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individual node, composing the network. Similar to the blinking of an eye, the connections rapid-

ly turn on and off  (see Fig. 1 (left panel)). 

 

 

 

 Fig. 1. [Modified from [2] for illustrative purposes. Courtesy of Dr. Igor Belykh]. The blinking 

model of shortcut connections. Probability of switchings p = 0.01, the switching time �  = 0.1. The blink-

ing model consists of  the regular locally coupled lattice of 30 oscillators with constant coupling coeffi-

cients d  and a time-dependent on–off coupling between any other pair of cells; when switched, the 

shortcuts have the same coupling strength d  (left panel).  Averaged network: the locally coupled lattice 

with the local coupling strength d   and the additional global coupling pd. Here, p is small, such that the 

width of the links may be thought of as the coupling strength (a strong coupling within the local lattice 

and a weak coupling for the remaining all-to-all links) (right panel). 

The blinking connections model realistic networks rather precisely. Examples of real-

world networks with short on-off connections include packet switched networks such as the In-

ternet. Neurons in the brain send out spikes and the neurons become effectively coupled during 

the short period of time when the spikes arrive at post-synaptic neurons. The simultaneous arri-

val of spikes to a given neuron in dense cortical networks, modeled by random networks, may be 

considered as a random process which represents blinking interaction of intermittent nature. An-

other important example of blinking interaction is synchronization of non-precise computer 

clocks by blinking network administration [2]. 
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If the switching time τ is small then the dynamics of the blinking network can be similar 

to that of its averaged analog where the on-off stochastic connections are replaced with static 

global links as shown in Fig. 1 [2]. 

In [2,5-10], the relation between the dynamics of blinking networks and their averaged 

analogs was rigorously studied  using the stability theory and averaging. It was shown [2,10]  

that the solutions of the blinking system converge to an attractor of the averaged system with 

high probability. In simple worlds, the averaged network describes the blinking stochastically 

switching network rather precisely, provided that the switching is fast compared to the intrinsic 

dynamics of each node. The fact that the rapidly switched system has  the  same  behavior  as the 

averaged system intuitively makes sense, but in fact there are exceptions, and therefore, a careful  

analysis of this property is needed which shows on what parameters the occurrence of the excep-

tions depends. This statement is made explicit in [2,10], and rigorous upper  bounds linking the 

probability of converging to the same attractor, switching time, and intrinsic properties of the 

individual dynamical system are given. 

In this thesis, the occurrence of the exceptions, that the multistable blinking and averaged 

networks converge to different attractors, will be studied in the context of information processing 

cellular networks. Such exceptions will represent the failure of the network to perform its func-

tion correctly. 

The research objective of this thesis  is to investigate how (i) the switching network to-

pology and the properties of the individual nodes influence cooperative properties and the infor-

mation processing capabilities of the blinking network and (ii) the addition of fast switching 

connections can enhance the performance of networks with static connections.  Here, we exploit 

the above ideas of transforming local networks into small-worlds and study further the ad-
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vantages of information processing CNNs with blinking connections over the conventional 

CNNs with static structure in performing the “winner-take-all” function [1,5].  

More precisely, we study a cellular neural network (CNN),  composed  from  two-

dimensional arrays of  simple  first-order  bistable  dynamical systems  that are interconnected by 

wires.  Depending on the initial condition, each interacting cell converges to one of two equilib-

rium points, generating an output of +1 or -1. The information, to be processed by a CNN, repre-

sents the initial state of the network, and the parallel information processing is performed by 

converging to one of the stable spatial equilibrium states of the multistable CNN. This stable spa-

tial equilibrium state is represented by the distribution of outputs  +1 and -1. 

In the following, we will study a specific type of CNNs designed to perform the winner-

take-all function  of  finding  the largest  among  the  n  numbers, using the network dynamics.  

