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ABSTRACT

This thesis explores the development of distributed systems for image classification using

deep learning techniques. The primary focus is on optimizing the training of a MESHNET

convolutional neural network (CNN) model for accurate image classification. We address the

challenges associated with distributed training by proposing novel strategies that maximize

resource utilization while maintaining high classification accuracy with minimal data and

limited epochs.

To facilitate distributed training, we leverage the Coinstac platform, enabling seamless

coordination and computation across distributed nodes. Within this framework, we develop

a computation for the MESHNET model, allowing efficient utilization of local data resources

for model training. Additionally, we introduce Immunetworks, a lightweight RESTful frame-

work, for scalable deployment and management of distributed systems.

We demonstrate the effectiveness of our approach in achieving high accuracy in image

classification tasks while efficiently utilizing distributed resources. Our findings not only

contribute to the advancement of distributed deep learning methodologies but also hold

promise for a wide range of real-world applications beyond image classification.

INDEX WORDS: MeshNet, Convolutional Neural Network, brain tissue segmen-
tation, medical image analysis, distributed learning, resource
optimization
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Meshnet (4; 8; 5) a specialized deep learning model, holds promise in enhancing our un-

derstanding of MRI brain scans. With its ability to meticulously analyze image details,

Meshnet can accurately identify different brain tissues like gray matter and white matter.

This precision is crucial for tasks such as disease diagnosis and treatment planning, where

accuracy is paramount.

In our research, we’re also leveraging distributed learning, a collaborative approach where

multiple computers, each with its own dataset, work together. Rather than sharing raw

data between nodes, which can raise privacy concerns, each node processes its own data and

computes gradients—the mathematical directions for improving the model’s performance.

These gradients are then centrally aggregated, resulting in a refined model that is sent back

to each node for further training.

By integrating Meshnet (4; 8; 5) with distributed learning , we aim to streamline the

analysis of brain scans while respecting data privacy. This combination allows for faster

and more efficient model training, utilizing the collective power of distributed resources.

Ultimately, our goal is to empower medical professionals and researchers with enhanced tools

for accurately interpreting MRI scans (3), leading to earlier detection of brain abnormalities

and deeper insights into brain function and pathology.
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1.2 Research Objectives and Contributions

The thesis is focused on achieving the following objectives:

• We aim to develop an optimized Meshnet (4; 8; 5) deep learning model tailored for

accurate segmentation of brain tissues in MRI scans (3). This involves refining the

model architecture to capture intricate spatial dependencies and enhance segmentation

accuracy.

• Investigate distributed learning strategies to enable collaborative model training across

multiple nodes. This exploration includes approaches such as centralized aggregation

and serverless architectures (13; 14), aiming to improve training efficiency while main-

taining data privacy. In particular, our focus extends to gradient aggregation methods

(8) within distributed learning frameworks, ensuring seamless collaboration among

nodes while preserving data integrity.

• we integrate distributed computing frameworks like Coinstac (12; 1) to streamline cen-

tralized gradient aggregation from diverse nodes. This integration enables collaborative

model training without compromising data security. Furthermore, we explore the fea-

sibility of serverless architectures (13), leveraging technologies like AWS Lambda and

API Gateway, to ensure data security while enhancing scalability and cost-effectiveness

in gradient aggregation.
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1.3 Thesis Outline

This thesis explores the optimization of brain tissue segmentation in MRI scans. Chapter

2 provides an explanation of Meshnet (4; 8; 5) architecture. In Chapter 3, we present an

optimized Meshnet model for accurate segmentation and its results. Chapter 4 discusses

distributed learning strategies for collaborative model training. Chapter 5 concludes by

summarizing contributions and suggesting future research directions.
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CHAPTER 2

ARCHITECTURE OF MESHNET

2.1 MeshNet design

MeshNet (4; 8; 5) leverages a three-dimensional Convolutional Neural Network (3D CNN)

architecture. This design allows the model to capture spatial dependencies and relationships

in three dimensions, making it particularly suited for tasks like brain tissue segmentation

where the 3D nature (3) of the data is essential.

