomics 
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4.2.1 Trimming Adapter Sequences 

Trimming adapter sequences is helpful in the preprocessing of RNA sequencing data, mainly 

when dealing with short reads that are generated by high-throughput sequencing platforms. 

During the process of the library preparation, adapter sequences are applied to the ends of the 

DNA fragments to facilitate binding to the sequencing flow cell. But these adapters must be 

removed from the sequencing data to make sure of accurate analysis. Due to this the process of 

trimming is needed, which involves the identification and removal of these sequences from the 

reads. Failure to do this step can result in contamination that can disrupt the read alignments, 

quantification, and downstream analyses. By doing this process correctly and removing the 

adapter sequences, researchers can improve the accuracy of the data, enhance the accuracy of 

mapping to the reference genome. 

4.2.2 Quality-Based Trimming 

Quality-based trimming helps with enhancing the accuracy and reliability of the downstream 

analyses. The process involves each base in a sequence read is assigned to a quality score, 

signaling the confidence level of that base accuracy. Low quality bases often indicate unreliable 

readings, can compromise the accuracy of alignment and gene expression quantification. 

Quality-based trimming algorithms automatically remove bases with low quality scores, by 

eliminating unreliable segments but while retaining high-confidence portions of the reads. By 

applying quality-based trimming it can significantly improve the overall data quality and give me 

a more accurate insight. 

4.2.3 Length Filtering 

Length Filtering makes sure that only reads of specific length are retained for downstream 

analysis in the preprocessing step of RNA sequencing data. During this process, unusual short or 
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long reads that can introduce bias into the data are removed. Short reads can lead to not having 

enough information for accurate alignment and quantification, while overly long reads can 

contain sequencing errors which can also lead to inaccurate alignment. 

4.3 Read Alignment to Reference Genome 

In the process of read alignment to the reference genome, the STAR aligner plays a 

pivotal role. Spliced Transcripts Alignment to a Reference Genome (STAR) was designed to 

align the non-contagious sequences directly to the reference genome. STAR algorithm consists 

of two major steps: seed searching step and clustering/stitching/scoring step [34]. The central 

idea of the STAR seed finding phase is the sequential search for a Maximal Mappable Prefix 

(MMP). Figure 4.3 shows the key steps of the Maximal Mappable Prefix strategy, highlighting 

its role in maximizing the efficiency and accuracy of read alignment to the reference genome. In 

the first step, the algorithm finds the MMP starting from the first base of the read. In addition to 

detecting splice junctions, the MMP search, implemented in STAR, enables finding multiple 

mismatches and indels [34]. In the second phase of the algorithm, STAR builds alignment of the 

entire read sequence by stitching together all the seeds that were aligned to the genome in the 

first phase. First, the seeds are clustered together by proximity to a selected set of anchor seeds. 

The stitching is guided by a local alignment scoring scheme, with user-defined scores (penalties) 

for matches, mismatches, insertions, deletions, deletions and splice junction gaps, allowing for a 

quantitative assessment of alignment qualities and ranks [34]. 
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Figure 4.3 Spliced Transcripts Alignment to a Reference (STAR) Aligner Maximal 

Mappable Prefix (MMP) Strategy Overview (Adapted from Dobin, Alexander et al., 2012 [34]) 

 

4.3.1 Selection of Reference Genome 

Read alignment to Reference Genome is performed to determine where in the genome the reads 

come from. The alignment process consists of two steps: 1. Indexing the reference genome 2. 

Aligning the reads to the reference genome. The selection of an acceptable reference genome is 

important in the analysis of RNA sequencing data. The reference genome allows for reads 

alignment. The choice of reference genome highly depends on the species of interest and the 

availability and quality of reference sequences. When there is a reference genome that has no 

perfect match, a hybrid reference can be used. 

4.3.2 Aligning Reads to the Genome 

Aligning reads to the genome, facilitates the accurate mapping of individual sequence reads to 

their corresponding genomic locations. During this process where each read come from must be 

identified in the reference genome, which gives an understanding of which genes are expressed 

and where the expressed regions are located. Accurate read alignment can help in quantifying 
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gene expression levels and identifying splicing events. The outcome of this alignment step is the 

creation of a Sequence Alignment Map (SAM) file which allows for further analyses.  

4.3.3 Generating a Sequence Alignment/Map (SAM File) 

Sequence Alignment/Map (SAM) file is a plain text file format used to store the results of 

sequence read alignments to a reference genome. To generate a SAM file, the process involves 

aligning individual sequencing reads to a reference genome, determining exactly where the 

genome is location, and encoding this information in a structured text format. In the SAM file 

each line corresponds to a single sequence read, containing information details such as the reads 

name, alignment flags, alignment position and mapping quality. SAM files are also formatted in 

a way that are readable to humans, it facilitates both manual inspection and the development of 

custom scripts and algorithms for further data analysis. 