One usually implements this by inserting data as initial values of the states and letting the states 

converge to an equilibrium point of the (multistable) network. The mapping from the initial to 

the final states is the function performed by the network. The result of the winner-take-all func-

tion is the convergence to an equilibrium spatial point where the cell with the largest initial value 

converges to the “+1” equilibrium points, whereas all the others cells with initial conditions, rep-

resented by smaller initial values, converge to the “-1” state. The “+1” winning cell represents 

the location of the largest number in the matrix.  In a wider context, this amounts to automatical-

ly detecting a target spot in the given visual picture.  

Unfortunately, this “winner-take-all” cannot be performed by a locally coupled CNN, 

that is very convenient for circuit implementation, and global connections are required.  This 

point will be discussed in detail in Chapter 3. We use the stability conditions derived in [1]  to  

design 4x4 and 10x10 CNNs with global static connections that reliably identify the largest 
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number (with 100% probability).  However, hardwiring all-to-all connection in a large circuit is 

unrealistic. To resolve this issue, we will show that it is convenient to use a communication net-

work, that is present to charge the initial conditions and read out the results, to establish on-off 

blinking connections that let the CNN perform the “winner-take-all” function correctly with high 

probability. In this setting, the CNN with global all-to-all static connections plays a role of the 

above averaged system for the blinking network (see Fig. 1 for the comparison).   A rigorous up-

per bound on the probability that the multistable blinking CNN fails to converge to the correct 

spatial equilibrium and misclassifies the largest number was derived in [10].  In this thesis, we 

numerically verify this exponential dependence for the probably of an error on the negative re-

ciprocal of the switching time τ. 

These numerical studies required the development of MATLAB programs to run the ex-

tensive multi-hour simulations, especially in the case of 10x10 lattice with 100 nodes. These 

studies together with the efforts spent to get a deep insight into this new research field constitute 

the major part of the research performed in this thesis. Examples of the MATLAB programs are 

given in the appendix. 

 

1.2 Thesis Outline 

The outline of this thesis is as follows. In the next chapter (Chapter 2), we discuss the history and 

applications of conventional CNNs with local static connections. In Chapter 3, we introduce the 

models and study winner-take-all CNNs with (i) global static connections and (ii) switching 

blinking connections.  Chapter 4 contains conclusions and discussions.  The MATLAB codes are 

given in Appendix. 
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2. CONVENTIONAL CNN MODELS: HISTORY AND APPLICATIONS 

 

2.1  Parallel Computing and Cellular Neural Networks 

Parallel computing is the use of compute resources at the same time to solve computational prob-

lems.  In other words, a problem is broken into parts that can be solved at the same time. For ex-

ample, suppose there was a campaign manager who was in charge of advertising various flyers 

for promoting a mayor candidate.  This manager has been given the task of the making 500,000 

flyer copies that are to be delivered throughout the city.  The task of creating these copies cannot 

be accomplished efficiently by the campaign manager himself; however, with the help of some 

1000 team staffers who work in a building containing 1000 copiers, the job can be completed in 

less time than with campaign manager alone.  If each staffer is position at a copier, then the job 

or task can be done 1000 times faster.  This process of separating one complex job into several 

jobs to complete within a short amount of time is recognized as parallel computing. Parallel 

computing has been considered “the end of computing.”  Parallel computing has been used to 

solve difficult problems in many areas of science and engineering such as:  Atmosphere, Earth 

Environment, Physics, Bioscience, Geology, Seismology, Mechanical Engineering, Circuit De-

sign, Microelectronics, Computer Science, and Mathematics. The most common type of parallel 

computing is pipelining.  With pipelining, the tasks are broken into steps performed by different 

units, with inputs streaming through, much like an assembly line.  Parallel computing is also per-

formed by means of artificial neural networks such as Cellular Neural Networks. 

  The Cellular Neural Network (CNN) is an artificial neural network that is represented by 

a collection of neurons that connected among each other; usually only local connections are cho-

sen. The state of each cell is described mathematically by a dynamical system or a differential 

equation.  The cells of the CNN network will only communicate with each other via sending sig-
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nals to their neighboring cells. All cells in CNN have three main parts:  the input coupling term, 

the state (cell), and an output coupling term. The condition of each cell relies heavily on the cou-

pling terms from the input or output of its neighbor cells along with its initial condition. The 

CNN models are used in many real world applications such as analyzing 3D surfaces, solving 

partial different equations, and image processing. The CNN models can appear in many forms 

such as a ring, star, mesh, or a tree (see Fig. 2). The most popular form among the many different 

types is the eight-neighbor rectangular grid (see Fig. 3).  

