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ABSTRACT

Next-generation sequencing (NGS) and mass spectrometry technologies bring un-

precedented throughput, scalability and speed, facilitating the studies of biological sys-

tems. These technologies allow to sequence and analyze heterogeneous RNA populations

rather than single sequences. In particular, they provide the opportunity to implement

massive viral surveillance and transcriptome quantification. However, in order to fully

exploit the capabilities of NGS technology we need to develop computational methods

able to analyze billions of reads for assembly and characterization of sampled RNA pop-



ulations.

In this work we present novel computational methods for cost- and time-effective

analysis of sequencing data from viral and RNA samples. In particular, we describe:

i) computational methods for transcriptome reconstruction and quantification; ii) method

for mass spectrometry data analysis; iii) combinatorial pooling method; iv) computational

methods for analysis of intra-host viral populations.

INDEX WORDS: Next-Generation Sequencing, RNA-sequencing, Transcriptome
quantification and reconstruction, Mass spectrometry, Combina-
torial pooling, Genetic relatedness, Molecular surveillance, Viral
transmission networks
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PART 1

INTRODUCTION

In this work we study algorithmic problems associated with RNA sequencing (RNA-

Seq). RNA-Seq is an increasingly popular approach to transcriptome profiling that uses

the capabilities of next generation sequencing (NGS) technologies and provides better

measurement of levels of transcripts and their frequencies. The algorithmic problems that

arise in RNA-Seq are conceptually similar to the problems that are associated with RNA

viruses. Indeed, in genomics studies each sequenced sample contains a single genetic

variant, whereas in metagenomics studies each sample may contain several substantially

different variants. However, in transcriptomics studies most often the intermediate prob-

lem arises: it is highly desirable to reconstruct the whole transcriptome, i.e. the set of

genetically related and very similar but not identical transcriptome variants. In this work

we propose novel algorithms for effective and accurate transcriptome reconstruction and

quantification, using integer programming approach for reconstruction and simulated

regression method for quantification problem.

In the recent decades molecular biology has been revolutionized by the advent of

NGS which delivers many orders of magnitude higher throughput compared to classic

Sanger sequencing [5, 6]. Continued advances in NGS technologies now provide the op-

portunity to implement massive molecular surveillance of viral diseases that will allow

to characterize viral strains in tens of thousands of infected individuals. Availability of

such large-scale datasets would result in unprecedented progress in our understanding

of virus evolution and structures of transmission networks, enabling the development of

more effective prevention strategies based on the applications of vaccines and antiviral

therapeutics.

In this work we mostly deal with RNA viruses, which include such highly impor-
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tant for public health research viruses as HIV and HCV. Due to error prone replication,

RNA viruses mutate at average rates estimated to be as high as 10−3 substitutions per

nucleotide per replication cycle [7]. Since mutations are generally well tolerated, many

RNA viruses infecting a host exist as highly heterogeneous populations of closely related

sequences commonly referred by virologists as quasispecies [8–12]. Extremely high ge-

netic heterogeneity of intra-host viral populations has major biological implications, con-

tributing to the efficiency of virus transmission, tissue tropism, virulence, disease progres-

sion, and emergence of drug/vaccine resistant variants [13–17]. NGS allows sampling

viral quasispecies at a great depth [18], and has enabled, e.g., identification of extremely

low frequency variants in human patients chronically infected with HIV or HCV [19–24].

The most preferable way of assessment of intra-host viral populations in each sample

is analysis of whole-genome sequences. However, NGS usually generates short reads,

which should be assembled into whole-genome sequences. Assembly of viral quasis-

pecies and estimation of their frequencies is extremely complex task, and currently even

most advanced computational tools for whole-genome quasispecies reconstruction often

only allow inference of most prevalent intra-host variants, with minority variants being

frequently undetectable [25–29]. Alternatively, genetic viral variants can be detected us-

ing highly variable subgenomic regions that can be easily amplified and sequenced. Al-

though genetic information presented in such regions does not allow for identification of

all viral variants, it is usually sufficient for inferring transmission networks [30–32], de-

tecting drug-resistant variants, predicting therapy outcome [33–35], and studying intra-

host viral evolution [36–38]. In our work we concentrate on analysis of sequences of

highly variable genomic regions.
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1.1 Sequencing heterogeneous RNA populations

1.1.1 Computational methods for transcriptome quantification and reconstruc-

tion

Massively parallel whole transcriptome sequencing and its ability to generate full

transcriptome data at the single transcript level provides a powerful tool with multiple

interrelated applications, including transcriptome reconstruction [39–42], gene/isoform

expression estimation [41, 43–45], also known as transcriptome quantification, studying

trans- and cis-regulatory effect [46], studying parent-of origin effect [46–48], and calling

expressed variants [49]. As a result, whole transcriptome sequencing has become the tech-

nology of choice for performing transcriptome analysis, rapidly replacing array-based

technologies [50].

The most commonly used transcriptome sequencing protocol, referred to as RNA-

Seq, generates short (single or paired) sequencing tags from the ends of randomly gen-

erated cDNA fragments. Using transcriptome sequencing data, most current research

employs methods that depend on existing transcriptome annotations. Unfortunately, as

shown by recent studies [51], existing transcript libraries still miss large numbers of tran-

scripts. The incompleteness of annotation libraries poses a serious limitation to using

this powerful technology since accurate normalization of data critically requires knowl-

edge of expressed transcript sequences [43–45, 52]. Another challenge in transcriptomic

analysis comes from the ambiguities in read/tag mapping to the reference. Our research

focuses on two main problems in transcriptome data analysis, namely, transcriptome re-

construction and quantification, and we show how these challenges are handled. Tran-

scriptome reconstruction, also referred to as novel isoform discovery, is the problem of

reconstructing the transcript sequences from the sequencing data. Reconstruction can be

done de novo or it can be assisted by existing genome and transcriptome annotations.

Transcriptome quantification refers to the problem of estimating the expression level of

each transcript.
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1.1.2 Computational inference of genetic relatedness from mass spectrometry vi-

ral data

Mass spectrometry (MS) of DNA fragments generated by base-specific cleavage of

PCR products is a cost-effective and robust alternative to DNA sequencing. MS is cheaper

and less labor-intensive than most of the next-generation sequencing technologies, and

also is not prone to the errors characteristic for these technologies. It is is based on matrix-

assisted laser desorption/ ionization time-of-flight (MALDI-TOF) analysis of complete

base-specific cleavage reactions of a target RNA obtained from PCR fragments [53, 54].

RNA transcripts generated from both strands of PCR fragment are cleaved by RNase A

at either U or C, thus querying for every of the 4 nucleotides (A, C, U and G) in separate

reactions. Cleavage at any one nucleotide; e.g. U, generates a number of short fragments

corresponding to the number of U’s in the transcript. The mass and size of the fragments

differ based on the number of A, C and G nucleotides residing between the U’s that flank

each short fragment. The fragments are resolved by MALDI-TOF-MS, resulting in mass

spectral profiles, where each peak defines a specific mass measured in Daltons and has

intensity that corresponds to the number of molecules of identical masses.

Unlike sequencing, MS is not readily applicable to reconstruction of the genetic com-

position of DNA/RNA populations. Algorithms for reconstruction of sequences from

MS data were proposed [55]; but, owing to technological and computational limitations,

none is widely used. Nevertheless, MS has been successfully applied to the reference-

guided single nucleotide polymorphism (SNP) discovery [54, 56, 57], genotyping [53, 58],

viral transmission detection [59], identification of pathogens and disease susceptibility

genes [60,61], DNA sequence analysis [62], analysis of DNA methylation [63], simultane-

ous detection of bacteria [64] and viruses [65, 66].

In the case of molecular surveillance of viral diseases MS may serve as a rich source of

information about the population structure and the genetic relations among populations

without sequences reconstruction. One of the most important applications of sequences

is phylogeny. However, construction of phylogenetic trees requires knowledge of genetic
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distances among species rather than sequences, with sequences being merely used to es-

timate the distances. Comparison of MS profiles may also accurately approximate genetic

distances. The problem of calculating the distance between two MS samples is known as

spectral alignment problem [67,68]. It is usually formulated as follows: match the masses

from two MS profiles in such a way that some predefined objective function is maximized

or minimized.

We developed a new algorithm for alignment of the base-specific cleavage MS pro-

files (MS-Al) that is based on the reduction of the problem to the network flow problem.

MS-Al allows de novo comparison of sampled populations and may be used for phyloge-

netic analysis and viral transmissions detection.

1.1.3 NGS of large cohorts of viral samples using combinatorial pooling

Although NGS offers a significant increase in throughput, sequencing of a large num-

ber of viral samples still is prohibitively expensive and extremely time consuming. There-

fore, massive molecular surveillance requires development of a strategy for simple, rapid

and cost-effective sequencing of microbial populations from a large number of specimens.

Cost of sequencing of multiple viral samples can be reduced using multiplexing

through barcoding. Although this is probably the simplest approach to a simultaneous

sequencing of large number of specimen, it requires individual handling of each sam-

ple starting from nucleic acid extraction to PCR and library preparation, which increases

the sequencing costs [69, 70]. Additionally, bias in amplification of different viral vari-

ants using PCR primers with different barcodes may affect distribution of reads [70, 71].

Moreover, maintaining a large library of barcodes is daunting [69, 70].

Combinatorial pooling provides an alternative approach to sequencing costs reduc-

tion. Applications of pooling to diagnostic testing goes back to the 1940s [72]. Commonly,

it is used for tests producing binary results; e.g., positive or negative, as in group test-

ing [73–76]. Recently, several pooling strategies were proposed for more complex assays

based on DNA sequencing, SNP calling and a rare alleles detection [77–82]. In particu-
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lar, recent application of combinatorial pooling protocol to selective genome sequencing

using NGS [69] should be mentioned.

Pooing strategies for heterogeneous intra-host viral populations sequencing are fun-

damentally different from other existing pooling protocols. Those protocols assume that

a single sequence must be reconstructed for each sample. In contrast, the goal of viral

quasispecies sequencing is to reconstruct the whole quasispecies spectra that includes mul-

tiple sequence variants and their frequencies, including low-frequency variants. It makes

the problems of viral quasispecies pool design and pool deconvolution challenging. In

particular, the assessment of intra-host viral populations can be distorted by PCR or sam-

pling biases. Thus mixing of a large number of specimens or specimens with significant

differences in viral titers may contribute to underrepresentation of viral variants from

some samples in pools, suggesting that size and composition of pools should be carefully

designed. Stochastic sampling from genetically diverse intra-host viral populations usu-

ally produces variability in compositions of sets of variants in different pools obtained

from the same sample. Additionally, mixing specimens may differentially bias PCR am-

plification, contributing to mismatching between viral variants sampled from the same

host in two pools with different specimen compositions. Therefore, straightforward ap-

proaches cannot be used for samples deconvolution, indicating that a more complex ap-

proach based on clustering techniques is needed. To increase the effectiveness of cluster-

based deconvolution and minimize possible clustering errors, it is important to minimize

mixing of genetically close samples as can be expected in epidemiologically related sam-

ples and samples collected from a small geographic region.

We developed a combinatorial pooling pipeline for NGS of viral quasispecies. Our

pipeline includes the following steps (Fig. 4.1): (i) mixing samples in a specially designed

set of pools so that the identity of each sample is encoded in the composition of pools;

(ii) sequencing pools; (iii) pools deconvolution; i.e., assignment of viral variants from the

pools to individual samples. This approach allows to significantly reduce the number of

PCR and NGS runs, reducing the cost of testing and hands-on time. Our pipeline was
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validated using simulated and experimental HCV data.

1.1.4 Computational inference of genetic relatedness, transmission clusters and

sources of outbreaks from NGS viral data

Sequencing has already been used for transmission networks inference and out-

breaks investigations for Influenza A [83], HIV [84–87], Hepatitis A virus [88,89], Hepati-

tis B virus [90,91] and HCV [92–94]. However, contribution of sequencing technologies to

molecular surveillance of viral infections was not significant so far, being mainly hindered

by the lack of reliable computational methods for the inference of transmission networks

directly from sequence data, without the need of expert analysis by trained molecular

epidemiologist.

Currently transmissions are usually detected either by phylogenetic analysis carried

out visually by a humane expert [84–86, 88, 90–94] or by applying a cutoff on genetic dis-

tances between sequences from infected individuals [87]; i.e., two individuals are consid-

ered linked by transmission if the genetic distance between the corresponding consensus

viral sequences does not exceed a certain value. Although they work well in some cases,

such approaches have a number of disadvantages. In particular, it is known that minor

variants are often responsible for transmission of HCV infections [95,96]. Transmission of

low-frequency variants is most probably associated with the fact that dominant variants

in a chronically infected host are highly adapted to the intra-host environment devel-

oped during the course of infection, which potentially results in a lower viability in the

naive host environment [97]. Such transmissions may not be effectively detected using

consensuses sequences. Moreover, distance cutoffs are often either arbitrary or derived

from analysis of limited or incomplete experimental data. Cutoffs are highly data- and

situation-specific. Different viruses or even different genomic regions of the same virus

can be analyzed only using specifically established cutoffs. Moreover, cutoffs tailored

to outbreak settings with high prevalence of transmissions may be too strict for surveil-

lance where the detection rate of cases linked by direct transmission is low. In addition
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to that, analysis of consensus sequences and genetic-distance cutoff-based methods (even

for intra-host populations) does not allow for detecting the direction of transmissions,

which is crucial for the identification of outbreak sources and superspreaders. Finally,

evolutionary history of viral quasispecies in the host contains important information on

viral transmissions. However, phylogenetic trees may not represent intra-host evolution

of highly mutable RNA viruses as accurate as network-based approaches reconstructing

viral evolution from sets of founders [98].

We developed novel methods for identification of genetic relatedness, transmission

clusters and sources of outbreaks, which resolve the aforementioned limitations. Our

algorithms address the following problems:

1) Detection of possible transmission links and their directions.

2) Identification of transmission clusters and sources of outbreaks.

1.2 Contributions

We present a novel annotation-guided method for transcriptome discovery and re-

construction in partially annotated genomes and compare it with existing annotation-

guided and genome-guided transcriptome assembly methods. Our method, referred as

“Discovery and Reconstruction of Unannotated Transcripts” (DRUT) [2], can be used to

enhance existing transcriptome assemblers, such as Cufflinks [39]. It was shown that

Cufflinks enhanced by DRUT has superior quality of reconstruction and frequency esti-

mation of transcripts. To solve transcriptome reconstruction problem assisted by existing

genome annotations

We propose a novel method called “Transcriptome Reconstruction using Integer Pro-

gramming” (TRIP) [42]. The method incorporates information about fragment length dis-

tribution of RNA-Seq paired-end reads to reconstruct novel transcripts.

To estimate isoform frequencies from RNA-Seq data we propose a simulated regres-

sion based method (SimReg) [1]. Experiments demonstrate improved frequency estima-
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tion accuracy of SimReg comparatively to that of the existing tools which tend to skew

the estimated frequency toward super-transcripts.

To assess the genetic relatedness among RNA populations we propose several meth-

ods. First, we use mass spectrometry (MS) data which enables an accurate comparison of

MS profiles and provides a direct evaluation of genetic distances between RNA molecules

without invoking sequences. MS alignments (MSA) may serve as accurately as sequence

alignments to facilitate phylogenetic analysis and, as such, has numerous applications

in basic research, clinical and public health settings. We formulate and solve MSA as

network flow problem.

We propose a cost-effective and reliable protocol for sequencing of viral samples,

that combines NGS using both barcoding and pooling and a bioinformatical framework

including novel algorithms for optimal virus-specific design of pools and deconvolution

of individual samples from sequenced pools. It allows our framework to be readily ap-

plicable to highly mutable RNA viruses’ data.

1.3 Roadmap

The rest of the dissertation proposal is organized as follows. Chapter 2 presents novel

algorithms for transcriptome reconstruction and quantification. In Chapter 3 we describe

a framework for measuring genetic distances using mass spectrometry profiles. Chapter

4 presents pooling strategies and the motivation behind it. We first present the state of

the art in pooling methods, then we introduce our novel pooling technique optimized for

large number of viral samples, and we finish by describing the experimental setup and

results. In Chapter 5 we present algorithms for effective detection of viral transmissions

and outbreak source identification.
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PART 2

TRANSCRIPTOME RECONSTRUCTION AND QUANTIFICATION FROM NGS

DATA

2.1 RNA-Seq protocol

RNA sequencing (RNA-Seq) is a widely used cost-efficient technology with several

medical and biological applications. This technology, however, presents scholars with a

number of computational challenges. RNA-Seq protocol provides full transcriptome data

at a single transcript level.

RNA-Seq is an increasingly popular approach to transcriptome profiling that uses

the capabilities of next generation sequencing (NGS) technologies and provides better

measurement of levels of transcripts and their isoforms. One issue plaguing RNA-Seq

experiments is reproducibility. This is a central problem in bioinformatics in general. It

is not easy to benchmark the entire RNA-seq process [99], and the fact that there are fun-

damentally different ways of analyzing the data (assembly, feature counting, etc) make

it more difficult. Nevertheless RNA-Seq offers huge advantages over microarrays since

there is no limit on the numbers of genes surveyed, no need to select what genes to target,

and no requirements for probes or primers and it is the tool of choice for metagenomics

studies. Also, RNA-seq has the ability to quantify a large dynamic range of expression

levels, this lead to transcriptomics and metatranscriptomics.

Rapid advances in NGS have enabled shotgun sequencing of total DNA and RNA ex-

tracted from complex microbial communities, ushering the new fields of metagenomics

and metatranscriptomics. Depending on surrounding conditions e.g. food availability,

stress or physical parameters, the gene expression of organisms can vary widely. The aim

of transcriptomics is to capture the gene activity. Transcriptomics helps perform gene ex-

pression profiling to unravel gene functions. It can tell us, which metabolic pathways are
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in use under the respective conditions and how the organisms interact with the environ-

ment. Hence, it can be applied for environmental monitoring and for the identification of

key genes. Transcriptomics also play a role in clinical diagnosis and in screening for drug

targets or for genes, enzymes and metabolites relevant for biotechnology [100–102].

While transcriptomics deals with the gene expression of single species, metatran-

scriptomics covers the gene activity profile of the whole microbial community. Metatran-

scriptomics studies changes in the the function and structure of complex microbial com-

munities as it adapts to environments such as soil and seawater. Unfortunately, as in all

"meta" approaches, only a small percentage of the vast number of ecologically important

genes has been correctly annotated [103].

