
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-15-2016

Decentralized Convex Optimization for Wireless Sensor Networks Decentralized Convex Optimization for Wireless Sensor Networks

Goutham Kamath

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Kamath, Goutham, "Decentralized Convex Optimization for Wireless Sensor Networks." Dissertation,
Georgia State University, 2016.
doi: https://doi.org/10.57709/9442990

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/9442990
mailto:scholarworks@gsu.edu

DECENTRALIZED CONVEX OPTIMIZATION FOR WIRELESS SENSOR NETWORKS

by

GOUTHAM KAMATH

Under the Direction of WenZhan Song, PhD

ABSTRACT

Many real-world applications arising in domains such as large-scale machine learning, wired

and wireless networks can be formulated as distributed linear least-squares over a large network.

These problems often have their data naturally distributed. For instance applications such as seis-

mic imaging, smart grid have the sensors geographically distributed and the current algorithms

to analyze these data rely on centralized approach. The data is either gathered manually, or re-

layed by expensive broadband stations, and then processed at a base station. This approach is

time-consuming (weeks to months) and hazardous as the task involves manual data gathering in

extreme conditions. To obtain the solution in real-time, we require decentralized algorithms that

do not rely on a fusion center, cluster heads, or multi-hop communication. In this thesis, we pro-

pose several decentralized least squares optimization algorithm that are suitable for performing

real-time seismic imaging in a sensor network. The algorithms are evaluated and tested using both

synthetic and real-data traces. The results validate that our distributed algorithm is able to obtain

a satisfactory image similar to centralized computation under constraints of network resources,

while distributing the computational burden to sensor nodes.

INDEX WORDS: Decentralized Optimization, Machine Learning, Seismic Tomography

TITLE: DECENTRALIZED CONVEX OPTIMIZATION FOR WIRELESS SENSOR

NETWORKS

by

GOUTHAM KAMATH

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2016

Copyright by
Goutham Kamath

2016

TITLE: DECENTRALIZED CONVEX OPTIMIZATION FOR WIRELESS SENSOR

NETWORKS

by

GOUTHAM KAMATH

Committee Chair: WenZhan Song

Committee: Sushil Prasad

Xiaojun Cao

Edmond Chow

Xiaojing Ye

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2016

iv

DEDICATION

This dissertation is dedicated to my parents Ramachandra and Rajani Kamath for their endless

support, sacrifice, hard work. I also want to thank my wife Rashmi to be part of this journey.

v

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many people. I

want to express my gratitude to my advisor WenZhan Song for his continuous guidance, patience

and support. It is not only his invaluable academic knowledge and methodologies, but also his

passionate attitude and discipline to succeed in my future career development. He gave me the

invaluable passion and effort for quality research.

I’d also like to thank my fellow lab-mates and co-workers for helping me through valuable

knowledge sharing and contributions. I made many great friends and co-workers at Georgia State

University and University of Wyoming during my PhD and MS endeavors. I would like to thank

Anup Rao for his guidance and support at every stage of my life since highschool. Special thanks

goes to Guru and Sharath to support me right from my MS through PhD. I want to thank my

lab mates Lei Shi and Song Tan for their wonderful and memorable companionship with research

works, productive discussions and support.

Finally, I wish to thank all of my family members and all my friends for their unconditional

support, love, patience and understanding.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Analytics on the Edge . 1

1.2 Design Challenges . 2

1.3 Seismic Application . 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Seismic Tomography . 5

2.2 Decentralized Optimization . 6

CHAPTER 3 BACKGROUND 8

3.1 Seismic Tomography . 8

3.2 Phases of Seismic Tomography . 8

3.3 Tomography Formulation . 9

3.4 Convex Optimization . 12

CHAPTER 4 PARALLEL ALGORITHMS FOR WSN 14

4.1 Introduction . 14

4.2 Parallel Kaczmarz using Component Averaging 15

4.3 Convergence and Analysis . 16

4.4 Evaluation . 19

vii

CHAPTER 5 PRE-CONDITIONING USING ADAPTIVE MESH 22

5.1 Introduction . 22

5.2 Adaptive mesh using quadtree/octree . 24

5.3 Distributed Tomography Inversion using Adaptive Mesh 27

5.4 Evaluation . 28

CHAPTER 6 DISTRIBUTED ALGORITHMS VIA GOSSIPING 32

6.1 Introduction . 32

6.2 Distributed Randomized Kaczmarz . 33

6.3 Convergence Analysis . 36

6.4 Evaluation . 37

CHAPTER 7 ASYNCHRONOUS DECENTRALIZED ALGORITHMS VIA RAN-

DOMIZATION 41

7.1 Introduction . 41

7.2 Gossip Randomized Kaczmarz . 42

7.3 Evaluation . 44

CHAPTER 8 CONCLUSIONS 51

REFERENCES . 53

viii

LIST OF FIGURES

Figure 3.1 Different steps involved in seismic tomography. a) Identifying the first

arrival time of P-wave at each sensor. b) Earthquake localization using

P-wave arrival time. c) Calculating the path between earthquake location

and the sensor traveled by the P-wave. d) Inversion process to generate the

seismic tomography. 9

Figure 3.2 Example of discretized tomography with N = 8 in sensor i. The e-th ray

intersect a total of 9 pixels, and thus the e-th row of matrix Ai has 9 non-

zero elements (in columns 3, 4, 12, 13, 21, 22, 30, 31, and 40) 11

Figure 4.1 (a) 3D synthetic magma model (b) Snapshot of the CORE GUI which dis-

plays the nodes along with communication link. 19

Figure 4.2 a) Relative Error measurement with various relaxation parameters - Case

1 b) Comparison of different algorithms 20

Figure 4.3 2D Tomography Rendering from Different Algorithms 21

Figure 5.1 Cell geometries for the event (circle) station (square) paths shown. In (a)

the cells bisect each path whereas in (b) each cell contains exactly one

path length. Both cell geometries have exactly the same homogeneous

path coverage within each cell . 23

Figure 5.2 Relation between ray tracing in different grids 25

Figure 5.3 Flowchart of the mesh refinement process 26

Figure 5.4 Effect of AMR on singular values and Octree based AMR 26

Figure 5.5 Comparing effect of AMR in Centralized ART 30

Figure 5.6 Comparing effect of DT-AMR with CARP and CAV 31

Figure 5.7 Comparing effect of DT-AMR in single Node 31

Figure 6.1 Gossip based Push Sum method where information is exchanged between

neighbor without fusion center. 34

ix

Figure 6.2 2D vertical slice of 3D Tomography using Synthetic Data. The row repre-

sents slice 18 of 32 of different algorithms. 37

Figure 6.3 Comparison of (a) Par-RK and (b) D-RK with different parallel and dis-

tributed algorithms. 38

Figure 6.4 Communication Cost . 39

Figure 6.5 Robustness of distributed algorithms in terms of packet loss. 40

Figure 7.1 (a) Testbed consisting of 16 Beaglebone black connected using a switch.

(b) BeagleBone black hardware details (c) CPU benchmark using Sys-

bench to evaluate the execution time across cluster nodes. (c) Network

benchmark using iPerf to evaluate the throughput across nodes. We see

that though each node has the same hardware, we see a significant differ-

ence both in terms of execution time and throughput. 45

Figure 7.2 (a) Illustrates the convergence of eight random nodes to a consensus value.

(b) Comparing relative error of GRK with its synchronous counterpart

DGD and EXTRA. Graph shows that DGD, EXTRA and GRK took 191,

176 and 210 epochs to reach a threshold δ < 10−4 respectively. Although

GRK took more number of epochs, the total execution time for GRK (220

sec) was less than DGD (261 sec) and EXTRA (255 sec). 46

Figure 7.3 Comparison of GRK (asynchronous) with EXTRA (synchronous) with re-

spect to (a) Epochs (b) Execution time. Number of epochs is more in case

of GRK, however, it takes less time due to asynchronous communication. 47

Figure 7.4 (a) Unsuccessful Gossip (FAIL) across all the nodes for 200 epochs (Suc-

cess). (b) Per Node Execution time (sec). The variations in execution time

is due to the heterogeneity property of the cluster. 48

x

Figure 7.5 (a) Performance of algorithms on a Grid and a complete graph (Kn) topol-

ogy. (b) Performance of GRK under different cases of node and link fail-

ure. Case-1) No failure Case-2) 25% nodes fail for 10% time Case-3) 25%

nodes fail for 15% time Case-4) 50% nodes fail for 10% time Case-5) 50%

nodes fail for 15% time . 50

xi

LIST OF ABBREVIATIONS

• GSU - Georgia State University

• CS - Computer Science

• WSN - Wireless Sensor Network

• CPS - Cyber Physical System

• SVD - Singular Value Decomposition

• GPU - Graphics Processing Units

• CAV - Component Averaging

• CARP - Component Average Row Projection

1

CHAPTER 1

INTRODUCTION

Advancement in wireless sensor network (WSN) technology has enabled us to deploy large

number of small, low cost sensors that can sense, actuate and communicate information in areas

such as environmental monitoring [1], structural health monitoring [2] and smart grids [3]. These

real-world applications involve parameter estimation and can be formulated as a least-squares prob-

lem. In distributed Cyber-Physical System (CPS), each sensor node observes partial phenomena

due to spatial and temporal restriction and is able to form only partial rows of least-squares. Tradi-

tionally, these partial measurements were gathered at a centralized location, however, with the in-

crease in sensors and their measurements, aggregation is becoming challenging and in some cases

infeasible. For instance in volcano monitoring, a dense network of stations are used to record

seismic vibrations and obtain high-resolution images of volcano conduit [4]. The data recorded by

these stations however, are being manually gathered due to its high fidelity and bandwidth limita-

tions [5]. In other CPS such as smart grid, sharing of sensor measurements are restricted due to

privacy and security concerns. These constraints demand distributed algorithms that can run on a

loosely coupled system such as WSN.

1.1 Analytics on the Edge

Many real-world applications arising in domains such as distributed control [6], large-scale

machine learning [7], wired and wireless networks [8], can be formulated as distributed linear

least-squares over a large network. These problems have data naturally distributed among various

nodes e.g peer-to-peer or sensor network. Today, due to the large volume of the data, we face

a challenge to process it in real-time. Therefore, we are particularly interested in solving such

problems in a distributed way, with each node handling its local component. This gives rise to sev-

eral novel techniques commonly referred to as parallel and distributed algorithms. Both of these

2

paradigms assume that there exists a central coordinator either to perform intermediate operation

or control/monitor the deployed devices. Such algorithms are suitable when the number of devices

are small and their interconnection is reliable. In this thesis we will also propose algorithms that

are flexible to operate on devices that have unreliable connectivity. Such algorithms are commonly

referred to as decentralized algorithms. These method do not require a fusion center, cluster heads,

or multi-hop communication as long as the network is connected. We show in the thesis that sim-

ple communication with the neighbors would be sufficient for few algorithms to attain optimal

solution.

1.2 Design Challenges

Designing a decentralized algorithm presents three main difficulties. First, the underlying

hardware in the distributed networks are heterogeneous and often unreliable. Individual sensors

may fail at any time, and the communication network that connects them could be highly unstable.

Second, the on-board processor often has limited memory, computational power and energy that

restricts us from using basic linear algebra tools like SVD, matrix-matrix or matrix-vector mul-

tiplications for local computation. Third, due to the large number of nodes and the volatility of

the network, any reliance on central coordinator will limit the systems scalability and the perfor-

mance. The decentralized algorithm must be fault-tolerant as node and link failures are a common

occurrence in such systems.

From the recent trends in big data optimization, we see a renewed interest in randomized

(stochastic) algorithms both for computation [9] and communication [10]. Today, stochastic meth-

ods can solve data-intensive problems on a inexpensive hardware at a faster rate compared to the

deterministic methods [11]. For instance, Randomized Kaczmarz has linear convergence rate and

outperforms the traditional the conjugate gradient method in some cases [12]. Even in network

communications, randomized methods such as gossip protocols are emerging as a new communi-

cation paradigm for decentralized systems [13]. These methods guarantee convergence in expec-

tation (probabilistic) similar to stochastic methods; achieve high stability under disruptions, and

scale gracefully to a large number of nodes. In comparison, traditional communication techniques

3

have certain guarantees, but are unstable or fail to make progress during periods of even modest

disruption.

1.3 Seismic Application

In this thesis, we develop a suite of algorithms from parallel to decentralized. As a case study

we choose to solve a distributed linear system arising from seismic imaging. Current geophysi-

cal techniques for visualizing seismic activity employ image reconstruction methods that rely on

a centralized approach for processing the raw data captured by seismic sensors. The data is ei-

ther gathered manually, or relayed by expensive broadband stations, and then processed at a base

station. This approach is time-consuming (weeks to months) and hazardous as the task involves

manual data gathering in extreme conditions. Also, raw seismic samples are typically in the range

of 16−24 bit, sampled at 50−200Hz and transferring this high fidelity sample from large number of

sensors to a centralized station results in a bottleneck due to bandwidth limitations [14]. To avoid

these issues, a new distributed method is required which processes raw seismic samples inside each

node and obtains a high-resolution seismic tomography in real time. In this thesis, we propose sev-

eral decentralized algorithms that can be implemented on sensor network to perform real-time

seismic monitoring. The solutions proposed here will help the scientists to analyze and predict

the occurrences of volcanoes in real-time. The algorithms are first evaluated for the correctness

using a synthetic model in a CORE emulator. Later, the proposed algorithms are run using the real

data obtained from Mt. St. Helens, WA, USA. The results validate that the proposed algorithms

are able to obtain a satisfactory image similar to the centralized computation under constraints of

network resources, while distributing the computational burden to sensor nodes [15].