 

 

Fig. 2. Different  CNN topologies (http://errajib.hubpages.com/hub/Types-of-Networks). (Left) 

Star network. (Middle) Tree. (Right) All-to-all global network. Each vertex is represented by a one-

dimensional bistable dynamical system with two distinct outputs “+1” and “-1”. The CNN system per-

forms its information processing function by converging to a distribution of “+1” and “-1”.  

 

 

Fig. 3. The most popular CNN topology:  eight-neighbor coupled network.  Observe that three of 

its neighbors are boundary cells (dashed) [12]. 
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The first cellular neural network was proposed by a Berkeley professor Leon Chua and 

his collaborator Lin Yang in 1988 [11,12].  This original CNN model, CY-CNN, used the 

weighted sum of the input and output to determine the condition or state at each cell. It is im-

portant to note that in a CNN model each cell is spaced equally among each like an N by N grid; 

however, the CNN model is not restricted to a two dimensional network.  It also can be stretched 

to a finite N dimension of cells.  

Today, many scientists develop CNN models to comprehend the biological settings that af-

fect the environment, the human body, or the brain [13-19]. It is often used the show the re-

sponses of artificial intelligence. These models could be deterministic or stochastic depending on 

the dynamics or conditions of the environment. Through collecting data from an environment 

one is able to run experiments and develop a dynamical system or systems that satisfy the condi-

tional of a single element.  For instance, biologist and neuroscientist collect certain data from the 

brain to develop simple models that are coupled that describe mathematically how the brain 

sends signals from a single cell of the brain to another area. 

2.2 Standard CNN equation: History 

The general CNN model can be displayed as a system of nonlinear differential equations.  

We can use the basic first order cellular dynamics and interactions to describe the cell’s state as 

follows: 
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where	��� , ��� , ���	���	are the input, the state, and the output of the cell in position (i,j), 

respectively  [12].  The indices k and l denote a cell that belongs to the neighborhood N(i,j).  Ma-

trices A and B contain the weights of the neural network.  The expression for the output yij  is: 

����	
 = � �����	
 =
�

�
(�����	
 + 1�− �����	
 − 1�)”  (see Fig. 4).   Given the input, the CNN 

performs its function by converging to a specific stable spatial equilibrium, corresponding to a 

distribution of the outputs -1 and +1 and reflecting the input signals. This point will be made 

clear in Chapter 3, discussing the Winner-take-all function performed by a CNN network. 

 

 

Fig. 4.  Standard nonlinearity for the output equation in the CNN model (1). 

Normally, the standard CNN model is created on an M ×N network of cells.  When calculating 

the state of each cell, boundary conditions are a necessity to execute the model. The boundary 

conditions can be defined in several ways.  The boundary conditions are able to be fixed where 

the value of the boundary cells is constant,  zero-flux where the solution of the boundary cell 

matches the edge of cells, or periodic where the value of the boundary cells equals the value of 

the edge cells on the reverse side.  

Figure 5 shows the topology of the standard 4x4 CNN model with r =1 where r represent the 

extent of the neighborhood. If C(i,j) is the cell on the ith row and jth column then cell C(2,2) is 

connected to C(1,1), C(1,2), C(1,3), C(2,1), C(2,2), C(2,3), C(3,1), C(3,2), and C(3,3).  The r-

 

 

x 

f(x) 
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neighborhood is defined as: ����, �� � �	�
, ��|���|
 � �|, |� � �|� � �, 1 � 
 � �; 1 � � �

�� with M and N the number of rows and columns respectively and r a positive integer. 

 

Fig. 5. A rectangular 4x4  grid CNN with a neighborhood radius of 1 [14]. 

