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individual node, composing the network. Similathe blinking of an eye, the connections rapid-

ly turn on and off (see Fig. 1 (left panel)).

Fig. 1 [Modified from [2] for illustrative purposes. Cdasy of Dr. Igor Belykh]. The blinking

model of shortcut connections. Probability of shitgsp = 0.01, the switching time = 0.1. The blink-
ing model consists of the regular locally coupleitice of 30 oscillators with constant couplingetfe
cientsd and a time-dependent on—off coupling between ahgropair of cells; when switched, the
shortcuts have the same coupling strermbtfieft panel). Averaged network: the locally caegbllattice
with the local coupling strengith and the additional global couplingl. Here,p is small, such that the
width of the links may be thought of as the couplgtrength (a strong coupling within the localitat
and a weak coupling for the remaining all-to-aikB) (right panel).

The blinking connections model realistic networksher precisely. Examples of real-
world networks with short on-off connections inatugacket switched networks such as the In-
ternet. Neurons in the brain send out spikes aach#urons become effectively coupled during
the short period of time when the spikes arrivpadt-synaptic neurons. The simultaneous arri-
val of spikes to a given neuron in dense cortiesivorks, modeled by random networks, may be
considered as a random process which representsrigiinteraction of intermittent nature. An-
other important example of blinking interaction ggnchronization of non-precise computer

clocks by blinking network administration [2].



If the switching timer is small then the dynamics of the blinking netwodhn be similar
to that of its averaged analog where the on-oftltsstic connections are replaced with static
global links as shown in Fig. 1 [2].

In [2,5-10], the relation between the dynamics lnfiking networks and their averaged
analogs was rigorously studied using the stabiligory and averaging. It was shown [2,10]
that the solutions of the blinking system convetgen attractor of the averaged system with
high probability. In simple worlds, the averagedwwk describes the blinking stochastically
switching network rather precisely, provided tHa switching is fast compared to the intrinsic
dynamics of each node. The fact that the rapidiycéwd system has the same behavior as the
averaged system intuitively makes sense, but intfece are exceptions, and therefore, a careful
analysis of this property is needed which showsvbat parameters the occurrence of the excep-
tions depends. This statement is made explici2jhd], and rigorous upper bounds linking the
probability of converging to the same attractorjtsiwng time, and intrinsic properties of the
individual dynamical system are given.

In this thesis, the occurrence of the exceptidma, the multistable blinking and averaged
networks converge to different attractors, willdtedied in the context of information processing
cellular networks. Such exceptions will represéret failure of the network to perform its func-
tion correctly.

The research objective of this thesis is to ingase how (i) the switching network to-
pology and the properties of the individual noddgiience cooperative properties and the infor-
mation processing capabilities of the blinking netvand (ii) the addition of fast switching
connections can enhance the performance of netwatksstatic connections. Here, we exploit

the above ideas of transforming local networks istoall-worlds and study further the ad-



vantages of information processing CNNs with blingkiconnections over the conventional
CNNss with static structure in performing the “wimrtake-all” function [1,5].

More precisely, we study a cellular neural netw¢@dN), composed from two-
dimensional arrays of simple first-order biseallynamical systems that are interconnected by
wires. Depending on the initial condition, eacteracting cell converges to one of two equilib-
rium points, generating an output of +1 or -1. Titffermation, to be processed by a CNN, repre-
sents the initial state of the network, and thealpalrinformation processing is performed by
converging to one of the stable spatial equilibretates of the multistable CNN. This stable spa-
tial equilibrium state is represented by the disttion of outputs +1 and -1.