The rest of the thesis is structured as follows: In Chapter 2 we describe the previous works

related to decentralized optimization and seismic tomography. We provide background informa-

tion of seismic tomography in Chapter 3. In Chapter 4 we present Component Averaging based

algorithm that uses fusion center in order to obtain high resolution tomography. Next, in Chapter 5

we improve the component averaging method using adaptive mesh refinement technique. A new

distributed algorithm based on gossip method is proposed in Chapter 6. In Chapter 7 we propose

4

a decentralized asynchronous algorithm suitable for tomography inversion. Finally, we conclude

this thesis in Chapter 8.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Seismic Tomography

The tomography inversion process mainly involves solving a large sparse system of linear

equations (Eq. (3.9)). To solve such large sparse system, iterative methods become almost manda-

tory as they are more efficient in-terms of memory and computational requirements compared to

direct methods [16]. Several parallel and distributed iterative methods have been developed and are

currently used to solve a large variety of problems [17], [18]. These methods are developed mainly

for GPU computing and assume large bandwidth and reliable communication. Communication in

sensor networks are unreliable and has a limited bandwidth. These constraints prevent us from

using existing methods on sensor network for tomography inversion process.

In order to handle large data, many iterative methods suitable for parallel computing have been

developed recently [19]. Among them we found Component Averaging (CAV) [20] and Compo-

nent Averaged Row Projections (CARP) [21] methods to be suitable for distributed tomography

computation over sensor networks [4]. CAV [20] is a cimmino-type method [22] that projects cur-

rent iterates simultaneously onto all the systems’ hyperplanes. n this method, each projection is

scaled with a sparsity-related weight, rather than fixed weights used in cimmino, exhibiting faster

numerical convergence. CAV retains the desired convergence properties of the Cimmino’s method,

in the sense that it converges in the inconsistent case.

In CARP, the equations are divided into blocks, and each block is assigned to one processor.

The processors operate in parallel and each processor performs one or more Kaczmarz projections

on its assigned equations. The different solutions are then merged to become the next iterate by

averaging the values of each component across all the blocks in which the component appears [21].

This process is repeated until convergence. CARP does not place any restrictions on the system

matrix or on the selection of the blocks and is shown to be robust and memory efficient [21].

6

Authors in [19] have compared the performance of various block parallel methods on GPU’s.

2.2 Decentralized Optimization

In recent years, several decentralized optimization methods have been considered for solv-

ing least squares problem. These include, fast gradient methods [23] and decentralized gradient

descent (DGD) [24], [25]. For the general convex case, under assumptions of fixed step size and

Lipschitz continuous, bounded gradient, [23] shows an outer-loop convergence rate of O(1/k2) in

terms of an objective error and iteration k. It utilizes Nesterov’s acceleration, which is the best the-

oretical rate known so far. However, the inner loop of the algorithm performs substantial consensus

computation, without which diminishing step sizes αk = k−1/3 lead to a reduced rate of O(log k/k).

Without bounded gradient, [25] derives a correction method based on mixing matrix for a regular

decentralized gradient decent method and obtains O(1/k) convergence rate without diminishing

step sizes. All these method assume some form of synchronization across the network between

each iteration. For instance, in [24] after each local iteration, all the nodes have to synchronize

and exchange information with their neighbors to perform weighted average. The process resumes

once all the nodes finish updating the average. Due to the large number of nodes, synchronization

or any reliance on central coordinator will limit the systems scalability and the performance.

Asynchronous decentralized methods based on augmented Lagrangian and dual meth-

ods [26], [27] shows a linear convergence under strong convexity. Some of the other recent

asynchronous decentralized methods include the (sub)gradient method [6],(sub)gradient-push

method [28] and the dual-averaging method [8]. Unlike DGD [24], these method exhibit asyn-

chrony, however, these algorithms require an extensive local computation. The significant local

computation costs restricts us from using it in sensor network applications.

Freris and Zouzias [29] proposed an asynchronous decentralized method for a sensor network.

This algorithm is specially designed for network clock synchronization application, in which the

linear system is Laplacian. This algorithm is a special case of the GRK, where the system is

restricted to a Laplacian rather than a general linear system. Moreover, the algorithm assumes each

sub-matrix {Ai, bi} to have a row dimension mi = 1 and column n = N. Our proposed algorithm

7

have no such assumption and can be extended to a more general least squares problem mi � n.

Apart from our empirical results and application to a seismic problem, the convergence results and

proofs are different.

Unrelated to the decentralized optimization, we note the recent work of HOGWILD! [11], [30].

HOGWILD! framework allows us to perform distributed stochastic gradient descent using several

processors. The processors have access to a shared memory that has the iterate and updates them

asynchronously without obtaining any locks. The lock-free technique is achieved using the spar-

sity property of the problem. This framework allows us to obtain a linear convergence for a general

convex problem [11] and a sub-linear convergence for the least squares problem [30]. HOGWILD!

requires all the processors to have access to a shared memory, which restricts us from using it to a

decentralized system such as sensor network.

8

CHAPTER 3

BACKGROUND

3.1 Seismic Tomography

Tomography can be defined as the science of computing reconstructions in 2D and 3D from

projections, i.e., solving the system of linear equations obtained by integrations along the rays

that penetrate a domain Ω, typically a rectangle in 2D, and a box in 3D. In this paper we use

first-arrival travel time of the p-wave (primary wave) to derive the internal velocity structure of a

volcano. Fig. 3.1(a) shows the sample of p-wave obtained at four different stations and the blue

line indicates its corresponding arrival time. Next, we explain four basic principles involved in

travel-time seismic tomography.

3.2 Phases of Seismic Tomography

i) P-wave arrival-time picking: P-waves travel faster than any other waves though the earth

and are the first to be recorded in the seismic sensors. Inside the earth, density varies due to the

presence of different layers and materials. These cause the seismic waves to travel at different

velocities in different directions as shown in Fig. 3.1(b). By picking the arrival time of the p-wave

at different stations we can obtain the difference in the propagation delay. Picking arrival time is

inherently distributed and authors in [31] have proposed methods to automatically pick the arrival

time which can be implemented on each station.

ii) Event Location: Once the arrival times of p-waves has been detected by each station,

their differences can be used to obtain the exact location and the origin time of the earthquake.

Geiger’s [32] method is used to calculate the event location along with origin time and it requires

travel time differences from at least four different stations. This method is one of the classic and

widely used event localization schemes to obtain the exact location and time.

iii) Ray Tracing: This is the technique used to find the ray paths between the seismic source lo-

9

cations (earthquake) and the receiver nodes with minimum travel time, following an event. Once an

earthquake occurs, the seismic rays originating from these events perturb and register the anoma-

lous residuals. Given the source location of the seismic events and current velocity model of the

volcano, the ray tracing method finds the ray paths from the event source locations to the nodes, as

shown in Fig. 3.1(c). The p-waves traveling in different mediums under the earth tend to bend due

to reflection and refraction resulting in a curved path during the ray tracing [33]. However, for the

sake of simplicity in this paper we assume that the rays travel in a straight path.

iv) Tomography Inversion: The traced ray paths are in turn used to estimate the velocity model

of the volcano. Inheriting the concept from medical tomography, the volcano can be partitioned

into smaller blocks called pixels (2D) and voxels (3D), as shown in Fig. 3.1(d), to form a large,

sparse system of linear equations. In the next section, we show the formulation of the travel-time

seismic tomography problem using the perturbation model.

Event Location Ray Tracing Tomography Inversion

Sensor Node Seismic Rays Estimated Magma AreaBlocks on Ray Path

Magma

Estimated Event LocationEarthquake Event

(b) (c) (d)

P-wave Arrival Time Picking

P-wave

(a)

Figure (3.1) Different steps involved in seismic tomography. a) Identifying the first arrival time of
P-wave at each sensor. b) Earthquake localization using P-wave arrival time. c) Calculating the
path between earthquake location and the sensor traveled by the P-wave. d) Inversion process to
generate the seismic tomography.

3.3 Tomography Formulation

Let us assume that the time taken by seismic signal to travel from the source (earthquake) to

a receiver (station), in a given medium, is a function of the seismic velocity of the material and

the ray path. Given the velocity model, source and receiver locations, calculating the travel time is

10

called a forward problem, given by

T (v, ray) =

∫
ray

1
v(y)

dτ, (3.1)

where, T is the travel time, v(y) represents velocity of the material and spatial position y, and dτ is

a differential line element along the path. Since, T does not depend linearly of the velocity, v(y),

for convenience we introduce slowness where, s(y) = 1/v(y). Therefore Eq. (3.1) becomes

T (v, ray) =

∫
ray

s(y)dτ. (3.2)

Since the ray path traveled depends of the slowness, it is non-linear and can be linearized

using the perturbation approach [34]. Suppose, we have a reference model s0(y), the slowness

model s(y) we intend to obtain is given by,

s(y) = s0(y) + δs(y). (3.3)

Substituting Eq. (3.3) in Eq. (3.2), we get,

T =

∫
ray

s0(y)dτ +

∫
ray
δs(y)dτ, (3.4)

and by rearranging we get,

δT = T − T0 ≈

∫
ray
δs(y)dτ, (3.5)

where, δT is called travel time residual. This gives the linear relationship between δT and slowness

perturbation δs.

Next we will show how the continuous function δs(y) can be discretized by dividing a square

domain Ω = [0, 1]× [0, 1] into a grid of pixels. For simplicity we assume 2D scenario with regular

N × N grids. When Eq. (3.5) is discretized on N × N array of pixels, let us assume s(y) takes a

constant value sk` over the pixels (k, `), where k and ` ∈ {1, · · · ,N}.

11

ray e

a1 a2

a3

a4 a5 a6 a7 a8

a21

a12

a57 a58 a59 a60
a61 a62 a63 a64

{

{

a22

a30 a31

a40

Figure (3.2) Example of discretized tomography with N = 8 in sensor i. The e-th ray intersect a
total of 9 pixels, and thus the e-th row of matrix Ai has 9 non-zero elements (in columns 3, 4, 12,
13, 21, 22, 30, 31, and 40)

Let us consider a single ray e ∈ {1, · · · ,mi}, where mi denotes total number of rays in sensor

node i. Also let the travel time residual for ray e is given by be = δTe . Now, by substituting the

discretized sk` into (3.5) we get,

be =
∑

(k,`)∈raye
sk`∆Le

k`, (3.6)

where, ∆Le
k` = length of raye in pixel (k, `). We can re-write the above equation in a more simpli-

fied form by numbering pixel (k, `) with j i.e. x j = sk` and ae j = ∆Le
k`, where j = (` − 1)N + k, we

get

be =

n∑
j=1

ae jx j, e ∈ {1, · · · ,mi}; n = N2 (3.7)

In the matrix form the system of equations formed at the ith sensor node is given by,

Aix = Bi, Ai ∈ R
mi×n, x ∈ Rn (3.8)

12

where,

Bi = [b1, · · · , bmi]
T , ae j =


∆Le

k` (k, `) ∈ raye

0 otherwise

Now for P number of sensors i.e. i ∈ {1, · · · , P} we have

Ax = B (3.9)

where,

A =



A1

A2

...

AN


; b =



b1

b2

...

bN


; Ai ∈ R

mi×n; bi ∈ R
mi , (3.10)

In this thesis, we consider solving the Eq. (3.9) in a distributed way over a loosely connected

decentralized network. We assume that each node i has {Ai, Bi} obtained from steps such as arrival

time picking, event location and ray tracing.

3.4 Convex Optimization

In this thesis, we consider N edge nodes connected to form an arbitrary topology given by

an undirected graph G(V,E), with node set V = {1, · · · ,N} and edge set E that contains set of

links in the network. We have {i, j} ∈ E if node i and node j can communicate with each other. Ni

denotes the neighbor set of node i. Each edge node i is connected to one or more seismic sensors

and have mi training samples given by, {(x1, y1), (x2, y2), · · · , (xmi , ymi)}, where
∑N

i=1 mi = m. Now

we can form a local loss function at node i given by fi(x) = 1
2mi

∑mi
i=1 ‖yi − xᵀi θ‖

2
2 + λ‖θ‖22.

Now combining all to a single equation we get the following optimization problem,

min
θ∈Rn

1
2N

N∑
i=1

‖Yi − Xᵀi θ‖
2
2 + λ‖θ‖22, (3.11)

where, Xi ∈ R
mi×n; Yi ∈ R

mi denote the mi rows training set at node i. Here, the regularization pa-

13

rameter λ is a positive number that controls the weight between ‖Yi−Xᵀi θ‖
2
2 (goodness fit measure)

and ‖‖22 (regularity measure). We represent θk feature estimated at the iteration k. The goal now is

to develop an algorithm to solve regularized regression problem Eq. (7.1) in a decentralized and

asynchronous way on the edge network.