The similar 8 × 8 grid CNN was called the CNN Universal Processor in 1993 [13].  This 

CNN Model has interfaces, analog memory, switching logic, and software.  It was implemented 

to test the model’s productivity and effectiveness. As a result in 2000, the usage of CNN models 

became very popular among many companies such as AnaFocus, a semiconductor company.  

The first CNN model that they created was called the ACE CNN processor.  This ACE CNN 

processor had a 20 × 20 CNN processor unit.  This model was later improved and lead to the de-

velopment of an ACE processor that has 128 × 128 processor units. After rigorous developments 

of new CNN models to improve the performance of the previous model,  AnaFocus found ways 

to increase the number of processing cells along with their speed and functional operations of 

each processing cells. 

There are many advantages and disadvantages to the CNN model.  The CNN model addi-

tional cells or neurons can be added to the network to extend the network.  It can also perform 

tasks that a linear program cannot.  When an element of the neural network fails, it can continue 

without any problem because of its parallel paradigm.  Another advantage of the CNN model is 

that neural network can learn by adjusting its coupling strengths and does not need to be repro-
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grammed.  It can also be implemented in any application without any problem.  The disad-

vantage of this model is that the neural network needs training to operate.  The CNN requires 

high processing time for large neural networks. 

We recall that the basic circuit unit of the CNN is called a cell.  The cell holds linear and 

nonlinear circuit elements.  These elements are normally linear capacitors, linear resistors, linear 

and nonlinear controlled sources, and independent sources.    An illustration of a single cell cir-

cuit is shown in Fig. 6. 

 

Fig. 6. [Picture taken from http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/architecture.html].  

Each cells has one independent voltage source Euij, input, one independent current source I (bias), several 

voltage controlled current sources In
uij, In

yij, and one voltage controlled source Eyij,(output).  The con-

trolled current sources In
uij are coupled to neighbor cells via the control input voltage of each neighbor 

cell. Similarly, the controlled current sources In
yij are coupled to their neighbor cells via the feedback from 

the output voltage of each neighbor cell. 

Many scientists are motivated by the CNN models. Through studying the brain, scientists 

have found that the human brain is an extremely complex nonlinear system that consists of bil-

lions of simple processing elements, neurons.  “Inspired by this biological network of neurons 

and deeply impressed by its signal processing capabilities, scientists and engineers design simpli-
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fied artificial models with the far aim of achieving a performance comparable to the biological 

ideal [13]”. 

2.3 Applications of CNNs 

CNN processors are used in many fields of science [13]. There are some applications that are 

engineering related, where some known, understood behavior of CNN processors is exploited to 

perform a specific task, and some are scientific, where CNN processors are used to explore new 

and different phenomenon [13]. CNN processors are used to do image processing; specifically, 

the first application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 

frame/s) processing with digital processors that are used in such as applications like particle de-

tection in jet engine fluids and spark-plug detection. Currently, CNN processors are able to reach 

up to 50,000 frames per second.  Applications such as missile tracking, flash detection, and 

spark-plug diagnostics are microprocessors that have surpass the performance of a conventional 

supercomputer. CNN processors are also used in local, low-level, processor intensive operations. 

“CNN processors have been used in feature extraction, level and gain adjustments, color con-

stancy detection, contrast enhancement, deconvolution, image compression, motion estimation, 

image encoding, image decoding, image segmentation, orientation preference maps, pattern 

learning/recognition, multi-target tracking, image stabilization, resolution enhancement, image 

deformations and mapping, image inpainting, optical flow, contouring, moving object detection, 

axis of symmetry detection, and image fusion” [13]. 