In the following, we will study a specific type GMNNs designed to perform the winner-
take-all function of finding the largest amonlige n numbers, using the network dynamics.
One usually implements this by inserting data #&glrvalues of the states and letting the states
converge to an equilibrium point of the (multisebhetwork. The mapping from the initial to
the final states is the function performed by teénork. The result of the winner-take-all func-
tion is the convergence to an equilibrium spat@hpwhere the cell with the largest initial value
converges to the “+1” equilibrium points, wheresdhee others cells with initial conditions, rep-
resented by smaller initial values, converge to“thé state. The “+1” winning cell represents
the location of the largest number in the matiix.a wider context, this amounts to automatical-
ly detecting a target spot in the given visualyniet

Unfortunately, this “winner-take-all” cannot be fiemed by a locally coupled CNN,
that is very convenient for circuit implementatiand global connections are required. This
point will be discussed in detail in Chapter 3. W& the stability conditions derived in [1] to

design 4x4 and 10x10 CNNs with global static cotinas that reliably identify the largest



number (with 100% probability). However, hardwgiall-to-all connection in a large circuit is
unrealistic. To resolve this issue, we will showtth is convenient to use a communication net-
work, that is present to charge the initial comshs and read out the results, to establish on-off
blinking connections that let the CNN perform thariner-take-all” function correctly with high
probability. In this setting, the CNN with globdl-to-all static connections plays a role of the
above averaged system for the blinking network 8gel for the comparison). A rigorous up-
per bound on the probability that the multistabieking CNN fails to converge to the correct
spatial equilibrium and misclassifies the largesiber was derived in [10]. In this thesis, we
numerically verify this exponential dependencetfa probably of an error on the negative re-
ciprocal of the switching time.

These numerical studies required the developmeMAFLAB programs to run the ex-
tensive multi-hour simulations, especially in theese of 10x10 lattice with 100 nodes. These
studies together with the efforts spent to getepdasight into this new research field constitute
the major part of the research performed in thesihh Examples of the MATLAB programs are

given in the appendix.

1.2 Thesis Outline

The outline of this thesis is as follows. In thenehapter (Chapter 2), we discuss the history and
applications of conventional CNNs with local statannections. In Chapter 3, we introduce the
models and study winner-take-all CNNs with (i) giblstatic connections and (ii) switching
blinking connections. Chapter 4 contains conclusiand discussions. The MATLAB codes are

given in Appendix.



2. CONVENTIONAL CNN MODELS: HISTORY AND APPLICATIONS

2.1 Parallel Computing and Cellular Neural Networks
Parallel computing is the use of compute resouatéise same time to solve computational prob-
lems. In other words, a problem is broken intdg#rat can be solved at the same time. For ex-
ample, suppose there was a campaign manager whimwhaarge of advertising various flyers
for promoting a mayor candidate. This managerliges given the task of the making 500,000
flyer copies that are to be delivered throughoatdity. The task of creating these copies cannot
be accomplished efficiently by the campaign mandgmself; however, with the help of some
1000 team staffers who work in a building contagni®00 copiers, the job can be completed in
less time than with campaign manager alone. Ihetaffer is position at a copier, then the job
or task can be done 1000 times faster. This psocEseparating one complex job into several
jobs to complete within a short amount of time esagnized as parallel computing. Parallel
computing has been considered “the end of compdtifiarallel computing has been used to
solve difficult problems in many areas of scienod angineering such as: Atmosphere, Earth
Environment, Physics, Bioscience, Geology, Seismgl®echanical Engineering, Circuit De-
sign, Microelectronics, Computer Science, and Matitecs. The most common type of parallel
computing is pipelining. With pipelining, the taslre broken into steps performed by different
units, with inputs streaming through, much likeaasembly line. Parallel computing is also per-
formed by means of artificial neural networks sashCellular Neural Networks.

The Cellular Neural Network (CNN) is an artificiaural network that is represented by
a collection of neurons that connected among etwr;cusually only local connections are cho-
sen. The state of each cell is described matheatigtiocy a dynamical system or a differential

equation. The cells of the CNN network will onlgramunicate with each other via sending sig-



nals to their neighboring cells. All cells in CNMve three main parts: the input coupling term,
the state (cell), and an output coupling term. @tvedition of each cell relies heavily on the cou-
pling terms from the input or output of its neighlmells along with its initial condition. The

CNN models are used in many real world applicatismsh as analyzing 3D surfaces, solving
partial different equations, and image processifige CNN models can appear in many forms
such as aring, star, mesh, or a tree (see Figh2)most popular form among the many different

types is the eight-neighbor rectangular grid (sge 3).