Here, we apply RNA-Seq protocol and transcriptome quantification to estimate gene

expression and differential gene expression analysis.

RNA-Seq, or deep sequencing of RNAs, is a cost-efficient high-coverage powerful

technology for transcriptome analysis. There are various tools and algorithms for RNA-

Seq data analysis devoted to different computational challenges, among them transcrip-

tome quantification and reconstruction. We focus on the problem of transcriptome quan-

tification, i.e. on the estimation the expression level of each transcript.

2.2 Transcriptome reconstruction from RNA-seq reads

2.2.1 Related work

RNA-Seq analyses typically start by mapping sequencing reads onto the reference

genome, reference annotations, exon-exon junction libraries, or combinations thereof. In

case of mapping reads onto the reference genome one needs to use spliced alignment

tools, such as TopHat [104] or SpliceMap [105].

Identifying of all transcripts expressed in a particular sample require the assembly of

reads into transcription units. This process is collectively called transcriptome reconstruc-

tion. A number of recent works have addressed the problem of transcriptome reconstruc-
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tion from RNA-Seq reads. These methods fall into three categories: “genome-guided",

“genome-independent" and “annotation-guided" methods [106]. Genome-independent

methods such as Trinity [107] or transAbyss [108] directly assemble reads into transcripts.

A commonly used approach for such methods is de Brujin graph [109] utilizing "k-mers".

The use of genome-independent methods becomes essential when there is no trusted

genome reference that can be used to guide reconstruction. On the other end of the spec-

trum, annotation guided methods [110] make use of available information in existing

transcript annotations to aid in the discovery of novel transcripts. RNA-Seq reads can be

mapped onto reference genome, reference annotations, exon-exon junction libraries, or

combinations thereof, and the resulting alignments are used to reconstruct transcripts.

Many transcriptome reconstruction methods fall in the genome-guided category.

They typically start by mapping sequencing reads onto the reference genome,using

spliced alignment tools, such as TopHat [104] or SpliceMap [105]. The spliced align-

ments are used to identify exons and transcripts that explain the alignments. While some

methods aim to achieve the highest sensitivity, others work to predict the smallest set of

transcripts explaining the given input reads. Furthermore, some methods aim to recon-

struct the set of transcripts that would insure the highest quantification accuracy. Scrip-

ture [40] construct a splicing graph from the mapped reads and reconstructs isoforms

corresponding to all possible paths in this graph. It then uses paired-end information

to filter out some transcripts. Although scripture achieves very high sensitivity, it may

predict a lot of incorrect isoforms. The method of Trapnell et al. [39, 111], referred to as

Cufflinks, constructs a read overlap graph and generates candidate transcripts by finding

a minimal size path cover via a reduction to maximum matching in a weighted bipartite

graph. Cufflinks and Scripture do not target the quantification accuracy. IsoLasso [41]

uses the LASSO [112] algorithm, and it aims to achieve a balance between quantification

accuracy and predicting the minimum number of isoforms. It formulates the problem

as a quadratic programming one, with additional constraints to ensure that all exons and

junctions supported by the reads are included in the predicted isoforms. CLIIQ [113] uses
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Table (2.1) Classification of transcriptome reconstruction methods

Method Support paired-end Consider fragment Require
reads lenght distribution annotation

TRIP Yes Yes No
IsoLasso Yes No No
IsoInfer No No TES/TSS

Cufflinks Yes Yes No
CLIQ No No No

Scripture Yes No No
SLIDE Yes No gene/exon boundaries

an integer linear programming solution that minimizes the number of predicted isoforms

explaining the RNA-Seq reads while minimizing the difference between estimated and

observed expression levels of exons and junctions within the predicted isoforms.

Table 2.1 includes classification of the available methods for genome-guided tran-

scriptome reconstruction based on supported parameters and underlying algorithms.

2.2.2 An integer programming approach to novel transcript reconstruction from

paired-end RNA-seq reads

The common applications of RNA-seq are gene expression level estimation (GE),

transcript expression level estimation (IE) [3] and novel transcript reconstruction (TR).

A variety of new methods and tools have been recently developed to tackle these prob-

lems. In this work, we propose a novel statistical “genome-guided” method called “Tran-

scriptome Reconstruction using Integer Programming” (TRIP) that incorporates fragment

length distribution into novel transcript reconstruction from paired-end RNA-Seq reads.

To reconstruct novel transcripts, we create a splice graph based on exact annotation of

exon boundaries and RNA-Seq reads. A splice graph is a directed acyclic graph (DAG),

whose vertices represent exons and edges represent splicing events. We enumerate all

maximal paths in the splice graph using a depth-first-search (DFS) algorithm. These paths

correspond to putative transcripts and are the input for the TRIP algorithm.
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2.2.3 Transcriptome quantification and reconstruction using partial annotations

In this section, we propose a novel annotation-guided algorithm called "Discovery

and Reconstruction of Unannotated Transcripts"(DRUT) [114] for transcriptome discov-

ery, reconstruction and quantification in partially annotated genomes. DRUT incorpo-

rates VTEM algorithm to detect overexpressed segments corresponding to the unanno-

tated transcripts and to estimate transcriptome frequencies. In case rVTEM algorithm is

used, segments represent reads corresponding to unannotated transcripts. eVTEM algo-

rithm requires one additional step, to select reads corresponding to overexpressed exons.

Henceforth we will refer to these reads as overexpressed reads. Spliced read is selected

only in the case when it entirely belongs to the “overexpressed" exons.

In this way we add the mapped reads to a new read alignment file (e.g., sam file) that

represents a subset of original reads. This subset of reads is merged with reads that failed

to map to annotated transcripts. Only reads that failed to map to annotated transcripts

are now mapped to the reference genome using spliced alignment tools, e.g. TopHat [104]

(see Fig. 2.1c). Merged subsets of reads are used as an input for transcriptome assembler.

For DRUT framework we chose Cufflinks [39] as ab initio transcriptome reconstruction

tool. Assembled transcripts are merged with annotated transcripts and the resulting set

of transcripts is filtered to remove duplicates (see Fig. 2.1d). Finally DRUT reports full

set of transcripts and maximum likelihood frequencies of transcripts that the best explain

reads.

2.2.4 Experimental Results.

Our validation of DRUT includes three experiments over human RNA-seq data, two

experiments on transcriptome quantification and one experiment on transcriptome dis-

covery and reconstruction. Below we describe the transcriptome data and read simulation

and then give the settings for the each experiment and analyze the obtained experimental

results.
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2.2.4.1 Simulated human RNA-Seq data. The human genome data (hg19, NCBI

build 36) was downloaded from UCSC [115] and CCDS [116], together with the coordi-

nates of the transcripts in the KnownGenes table. The UCSC database contains a total

of 66, 803 transcripts pertaining to 19, 372 genes, and CCDS database contains 20, 829

transcripts from 17, 373 genes. The transcript length distribution and the number of tran-

scripts per genes for UCSC are shown in Fig. 2.2. Genes were defined as clusters of known

transcripts as in GNFAtlas2 table, such that CCDS data set can be identified with the sub-

set of UCSC data set. 30 millions single reads of length 25bp were randomly generated

by sampling fragments of transcripts from UCSC data set. Each transcript was assigned

a true frequency based on the abundance reported for the corresponding gene in the first

human tissue of the GNFAtlas2 table, and a probability distribution over the transcripts

inside a gene cluster [45]. We simulate datasets with geometric (p=0.5) distributions for

the transcripts in each gene.

Single error-free reads of length 25bp, 50bp, 100bp and 200bp were randomly gen-

erated by sampling fragments of transcripts from UCSC data set. As shown in the [45]

for transcriptome quantification purposes it is more beneficial to have shorter reads if the

throughput is fixed. At the same time, for transcriptome reconstruction is quite benefi-

cial to have longer reads. Read length of 100bp is the best available option for such next

generation sequencing platform as IlluminaTM [117]. Current Ion TorrentTMtechnology

is capable of producing reads of length more than 200bp. Ion TorrentTMnext generation

sequencing technology utilizes integrated circuits capable of detection ions produced by

the template-directed DNA polymerase synthesis for sequencing genomes [118].

2.2.4.2 Accuracy Estimation Transcriptome Quantification Accuracy was assessed

using error fraction (EF) and median percent error (MPE) measures used in [119]. However,

accuracy was computed against true frequencies, not against estimates derived from the

true counts as in [119]. If f̂i is the frequency estimate for an transcript with true frequency

fi, the relative error is defined as |f̂i − fi|/fi if fi 6= 0, 0 if f̂i = fi = 0, and∞ if f̂i > fi = 0.
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The error fraction with threshold τ, denoted EFτ is defined as the percentage of transcripts

with relative error greater or equal to τ. The median percent error, denoted MPE, is de-

fined as the threshold τ for which EFτ = 50%.

To estimate transcriptome reconstruction accuracy all assembled transcripts (referred

to as "candidate transcripts") are matched against annotated transcripts. Two transcripts

match if and only if they include the same set of exons. Two single-exon transcripts match

if and only if the overlapping area is at least 50% the length of each transcript.

Following [26], we use sensitivity and Positive Predictive Value (PPV) to evaluate

the performance of different methods. Sensitivity is defined as portion of the annotated

transcript sequences being captured by candidate transcript sequences as follows:

Sensitivity =
TP

TP + FN

PPV is defined portion of annotated transcript sequences among candidate se-

quences as follows:

PPV =
TP

TP + FP

2.2.4.3 Comparison on partially annotated UCSC data set. We assumed that in

every gene 25% of transcripts are not annotated. In order to create such an instance we

assign to the transcripts inside the gene a geometric distribution (p=0.5), assuming a pri-

ori that number of transcripts inside the gene is less or equal to 3, we will refer to this

experiment as Experiment 1. This way we removed transcripts with frequency 0.25. As a

result 11, 339 genes were filtered out, number of transcripts was reduced to 24, 099. Note

that in our data set unannotated transcripts do not have unique exon-exon junctions that

can emit reads indicating that certain transcripts are not annotated.

We first check how well VTEM estimates the volume of missing transcripts. Al-

though the frequencies of all missing transcripts are the same (25%), the volumes sig-

nificantly differ because they have different lengths. Therefore, the quality can be mea-

sured by correlation between actual unannotated volumes and predicted missing vol-
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umes, which represent volumes of virtual transcripts. In this experiment the quality is

61% which is sufficiently high to give an idea which genes have unannotated transcripts

in the database.

Table 2.2 reports the median percent error (MPE) and .15 error fraction EF.15 for the

isoform expression levels inferred from 30 millions reads of length 25bp, computed over

groups of isoforms with various expression levels.

Figure 2.3 gives the error fraction at different thresholds ranging between 0 and 1.

Clearly the best performance is achieved when the genome is completely annotated, in

which case IsoEM and VTEM (rVTEM and eVTEM) show similar results. This happens

due to the fact that the frequency of virtual transcript is not increasing over iterations

of VTEM. In case of partial annotated genome using virtual transcript allows rVTEM to

achieve better results comparative to IsoEM. eVTEM has worse performance than other

methods, the reason is that it uses simplified model based on exons rather than on reads,

as is done in IsoEM and rVTEM.

Table (2.2) Median percent error (MPE) and 15% error fraction (EF.15) for isoform expres-
sion levels in Experiment 1.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

MPE

Complete annotations:
IsoEM, rVTEM, eVTEM 0.0 61.7 22.0 8.0 3.2 2.1 10.3

Partial annotations:
IsoEM 0.0 59.3 41.3 24.8 19.7 5.9 33.7
rVTEM 0.0 47.2 33.1 20.7 16.4 8.5 26.9
eVTEM 0.0 60.5 45.1 25.2 22.1 9.1 35.3

EF.15

Complete annotations:
IsoEM, rVTEM, eVTEM 0.0 81.9 61.3 28.7 7.5 8.5 38.8

Partial annotations:
IsoEM 0.0 81.7 72.4 61.4 56.7 42.1 67.6
rVTEM 0.0 77.2 68.2 57.6 53.0 36.8 63.6
eVTEM 0.0 82.8 75.6 64.7 59.2 44.4 70.1

2.2.4.4 Comparison on on CCDS data set. In this experiment, referred as Exper-

iment 2, UCSC data set represents the complete set of transcripts and CCDS data set
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represents the partially annotated set of transcripts. Reads were generated from UCSC

annotations, while only frequencies of the known transcripts from the CCDS database

were estimated. In contrast to Experiment 1, we do not control the frequency of unanno-

tated transcripts (i.e. transcripts from UCSC which are absent in CCDS). Therefore, one

cannot expect as good improvements as in Experiment 1.

Table 2.3 reports the median percent error (MPE) and .15 error fraction EF.15 for iso-

form expression levels inferred from 30 millions reads of length 25bp, computed over

groups of isoforms with various expression levels. We do not report the number of tran-

scripts since they are different for UCSC and CCDS panels. Anyway, one can see a rea-

sonable improvement in frequency estimation of rVTEM over IsoEM.

Table (2.3) Median percent error (MPE) and 15% error fraction (EF.15) for isoform expres-
sion levels in Experiment 2.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

MPE

Complete annotations:
IsoEM, rVTEM, eVTEM 0.0 100 22.7 7.3 3.5 2.5 11.8

Partial annotations:
IsoEM 0.0 100 45.5 29.4 28.5 28.7 31.8
rVTEM 0.0 100 43.2 27.1 25.7 14.3 29.6
eVTEM 0.0 100 46.3 32.2 33.2 32.1 34.6

EF.15

Complete annotations:
IsoEM, rVTEM, eVTEM 5.1 91.2 62.8 29.3 15.8 7.6 45.5

Partial annotations:
IsoEM 18.6 95.6 85.6 83.3 89.2 86.7 80.0
rVTEM 17.6 91.8 81.3 77.9 80.3 75.5 75.2
eVTEM 19.5 97.4 89.2 87.7 88.3 87.9 82.3

2.2.4.5 Comparison Between DRUT, RABT and Cufflinks. In order to simulate a

partially annotated genome we removed from every gene exactly one transcript. As a re-

sult all 19, 372 genes become partially annotated, and number of transcripts was reduced

to 47, 431. In this section, we use the sensitivity and PPV defined above to compare our

DRUT method to the most recent version of Cufflinks and RABT (version 1.3.0 of Cuf-

flinks and RABT downloaded from website http://cufflinks.cbcb.umd.edu/). Due to the
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fact that results on 100bp and 200bp are very similar, we decided to present comparison

on reads of length 100bp. TopHap [104] is used for Cufflinks and RABT to map simulated

reads to the reference genome. For DRUT we used Bowtie [120] to map reads to the set of

annotated transcripts. For our simulation setup we assume perfect mapping of simulated

reads to the genome in case of Cufflinks and to the annotated transcripts in case of DRUT.

Intuitively, it seems more difficult to predict the transcripts in genes with more tran-

scripts. Following [121] we group all the genes by their number of transcripts and calcu-

late the sensitivity and PPV of the methods on genes with certain number of transcripts

as shown in Fig. 2.4.

Next we want to define the portion of known transcripts that is input for annotation-

guided methods as “existing annotations". Please note that sensitivity of annotation-

guided methods needs to be compared to the “existing annotations" ratio unlike regular

reconstruction methods that do not have any a priori information about annotated tran-

scripts. In our simulation setup “existing annotations" ratio increases as the number of

transcripts in genes become larger.

Fig. 2.4(a) shows that for genes with more transcripts it is more difficult to correctly

reconstruct all the transcripts. As a result Cufflinks performs better on genes with few

transcripts since annotations are not used in it standard settings. DRUT has higher sensi-

tivity on genes with 2 and 3 transcripts, but RABT is better on gene with 4 transcripts. For

genes with more than 4 transcripts performance of annotation-guided methods is equal to

"existing annotations ratio", which means these methods are unable to reconstruct unan-

notated transcripts.

We compared PPV for all 3 methods (Fig. 2.4(b)), all methods show high PPV for

genes with 2 transcripts. DRUT outperforms all methods on genes with more then 3

transcripts and shows comparable performance on gene with 2 and 3 transcripts.

TRIP is a novel “genome-guided" method that incorporates fragment length distri-

bution into novel transcript reconstruction from paired-end RNA-Seq reads. The method

starts from a set of maximal paths corresponding to putative transcripts and selects the
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subset of candidate transcript with the highest support from the RNA-Seq reads. We for-

mulate this problem as an integer program. The objective is to select the smallest set of

putative transcripts that yields a good statistical fit between the fragment length distribu-

tion empirically determined during library preparation and fragment lengths implied by

mapping read pairs to selected transcripts.

2.2.4.6 Construction of Splice Graph and Enumeration of Putative Transcripts.

Typically, alternative variants occurs due alternative transcriptional events and alterna-

tive splicing events [122]. Transcriptional events include: alternative first exon, alterna-

tive last exon. Splicing events include: exon skipping, intron retention, alternative 5’

splice site(A5SS), and alternative 3’ splice site (A3SS). Transcriptional events may consist

only of non-overlapping exons. If exons partially overlap and both serve as a first or last

exons we will refer to such event as A5SS or A3SS respectively.

To represent such alternative variants we suggest to process the gene as a set of

so called “pseudo-exons" based on alternative variants obtained from aligned RNA-seq

reads. A pseudo-exon is a region of a gene between consecutive transcriptional or splicing

events, i.e. starting or ending of an exon, as shown in Figure 2.5. Hence every gene has

a set of non-overlapping pseudo-exons, from which it is possible to reconstruct a set of

putative transcripts.

The notations used in Figure 2.5 represents the following:

ei : exon i ;

psej : pseudo-exon j ;

Spsej : start position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Epsej : end position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Tri : transcript i ;
A splice graph is a directed acyclic graph (see Fig. 2.6), whose vertices represent

pseudo-exons and edges represent pairs of pseudo-exons immediately following one an-

other in at least one transcript (which is witnessed by at least one (spliced) read). We enu-

merate all maximal paths in the splice graph using a depth-first-search algorithm. These
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paths correspond to putative transcripts and are the input for the TRIP algorithm. A gene

with n pseudo-exons may have 2n− 1 possible candidate transcripts, each composed of a

subset of the n pseudo-exons.

Next we will introduces an integer program producing minimal number of tran-

scripts sufficiently well covering observed paired reads.