2.1.1 Eight-Layer Design

The architecture 2.1 comprises eight layers, each contributing to the overall feature extraction

and segmentation process. The layered structure allows the network to progressively learn

hierarchical representations of the input data.

Figure 2.1 MeshNet Architecture (4)
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2.1.2 3D Dilated Convolutions

A key feature of MeshNet is the incorporation of 3D dilated convolutions (7). Dilated convo-

lutions, also known as atrous convolutions, enable the network to increase its receptive field

without significantly increasing the number of parameters. This is beneficial for capturing

long-range dependencies in the input data (3).

2.1.3 Specific Padding Setting and Dilation Factor

Each layer in MeshNet incorporates 3D dilated convolutions (7) with a specific padding

setting and dilation factor. These parameters are carefully chosen to balance the trade-off

between receptive field size and computational efficiency.

2.1.4 Additional Techniques for Performance Enhancement

• 3D Batch Normalization: Applied in each layer, batch normalization (7) helps in

normalizing the input to a layer, mitigating internal covariate shift and accelerating

training.

• ReLU Activation: Rectified Linear Unit activation functions introduce non-linearity

to the model (7), allowing it to learn complex mappings between inputs and outputs.

• 3D Dropout Regularization: Dropout (7) is employed to prevent overfitting by

randomly setting a fraction of input units to zero during training. In MeshNet, this

technique is applied in 3D to enhance regularization.
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CHAPTER 3

TRAINING IMPLEMENTATION AND RESULTS

In this chapter, we delve into the detailed methodology employed for training the MeshNet

model, including the data loading process, subvolume generation, interactive data explo-

ration, metrics used for evaluation, and the training algorithm (12; 14; 13). Furthermore, we

present the experimental results obtained from training the MeshNet architecture on diverse

subvolume shapes, showcasing its adaptability and efficiency across different datasets.

3.1 Trining Algorithm

3.1.1 Data Loader

The data loader (14; 12) component plays a crucial role in managing volumetric medical

imaging data for brain scan analysis. Integrated with an SQLite database, this module

streamlines the retrieval and preprocessing of image-label pairs, essential for training convo-

lutional neural networks (CNNs) like MeshNet. By efficiently handling tasks such as decom-

pression and transformation into PyTorch tensors (6; 3), the data loader ensures that the

neural network receives properly formatted input data. Additionally, the data loader’s capa-

bility to partition the data into smaller sub-cubes enhances processing efficiency by breaking

down large volumes into manageable chunks, optimizing resource utilization during training

and validation phases. This overview highlights the significance of the data loader compo-

nent in facilitating seamless integration with neural network models, ultimately contributing

to the scalability, reproducibility, and efficiency of medical imaging workflows.
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3.1.2 Interactive 3D Scan Data Exploration

Interactive 3D exploration is essential for several reasons, particularly in the context of

medical imaging and neural network applications like MeshNet (7). It enhances the in-

terpretability of model predictions, facilitates quality assurance, and provides an intuitive

means for users to interactively analyze and communicate insights from the volumetric data

and model outputs. We have also use Brainchop for visualizing the Images (10; 9).

Figure 3.1 Example of interactive 3D scan for input lable and output prediction.
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3.1.3 Metrics for assessing model performance

3.1.3.1 Dice coefficient (Dice score)

Dice scores serve as a pivotal metric for quantifying the spatial agreement between pre-

dicted and ground truth label maps. Specifically tailored for segmentation tasks, this metric

calculates the intersection of pixels in both sets.

DICE =
2|X ∩ Y |
|X|+ |Y |

Where:

• X represents the predicted segmentation mask.

• Y represents the ground truth segmentation mask.

• |X| is the number of pixels in the predicted mask.

• |Y | is the number of pixels in the ground truth mask.