Fig. 2.Different CNN topologies (http:/errajib.hubpagesn/hub/Types-of-Networks). (Left)
Star network. (Middle) Tree. (Right) All-to-all dbal network. Each vertex is represented by a one-
dimensional bistable dynamical system with twoidettoutputs “+1” and “-1”. The CNN system per-

forms its information processing function by corgieg to a distribution of “+1” and “-1".

...............

Fig. 3.The most popular CNN topology: eight-neighbor dedmetwork. Observe that three of

its neighbors are boundary cells (dashed) [12].



The first cellular neural network was proposed bBeakeley professor Leon Chua and
his collaborator Lin Yang in 1988 [11,12]. Thisigmal CNN model, CY-CNN, used the
weighted sum of the input and output to determivee dondition or state at each cell. It is im-
portant to note that in a CNN model each cell scspl equally among each like ldrby N grid;
however, the CNN model is not restricted to a twoehsional network. It also can be stretched
to a finite N dimension of cells.

Today, many scientists develop CNN models to cohmard the biological settings that af-
fect the environment, the human body, or the bfaBi19]. It is often used the show the re-
sponses of artificial intelligence. These modelgldde deterministic or stochastic depending on
the dynamics or conditions of the environment. Tigio collecting data from an environment
one is able to run experiments and develop a dytamaystem or systems that satisfy the condi-
tional of a single element. For instance, biolbgisd neuroscientist collect certain data from the
brain to develop simple models that are coupled tescribe mathematically how the brain
sends signals from a single cell of the brain totla@r area.

2.2 Standard CNN equation: History
The general CNN model can be displayed as a sysfemonlinear differential equations.

We can use the basic first order cellular dynaraid interactions to describe the cell’'s state as

follows:
dx; . o
d_tj = -xt Y Al jkDyg Y, B iik,Dug,
(k,DON, ) (KJIENGL))
1)
1 forx; >1

yij:f(xj): ¥ for—lsa<s1,
-1 forx; <-1



whereu,;, x;j, and y;; are the input, the state, and the output of theiredosition (i,j),
respectively [12]. The indicdsandl denote a cell that belongs to the neighborhgfd). Ma-

tricesA and B contain the weights of the neural network. Thereggion for the output; is:
yi(t) = f(xi]-(t)) = %(|xij(t) + 1| — |x;;(t) — 1|)” (see Fig. 4). Given the input, the CNN
performs its function by converging to a specifiabde spatial equilibrium, corresponding to a

distribution of the outputs -1 and +1 and reflegtihe input signals. This point will be made

clear in Chapter 3, discussing the Winner-takdealttion performed by a CNN network.

v
X

Fig. 4 Standard nonlinearity for the output equatiothis CNN model (1).
Normally, the standard CNN model is created on anNvhetwork of cells. When calculating
the state of each cell, boundary conditions arecagssity to execute the model. The boundary
conditions can be defined in several ways. Thentdaty conditions are able to be fixed where
the value of the boundary cells is constant, Zlerowhere the solution of the boundary cell
matches the edge of cells, or periodic where theevaf the boundary cells equals the value of
the edge cells on the reverse side.

Figure 5 shows the topology of the standéxd CNN model with r =1 where represent the
extent of the neighborhood. @(,j) is the cell on thé™ row andj"™ column then celC(2,2)is

connected taC(1,1), C(1,2), C(1,3), C(2,1), C(2,2), C(2,3), @3 C(3,2),andC(3,3). The r-
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neighborhood is defined a®i,(i,j) = {C(k,D)|max[|k —i|,|l—j]l <1<k <M;1<I<

N} with M andN the number of rows and columns respectivelyraagbositive integer.
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Fig. 5 A rectangula#x4 grid CNN with a neighborhood radius of 1 [14].