2.2.4.7 Integer Program Formulation. The following notations are used in the In-

teger Program (IP) formulation :

N Total number of reads ;

Jl l-th splice junction;

pj paired-end read, 1 ≤ j ≤ N ;

tk k-th candidate transcript , 1 ≤ k ≤ K;

si Expected portion of reads mapped within i standard deviations

(s1 ≈ 68%, s2 ≈ 95%, s3 ≈ 99.7%);

ε allowed deviation from the rule (ε = 0.05)

Ti(pj) Set of candidate transcripts where p can be mapped with a frag-

ment length between i− 1 and i standard deviations, 1 ≤ i ≤ 3;

T4(pj) Set of candidates transcripts where pj can be mapped with a frag-

ment length within more than 3 standard deviations;
For a given instance of the transcriptome reconstruction problem, we formulate the

integer program.

∑
tk∈T

y(t)→ min

where the boolean variables are:
y(tk) = 1 if candidate transcript tk is selected, and 0 otherwise;

xi(pj) = 1 if the read pj is mapped between i−1 and i standard deviations,

and 0 otherwise;
The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1) through (4).
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Subject to
(1)

∑
tk∈Ti(p)

y(t) ≥ xi(p), ∀p, i = 1, 4

(2) N(si − ε) ≤
∑

j xi(pj) ≤ N(si + ε), i = 1, 4

(3)
∑

i xi(p) ≤ 1, ∀p

(4)
∑
tk∈Jl

y(t) ≥ 1, ∀Jl

Constraint (1) implies that for each paired-end read p ∈ n(si), at least one transcript

t ∈ Ti(pj) is selected. Constraint (2) restricts the number of paired-end reads mapped

within every category of standard deviation. Constraint (3) ensures that each paired-end

read pj is mapped no more than with one category of standard deviation. Finally, con-

straint (4) requires that every splice junction to be present in the set of selected transcripts

at least once.

2.2.4.8 Maximum Likelihood Integer Programming Solution. Here we intro-

duce 2-step approach for novel transcript reconstruction from single-end RNA-Seq reads.

First, we introduce the integer program (IP) formulation, which has an objective to min-

imize number of transcripts sufficiently well covering observed reads. Since such for-

mulation can lead to many identical optimal solutions we will use the additional step to

select maximum likelihood solution based on deviation between observed and expected

read frequencies. As with many RNA-Seq analyses, the preliminary step of our approach

is to map the reads. We map reads onto the genome reference using any of the available

splice alignment tools (we use TopHat [104] with default parameters in our experiments).

1st step : Integer Program Formulation:

We will use the following notations in our IP formulation:
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N total number of candidate ;

R total number of reads ;

Jl l-th spliced junction;

Pl l-th poly-A site(PAS);

r single-read, 1 ≤ j ≤ R ;

t candidate transcript , 1 ≤ k ≤ K;

T set of candidate transcripts

T(r) set of candidate transcripts where read r can be mapped
For a given instance of the transcriptome reconstruction problem, we formulate the

IP. The boolean variables used in IP formulation are:

x(r→ t) 1 iff read r is mapped into transcript t and 0 otherwise;

y(t) 1 if candidate transcript t is selected, and 0 otherwise;

x(r) 1 if the read r is mapped , and 0 otherwise;

The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1)-(5):

∑
t∈T
y(t)→ min

Subject to:

(1) For any r, at least one transcript t is selected: y(t) ≥ x(r→ t), ∀r, ∀t

(2) Read r can be mapped only to one transcript:
∑
t∈T(r)

x(r→ t) = x(r), ∀r

(3) Selected transcripts cover almost all reads:
∑
r∈R
x(r) ≥ N(1− ε)

(4) Each junction is covered by at least one selected transcript:
∑
t∈Jl
y(tk) ≥ 1, ∀Jl
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(5) Each PAS is covered by at least one selected transcript:
∑
tk∈Pl

y(tk) ≥ 1, ∀Pl

We use CPLEX [123] to solve the IP, the rest of implementation is done using Boost

C++ Libraries and bash scripting language.

2nd step : Maximum Likelihood Solution:

In the second step we enumerate all possible subsets of candidate transcripts of size

N, where N is determined by solving transcriptome reconstruction IP, that satisfy the

following condition: every spliced junction and PAS to be present in the subset of tran-

scripts at least once. Further, for every such subset we estimate the most likely transcript

frequencies and corresponding expected read frequencies. The algorithm chooses subset

with the smallest deviation between observed and expected read frequencies.

The model is represented by bipartite graph G = {T
⋃
R, E} in which each transcript

is represented as a vertex t ∈ T , and each read is represented as a vertex r ∈ R. With

each vertex t ∈ T , we associate frequency f of the transcript. And with each vertex r ∈ R,

we associate observed read frequency or. Then for each pair t, r, we add an edge (t, r)

weighted by probability of transcript t to emit read r.

Given the model we will estimate maximum likelihood frequencies of the transcripts

using our previous approach, refer as IsoEM [45]. Regardless of initial conditions IsoEM

algorithm always converge to maximum likelihood solution (see [124]).The algorithm

starts with the set of T transcripts. After uniform initialization of frequencies ft, t ∈ T,

the algorithm repeatedly performs the next two steps until convergence:

• E-step: Compute the expected number n(tk) of reads that come from transcript tk

under the assumption that transcript frequencies f(t) are correct, based on weights

htk,rj

• M-step: For each tk, set the new value of ft to the portion of reads being originated

by transcript t among all observed reads in the sample

We suggest to measure the model quality, i.e. how well the model explains the reads,



29

by the deviation between expected and observed read frequencies as follows:

D =

∑
j |oj − ej|

|R|
, (2.1)

where |R| is number of reads, oj is the observed read frequency of the read rj and ej is the

expected read frequencies of the read rj calculated as follows:

ej =
∑
rj

htk,rj∑
rj
htk,rj

fMLt (2.2)

where htk,rj is weighted match based on mapping of read rj to the transcript tk and fMLt is

the maximum-likelihood frequency of the transcript tk.

The flowchart of MLIP is depicted in figure 2.7.

Figure 2.8 illustrates how MLIP works on a given synthetic gene with 3 transcripts

and 7 different exons (see figure 2.8-A). First we use mapped reads to construct the splice

graph from which we generate T possible candidate transcripts, as shown in figure 2.8-B.

Further we run our IP approach to obtain N minimum number of transcripts that ex-

plain all reads. We enumerate N feasible subsets of candidate transcripts.The subsets

which doesn’t cover all junctions will be excluded from consideration. The subset with

the smallest deviation between expected and observed read frequencies is selected by the

MLIP algorithm.

2.2.4.9 Stringency of Reconstruction. Different level of stringency corresponds

to different strategies of transcriptome reconstruction. High stringency has the goal to

optimize precision of reconstruction, with some loss in sensitivity. On the other hand,

low stringency corresponds to increase in sensitivity and some decrease in prediction.

Medium stringency strikes balance between sensitivity and precision of reconstruction.

The medium stringency is chosen as a default setting for the proposed MLIP method.

Below, we will describe how different stringency levels are computed. For the de-

fault medium level we will use the subset of candidate transcripts selected based on the
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smallest deviation between observed and expected read frequency. For the low stringency

level, our method selects the subset of transcripts that will correspond to the union of the

solution obtained by solving the IP and the solution supported by the smallest deviation.

High stringency level will correspond to the intersection of above solutions.

Influence of Sequencing Parameters. Although high-throughput technologies allow

users to make trade-offs between read length and the number of generated reads, very

little has been done to determine optimal parameters for fragment length. Additionally,

novel Next Generation Sequencing (NGS) technologies such as Ion Torrent may allow

to learn exact fragment length. For the case when fragment length is known, we have

modified TRIP’s IP referring to this new method as TRIP-L.

In this section we compare methods TRIP-L, TRIP and Cufflinks for the mean frag-

ment length 500bp and variance of either 50bp or 500bp, to check how the variance af-

fects the prediction quality. Figures 2.9(a)-2.9(c) compare sensitivity, PPV and F-score of

five methods (TRIP-L 500,500; TRIP-L 500,50; TRIP 500,50; Cufflinks 500,500; Cufflinks

500,50) on simulated data. The results show that as before TRIP has a better sensitiv-

ity and F-score while TRIP-L further improves them. Also higher variation in fragment

length actually improves performance of all methods.

Results on Real RNA-Seq Data. We tested TRIP on real RNA-Seq data that we se-

quenced from a CD1 mouse retina RNA samples. We selected a specific gene that has 33

annotated transcripts in Ensembl. The gene was picked and validated experimentally due

to interest in its biological function. We plan to have experimental validation at a larger

scale in the future. The read alignments falling within the genomic locus of the selected

gene were used to construct a splicing graph; then candidate transcripts were selected

using TRIP. The dataset used consists of 46906 alignments for 22346 read pairs with read

length of 68. TRIP was able to infer 5 out of 10 transcripts that we confirmed using qPCR.

For comparison, we ran the same experiment using cufflinks, and it was able to infer 3

out of 10.

In order to explore influence of coverage on precision and sensitivity of reconstruc-
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Table (2.4) Transcriptome reconstruction results

Coverage
Read 

Length

Fragment 

Length
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F!Score (%)

Cufflinks 21803 16519 66.77 75.76 70.98

MLIP 23351 18412 74.46 78.85 76.59

IsoLasso 21021 15209 60.66 72.35 65.99

Cufflinks 20958 16443 59.78 78.46 67.86

MLIP 25592 20069 75.39 78.42 76.88

IsoLasso 13241 9684 37.32 73.14 49.42

Cufflinks 17981 14073 69.30 78.27 73.51

MLIP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18582 12909 51.06 69.47 58.86

MLIP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

100X

100 250

400 450

20X

100 250

400 450

tion we simulated 2 datasets with 100X and 20X coverage. Table 2.4 shows how accuracy

of transcriptome reconstruction depends on the coverage. For all methods higher cover-

age (100X vs. 20X) doesn’t provide significant improvement in precision and sensitivity.

2.3 Transcriptome quantification

In this chapter we focus on the transcriptome quantification problem, which is to

estimate the expression level of each transcript. Transcriptome quantification analysis

is crucial to determine similar transcripts or unraveling gene functions and transcrip-

tion regulation mechanisms. We propose a novel simulated regression based method for

isoform frequency estimation from RNA-Seq reads. We present SimReg [1] – a novel re-

gression based algorithm for transcriptome quantification. Simulated data experiments

demonstrate superior frequency estimation accuracy of SimReg comparatively to that of

the existing tools which tend to skew the estimated frequency toward super-transcripts.

Recent review of computational methods for transcriptome quantification from

RNA-Seq data reports several problems with the current state of transcriptome quantifica-
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tion, among them a significant variation in distributions of expressions level throughout

transcriptome reconstruction and quantification tools [125]. Transcriptome quantification

from RNA-Seq data highly depends on read depth. Due to the sparse read support at

some loci, many tools fail to report all/some of the exons or exon-intron junctions.

Improving isoform frequency estimation error rate is critical for detecting similar

transcripts or unraveling gene functions and transcription regulation mechanisms, espe-

cially in those cases when one isoform is a subset of another. Figure 2.10 shows a gene

with sub-transcripts from human genome (hg19).

2.3.1 State-of the-art transcriptome quantification methods

From optimization point of view, the variety of approaches to transcriptome quan-

tification is very wide. The most popular approach is maximizing likelihood using differ-

ent variants of expectation-maximization (EM) [45, 126, 127], integer linear program (LP)

based methods [42, 113], min-cost flow [128], and regression [129].

RNA-Seq by Expectation Maximization (RSEM) is an Expectation-Maximization

(EM) algorithm that works on the isoform level. The initial version of RSEM only han-

dled single-end reads, however, the latest version [126] has been extended to support

paired-end reads, variable-length reads, and incorporates fragment length distribution

and quality scores in its modeling. In addition to the maximum likelihood estimates of

isoform expressions, RSEM also calculates 95% confidence intervals and posterior mean

estimates. RSEM is the best algorithm presented so far, so we compare our tool SimReg

to RSEM in Results and Discussion section.

The main limitation of statistically-sound EM approach is that it does not include

uniformity of transcript coverage, i.e., it is not clear how to make sure that a solution

with more uniform coverage of transcripts will be preferred to the one where coverage

is volatile. LP and integer LP based methods overcome this limitation but cannot handle

many isoforms simultaneously.

More recently, the authors of [127] proposed a quasi-multinomial model with a single
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parameter to capture positional, sequence and mapping biases. Tomescu et al. [130] pro-

posed a method based on network flows for a multiassembly problem arising from tran-

script identification and quantification with RNA-Seq. This approach is good at keeping

overall uniformity coverage but is not suitable for likelihood maximization.

Regression based approaches are the most related to the proposed method. The most

representative of these is IsoLasso approach [129]. IsoLasso mathematically model a gene

partitions into segments (a segment is a consecutive exon region while a subexon is a

non-spliced region).

IsoLasso approach also assumes reads being uniformly sampled from transcripts.

The Poisson distribution [131] then used to approximate the binomial distribution for the

number of reads falling into each segment or subexon. The following quadratic program

[129] is well-known as a LASSO approach [112]:

minimize:
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj

)2

subject to: xj ≥ 0 , 1 ≤ j ≤ N ,
N∑
j=1

xj ≤ λ , ∀t = 1...|T |

(2.3)

and two more “completeness" constraints (namely that each segment or junction with

mapped reads is covered by at least one isoform; and the sum of expression levels of

all isoforms that contain this segment or junction should be strictly positive [129]) were

added to this program in IsoLasso. The main over-simplification is an assumption that

each segment receives from containing transcripts the number of reads proportional to its

length. For example, it is not clear how to handle very short subexons and take in account

position of a subexon in a transcript. Fragment length distribution also can discriminate

one subexon from another. Especially difficult to accurately estimate portions of pair-

end reads emitted from each subexon since in fact such reads are frequently emitted by

multiple subexons collectively. Furthermore, mapping of the reads into transcripts is
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frequently ambiguous which is consciously ignored in [129].

In this chapter we propose to apply a more accurate simulation of read emission. Our

novel algorithm falls into the category of regression based methods: namely, SimReg is a

Monte-Carlo based regression method.

In general, one of the main goals of differential expression (DE) analysis is to iden-

tify the differentially expressed genes between two or more conditions. Such genes are

selected based on a combination of expression level threshold and expression score cut-

off, which is usually based on p-values generated by statistical modeling. The expression

level of each RNA unit is measured by the number of sequenced fragments that map to

the transcript, which is expected to correlate directly with its abundance level [132].

The outcome of DE analysis is influenced by the way primary analysis (mapping,

mapping parameters, counting) is conducted [132]. In addition, the overall library prepa-

ration protocol and quality is also an important factor of bias [133–135]. As described

in the next chapters, DE analysis methods differ in how to deal with these pre-analysis

phases. Furthermore, RNA Seq experiments tend to be underpowered (too few replicates)

and we need methods to perform DE under these circumstances.

2.3.2 Simulated regression method for transcriptome quantification

The proposed method for estimating frequencies of transcripts is based on the novel

approach for estimating expected read frequencies. First we describe the essence of our

approach and contrast it with IsoLasso.

As discussed above, it is very difficult (if at all possible) to accurately estimate por-

tions of pair-end reads emitted from each subexon. Instead, rather than distinguishing

reads by their gene position, we partition reads into classes each consisting of reads con-

sistent with each element of a particular subset of transcripts. In other words, two reads

are assigned to the same class if they are consistent with exactly the same transcripts. Our

second innovation is to use Monte-Carlo simulations instead of attempting to formally es-

timate contributions of each transcript to each read class. For any particular read class R,
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the expected frequency is estimated based on the frequencies of contributing transcripts

as well as portions of reads that fall into the class R. Finally, using the standard regression

method, we estimate transcript frequencies by minimizing deviation between expected

and observed read class frequencies.

The general description of the proposed simulated regression algorithm (SimReg)

consists of four steps and is described below.

2.3.2.1 Splitting the transcripts and reads into independent connected compo-

nents. We assume that alignment of a read to transcript is valid if the fragment length

deviates from the mean by less than 4 standard deviations. Our simulations show that

the Monte-Carlo estimates become accurate enough only when simulated coverage is suf-

ficiently high, i.e., approaching 1000x. Such high coverage is time consuming since each

simulated read needs to be aligned with each possible transcript. In order to reduce run-

time, we split transcripts into small related subsets roughly corresponding to sets of over-

lapping genes. First, we build the matching graphM = (T ∪R, E), where T andR are the

sets of all transcripts and reads, respectively, and each edge e = (r, T) ∈ E corresponds

to a valid alignment of a read r to a transcript T ∈ T . Transcript frequencies within each

connected component of M do not depend on transcript frequencies within other con-

nected components and can be estimated separately. A significant portion of connected

components contains just a single transcript for which the next step is trivial. Finally, the

observed reads are partitioned into read classes each consisting of reads mapped to the

same transcripts (see Figure 2.11).

2.3.2.2 Estimating transcript frequencies within each connected component. As

discussed above, in each connected component Cwe simulate reads with 1000x coverage

for each transcript (see Figure 2.11). Thus for a transcript T with the length |T | we generate

NT = 1000lT reads, where lT = |T |− µ+ 1 is the adjusted length of T . Similar to observed

reads, we allow only alignments with fragment length less than 4σ away from µ. The
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reads that belong to exactly the same transcripts are collapsed into a single read class. Let

R = {R} be all read classes found in the connected component C and let RT be the number

of reads simulated from the transcript T that fall in the read class R. The first inner loop

outputs the set of coefficients DR,T = {dR,T }, where dR,T is the portion of reads generated

from T belonging to R

DR,T =

{
|RT |

NT

}
Let F ′T = {f ′T } be the crude transcript frequency, i.e., the portions of reads emitted by

transcripts in the connected component C. Then the expected read class frequency ER can

be estimated as

ER = DR,T × F ′T (2.4)

Regression-based estimation of f ′t’s minimizes squared deviation

(DR,T × F ′T −OR)
2 =
∑
R∈R

(eR − oR)
2 (2.5)

between expected read class frequencies eR’s and observed read class frequencies

oR’s. Minimizing (2.5) is equivalent to the following quadratic program that can be solved

with any constrained quadratic programming solver.

minimize:
∑
R∈R

(∑
T∈C

dR,Tf
′
T − oR

)2
subject to:

∑
T∈C

f ′T = 1 and f ′T ≥ 0 , ∀T ∈ C
(2.6)

2.3.2.3 Update initial estimates of transcript frequencies. The obtained crude

transcript frequency estimation F ′T can deviate from the true crude frequency since the

minimization of deviation is done uniformly. Indeed, the deviation in frequency is mini-

mized on the same scale for each read class while different read classes have different size,
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as well as contribute to different subsets of transcripts. Instead of estimating unknown

coefficients, we propose to directly obtain F ′T for which simulated read class frequencies

SR = {sR} match the observed frequencies OR accurately enough as follows.