The DICE coefficient quantifies the spatial agreement between model predictions (X)

and ground truth (Y ).

3.1.3.2 Cross Entropy Loss

This measure operates by quantifying the dissimilarity between predicted probabilities as-

signed by the model and the corresponding true labels.

Cross Entropy Loss = −
∑

(y · log(p))
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Where:

• y is the true label (one-hot encoded).

• p is the predicted probability distribution.

3.1.4 One-step Learning Rate for Optimizer

In machine learning, the learning rate is a hyperparameter that determines the step size at

each iteration while moving toward a minimum of a loss function. One common strategy for

adjusting the learning rate during training is the one-step learning rate method.

In this method, the learning rate is typically adjusted after every training epoch or after

a certain number of iterations. The adjustment can be based on various factors such as the

performance of the model on the validation set or the number of epochs completed.

The one-step learning rate can be implemented using different techniques such as:

• Step Decay

• Exponential Decay

• Adaptive Learning Rate (Adam, RMSProp)

The choice of the one-step learning rate strategy depends on the specific problem, model

architecture, and dataset characteristics. Experimentation and tuning are often necessary

to find the optimal learning rate schedule for a given task.
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3.1.5 Training algorithm:

The training process occurs in the train method, where the model is trained (14; 13) for

a specified number of epochs. Within each epoch, the algorithm iterates over the training

data, computes the loss and Dice scores, performs backpropagation, updates the learning

rate using the one-cycle schedule, and updates the model’s parameters using the optimizer.

It also evaluates the model on the validation data, calculating the loss and Dice scores for

collecting mertics on each cycle.

Listing 3.1 Training Algorithm with One-Cycle LR

whi le epoch != num epochs :

model . t r a i n ( )

t r a i n l o s s , t r a i n d i c e = 0 . 0 , 0 . 0

f o r images , l a b e l s in t r a i n l o ad e r :

opt imize r . z e ro g rad ( )

outputs = model ( images )

l o s s = c r i t e r i o n ( outputs , l a b e l s )

d i c e s c o r e s = d i c e ( outputs , l a b e l s )

l o s s . backward ( )

opt imize r . s t ep ( )

s chedu l e r . s t ep ( )
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3.2 Results for training

Using Google Colab’s GPU infrastructure, our MeshNet underwent training on Mindboggle

101 brain MRI scans, encompassing various sub-volume shapes. The dataset included Brain

Scan Datasets with T1 scans and limited labels, partitioned into training (10 pairs), vali-

dation (2 pairs), and inference (3 pairs) datasets. MeshNet showcased adaptability across

diverse spatial resolutions like 256³, 32³, 64³, and 128³. Notably, it achieved satisfactory

accuracy in fewer training epochs for each sub-volume shape’s data-loader, emphasizing its

efficiency in extracting features from intricate datasets. This underscores MeshNet’s adapt-

ability in multiclaas 3D segmentation tasks within the Mindboggle 101 dataset, portraying

its potential for diverse complexities.

Figure 3.2 Metrics Log when trained with sub-volume batches

In the Dice scores, encompassing Dice0, Dice1, and Dice2, signify the MeshNet model’s

precision in delineating distinct classes or regions within the dataset. Their counterparts, Val-

Dice-0, Val-Dice-1, and Val-Dice-2, reflect the model’s validation set performance across these
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specific categories. These scores are pivotal indicators of the model’s accuracy in segmenting

diverse elements within the data. Simultaneously, Train-Loss and Val-Loss metrics play a

crucial role by quantifying the disparity between predicted and actual values during the

training and validation phases, respectively. Lower values in these metrics denote enhanced

model convergence and predictive accuracy.

The Step-LR metric likely tracks learning rate variations throughout training steps, of-

fering insights into the model’s adaptive learning behavior. Furthermore, the aggregated

validation Dice score (val-dice) provides a comprehensive evaluation of the model’s effec-

tiveness in segmenting or classifying data elements on the validation set. Collectively, these

metrics offer nuanced insights into the MeshNet model’s performance, providing a holistic

assessment of its segmentation capabilities and validation set generalization. They serve

as fundamental tools for comprehensively evaluating the model’s effectiveness and behavior

throughout the training and validation phases.