14

CHAPTER 4

PARALLEL ALGORITHMS FOR WSN

4.1 Introduction

Image reconstruction problems have large sparse linear systems and iterative methods are

routinely used to solve them [35]. Algebraic Reconstruction Technique (ART) [36] also know as

Kaczmarz (KACZ) [37] was the first iterative method used to solve such problems. This algorithm

is inherently sequential, where initial vector x is projected onto rows of A in a cyclic manner. At

each iteration, the previous iterate is projected orthogonally onto the hyperplane defined by the

equation 〈ai, x〉 = bi. Here, we denote ai and bi as the ith row vector of the matrix A and ith element

of b respectively. The Kaczmarz algorithm is given by

Algorithm 1 Kaczmarz

1: Initialize: x0 ← 0
2: for k ← 0 until convergence or max iteration do
3: i← k mod m + 1
4: x(k+1) = x(k) + ρi

bi−〈ai,x(k)〉

‖ai‖2
ai

5: end

where, ρi is a cyclic relaxation parameter that extends the projections either in front of the hyper-

plane (ρi < 1), on the hyperplane (ρi = 1), or beyond the hyperplane (ρi > 1). The convergence of

KACZ with relaxation parameter (0 < ρ < 2) for a consistent system has been shown in [38, 39].

In order to perform distributed tomography in sensor network, reconstruction algorithms such

as CAV and CARP were found to be suitable [4]. These algorithms belong to parallel reconstruc-

tion techniques, where during each iteration, all the blocks (single equation in case of CAV) are

processed in parallel (by some algorithm operating on each block independently of the others), and

then the next iterate is formed by applying some operation to the partial solutions from the different

blocks. These algorithms are also known as string averaging methods [20]. CARP in particular

is designed as a general method and places no restriction on the system matrix or the selection of

15

the blocks. CARP uses ART to perform local iteration. The partial solutions from all the blocks

are then combined to form the next iterate using component wise averaging. CARP is shown to

be equivalent to KACZ in some superspace and this makes it attractive for distributed tomography.

The row projection property of KACZ, i.e processing each row at a time, makes it promising to be

implemented on tiny devices like Beaglebone black due to its small memory footprint (each row

being sparse).

4.2 Parallel Kaczmarz using Component Averaging

Until now, Kaczmarz was used only in a centralized setup to generate seismic tomography.

All the raw data sampled from each station had to be manually collected, pre-processed, analyzed,

and then finally interpreted. Data gathering is the most challenging step, and this motivated us

to develop in-network distributed algorithms. In this section, we provide details regarding Dis-

tributed Bayesian ART (D-BART) that can be implemented on sensor nodes to perform distributed

tomographic inversion.

Suppose there are P sensor nodes in the network. Let the ith sensor perform event detection

and ray tracing as mentioned in Section 3.3 to form Ai ∈ R
mi×n and Bi ∈ R

mi . Here n denotes the

resolution of the tomography image and mi is the number of rows of Ai, which is the number of

p-waves detected and traced. Now we let A j
i represent the jth column of the matrix Ai, and we

identify the non-zero columns of Ai, i.e for ith station and 1 ≤ j ≤ n we let

s j
i =


1 if A j

i , 0

0 if A j
i = 0

(4.1)

This s j
i is sent to a SINK node where S j =

∑P
i=1 s j

i 1 ≤ j ≤ n is calculated. S j denotes

total number of blocks that have at least one non-zero element in the jth column. This S j will be

used to perform component averaging, where partial slowness obtained from each station will be

combined with others. Next, we show how component averaging is done to obtain the next iterate.

Let A = {A1, · · · , AP} and x̄ j
i denote the jth component of partial slowness obtained from ith

16

station after solving the linear equation Aix = Bi. The component averaging operator relative to

A is the transfer operator CAA : (Rn)P → (Rn) and is defined as follows: Let {x̄1, · · · , x̄P} ∈ R
n

be partial solution from all P sensor nodes. Then CAA(x̄1, · · · , x̄P) is the point in Rn whose jth

component is given by

CAA(x̄1, · · · , x̄P) j =
1
S j

P∑
t=1

x̄ j
t .

Algorithm 2 Parallel Kaczmarz

1: Initialize: x0 ← 0; λ; κ1; κ2
2: for k ← 0 until convergence or maximum number of iteration do
3: for i← 1, · · · , P execute in Parallel
4: xk

i = KACZt(Ai, bi, xk−1, λ, ρk)
5: end
6: (x j)k

= 1
S j

∑P
i=1 (x j

i)k ∀ j = 1, · · · , n
7: end

Algorithm (2) presents Parallel Kaczmarz where KACZt denotes t internal iterations of Kacz-

marz algorithm (1).

4.3 Convergence and Analysis

To prove the convergence of Parallel Kaczmarz we first transform the system given in Eq. (3.9)

into system of equations in some superspace Rs of Rn. Let Bt = {At, bt}, be a tuple containing

known terms of subsystem and xt ∈ R
n be the partial solution of subsystem t for 1 ≤ t ≤ P. We

know that, xt can share some common variable with xt′ if At and At′ has common non-zero column.

Now without loss of generality, for 1 ≤ r ≤ n the components {x1, · · · , xr} be exactly share with

two or more nodes i.e s1, · · · , sr ≥ 2, while sr+1, · · · , sn = 1. From this we have n − r components

of x not shared by any blocks and can be computed without needing any data exchange.

Now,the expansion mapping can be given by E : Rn → Rs:

E(x1, · · · , xn) =

(y1,1, · · · , y1,s1 , · · · , yr,1, · · · , yr,sr , yr+1, · · · , yn),

17

where y j,1 = · · · = y j,s j = x j for 1 ≤ j ≤ r and y j = x j for r < j ≤ n.

Similarly, we can transform the equation of the subsystem Bt from Rn to Rs which we will

denote it as B′t = {A′t , b
′
t}. The new transformed equation in B′t do not share any common variable

with any other blocks. Let, B′ = ∪P
t=1B′t represent all the subsystem stacked together. Now, parallel

execution RK on each node Bt for 1 ≤ t ≤ P is equivalent to performing RK on B′. Next, we will

show that averaging the shared variable of the system B, is equivalent to certain row projections.

From this it follows that Par-RK is just RK in Rs.

Lemma 1 Let 1 ≤ m ≤ P, y0 = (y0
1, · · · , y

0
P) ∈ (R)P and let y1 = (y1

1, · · · , y
1
P) ∈ (R)P be defined as

follows: y1
i = (y0

1 + · · · + y0
m)/m for 1 ≤ i ≤ m, and y1

i = y0
i for m < i ≤ P. Then y1 can be obtained

from y0 by performing a sequence of (m − 1) orthogonal projections on hyperplanes of Rn as in

KACZ.

Proof 1 The proof is by induction on m. For m = 1, there is nothing to prove. For m = 2,

project y0 onto the plane defined by the equation −y1 + y2 = 0. The vector of coefficient of a

are {−1, 1, 0, · · · , 0} and ‖a‖2 = 2. The projection ỹ = {ỹ1, ỹ2, · · · } is

ỹ = y0 −
1
2
〈y0, a〉a

= (y0
1, y

0
2, · · ·) −

1
2

(−y0
1 + y0

2)(−1, 1, 0, · · · , 0)

=

(
1
2

(y0
1 + y0

2),
1
2

(y0
1 + y0

2), y0
3, y

0
4, · · ·

)

In other words, for m = 2 nodes we obtain ỹ1 = ỹ2 =
(y0

1+y0
2)

2 by performing one orthogonal

projection on a suitable hyperplane. We assume that the statement is true for m, and we will prove

it for m+1. Let, y0 = {y0
1, · · · , y

0
n} and we project y0 onto the hyperlane defined by the equation

−y1 − y2 · · · − ym + mym+1 = 0. Now, a = (−1, · · · ,−1,m, 0, · · · , 0) and ‖a‖2 = m + m2 = m(m + 1).

The projection is the point y′ = {y′1, · · · , y
′
n‖ defined by y′ = y0 − (〈y0, a〉a)/(m(m + 1)). Substituting

y0 and a, we have

18

y′ = (y0
1, · · · , y

0
n) −
−y1 − y2 · · · − ym + mym+1

m(m + 1)

(−1, · · · ,−1,m, 0, · · · , 0)

For each 1 ≤ i ≤ m, we have

y′i = y0
i −

1
m(m + 1)

 m∑
j=1

y0
j − my0

m+1

 ,
and the (m+1)st coefficient is

y′m+1 = y0
m+1 +

(y0
1 + · · · + y0

m − my0
m+1

m(m + 1)
m

=
1

m + 1
(y0

1 + · · · + y0
m) +

(
1 −

m
m + 1

)
y0

m+1

=
1

m + 1
(y0

1 + · · · + y0
m) +

m + 1 − m
m + 1

y0
m+1

=
1

m + 1
(y0

1 + · · · + y0
m + y0

m+1)

This proves the induction hypothesis and the lemma

We have shown that averaging is equivalent to row projection in some superspace Rs. Let, B̃′

be the auxiliary averaging equation and we form B′′ by adding B′ with B̃′, with increased row pro-

portional to number of shared variables. Now, if the Eq. (3.9) is consistent, then set of transformed

equations B′ and average equations B̃′ are also consistent. Strohmer and Vershynin [12] showed

that RK converges on a consistent system even if the projections are not performed cyclically; all

that is required is that each equation should be used infinitely often. This allows us to perform

Kaczmarz in Algorithm 2 for any positive number of iteration in each block. We refer to work

of [40] in case of the inconsistent system. This proves the convergence of Par-RK.

19

4.4 Evaluation

To evaluate the algorithm, the data generator is implemented to generate a magma area and

earthquake events assuming the tomography model is a cube of dimension 10 × 10 × 10 km. Then

we set a predefined magma area as the ground truth as shown in Fig. 4.1(a). The velocities of

seismic waves inside and outside the magma area are V and 0.9V where V is 4.5km/s which is a

typical P-wave velocity.

A network of 100 nodes (Fig. 4.1(b)) are setup in CORE emulator to monitor the magma area.

We set the final tomography resolution to be 32×32×32 where each block is of the size 0.315 km3.

The data generator then generates earthquake events with random location and time, and calculates

ray travel time from event location to all sensor nodes. To simulate the event location estimation

and ray tracing errors, a white Gaussian noise is added to the travel time. Each node can calculate

the predicted travel time based on the initial model in different resolution.

(a) 3D Synthetic Phantom (b) Station setup in CORE

Figure (4.1) (a) 3D synthetic magma model (b) Snapshot of the CORE GUI which displays the
nodes along with communication link.

In the implementation, the Bayesian ART method is performed for 10 iterations locally to

solve the equation system on each node. We use the relative slowness perturbation updates of

the estimation between the two sweeps (one sweep means that all partial slowness perturbation is

averaged to calculate next iterate) as the stopping criteria. If the relative update (φ) is less than

20

a tolerance, the CA-DMET stops. To compare the performance of CA-DMET, we also used the

centralized Bayesian ART to solve the system at target resolution with all 900 events (case (4)).

Performance of CA-DMET is compared using their relative update (φ = |x(k+1) − x(k)|/|x(k)|),

relative residual (χ = ‖Axk − B‖/‖B‖) and relative error (δ = |x(k) − xtruth|/‖xtruth‖).

0 10 20 30 40 50

10
−1.9

10
−1.8

10
−1.7

Iteration

R
e
la

ti
v

e
E

rr
o

r

ρ=0.25

ρ=0.5

ρ=1.0

ρ=1.25

(a)

0 10 20 30 40 50
10

−1.9

10
−1.8

10
−1.7

Iteration

R
e
la

ti
v

e
E

rr
o

r

CAV

CIM

DROP

CA−DMET

(b) Relative Residual

Figure (4.2) a) Relative Error measurement with various relaxation parameters - Case 1 b) Com-
parison of different algorithms

We first run experiments to show the behavior of different relaxation parameters on CA-

DMET and also choose an optimal ρ for a given set of synthetic data. CA-DMET is performed on

case 3 by varying ρ from 0.25 to 1.25 and the plots are shown in Fig. 4.2. Starting from a small

relaxation parameter, each successive value of ρ increases the convergence rate until an optimal

value is reached. We found that further increase in the relaxation parameter worsened the result

and an optimal relaxation parameter was found to be 1.25 for the given synthetic magma model.

In all our experiments with synthetic data, the relaxation parameter remained constant throughout

the iterations, i.e., ρk = ρ for all k ≥ 0.

In the next set of experiments, we compare the relative performance of CA-DMET with three

different algorithms: CAV, Cimmino and un-weighted DROP [41]. We use relative error as the

parameter for comparison and results shown in Fig. 4.2(b) demonstrate that there is a difference

in the initial convergence between CAV, Cimmino, DROP and CA-DMET. A visual verification of

all the algorithms are shown in Fig. 4.3. All the algorithms are run for same number of iterations.

The reconstructed image from different algorithms reveal that CA-DMET is able to obtain a better

21

magma image with less perturbation noise outside the region compared to other algorithms.

Y

Z

0 1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

0

(a) Cimmino
Res: 323

Y

Z

0 1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

0

(b) CAV Res: 323

Y

Z

0 1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

0

(c) DROP
Res: 323

Y

Z

0 1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

0

(d) CA-DMET
Res: 323

Y

Z

0 1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

0

(e) Phantom
Res: 323

Figure (4.3) 2D Tomography Rendering from Different Algorithms

22

CHAPTER 5

PRE-CONDITIONING USING ADAPTIVE MESH

5.1 Introduction

Adaptive mesh refinement (AMR) has been studied widely and has been used as discretiza-

tion tool for partial differential equation as early as 1980 [42]. However, only until early 90’s

it was used by seismology community to solve inverse problem on small set of data [43]. [44]

used SVD to interactively change the boundaries while, [45] used genetic algorithm to optimize

the parametrization. These algorithms were suitable for small size data sets and required high

computational power to run efficiently. [46] came up with a less computation intensive solution to

parametrize the coefficient and this algorithm could run efficiently even for large matrices. How-

ever, this algorithm is only suitable for centralized architecture and is not feasible to be imple-

mented in a distributed scenario. To perform adaptive mesh in a distributed case, we had to come

up with some novel method which was computationally light and also satisfy the requirements

such as faster convergence. To the best of our knowledge, our work is the first attempt to compute

seismic tomography using adaptive mesh over a distributed sensor networks.