Until the deviation between simulated and observed read class frequencies is small

enough, we repeatedly

– simulate reads according to F ′R,

– find deviation between simulated and observed reads, ∆R = SR −OR,

– obtain read frequencies CR = OR−∆R/2 corrected half-way in the direction opposite

to the deviation

– update estimated crude transcript frequencies F ′T based on corrected read class fre-

quencies {CR}

Finally, the transcript frequencies fT ’s can be obtained from crude frequencies f ′T ’s as fol-

lows

fT =
f ′T/lT∑

T ′∈C f
′
T ′/lT ′

(2.7)

2.3.2.4 Combining transcript frequency estimates from all connected compo-

nents. Finally, we combine together individual solutions for each connected compo-

nent. Let fglobT and flocT be the global frequency of the transcript T and local frequency of

the transcript T in its connected component C. Then the global frequency can be com-

puted as follows

fglobT = flocT ×
|RC|/

∑
T ′∈C f

loc
T ′ lT ′∑

C ′∈C
|RC ′ |∑

T ′∈C ′ f
loc
T ′ lT ′

(2.8)

where C is the set of all connected components in the graphM, |RC| is the number of reads

emitted by the transcripts contained in the connected component C.
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2.3.3 Experimental results

2.3.3.1 Results on simulated data. We tested [1] SimReg on several test cases us-

ing simulated human RNA-Seq data. The RNA-Seq data was simulated from UCSC an-

notation (hg18 Build 36.1) using Grinder read simulator (version 0.5.0) [136], with a uni-

form 0.1% error rate. Experiments on synthetic RNA-seq datasets show that the proposed

method improves transcriptome quantification accuracy compared to previous methods.

The following three test cases have been used to validate SimReg:

Case 1: consists of a single gene with 21 transcripts extracted from chromosome 1 (see

Figure 2.12). From this gene we have simulated around 3000 (coverage 100×) paired-end

reads of length 100bp and mean fragment length µ = 300.

Case 2: we have randomly chosen 100 genes from which we have simulated reads using

same parameters as in case 1.

Case 3: we have run our tool on the entire chromosome 1 which contains a total of 5509

transcripts (from 1990 genes) from where we have simulated 10M paired-end reads of

length 100bp.

We have compared our results with RSEM, one of the best tool for transcriptome

quantification. Frequency estimation accuracy was assessed using r2 and the comparison

results are presented in Table 1.The results show better correlation compared with RSEM

especially because of those cases of sub-transcripts where RSEM skewed the estimated

frequency toward super-transcripts.

2.3.3.2 Results on real data. For the real dataset we assayed sets of human genes

using MicroArray Quality Control (MAQC) Human Brain Reference (HBR) sample [137]

and NanoString nCounter amplification-free detection system [125].

For MAQC we have correlated [1] our results using the Taqman qRT-PCR values

while for NanoString we have used the probe counts provided in [125]. Since Taqman

qRT-PCR and NanoString counts only measure the expression levels of genes and probes,

respectively, we only compare gene (probe) abundance estimations. The expression level
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of a gene (probe) is obtained by summing up the frequencies of all transcripts in the gene

(probe). For both datasets we have used the Ensembl Homo sapiens genome sequence

indexes (GRCH37) provided by Illumina.

There are three 2 × 50bp paired-end datasets for Human Brain in SRA in MAQC

dataset . The average insert size is about 200bp and the standard deviation about 30bp. In

NanoString data set we have paired-end reads of length 75bp and similar characteristics

as in MAQC (more details can be found in [125, 138])

In order to compute the 95% confidence interval (CI), we performed bootstrapping

procedure by randomly choosing reads from the given set, and returning chosen samples

back to the pool. As a result, our chosen subsample may contain several copies of the

same reads, whereas some reads are never chosen. We repeat subsampling procedure 200

times. For each sample we compute MPE and r2 for Cufflinks (v2.2.0), RSEM (v1.2.19),

and SimReg and we count how many times our estimates are better than RSEM (since

RSEM shows best performance compared to the other tools).

Table (2.5) Median Percent Error (MPE) and r2 together with 95% CI for Transcriptome
Quantification on MAQC and NanoString datasets [1]

Dataset: MAQC [137]
Algorithm MPE [95% CI] r2 [95% CI]
SimReg 77.2% 76.0 - 79.7% 85.7% 80.2 - 89.0%
RSEM 78.0% 77.4 - 80.1% 86.4% 81.1 - 89.3%
Cufflinks 81.3% 79.5 - 85.2% 82.5% 78.9 - 85.1%

Dataset: NanoString [138]
Algorithm MPE [95% CI] r2 [95% CI]
SimReg 57.0% 55.2 - 59.7% 82.0% 80.2 - 89.0%
RSEM 65.8% 61.3 - 68.2% 82.6% 78.7 - 85.4%
Cufflinks 67.9% 62.5 - 70.1% 79.9% 75.3 - 82.4%

The results presented in table 2.5 [1] show that SimReg has accuracy comparable to

that of RSEM on the MAQC data, but outperforms RSEM in both MPE and r2 on the

Nanostring dataset. Mean Percentage Error of SimReg is less than that of RSEM in 90.5%

of cases.
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All experiments were conducted on a Dell PowerEdge R815 server with quad 2.5GHz

16-core AMD Opteron 6380 processors and 256Gb RAM running under Ubuntu 12.04 LTS.

SimReg is freely available at http://alan.cs.gsu.edu/NGS/?q=adrian/simreg

2.4 Software packages

Our software tools are available online and may be freely used for all non-commercial

purposes.

2.4.1 TRIP

Novel transcript reconstruction from paired-end RNA-Seq reads.

http://grid.cs.gsu.edu/ serghei/?q=trip

2.4.2 DRUT

Discovery and reconstruction of unannotated transcripts in partially annotated

genomes from high-throughput RNA-Seq data.

http://www.cs.gsu.edu/ serghei/?q=drut

2.4.3 SimReg

A simulated regression based algorithm for transcriptome quantification.

http://alan.cs.gsu.edu/NGS/?q=adrian/simreg
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rVTEM: 1. Find “overexpressed” reads

a. Map reads to annotated transcripts, e.g., Bowtie

DRUT

b. VTEM:

b.1. Identify “overexpressed” segments (possibly from 

unannotated transcripts). Note: segments = reads or exons

c. Assemble Transcripts (e.g., Cufflinks) using “overexpressed” reads

d. Output: Annotated transcripts + novel transcripts

Annotated 

transcript

Spliced 

reads

Novel 

transcript

Unspliced 

reads

Overexpressed reads

ML Frequencies

b.2. Estimate annotated transcript frequencies that best explains the 

reads

eVTEM: 1. Find “overexpressed” exons

2. Select reads from “overexpressed”
exons

Overexpressed exons

Overexpressed exons

Figure (2.1) Flowchart for DRUT [2].
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Figure (2.2) Distribution of transcript lengths (a) and gene cluster sizes (b) in the UCSC
dataset
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Figure (2.3) Error fraction at different thresholds for isoform expression levels inferred
from 30 millions reads of length 25bp simulated assuming geometric isoform expression.
Black line corresponds to IsoEM/VTEM with the complete panel, red line is IsoEM with
the incomplete panel, blue line is rVTEM and the green line is eVTEM.
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Figure (2.4) Comparison between DRUT, RABT, Cufflinks for groups of genes with n tran-
scripts (n=1,...,9) : (a) Sensitivity (b) Positive Predictive Value (PPV)
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Figure (2.5) Pseudo-exons(white boxes) : regions of a gene between consecutive tran-
scriptional or splicing events. An example of three transcripts Tri, i = 1, 2, 3 each sharing
exons(blue boxes). Spsej and Epsej represent the starting and ending position of pseudo-
exon j, respectively.
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Figure (2.6) Splice graph. The red horizontal lines represent single reads. Reads inter-
rupted by dashed lines are spliced reads. Each vertex of the splice graph corresponds
to a pseudo-exon and each directed edge corresponds to a (splice) junction between two
pseudo-exons.
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Figure (2.8) A. Synthetic gene with 3 transcripts and 7 different exons. B. Mapped reads
are used to construct the splice graph from which we generate T possible candidate tran-
scripts. C. MLIP. Run IP approach to obtain N minimum number of transcripts that ex-
plain all reads. We enumerate N feasible subsets of candidate transcripts.The subsets
which doesn’t cover all junctions and MLIP will be excluded from consideration. The
subset with the smallest deviation between expected and observed read frequencies is
selected by the MLIP algorithm.



47

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

S
e

n
si

ti
v

it
y

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(a)

PPV_TRIP SENS_TRIP

1 1

0.852256 0.856408

0.707132 0.695508

0.586638 0.557081

0.485103 0.459037

0.413364 0.400224

0.349659 0.330927

0.999367

0.60953

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

P
P

V

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

F
-S

co
re

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(c)
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Figure (2.12) Screenshot from Genome browser [3] of a gene with 21 sub-transcripts
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PART 3

ALIGNMENT OF DNA MASS-SPECTRAL PROFILES USING NETWORK FLOWS

3.1 Mass spectrometry technology

Mass spectrometry (MS) of DNA fragments generated by base-specific cleavage of

PCR products emerges as a cost-effective and robust alternative to DNA sequencing.

MS is cheaper and less labor-intensive than most of the next-generation sequencing

technologies [59,139], and also is not prone to the errors characteristic for these technolo-

gies. MS has been successfully applied to the reference-guided single nucleotide polymor-

phism (SNP) discovery [54, 56, 57], genotyping [53, 58], viral transmission detection [59],

identification of pathogens and disease susceptibility genes [60, 61], DNA sequence anal-

ysis [62], analysis of DNA methylation [63], simultaneous detection of bacteria [64] and

viruses [65, 66].

MS technology is based on matrix-assisted laser desorption/ ionization time-of-flight

(MALDI-TOF) analysis of complete base-specific cleavage reactions of a target RNA ob-

tained from PCR fragments [53,54]. RNA transcripts generated from both strands of PCR

fragment are cleaved by RNaseA at either U or C, thus querying for every of the 4 nu-

cleotides (A, C, U and G) in separate reactions. Cleavage at any one nucleotide; e.g. U,

generates a number of short fragments corresponding to the number of U’s in the tran-

script. The mass and size of the fragments differ based on the number of A, C and G

nucleotides residing between the U’s that flank each short fragment. The fragments are

resolved by MALDI-TOF-MS, resulting in mass spectral profiles, where each peak defines

a specific mass measured in Daltons and has intensity that corresponds to the number of

molecules of identical masses.

It should be noted that in MALDI-TOF-MS technology all molecules are equally

singly charged, so the actual molecular weights could be obtained simply by subtract-
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ing the mass of a single hydrogen from every mass from MS profile. Therefore, in the

paper, we assume that MS profiles reflect molecular weights of the corresponding DNA

molecules.

Unlike sequencing, MS is not readily applicable to reconstruction of the genetic com-

position of DNA/RNA populations. Algorithms for reconstruction of sequences from MS

data were proposed [55]; but, owing to technological and computational limitations, none

is widely used.

MS may serve as a rich source of information about the population structure and

the genetic relations among populations without sequences reconstruction. One of the

most important applications of sequences is to phylogenetic reconstructions. However,

construction of phylogenetic trees requires knowledge of genetic distances among species

rather than sequences, with sequences being merely used to estimate the distances. Com-

parison of MS profiles may also accurately approximate genetic distances. The problem

of calculating the distance between two MS samples is known as spectral alignment prob-

lem [67, 68]. It is usually formulated as follows: match the masses from two MS profiles

in such a way that some predefined objective function is maximized or minimized. We

discuss the most common objective functions and methods for solving the spectral align-

ment problem in the next section.

Spectral alignment is crucial for the most applications of MS based on the matching

of the sample and reference spectra, with the reference MS spectrum generated in silico.

Spectral alignments are also used for MS data of proteins [140], but the protein technology

and, therefore, the problem formulation and algorithm for its solution are completely

different.

Here we propose a new formulation of the problem of aligning of the base-specific

cleavage MS profiles (MS-Al) and present a method for its finding. The method is based

on the reduction of the problem to the network flow problem. MS-Al allows de novo

comparison of sampled populations and may be used for phylogenetic analysis and vi-

ral transmission detection. For conserved genomes (such as human genome) it allows
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accurate estimation of actual genetic distance between DNA sequences.

3.2 Mass-spectral profiles alignment problem

MS profile P = {p1, ..., pn} consists of n peaks, where each peak pi = (m(pi), f(pi))

is represented by a mass m(pi) and intensity f(pi). Further without loss of generality

we assume that f(pi) is an integer proportional to the number of occurrences of the mass

m(pi) in the sample. In the simplest version, the spectral alignment problem could be

formulated as follows [67]:

Problem 1.

Input: Two MS profiles P1 = {p11, ..., p
1
n1
} and P2 = {p21, ..., p

2
n2
}

Find: Two subsets P1∗ ⊆ P1 and P2∗ ⊆ P2 of matched peaks and a bijection π : P1∗ → P2∗

such that the following objective function is maximized:

score(P1∗, P
2
∗, π) −

∑
p1i∈P1\P1∗

pen(p1i ) −
∑

p2i∈P2\P2∗

pen(p2i ) (3.1)

Here score is a matching score function and pen is a mismatch penalty function.

Usually it is assumed [67] that the function score is additive, which means that matches

between different peaks are independent:

score(P1∗, P
2
∗, π) =

∑
p1i∈P1∗

score(p1i , π(p
1
i )) (3.2)

Most of known score functions are based on matches of peaks with close masses. In

the simplest case we can put pen ≡ 0 and

score(p1i , p
2
j ) =

 1, |m1
i −m

2
j | < ε;

0, otherwise.
(3.3)

Using these functions and a greedy algorithm for solving Problem 1, authors of [59,

139] accurately identified HCV transmission clusters.
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In general, Problem 1 with a score function (3.2) could be efficiently solved using dy-

namic programming [67, 68]. However, it assumes that matches between different peaks

are independent. In some cases this is not true, and taking into account dependencies

between peak matches may significantly improve the quality of an alignment. One such

case is MS based on a complete base-specific cleavage. Further we formulate spectral

alignment problem in that case.

Let Σ = {σ1, ..., σ4} = {C,A,G, T } be an alphabet, and let Σ∗ be the set of strings

over Σ. We assume that Σ∗ contains the empty string o. Let s = (s1, ..., sn) ∈ Σ∗ and let

Σk = Σ \ {σk}, k = 1, ..., 4. For each σk ∈ Σ define s(σk) = s(k) as

s(k) =

 {s}, si 6= σk for every i = 1, ..., n;

{x ∈ Σ∗k : s ∈ {xσky, zσkx, zσkxσky} for some y, z ∈ Σ∗}, otherwise.
(3.4)

(see [55]). In other words, s(k) is the set of all maximal substrings of s, which does

not contain σk. For s1, s2 ∈ Σ∗ denote by rs1(s2) the number of substrings of s1 equal to s2.

Letm(σk), k = 1, ..., 4 be the mass of the nucleotide σk andm(s) =
∑n

i=1m(si) be the

mass of molecule represented by a sequence s.

Suppose that S = {s1, ...sm}, sj ∈ Σ∗, is a sample tested using MS with base-specific

cleavage. Let S(k) =
m⋃
j=1

sj(k). MS profile P of S is partitioned into four subprofiles: P =

P(A) ∪ P(G) ∪ P(C) ∪ P(T), where

P(σk) = {pσki = (m, f) : m ∈ {m(s) : s ∈ S(k)}, f =
∑
s∈S(k):
m(s)=m

m∑
j=1

rsj(s)} (3.5)

Example 1. Let S = {s} and R = {r} be two samples each containing one sequence,

s =AAGCTAGTTCA, r =AAGCTCGTTCA. Then

s(C) = {AAG,TAGTT,A}, s(A) = {GCT,GTTC},
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s(G) = {AA,CTA,TTCA}, s(T) = {AAGC,AG,CA}

r(C) = {AAG,T,GTT,A}, r(A) = {GCTCGTTC},

r(G) = {AA,CTC,TTCA}, r(T) = {AAGC,CG,CA}

If PS = PS(C) ∪ PS(A) ∪ PS(G) ∪ PS(T) andQR = QR(C) ∪QR(A) ∪QR(G) ∪QR(T) are

MS profiles of S and R, respectively, then they have the following form:

PS(C) QR(C)

pC1 =(2m(A)+m(G),1) qC1 =(2m(A)+m(G),1)

pC2 =(3m(T)+m(A)+m(G),1) qC2 =(m(T),1)

pC3 =(m(A),1) qC3 =(2m(T)+m(G),1)

qC4 =(m(A),1)

PS(A) QR(A)

pA1 =(m(G)+m(C)+m(T),1) qA1 =(3m(T)+3m(C)+2m(G),1)

pA2 =(2m(T)+m(G)+m(C),1)

PS(G) QR(G)

pG1 =(2m(A),1) qG1 =(2m(A),1)

pG2 =(m(C)+m(T)+m(A),1) qG2 =(2m(C)+m(T),1)

pG3 =(2m(T)+m(C)+m(A),1) qG3 =(2m(T)+m(C)+m(A),1)

PS(T) QR(T)

pT1=(2m(A)+m(G)+m(C),1) qT1=(2m(A)+m(G)+m(C),1)

pT2 = (m(A)+m(G),1) qT2 = (m(C)+m(G),1)

pT3=(m(C)+m(A),1) qT3=(m(C)+m(A),1)
6 of 11 peaks from PS could be matched by the equal masses and the cleavage base

with peaks from QR (pC1 and qC1 , pC3 and qC4 , pG1 and qG1 , pG3 and qG3 , pT1 and qT1 , pT3 and qT3 ).