The similar 8 x 8 grid CNN was called the CNN Umsad Processor in 1993 [13]. This
CNN Model has interfaces, analog memory, switchaggc, and software. It was implemented
to test the model’s productivity and effectiveness.a result in 2000, the usage of CNN models
became very popular among many companies such ako&ns, a semiconductor company.
The first CNN model that they created was callesl ACE CNN processor. This ACE CNN
processor had a 20 x 20 CNN processor unit. Tlideinwas later improved and lead to the de-
velopment of an ACE processor that has 128 x 188gssor units. After rigorous developments
of new CNN models to improve the performance ofghevious model, AnaFocus found ways
to increase the number of processing cells alortg thieir speed and functional operations of
each processing cells.

There are many advantages and disadvantages ©©NNemodel. The CNN model addi-
tional cells or neurons can be added to the netwemekxtend the network. It can also perform
tasks that a linear program cannot. When an eleofa@he neural network fails, it can continue
without any problem because of its parallel panadigAnother advantage of the CNN model is

that neural network can learn by adjusting its ¢diogpstrengths and does not need to be repro-
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grammed. It can also be implemented in any apmhicavithout any problem. The disad-
vantage of this model is that the neural networ&dsetraining to operate. The CNN requires
high processing time for large neural networks.

We recall that the basic circuit unit of the CNNcelled a cell. The cell holds linear and
nonlinear circuit elements. These elements armally linear capacitors, linear resistors, linear
and nonlinear controlled sources, and independantss. An illustration of a single cell cir-

cuit is shown in Fig. 6.

Eui *(:) — @" @" ¥ Esi

Fig. 6 [Picture taken from http://www.isiweb.ee.ethzte®nggi/CNN_web/architecture.html].

Each cells has one independent voltage soujgeariput, one independent current source | (biasjesal
voltage controlled current sourceg'| I,”Y, and one voltage controlled sourcg,@®utput). The con-
trolled current sources"! are coupled to neighbor cells via the control ingoitage of each neighbor
cell. Similarly, the controlled current sourcg$ hre coupled to their neighbor cells via the feeifeom
the output voltage of each neighbor cell.

Many scientists are motivated by the CNN modelsotigh studying the brain, scientists
have found that the human brain is an extremelyptexnnonlinear system that consists of bil-

lions of simple processing elements, neurons. pihesl by this biological network of neurons

and deeply impressed by its signal processing ey scientists and engineers design simpli-
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fied artificial models with the far aim of achiegira performance comparable to the biological
ideal [13]".

2.3 Applications of CNNs

CNN processors are used in many fields of scieti8¢ [There are some applications that are
engineering related, where some known, understebdwor of CNN processors is exploited to
perform a specific task, and some are scientifitene CNN processors are used to explore new
and different phenomenon [13]. CNN processors assl o do image processing; specifically,
the first application of CNN processors was to gerf real-time ultra-high frame-rate (>10,000
frame/s) processing with digital processors thatieed in such as applications like particle de-
tection in jet engine fluids and spark-plug demctiCurrently, CNN processors are able to reach
up to 50,000 frames per second. Applications saghmissile tracking, flash detection, and
spark-plug diagnostics are microprocessors thag lsavpass the performance of a conventional
supercomputer. CNN processors are also used ih loealevel, processor intensive operations.
“CNN processors have been used in feature extraclavel and gain adjustments, color con-
stancy detection, contrast enhancement, decongoluitnage compression, motion estimation,
image encoding, image decoding, image segmentatinentation preference maps, pattern
learning/recognition, multi-target tracking, imagebilization, resolution enhancement, image
deformations and mapping, image inpainting, optileal, contouring, moving object detection,

axis of symmetry detection, and image fusion” [13].