Many geophysical inverse problems are ill-conditioned i.e. model space contains more de-

tails than it can be resolved using available data space [47]. Model space matrix A typically has

large null space and because of this, few portions of the solution cannot be resolved leading to its

non-uniqueness. Geophysicists commonly use two approaches to overcome this problem: firstly,

by making the problem well conditioned using some a-priori information such as smoothness con-

straints, regularization etc [36]. However, obtaining reliable prior information is hard and also

sometimes the smoothness constraints can be unrealistic. The second approach is by identifying

the eigenvalue and eigenvector corresponding to the null space of model and later removing them

explicitly. Although this method reduces the effective information content of the data set in the

model space in a nontrivial manner, it can be used to obtain maximum amount of information that

23

can be resolved from the current data set which will then reduce the amount of additional a-priori

information to be included in the solution.

Removal of null space from the model data is equivalent to parameter reduction and here we

will explain this with a simple example. Consider the path geometry of the ray produced by source

(circle) and receiver (square) as shown in Figure 5.1. Let us suppose that we have an error-free

measurement of average velocity and each of the four cells in Figure 5.1(a) have exactly equal

ray path coverage. From measurements along the two left-hand paths, the quantity v1 + v2 can

be determined exactly. The quantity v1 − v2, however, remains entirely unresolved by the data,

and hence velocities v1 and v2 cannot be determined. Similarly, the combination v3 + v4 may be

determined exactly, but not v3 − v4 and hence v3 and v4 cannot be determined.

Let v = [v1, · · · , v2]T , then well-determined combinations are e1.v and e2.v. Whereas, the

undetermined combinations are e3.v and e4.v, where

e1 =



1

1

0

0


; e2 =



0

0

1

1


; e3 =



1

−1

0

0


; e4 =



0

0

1

−1



Figure (5.1) Cell geometries for the event (circle) station (square) paths shown. In (a) the cells
bisect each path whereas in (b) each cell contains exactly one path length. Both cell geometries
have exactly the same homogeneous path coverage within each cell

Vectors e1 to e4 are the eigenvectors of the inverse problem and v1 to v4 the velocities we

are interested. Parameter combinations parallel to eigenvectors e1 and e2 are completely deter-

mined if and only if (iff) the corresponding eigenvalues are large, however combinations parallel

24

to eigenvectors e3 and e4 are undetermined iff they correspond to small or zero eigenvalues.

Remark 1 Removal of parameters that creates null space involve modification of the grid structure

based on ray coverage which also changes the resolution and information content.

5.2 Adaptive mesh using quadtree/octree

To perform quadtree based AMR on seismic tomography first we need to generate a density

matrix I which is checked for homogeneity criteria and later split. Matrix I should be in Rn×n

where n ∈ 2k, k > 0 and this restricts us to have the finest resolution to be power of 2. We use

hit count to generate I i.e. Ii j = number of rays passing through i j-th grid of finest resolution.

There are other ways to choose I such as region of interest and other hybrid methods [46] and this

requires domain knowledge and will not be discussed in this paper. Now with only hit count, I can

be generated by performing columnSum(A) and then reshaping it to n × n. To generate quadtree

S we use QTDecomp function which first initializes S to size of I which becomes the root. Later

this S is divided into four equal sized squares if the corresponding blocks in I satisfy the criterion

of homogeneity. This process is further continued recursively and stops if either the block does not

meet the criteria or depth of the tree is k i.e. until finest resolution. After obtaining the quadtree S

we can easily generate ∆ by using algorithm [3]. In this paper, we do not discuss the efficient way

to implement quadtree data structures and further details on this can be found in [48].

Algorithm 3 ∆← TransMat(S)
1: for i← root until all nodes do
2: if(i ==leafNode(S))
3: idx = getIndex(i)
4: ∆(i,idx) = 1
5: endif
6: endfor

Next we will show how we can apply AMR to our problem and derive equations that satisfy

the travel time setup. Let Ã denote the data kernel formed by irregular mesh and the coefficients

in Ãek denotes the length of e-th ray in k cell. Computing Ãek solely by using ray tracing can be

25

computationally expensive especially because of the irregular geometry of the mesh. Therefore, to

avoid that we obtain the relationship between ray lengths on irregular and regular grids, and it is

given by,

Ãek =

N∑
j=1

∆k jAe j (5.1)

ray e

a1 a2

a3

a4 a5 a6 a7 a8

a21

a12

a57 a58 a59 a60
a61 a62 a63 a64

{

{

a22
a30 a31

a40

(a) Regular Grid

ã1

ray e
ã2

ã3 ã4

ã5 ã6

ã7 ã8 ã11

ã12

ã13 ã14

ã15 ã16

ã9
ã10

{

(b) Adaptive Grid

Figure (5.2) Relation between ray tracing in different grids

Figure 5.2 shows the relation between rays on two grids that is given by (5.1). In this, ã2 is

obtained by summing {a3, a4, a11, a12} whereas, ã7 to ã10 maintains the finest resolution as regular

grid. This criteria of splitting is decided by ∆ as discussed earlier and now the equation can be

re-written in matrix form as,

Ã = A∆T (5.2)

Substituting (5.1) and (5.2) in (3.8) equation at each node becomes,

Bi = Ai∆
T
i y

Bi = Ãiy
(5.3)

where, Bi and ∆i is the travel time vector and transformation matrix formed at node i respec-

26

tively. y is the new model vector on irregular grid and can be transformed to original grid by

x = ∆iy

We summarize the entire process of adaptive mesh refinement using quadtree in Figure 5.3.

Regular Cell Model Highest
Resolution

A

Ã = A Δ
T

b = Ã y

Analyzex = Δy

Δ = TransMat(S)

(Cheap)

(Cheap)

(Solve for y)

Density Matrix I
based on Hitcount

S = QTDecomp(I,Threshold)

Figure (5.3) Flowchart of the mesh refinement process

0 500 1000 1500
10

−30

10
−20

10
−10

10
0

Parameter Size

S
in

g
u

la
r

V
al

u
es

Before−AMR

After−AMR

(a) Singular values of A and Ã

0

5

10

15

0

5

10

15

0

5

10

15

(b) Octree based AMR

Figure (5.4) Effect of AMR on singular values and Octree based AMR

We applied adaptive mesh refinement on seismic tomography problem and we observed that

it can improve the condition number of matrix A by removing the small singular values as shown

in Figure 5.4(a). Figure 5.4(b) shows the adaptive mesh refinement on 3D problem using octree

decomposition and have finer grids at the center of magma and becomes courser towards outside.

27

Remark 2 Adaptive mesh refinement can be viewed as a non-trivial way of adaptive pre-

conditioning as it decreases the condition number of the data kernel.

The technique of selecting pre-conditioner using geometry of the problem and simple

parametrization technique (quadtree/octree) is computationally less intensive. However, it should

be noted that AMR relies on the threshold we choose and this requires domain knowledge. Also,

if thresholds are not selected carefully it may result in removal of good singular values thereby

leading us to different or bad solution. We will show the analysis of threshold sensitivity in the

evaluation section. Until now we have seen the working of AMR for seismic tomography and we

have shown how quadtree/octree based approach is suitable to run on sensor nodes. In the next sec-

tion we will discuss how these transformed system of linear equation can be solved distributedly

over a sensor network.

5.3 Distributed Tomography Inversion using Adaptive Mesh

In the previous section we have seen how to transform the system of linear equation formed

over regular grid to a more well-condition system using irregular partitioning. Now applying (5.2)

and (5.3) to (3.9) we get,

A∆T y = B

Ãy = B

where,

Ã =



A1∆
T
1

A2∆
T
2

...

Ap∆
T
p


=



Ã1

Ã2

...

Ãp


;B =



B1

B2

...

Bp


; Ãi ∈ R

mi×ni

28

From the above equation we see that at each sensor i ∈ {1, · · · , P} Ai ∈ Rmi×n gets transformed

to Ãi ∈ Rmi×ni . Note that during this transformation the number of rays i.e. mi and right hand

side Bi are unchanged while the number of grids are changed from n to ni where ni ≤ n. At each

sensor station the new linear subsystem formed after AMR is given by Ãiyi = Bi. The rows of this

local subsystem contains rays and can be solved locally using row projection method like kaczmarz

algorithm (1). The complete DT-AMR is given in algorithm (4). In this algorithm the initialization,

ray tracing and adaptive mesh is performed only once and done simultaneously on each node. The

steps that involves communication is highlighted in bold. Sending ∆i to SINK in step 4 is done

only once and can be done cheaply as ∆i can be encoded efficiently. The actual communication

in the network occurs in the line 5 and 7 of distributed tomography which involves aggregation of

partial solution of size ni from all the nodes and then broadcast averaged result back. The worst

case communication cost for this given by P
∑

i dim(xi). Since this needs to be broadcasted back

and algorithm converges after k iterations, the worst case communication cost is 2kP
∑

i dim(xi).

Although this cost may seem to be high, we will see in the next section that it is infact lesser than

centralized methods where each row of {Ai, Bi} needs to transferred. Moreover, the averaging over

the networks can be done by communicating only with the neighbors and we leave this to the future

work.

5.4 Evaluation

We evaluated the communication cost of DT-AMR algorithm using CORE network emula-

tor [49]. We select CORE as the development and evaluation platform because the sensors that

will be deployed on the real volcano will be some-low powered linux based devices such as an-

droid, beagle-bone or raspberry pi. Code developed in CORE emulator can be transferred to these

devices without any modification. A network of 32 nodes are deployed which detects the event

and traces the ray as shown in the Figure 4.1(b). We add Gaussian noise to the obtained travel time

to model the receiver error. The finest resolution of dimension 32 × 32 is used as a regular grid to

construct adaptive mesh using quadtree. The threshold for the hitcount is chosen to be 20. For the

iterative methods, the selection of relaxation parameter ρ are critical and in all of our experiments

29

Algorithm 4 Distributed Tomography using Adaptive Mesh Refinement (DT-AMR)
Initialize

1: Number of seismic sensors P and AMR threshold T
2: Finest resolution dimension Q = d × d or Q = d × d × d
3: Initialize a S INK node for aggregation.

Ray Tracing at each node i
1: Upon the detection of events
2: Perform ray tracing on each node simultaneously to obtain Ai and Bi

Adaptive Mesh at each node i
1: Obtain Density matrix I from Ai

2: S = QTDecomp(I,T) ; ∆i = TransMat(S)
3: Ãi = Ai∆

T
i

4: Send(∆i)→ SINK
Distributed Tomography

1: k ← 0, xk ← 0
2: while not converged do
3: In Every node i for 1 ≤ i ≤ P do in parallel
4: x̄i ← ART(λ, Ãi, Bi, xk,Iteration)
5: Send(x̄i)→ SINK to average
6: x(k+1) =

{
1
P
∑P

i=1 ∆i x̄i

7: Broadcast x(k+1) to all the node P
8: k ← k + 1
9: end while

10: Update slowness model: x = xk−1

11: TERMINATE

this remains constant throughout the iterations, i.e., ρk = ρ = 0.25 for all k ≥ 0. Rate of conver-

gence of different algorithms are compared using relative updates, φ = |x(k+1) − x(k)|/|x(k)|, residuals

χ = ‖Axk − b‖ and absolute error ε = ‖x∗ − xk‖ where x∗ is the ground truth.

Adaptive mesh has been applied on seismic tomography in a centralized setup earlier and has

proven to perform better [44] [46]. However, quadtree based adaptive mesh for seismic tomogra-

phy has been applied for the first time and we validate our approach using similar steps. Quadtree

based AMR has been developed specifically to work in distributed environment and we do not ex-

pect it to perform better than centralized algorithms mentioned in [44] [46]. We perform quadtree

based AMR on synthetic model and run ART which is a common centralized algorithm used for

computing tomography. We see the advantage of AMR in Figure 5.5(a) and (b), where the rela-

tive and absolute error decreases significantly when AMR is used. AMR makes the system well

30

conditioned i.e reduce the zero eigenvalue and when the system is well-conditioned the solution

obtained will be closer to the ground truth. From these tests we can conclude that ART with AMR

is better and we can obtain better solution.

0 10 20 30
10

−5

10
0

Iteration

R
e
la

ti
v

e
 E

rr
o

r

AMR−ART

ART

(a) Relative Error in ART

0 10 20 30

10
−0.9

10
−0.6

10
−0.3

Iteration

E
rr

o
r

AMR−ART

ART

(b) Absolute Error in ART

Figure (5.5) Comparing effect of AMR in Centralized ART

After validating the performance of our quadtree based AMR in centralized setup, we now

perform series of experiment on distributed network. We compare our DT-AMR with standard

distributed algorithms such as CARP and CAV. We use residuals and absolute error as the param-

eter for comparison and results are shown in Figure 5.6. These plots demonstrate that there is a

difference in the initial convergence behavior in these algorithms both in-terms of residuals and

absolute error. The final solution obtained from DT-AMR is also more closer to the ground truth

and can be obtained with fewer iteration. The iteration on the x-axis represents the total number

exchange of partial solution required during the intermediate step.