4.4 Tools in Analyzing RNA Sequencing Data  

The tools used in RNA-Seq data analysis are mainly used in the four general process of 

RNA-Seq data analysis, including quality control, read alignments, transcript assembly, 

expression quantification, and differential expression analysis. For the data quality control 

process the common tools include FASTQ [35], the preprocessing steps uses tools Trimmomatic 

[36], PRINSEQ [37], and Soapnuke [38]. During the read alignment process the tool used is 

STAR. During the expression quantification FeatureCounts tool was used for the gene counts 

data. After normalizing, an expression matrix is generated, and statistical methods can be used to 

identify differentially expressed genes which is during the differential expression analysis 

process DESeq2 [39] tool was used to perform this process. 
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4.4.1 Quantification Tool: FeatureCounts 

FeatureCounts is a gene-level quantification approach that utilizes a gene transfer format (GTF) 

file [40] containing the genome coordinates of exons and genes, and often discard multireads 

[41]. The data input to FeatureCounts consists of (i) one or more files of aligned reads in either 

Sequence Alignment/Map (SAM) or Binary Alignment/Map (BAM) format [42]. It also provides 

other structural elements in the genome such as coding regions, the genome build is essential 

when obtaining a gene transfer format (GTF) file, because it specifies the reference genome 

assembly to which the gene annotations in the GTF file correspond. After obtaining the correct 

GTF file, the next process involves using the GTF file to count the number of reads associated 

with each feature, providing a fundamental measure of gene expression levels. The 

FeatureCounts tool also includes ability to accommodate different genome annotations, enabling 

compatibility with diverse organisms and transcriptome databases. Its efficiency lies in its speed 

and scalability, making it suited for large studies that are common in genomics research. 

4.4.2 Utilizing FeatureCounts for Gene Counts 

The process of counts generation using FeatureCounts is a crucial step in RNA-Sequencing data 

analysis, translating the difficulties of aligned sequencing reads into a quantifiable representation 

of gene expression. FeatureCounts supports strand-specific read counting if strand- specific 

information is provided. Read mapping results usually include mapping quality scores for 

mapped reads [43]. Reads may be paired or unpaired, if paired reads are used then each pair of 

reads defines a DNA or RNA fragment bookended by the two reads [43]. FeatureCounts excels 

in this role by systematically parsing through aligned reads and allocating them to specific 

genomic features, commonly genes. As it crosses the genomic landscape, FeatureCounts 

accurately tallies the number of reads associated with each gene, producing a comprehensive 
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count for individual genes across all samples. This raw count data forms the backbone of 

subsequent analyses, offering a snapshot of the excess of each gene in each biological sample. 

The result of this is a gene-centric counts matrix. The equation (1) below represents the time 

complexity of the FeatureCounts algorithm. Where f is the number of features, r is the number of 

reads and 𝑘1 is the number of features included in a genomic bin [43]. 

  equation (1) 

4.4.3 Transformation of Individual Counts into an Expression Matrix  

The result of generating a gene count using FeatureCounts is a count matrix, this matrix is a 

tabular representation where genes are in rows and samples are in columns and the number in 

each cell is the number of reads that mapped to exons in that gene for that sample. The values in 

the matrix should be counts of sequencing reads or fragments. The transformative step lies in the 

conversion of these individual counts into a comprehensive expression matrix. Some of the rows 

can contain only zeros and additionally many rows with only a few fragments total. In this case 

the raw counts must be normalized, adjusted for library size, pre-filtering is performed to keep 

only rows that have a count of at least 10 for a minimal number of samples. This normalization 

process is very important for mitigating technical variations between samples, making sure that 

the counts matrix accurately reflects the biological refinement of gene expression patterns.  

4.5 Metadata Table 

Figure 4.5 is a flowchart that shows the crucial steps involved in integrating metadata 

with RNA Sequencing data. Starting with the DESeq2 package, it details the creation of counts 

matrix and its integration with metadata.  
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 Figure 4.4 Metadata Table Integration Workflow 

  

 

4.5.1 Creation: Importance and Construction of Metadata Table 

The creation of a metadata table is an important step in the orchestration of RNA-Sequencing 

data analysis. This table is a structured compilation of sample-specific details such as the 

samples are in rows, experimental conditions, phenotypic characteristics, and any other relevant 

information that distinguishes one sample from another. The significance of this metadata is its 

role as a guiding reference, providing important insights into the experimental design and 

allowing robust statistical analyses. Metadata also makes sure that the biological context of each 
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sample is preserved, allowing for the identification of patterns and correlations between gene 

expression and experimental variables. 