However, it is easy to see that a single A-C SNP at position 6 between s and r causes the

following relations between masses of remaining peaks:

m(pC2 ) = m(qC2 ) +m(qC3 ) +m(A) (3.6)
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m(pA1 ) +m(pA2 ) +m(C) = m(qA1 ) (3.7)

m(pG2 ) −m(A) = m(qG2 ) −m(C) (3.8)

m(pT2) −m(A) = m(qT2) −m(C) (3.9)

If peaks and pairs of peaks are matched according to the relations (3.6)-(3.9) (pC2 and

(qC2 , q
C
3 ), (p

A
1 , p

A
2 ) and qA1 , pG2 and qG2 , pT2 and qT2 ), then all peaks from PS and QR will be

matched. Moreover, masses of single nucleotides and subprofiles involved in (3.6)-(3.9)

allow to guess the corresponding SNP between s and r and in some cases the number of

such type of matches allows to estimate the number of SNP’s (in this example 1 SNP).

In general, the relations analogous to (3.6)-(3.9) have the following form:

m(p
σk1
i ) = m(q

σk1
i1

) +m(q
σk1
i2

) +m(σk2) (3.10)

m(p
σk2
j1

) +m(p
σk2
j2

) +m(σk1) = m(q
σk2
j ) (3.11)

m(p
σk3
h1

) −m(σk2) = m(q
σk3
h2

) −m(σk1) (3.12)

m(p
σk4
l1

) −m(σk2) = m(q
σk4
l2

) −m(σk1) (3.13)

Usually there are many possible alternative matches between peaks according to

(3.10)-(3.13). The goal is to choose the optimal assignments such that the alignment score

is maximized. Therefore the problem could be formulated as follows. Let P(2) be a set of

all 2-element subsets of a set P. For p ∈ P denote by P(2)(p) the set of all 2-subsets con-

taining p. If P is a MS-profile, add to P an auxiliary empty peak pε = (0,∞) with 0 mass
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and unbounded intensity. We will call such profile an extended MS profile. We assume

without loss of generality that all other peaks have intensity 1 (otherwise, if peak pi has

intensity f(pi) > 1 replace it with f(pi) peaks of intensity 1). Further, extend an alphabet

Σ by addition of an auxiliary empty symbol εwithm(ε) = 0. Those additional objects are

needed to include insertions, deletions and mutations in homopolymers (i.e. sequences

of identical nucleotides) in the model.

Problem 2.

Input: Two extended MS profiles P1 = {p11, ..., p
1
n1
} = P1(C)∪ P1(A)∪ P1(G)∪ P1(T)∪

{pε} and P2 = {p21, ..., p
2
n2
} = P2(C) ∪ P2(A) ∪ P2(G) ∪ P2(T) ∪ {pε}

Find: Two subsets P1∗ ⊆ P1 ∪ P1(2) and P2∗ ⊆ P2 ∪ P2(2) of matched peaks and pairs of

peaks and a bijection π : P1∗ → P2∗ such that the following conditions hold:

(i) |Pj∗ ∩ (P(2)(p
j
l) ∪ {pjl})| ≤ 1 for every pjl ∈ Pj \ {pjε}, j = 1, 2 (every peak is matched at

most once either as a singleton or as a member of a pair)

(ii) π({p1i , p
1
j }) ∈ P2 for every pair {p1i , p

1
j } ∈ P1(2) (pair of peaks should be matched to a

single peak);

(iii) there exists a bijection ψ : P1∗ ∩ P1(2) → P2∗ ∩ P2(2) (matchings of pairs of peaks go in

pairs)

and the objective function (3.1) is maximized. The objective function should be de-

fined in such a way that

a) a pair of peaks is matched to a peak and vise versa only if (3.10) and (3.11) holds for

them; the bijection ψmaps pairs which are conjugate by (3.10) and (3.11);

b) the number of matches involving pairs is as small as possible. Each such match

potentially corresponds to an insertion, deletion or replacement and we are trying

to align MS profiles with the smallest number of involved mismatches as possible -

analogously to alignment of sequences using edit distance.



56

In the next section we show how to define such a function and present an algorithm

for its calculation. This is a new approach, which, as Example 1 shows, is more accurate

than the approaches based on the direct peak matching, and, moreover, in many cases

allows to estimate the actual number and types of SNPs.

Note that (3.10)-(3.13) holds for a certain SNP, if it is isolated, which means that sub-

strings between it and the closest SNPs contain all four nucleotides. For the conserved

genomes this is a reasonable assumption: it was shown in [56] that the overwhelming

majority of SNPs in human genome are isolated (for the data analyzed in [56] the aver-

age and minimal distance between two neighbor SNPs is 231bp and 14bp, respectively).

Therefore for such genomes a solution of Problem 2 provides a reliable estimation for the

number and types of SNPs. If two mutations happen in close proximity, then the relation

between peaks caused by them is more complex than (3.10)-(3.13). Moreover, if sample

contains more than one unknown sequence, it is usually impossible to assign peaks to

each sequence. Therefore for a highly mutable genomes, such as viral genomes, solution

of Problem 2 provides a distance, which specifies and generalizes the most commonly

used distance with the score function (3.3), instead of direct estimation of the number of

mismatches.

3.3 Network flow method for spectral alignment

For a directed graph (or network) N with a vertex set V , an arcs set A, pair of source

and sink s, t ∈ V , arcs capacities cap and possibly arc costs cost a network flow is a

mapping f : A → R+ such that f(a) ≤ cap(a) for every a ∈ A (capacity constraints) and∑
uv∈A

f(uv) −
∑
vw∈A

f(vw) = 0 for every v ∈ V \ {s, t} (flow conservation constraints). The

value of flow is |f| =
∑
sv∈A

f(sv). The classical network flow problem either searches for a

flow of maximum value (Maximum Flow Problem) or for a flow with a given value of a

minimum cost (Minimum-cost Flow Problem)

It is well-known that in discrete optimization many matching-related problems (such

as Maximum Bipartite Matching Problem, Assignment problem, Minimum Cost Bipartite
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Perfect Matching Problem, Linear Assignment Problem, etc.) could be solved using either

network flows or shortest path - based algorithms. It suggests that a similar approach

could be used for Problem 2. However, the formulation of Problem 2 is more complex

that of the above-mentioned problems, so the reduction of Problem 2 to the network flow-

based problem appeared to be rather complex. Below we present that reduction.

Let P1 = {p11, ..., p
1
n1
} = P1(C) ∪ P1(A) ∪ P1(G) ∪ P1(T) ∪ {pε} and P2 = {p21, ..., p

2
n2
} =

P2(C) ∪ P2(A) ∪ P2(G) ∪ P2(T) ∪ {pε} be extended MS profiles. Let also δ ∈ R+ be the

mass precision, g ∈ R+ be the mismatch penalty and p, q ∈ R+ be the mutation (i.e.

replacement, insertion, deletion) penalties corresponding to pairs of relations (3.10),(3.11)

and (3.12),(3.13), respectively. Construct the network

N = (V,A, l,m, cost, cap) (3.14)

where l : V → Σ∗ is a vertices labels function, m : V → R+ is vertices weights

function, cost : A → R+ and cap : A → R+ are cost and capacity functions of arcs,

respectively. Vertex set

V = {s, t} ∪ V1 ∪ V2 ∪ Vp1 ∪ Vp2 ∪ Va1 ∪ Va2 ∪ Vd1 ∪ Vd2

and arc set A are constructed as follows:

1) s and t are the source and sink, respectively.

2) for each peak pji ∈ Pj(σ), j = 1, 2, i = 1, ..., nj, σ ∈ Σ the set Vj contains f(pij) vertices

vij(1), ..., v
i
j(f(p

i
j)). For each vij(k) l(v

i
j(k)) = σ, m(vij(k)) = m(pji). For an empty peak

pε ∈ Pj, j = 1, 2, the set Vj contain the unique vertex vjε with l(vjε) = o andm(vjε) = 0.

3) For each v ∈ V1 \ {v1ε} the set A contains an arc svwith cost(sv) = 0 and cap(sv) = 1.

For each v ∈ V2 \ {v2ε} A contains an arc vt with cost(vt) = 0 and cap(vt) = 1. There

are also arcs sv1ε and v2εt with cost(sv1ε) = cost(v2εt) = 0 and cap(sv1ε) = cap(v2εt) =∞.
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4) uv ∈ A for each u ∈ V1, v ∈ V2 such that |m(u) − m(v)| < δ and l(u) = l(v);

cost(uv) = 0, cap(uv) = 1.

5) For every u, v ∈ V1 and w ∈ V2 such that

a) l(u) = l(v) = l(w),

b) there exists σ ∈ Σ such that |m(u) +m(v) +m(σ) −m(w)| < δ,

the vertex set V contains vertices y ∈ Vp1 and z ∈ Va1 with m(y) = m(z) = 0,

l(y) = o, l(z) = l(u)σ. The set A contains arcs uy, vy, yz, zw with cost(uy) =

cost(vy) = cost(yz) = cost(zw) = 0, cap(uy) = cap(vy) = cap(zw) = 1,

cap(yz) = 2. See Figure 1. The subgraph N[u, v,w, y, z] induced by vertices

u, v,w, y, zwill be referred as left fork.

6) Analogously, for every a ∈ V1 and b, c ∈ V2 such that

a) l(a) = l(b) = l(c),

b) there exists σ ∈ Σ such that |m(a) −m(b) −m(c) −m(σ)| < δ,

the set V contains vertices d ∈ Va2 and e ∈ Vp2 with m(d) = m(e) = 0, l(e) = o,

l(d) = σl(b). The set A contains arcs ad, de, eb, ec with cost(ad) = cost(de) =

cost(eb) = cost(ec) = 0, cap(ad) = cap(eb) = cap(ec) = 1, cap(de) = 2. See

Figure 1. Further the subgraph N[a, b, c, d, e] will be referred as right fork.

7) For vertices u ∈ Va1 , v ∈ Va2 the set A contains an arc uv with cost(uv) = p and

cap(uv) = 1, if l(u) = l(v). See Figure 1.

8) For every u ∈ V1 and v ∈ V2 such that

a) l(u) = l(v),

b) there exists σ1, σ2 ∈ Σ such that |m(u) −m(σ1) −m(v) +m(σ2)| < δ,
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the set V contains vertices y ∈ Vd1 and z ∈ Vd2 with m(y) = m(z) = 0, l(y) = l(z) =

σ1σ2. The set A contains arcs uy, yz, zv with cost(uy) = cost(yz) = cost(zv) = 0,

cap(uy) = cap(zv) = 1, cap(yz) = 0. See Figure 2.

9) for all distinct vertices y, a ∈ Vd1 , z, b ∈ Vd2 such that yz, ab ∈ A, cap(yz) =

cap(ab) = 0 and l(y) = l(b), the set A contains arcs yb,az with cost(yb) =

cost(az) = q
2
, cap(yb) = cap(az) = 1. See Figure 2.

10) For every v ∈ V1 there exists an arc vswith cost(vs) = g and cap(vs) = 1.

Let x : A → N, a 7→ xa is a flow in the network N. Problem 2 could be formulated as

the following variant of the network flow problem:

minimize
∑
a∈A

cost(a)xa (3.15)

subject to

∑
uv∈A

xuv −
∑
vw∈A

xvw = 0, v ∈ V \ {s, t}; (3.16)

∑
sv∈A,v 6=vε

xsv = |V1|− 1; (3.17)

xuy − xvy = 0, y ∈ Vp1 ; (3.18)

xeb − xec = 0, e ∈ Vp2 ; (3.19)

xuy − xzv = 0; yz ∈ A, cap(yz) = cost(uy) = cost(zv) = 0 (3.20)

0 ≤ xa ≤ cap(a), a ∈ A. (3.21)
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This formulation differs from the classical network flow problem formulation by ad-

ditional constraints which require flow to be equal on some prescribed pairs of arcs.

Arcs from 4) provide the possibility of match between peaks with close masses with

0 penalty. Vertices and arcs from 5)-7) and constraints (3.18)-(3.19) allow to match peaks

with pairs of peaks according to relations (3.10),(3.11). The capacities of arcs defined in

5)-7) are chosen in such a way that if flow goes through the left fork, then it should also

go through the right fork indicating the same mutation, thus forcing a fulfillment of re-

quirement (iii) of Problem 2. Moreover, if flow goes through some pair of forks, exactly

one arc of cost p between those forks is involved, thus forcing penalty for mutation. Ver-

tices and arcs from 8)-9) and constraints (3.20) play the same role for relations (3.12),(3.13).

Constraint (3.17) for total size of the flow ensures that every peak is either matched or pe-

nalized for mismatch, which is encoded by arcs from 10). Moreover, arcs from 10) ensure

that the problem (3.15)-(3.21) always has a feasible solution. (3.16) and (3.21) are standard

flow conservation and capacity constraints.

If P1 and P2 are samples of single genomes with isolated SNPs, then the number of

SNPs could be estimated as |{a ∈ A : xa > 0, cost(a) = p}|.

3.4 Experimental results

The algorithm was tested on simulated data. For this, 80 pairs of sequences of

lengths 40-60bp with 2-4 isolated SNPs were randomly generated. For each position

one of possible symbols was chosen with equal probability to generate first sequence,

and then random mutations were introduced on the prescribed positions to generate

the second sequence. MS profiles of generated sequences were simulated using masses

m(A) = 329.21 DA, m(T) = 306.17 DA, m(G) = 345.21 DA, m(C) = 305.18 DA. The

ILP formulation (3.15)-(3.21) was solved using GNU Linear Programming Kit (GLPK)

(http://www.gnu.org/software/glpk/) on a computer with two 2.67GHz processors and

12 GB RAM. Since ILP solution is usually time-consuming, the time limit 30 seconds per

problem was established. For 90% (72 of 80) of test instances ILP was solved within the
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time limit. For all that instances the numbers of SNPs were estimated correctly. Running

times for ILP solution in that cases varies from 0.491 seconds in average with the standard

deviation 0.968 seconds for 40bp sequences to 3.434 seconds with the standard deviation

5.824 seconds for 60bp sequences.

Thus the proposed approach enables an accurate comparison of MS profiles and pro-

vides a direct evaluation of genetic distances between DNA molecules without invoking

sequences. It is potentially more accurate than the approaches based on the direct peak

matching, and, moreover, in many cases allows to estimate the actual number and types

of SNPs.

The proposed spectral alignment method is expected to be highly effective in evaluat-

ing genetic relatedness among viral samples and identifying transmission clusters in viral

outbreaks. The reasons behind this presumption is based on the fact, that simple Ham-

ming distance between samples could be calculated using a special case of our model

with p = q = ∞. Hamming distance (which corresponds to the score function (3.3)) was

shown to effectively separate transmission clusters [59, 139]. Thus, the developed model

allows for generating a large spectrum of distances in addition to the special case and as

such offers a more general framework for measuring genetic distances using MS profiles.

The ILP-based approach to solving the problem (3.15)-(3.21) is time-consuming.

Therefore more computationally effective approaches may be required to handle larger

samples. It is expected that direct applications of network flow-based methods, La-

grangian relaxations or other methods should dramatically increase performance of the

algorithm. The generalizations of relations (3.10)-(3.13) in order to obtain a model allow-

ing for estimation of the actual number of mutations in highly heterogeneous samples is

an important direction for the future research.
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PART 4

POOLING STRATEGIES FOR VIRAL MASSIVE SEQUENCING

4.1 Introduction

In this chapter we describe our novel framework for a cost-effective next-generation

sequencing of heterogeneous viral populations, which combines barcoding and pooling

recently proposed in [4]. This framework includes the following steps (Fig. 4.1):

(i) mixing samples in a specially designed set of pools in such a way that the identity

of each sample is encoded in the composition of pools;

(ii) sequencing pools using barcoding;

(iii) deconvolution of samples; i.e., assignment of viral variants from the pools to

individual samples.

This approach significantly decreases the number of PCR and NGS runs, thus reduc-

ing the cost of testing and hands-on time. As an additional benefit, pooling provides op-

portunity for PCR amplification of viral variants from each sample in different mixtures

of samples generated in each pool, thus introducing variation in amplification biases and

contributing to sequencing of a more representative set of viral variants from each sample.

In difference to most pooling methods and algorithms for human samples, which aim at

SNP calling (i.e. the identification of positions in the sequenced region which differ from

the reference), this approach allows for finding the whole viral quasispecies spectra, i.e. viral

sequences and their frequencies. However, application of the approach requires a care-

ful designing of pools and significantly increases complexity of deconvolution of pools

into individual samples, with the last task being especially demanding when applied to

highly heterogeneous viral populations.

Sequence analysis of highly mutable RNA viruses is particularly difficult because

of the complexity of their intra-host populations, the assessment of which can be dis-
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Figure (4.1) Combinatorial pooling strategy for viral samples sequencing [4].

torted by PCR or sampling biases, presenting additional challenges for application of the

pool-based sequencing to these viruses. The complex nature of viral samples imposes

restrictions on the pool design and deconvolution. It is essential to detect not only ma-

jor but also minor viral intra-host variants from pools, since minor variants may have

important clinical implications and in many cases may define outcomes of therapeutic

treatment [33, 141, 142]. Mixing of a large number of specimens or specimens with sig-

nificant differences in viral titers may contribute to under-representation of viral variants

from some patients in pools, suggesting that size and composition of pools should be

carefully designed.

Stochastic sampling from genetically diverse intra-host viral populations usually

produces variability in compositions of sets of variants in different pools obtained from a

single patient. Additionally, mixing specimens may differentially bias PCR amplification,

contributing to mismatching between viral variants sampled from the same host in two

pools with different specimen compositions. Thus, straightforward set-theoretical inter-

sections among pools cannot be used for samples deconvolution, indicating that a more

complex approach based on clustering techniques is needed. To increase the effectiveness

of cluster-based deconvolution and minimize possible clustering errors, it is important

to minimize mixing of genetically close samples as can be expected in epidemiologically
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related samples and samples collected from a small geographic region.

4.2 Combinatorial pooling

The basic idea of the overlapping pools strategy for sequencing n samples is to gen-

erate m pools (i.e. mixtures of samples) with m � n in such a way that every sample

is uniquely identified by the pools to which it belongs [77]. Then, after sequencing of

pools the obtained amplicon reads can be assigned to samples by the sequence of set-

theoretic intersections and differences of pools. Below we two examples showing that a

small number of pools can be used to uniquely identify larger number of samples.

