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 PRIVACY PRESERVING DATA MINING FOR HORIZONTALLY DISTRIBUTED 

MEDICAL DATA ANALYSIS 

 

by 

 

YUNMEI LU 

 

Under the Direction of Yanqing Zhang, PhD 

 

ABSTRACT 

To build reliable prediction models and identify useful patterns, assembling data sets from 

databases maintained by different sources such as hospitals becomes increasingly common; 

however, it might divulge sensitive information about individuals and thus leads to increased 

concerns about privacy, which in turn prevents different parties from sharing information. 

Privacy Preserving Distributed Data Mining (PPDDM) provides a means to address this issue 

without accessing actual data values to avoid the disclosure of information beyond the final 

result. In recent years, a number of state-of-the-art PPDDM approaches have been developed, 

most of which are based on Secure Multiparty Computation (SMC). SMC requires expensive 

communication cost and sophisticated secure computation. Besides, the mining progress is 

inevitable to slow down due to the increasing volume of the aggregated data. In this work, a new 

framework named Privacy-Aware Non-linear SVM (PAN-SVM) is proposed to build a PPDDM 

model from multiple data sources. PAN-SVM employs the Secure Sum Protocol to protect 

privacy at the bottom layer, and reduces the complex communication and computation via 



Nystrom matrix approximation and Eigen decomposition methods at the medium layer. The top 

layer of PAN-SVM speeds up the whole algorithm for large scale datasets. Based on the 

proposed framework of PAN-SVM, a Privacy Preserving Multi-class Classifier is built, and the 

experimental results on several benchmark datasets and microarray datasets show its abilities to 

improve classification accuracy compared with a regular SVM. In addition, two Privacy 

Preserving Feature Selection methods are also proposed based on PAN-SVM, and tested by 

using benchmark data and real world data. PAN-SVM does not depend on a trusted third party; 

all participants collaborate equally. Many experimental results show that PAN-SVM can not 

only effectively solve the problem of collaborative privacy-preserving data mining by building 

non-linear classification rules, but also significantly improve the performance of built classifiers.  

 

INDEX WORDS: Privacy preserving, Distributed data mining, Classification, Feature selection, 

Support Vector Machine, Kernel matrix approximation and decomposition 
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1 INTRODUCTION  

1.1 Background and Motivations  

In recent two decades, data mining approaches have been widely used to analyze the massive 

amount of data, and they have become increasingly important tools to discover useful knowledge 

in many domains, such as medical data, consumer purchase data and census data. Assembling 

datasets maintained by different sources have become increasingly common, and applying data 

mining techniques on the aggregated datasets may build more reliable prediction models and 

attain useful patterns, which benefits for medical research, improving customer service and 

homeland security, and so forth.   

However, this multi-data source system might divulge sensitive information about 

individuals. It thus leads to increasing concerns about privacy during the process of data mining, 

which in turn prevents different parties from sharing information. For examples, the Centers for 

Disease Control (CDC) may want to identify the trends of some disease to understand its 

progression via data mining techniques but has no relevant data. Insurance companies that have 

considerable data are unwilling to share these data due to patient privacy concerns. Another 

example is: a multinational corporation would like to mine its data for globally valid results, but 

national laws may prevent trans-border data sharing. Privacy Preserving Distributed Data Mining 

(PPDDM) provides a means to address this issue without accessing the actual data values to 

avoid the disclosure of information beyond the final results. Therefore it involves in great 

interests and has been studied extensively. 

1.2 Definition of Privacy 

To protect confidentiality and measure privacy, we have to define it. However, this is the 

hardest part, since privacy can mean different things to different people, at different 
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environments, in various contexts; and across different cultures. It is inevitable to get entirely 

different answers as you ask a selection of individuals what privacy is. Although the boundaries 

and content of privacy are different among individuals, groups and cultures, common principles 

should be the same. It is most common that individuals consider something inherently special or 

sensitive as privacy. The domain of privacy partially overlaps security, but privacy is not 

security, which can include the appropriate use and how to protect the individual information. 