4.6 Workflow: Overview of DESeq2 Workflow 

The starting point of a DESeq2 analysis is a count matrix k with one row for each gene i 

and one column for each sample j [44]. The workflow consists of estimating size factors, 

dispersion, and fitting a negative binomial distribution. Figure 4.6 shows a standard workflow of 

DESeq2 including the steps with the tools and packages. This process commences with the input 

of raw RNA-Sequencing data. The sequenced reads, subjected to quality filtering, alignment or 

mapping to the respective genome using tools such as STAR. The next important step involves 

quantifying the reads mapped to genes derived from tools like FeatureCounts into the DESeq2 

environment. In the DESeq2 framework, the raw counts go through a normalization process, 

featuring the estimation of size factors and dispersion to make sure of accurate comparisons 

across samples. The output, a results table that contains genes that are annotated with log2 fold 

changes and adjusted p-values, quantifying its significance in differential expression. 

 

 

Figure 4.5 Standard workflow of DESeq2 using tools and packages "Title of the 

Webpage." Differential gene expression analysis using DESeq2 (comphrensive tutorial) 
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4.6.1 Utilizing DESeq2 for Differential Expression Analysis  

DESeq2 is a subread package in R for analyzing count-based NGS data like RNA-Sequencing 

and it is available from Bioconductor. There are two tables that contains a csv file, the count 

matrix is the countData variable and the metadata is the colData. Before preparing the data object 

in a form that is suitable for analysis, it is very important that the first column of colData 

(metadata) must match the column names of countData (counts matrix). Once the columns are in 

the correct order, the DESeqDataSet object can be constructed from the count’s matrix and the 

metadata table. Using the DESeqDataSetFromMatrix function requires the countData (count 

matrix) to be a matrix or data frame. Either the row names or the first column of the countData 

must be the identifier that will be used for each gene. The column names of countData are the 

sample IDs or gene IDs and they must match the row names of colData. There is also a design 

formula in the data object which specify the model that will be used for testing differential 

expression. It describes how the counts are expected to change based on experimental factors.  

4.7 Performance Results of FeatureCounts on Cancer Samples 

The results of FeatureCounts performance were conducted on a comprehensive dataset 

containing 229 samples across various cancer subtypes, including breast, colorectal, 

glioblastoma, hepatobiliary, lung, and pancreatic cancer. FeatureCounts effectiveness was 

assessed by analyzing key assignment statuses such as the counts for Assigned, 

Unassigned_Ambiguity, Unassigned_MultiMapping, Unassigned_NoFeatures, and 

Unassigned_Unmapped. It is important to note that the analysis excluded categories with 0 

counts, focusing on instances where genes assignments occurred. This performance results 

provides an understanding of FeatureCounts proficiency in accurately assigning reads to genes in 

the context of diverse cancer types. The results, detailed in Table 4.7 gives a better overview on 



28 

FeatureCounts tool robustness and capabilities, it also highlights its suitability for the subsequent 

steps in the RNA-Sequencing data analysis pipeline. The average of each category was 

calculated to gain a better understanding of how FeatureCounts performed on the available 

samples. The average assigned count is important, representing the number of reads successfully 

assigned to genomic features. A higher average (106,907,382) indicates a robust capture of 

relevant information in the genomic data, contributing to the overall success of our analysis. 

 

 Table 4.1 Assessment of FeatureCounts Performance on Cancer Samples 
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4.7.1 Averages of FeatureCounts Results 

In section 4.7 the performance results of FeatureCounts on cancer samples were presented, 

detailing key metrics such as Assigned Counts, Unassigned_Ambiguity, 

Unassigned_MuliMapping, and Unassigned_NoFeatures. To further explain the overall trends, 

averages were calculated across these categories to provide a comprehensive overview of the 

distribution of gene expression data for each cancer types. The average (Avg) for each metric 

was computed using the equation (2) below. The calculated averages for each category are 

average for Assigned Counts: 106,907,382, Unassigned_Ambiguity: 2,871.389.84, 

Unassigned_MultiMapping: 86,834,588.696, and Unassigned_NoFeatures: 1,531,655,370.87. 

These averages offer insights into the typical values observed in each category. The Assigned 

Counts average represents the average number of reads confidently assigned to specific genes. 

The Unassigned_Ambiguity average indicates the average number of reads with ambiguous 

mapping, while Unassigned_MultiMapping signifies the average number of reads mapping to 

multiple genomic locations. And Unassigned_NoFeatures represents the average number of 

reads that did not align to any annotated features. Understanding these averages helps in 

assessing the performance of FeatureCounts in handling distinct aspects of gene expression data. 