CNN processors have exceptional processing capabiand flexibility. They have been used or
have been prototyped for applications such as flamadysis for monitoring combustion at a
waste incinerator, mine-detection that uses infrangagery, calorimeter cluster peak for phys-

ics, anomaly detection in potential field maps deophysics, laser dot detection, metal inspec-
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tion for identifying manufacturing defects, andsseic horizon picking. CNN processors have
also been implemented to perform biometric fundibke fingerprint recognition, vein feature
extraction, face tracking, and generating visuahsti through emergent patterns to gauge per-
ceptual resonances. CNN processors have been madeeélical and biological research to do
automated nucleated cell counting to divide hy@eipl and segment images into anatomically
and pathologically meaningful regions. The processwe great at measuring and quantifying
cardiac function, measuring the timing of neuradgntifying brain abnormalities that would
cause seizer activity. “One potential future agglmn of CNN microprocessors is to combine
them with the DNA microarrays to allow for a neaartime DNA analysis of hundreds of thou-
sands of different DNA sequences. Currently, thgombottleneck of this DNA microarray
analysis is the amount of time needed to procetsidahe form of images, and using a CNN
microprocessor, researchers have reduced the arabtinte needed to perform this calculation

to 7ms” [13].

CNN processors have also been developed to credt@aralyze patterns and textures.
One motivation was to use CNN processors to uraleispattern generation in natural systems.
Also, “CNN processors were used to approximateepatjeneration systems that create station-
ary fronts, spatio-temporal patterns oscillatingtime, hysteresis, memory, and heterogeneity
Furthermore, pattern generation was used to aid-pgformance image generation and com-
pression via real-time generation of stochastic eoarse-grained biological patterns, texture

boundary detection, and pattern and texture retiogrand classification” [13].

Scientists are working to integrate CNN processots sensory-computing actuating
machines. This is done by creating an integratstesy that uses CNN processors for the senso-

ry signal processing and potentially the decisiakimg and control. This is because CNN pro-
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cessors yield a low power, small size, and evelytlalv cost computing and actuating system
that is suited for that type of system. These CalliMachines will eventually merge into a Sen-
sor-Actuator Network (SAN), a Mobile Ad Hoc NetwsrkMANET) which is found in military
intelligence gathering, surveillance of inhospitl@invironments, maintenance of large areas,

planetary exploration, etc” [13].

CNN processors have also been proven versatilegbnimn some control functions [11].
“They have been used as associative memories, iaptionction via genetic algorithm, measur-
ing distances, optimal path finding in a compleynamic environment, and to learn and associ-
ate complex stimuli. CNN processors are used t@gdemtonymous gaits by and low-level mo-
tor for robotic nematodes, spiders, and lampreysgaing a Central Pattern Generator (CPG).
“They [CNN processors] were able to function usomdy feedback from the environment, al-
lowing for a robust, flexible, biologically inspolerobot motor system. CNN-based systems were
able to operate in different environments and fiitiction if some of the processing units were

disabled” [11].

The different types of dynamical behavior that fanend in CNN processors make them
interesting for communication systems. The turbuEmmunications that is used in CNN pro-
cessors is being investigated because of theimpatdow power consumption, robustness and
spread spectrum features. “The premise behind ichemtinmunication is to use a chaotic signal
for the carrier way and to use chaotic phase symehation to reconstruct the message.” CNN
processors are found in both the transmitter aceliver end to encrypt and decrypt the messag-
es. They can also be made for source authentictittongh watermarking, detecting of complex

patterns in spectrogram images (sound processing)iransient spectral signals detection” [11].
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CNN processors are neuromorphic processors. Thasnthat they are able to mimic
certain aspects of biological neural networks. Tind CNN processors were established on
mammalian retinas, which are composed of a laygphofto detectors that were connected to
many layers of locally coupled neurons. “This ma&&EN processors part of an interdiscipline
research area whose goal is to design systemetietige knowledge and ideas from neuro 7
ence and contribute back via real-world validatdrtheories.” CNN processors have developea
a real-time system that reduplicates mammaliamasti This process validates that the original
CNN architecture modeled the correct aspects dbgical neural networks used to perform.
“However, CNN processors are not only limited toifyeng biological neural networks associ-
ated with vision processing; they have been useaihtalate dynamic activity seen in mammali-
an neural networks found in the olfactory bulb damcust antennal lobe, responsible for pre-

processing sensory information to detect differesnneepeating patterns” [11].