Figure 3.3 Metrics with Onecycle Step LR
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CHAPTER 4

METHODOLOGY

4.1 Introduction

In our methodology, we initially utilized Google Collab’s minimum GPU specifications for

training our MeshNet model. We then expanded this methodology to our decentralized

framework with the goal of minimizing architectural memory usage and simplifying the train-

ing process. This approach was chosen to maximize computational efficiency and optimize

resource utilization during the training phase.

Figure 4.1 Coinstac Decentralized Architecture
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4.2 Distributed learning using Gradient aggregation

Centralized Gradient Aggregation is a strategy employed in distributed learning to streamline

the process of updating machine learning models across multiple nodes or machines. In this

method, instead of each node independently updating its model based on local data, all

nodes send their model updates or gradients to a central server or point. At this central

location, these updates are aggregated or combined to create a unified view of the model’s

performance across the entire network. This aggregated view provides valuable insights into

the overall direction and effectiveness of the learning process.

Listing 4.1 Central Node Algorithm

FUNCTION avg grads ( args ) :

INPUT: args − g rad i en t s data remote nodes

OUTPUT: agg grad − l i s t o f averaged g rad i en t s

grads = [ i n p u t l i s t [ node ] f o r node IN input ]

sum arrs = [ sum( ar rays ) f o r a r rays IN z ip (∗ grads ) ]

avg a r r s = [ sum arr / l en ( grads ) f o r sum arr IN sum arrs ]

RETURN avg a r r s

END FUNCTION

Once the central server has synthesized this collective view, it distributes the information

back to each node. This feedback guides individual nodes on how to adjust their models to

better align with the overall performance goals. By leveraging this synchronized approach,

Centralized Gradient Aggregation promotes collaboration among the nodes, ensuring that
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they collectively contribute to improving the model’s accuracy and efficiency.

Listing 4.2 Remote Node Algorithm

FUNCTION remote node a lgor i thm ( l o c a l g r a d i e n t s ) :

FOR EACH epoch IN range ( num epochs ) :

FOR EACH batch IN range ( num batches ) :

model . t r a i n ( )

s e n d g r a d i e n t s t o c e n t r a l ( l o c a l g r a d i e n t s )

agg g rad i en t s = r e c e i v e a g g g r ad i e n t s ( )

update mode l grad ients ( agg g rad i en t s )

pe r f o rm opt im i za t i on s t ep ( )

send acknowledgment to centra l node ( )

END FUNCTION

Overall, Centralized Gradient Aggregation facilitates a coordinated and cohesive learning

process in distributed settings, where diverse data sources and computational resources are

utilized. This method fosters a unified improvement cycle, enabling distributed systems to

iterative refine and enhance machine learning models over time.

This thesis presents the implementation and experimentation of two distinct approaches

for decentralized learning within a Meshnet deep learning model framework.
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4.2.1 Coinstac Application

Using Coinstac (16; 1)for distributed training with the Meshnet model simplifies research

collaboration. Users analyze their data on their own computers, keeping their information

private. It scales well by spreading the workload across many machines. Collaborating is

easier because users contribute without sharing sensitive data. Results are replicable and

transparent since each user runs the same analysis. Coinstac offers flexibility in hardware

and software choices, reducing data transfer and setup complexities, making distributed

computing accessible for researchers.

4.2.1.1 Implementation and workflow

Constack facilitates local testing of simulations using Docker containers. The simulator

includes a Docker-file defining container architecture, an input spec file for required inputs,

local.py and remote.py for local-remote communication logic, and input folders for each local

node. Through Constac, computations are orchestrated seamlessly using Docker containers

for local testing.