   

𝐴𝑣𝑔 =  
𝑆𝑢𝑚 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 
              equation (2) 
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5 DESEQ2 ANALYSIS RESULT AND VISUALIZATIONS 

5.1 Introduction 

This section provides a comprehensive introduction to the results obtained through the 

DESeq2 analysis. DESeq2 is a tool used for differential gene expression analysis, allowing the 

identification of genes with significant upregulation and downregulation across different 

conditions. The following visualizations present an exploration of these differentially expressed 

genes. Notable features include a results table detailing genes with significant expression 

changes, MA plots showcasing the distribution of log-fold changes against mean expression, 

Principal Component Analysis (PCA) visualizations providing insights into sample relationships, 

and volcano and dispersion plots displaying the statistical significance of gene expression 

alterations. Additionally, counts plot visualizations present a detailed view of gene expression 

counts, while histograms and heatmaps offer an overview of the data distribution and 

relationships. 

5.2 Genes with significant upregulation and downregulation result 

In this section, we present a detailed examination of genes exhibiting significant 

upregulation and downregulation across the cancer types. The results table summarize a 

comprehensive overview of these genes, highlighting the individual expression changes and 

statistical significance. Specific genes are identified as the top in the observed transcriptional 

alterations. The genes in the results table are sorted by the log2 fold change estimate to get the 

significant genes with the strongest up-regulation and strongest down-regulations. Figure 5.2 

gives a better overview providing a curated list of genes important for understanding the 

differentially expressed level of each cancer subtype. Some values in the table can be set to NA 

because if in a row all samples have zero counts, the baseMean column will be zero, and the log2 
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fold change estimates, p-value and adjusted p value all will be set to NA. Another reason is if a 

row contains a sample with an extreme count outlier, then the p value and adjusted p value will 

be set to NA. Based on my findings, Gene KANSL1: had a remarkable upregulation of 56.72 log 

fold. Gene ARL17A: had a significant down-regulation, Gene LRRC37A: had a huge 

upregulation of 3730.60 log fold. Gene ARHGAP27: had a substantial downregulation this can 

influence cancer progress, Gene NSFP1: had a significant downregulation and Gene UGT2B10: 

had a significant downregulation. I also observed that not all genes show significant changes, 

which is a common observation in large-scale genomic studies.  

Table 5.1 Significantly Upregulated and Downregulated Genes across Caner Subtypes 
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5.3 In-depth Exploration of MA Plots: Unraveling Differential Gene Expression with 

Normal, Ashr, and Apeglm methods 

DESeq2 MA plots offer a comprehensive visual representation of the differential 

expression analysis results. It provides a useful overview for the distribution of the estimated 

coefficients in the model, the comparisons of interest across all genes. On the x-axis is the 

average of the counts normalized by size factor and on the y-axis is the log2 fold change for a 

particular comparison and each gene is represented with a dot. Figure 5.3 shows the 3 methods 

and gives a comprehensive overview of the differential expression analysis results. The normal 

MA plot is the original DESeq2 shrinkage estimator and is centered on zero and with a scale that 

is fit to the data. There are two alternative adaptive shrinkage estimator Apeglm and Ashr. 

Apeglm (Approximate Posterior Estimates) is the adaptive t prior shrinkage estimator, this 

method is used for shrinking coefficients which is good for shrinking the noisy LFC estimates 

while giving low bias LFC estimates for true large differences. Ashr (Adaptive SHrinkage) is the 

adaptive shrinkage estimator that shrinks log fold changes with very low counts and highly 

variable counts. The genes with an adjusted p value below a threshold are shown in blue. 
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Figure 5.1 MA Plots: Normal, Ashr, and Apeglm Methods 

 

5.4 Exploring Transcriptional Diversity: PCA Visualization 

In section 5.4, we examine into the landscape of gene expression through Principal 

Component Analysis (PCA). PCA is a technique for dimensionality reduction, allows us to 

explore the underlying patterns in our gene expression data. Through this section we present 

visual representation that capture the variability and relationships included in samples. Figure 5.4 

shows sample to sample distances through the PCA. The samples are projected onto the 2D plane 

such that they spread out in the two directions that explain most of the differences, on the x axis 

is the direction that separate the data points the most. PC1 represents the values of the samples 

and on the y- axis is a direction that must be orthogonal to the first direction, and it separates the 

data the second most. PC2 represents the values of the samples in that direction, the percentage 

of PC1 and PC2 variance does not add to 100 percent, because the distances have more 

dimensions that contain the remaining variance. Based on my observation Pancreas subtype wt 

had the most overlap because the distance was too large and spread across the dimensions. 
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 Figure 5.2 Principal Component Analysis (PCA) provides insights into the variance and 

patterns in the gene expression data across different cancer subtypes 

 