CNN processors play a significant role in helpisgunderstand systems that can be modeled
living cells, biological networks, physiologicalsggms, and ecosystems. The CNN architecture
displays some of the dynamics that are observathinre and is easy enough to analyze and
conduct experiments. They are also used in stachsistulation techniques. This allows scien-
tists to venture spin problems, population dynamicgles, lattice gas models, and percolation.
Some other simulations consist of heat transfechawical vibrating systems, protein produc-
tion, Josephson Transmission Line (JTL), seismigemaropagation, and geothermal structures.
One particular CNN model, the 3D (Three Dimensipi@&N, has been invented in order to
show that complex shapes are emergent phenomearsdatiolished a link between art, dynamical
systems and VLSI technology. CNN processors ardatet study various mathematical con-

cepts, such as analyzing non-equilibrium systemggibg non-linear systems of arbitrary com-
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plexity using a collection of simple, well-understbdynamic systems, investigating emergent
chaotic dynamics, developing chaotic signals. To& gvith the CNN model is to create a con-
ceptual and mathematical framework necessary ttyamamodel, and understand systems, in-
cluding, but are not limited to, atomic, mechanicablecular, chemical, biological, ecological,
social and economic systems. “Topics explore arergemces, collective behavior, local activity
and its impact on global behavior, and quantifyiing complexity of an approximately spatially
and topologically invariant system. Although anotheeasure of complexity many not make
some people enthusiastic (Seth Lloyd, a professon Massachusetts Institute of Technology
(MIT), has identified 32 different definitions obmplexity), it can be potentially be mathemati-

cally analyze systems such as economic and soatdms” [11].

2.4 Limitations of locally coupled CNNs: the need of global connections

The basic CNN model has many functions that cacopeputed by series of locally con-
nected dynamical systems; however, many informghi@ecessing functions require long range
interactions of the cells for efficient computasonThe fixation of all-to-all connections nfby
n cells would requiren* wires which is not realistic in most cases. A meifective approach to
this is to develop an algorithm that shows thatglatistance connections can actually be
switched on and off randomly in such a way thahwiigh probability the computational func-
tion that the network performance is the same asdha corresponding non-switched system,
the averaged system.

In the next chapter, we will focus on a switchingNCthat is capable of solving the win-

ner-take-all function.
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3. WINNER-TAKE-ALL CNNs

3.1 Conventional Model with Fixed Connections
3.1.1 Winner-take-all Model
We start off with conventional CNN model proposgdSeiler and Nossek in [1].
In this CNN model, each cell is self-connected alst connected to all other cells. Sim-

ilarly to (1), the network dynamics can be desdtibe the follows:

dxl-

o= =X+ Xk @i Yk K, 2

1, Xi >1
yi=f(x) = x, =1 < % <1,
—1, Xi < -1

where the network consists Nf all-to-all coupled cells. As in (1)x; and y; are
the state and the output of thth cell. In contrast to (1), this network has nput varia-
blesu; , and the input to the network is provided viaitiigal conditions of x;. Param-
eterk maintains a certain rate of convergence to a speaifuilibrium point, and is pre-
sent due to some historical reasons [1]. Paramefeis the coupling among cells. We

assume that

ak:{a<0’ifi¢k
L B>0,ifi=k"

It is important to notice that < 0 and § > 0 so that the connections of a cell
with the other neurons aighibitory and self-connections aexcitatory (Fig. 7). For
convenience, we set the excitatory coupling stfefige 1 + a + § > 0 with an auxilia-

ry parametets chosen such th# > 0. Therefore, system (2) becomes:

dxl-

ar, = X (ay; +ay, + -+ By +ayyp1 ++ay,) +x, i =1,...,N
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and, consequently,

dxi

= X (ay; +ay, + -+ A +a+ 8y, +ayj1 + -+ ay,) +k,

i=1,..,N.