I have developed a new simulator for training the MeshNet (7) model in a distributed

environment. This simulator allows users to input various components necessary for train-

ing, including the MeshNet model file in Python, a dice function, an SQLite database file

containing compressed image and label data in a table format, and a dataloader for reading

data from the database. Additionally, users specify parameters such as epochs, learning rate,

classes, and a WandB URL for monitoring training progress.
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During computation, the simulator automatically (12) deploys a set of Docker images

representing local nodes and one central node. Each training cycle on a local node involves

sending gradients to the remote node, which then waits for all nodes to transmit their gradi-

ents. Once the remote node receives gradients from all local nodes, it calculates aggregated

gradients and sends back the averaged gradients to each local node. This ensures that all

nodes are updated with the same aggregated gradients (8), facilitating synchronized training

iterations until successful completion.

Figure 4.2 Simulator file system structure

To monitor training progress and view logs, the simulator integrates WandB logging, col-

lecting metrics from each node and visualizing them in real-time during training. This com-

prehensive approach to distributed training enhances collaboration and efficiency, making it

easier for researchers to train complex models like MeshNet (7) in a distributed simulation

environment.

The simulator can be seamlessly integrated with the Coinstac desktop application. Within
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Coinstac (1), users can create a consortium and establish a pipeline (2), featuring computa-

tion steps such as Meshnet distributed. Input covariates are provided for data inputs, and

additional users can join the pipeline and upload required files. Once the requisite users are

assembled, the computation can commence within the consortium pipeline.

Start Simulator

Collect Gradients

from Local Nodes

Node 1
Node 2

Node 3

Connect to

Central Node

Check If Last

Iteration

End Simulation

Distributed Gradient Aggregation architecture

Yes

No
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Local Simulation

As mentioned Coinstac (16) also provided feasibility to test local simulton. To initiate

a local simulation using the simulators developed for distributed learning available in the

Meshnet distributed folder of the repository mentioned in (12), follow these steps:

• Ensure to install all the necessary requirements mentioned in (15).

• Download the repository containing the latest simulator from the provided link and

navigate to the Meshnet distributed folder within the repository.

• To begin the local simulation, we need to create a Docker image as instructed in (16).

This image will contain the necessary environment and dependencies.

• After creating the Docker image, execute the coinstac-simulator command. This com-

mand will deploy a one remote node container specific number of local node containers

based on the inputs specified in the inputspec file which can be visble in docker desktop.

Desktop Application simulation

• Open the Coinstac desktop application and locate the Consortium feature within the

in the main menu.

• Choose to either create a new consortium for your simulation or join an existing one.

Define the consortium’s parameters like its name and purpose.

• Establish a pipeline for your simulation within the consortium. Outline the computa-

tion steps needed for the simulation process in our case it is MeshNet-distributed
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• Define the specific computation steps within each stage of the pipeline. Specify pa-

rameters and dependencies as required.

• Input the necessary covariates or variables required for the simulation. This may

include data inputs, parameters, or initial conditions.

• Once the pipeline is set up and data provided, start the computation process within

the consortium. Monitor its progress and review the results once the simulation is

complete.

Figure 4.3 Simulation Reference

4.2.2 Serverless Gradient Aggregation Framework

The implementation phase of this research project focused on developing a robust and effi-

cient system for aggregating gradients in a distributed computing environment. Leveraging

cloud-native services provided by Amazon Web Services (AWS), the implementation aimed

to integrate various components seamlessly while ensuring security, scalability, and reliability

throughout the system architecture.
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Figure 4.4 AWS Architecture Diagram - Distributed gradient aggregation

AWS Cognito was utilized as the primary mechanism for user authentication and identity

management. By integrating Cognito with the system, users could securely authenticate

themselves using a variety of authentication methods supported by the service. This ensured

that only authorized users could access the system’s resources, thereby safeguarding sensitive

data and maintaining the integrity of the system.

API Gateway played a pivotal role in managing the RESTful APIs exposed to users.