DT-AMR takes the advantage of partitioning the system of equation based on its resolving

power at each node making it more well conditioned. The local computation on the well con-

ditioned system on single node will accelerate the convergence and this is shown in Figure 5.7,

where we analyze the performance on node 1 and 4. We observe that even at each node the partial

solution obtained from DT-AMR is significantly better than CARP (Theorem 1) and this is the

main reason for the improved performance of DT-AMR in distributed environment.

31

0 10 20 30 40
10

0

10
1

10
2

10
3

Iteration

R
e
s
id

u
a
ls

DT−AMR

CARP

CAV

(a) Residuals

0 10 20 30 40
10

0

10
1

10
2

Iteration

E
rr

o
r

DT−AMR

CARP

CAV

(b) Absolute Error

Figure (5.6) Comparing effect of DT-AMR with CARP and CAV

0 10 20 30 40

10
−0.015

10
−0.012

10
−0.009

10
−0.006

Iteration

E
rr

o
r

DT−AMR

CARP

(a) Absolute Error in Node 1

0 10 20 30 40

10
−0.011

10
−0.009

10
−0.007

Iteration

E
rr

o
r

DT−AMR

CARP

(b) Absolute Error in Node 4

Figure (5.7) Comparing effect of DT-AMR in single Node

32

CHAPTER 6

DISTRIBUTED ALGORITHMS VIA GOSSIPING

6.1 Introduction

Recently, methods like stochastic gradient descent (SGD), randomized coordinate descent

(RCD) have received renewed attention for confronting very large scale problems, especially in

the context of machine learning (ML) [7]. These methods are based on the computation of partial

gradients involving random sampling of a subset of the entire system and have been proven to

be better for noisy data due to random sampling. Randomized Kaczmarz (RK) is a type of SGD

which has been recently popular for its exponential convergence rate with appropriate choice of

rows for projection [12]. RK processes single row at a time and requires only O(n) storage. For

a extremely large sparse system of linear equations, RK is even more efficient than the conjugate

gradient method [12].

In this section, we use G(V,E) to denote undirected connected graph with node (sensor) set

V = {1, · · · , P} and edge set E, where each edge {i, j} ∈ E is unordered pair of distinct node. Node

i carries out communication only with its neighbors Ni = (j|{i, j}) ∈ E. Let x ∈ Rn be column

vector and xk
(i) be the partial solution obtained at node i after kth iteration for every i ∈ V. Also,

let x j denote the jth component of x. From Eq. (3.9) let F(x) = 1
2‖Ax − b‖22 and according to the

gradient descent method the optimal solution x∗ is obtained by traversing towards −∇F(xk) at every

iteration k = {1, 2, · · · } by certain step size ρk starting from initial value x0. In other words, (k + 1)th

iteration is given by, xk+1 = xk − ρk∇F(xk).

Decentralized version of this problem recently developed by [23, 25], aims to minimize each

nodes objective objective function Fi(x) independent of other nodes. At every kth iteration ∇Fi(xk)

requires the computation of AT
i (Aixk − bi). Matrix multiplication becomes an issue for a large data

set especially on a sensor with a very limited memory footprint. To avoid this, we use only par-

tial gradients that involve sparse vector multiplication such as stochastic gradient descent (SGD).

33

Recently, methods like SGD are becoming popular in ML communities, and it involves random

sampling to compute the gradient of a subsystem instead of an entire system. This method has

been proven to be better for noisy data due to random sampling.

Randomized Kacmarz (RK) is a type of SGD commonly used to compute Eq. (3.9). This

method starts with an arbitrary initial vector x0 and at every iteration k, it randomly selects a row

i(k) ∈ {1, · · · .m} of the linear system (with probability of choosing row i is ‖ai‖
2
2

‖A‖2F
, where ‖‖F denotes

the frobenius norm). Next, it performs an orthogonal projection of the current estimate vector onto

the hyperplane aT
i(j)

xi = bi(j) as shown in Algorithm 5.

Algorithm 5 Randomized Kaczmarz Algorithm
1: for k ← 0 until convergence or max iteration do
2: Pick i(k) ∈ {1, · · · .m} with probability pi =

‖ai‖
2
2

‖A‖2F

3: x(k+1) = x(k) + ρi(k)

bi(k)−〈ai(k) ,x
(k)〉

‖ai(k) ‖
2 ai(k)

4: end

Recently, Strohmer and Vershynin [12] proved the following exponential bound on the ex-

pected rate of convergence of RK given by, E‖xk−x‖22 ≤ (1− 1
R)k‖x0−x‖22 where R = ‖A−1‖2‖A‖2F , x0

is an arbitrary initial value, while E denotes the expectation (over the choice of rows). Needell [40]

studied the convergence of RK for the inconsistent system. RK and it’s variants are inherently

sequential and assume the availability of entire matrix A and vector b at a central location. This

method cannot be directly applied to a loosely coupled system such as WSN and for this reason

we first develop a parallel version of RK using fusion center.

6.2 Distributed Randomized Kaczmarz

Gossip methods are emerging as a new communication paradigm for large-scale distributed

systems [13]. Some of the features that makes gossip methods attractive are: i) absence of central

entity or coordinator node ii) high fault tolerance and robustness iii) self healing or error recovery

mechanism [50] iv) efficient message exchange due to only neighbor communication v) provision

for asynchronous communication. These interesting characteristics make them suitable for WSN

34

to carry out decentralized computation [51].

There are several variants of gossip algorithms designed specifically for tasks such as i) dis-

seminate information [52], ii) compute sum/average [13] and iii) reach consensus [53]. The design

of these algorithms vary slightly based on the communication pattern and also with the type of

information exchanged at each iteration. For e.g., in push-sum [13], only one node wakes up at a

time and exchanges information with another neighboring node whereas, in broadcast gossip [53]

information is sent to all its neighboring node.

Figure (6.1) Gossip based Push Sum method where information is exchanged between neighbor
without fusion center.

To design truly distributed method, we avoid the fusion center to compute average and replace

it with decentralized methods such as push-sum [13]. In push-sum, when node i activates at tth time

slot, the following set of events occur: i) Node i sends its current state value xt
i to neighboring node

j. ii) Node j receives xt
i and updates it in following way: xt+1

j =
xt

j

2 +
xt

i
2 . iii) Node j sends xt+1

j to i,

where it updates xt+1
i = xt+1

j . iv) Remaining nodes update their value as: xt+1
` = xt

`,∀` ∈ {V−{i, j}}.

Now, if we denote xt ∈ RP a vector whose each component represents state of each node in

network, then for every clock tick t we have, xt+1 = W txt, where, W t is a random matrix given by,

W t
i j =


1
P {i, j} ∈ E

1 − |Ni |

P i = j

0 otherwise

35

From the above weights, W t exhibits following property: W t1 = 1 and 1T W t = 1T . Therefore,

for every t, the iteration preserves the sums while vector of averages must be fixed point of itera-

tion [10]. Next, we use the above gossip model and extend it to component-wise vector sum which

will be used for computation of decentralized average.

Let xk
(i) denote intermediate solution of Ai, bi at ith node after kth iteration. Also, let xk

(i) j denote

jth component of xk
(i). We define Xt

j = (xk
(1) j, · · · , x

k
(P) j)

T , containing the jth component of all the

nodes. From the above gossip model we update the jth component by Xt+1
j = W tXt

j. Similarly, we

can extend this to all the component j ∈ {1, · · · , n}. We denote this gossip scheme as push-vector.

Algorithm 6 D-RK Algorithm

1: set x0
`
∈ Rn to an arbitrary value ∀` ∈ V.

2: for k ← 0 until convergence or max iteration do
3: for each 1 ≤ l ≤ P in parallel do
4: y` = RK(A`, b`, xk

`
, ρ`)

5: ỹ0
(`) ← y`

6: end
7: for t ← 0 until convergence or max iteration do
8: Node i ∈ V contacts j ∈ Ni and updates

9: ỹt+1
(j) = ỹt+1

(i) =
ỹt

(j)
2 +

ỹt
(i)
2

10: end
11: x(k+1)

(`) = ỹt
(`) 1 ≤ l ≤ P

12: end

Using the above definition of push-vector we propose the distributed randomized kaczmarz

(D-RK) to solve linear equation over a decentralized system such as WSN. Algorithm 6 describes

D-RK that combines component-wise gossip average with RK to solve a linear system of equations.

In step 1 - 6 algorithm performs a certain iteration of RK simultaneously on all the nodes using

its initial vector xk. Step 7 - 10 of the algorithm describes push-vector. This algorithm is truly

distributed and does not involve any fusion center. Push-vector continues until the relative update

of the average is below a certain threshold.

36

6.3 Convergence Analysis

Lemma 2 If Qi = {x ∈ Rn|Aix = bi}, Q = ∩{Qi|i ∈ V} and Eq. 3.9 has a solution x∗ ∈ Q, then any

sequence generated by Algorithm 6 converges to a fixed point x∗ ∈ Q for ρ = 1.

Proof 2 Since D-RK has similar structure as Par-RK except for averaging scheme, to prove the

convergence, it is enough to show that push-vector is equivalent to row projection of RK. From

above definition the update of zth component of xt
(i) and xt

(j) is given by

xt+1
(i)z = xt+1

(j)z =
xt

(i)z + xt
(j)z

2
(6.1)

Let us assume yt = {0, · · · , xt
(i)z, x

t
(j)z, · · · , 0} be a vector consisting of xt

(i)z and xt
(j)z at ith and jth

position respectively. Also, assume a plane whose ith and jth components are related by −mi +m j =

0. Therefore, the coefficient a = {0, · · · ,−1, 1, · · · , 0}, ‖a‖2 = 2 and b = 0. Now, from RK

Algorithm 5 we have

yt+1 = yt + ρ

(
b − 〈a, yt〉

)
a

‖a‖2

= yt − ρ
〈a, yt〉a

2

= (0, · · · , xt
(i)z, x

t
(j)z, · · · , 0) −

ρ

2
(−xt

(i)z + xt
(j)z)

(0, · · · ,−1, 1, · · · , 0)

for ρ = 1 we have,

= (0, · · · ,
xt

(i) + xt
(j)z

2
,

xt
(i)z + xt

(j)z

2
, · · · , 0)

This is equivalent to expression in Eq. (6.1). Similarly, we can extend this argument for

every component z ∈ {1, · · · , n} of the vector. Hence, push-vector updates are equivalent to row

projection of random kaczmarz for ρ = 1.

Push-vector in D-RK performs gossip only with one neighboring node at any time slot t. In a

37

wireless sensor network, each node has an advantage of inherently broadcasting the messages to its

neighbor within a certain radius. Now at the cost of one transmission, a node can gossip with all of

its neighbors, and this has been studied under broadcast gossip [53].The broadcast gossip, however,

converges to a consensus rather than an average as the weights used there does not preserve the

sum (i.e., 1T W , 1T). This will affect the convergence analysis of D-RK and will be studied in

future.

6.4 Evaluation

In this set of experiments, we intend to demonstrate the correctness of our algorithm through

visualization. We stopped the algorithm when its relative update φ ≤ 0.001. Fig. 6.2 shows the

result slice by slice along the X and Y axes and Fig. 6.2(d) we have the ground truth. Each row of

the figure shows the same tomography slice on some layer along with X or Y axes (the total layers

of each figure is equal to the resolution dimension of the result). The black polygon gives the cross

section outline of the surface of magma area represented in Fig. 4.1(a). From this experiment, we

can see that both Par-RK and D-RK were able to generate tomography image almost similar to

centralized RK. From the detailed examination of the Fig. 6.2 we can say that, Par-RK produces

fewer artifacts near the boundary whereas, D-RK has sharper differences. We believe this is due

to the fact that Par-RK calculates true average unlike D-RK. This evaluation suggests that both

Par-RK and D-RK can be a good candidate for distributed tomographic inversion.

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(a) Par-RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(b) D-RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(c) RK

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(d) Ground Truth

Figure (6.2) 2D vertical slice of 3D Tomography using Synthetic Data. The row represents slice
18 of 32 of different algorithms.

Next, we compare the performance of the proposed algorithm in terms of the relative update.

38

We compare Par-RK with algorithms like Cimmino, CAV, and DROP, which are all algorithms

used to solve the system of linear equations using fusion center. On the other hand, we compare

D-RK with decentralized algorithms such as EXTRA [25] and DGD [24] and results are shown in

Fig. 6.3. From Fig. 6.3(a) we can infer that Par-RK performs better than other parallel methods in

terms of convergence. This is due to the faster convergence rate of RK method compared to other

methods. In case of D-RK (Fig. 6.3(b)) we see that it is faster than DGD, however, slower than

EXTRA. In EXTRA, an optimal step size is calculated to accelerate the convergence. It should be

noted that, Par-RK has faster convergence compared to D-RK and is because of the faster mixing

of the partial solutions at the expense of fusion center and multi-hop aggregation scheme.

0 10 20 30 40 50
10

−1.9

10
−1.8

10
−1.7

Iteration

R
e
la

ti
v

e
E

rr
o

r

CAV

CIM

DROP

CA−DMET

(a)

0 10 20 30 40 50

10
0

Iteration

R
e
la

ti
v

e
E

rr
o

r

DGD

EXTRA

D−RK

(b)

Figure (6.3) Comparison of (a) Par-RK and (b) D-RK with different parallel and distributed algo-
rithms.