CNN processors have exceptional processing capabilities and flexibility. They have been used or 

have been prototyped for applications such as flame analysis for monitoring combustion at a 

waste incinerator, mine-detection that uses infrared imagery, calorimeter cluster peak for phys-

ics, anomaly detection in potential field maps for geophysics, laser dot detection, metal inspec-
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tion for identifying manufacturing defects, and seismic horizon picking. CNN processors have 

also been implemented to perform biometric functions like fingerprint recognition, vein feature 

extraction, face tracking, and generating visual stimuli through emergent patterns to gauge per-

ceptual resonances. CNN processors have been made for medical and biological research to do 

automated nucleated cell counting to divide hyperplasia and segment images into anatomically 

and pathologically meaningful regions. The processors are great at measuring and quantifying 

cardiac function, measuring the timing of neurons, identifying brain abnormalities that would 

cause seizer activity. “One potential future application of CNN microprocessors is to combine 

them with the DNA microarrays to allow for a near-real time DNA analysis of hundreds of thou-

sands of different DNA sequences. Currently, the major bottleneck of this DNA microarray 

analysis is the amount of time needed to process data in the form of images, and using a CNN 

microprocessor, researchers have reduced the amount of time needed to perform this calculation 

to 7ms” [13]. 

CNN processors have also been developed to create and analyze patterns and textures. 

One motivation was to use CNN processors to understand pattern generation in natural systems. 

Also, “CNN processors were used to approximate pattern generation systems that create station-

ary fronts, spatio-temporal patterns oscillating in time, hysteresis, memory, and heterogeneity 

Furthermore, pattern generation was used to aid high-performance image generation and com-

pression via real-time generation of stochastic and coarse-grained biological patterns, texture 

boundary detection, and pattern and texture recognition and classification” [13]. 

Scientists are working to integrate CNN processors into sensory-computing actuating 

machines. This is done by creating an integrated system that uses CNN processors for the senso-

ry signal processing and potentially the decision making and control. This is because CNN pro-
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cessors yield a low power, small size, and eventually low cost computing and actuating system 

that is suited for that type of system. These Cellular Machines will eventually merge into a Sen-

sor-Actuator Network (SAN), a Mobile Ad Hoc Networks (MANET) which is found in military 

intelligence gathering, surveillance of inhospitable environments, maintenance of large areas, 

planetary exploration, etc” [13]. 

CNN processors have also been proven versatile enough for some control functions [11]. 

“They have been used as associative memories, optimize function via genetic algorithm, measur-

ing distances, optimal path finding in a complex, dynamic environment, and to learn and associ-

ate complex stimuli. CNN processors are used to design antonymous gaits by and low-level mo-

tor for robotic nematodes, spiders, and lamprey gaits using a Central Pattern Generator (CPG). 

“They [CNN processors] were able to function using only feedback from the environment, al-

lowing for a robust, flexible, biologically inspired robot motor system. CNN-based systems were 

able to operate in different environments and still function if some of the processing units were 

disabled” [11]. 

The different types of dynamical behavior that are found in CNN processors make them 

interesting for communication systems. The turbulent communications that is used in CNN pro-

cessors is being investigated because of their potential low power consumption, robustness and 

spread spectrum features. “The premise behind chaotic communication is to use a chaotic signal 

for the carrier way and to use chaotic phase synchronization to reconstruct the message.” CNN 

processors are found in both the transmitter and receiver end to encrypt and decrypt the messag-

es. They can also be made for source authentication through watermarking, detecting of complex 

patterns in spectrogram images (sound processing), and transient spectral signals detection” [11]. 
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CNN processors are neuromorphic processors. This means that they are able to mimic 

certain aspects of biological neural networks. The first CNN processors were established on 

mammalian retinas, which are composed of a layer of photo detectors that were connected to 

many layers of locally coupled neurons. “This makes CNN processors part of an interdisciplinary 

research area whose goal is to design systems that leverage knowledge and ideas from neurosci-

ence and contribute back via real-world validation of theories.” CNN processors have developed 

a real-time system that reduplicates mammalian retinas. This process validates that the original 

CNN architecture modeled the correct aspects of biological neural networks used to perform. 

“However, CNN processors are not only limited to verifying biological neural networks associ-

ated with vision processing; they have been used to simulate dynamic activity seen in mammali-

an neural networks found in the olfactory bulb and locust antennal lobe, responsible for pre-

processing sensory information to detect differences in repeating patterns” [11]. 