Figure (4.2) 2 pools for 3 samples: S1 has 3, S2 has 4 and S3 has 2 variants. All 3 samples can be
reconstructed from these 2 pools by pool intersection and subtraction [4].

Example 1. Consider 3 samples S1, S2, S3 and 2 pools P1 = S1 ∪ S2, P2 = S2 ∪ S3 (see Figure

4.2). These pools satisfy the separation requirement, and, therefore, each sample can be

recovered, e.g., S2 = P1 ∩ P2, S1 = P1 \ P2, and S3 = P2 \ P1. Thus, pooling sequencing of

all 3 samples requires 2 sequencing runs.

Example 2. As a more complex example, consider 8 samples S1, ..., S8 and 4 pools P1, ..., P4

defined as follows: P1 = S1 ∪ S2 ∪ S3 ∪ S4, P2 = S5 ∪ S6 ∪ S7 ∪ S8, P3 = S1 ∪ S2 ∪ S5 ∪ S6,

P4 = S1 ∪ S3 ∪ S5 ∪ S7. These pools satisfy the separation requirement, and therefore each



65

sample could be recovered by the sequence of intersections and differences of pools. For

instance, S1 = P1 ∩ P3 ∩ P4, S2 = (P1 ∩ P3) \ P4,...,S8 = (P2 \ P3) \ P4. Therefore, sequencing

of all 8 samples may require 4 sequencing runs instead of 8.

The unique identification is possible if and only if for any two samples there is a pool

separating them, i.e., containing exactly one of the samples. Indeed, if any two samples

are separated by a pool, then the intersection of all pools containing sample S minus the

union of all pools not containing S coincides with S. On the other hand, if two samples

S1 and S2 are not separated by any pool, then it is impossible to distinguish them from

each other by set-theoretical operations. This fact leads to an efficient pool design method

described below.

Theorem [77, 143]. If any subset of samples can form a single pool, then n samples can be

reconstructed usingm = dlog(n)e+ 1 pools.

Proof. Assume for simplicity that n is a power of 2, i.e. n = 2k (the proof is analogous

for any n). Then apply induction by k. If k = 1, then P = {{S1}, {S2}} clearly is a valid

pool design with m = 2. Suppose that P ′ = {P ′1, ..., P
′
m ′} is a valid pool design with S ′ =

{S ′1, ..., S
′
n ′}, n

′ = n/2 = 2k−1,m ′ = log(n ′) + 1 = k. Construct a family P = {P1, ..., Pk+1} as

follows:

Pi = {S2i−1, S2i : S
′
i ∈ P ′i }, i = 1, ..., k; (4.1)

Pk+1 = {S1, S3, ..., Sn−1}. (4.2)

The family P is a valid pool design. Indeed, it is clear that
⋃k+1
i=1 Pi = S. Since P ′ is

a feasible pool design for n ′ = n/2, for every i, j ∈ {1, n/2}, i 6= j there exists l ∈ {1, ..., k}

such that P ′l separates S ′i and S ′j . Thus by definition of the family P , the set Pl separates

the sets {S2i−1, S2i} and {S2j−1, S2j}. Finally, the set Pk+1 separates the samples S2i−1, S2i for

every i = 1, n/2.�
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4.3 Pool design optimization formulation

However, sequencing of heterogeneous RNA viral samples imposes the following

additional restrictions on the pool composition: (i) the maximal number of samples that

can be pooled without losing detection of many minority viral variants; and (ii) unde-

sirability of mixing samples with drastically different viral titers or samples, which may

be epidemiologically related. These restrictions make the pool design problem compu-

tationally much harder. Here, we formalize these restrictions and formulate the optimal

pool design problem as an optimization problem on graphs.

Let S = {S1, ..., Sn} be a set of samples and X ⊆ S. The set X separates samples Si and

Sj, if X contains exactly one of the samples, i.e. |X ∩ {Si, Sj}| = 1.

Restrictions on the pool composition can be represented by a sample compatibility

graph G = G(S) with V(G) = S and SiSj ∈ E(G) if and only if the samples Si and Sj

could be mixed in the same pool. So, every feasible pool is a clique of the graph G. Let T

be an upper bound for the pool size. The problem of the optimal pool design for sequenc-

ing of viral samples can be formulated as follows:

Viral Sample Pool Design (VSPD) Problem. Given a sample compatibility graph G =

(V, E) and a number T > 0, find the set of cliques P = {P1, . . . , Pm} of G such that m is

minimized and

(1) ∪mi=1Pi = V ;

(2) for every u, v ∈ V(G) there is a clique Pi ∈ P separating u and v;

(3) |Pi| ≤ T for every i = 1, ...,m;

Unlike the case when any subset of samples can be a pool, the general VSPD problem

is more challenging.

Theorem [143]. Viral Sample Pool Design (VSPD) Problem is NP-hard, even for T = 3.

Proof. We will reduce to VSPD with T = 3 the following special case of the yes/no 3-

dimensional matching problem.
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Problem A. Given non-intersecting sets X, Y, Z , such that |X| = |Y| = |Z| = q;M ⊆ X×Y×Z,

such that the following condition holds:

(*) if (a, b,w), (a, x, c), (y, b, c) ∈M, then (a, b, c) ∈M.

Does M contain a subset M ′ ⊆M such that |M ′| = q and every two elements of M ′ do not

have common coordinates?

The subset M ′ is called 3-dimensional matching. It is known that the problem A is

NP-complete [144]. Let X, Y, Z, M, |X| = |Y| = |Z| = q, be the input of the problem A.

Construct a graph G as follows:

V(G) = X ∪ Y ∪ Z ∪A, (4.3)

where A = {av : v ∈ X ∪ Y ∪ Z};

E(G) =
⋃

(a,b,c)∈M

{ab, bc, ac} ∪ {vav : v ∈ X ∪ Y ∪ Z}. (4.4)

We will show that the setM contains 3-dimensional matching if and only if the graph

G contains a clique test collection P = {P1, ..., Pm} of sizem = 4q.

Let P = {P1, ..., Pm} be a clique test collection of G, m = 4q. Let R = X ∪ Y ∪ Z.

Let P ′ ⊆ P be a set of cliques covering the vertices from the set A. For every v ∈ R set

P ′ contains either clique {av} or clique {v, av} or both of them. Let R = R1 ∪ R2, where

R1 = {v ∈ R : {av}, {v, av} ∈ P}, R2 = R \ R1.

Consider an arbitrary vertex v ∈ R2. Set P ′ contains either clique {av} or clique {v, av}.

If {av} ∈ P ′, then set P ′′ = P \ P ′ contains at least one clique covering the vertex v. If

{v, av} ∈ P ′, then P ′′ contains at least one clique, which separates v and av. Thus, every

v ∈W2 is covered by a clique from the set P ′′.

Let r1 = |R1|. We have |R2| = 3q − r1, |P ′| = 3q + r1, |P ′′| = 4q − |P ′| = q − r1. So,

3q − r1 vertices from the set R2 are covered by q − r1 cliques from set P ′′. Since sizes

of cliques from P ′′ are at most 3 (by construction of the graph G), it is possible only if

r1 = 0, all cliques from P ′′ contain exactly 3 vertices and do not pairwise intersect. The
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condition (*) guarantees, that every triangle of the graph G belongs to setM, and so P ′′ is

3-dimensional matching.

Conversely, if M ′ ⊆ M is a 3-dimensional matching, then P = M ′ ∪ {{v, av} : v ∈ R}

is a clique test collection of graph G. Indeed, P covers all vertices of G; for every v ∈ R a

clique {v, av} separates sets {v, av} and V(G)\ {v, av} and vertices v and av are separated by

the clique fromM ′ which contains v. �

In practice, the condition 1) is not essential. Indeed, since every pair of vertices

should be separated by some clique, at most one vertex v ∈ V(G) is not covered by a

clique from the set P . Thus any family of cliques satisfying 2) and 3) can be transformed

into a family satisfying 1) by adding just one additional clique {v}. Therefore, we will

consider the problem without the condition 1).

4.3.1 Greedy heuristic for VSPD problem

We propose a heuristic algorithm for the VSPD problem. For the algorithmic pur-

poses, in addition to the graph G, consider the graph H with V(H) = V(G) = V and

ij ∈ E(H) if and only if the pair of vertices (i, j) is not separated yet. Initially, H is a

complete graph.

Let A ⊆ V be a set of vertices. A cut in the graph H is the pair (A,V \ A), the size of

the cut c(A,V \A) is the number of edges with one end in A and the other end in V \A.

The basic scheme of the heuristics is described in Algorithm GPDA. At each iteration,

Algorithm GPDA finds and adds to the solution a locally optimal pool, i.e. the pool which

consists of compatible vertices and separates the maximal number of non-separated sam-

ples.

The crucial step of Algorithm GPDA finds locally optimal pool (step 4). It solves the

following

Optimal Clique Cut Bi-Graph (OCBG) Problem. Given a graph H = (V, E) and a con-

stant T , find a clique in G with the set of vertices A, such that |A| ≤ T and the size of the

cut (A,V \A) is maximized.
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The OCBG problem is a previously unstudied discrete optimization problem. It is

easy to see that this problem itself is NP-hard, and it is hard to approximate within a

linear factor [4].

Theorem Optimal Clique Cut Bi-Graph (OCBG) Problem is not approximable within

O(n1−ε) for any ε > 0, unless P=NP.

Proof. Let an n-vertex graph G ′ be the input of CLIQUE Problem and G = G ′ ∪ On.

Without loss of generality we assume that G is connected. Consider the instance of LOP

problem with G and H = K2n as an input. Then for the value fopt of the optimal solution

of LOP we have

fopt = max{f(ω) = ω(2n−ω) : ω = |A|, a is a clique of G}.

Let us first show that the maximum clique size of G ′ is ωopt if and only if fopt =

ωopt(2n − ωopt). Indeed, by construction ω = |A| ≤ n for every clique A of G. The

functionω(2n−ω) increases monotonically on the segment [1, n], and therefore f reaches

its maximum onωopt = |Aopt|, whereAopt is the maximal clique of graphG (and therefore

of G ′).

Let (A,V(G)\A) be a solution of LOP, whereA is a clique,ω = |A| and f = ω(2n−w).

Suppose that

fopt

f
≤ 1
4
|V(G)|1−ε =

1

4
(2n)1−ε

for some ε > 0. Then

1

2

ωopt

ω
≤ ωopt(2n−ωopt))

ω(2n−ω)
=
fopt

f
≤ 1
4
(2n)1−ε,

and therefore

ωopt

ω
≤ n1−ε.
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So, if LOP is approximable within 1
4
|V(G)|1−ε for some ε > 0, then CLIQUE is approx-

imable within |V(G ′)|1−ε. The latter is impossible, unless P=NP [145].�

In the Section 4.3.2 we will describe an efficient heuristic to solve the OCBG problem.

4.3.2 The tabu search heuristic for the OCBG problem

In this subsection we propose tabu search heuristic to solve the OCBG problem.

Let M = |E(H)| + 1. OCBGP can be formulated as the following quadratic program-

ming problem:

maximize f(x) =
1

2

∑
ij∈E(H)

(1− xixj) −
1

8
M
∑
ij 6∈E(G)

(xi + xj)(x1 + xj + 2) (4.5)

subject to

1

2

∑
i∈V

(xi + 1) ≤ T ; (4.6)

xi ∈ {−1, 1}, i ∈ V. (4.7)

There is a 1-to-1 correspondence between solutions x of the problem (4.5)-(4.7) and

the pairs of sets (Ax, Bx), Ax∪Bx = V , whereAx = {i : xi = 1} and Bx = {i : xi = −1}. Next,

we will indicate the solution of (4.5)-(4.7) either by x or by (Ax, Bx).

The term 1
2

∑
ij∈E(H)(1 − xixj) is equal to the size of the cut (Ax, Bx) in H. The term

1
8

∑
ij 6∈E(G)(xi + xj)(x1 + xj + 2) is equal to the number of non-adjacent pairs of vertices in

the induced subgraph G[Ax]; in particular, it is equal to 0 if Ax is a clique. So, f(x) ≥ 0 if

and only if Ax is a clique. Therefore, for any optimal solution of the problem (4.5)-(4.7),

the set Ax is a clique. The constraint (4.6) ensures that |Ax| ≤ T .

Initially, we relax the constraint (4.6). Suppose that (Ax, Bx) is a feasible solution of

(4.5), (4.7). For a vertex v ∈ Ax consider the solution (Ax ′ , Bx ′), where Ax ′ = Ax \ {v}, Bx ′ =

Bx ∪ {v}. Then for ∆1 = f(Ax ′ , Bx ′) − f(Ax, Bx) we have
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∆1 = deg
H
Ax
(v) − degHBx(v) +Mdeg

G
Ax
, (4.8)

where degHU(v) denotes the number of vertices from the setU ⊆ V adjacent to a vertex

v ∈ V in a graphH, and G is a complement of a graph G. In particular, if v is non-adjacent

to some vertex u ∈ Ax, then ∆1 > 0. Analogously, for v ∈ Bx, the solution (Ax ′ , Bx ′) with

Ax ′ = Ax ∪ {v}, Bx ′ = Bx \ {v} and ∆2 = f(Ax ′ , Bx ′) − f(Ax, Bx) we have

∆2 = deg
H
Bx
(v) − degHAx(v) −Mdeg

G
Ax
. (4.9)

Thus, according to the relations (4.8) and (4.9), any initial solution (A,B) can be itera-

tively improved by moving vertices from one part of the partition to the other until a local

optimum is reached, and the obtained solution cannot be further improved. According

to (4.8), a local optimum A is a clique.

The major well-known general drawback of such local search strategies is that the

value of the objective function in a local optimum may be far from the value of the glob-

ally optimal solution. Another problem, which is specific to our case, is that it is possible

that the size of the locally optimal cut in H is 0. In that case the solution found at the

stage 4) of Algorithm GOPDA will not decrease the set E(H), and, therefore, Algorithm

GOPDA will go into an infinite loop. To overcome these problems we use the variation of

the tabu search strategy [146]. The basic idea is that if after the moving of a vertex v the

algorithm arrives at a local optimum, then the following actions are taken: the value of

the local optimum is compared to the current best solution, v is placed back and the mov-

ing of v is prohibited for the next kt iterations of the algorithm. This idea is implemented

in Algorithm OCBGP, which is described in more detail below.

Let tabui = {tabui1, ..., tabuin} be the tabu state at the iteration i, i.e. a sequence of inte-

gers, where tabuij is a current number of iterations during which it is not allowed to move

a vertex j. Let optStatesi be the set of algorithm states, i.e. the set of pairs ((A,B), tA,B),

where (A,B) is a local optimum found by the algorithm at some iteration j < i, and tA,B is
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the tabu state at that iteration, i.e. tA,B = tabuj. Let (A∗, B∗) be the current record cut, i.e.,

the cut of the biggest size c(A∗, B∗) found by the algorithm before the ith iteration. Let

also moveList be the sequence of vertices moved by the algorithm from one part of the

cut to another in the order of movement. This sequence is easier to implement as a stack,

and it allows the algorithm to return to the previous solutions when the neighborhoods

of solutions are completely explored. Let kt denote the initial number of steps for which

a move of a vertex is prohibited.

Below we detail the steps of the algorithm. Let tabui = {tabui1, ..., tabuin} be the tabu

state at the iteration i, i.e. a sequence of integers, where tabuij is a current number of

iterations during which it is not allowed to move a vertex j. Let optStatesi be a set of

algorithm states, i.e. a set of pairs ((A,B), tA,B), where (A,B) is a local optimum found by

the algorithm at certain iteration j < i, and tA,B is the tabu state at that iteration, i.e. tA,B =

tabuj. Let (A∗, B∗) be the current record cut, i.e., the cut of the biggest size c(A∗, B∗) found

by the algorithm before the ith iteration. Let also moveList be the sequence of vertices

moved by the algorithm from one part of the cut to another in the order of movement.

This sequence is easier to implement as a stack, and it allows the algorithm to return to

the previous solutions when neighborhoods of solutions are completely explored. Let kt

denote the initial number of steps for which a move of a vertex is prohibited.

At each iteration, Algorithm OCBGP tries to improve the current solution by moving

one vertex from one part of the current cut to another part (steps 4-7). After the cal-

culations for the cut improvement, the current tabu state is updated (step 8) and, if the

current solution can be improved, the algorithm does it and proceeds to the next iteration

(steps 9-12). If the current solution (Ai, Bi) cannot be improved, then it is a local optimum

(stages 13-32). Then according to (4.8) Ai is a clique. In that case the algorithm compares

the obtained locally optimal solution with the record and updates it, if necessary (steps

14-16). Then the algorithm returns to the previous solution (step 18) and forbids for the

next kt steps of moving the vertex, which leads to the previous local optimum (step 19). If

the current algorithm state has not occurred previously, then the algorithm adds it to the
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set optStates and proceeds to the next iteration (steps 21-24). Otherwise, the algorithm

reduces the current record (A∗, B∗) to the solution where |A∗| ≤ T , and stops (steps 25-30).

The default value of kt is 1. It is still possible that for the solution (A∗, B∗) found

by Algorithm 2 we have c(A∗, B∗) = 0. If it happens, we increase kt by one and repeat

Algorithm 2.

4.4 Deconvolution of viral samples from pools

According to Example 1 and 2 deconvolution requires computing of intersections

and differences of pools. In Section 4.4.1 we formally define generalized intersections and

differences of pools and show how to use them for pool deconvolution. The challenges

of implementation of generalized intersections and differences are addressed in Section

4.4.2

4.4.1 Deconvolution using generalized intersections and differences of pools

Let P be the set of pools designed using a solution of the VSPD problem found by

Algorithm GOPDA and sequenced using NGS. As discussed above, the obtained reads

theoretically can be assigned to samples by the sequence of set-theoretic intersections and

differences of pools (see Examples 1,2). However, owing to the high heterogeneity of viral

populations and sampling bias, individual viral variants and even subpopulations of viral

variants sequenced from a certain sample mixed into different pools may be different

in each pool(see an example on Figure 4.3). It hampers the usage of straightforward

set-theoretic intersections and differences, and, therefore, “generalized" intersections and

differences should be used instead.

For a pool Pi, let S(Pi) be a set of samples mixed in it. In particular, for simplicity

of notations, we can assume that each individual sample Rj is a special type of pool with

|S(Rj)| = 1.