In this section, we compare the communication cost of the centralized algorithm with pro-

posed distributed algorithms in terms of number of messages exchanged to reach the solution.

Here for centralized and parallel case SINK(M) and SINK(C) refers to sink (fusion center) node

placed in middle and at the corner respectively. From Fig. 6.4(a) we can see that communication

cost in a centralized setup is high near the SINK as all the ray information is transferred over the

network to sink before the computation. In this case, the volume of data is proportional to the

number of earthquakes and also number of stations. Fig. 6.4(b) shows the communication pattern

for Par-RK and from this we can see that the communication cost is lesser compared centralized

scheme (RK). This is mainly because communication cost in Par-RK depends on number of it-

39

eration and typically with the semi-convergent property of iterative methods [35] the number of

iteration is much less compared to the number of earthquake events.

In Fig. 6.4(c) we present the communication pattern of D-RK, which is flat compared to Par-

RK and RK. Neighbor gossip helps us to balance the load in the network while avoiding other

overheads such as routing, etc. It should be noted that due to the slower convergence of D-RK

compared to Par-RK, a larger volume of packets will be exchanged in the entire process. This is

verified from Fig. 6.4(d) where we compare volume (bytes) transferred in all the three settings.

Fig. 6.4(d) shows that in case of SINK(M) volume of bytes transferred Par-RK is lower than D-

RK, which is due to the slower convergence as mentioned earlier. However, placing SINK(C) at

the corner increases the communication cost of the Par-RK, and this is due to packet loss caused

by increased congestion. It should be noted that D-RK has no effect on the placement of SINK

node as it communicates only with the neighbors..

2
4

6

2
4

6

0

2

4

6

x 10
4

XY

N
u
m

b
er

 o
f

M
es

sa
g
e

(a) RK (M)

2
4

6

2
4

6

0

2

4

6

x 10
4

XY

N
u
m

b
er

 o
f

M
es

sa
g
e

(b) Par-RK (M)

2
4

6 2
4

6

0

1

2

x 10
4

YX

N
u
m

b
er

 o
f

M
es

sa
g
e

(c) D-RK

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

SINK(M) SINK(C)

C
o

m
m

u
n

ic
a

ti
o

n
 V

o
lu

m
e

 (
b

y
te

s
)

Scenarios

Par-RK
RK

D-RK

(d) Communication Vol-
ume

Figure (6.4) Communication Cost

In the next set of experiments, loss tolerance and robustness of proposed algorithms are evalu-

ated. The algorithm runs with the same configuration for a packet loss ratio of 20% in the emulator.

Fig. 6.5 gives part of the 2D slice rendered along Y axes with packet loss. We can see that in Par-

RK and D-RK with 20% packet loss there is no significance difference in terms of the magma area

outline when compared to the results with no packet loss Fig. 6.5(c). Since the computation is dis-

tributed, and all the nodes are involved in slowness calculation, the proposed algorithm is tolerant

to a severe packet loss. A closer look at the result tells that packet loss in Par-RK has a slightly

larger effect compared to D-RK. This can be seen in the visualization result where D-RK can get a

40

sharper image than Par-RK. This result can be attributed to the truly distributed communication as

opposed to fusion center in Par-RK. Loss of packet near fusion center has a profound effect on the

tomography result, whereas D-RK can tolerate such single point failures.

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(a) Par-RK 20%
Loss

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(b) D-RK 20%
Loss

X

Z

0 1 2 3 4 5 6 7 8 9 10

1
0

9
8

7
6

5
4

3
2

1
0

(c) No Loss

Figure (6.5) Robustness of distributed algorithms in terms of packet loss.

41

CHAPTER 7

ASYNCHRONOUS DECENTRALIZED ALGORITHMS VIA RANDOMIZATION

7.1 Introduction

Many real-world applications arising in domains such as distributed control [6], large-scale

machine learning [7], wired and wireless networks [8], can be formulated as distributed linear least-

squares over a large network. These problems have data naturally distributed among various nodes

e.g peer-to-peer or sensor network. Today, due to the large volume of the data, we face a challenge

to process it in real-time. Therefore, we are particularly interested in solving such problems in a

distributed way, with each node handling its local component. This gives rise to novel techniques

commonly referred to as decentralized algorithm that do not require a fusion center, cluster heads,

or multi-hop communication.

Designing a decentralized algorithm presents three main difficulties. First, the underlying

hardware in the distributed networks are heterogeneous and often unreliable. Individual sensors

may fail at any time, and the communication network that connects them could be highly unstable.

Second, the on-board processor often has limited memory, computational power and energy that

restricts us from using basic linear algebra tools like SVD, matrix-matrix or matrix-vector mul-

tiplications for local computation. Third, due to the large number of nodes and the volatility of

the network, any reliance on central coordinator will limit the systems scalability and the perfor-

mance. The decentralized algorithm must be fault-tolerant as node and link failures are a common

occurrence in such systems [54].

From the recent trends in big data optimization, we see a renewed interest in randomized

(stochastic) algorithms both for computation [9] and communication [10]. Today, stochastic meth-

ods can solve data-intensive problems on a inexpensive hardware at a faster rate compared to the

deterministic methods [11]. For instance, Randomized Kaczmarz has linear convergence rate and

outperforms the traditional the conjugate gradient method in some cases [12]. Even in network

42

communications, randomized methods such as gossip protocols are emerging as a new communi-

cation paradigm for decentralized systems [13]. These methods guarantee convergence in expec-

tation (probabilistic) similar to stochastic methods; achieve high stability under disruptions, and

scale gracefully to a large number of nodes. In comparison, traditional communication techniques

have certain guarantees, but are unstable or fail to make progress during periods of even modest

disruption.

Motivated by these trends, we present an asynchronous algorithm that combines two random-

ized techniques, i) Randomized Kaczmarz (RK) [12] (computation) with ii) Asynchronous Ran-

dom Gossip [10] (communication), in order to solve a large system of linear equation distributed

over a network (3.9). We call this asynchronous method Gossip Randomized Kaczmarz (GRK). To

our best knowledge, our work is the first attempt to solve Eq. (3.9) using stochastic methods both

for computation and communication. Our contributions are threefold. First, we present a novel

asynchronous algorithm and provide a theoretical convergence. Second, we evaluate the perfor-

mance of GRK on a real sensor testbed and show that when the processors are not homogeneous

the proposed method converges faster in terms of time than its synchronous counterpart [24], [25].

The empirical results also show that GRK has linear convergence for the consistent system and is

robust to network failures. Third, we demonstrate the practicality of the GRK by applying it to a

real-world problem arising from seismic imaging [55].

7.2 Gossip Randomized Kaczmarz

We consider a network of N nodes connected to form an arbitrary topology given by an

undirected graph G(V,E), with node set V = {1, · · · ,N} and edge set E that contains set of links

in the network. We have {i, j} ∈ E if node i and node j can communicate with each other. Ni

denotes the neighbor set of node i. Let x ∈ Rn in Eq. (3.9) be a column vector, and xk
i ∈ R

n be

the local copy held privately by node i and the superscript k denotes the iteration number, which is

also proportional to total messages exchanged. Also, let xi(j) denote the j-th component of vector

xi and Aᵀ the transpose of A.

We reformulate Eq. (3.9) as a decentralized optimization problem where the networks objec-

43

tive is to solve the following minimization problem:

minimize
x∈Rn

f (x) =
1

2N

N∑
i=1

‖Aix − bi‖
2
2 (7.1)

We assume that the function fi(x) = 1
2

∑N
i=1 ‖Aix − bi‖

2
2 is privately known only to node i and

the local system is large and over-determined (mi ≫ n). Now due to the large sub-system, it

becomes prohibitive to compute the full-gradient ∇ fi(x). Therefore, at each node we use stochastic

gradient locally given by ∂ f `i = (〈a j, xi〉 − b j)a j/‖a j‖
2
2, where j is a set of ` random rows uniformly

chosen from {1, 2, · · · ,mi} with replacement. The goal now is to solve Eq. (7.1) using an algorithm

that is asynchronous and distributed.

Remark 3 The stochastic gradient ∂ f `i is equivalent to a projection onto ` random hyperplanes

as in Randomized Kaczmarz. The step 5 of RK is equivalent to stochastic gradient update xk+1 =

xk − α∂ f `i (xk) for α = ` = 1.

Asynchronous algorithms are easier to analyze using a single virtual clock as given in [10].

In this model, each node ticks according to a Poisson clock and the virtual clock is incremented

when a local clock ticks. Thus the virtual clock ticks according to Poisson process with rate N. Let

Zk denote the k-th tick (iteration) of the virtual clock for a local tick at node p. Let node q ∈ Np be

the random node chosen at k-th iteration. Let x(k−1)
p denote local copy of x held by node p during

the iteration k − 1 i.e. immediately before Zk.

Consider nodes p and q at k-th iteration. Gossip Randomized Kaczmarz (GRK) at k-th itera-

tion follows two main steps:

• Exchange the vector xk
p and xk

q to perform a gossip update give by x̄k
pq = ((xk

p + xk
q)/2

• Update the current iterate x̄k
pq in node p and q by adjusting it along the negative direction of

∂ fp(x̄k
pq) and ∂ fq(x̄k

pq) respectively. Mathematically, the iterates evolve according to,

xk+1
i =


x̄k

i − ∂ fi(x̄k
i) if i ∈ {p, q}

xk
i otherwise,

(7.2)

44

Now for N nodes over a graph G(V,E), Gossip Randomized Kaczmarz is given by the Algo-

rithm 7

Algorithm 7 Gossip Randomized Kaczmarz

1: set x0
p ∈ R

n to an arbitrary value ∀p ∈ V.
2: for k ← 0 until convergence or max iteration do
3: Pick uniformly at random a node p ∈ V
4: Node p now selects node q ∈ Np

5: Node p and q exchange xk
p and xk

q

6: Node p sets: x̄k
pq ← (xk

p + xk
q)/2

7: Node q sets: x̄k
pq ← (xk

q + xk
p)/2

8: Node p sets: xk+1
p ← x̄k

pq − ∂ fp(x̄k
pq)

9: Node q sets: xk+1
q ← x̄k

pq − ∂ fq(x̄k
pq)

10: end

7.3 Evaluation

We provide empirical results studying the performance of asynchronous gossip randomized

Kaczmarz using simulated datasets on a real sensor testbed. We first validate our theoretical results

such as consensus and convergence. We later compare the performance of asynchronous method

GRK with its synchronous counterpart DGD [24] and EXTRA [25]. Our results indicate that the

proposed method performs similar to its synchronous counterpart in all cases and even outperforms

them on a grid topology with respect to execution time and number of message transmitted. We

also demonstrate the robustness of GRK by simulating link and node failure.

The experimental testbed consists of 16-BeagbleBone Black (BBB) that are connected using

a switch forming a cluster. Fig. 7.1(a) shows the testbed setup where BBB’s are stacked in a

rack fashion. Each BBB comes with Angstrom OS (linux) and has 512MB DDR3 RAM, 16GB

flash storage, 1 GHz ARM Cortex A8 processor (Fig. 7.1(b)). They are credit card sized, low-

power computing units that are under $50. Unlike, High Performance Computing Cluster, the

cluster developed using BBB allows us make a fair evaluation of the decentralized algorithms. This

cluster also gives us the flexibility to configure the topology based on the physical environment and

simulate link and node failures.

45

(a) (b)

Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
a
x

 E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

0

20

40

60

80

(c)

Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(M

b
it

s/
s)

0

5

10

15

20

25

30

(d)

Figure (7.1) (a) Testbed consisting of 16 Beaglebone black connected using a switch. (b) Beagle-
Bone black hardware details (c) CPU benchmark using Sysbench to evaluate the execution time
across cluster nodes. (c) Network benchmark using iPerf to evaluate the throughput across nodes.
We see that though each node has the same hardware, we see a significant difference both in terms
of execution time and throughput.

Before performing the experiments, we evaluate the performance of our cluster using standard

benchmarking tools such as sysbench 1 and iPerf 2. Sysbench CPU test uses a standard prime

number generation algorithm to evaluate the execution time. Fig 7.1(c) shows the execution time

taken across 16 nodes. Although several nodes took similar time to execute, some nodes (e.g.

1,7,11) took slightly longer time. The exact cause of this behavior is unknown, however, we

suspect the unstable power via usb would have effected the cpu clock. We also evaluate the network

throughput (Mbits/sec) using iPerf tool and from Fig. 7.1(c) we see that it varies significantly across

the nodes. The cluster has variations both in computation and communication time and exhibits

the heterogeneity and unreliability of the network in general. These characteristics of the cluster

makes it suitable to evaluate the decentralized methods.

The communication scheme in GRK was implemented using a UDP protocol. The connection

less protocol reduces the communication overhead and allows scalability over different topology.