CNN processors play a significant role in helping us understand systems that can be modeled 

living cells, biological networks, physiological systems, and ecosystems. The CNN architecture 

displays some of the dynamics that are observed in nature and is easy enough to analyze and 

conduct experiments. They are also used in stochastic simulation techniques. This allows scien-

tists to venture spin problems, population dynamics modes, lattice gas models, and percolation. 

Some other simulations consist of heat transfer, mechanical vibrating systems, protein produc-

tion, Josephson Transmission Line (JTL), seismic wave propagation, and geothermal structures. 

One particular CNN model, the 3D (Three Dimensional) CNN, has been invented  in order to 

show that complex shapes are emergent phenomena to established a link between art, dynamical 

systems and VLSI technology. CNN processors are needed to study various  mathematical con-

cepts, such as analyzing non-equilibrium systems, building non-linear systems of arbitrary com-

7 
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plexity using a collection of simple, well-understood dynamic systems, investigating emergent 

chaotic dynamics, developing chaotic signals. The goal with the CNN model is to create a con-

ceptual and mathematical framework necessary to analyze, model, and understand systems, in-

cluding, but are not limited to, atomic, mechanical, molecular, chemical, biological, ecological, 

social and economic systems. “Topics explore are emergences, collective behavior, local activity 

and its impact on global behavior, and quantifying the complexity of an approximately spatially 

and topologically invariant system. Although another measure of complexity many not make 

some people enthusiastic (Seth Lloyd, a professor from Massachusetts Institute of Technology 

(MIT), has identified 32 different definitions of complexity), it can be potentially be mathemati-

cally analyze systems such as economic and social systems” [11]. 

2.4 Limitations of locally coupled CNNs: the need of global connections 

The basic CNN model has many functions that can be computed by series of locally con-

nected dynamical systems; however, many information processing functions require long range 

interactions of the cells for efficient computations.  The fixation of all-to-all connections of n by 

n cells would require  �� wires which is not realistic in most cases. A more effective approach to 

this is to develop an algorithm that shows that long distance connections can actually be 

switched on and off randomly in such a way that with high probability the computational func-

tion that the network performance is the same as that of a corresponding non-switched system, 

the averaged system.   

In the next chapter, we will focus on a switching CNN that is capable of solving the win-

ner-take-all function. 
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3. WINNER-TAKE-ALL CNNs 

 

3.1 Conventional Model with Fixed Connections 

3.1.1 Winner-take-all Model  

We start off with conventional CNN model proposed by Seiler and Nossek in [1].  

In this CNN model, each cell is self-connected and also connected to all other cells.  Sim-

ilarly to (1), the network dynamics can be described as the follows: 

														���
��

= −�� + ∑ ��	�	

	�� + �,                                                                     (2)                          

															�� = �(��) = � 1,				�� > 1							��, 	−1	 ≤ 	�� ≤ 1

−1, �� < −1
,	 

where the network consists of N  all-to-all coupled cells. As in (1), 	�� 	and	�� 	 are 

the state and the output of the i-th cell.  In contrast to (1), this network has no input varia-

bles	�� , and the input to the network is provided via the initial conditions of  	�� .   Param-

eter �	maintains a certain rate of convergence to a specific equilibrium point, and is pre-

sent due to some historical reasons [1]. Parameter  ��	 is the coupling among cells. We 

assume that  

��	 = �� < 0, ��	� ≠ �� > 0, ��	� = � . 

It is important to notice that � < 0	and	� > 0 so that the connections of a cell 

with the other neurons are inhibitory and self-connections are excitatory (Fig. 7).  For 

convenience, we set the excitatory coupling strength � = 1 + � + � > 0  with an auxilia-

ry parameter �	chosen such that � > 0. Therefore, system (2) becomes: 

���

���
= −�� − ���� + ��� +⋯+ ��� + ����� +⋯+ ��
+ �, � = 1,… ,�		   
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            and, consequently, 

���

���

� ��� � ���� � ��� � ⋯ � �1 � � � ���� � ����� � ⋯ � ��	� � �,  

� � 1, … , �.		      