We define the generalized intersection of pools P1 and P2 as the pool P1∩P2 with

S(P1∩P2) = S(P1)∩S(P2), consisting of sequences from P1∪P2 that belong to the samples
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10

Figure (4.3) Phylogenetic tree representing a union of two pools: P1 consisting of samples
S1, S2, S3 (shown in red) and P3 consisting of samples S1, S4, S5 (shown in blue) (see Section "Re-
sults, Experimental pools"). The intersection of two pools consists of the sample S1 (upper right
cluster in the tree); however, sequences sampled from S1 in pools P1 and P2 are different [4].

from S(P1) ∩ S(P2). The generalized difference P1\P2 then can be defined as follows: P1\P2

is the pool with S(P1\P2) = S(P1) \ S(P2) that contains sequences of the set P1 \ (P1∩P2).

Individual samples can be inferred from pools by a sequence of generalized inter-

sections and differences using Algorithm IS. By definition, generalized differences may

be reduced to generalized intersections. For generalized intersections calculation we pro-

pose the scheme described in Algorithm GI, which is based on clustering techniques.

Theoretically, Algorithm GI may be used with the parameter W = 1. However, viral

populations of highly mutable viruses, such as HCV and HIV, may differ greatly in het-

erogeneity. In extreme cases, intra- and inter host heterogeneity of certain samples may

be comparable. If such samples belong to the same pool, it can lead to the effect when

with W = 1 highly heterogeneous samples may be partitioned into multiple clusters,

while samples with lower heterogeneity will be joined into one cluster. Such clustering

will lead to the incorrect detection of generalized intersections and consecutive loss of

samples, which were not separated from other samples. To avoid this effect, higher val-

ues of W should be used. In our experiments we used the default value W = 2. If certain

samples are not found by Algorithm IS (i.e. the corresponding data sets are empty), we
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increase the value ofW by one and repeat Algorithm IS.

4.4.2 Maximum likelihood k-clustering

In this section we formulate the viral sample clustering problem and describe our

solution, which is based on the probabilistic k-means approach (see [147]).

Sample Clustering Problem. Given a set R of NGS reads drawn from a mix of k ′ RNA

viral samples, partition R into k =Wk ′ subsets consisting of reads from a single sample.

The presence of numerous sequence variants in each viral sample, extreme hetero-

geneity of viral populations and a very large number of reads make Sample Clustering

Problem challenging. Although a commonly used clustering objective is to minimize

intra-cluster distances or distance to cluster centers (e.g., the k-means algorithm), we pro-

pose to use a statistically sound objective of maximizing likelihood. Our likelihood model

estimates the probability of a certain read being emitted by a cluster consensus (or cen-

troid).

Our algorithm receives a multiple sequence alignment of a given set of reads R as an

input. We represent R as a matrix with columns corresponding to the consensus positions

and rows corresponding to aligned reads. Our model assumes that each read in a cluster

is emitted by a particular genotype (centroid). The proposed clustering (a) finds k geno-

types g1, . . . , gk that most likely emit the observed set of reads, (b) estimates probability

pi,r that read r is emitted by a genotype gi, and (c) assigns a read r to a cluster which

genotype most likely emits r.

Formally, given a set of reads C, a genotype g(C) of C is a matrix with each column

corresponding to a consensus position and 5 rows each corresponding to one of the al-

leles {a,c,t,g,d}. Each entry fm(e), e ∈ {a,c,t,g,d} is the frequency of allele e in m-th

position among all variants in C,
∑

e∈{a,c,t,g,d} fm(e) = 1. In particular, every read can be

considered as a genotype with a single 1 and 4 zeroes in each column. Given a set of reads
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R, a k-genotype is a set G∗ = {g1, . . . , gk} of k distinct genotypes that most likely emitted R:

G∗ = argmax
|G|=k

Pr(R|G),

where Pr(R|G) is the probability to observe R given a set of genotypes G, which is calcu-

lated as a product of probabilities to observe each read from R. The probability to observe

read r equals to Pr(r) =
∑k

i=1 fi Pr(r|g = gi), where

Pr(r|g = gi) =

L∏
m=1

fi,m(rm), (4.10)

and fi,m(rm) is the frequency of rm, the m-th character of read r, in the m-th position

of genotype gi. Then the log-likelihood of the set of allele frequencies F = {fi,m(e)|i =

1, . . . , k;m = 1, . . . , L; e ∈ {a,c,t,g,d}} equals to

`(F) =
∑
r∈R

or log Pr(r),

where or is the observed read frequency.

We iteratively estimate the missing data pi,r, i.e., the number of times the read r origi-

nated from the genotype gi, and solve the easier optimization problem of maximizing the

log-likelihood of the hidden model

`hid(F) =
∑
r∈R

k∑
i=1

pi,r log(fi Pr(r|g = gi)).

Our clustering method is described in Algorithm kGEM. The initial set of genotypes

G(0) is selected as follows: starting from the most frequent read, we iteratively select the

read maximizing the minimum Hamming distance to the previously selected reads and

add to G(0) the corresponding genotype.
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4.5 Performance of pooling methods on simulated data

4.5.1 Performance of the viral sample pool design algorithm

The pool generation algorithm was evaluated using 3 sets of simulated data.

1) Complete graphs.

Pools were generated for complete graphs with n = 4, ..., 1024 vertices without the

pools size threshold. For every test instance, exactly m = dlog(n)e + 1 pools were con-

structed, coinciding with the theoretically justified estimation [77, 143]. Hence, the VSPD

algorithm produces optimal solutions for complete graphs.

2) Random graphs, where each vertex v receives a random titer wv ∈ {1, L}, and two

vertices u and v are adjacent if and only if |wu − wv| ≤ R. This family of test instances

represents titer compatibility model, i.e. it simulates the case in which two samples could

be mixed into one pool only if their viral titers are not sufficiently different.

25000 test instances were generated with n = 10, ..., 1000, parameters L = 20, R = 4

and with the pools sizes thresholds T = n (i.e., without the threshold), T = 55, T = 35 and

T = 25. For each n the mean size of the set of pools constructed by the VSPD algorithm

and the mean sequencing reduction coefficient (i.e., the number of pools divided by the

number of samples) were calculated. The results are shown on Figure 4.4, (a).

For n = 1000 sets of pools generated by the VSPD algorithm, more than 21-fold

reduction in the number of sequencing runs is achieved for T = n, 15-fold reduction for

T = 55, 11-fold reduction for T = 35, 9-fold reduction for T = 25 and 6-fold reduction for

T = 15. The reduction coefficient in all these cases is a decreasing function of n, which

suggests a higher reduction for the larger n.

3) Random graphs, where each edge is chosen with probability p = 0.25, 0.5, 0.75 and

1 and sizes of pools are bounded by T = 35.

20000 test instances with n = 10, ..., 1000were generated and processed by the VSPD

algorithm. As above, for each n the mean sequencing reduction coefficient was calcu-

lated. The results are shown in Figure 4.4, (b). In this case, as well as in the previous
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Figure (4.4) Sequencing reduction coefficient for the pools generated by the VSPD algo-
rithm for (a) random titer compatibility model graphs; (b) random graphs [4].

one, pooling provides a great reduction in the number of sequencing runs, although it is

generally lower than for the test instances 2) (from more than 13-fold reduction for p = 1

(complete graph) to more than 3-fold reduction for p = 0.25). The reduction coefficient is

also a decreasing function of n.

4.5.2 Performance of the pool deconvolution algorithm

450 test instances with n = 10, ..., 150 samples and with the pool sizes thresholds

T = 15, 25, 35 were generated. Simulated pools were constructed using 155 HCV HVR1

samples previously sequenced in Molecular Epidemiology and Bioinformatics Labora-

tory, Division of Viral Hepatitis, Centers for Disease Control and Prevention using 454

GS Junior System (454 Life Sciences, Branford, CT) [33, 139, 148, 149]. Reads from each

sample were cleaned from sequencing errors using NGS error correction algorithms KEC
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and ET [150]. Test instances were generated as follows:

1) n samples were chosen randomly;

2) a random samples compatibility graph on n vertices was generated based on the

titer compatibility model and pools were designed using the VSPD algorithm (Algorithm

GOPDA);

3) pools were created by taking D randomly selected reads from the samples com-

posing each pool (in order to simulate a sampling bias). The number of reads per pool

D was set as D = 10000, which approximately corresponds to the sequencing settings,

under which the data used for simulation were obtained (454 Junior System with 8-10

MIDs per sequencing run).

For all test instances all samples were inferred, i.e. all n data sets produced by Algo-

rithm IS were non-empty. It is possible that some reads are not classified into samples and

therefore are lost by the algorithm. However, the number of such reads was extremely

low (Figure 4.5, (a)): in average 99.996% of reads for T = 15, 99.993% for T = 25 and

99.984% for T = 35were classified into samples.

An overwhelming majority of reads were classified correctly (Figure 4.5, (b)): in av-

erage, 99.998% of reads for T = 15, 99.982% for T = 25 and 99.959% for T = 35 were

assigned to the right samples. It should be noted that the percentages of classified and

correctly classified reads in general do not depend on the number of samples, if this num-

ber is large enough.

We call an incorrect assignment of reads to the samples in silico contamination. The av-

erage percentage of samples without in silico contamination ranges from 100% to 98.13%

for T = 15, from 100% to 96.13% for T = 25 and from 100% to 93.8% for T = 35 (Figure 4.6,

(a)); the percentage of in silico contaminated samples increases with the total number of

samples. In silico contaminants constitute a small minority within contaminated samples:

in average 0.163% of all reads for T = 15, 0.545% for T = 25 and 0.892% for T = 35 (Figure

4.6, (b)).

Root Mean Square Error of deconvoluted haplotypes frequencies estimation is in av-
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Figure (4.5) (a) Percentage of classified reads (b) Percentage of correctly classified reads.
Bars represent a standard error [4].

erage 0.031%-0.107% for T = 15, 0.025%-0.139% for T = 25 and 0.028%-0.174% for T = 35;

it is an increasing function of the number of samples (Figure 4.7).

According to all measures considered above the accuracy of the samples deconvo-

lution is affected by the number of allowed samples per pool. The algorithm is more

accurate for smaller pools, although the accuracy remain high even for larger pools.

4.6 Experimental validation of pooling strategy

4.6.1 Experimental pools and sequencing

Serum specimens collected from HCV-positive cases [30] were used to sequence HCV

HVR1. Seven serum samples S1, ..., S7 were mixed to form 4 pools P1, ..., P4 using the

VSPD algorithm with the parameter T = 7 as follows: P1 was created by mixing sam-

ples S1, S2, S3, P2 - samples S4, S5, S6, S7, P3 - samples S1, S4, S5 and P4 - samples S2, S4, S6.

Then the seven specimens and 4 pools were sequenced using 454 GS Junior System (454

Life Sciences, Branford, CT). Total nucleic acids extraction was performed using MagNA
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Figure (4.6) (a) Percentage of samples without in silico contamination. (b) Total frequency
of in silico contaminants within contaminated samples. Bars represent a standard error
[4].

Pure LC Total Nucleic Acid Isolation Kit (Roche Diagnostics, Mannheim, Germany) and

reverse-transcribed using the SuperScript Vilo cDNA synthesis kit (Invitrogen, Carlsbad,

CA).

The HVR1 amplification was accomplished using two rounds of PCR. For the 1st

round of amplification, regular region-specific primers were used. Forward and reverse

tag sequences consisting of primer adaptors and multiple identifiers (MID - 454A and

454B) were added to the HVR1-specific nested primers. For the high throughput pur-

pose, pools were processed as a single specimen, tagged with a single MID for deep se-

quencing. PCR products were pooled and amplified by emulsion PCR using the GS FLX

Titanium Series Amplicon kit, and bi-directionally sequenced. The sequenced reads were

identified and separated using sample-specific MID tag identifiers. Low quality reads

were removed using the GS Run Processor v2.3 (Roche, 2010).
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4.6.2 Experimental results

The algorithmic approach described in Section 4.4 was used to reconstruct 7 samples

from experimental data described in Subsection 4.6.1. Before applying algorithms for

samples recovery, the data were preprocessed in order to get rid of sequencing errors and

PCR chimeras.

The reads from each pool were separated into clusters using Algorithm kGEM, each

cluster was processed using NGS error correction algorithms KEC and ET [150] and the

corrected reads were merged back. Then the samples were deconvoluted using Algorithm

IS. The obtained samples will be further referred as pooling samples

For the verification of pooled samples we compared them with the individually se-

quenced samples. The sequences were compared using pairwise alignment; insertions

and deletions were ignored (since indels are rare in HVR1 and, therefore, are rather se-

quencing artifacts; moreover, some indels in alignment of sequences from individually

sequenced and pooling samples may be introduced due to the inaccurate correction of ho-
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mopolymer errors for the samples). For each sample 10 reference sequences were taken

from the set of individually sequenced variants, and the correctness of samples recon-

struction was assessed using alignment of sequences in the pooled samples with these

references. For alignment, Muscle [151] was used.

In average, 259 unique haplotypes per sample from a pool were obtained (from 23

haplotypes in Sample S2 to 548 haplotypes in Sample S4), which exceeds the number

of HCV haplotypes obtained in other studies [152–154] after the standard individual se-

quencing using 454 Junior System and subsequent error correction. 99.9634% (5463 of

5465) of all analyzed sequence reads were correctly classified to the samples. Two reads

assigned to sample S7 showed a higher similarity to the reference sequence from Sample

S6. However, the subsequent analysis showed that these reads are only marginally similar

to sequences from both individually sequenced samples as well to each other (minimum

distance from these reads to the closest haplotype from S6 and S7 is 25 and 26, respec-

tively, and the distance between them is 20, while the mean distance among individually

sequenced haplotypes of samples S6 or S7 is 3.64 bp or 6.12 bp with standard deviations

1.21 bp or 5.25 bp, respectively). Therefore, these 2 reads are likely to be sequencing

artifacts, which were not removed by the error correction algorithm.

In general, the percentage of haplotypes from individually sequenced samples found

in pooled samples was not high (Figure 4.8, (a)), with an average of 14.66%. However,

when the frequencies of these haplotypes were considered, the level of agreement be-

tween samples was much higher, with an average total haplotypes frequency of 56.94%

(Figure 4.8, (b)). In particular, all individually sequenced haplotypes with frequencies

greater than 10% and 72.73% of haplotypes with frequencies greater than 5% were found

in pooled samples.

The differences between haplotype frequency distributions for individually se-

quenced and pooled samples were measured using Jensen-Shannon Divergence (JSD)

[155] and correlation coefficient (Table 4.1). JSD varies from 0.15% for the sample S1 to

0.65% for the sample S7. There is a statistically significant positive correlation between
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Figure (4.8) (a) Percentage of haplotypes from individually sequenced samples found in
pooling experiment. (b) Total frequency of haplotypes from individually sequenced sam-
ples found in pooling experiment [4].

Table (4.1) Comparison of frequency distributions for individually sequenced and pooled
samples

JSD Correlation (p-value)
S1 0.15 0.95 (1.71̇0−77)
S2 0.57 0.30 (0.0023)
S3 0.32 0.89 (2.71̇0−173)
S4 0.37 0.66 (4.141̇0−99)
S5 0.50 0.25 (8.61̇0−7)
S6 0.17 0.99 (0)
S7 0.65 -0.07 (0.16)

frequency distributions for samples S1-S6. The only exception is the sample S7, in which

a large cluster of viral variants was not detected in the individually sequenced specimen

but was found in the pooling experiment (see Figure 4.9).

Phylogenetic trees of viral populations from samples S1-S7 obtained by individual

and pool sequencing are shown in Figure 4.9. Although haplotypes obtained from 2 dif-

ferent sequencing experiments are not completely matching, they cover the same areas of

the sequence space. Some tree branches are formed by variants sequenced in one experi-

ment but not another. For instance, sequencing of individual samples S1 and S2 produced

sequences forming branches that cannot be found when sequences from pooling experi-
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ments were considered. The opposite was observed for samples S6 and S7.

S1 
S2 S3 S4 

S5 S6 S7 

Figure (4.9) Phylogenetic trees of viral populations from samples S1-S7. Haplotypes ob-
tained by individual sequencing of samples are shown in red, and haplotypes obtained
from sequencing of pools are shown in blue [4].

4.7 Conclusions

In this study, we present a novel framework for massive NGS of highly mutable RNA

viruses, such as HCV and HIV. To the best of our knowledge, this is the first application

of the pooling strategy to highly heterogeneous viral samples. The developed framework

takes into account specific aspects of viral sequencing, such as the extensive heterogeneity

of viral samples, the large number of distinct viral variants sequenced from each sample

and the effects of PCR and sampling biases. The proposed strategy is highly effective in

reducing the number of sequencing runs, while still providing sufficient amount of in-

formation in support of molecular surveillance and numerous other applications of viral

sequences in clinical and epidemiological settings. The novel clustering algorithm de-

veloped here significantly facilitates assignment of intra-host viral variants from massive

sequence datasets obtained by pooling specimens to individual patients. The strategy

of overlapping pools drastically reduces the cost of sequencing per specimen, especially

when large numbers of specimens require to be tested. This computational framework is
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applicable to viral agents infecting humans and animals and, with further development

of the experimental protocols, it should serve as a cost-effective foundation for accurate

molecular surveillance of infectious diseases.

Ultra-deep sequencing of viral samples produces a wide range of intra-host viral

variants and allows for detecting minority variants, some of which have been shown to

have important clinical implications such as drug resistance [33, 141, 142]. Pooling of nu-

merous specimens reduces the depth of sequencing for each specimen. However, this

reduction is not as detrimental for identifying minor viral variants since each specimen

is usually used in more than one pool in the strategy developed here. As specimen is

tested more than once, the number of sequenced variants is increased, so representative

sampling of viral subpopulations infecting each patient can be improved. The experi-

ments conducted here showed that comparable number of haplotypes were recovered

from individual specimens and from pools (Fig. 4.9), at least at the pooling scale used in

this study. Both individual sequencing and pooling produce sequences covering approx-

imately the same areas of the sequence space, thus providing a consistent structure of a

viral population.

Repeat sampling from the same complex viral population results frequently in poorly

matched sets of viral sequences, thus presenting a significant challenge to assignment of

all sequences obtained by pool sequencing to each patient. Such stochastic sampling has a

potential to diminish the effectiveness of pool-sequencing and usefulness of the obtained

sequences by impeding the correct allocation of sequences to samples, leaving some sam-

ples without sequences assigned or allocating only a fraction of the obtained sequences

to samples. The clustering-based approach to finding generalized intersections of pools

developed in this study significantly improves identification of sequences that belong to a

patient and, thus, not only substantially overcomes the aforementioned potential pitfalls,

but converts stochastic sampling into an advantage.