By integrating API Gateway with Cognito, the system enforced strict authentication and

authorization policies for accessing the APIs. This integration allowed for seamless user

authentication while offloading the complexity of managing user identities and access control

to AWS services, streamlining the development process and enhancing the overall security

posture of the system.

The server-less computing paradigm offered by AWS Lambda was leveraged to implement
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the backed logic for processing user requests and aggregating gradients. Lambda functions

were designed to scale automatically in response to fluctuating workload demands, eliminat-

ing the need for manual provisioning and optimizing resource utilization. By encapsulating

the computation logic within Lambda functions, the system achieved greater flexibility and

agility in handling user requests while minimizing operational overhead.

DynamoDB served as the underlying database for storing user activities and relevant

system data. By restricting access to DynamoDB to only authorized Lambda functions,

the system enforced fine-grained access control and ensured that data access was limited to

trusted components within the system. This approach enhanced data security and integrity

while providing a scalable and cost-effective storage solution for the system.

Overall, the implementation phase successfully integrated AWS services to develop a

resilient and scalable system for aggregating gradients in a distributed computing environ-

ment. By leveraging cloud-native technologies and best practices, the system achieved its

objectives of providing secure, efficient, and reliable gradient aggregation capabilities while

laying the foundation for future enhancements and optimizations.

Below figure shows an workflow of communication between each service.

User

API

Gateway

AWS

Cognito

AWS

Lambda

DynamoDB

4.2.2.1 Implementation and workflow

The implementation of our project relies heavily on the utilization of Terraform, an industry-

leading Infrastructure as Code (IaC) tool provided by HashiCorp (11). Terraform offers a
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streamlined approach to deploying and managing infrastructure, enabling us to define our

desired architecture in code and provision it across various cloud environments.

Deployment of back-end architecture into AWS account :

By leveraging Terraform for our project implementation, we gain several benefits. Firstly,

with Infrastructure as Code (IaC), our infrastructure is defined and managed as code, facil-

itating version control, collaboration, and repeatability. Secondly, Terraform’s automation

capabilities streamline the provisioning and configuration of infrastructure, reducing manual

effort and minimizing the risk of human error. Additionally, Terraform enables scalabil-

ity, allowing us to easily adjust our infrastructure to accommodate changing demands by

modifying our Terraform configuration. Finally, Terraform ensures consistency across envi-

ronments, enabling reliable replication of our infrastructure across various stages, including

development, testing, and production environments. Overall, these features empower us to

efficiently manage and scale our infrastructure while maintaining consistency and reliability

throughout the project lifecycle.

The deployment process using Terraform involves the following steps:

• Configuration: We define our infrastructure requirements in Terraform configuration

files, specifying the desired state of our architecture.

• Initialization: We initialize Terraform in our project directory using the terraform

init command. This step downloads the necessary providers and modules required for

our infrastructure.
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Figure 4.5 Coinstac simulator management console

• Planning: We generate an execution plan using terraform plan, which provides a

preview of the actions Terraform will take to create, update, or delete resources based

on our configuration.

• Execution: We apply the Terraform configuration using terraform apply, which trig-

gers the provisioning of our infrastructure based on the execution plan generated in

the previous step.

• Validation: We verify that the deployed infrastructure meets our requirements and

functions as expected.

Upon successful deployment of the simulator we can be able to login to the simulator

web application to create and manage simulations for meshnet

Simulator for Restful frame work :

I have developed a flask application to utilize the the rest frame work for train model in

any system architecture with minimum installations required. Our Flask application serves

as a comprehensive platform for managing and executing machine learning simulations (14)

in a distributed setting. The workflow begins with user authentication, where individuals

access the application through a secure login process. Upon successful authentication, users
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gain access to the application’s functionalities, primarily centered around the initiation and

monitoring of machine learning simulations. Through the user interface, individuals can

start new simulations, review ongoing tasks, and access historical data, streamlining the

management of complex experiments.