In GRK, a node wakes up at random and sends its current iterate to one of its neighbor. It then

starts a timer and waits for neighbors response until timeout. During this process the gossip is

called successful (SUCCESS) only if the node receives the response (iterate) from the neighbor

within the timeout. Otherwise the gossip is termed as unsuccessful (FAIL). A FAIL can happen if

1https://launchpad.net/sysbench
2https://iperf.fr/

https://launchpad.net/sysbench
https://iperf.fr/

46

Epochs

10
0

10
2

R
el

at
iv

e
E

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Node-1

Node-2

Node-3

Node-4

Node-5

Node-6

Node-7

Node-8

(a)

Epochs

0 75 150 200

R
el

at
iv

e
E

rr
o
r

10
-4

10
-3

10
-2

10
-1

10
0

DGD

EXTRA

GRK

(b)

Figure (7.2) (a) Illustrates the convergence of eight random nodes to a consensus value. (b) Com-
paring relative error of GRK with its synchronous counterpart DGD and EXTRA. Graph shows
that DGD, EXTRA and GRK took 191, 176 and 210 epochs to reach a threshold δ < 10−4 respec-
tively. Although GRK took more number of epochs, the total execution time for GRK (220 sec)
was less than DGD (261 sec) and EXTRA (255 sec).

the solicited neighbor is either in a compute state (Randomized Kaczmarz) or is communicating

with some other neighbor (BUSY). Unreliable link or node failure can also cause the gossip to

fail. The randomness in wake up time is simulated using a random sleep after each SUCCESS.

In case of synchronous decentralized method such as EXTRA and DGD, we use a more reliable

TCP connection that guarantees successful communication and reduces synchronization overhead.

Unlike GRK, EXTRA and DGD communicates with all its neighbor at each round. By default all

the experiments are performed over a grid topology unless specified. Note that achieving synchro-

nization in a actual wireless network is non-trivial and involves significant overhead.

We generated dense dataset of size A ∈ R8000×256, b ∈ R8000 following a standard normal

distribution. We then split {A, b} into 16 equal blocks row-wise and assign them to each node. We

denote x∗ = A†b as the ground truth and x̄k = 1
N

∑N
i=1 xk

i as the mean value of the network at each

epoch k, where one epoch in GRK corresponds to nodes waking up at least once. Performance of

the algorithms are compared using the relative error (δ = |x̄k − x∗|/‖x∗‖). We use δ < 10−4 as the

stopping criteria throughout unless mentioned.

Here we validate our theoretical result of node consensus. Fig. 7.2(a)) shows the relative error

47

Epochs

0 75 150 200

R
el

at
iv

e
E

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

GRK

EXTRA

(a)

Time (sec)

0 75 150 200

R
e
la

ti
v
e
 E

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

GRK

EXTRA

(b)

Figure (7.3) Comparison of GRK (asynchronous) with EXTRA (synchronous) with respect to (a)
Epochs (b) Execution time. Number of epochs is more in case of GRK, however, it takes less time
due to asynchronous communication.

of eight random nodes and we see that that the relative error at each node decreases and the iterates

reach to a consensus. Next we compare the performance of GRK with DGD and EXTRA. From

Fig. 7.2(b) we see that the GRK has a linear convergence like EXTRA and DGD. We also observe

GRK takes 210 epochs, more than DGD (191) and EXTRA (176), however, the total execution

time of GRK (220 sec) is less compared to DGD (261 sec) and EXTRA (255 sec). The slower

convergence in terms of epochs is due to slower mixing of the value. The speedup in the execution

time is due to reduced communication overhead and synchronization. In the next section we will

compare this characteristic in detail.

To further investigate the performance of synchronous vs asynchronous in terms of execution

time, we carry out another experiment. Since EXTRA and DGD have similar communication

characteristic here we compare GRK only with EXTRA. From Fig. 7.3(a) we again see that GRK

takes more epochs to reach the same error threshold, but takes lesser time than EXTRA to finish

the epochs Fig. 7.3(b). In synchronous algorithm such as EXTRA, the execution time is governed

by the slowest node and in Fig. 7.3(b) we clearly see that at around 100th second, EXTRA briefly

stops for about 40 seconds before it resumes. Further investigation of the logs revealed that one

particular node (10) was not able to receive an update from its neighbor node (11) and blocked the

48

Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
a
c
k

e
t

C
o

u
n

t

0

50

100

150

200

250

300

Failure

Success

(a)

Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
)

0

50

100

150

200

250

(b)

Figure (7.4) (a) Unsuccessful Gossip (FAIL) across all the nodes for 200 epochs (Success). (b) Per
Node Execution time (sec). The variations in execution time is due to the heterogeneity property
of the cluster.

GRID KN
epoch mesg epoch mesg

EXTRA 176 11264 30 6144
DGD 191 12224 320 81920
GRK 210 7414 187 8912

Table (7.1) Effect of topology on decentralized algorithms

progress of all the other nodes. Because of asynchronous characteristic of GRK it does not wait on

all the nodes across the network making the algorithm robust.

Communication in asynchronous algorithm plays a important role in evaluating the perfor-

mance of the algorithm. Inefficient protocol implementation can lead to large number of packet

loss (FAIL). Fig. 7.4(a) shows the number of Success vs Fail across all the nodes. From the graph

we observe that to complete 200 epochs, GRK has around 10-15% of FAIL. As mentioned earlier,

gossip FAIL can be due to nodes BUSY state or a faulty link. This is the limitation of the GRK

algorithm, where it requires two nodes to be partially synchronized. In future, we plan to explore

other gossip methods such as broadcast [53] or one sided gossip, which eliminates the need for

partial synchronization. In Fig 7.4(b) we plot the per node execution time in seconds. We observe

that, each node takes different execution time to reach the same solution. This can be attributed to

the heterogeneity property of the cluster as shown in benchmarking.

The convergence rate of decentralized methods rely heavily on the property of the mixing ma-

49

trix, which in turn depends on the spectral properties of the underlying topology. In this section,

we report the performance of EXTRA, DGD and GRK on two different topologies i.e Grid and a

complete graph (Kn). From Fig 7.5(a) we see that EXTRA converges extremely fast (30 epochs)

on a Kn, whereas DGD takes around 320 epochs slower than on the grid. This is similar to the

observation made by the authors in [25]. We see that GRK is also effected by the topology, how-

ever the effect is not significant compared to EXTRA and DGD. Notice that for a grid topology

GRK requires fewer transmissions for reaching the solution. This is again because of the fact that

the EXTRA/DGD communicates with all its neighbors, whereas, GRK exchanges only with one

random neighbor. In Kn, due to the faster convergence of EXTRA, it requires less messages to be

transmitted. Another interesting phenomena to notice is that, although GRK requires less epochs

in Kn (187) compared to the Grid (210), it transmits more messages in Kn. Our investigation

showed that GRK in Kn had more FAIL due to increase in its neighbor. From this we can con-

clude that asynchronous decentralized algorithms are more suitable for sparse topology whereas,

synchronous methods are proffered on a reliable dense network.

Remark 4 In a grid topology, although GRK takes more epochs, it outperforms EXTRA and DGD

in term of execution time and message transmitted. This makes it suitable for decentralized systems

such as sensor networks.

The GRK algorithm must be fault-tolerant as the node or link failures in decentralized sys-

tems are norms rather than the exceptions. Here we validate the performance of the algorithm by

simulating the node and link failure. We run the algorithm under five different cases. We run each

experiment for 200 seconds and start the node failure after 50 seconds from start. Case 1) No

failure Case 2) 25% nodes fail for 10% time Case 3) 25% nodes fail for 15% time Case 4) 50%

nodes fail for 10% time Case 5) 50% nodes fail for 15% time. Fig. 7.5(b) shows that the algorithm

runs successfully irrespective of the percentage of node failure or the time. This characteristic is

very important in case of unreliable system such as wireless sensor network. The convergence

however is impacted due to the unreliability which is expected. In case 4 and 5 since 50% of the

node failed, the update across the network stalled (flat line after 50 sec until 80 sec) for a while

before it resumed. We did not observe this behavior with 25% node failures (case 2 - 3).

50

Epochs

0 75 150 200

R
el

at
iv

e
E

rr
o

r

10
-4

10
-3

10
-2

10
-1

10
0

DGD-Grid

EXTRA-Grid

GRK-Grid

DGD-Kn

EXTRA-Kn

GRK-Kn

(a)

Time (sec)

0 75 150 200

R
e
la

ti
v
e
 E

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Case-1

Case-2

Case-3

Case-4

Case-5

(b)

Figure (7.5) (a) Performance of algorithms on a Grid and a complete graph (Kn) topology. (b)
Performance of GRK under different cases of node and link failure. Case-1) No failure Case-2)
25% nodes fail for 10% time Case-3) 25% nodes fail for 15% time Case-4) 50% nodes fail for 10%
time Case-5) 50% nodes fail for 15% time

51

CHAPTER 8

CONCLUSIONS

This thesis presents a suite of algorithms suitable for distributed/decentralized computing

in WSN. As an application we present the real-time seismic imaging framework made possible

via the proposed algorithm. We saw that today, traditional sensor that was only responsible for

sensing is rapidly being replaced by next generation devices called as Internet Of Things. These

are more sophisticated devices that not only sense but also performs computing not only using

its own measurements but also using other neighboring devices. We also saw that the sensing

capability of these devices has drastically increased and each device today can store several GB of

data.

In the seismic application we showed that transferring few GB of data from each sensor to

a central repository is prohibitive. To solve this data transfer, we first proposed a set of Parallel

algorithms. Here the main theme is that the computation occurs within each sensor nodes and

at every epoch, the partial solution is transferred to a central repository. The partial solutions

are sparse and requires few KB compared to GB of data. At the central repository, these partial

solutions are combined with partial solutions from other sensors. The combined solution is again

sent to sensors which then uses it as the initial guess for next epoch. We showed that a convex

combination of these partial solutions is sufficient to guarantee the overall convergence. Our results

on real seismic data was promising and it confirmed that such techniques are indeed feasible for

real world scenario.

We later studied several techniques to accelerate the convergence of the parallel algorithms.

Among them was adaptive mesh refinement, where the preconditioning was done by carefully

selecting the mesh structure etc. Adaptive mesh refinement was applied at each sensor which

was inherently distributed. These preconditioned data helped the solution to converge faster than

previous proposed scheme. Moreover, using this adaptive mesh refinement we could adaptively

52

zoom in on any image region to obtain higher resolution.

Although adaptive mesh was able to accelerate the convergence, we still used a central reposi-

tory to merge the intermediate solution which was a bottleneck and prevented scaling. To overcome

this, we explored gossip based methods to merge intermediate result. We restricted communication

of the nodes only to its neighbors and performed the convex combination at each node. Through

the concept of gossiping we could show that gossiping at every iteration followed by gradient

descent at each node converged to the same solution as parallel algorithm. This was the first dis-

tributed algorithm proposed for solving seismic imaging. Our experiments in real-data also proved

the above hypothesis.

Once we had gossip based setup working, we explored other alternatives to reduce the overall

computation and communication load on sensor network. Earlier gossip method proposed was

synchronous in nature i.e each sensor exchanged information with their neighbor at the same time.

This required a centralized clock to coordinate this action. When network scaled obtaining this

scheme to work was challenging. To avoid this, we explored other options such as asynchronous

methods. In this method, each node woke up at random time and sent information to its neighbor.

Once neighbor received sufficient information it combined it with available intermediate results.

This process continued and we showed that this strategy indeed converged. This work was also

tested on real testbed with seismic data and we obtained satisfactory result.

Asynchronous algorithms are very effective methods right now for seismic imaging.. Several

other works on asynchronous methods such as adaptive delay, adaptive gradient etc have been

proposed and widely used. We learned that the most effective way to perform analytics today in

sensor network is to send all the data to cloud. But this architecture will soon fail as there are too

many several devices that connect to internet. Another solution is to perform most of the heavy

weight calculation at each node and send only small amount of information to central repository.

This is both faster and efficient. Today, amazon echo and apple siri uses similar architecture. If

the data being recorded are very high then decentralized methods are preferred to do computing.

In future, we plan to explore several different techniques in each of these categories and build a

computational framework for IoT.

53

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor Net-

works for Habitat Monitoring,” in The First ACM International Workshop on Wireless Sensor

Networks and Applications, 2002.

[2] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon, “Wireless

sensor networks for structural health monitoring,” in Proc. 4th ACM conference on Embedded

networked sensor systems (SenSys), Nov. 2006.

[3] H. B. Lim, Y. M. Teo, P. Mukherjee, V. T. Lam, W. F. Wong, and S. See, “Sensor Grid:

Integration of Wireless Sensor Networks and the Grid,” in Local Computer Networks, Nov.

2005.

[4] G. Kamath, L. Shi, and W.-Z. Song, “Component-Average Based Distributed Seismic

Tomography in Sensor Networks,” in The 9th IEEE International Conference on Distributed

Computing in Sensor Systems (DCOSS), May 2013, pp. 88–95. [Online]. Available:

http://dx.doi.org/10.1109/DCOSS.2013.17

[5] W.-Z. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, and R. Lahusen, “Air-dropped Sensor

Network for Real-time High-fidelity Volcano Monitoring,” in The 7th Annual International

Conference on Mobile Systems, Applications and Services (MobiSys), Jun. 2009.

[6] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods for Multi-Agent Optimization,”

Automatic Control, IEEE Transactions on, vol. 54, no. 1, pp. 48–61, Jan. 2009. [Online].