 

 

 

Fig.7.  Four-cell network (2) of all-to-all connected cells with self-couplings.  Intracellular con-

nections are inhibitory (⍺<0). Self-connections are excitatory (�>0). The arrows indicate excitatory self-

connections; the dots indicate mutual inhibition between the cells. 

 

By separating the �1 � ���� 	 term from the summation we have the following sys-

tem 

���

��
	 
�� � �1 � ���� � �∑ ��

�

��� � �,			where	� � 0			and		1 � � � � � 0.														�3�                                                                        

The excitatory self-connections with � 	 1 � � � � � 0  (see Fig. 7) are necessary for the 

CNN network (2) to perform the winner-take-all  (WTA)  function  of  finding  the largest  

among  the  n  numbers, using the network dynamics.  

More specifically, the WTA function is performed as follows. The N given numbers are 

loaded to the network (2) as initial conditions xi(0), i = 1, …, N, one for each cell. Let the largest 
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among these numbers be xm(0). Then, the vector of states x(t) evolves according to (2) and con-

verges to the equilibrium point x such that 1mx ≥  and 1ix ≤−  for i m≠ . In terms of the out-

puts, this implies that ( ) 1m my f x= =  and ( ) 1i iy f x= = −  for i m≠ . Therefore, the dynamical 

system (2) must have N stable equilibrium points, one for each value for each m, corresponding 

to xm(0) with the largest initial value. The state space of multi-stable dynamical system (2) must 

be divided into the N attraction basins of the corresponding equilibrium points. The cell, that cor-

responds to the initial state with the largest value and converges to the +1 state, is called the 

“winning” cell; the other cells converging to -1 states are called “loosing” cells.  

In other words, the WTA function is performed by network (3) if ∀� ≠ �	if	���0� < ���0� 

and for all initial conditions the eventual output of the “winning” cell (i-th cell) is  +1 and that of 

the other cell -1. Below are the properties necessary for the WTA function.  

Properties of all-to-all coupled WTA CNN (3): 

To perform the WTA function, the following conditions must be satisfied: 

1. ���

��
< 0 if the i-th cell is a “losing” one (non-winning)  

2. 
���

��
> 0 if the i-th cell is the “winner”  where � = 1 + � + 	 > 0. 

This implies that state xm(t) with the largest initial condition must increase to reach the +1 

state whereas the states of the other (loosing) cells must decrease to reach the -1 state. The excit-

atory connections are necessary for the winner cell to increase its state as they increase its time 

derivative. The inhibitory connections decrease the time derivatives of the loosing cells and force 

them to converge to the -1 states. 

Theorem  [Order Preserving Dynamics [1]]:   

Consider CNN network (1).  If the initial states of two cells i and j are ordered as follows 
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(0) (0)i jx x>   

 then for all times  ( ) ( ).i jx t x t>  As a result the arrangement of the cells by the level of 

their respective states stays consistent. 

Proof .  To ensure that we do not lose the generality,  we shall focus our discussion on 

cell 1 and cell 2 , and claim (to arrive at a contradiction) that 1 2(0) (0)x x> , and there exists is 

some T such that 1 2( ) ( )x T x T< .  Since the states are continuous, then exists 00 t T< <  such that 

1 2
0 0( ) ( )x t x t= .  Using the principle of uniqueness of solutions and the interchanging of cell indi-

ces at 0t , it shows that 1 2( ) ( )x t x t≡ .  However, this contradicts the assumption that 1 2(0) (0)x x>  

when 0t = .  When this is applied to all pairs of cells, the arrangement of the cell described in the 

proposition is preserved.   This completes the proof. □   

Equilibrium Design 

In order to construct a WTA network from N-cell network (3), we must make N WTA 

patterns stable, while making the other patterns unstable.  We must also find the restricted values 

on the following parameters: �, �, and	�.  Denote by k the number of + 1 states in the equilibrium 

pattern. Clearly, for the n-cell winner-take-all CNN (1) only 1P  must be stable as the other pat-

terns become unstable: 

 kP  is  
1

1

stable if k

unstable if k
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 ≠ 

 . 

This is illustrated in Fig. 8, using a four-cell CNN (3).  