Figure 4.6 Authentication using rest framework

Once a user initiates a new simulation, the Flask application orchestrates the train-

ing process using a multi-threaded approach. This enables concurrent execution of train-

ing tasks, optimizing resource utilization and expediting the training process. Each thread

within the multi-threaded environment independently handles various aspects of the training

pipeline, including model initialization, data loading, training loop execution, and gradient

exchange with the distributed system. This decentralized approach ensures efficient distribu-

tion of computational workload and enhances the scalability of our application. Throughout

the training process, the Flask application facilitates seamless communication with the dis-

tributed system. Gradients computed during training are exchanged between the application

and distributed nodes through API calls. Leveraging these exchanges, our application en-

ables collaborative learning across multiple nodes, enhancing the robustness and effectiveness
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Figure 4.7 Simulator dashboard

of the machine learning models being trained. Additionally, the application’s main thread

remains responsive, allowing users to monitor simulation progress in real-time and providing

timely feedback on the status of their experiments.

Periodic validation checks are conducted to ensure the accuracy and reliability of the

training process. These checks involve evaluating model performance metrics against val-

idation data, verifying convergence, and identifying potential issues or anomalies. Upon

completion of training, simulations are deactivated, and users gain access to comprehensive

results and insights through the web interface. Simulation results, including performance

metrics, training logs, and visualizations, empower users to analyze experiment outcomes

effectively and derive meaningful conclusions from their research endeavors. Overall, our

Flask application offers a sophisticated yet user-friendly platform for conducting distributed

machine learning experiments, facilitating collaboration, and advancing research in the field.
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Figure 4.9 Sample logged Metrics in different nodes



28

CHAPTER 5

RESULTS

In the results section of our thesis documentation, we present the outcomes of our simulation

testing, which involved training the meshnet model from its initial stage without utilizing

any pre-trained weights. This training was conducted in two distinct distributed simulators:

one implemented within the Coinstac application, utilizing remote nodes, and the other

a custom Restful simulator employing the AWS Lambda serverless approach for gradient

aggregation calculation.

Through rigorous comparison, we evaluated the performance of the models trained in

both scenarios. Specifically, we assessed models trained for the same number of iterations

and using identical datasets. This comparative analysis provided valuable insights into the

efficacy and efficiency of the workflow in each setting.

5.1 Utilizing Coinstac Distributed Simulator

In this section, we present the results obtained from training the Meshnet model using the

Coinstac distributed simulator. The training dataset comprised 10 batches of training data,

3 batches of validation data, and 2 batches of test data. Each data point in the dataset

consists of serialized information containing images and labels, both of shape 2563̂.

During the training process, we adopted a methodology where each volume in the dataset

was partitioned into subvolumes of varying shapes. Specifically, we employed subvolume

shapes of 323, 1283, 643, and 2563 across separate training sessions, each spanning 10 epochs.

In Dice scores, encompassing Dice0, Dice1, and Dice2, signify the MeshNet model’s
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Figure 5.1 Centralized Gradient Aggregation Logging from Coinstac

precision in delineating distinct classes or regions within the dataset. Their counterparts,

ValDice0, ValDice1, and ValDice2, reflect the model’s validation set performance across these

specific categories. These scores are pivotal indicators of the model’s accuracy in segmenting

diverse elements within the data.

Simultaneously, TrainLoss and ValLoss metrics play a crucial role by quantifying the

disparity between predicted and actual values during the training and validation phases,

respectively. Lower values in these metrics denote enhanced model convergence and pre-

dictive accuracy. Furthermore, the aggregated validation Dice score (valdice) provides a

comprehensive evaluation of the model’s effectiveness in segmenting.

Collectively, these metrics offer nuanced insights into the MeshNet model’s performance,

providing a holistic assessment of its segmentation capabilities and validation set general-

ization. They serve as fundamental tools for comprehensively evaluating the model’s ef-
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fectiveness and behavior throughout the training and validation phases. The decentralized

approach ensures fair task distribution among nodes, fostering balanced contributions.