The cost of sequencing and accuracy of pool deconvolution are two major measures

of quality of our computational framework. However, these two measures are in conflict
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with each other. While increase in pool size improves cost-effectiveness of sequencing

by reducing the number of sequencing runs, it reduces accuracy of deconvolution. Con-

sidering that accuracy of deconvolution significantly depends on the genetic complexity

of intra-host viral populations, an optimal pool size should be carefully selected for each

virus and each genomic region.

In conclusion, success of the pool-based mass-sequencing of viral populations de-

pends to a significant degree on the efficacy of sequence assignments and the risk of

under-representation of viral variants from some patients, owing to PCR and sample bi-

ases. The pool-design and clustering algorithms presented here substantially minimize

the detrimental effect of these biases on quality of the mass-sequencing. However, the fur-

ther reduction of the biases using, for example, generalizations of error-correcting codes

and optimization of experimental conditions, should further improve the strategy, facili-

tating its application to molecular surveillance and study of infectious diseases.

4.8 Software package

Our framework is available online and may be freely used for all non-commercial

purposes. http://alan.cs.gsu.edu/NGS/?q=content/pooling
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PART 5

ALGORITHMS FOR PREDICTION OF VIRAL TRANSMISSIONS

5.1 Introduction

Inferring transmission clusters and transmission directions from viral sequencing

data is crucial for viral outbreaks investigation. Outbreaks of RNA viruses such as as

Human Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV) are especially dan-

gerous and pose a significant problem for public health. It is well known that genomes

of RNA viruses mutate at extremely high rates [156]. As a result RNA viruses exist in in-

fected hosts as populations of closely related variants called quasispecies [157, 158]. How-

ever only recently with the progress of NGS sequencing technologies it became possi-

ble to identify and sample quasispecies at great depth [159–164]. Still, consensus-based

methods remain the most common for HIV and HCV outbreaks investigations [87]. Such

methods (referred further consensus-based cutoff (CBC)) link two hosts by transmission if

the distances between representative sequences of their intra-host populations (usually

consensus sequences) do not exceed a predefined cutoff. Although CBC methods are

useful and simple to implement, they have several limitations:

• Minority viral variants are frequently responsible for transmission of HCV infec-

tions [95,96] but could not be easily detected by CBC methods. Although the nature

of lower frequency variant transmittance is not completely understandable, the evi-

dence suggests that more frequent variants are less likely to be transmitted because

they already dominate the sequence space in the host and highly adapted to that

environment which makes them less viable in the naive host environment [97].

• Cutoff values utilized by CBC methods are derived experimentally. Those cutoffs

are virus specific, and sometimes even region specific of the virus, therefore different
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cutoff values should be considered for the same task. It is also should be noted the

experimental data is often incomplete or compromised. The pre-set cutoffs could

be too conservative/strict and thus missing potential cases in outbreak surveillance

programs.

• CBC methods cannot infer transmission directions which is crucial for detection

of outbreak sources and transmission histories. To our knowledge the directions

of transmissions were never inferred automatically, rather relying on “expert eye”

analysis [92–94] or some additional information which is assumed to be known.

We address the above limitations by proposing two novel algorithms ReD and

VOICE.

• Relatedness Depth (ReD) algorithm identifies viral transmission clusters, transmis-

sions and their directions using clustering-based analysis of whole intra-host viral

populations. Algorithm ReD is non-parametric, i.e. it does not rely on a specific

cutoff value to infer transmissions.

• Viral Outbreak InferenCE (VOICE) infers possible transmissions and their direc-

tions between two given viral populations. VOICE is a simulation-based method

which imitates viral evolution.

ReD and VOICE algorithms can be applied to infer possible transmissions, to identify

their directions, and to predict sources of outbreaks. We evaluate our algorithms on the

experimental data obtained from HCV outbreaks. Comparative results suggest that our

methods are more effective than CBC in detecting transmission clusters and outbreak

sources.
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5.2 Methods

5.2.1 Relatedness depth (ReD) algorithm

The key concept of this method is k-clustered intersection of viral populations (we used

similar idea previously for combinatorial pooling [165]). For two sets of viral sequences

P1 and P2, the k-clustered intersection P1∩P2 is calculated as follows:

1) partition the union P1 ∪ P2 into k clusters C1, ..., Ck;

2) P1∩P2 =
⋃
i∈B
Ci, where B = {i ∈ {1, ..., k} : Ci ∩ P1 6= ∅, Ci ∩ P2 6= ∅}, i.e. P1∩P2 is the

union of clusters, which contain sequences from both P1 and P2 (see Fig. 5.1).

Figure (5.1) Population intersection of two viral populations (blue and red).
Union of populations is partitioned into k = 2 clusters (dashed and solid).
Dashed cluster is the k-clustered intersection.
Direction of transmission is from blue to red population.

The parameter k is a scale of clustering. In particular, populations P1 and P2 are sep-

arable, if P1∩P2 = ∅, while the fact that P1∩P2 6= ∅ indicates that they may be genetically

related. In the most extreme case P1∩P2 = P1∪P2, i.e. populations are completely inseparable

under the scale k.

The degree of confidence that the samples are genetically close is represented by the

relatedness depth d(P1, P2), which is calculated by Algorithm 1.

Simply speaking, Algorithm 1 tries to recursively separate populations P1 and P2. At

each iteration, k-clustered intersection is calculated. If two populations are separable then

the algorithm stops. Otherwise, it continues the separation of sequences from P1 and P2

within their k-clustered intersection. The separation depth is a depth of this recursion.
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Algorithm 1 Relatedness depth calculation

Input Two sets of viral sequences P1, P2.
Output Relatedness depth d = d(P1, P2)

1: d← 0

2: k← 2

3: I← P1∩P2
4: while I 6= ∅ and k ≤ |P1|+ |P2| do
5: d← d+ 1
6: if I 6= P1 ∪ P2 then
7: P1 ← P1|I, P2 ← P2|I
8: k← 2

9: else
10: k← k+ 2
11: end if
12: I← P1∩P2
13: end while

It is possible that at some iterations of Algorithm 1 two populations are completely

inseparable under a current clustering scale. In this case the scale k is increased and k-

clustered intersection is recalculated. The initial value of k used by Algorithm 1 is k = 2.

k-clustered intersections depend on a clustering method. In our implementation, a

hierarchical clustering using neighbor-joining tree based on Jukes-Cantor distance was

used (as implemented in Matlab (MathWorks, Natick, MA)).

Clustered intersections also allow for estimating the direction of transmissions. It

is reasonable to assume that if two hosts share a population, then a host with more het-

erogeneous population is more likely to be the transmission source [166]. Formally, if

I = P1∩P2, P1 ⊆ I and P2 \ I 6= ∅, then we assume that probable transmission direction is

from P2 to P1 (see Fig. 5.1). The direction is defined according to the first occurrence of

such situation during execution of Algorithm 1. Note that in some cases direction may

not be identified.

Identification of transmission clusters and sources of outbreaks. Given the collection of vi-

ral populations P = {P1, ..., Pn}, ReD produces the weighted directed genetic relatedness

graph G = (V,A,w) with V = P . An arc PiPj is in A whenever populations Pi and Pj
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ReD Consensus (4.5%)

Figure (5.2) Transmission clusters for AI outbreak estimated by ReD and
consensus-based algorithm. The known outbreak source is shown in red.
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are genetically related, i.e., have sufficiently high relatedness depth; the direction of an

arc corresponds to the estimated direction of transmission. In this work, the simplest

possible relatedness depth cutoff T1 = 1was used for ReD algorithm.

Transmission clusters are calculated as weakly connected components of the genetic

relatedness graph G. Only components containing at least one edge e of weight w(e) ≥ 2

were considered as reliable. For each connected component, a source s of the correspond-

ing outbreak identified as a vertex with highest eigenvector centrality.

5.2.2 Viral outbreak inference (VOICE) simulation method

Given two intra-host viral populations P1 and P2, VOICE simulates viral evolution in

order to estimate times t12 and t21 needed to acquire an observed genetic heterogeneity

under the assumption, that first and second host were sources of infection. We then decide

if the intra-host viral populations are related based on the value of min{t12, t21}. If they

are related, the direction of transmission is assumed to follow the direction which requires

less time to evolve.

Two main steps of VOICE are (1) construction of a viral network over observed vi-

ral populations in two hosts and (2) running simulation of viral evolution in the viral

network starting from variants in the first and the second populations.

Viral Network Construction. The network consists of nodes representing viral variants and

edges connecting related variants. In addition to vertices corresponding to observed viral

variants we add median vertices, which correspond to consensus sequences for all triplets

of observed variants.

The edges in the viral network are built by the following procedure. First we start

with complete graphG, with weights of its edges being Hamming distances between viral

sequences corresponding to its end-nodes. Next, minimum spanning tree T of G is cal-

culated, and edges with weights exceeding maximal weight of an edge of T are removed

from G. Finally, edges uv with weights k > 1 are subdivided into k edges of weights 1

by adding k− 1 additional vertices which represent “invisible” viral variants on the path
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of virus evolution from u to v. It is important to note that we fix the mutations corre-

sponding to those vertices “on the go”. This allows us to account for random mutation

happening at any position, and there is no need to store all possible variants.

Simulation of Viral Evolution. Suppose that the scenario when the first host is the

source of infection is considered. We define a border set B1 as the set of vertices of P1

minimizing pairwise distance between vertices from P1 and P2:

B1 = {u ∈ P1 : d(u, v) = min
x∈P1,y∈P2

d(x, y) for some v ∈ P2} (5.1)

B1 represent viral variants likely to be closest to variants that were transmitted.

Then the viral evolution is simulated as following. The simulation starts from all

border nodes B1 and run until all the nodes of the population P2 are reached. At the

beginning of simulation border nodes get count equal to 1, and the rest of the nodes get

count 0. At each tact of the simulation node counts are updated according to one of

the following scenarios happening with some probability. First, the node could replicate

itself, in which case its count label is incremented. Second, the node can mutate into one

of its neighboring nodes, in which case the count of that node is incremented. Third, the

node might die due to immune response of the host organism, in which case its count is

decremented. The probabilities p1,p2 and p3 of these scenarios are calculated as follows:

p1 = (1− δ)(1− 3ε)L, p2 = p1
ε

1− 3ε
, p3 = δ, (5.2)

where ε is an error rate (default value ε = 0.03), δ is the death probability (default

value δ = ε) and L is the genome length.

We run s simulations (default value s = 5) assuming each border node as transmis-

sion source. We then take average time t12 of s simulations, and finally, minimal value

of all averages. Same procedure repeated for the other possible direction of transmission

with its own border set, where we calculate t21. The value min{t12, t21} will determine

which direction of transmission is more likely.
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Data normalization. The size of observed intra-host viral populations may significantly

vary. Therefore, VOICE will be biased in estimation of t12 and t21 since larger population

will require more time to cover. In order to avoid such bias VOICE normalizes the data

by adjusting the intra-host population size. Namely, across all viral populations from the

same outbreak we find one with minimal number q of quasispecies. For all other pop-

ulations then the set of quasispecies is clustered into q clusters. This is done by finding

a consensus among sequences from same cluster and CyPy Average linkage hierarchical

clustering.

5.3 Experimental results

Data Sets

For algorithms testing and comparison, two collections of HCV samples were ana-

lyzed.

1) Epidemiologically related samples. This collection contains 142 HCV samples

from 33 epidemiologically curated outbreaks reported to Centers for Disease Control

and Prevention in 2008-2013. Outbreak collections contain from 2 to 19 samples col-

lected from cases infected with HCV subtypes 1a, 1b and 2a. All outbreaks were epi-

demiologically confirmed (see http://www.cdc.gov/ hepatitis/Outbreaks/Healthcare-

HepOutbreakTable.htm). Sources of HCV infection are known for 10 outbreaks as a result

of epidemiological investigations.

2) Unrelated samples. This collection contains HCV samples from infected individ-

uals without any known epidemiological relationship, all obtained from national collec-

tions and other research projects [167].

For all samples, HCV hypervariable region 1 (HVR1) was used for assessment of

intra-host viral populations. Nucleic acids extraction and PCR conditions were previ-

ously described [168]. HVR1 was sequenced using End-Point Limiting-Dilution Real-

Time PCR (EPLD) protocol [168, 169]. Sequences from each sample were aligned using

MAFFT [170] and the primers were removed, yielding a final region of 264bp.
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Accuracy

Performances of ReD, VOICE and consensus-based transmission prediction algo-

rithms were evaluated using clustering quality measures proposed in [171]. Let S be

the set of samples, S(2) be the set of all pairs of samples, T = {T1, ..., Tn} be the partition

of S into correct transmission clusters, and U = {U1, ..., Um} be the partition of S into

transmission clusters estimated by an algorithm. For a partition T let PT = {{x, y} ∈ S(2) :

x, y ∈ Ti for some Ti ∈ T }. The set PU is defined analogously.

We evaluate the quality of relatedness prediction using the following two rates:

• the true positive rate (TPR) is a percentage of truly related pairs of samples predicted

as related by an algorithm, i.e.

TPR =
|PT ∩ PU |

|PT |
. (5.3)

• the false positive rate (FPR) was calculated as percentage of truly unrelated pairs of

samples predicted as related by an algorithm, i.e.

FPR = 1−
|PT ∩ PU |

|PT |
, (5.4)

where PT = S(2) \ PT , PU = S(2) \ PU .

All values of a distance cutoff D for the CBC algorithm with 0.5% increment were

considered, and two values D = 4.5% and D = 6.5% were chosen for the report for the

following reason: D = 4.5% is the largest value, at which the consensus-based algorithm

has a zero FPR on unrelated samples, andD = 6.5% is the smallest value, at which TPR of

the consensus-based algorithm on related samples is comparable to ReD. ReD algorithm

was implemented in Matlab (MathWorks, Natick, MA) and all related and unrelated sam-

ples were processed together.

The combined results of algorithms for related and unrelated samples are reported

in Table 5.1. ReD achieves high quality TPR and FPR. In particular, it is able to correctly
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Table (5.1) Combined results for related samples (33 clusters) and unrelated samples (193
samples)

Methods Related samples Unrelated samples
# predicted

clusters TPR FPR Source identification
accuracy

# predicted
clusters TPR FPR

ReD 37 98.96% 0% 90% 192 100% 0.01%
CBC[4.5%] 43 81.84% 0% 0% 193 100% 0%
CBC[6.5%] 38 96.66% 0% 10% 171 100% 1.37%

identify genetic relatedness for almost all pairs of samples, resulting in 98.96% sensitivity.

At the same time, only 2 false positive connections were reported for ReD. ReD has

significantly higher TPR than the consensus-based algorithm with 4.5% distance cutoff

(CBC[4.5%]). The CBC[6.5%] has a higher TPR, but also a significantly higher FPR – it

falsely identifies a large transmission cluster containing 23 samples.

At this moment VOICE algorithm can detect relatedness with the TPR rate equal to

91.5%. Currently the work is being done to improve the algorithm to be able to identify

clusters of transmissions and sources of outbreaks. However it is the only algorithm

which is able to estimate the time of transmissions. ReD algorithm was most accurate in

identification of outbreak sources. It was able to correctly identify sources for 9 out of

10 outbreaks, while the consensus-based algorithms correctly identified sources in none

or only 1 outbreak. All algorithms failed to detect the source of outbreak AQ. However,

it should be noted that this outbreak was caused by blood transfusion, while the other

outbreaks were associated with unsafe injection practices or contaminated equipment,

which are completely different transmission mechanisms.

5.4 Conclusions

Currently, molecular viral analysis is one of the major tools used for investigations

of outbreaks and inference of transmission networks. Although modern sequencing tech-

nologies significantly facilitated molecular analyses, providing unprecedented access to

intra-host viral populations, they generated novel bioinformatics challenges for molecu-
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lar surveillance. Replacement of simplistic consensus-based approaches and expert phy-

logenetic analyses with novel automatic algorithms using sequencing data for outbreak

investigations is a major advancement in molecular surveillance of viral infections. Such

algorithms must be highly accurate in prediction of transmission to be suitable in public

health inquiries and forensic investigations.

Here, we presented two algorithms for the prediction of viral transmissions based on

analysis of the intra-host viral populations, which allow not only to identify HCV popu-

lations genetically but also to estimate a possible direction of transmissions. Superior per-

formance of the new algorithms over the state-of-the-art CBC algorithm in the prediction

of transmissions using experimental data from actual HCV outbreaks indicates impor-

tance of full-fledged quasispecies analyses for viral molecular surveillance and outbreaks

investigation.

The advantage of the new algorithms is especially evident in identification of sources

of outbreaks. Transmission clusters identified using the CBC algorithm are often indi-

rected cliques in the genetic-relatedness networks (everybody are close to everybody)

and do not allow for distinguishing one of the vertices as a source. Moreover, even when

a transmission cluster is not a clique, the source of an outbreak may not be its most central

vertex, because of new infections being frequently established from minority intra-host

viral subpopulations in the source. [95, 96]. An example of outbreak AI is particularly

illustrative (Fig. 5.2). In this outbreak, the real source has a low degree and centrality in

comparison to other viral samples in a transmission cluster identified using consensuses;

at the same time it is central in cluster identified by ReD. In addition, the only viral sam-

ple in the outbreak BB that was not linked to the transmission cluster using the CBC[4.5%]

is its actual source.

The simulation-based approach VOICE presented here may be further improved by

incorporating more complex viral evolution models taking into account cell proliferation

rate and immune responses against viral variants. The clustering-based ReD approach

may be further improved using a more scalable clustering similar to the algorithm pro-
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posed in [165]. All the algorithms are planned to be integrated into the pipeline of cloud-

based web portal "Global Hepatitis Outbreak and Surveillance Technology" (GHOST) of

Centers for Disease Control and Prevention, Atlanta, GA.
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PART 6

DISCUSSION AND FUTURE WORK

It is important to further improve computational methods to accurately estimate the

viral population structure. It will facilitate the preventative care and help understand

virus evolution. As the NGS technologies become more and more fast and cost-efficient,

computational methods should be adjusted to deal with big amount of data.
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