5.5 Exploring Differential Gene Expression with Volcano Plots 

The volcano plot visualization examines into the differential gene expression landscape 

and is a type of scatterplot that shows statistical significance p value vs magnitude of change 

(fold change). It allows for a visual identification of genes with large fold changes that are also 

statistically significant. In a volcano plot, the most upregulated genes are towards the right, the 

most downregulated genes are towards the left, and the most statistically significant genes are 

towards the top. On the x-axis represents the fold change in gene expression between two 

conditions and the y-axis represents the statistical significance of the change, often expressed as -

log10(p-value). Figure 5.5 shows a volcano plot that allows us to understand the molecular 

distinctions across the cancer analyzed subtypes by highlighting all significant genes that surpass 

a significance threshold adjusted p-value < 0.05 and highlight genes with a considerable fold 

change log2(fold change) > 1.  Based on the observation of the plot, there is not a densely 
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populated symmetrical V shape because the observations are reduced or the variation in response 

is not so evenly distributed. 

 

 

 

 Figure 5.3 Volcano Plot visually depict gene expression changes 

 

5.6 Exploring Gene Expression Distribution with Counts Plot 

In this section, it goes into counts plots offering a detailed exploration of gene expression 

patterns across samples. These plots visualize the distribution of read counts for each gene across 

the groups. On the x-axis represents the mutation subtypes or groups and, on the y-axis, depicts 

the normalized counts or expression levels of the gene. Normalized counts are expression levels 

of the gene that are normalized to account for variations in library size and other technical 

factors. Figure 5.6 shows 3 counts plot gives us a better interpretation of RNA-Sequencing data 
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by examining these plots, patterns and trends in gene expression can be identified. The plots 

show the gene which had the smallest p value from the results. This gene was represented in two 

other plots through its normalized counts with lines connecting cell lines. Based on my 

observation the Gene with the smallest p value is RNA5SP500.  

 

 

 Figure 5.4 Visualizing gene expression distribution through Counts Plots 

 

5.7 Exploring Gene Expression Variability: Heatmap Visualization of Top 20 Genes 

In this section, we delve into a comprehensive exploration of gene expression variability 

through heatmap visualization. This technique allows us to recognize patterns in the expression 

of the top 20 genes with the highest variance across the samples. Figure 5.7 provides a visually 

representation, allowing the identification of trends in gene expression patterns. Based on my 

observation of the heatmap, Gene TTN has been regarded as an important marker for the 
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distinction of six cancer subtypes and healthy controls group. Another gene ENPP7P4 is suitable 

for it to act as a liquid biopsy marker and regulation of the cell cycle. 

 

 

 Figure 5.5 Heatmap of top 20 genes with high variance across samples 

 

5.8 Exploring Gene Expression Distributions: Histogram Analysis across Cancer 

Subtypes 

In this section, histograms visualizations provide a comprehensive view of the 

distribution patterns of gene expression values in and across cancer subtypes and the healthy 

control group. The histograms offer insights into the spread and frequency of expression levels, 

aiding in the identification of distinctive expression profiles. Figure 5.8 shows two histograms, 

the histogram on the left is a histogram that displays the distribution of p values for genes with a 

mean normalized count larger than 1. It is formed by excluding genes with very small counts, 
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which can generate spikes in the histogram if not removed. The histogram on the right is a 

histogram that presents the ratio of small p values, binned by normalized count. The p values are 

from a test of log2 fold change greater than 1 or less than -1. This histogram is formed by 

demonstrating that genes with very low mean counts have little influence and are best if removed 

from testing. By removing the low count genes from the input to the FDR procedure, we can find 

more genes to be significant along the genes that we keep by applying independent filtering.  

 

 

 Figure 5.6 Capturing the diversity in gene expression through histogram analysis across 

cancer subtypes 
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6 MACHINE LEARNING ANALYSIS 

6.1 Introduction  

Machine learning, which falls under the umbrella of artificial intelligence and computer 

science, involves the development of algorithms and models that enable computers to learn and 

make predictions or decisions autonomously without the need for explicit programming 

instructions [45]. Cancer classification is the process of categorizing different types of cancers 

based on their characteristics, such as the site of origin, histological features, genetic mutations, 

and clinical behavior [45]. Accurate classification of cancer plays a significant part in ensuring 

precise diagnosis, treatment planning, and predicting patient outcomes [46]. Classification 

constitutes a fundamental undertaking in supervised learning, where the objective is to train a 

model to forecast the class designation of a given input by considering its distinctive attributes 

[46]. Accurate cancer classification holds importance of personalized treatment strategies. The 

unique genetic signatures identified through precise subtype classification allows clinicians to 

get treatment regimens based on the specific molecular characteristics of each cancer subtype. 