5.2 Utilizing Immunetworks Distributed Simulator

The results obtained for Immnetworks distributed system are quite promising. Achieving

good accuracy with a dice score of 80% indicates strong performance in the task at hand. This

level of accuracy demonstrates the effectiveness of the system in processing and analyzing

data across distributed nodes.

Training on two different nodes over the full volume data of 15 datasets, with each dataset

containing 10 test and 3 validation datasets, showcases the system’s ability to handle large-

scale data efficiently, Figure 5.2. The fact that these results were achieved after training for

80 epochs on each node further emphasizes the robustness and reliability of the distributed

training approach.

Overall, these results highlight the effectiveness of Immnetworks in distributed systems,

showcasing its potential to handle complex tasks with high accuracy and efficiency. This

bodes well for its applicability in various domains requiring distributed data processing and

analysis.

The comparison of predicted and original labels Figure 5.3 using our best-trained model

provides valuable insights into its performance. These visualizations aid in understanding the

model’s strengths and weaknesses, guiding future refinements and optimizations for enhanced

accuracy and reliability.
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Figure 5.2 Immunetworks Training log

Figure 5.3 Plots for original vs predicted brain scan labels
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CHAPTER 6

Discussions and Conclusion

Our strides in decentralized MeshNet learning demonstrate promising advancements in bal-

anced node training. By partnering with Coinstac, we have enhanced our approach for

impactful distributed learning strategies. Additionally, the integration of Immunetworks, a

lightweight RESTful framework, has streamlined our system’s scalability and ease of deploy-

ment, further empowering our distributed learning architecture.

6.1 Contributions

• Enhanced Distributed Learning Strategies : Through collaboration with Coin-

stac, we have developed and optimized distributed learning strategies that leverage lo-

cal data while ensuring efficient communication and coordination among nodes. This

has resulted in more effective utilization of computational resources and improved

model performance.

• Development of Immunetworks : The incorporation of Immunetworks, a lightweight

RESTful framework, has simplified the deployment and scalability of our distributed

learning system. This contribution addresses the practical challenges associated with

deploying complex distributed systems in real-world settings.

6.2 Implications

• Our work has significant implications for the future of collaborative learning. By

decentralizing the training process and integrating efficient communication protocols,
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we pave the way for scalable and collaborative approaches to model training across

diverse datasets and computational environments.

• The techniques and frameworks developed in this project offer solutions to the chal-

lenges of training deep learning models on distributed data sources. These advance-

ments have implications for industries such as healthcare, finance, and manufacturing,

where large-scale data analysis is essential, but resources are often distributed across

different locations.

• The success of our project highlights the potential for broader adoption of distributed

learning techniques in various domains. As the demand for analyzing and extracting

insights from massive datasets continues to grow, decentralized approaches to machine

learning become increasingly relevant and necessary.

6.3 Future Directions:

• As our project continues to evolve, ensuring the scalability and robustness of our

distributed learning system will be paramount. This includes addressing challenges

related to handling increasingly large and diverse datasets, as well as improving fault

tolerance and resilience to node failures.

• There is potential for exploring alternative architectures and models beyond MeshNet

for distributed learning tasks. Investigating the suitability of different neural network

architectures and their performance in decentralized environments could lead to further

advancements in the field.
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• Future efforts could focus on applying our distributed learning framework to real-world

problems and deploying it in practical settings. This may involve collaborating with

industry partners to address specific challenges and validate the effectiveness of our

approach in real-world scenarios.

Through this ongoing project, we have identified potential advancements in collaborative

learning, aiming to enhance efficiency and scalability. In conclusion, our collaborative ef-

forts in decentralized MeshNet learning, supported by Coinstac and utilizing Immunetworks,

have made significant progress in balanced node training. This project has the potential to

contribute to the evolution of distributed learning, providing more efficient and scalable

solutions.
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