Available: http://dx.doi.org/10.1109/tac.2008.2009515

[7] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient Descent,” in

Proceedings of COMPSTAT’2010, Y. Lechevallier and G. Saporta, Eds. Physica-Verlag HD,

2010, pp. 177–186. [Online]. Available: http://dx.doi.org/10.1007/978-3-7908-2604-3 16

http://dx.doi.org/10.1109/DCOSS.2013.17
http://dx.doi.org/10.1109/tac.2008.2009515
http://dx.doi.org/10.1007/978-3-7908-2604-3_16

54

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Averaging for Distributed

Optimization: Convergence Analysis and Network Scaling,” Automatic Control, IEEE

Transactions on, vol. 57, no. 3, pp. 592–606, Mar. 2012. [Online]. Available:

http://dx.doi.org/10.1109/tac.2011.2161027

[9] M. W. Mahoney, “Randomized Algorithms for Matrices and Data,” Found. Trends

Mach. Learn., vol. 3, no. 2, pp. 123–224, Feb. 2011. [Online]. Available: http:

//dx.doi.org/10.1561/2200000035

[10] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”

Information Theory, IEEE Transactions on, vol. 52, no. 6, pp. 2508–2530, Jun. 2006.

[Online]. Available: http://dx.doi.org/10.1109/tit.2006.874516

[11] F. Niu, B. Recht, C. Rã c©, and S. J. Wright, “Hogwild: A Lock-Free Approach

to Parallelizing Stochastic Gradient Descent,” in In NIPS, 2011. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.229.3698

[12] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algorithm with exponential conver-

gence,” J. Fourier Anal. Appl, vol. 15, pp. 262–278, 2009.

[13] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation of Aggregate Information,”

in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,

ser. FOCS ’03, 2003, pp. 482–491.

[14] G. Kamath, L. Shi, W.-Z. Song, and J. M. Lees, “Distributed travel-time seismic

tomography in large-scale sensor networks,” Journal of Parallel and Distributed Computing,

vol. 89, 2016. [Online]. Available: http://sensorweb.engr.uga.edu/wp-content/uploads/2016/

08/DropboxChooserAPI KSSL-JPDC2015.pdf

[15] G. Kamath, P. Ramanan, and W.-Z. Song, “Distributed Randomized Kaczmarz and Applica-

tions to Seismic Imaging in Sensor Network,” in The 11th IEEE International Conference on

Distributed Computing in Sensor Systems (IEEE DCOSS), Fortaleza, Brazil, 2015.

http://dx.doi.org/10.1109/tac.2011.2161027
http://dx.doi.org/10.1561/2200000035
http://dx.doi.org/10.1561/2200000035
http://dx.doi.org/10.1109/tit.2006.874516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.229.3698
http://sensorweb.engr.uga.edu/wp-content/uploads/2016/08/DropboxChooserAPI_KSSL-JPDC2015.pdf
http://sensorweb.engr.uga.edu/wp-content/uploads/2016/08/DropboxChooserAPI_KSSL-JPDC2015.pdf

55

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial and

Applied Mathematics, 2003.

[17] M. T. Heath, E. Ng, and B. W. Peyton, “Parallel algorithms for sparse linear systems,” SIAM

review, vol. 33, no. 3, pp. 420–460, 1991.

[18] D. P. Bertsekas and J. N. Tsitsiklis, “Some aspects of parallel and distributed iterative algo-

rithms a survey,” Automatica, vol. 27, no. 1, pp. 3–21, 1991.

[19] J. M. Elble, N. V. Sahinidis, and P. Vouzis, “GPU computing with Kaczmarz’s and other

iterative algorithms for linear systems,” Parallel Computing, vol. 36, pp. 215–231, Jun. 2010.

[20] Y. Censor, D. Gordon, and R. Gordon, “Component averaging: An efficient iterative parallel

algorithm for large and sparse unstructured problems.” Parallel Computing, vol. 27, no. 6,

pp. 777–808, 2001.

[21] D. Gordon and R. Gordon, “Component-averaged row projections: a robust, block-parallel

scheme for sparse linear systems,” SIAM Journal on Scientific Computing, vol. 27, pp. 1092–

1117, 2005.

[22] G. Cimmino, “Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, XVI (9)

(1938) 326333,” La Ricerca Scientifica, vol. 16, no. 9, pp. 326–333, 1938.

[23] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast Distributed Gradient Methods,” Apr. 2014.

[Online]. Available: http://arxiv.org/abs/1112.2972

[24] K. Yuan, Q. Ling, and W. Yin, “On the Convergence of Decentralized Gradient Descent,”

Feb. 2014. [Online]. Available: http://arxiv.org/abs/1310.7063

[25] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An Exact First-Order Algorithm

for Decentralized Consensus Optimization,” Nov. 2014. [Online]. Available: http:

//arxiv.org/abs/1404.6264

http://arxiv.org/abs/1112.2972
http://arxiv.org/abs/1310.7063
http://arxiv.org/abs/1404.6264
http://arxiv.org/abs/1404.6264

56

[26] E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous Distributed

Alternating Direction Method of Multipliers,” Jul. 2013. [Online]. Available: http:

//arxiv.org/abs/1307.8254

[27] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the Linear Convergence

of the ADMM in Decentralized Consensus Optimization,” Signal Processing, IEEE

Transactions on, vol. 62, no. 7, pp. 1750–1761, Apr. 2014. [Online]. Available:

http://dx.doi.org/10.1109/tsp.2014.2304432

[28] A. Nedic and A. Olshevsky, “Distributed Optimization Over Time-Varying Directed

Graphs,” Automatic Control, IEEE Transactions on, vol. 60, no. 3, pp. 601–615, Mar. 2015.

[Online]. Available: http://dx.doi.org/10.1109/tac.2014.2364096

[29] N. Freris and A. Zouzias, “Fast distributed smooth-

ing for network clock synchronization,” 2012. [Online]. Avail-

able: https://scholar.google.com/citations?view op=view citation&hl=en&user=

j38QfhkAAAAJ&citation for view=j38QfhkAAAAJ:W7OEmFMy1HYC

[30] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An Asynchronous

Parallel Stochastic Coordinate Descent Algorithm,” Nov. 2014. [Online]. Available:

http://arxiv.org/abs/1311.1873

[31] G. Liu, R. Tan, R. Zhou, G. Xing, W. Song, and J. Lees, “Volcanic Earthquake Timing using

Wireless Sensor Networks,” in The 12th ACM/IEEE Conference on Information Processing

in Sensor Networks (IPSN), 2013, pp. 91–102.

[32] L. Geiger, “Probability method for the determination of earthquake epicenters from the arrival

time only,” Bull.St.Louis.Univ, vol. 8, pp. 60–71, 1912.

[33] R. Fischer and J. M. Lees, “Shortest path ray tracing with sparse graphs,” GEOPHYSICS,

vol. 58, no. 7, pp. 987–996, Jul. 1993.

http://arxiv.org/abs/1307.8254
http://arxiv.org/abs/1307.8254
http://dx.doi.org/10.1109/tsp.2014.2304432
http://dx.doi.org/10.1109/tac.2014.2364096
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=j38QfhkAAAAJ&citation_for_view=j38QfhkAAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=j38QfhkAAAAJ&citation_for_view=j38QfhkAAAAJ:W7OEmFMy1HYC
http://arxiv.org/abs/1311.1873

57

[34] J. M. Lees and R. S. Crosson, “Bayesian Art versus Conjugate Gradient Methods in Tomo-

graphic Seismic Imaging: An Application at Mount St. Helens, Washington,” Institute of

Mathematical Statistics, vol. 20, pp. 186–208, 1991.

[35] P. C. Hansen, Discrete Inverse Problems. Society for Industrial and Applied Mathematics,

Jan. 2010. [Online]. Available: http://dx.doi.org/10.1137/1.9780898718836

[36] G. T. Herman, Reconstruction from Projections: The Fundamentals of Computerized Tomog-

raphy. Academic Press, 1980.

[37] S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bulletin Inter-

national de l’Académie Polonaise des Sciences et des Lettres, vol. 35, pp. 355–357, 1937.

[38] P. P. B. Eggermont, G. T. Herman, and A. Lent, “Iterative algorithms for large

partitioned linear systems, with applications to image reconstruction,” Linear Algebra

and its Applications, vol. 40, pp. 37–67, Oct. 1981. [Online]. Available: http:

//dx.doi.org/10.1016/0024-3795(81)90139-7

[39] M. R. Trummer, “Reconstructing pictures from projections: On the convergence of the

ART algorithm with relaxation,” vol. 26, no. 3, pp. 189–195, 1981. [Online]. Available:

http://dx.doi.org/10.1007/bf02243477

[40] D. Needell, “Randomized Kaczmarz solver for noisy linear systems,” BIT, vol. 50, no. 2, pp.

395–403, 2010.

[41] Y. Censor, T. Elfving, and G. T. Herman, “On diagonally-relaxed orthogonal projection

methods,” SIAM J. Sci. Comput, vol. 30, no. 1, pp. 473–504, Jun. 2007. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.333.960

[42] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential

equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484–512, Mar. 1984.

http://dx.doi.org/10.1137/1.9780898718836
http://dx.doi.org/10.1016/0024-3795(81)90139-7
http://dx.doi.org/10.1016/0024-3795(81)90139-7
http://dx.doi.org/10.1007/bf02243477
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.333.960

58

[43] A. Michelini, “An adaptive-grid formalism for traveltime tomography,” Geophysical

Journal International, vol. 121, no. 2, pp. 489–510, May 1995. [Online]. Available:

http://dx.doi.org/10.1111/j.1365-246x.1995.tb05728.x

[44] A. L. Vesnaver, “Irregular grids in seismic tomography and minimum-time ray tracing,” Geo-

physical Journal International, vol. 126, no. 1, pp. 147–165, Jul. 1996.

[45] A. Curtis and R. Snieder, “Reconditioning inverse problems using the genetic algorithm and

revised parameterization,” Geophysics, vol. 62, no. 5, pp. 1524–1532, Oct. 1997. [Online].

Available: http://dx.doi.org/10.1190/1.1444255

[46] W. Spakman and H. Bijwaard, “Optimization of Cell Parameterizations for Tomographic

Inverse Problems,” Pure and Applied Geophysics, vol. 158, no. 8, pp. 1401+, 2001.

[47] M. Bertero, C. D. Mol, and E. R. Pike, “Linear inverse problems with discrete data. I.

General formulation and singular system analysis,” vol. 1, no. 4, pp. 301–330, 1985.

[Online]. Available: http://dx.doi.org/10.1088/0266-5611/1/4/004

[48] I. Gargantini, “An Effective Way to Represent Quadtrees,” Commun. ACM, vol. 25, no. 12,

pp. 905–910, Dec. 1982.

[49] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the CORE and EMANE Network

Emulators,” in MILITARY COMMUNICATIONS CONFERENCE, 2011 - MILCOM 2011,

2011, pp. 1870–1875.

[50] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A Robust and Scalable

Technology For Distributed . . .” in ACM TRANSACTIONS ON COMPUTER SYSTEMS,

2003. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.6072

[51] H. Straková, W. N. Gansterer, and T. Zemen, “Distributed QR factorization based on random-

ized algorithms,” in PPAM’11 Proceedings of the 9th international conference on Parallel

Processing and Applied Mathematics - Volume Part I, 2012, pp. 235–244.

http://dx.doi.org/10.1111/j.1365-246x.1995.tb05728.x
http://dx.doi.org/10.1190/1.1444255
http://dx.doi.org/10.1088/0266-5611/1/4/004
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.6072

59

[52] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker, “An Empirical

Study of Epidemic Algorithms in Large Scale Multihop Wireless Networks,” 2002. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.3915

[53] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast Gossip Algorithms

for Consensus,” Signal Processing, IEEE Transactions on, vol. 57, no. 7, pp. 2748–2761,

Jul. 2009. [Online]. Available: http://dx.doi.org/10.1109/tsp.2009.2016247

[54] G. Kamath, P. Agnihotri, M. Valero, K. Sarker, and W.-Z. Song, “Pushing analytics

to the edge,” in 2016 IEEE Global Communications Conference: Selected Areas in

Communications: Internet of Things (Globecom2016 SAC IoT), Washington, USA,

2016. [Online]. Available: http://sensorweb.engr.uga.edu/wp-content/uploads/2016/09/

DropboxChooserAPI KAVSS-GLOBOCOM2016.pdf

[55] W. Menke, Geophysical data analysis discrete inverse theory. Elsevier/Academic Press,

2012. [Online]. Available: http://www.worldcat.org/isbn/9780123971609

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.3915
http://dx.doi.org/10.1109/tsp.2009.2016247
http://sensorweb.engr.uga.edu/wp-content/uploads/2016/09/DropboxChooserAPI_KAVSS-GLOBOCOM2016.pdf
http://sensorweb.engr.uga.edu/wp-content/uploads/2016/09/DropboxChooserAPI_KAVSS-GLOBOCOM2016.pdf
http://www.worldcat.org/isbn/9780123971609

	Decentralized Convex Optimization for Wireless Sensor Networks
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Analytics on the Edge
	Design Challenges
	Seismic Application

	Literature Review
	Seismic Tomography
	Decentralized Optimization

	Background
	Seismic Tomography
	Phases of Seismic Tomography
	Tomography Formulation
	Convex Optimization

	Parallel Algorithms for WSN
	Introduction
	Parallel Kaczmarz using Component Averaging
	Convergence and Analysis
	Evaluation

	Pre-Conditioning using Adaptive Mesh
	Introduction
	Adaptive mesh using quadtree/octree
	Distributed Tomography Inversion using Adaptive Mesh
	Evaluation

	Distributed Algorithms via Gossiping
	Introduction
	Distributed Randomized Kaczmarz
	Convergence Analysis
	Evaluation

	Asynchronous Decentralized Algorithms via Randomization
	Introduction
	Gossip Randomized Kaczmarz
	Evaluation

	Conclusions
	References