Furthermore, accurate classification contributes to the identification of novel biomarkers 

associated with distinct cancer subtypes, aiding advancements in early detection and targeted 

therapies. Figure 6.1 shows an overview of the machine learning applications for cancer 

classification, and it gives a simpler understanding. 

6.1.1 Role in Research 

The goals of this research revolve around utilizing machine learning techniques to gain 

meaningful insights from high-dimensional gene expression data for accurate cancer 

classification. The specific objectives enclose the identification of distinctive transcriptomic 

signatures for six major cancer subtypes: breast, colorectal, glioblastoma, hepatobiliary, lung, 
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and pancreatic cancer, including a healthy control group. Through the application of machine 

learning models, the study aims to generate robust classification algorithms that are capable of 

differentiation between these cancer types based on their unique gene expression profiles. 

Artificial learning techniques have a pivotal role to play in cancer classification by analyzing 

complex and high – dimensional datasets. By identifying hidden patterns and relationships in the 

data, machine learning algorithms can discover subtle associations between generic or molecular 

markers and different cancer types, leading to improved classification accuracy [47]. 

6.2 Data Overview 

In this section, delve into a comprehensive understanding of the dataset. The dataset 

employed in this study is derived from the gene expression omnibus (GEO) accession number 

GSE68086. It contains samples from six distinct cancer subtypes breast, colorectal, glioblastoma, 

hepatobiliary, lung, and pancreatic cancer and including a healthy control group. The dataset 

comprises a total of 285 but only 229 samples was successful, with each cancer subtype 

contributing varying sample sizes: breast (39 samples), colorectal (42 samples), glioblastoma (40 

samples), hepatobiliary (14 samples), lung (60 samples), pancreatic (35 samples), and the healthy 

control group (55 samples). A characteristic of the genomic data is its high-dimensional 

containing 16,383 genes. Furthermore, the gene count data increases the dimensionality, 

culminating in a total of 43,682 features. The high-dimensional dataset leads to challenges in the 

analysis and interpretation of gene expression patterns.  

6.3 Data Preprocessing 

This section delves into the importance of data preprocessing particularly feature scaling 

in the gene expression data. Feature scaling, is an important preprocessing step that makes sure 

that all features contribute equally to the model performance, preventing dominance by variables 
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with larger magnitudes. By normalizing features, feature scaling enhances the comparability and 

interpretability of different attributes, allowing a more accurate representation of the biological 

patterns. This is mainly vital in the context of cancer subtype classification where variations in 

gene expression helps with distinguishing between different tumor types. The feature method 

used in my analysis is StandardScaler for SVM and MLP classifier. StandardScaler scales the 

features to have a mean of 0 and a standard deviation of 1. Equation (3) shows the formula how 

the Z-score normalization is computed. StandardScaler was used because the datasets ranges 

were greatly different from each other, therefore this method is used to standardize the range of 

functionality. Considerations I observed during feature scaling is to reduce the features for the 

performance of the model and to increase the sample size. 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑋 −
min(𝑋)

max(𝑋)
− min (𝑋)           equation (3) 

6.3.1 Labeling 

In the process of classifying cancer subtypes based on transcriptomic data, the labeling process 

plays an important role in shaping the structure of the machine learning models. The classes or 

labels applied in this classification are Cancer_types and Mutation_Subtypes. These labels were 

assigned to samples using the DESeq2 analysis process, the metadata file contains the columns 

of Cancer_types and Mutation_Subtypes. The counts matrix and metadata file were integrated 

into the machine learning analysis. 

6.4 Model Training  

Machine learning and artificial intelligence algorithms can be trained using large datasets 

to develop predictive models for cancer classification. These models can incorporate various data 

types, such as clinical information, imaging data, and molecular profiles, to classify tumors and 

assist in diagnosis and treatment decisions [48].  Seven classifiers were used: SVM, KNN, LR, 
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DT, RF, NB, and MLP. SVM is a powerful and widely used method because it can handle data 

that cannot be linearly divided by translating it into a higher-dimensional space with a linear 

boundary to separate the classes. In SVM, the purpose is to select the optimal hyperplane for 

classifying the data [49]. Machine learning techniques such as K-Nearest Neighbors (KNN) are 

used for both classification and regression problems. Its operation is based on selecting the k 

closet neighbors to an object in the training dataset, where k is a positive integer of the user’s 

choosing [49]. Logistic regression is a widely adopted statistical technique employed to analyze 

datasets that encompass one or more independent variables, which have the potential to influence 

the outcome [49]. The Decision Tree is a widely using algorithm utilized in machine learning 

and artificial intelligence to address classification and regression tasks. Within a decision tree, an 

internal node signifies and attribute test, a branch signifies the result of the test, and a leaf node 

represents a prediction or class label [49]. A classification and regression ensemble learning 

system is called Random Forest. It is a kind of decision tree method that generates numerous 

decision trees and combines their prediction to obtain a more reliable and accurate outcome [49]. 