B=1+a+0 B=1+a+0

B=1+a+0d B=1+a+d

Fig.7. Four-cell network (2) of all-to-all connected celith self-couplings. Intracellular con-
nections are inhibitoryn<0). Self-connections are excitatg3~0). The arrows indicate excitatory self-

connections; the dots indicate mutual inhibitiotweEen the cells

By separating thé1l + 6)y; term from the summation we have the following sys-
tem

%= —x;i+(1+8)y;+a¥¥,y;+k wherea <0 and 1+a+6>0. 3

The excitatory self-connections with=1+ a + § > 0 (see Fig. 7) are necessary for the
CNN network (2) to perform the winner-take-all (M)l function of finding the largest
among then numbers, using the network dynamics.

More specifically, the WTA function is performed fadlows. The N given numbers are

loaded to the network (2) as initial condition®), i = 1, ..., N one for each cell. Let the largest
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among these numbers kg0). Then, the vector of statgf) evolves according to (2) and con-

verges to the equilibrium poirt such thatX,, =1 and ¥ <—1 for i Zm. In terms of the out-

puts, this implies tha¥y, = f (%) =1 and ¥ = f(%) =-1 for i #m. Therefore, the dynamical

system (2) must have N stable equilibrium pointe @r each value for each, corresponding
to xm(0) with the largest initial value. The state spatenulti-stable dynamical system (2) must
be divided into thé\ attraction basins of the corresponding equilibripomts. The cell, that cor-
responds to the initial state with the largest gadund converges to the +1 state, is called the
“winning” cell; the other cells converging to -latts are called “loosing” cells.

In other words, the WTA function is performed bywaerk (3) if vj # i if x/(0) < x%(0)
and for all initial conditions the eventual outmftthe “winning” cell {-th cell) is +1 and that of
the other cell -1. Below are the properties necgdsa the WTA function.

Properties of all-to-all coupled WTA CNN (3):

To perform the WTA function, the following conditie must be satisfied:

1. % < 0if thei-th cell is a “losing” one (non-winning)

dx;

—>0 if thei-th cell is the “winner” wher =1+ a + 6 > 0.

This implies that state,(t) with the largest initial condition must incredsereach the +1
state whereas the states of the other (loosin{p crlst decrease to reach the -1 state. The €
atory connections are necessary for the winnertoglcrease its state as they increase its - ?
derivative. The inhibitory connections decreasetitine derivatives of the loosing cells and force
them to converge to the -1 states.

Theorem [Order Preserving Dynamics [1]]:

Consider CNN network (1). If the initial stateswb cells i and j are ordered as follows
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X' (0)> X' (0)
then for all times x'(t) > X/ (). As a result the arrangement of the cells by tivellef

their respective states stays consistent.

Proof. To ensure that we do not lose the generalitg shall focus our discussion on
cell 1 and cell 2 , and claim (to arrive at a cadiction) thatx"(0) > x*(0), and there exists is
someT such thatx'(T) < X(T). Since the states are continuous, then egist <T such that
x'(t,) = x*(t,) . Using the principle of uniqueness of solutiond ¢éhe interchanging of cell indi-
ces att,, it shows thatx'(t) = x*(f). However, this contradicts the assumption tiéd) > x*(0)

whent =0. When this is applied to all pairs of cells, Hreangement of the cell described in the
proposition is preserved. This completes the fpreo

Equilibrium Design

In order to construct a WTA network froh-cell network (3), we must make WTA
patterns stable, while making the other patterrstalole. We must also find the restricted values
on the following parameterg;, §,and k. Denote by the number of + 1 states in the equilibrium

pattern. Clearly, for then-cell winner-take-all CNN (1) only?, must be stable as the other pat-

terns become unstable:

_ stable if k=1
B is _ .
unstable if k21

This is illustrated in Fig. 8, using a four-cell QIN3).