Naïve Bayes is a probability algorithm based on Bayes theorem which calculates the probability 

of a hypothesis given observed evidence. In the context of classification, Naïve Bayes assumes 

that features are conditionally independent, given the class label. One advantage of a naïve Bayes 

classifier is that it only needs to estimate the necessary parameters (mean and variance of 

variables) based on a small amount of training data [50]. The equation (4) shows how the 

probability is computed. P(y|x) is the posterior probability of class y given features x, P(x|y) is 

the likelihood of observing features x given class y, P(y) is the prior probability of class y, and 

P(x) is the probability of observing features x.  Multi-Layer Perceptron (MLP) is a neural 
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network architecture with fully connected layers where each neuron in a hidden layer is 

connected to all other neurons in the neighboring layers [49].  

𝑃(𝑦|𝑥) =
𝑃(𝑥|𝑦)∙𝑃(𝑦)

𝑃(𝑥)
              equation (4) 

6.4.1 Evaluation  

The evaluation process in this study is secured in the utilization of cross-validation, a technique 

used to assess the performance of a model and reduce the challenges related to overfitting or 

underfitting. Specifically, ShuffleSplit with five folds, was applied to split the datasets into 

subsets for training and testing the classifiers. ShuffleSplit generates a user defined number of 

independent train or test dataset splits. It shuffles the data before splitting it into train and test 

sets.  The choice of five folds aligns with the standard usage in cross-validation balancing 

computational efficiency and detailed model evaluation. In each iteration, one of the folds is used 

as the test set, and the remaining four folds are used as the training set. This process is repeated 

five times with a different fold as the test set in each iteration. The decision to split the test size 

to 30% in each fold reflects a calculated balance making sure an ample amount of data for testing 

while preserving a substantial portion for training. Following this approach provides a reliable 

estimate of the model performance on new unseen data and helps reduce overfitting. The 

challenges that were faced through this process is that since there was not enough sample size 

and a high dimensional dataset the performance of the classifiers was greatly affected. 

6.5 Results  

In this section, the focus is on a detailed examinations of the results from the seven classifiers are 

presented, clarifying their performance in the classification of both cancer_types and mutation 

_subtypes. The classifiers, including SVM, KNN, Random Forest, Logistic Regression, Decision 

Tree, MLP, and Naïve Bayes were systematically evaluated across two datasets: one with 229 
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samples and 16,383 features and the other with 229 samples and the other with 229 samples and 

43,682 features. Table 6.5 highlights the results and provides a comparative overview of the 

classifiers performance. The discussion encompasses a detailed analysis of how well each model 

performed in capturing the patterns and variations in the genomic data. Metrics such as accuracy, 

precision, recall, F1 score (weighted, macro, and micro), and ROC AUC are examined carefully 

to provide a comprehensive understanding of the classifier’s efficacy. For the first dataset with 

229 samples, 16383 features in Cancer_type SVM accuracy is 70.4% and Mutation_subtype 

accuracy is 64.3%. Observation: SVM performed better in cancer type classification. KNN 

accuracy in Cancer_type is 50.7% and accuracy in Mutation_subtype is 61.2%, observation: 

KNN performs unexpectedly better in mutation subtypes classification. Random forest accuracy 

in Cancer_type is 57.9% and accuracy is Mutation_subtype is 61.1%, logistic regression 

accuracy in Cancer_type is 69.8% and accuracy in Mutation_subtype is 62%. Decision Tree 

accuracy in Cancer_type is 44% and accuracy in Mutation_subtype is 56.8%, Naïve Bayes had 

the lowest performance across the metrics and the lowest accuracy of 40% and 36% for both 

classifications. Based on the observations for the second dataset of 229 samples and 43,682 

features SVM still had the highest performance and highest accuracy of 64.3% for both 

classifications. I also observed that SVM went down for this dataset because this was the original 

dataset that did not have normalization performed. Logistic regression performance was still 

consistent with the second highest accuracy of 65% and 61% for both classifications. 

 

 

 Table 6.1 Performance Results of Seven Classifiers for Cancer types and Mutation 

Subtypes Classification 
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6.6 Comparison with Existing Studies 

This section compares our results with the reference paper and other relevant studies, in 

comparing our results with the reference paper by Zhang YH et al., 2017 several main 

observations and comparisons appear. First, both studies emphasize the significance of machine 

learning, and the choice of SVM as a classifier is shared between the studies, contributing to the 

reliability and accuracy of cancer subtype classifications. In terms of performance evaluation, 

both studies utilize ten -fold-cross-validation, making sure of robust and comparable 
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assessments. However, there was differences such as the referenced paper dataset had 285 

samples and 13,445 features by discarding the low counts. In our study there was two datasets 

with 229 samples 16,383 features and 229 samples 43,682 features. Referenced paper applied an 

mRMR method as the feature selection method, in our study the only additional process we 

followed was normalizing the counts. Both studies had SVM as the highest accuracy, referenced 

paper SVM accuracy was 74% and in our study the accuracy was 70% without any fine tuning or 

feature selection method. Normalization was performed for various reasons such as it allows for 

more accurate identification of differentially expressed genes, it also makes sure that the 

expression values are on a common scale, allowing valid comparisons between samples. Since 

there are some longer genes with more counts, normalization corrects for this bias allowing for a 

fair comparison between the genes of different lengths. The similarities in applying liquid biopsy 

for noninvasive detection and leveraging quantitative gene expression profiles highlights the 

shared recognition of these methodologies across studies. Table 6.6 highlights the comparison of 

our study, referenced paper, and other relevant studies SVM accuracy. In conclusion, the 

comparison of our results with the reference paper and additional studies in the literatures reveals 

both similarities differences. While shared methodologies and approaches provide a structure for 

understanding cancer subtypes, variations show the challenges and context specific of genomic 

data. 

 

Table 6.2 A comparative overview of SVM Accuracy across diverse studies 
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6.7 Future Work 

This section discusses future work that can address the challenges that occurred due to 

the high dimensional dataset which can also improve the performance in cancer subtype 

classification. Enhancing feature selection methodologies is an important aspect in improving the 

performance of the classifiers. Feature selections plays a role in refining the set of attributes used 

for classification leading to improved model interpretability and performance. In section 6.5 the 

table shows existing literature studies and there SVM accuracy, but each study also used a 

feature selection method. Segal et al., 2003 used gene ranking for feature selection including the 

fisher score method, A standard Student’s t test was used to compare the expression in one tumor 

type with that in the remaining samples. The resulting p values were then used to rank the genes, 

and the desired number of genes was then selected for use. Finally, a statistic t test, as 

determined for all samples was used to provide an overall ranking of the genes in order of 

relevance for each tumor classification [45]. By following this feature selection method, SVM 

performance had an accuracy of 98.5%. Zhang et al., 2017 used mRMR feature selection method 

that extracted the relevance between features and targets that can be essential biomarkers for the 
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classification of cancer subtypes and healthy control group. After following this feature selection 

method, SVM performance had an accuracy of 75%. The feature selection method that we will 

follow is the reads2vec. Reads2vec is a method that transforms raw sequencing data into 

distributed representations, capturing patterns and relationships in the data. It allows the 

extraction of meaningful features from RNA-seq data. Applying reads2vec for feature selection 

can enhance the classification accuracy of cancer subtypes by identifying discriminative genomic 

patterns. The process of using this method first involves converting the RNA-Sequencing reads 

into vector representations. This allows the algorithms to learn and represent complex 

relationships between genes more effectively. Including reads2vec in future studies could be the 

getaway for more accurate and cancer subtype classification, contributing to advancements in 

precision medicine. 
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7 CONCLUSION 

In this thesis, we delved into the landscape of cancer subtypes of classification using 

machine learning algorithms, with a particular focus on RNA-Sequencing data from blood 

platelets. Drawing inspiration from the work of Zhang et al., (2017), we navigated through the 

complexities of liquid biopsy and machine learning applications in cancer classification. Our 

research spanned various cancer subtypes, including breast, colorectal glioblastoma, 

hepatobiliary, lung, and pancreatic cancer. Leveraging robust machine learning algorithms such 

as SVM, Random Forest, Naïve Bayes, Logistic Regression, Multi-Perceptron, KNN, and 

Decision Tree. Our study aimed to enhance the accuracy and precision of cancer subtypes 

classification. Also, a comparative analysis with existing studies was conducted to get an 

overview on the varying SVM accuracies in different contexts. As we move forward, the use of 

feature selection method reads2vec emerges as a crucial aspect to improve the accuracy of the 

seven classifiers in cancer subtypes classification. This study details the importance of 

innovative approaches such as liquid biopsy and advanced machine learning methodologies in 

the pursuit of accurate and personalized cancer diagnostics.  
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