According to the view of Ruth Gavison [1], the privacy can be defined in the term of access that 

others have to us, as well as our information. A general definition of privacy must to be one 

which is measurable of values and actionable.   

The common definition [2] of privacy in the community of cryptography limits the 

information that is leaked by the distributed computation function, while information learned 

from the output regards as no-privacy leakage, since it is inevitable and designed by the secure 

computation function. For example, if two millionaires would like to know who is richer without 

telling the other his/her net worth. A secure computation function must return the result without 

revealing private information. Suppose one has $10,000,000 net worth, and he knows that he is 

richer from the function output. Therefore, he can learn that the net worth of the other one is less 

than $10,000,000, and this information leakage is inevitable.  

In addition, privacy preserving is not only in the interest of individual but also to the public. 

On the other hand, privacy preserving is for the sake of both people and the society. Nowadays, 

many laws are issued to protect privacy, and various techniques are developed to prevent privacy 

from disclosure when using personal or public databases.   
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1.3 Popular Research Directions of Privacy Preserving Data Mining 

A number of state-of-the-art techniques of privacy preserving data mining have been 

developed to leverage the privacy and mining issue, including classification, clustering, 

association rules and regression. Several key directions in this area are as follows: 

Privacy preserving data publishing: These kinds of techniques tend to protect sensitive data 

information and privacy before data get published. Therefore, data obfuscation based techniques 

that are associated with privacy are studied, including randomly modify data, swap values 

between records and controlled modification of data to hide secrets. Among these methods, the 

most popular ones are randomization [3], k-anonymity [4] and l-diversity [5].  

Changing mining results associated with privacy: In many cases, data mining results may 

comprise the privacy, summarization based methods have to be developed to expose only the 

needed facts and thus protect privacy from being revealing. The typical approaches are overall 

collection statistics and limited query functionality.  

Cryptographic methods for distributed privacy: it has emerged significant interests in 

distributed data mining due to more and more available datasets on multi-site. Some data 

separation based methods are developed. Thus data can be held by an owner or a third party. In 

such case, a variety of cryptographic protocols usually needed to communicate with different 

parties. Secure Multiparty Computation (SMC) is a possible way to make it possible of 

distributed data mining without divulging sensitive information.  

1.4 Models and Algorithms of Privacy Preserving Data Mining 

Many methods for privacy preserving data mining employ data transformation techniques to 

protect privacy and sensitive data. The granularity of representation of data is usually reduced 

after transformation to mitigate the risk of divulging privacy, which results in the loss of 
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information or effectiveness of data management and data mining algorithms. However, it is 

inevitable and usually a trade-off between privacy and information loss. The top techniques used 

more frequently are as follows: 

The randomization method: The randomization method is traditionally used to distort data 

by a probability distribution. In the case of privacy preserving, noise data are usually added to 

mask the value of original records, and then reconstruction techniques are needed to reconstruct 

the distribution of the original data. Normally noise is sufficiently large so that only the original 

distribution can be recovered but the values of each record. After distorting, the aggregated 

distributions are extended to data mining algorithms. The method of randomization can be 

described as follows: let X denote the original data records by  1 2, ,..., nX x x x , and then for each 

record of 
ix X , a noise component iy  will be added, where iy is drawn from the probability 

distribution of ( )Yf y ,  1 2, ,..., ny y y are independent and identically distributed random variables. 

The new distorted records can be denoted by  1 1 2 2, ,..., n nZ x y x y x y    . Since the probability 

distribution of Y is publicly known, and for the large number of n, the probability distribution of 

Z can be approximated by a number of techniques such as the kernel density estimation. Thus, it 

is possible to approximate the original probability of X by subtracting Y from the approximated 

distribution of, like X = Z - Y. In general, to make sure the original values of records cannot be 

guessed easily, only the original probability distribution of X can be approximated, it will assume 

that the variance of the noise data Y is large enough.  

The k-anonymity model and l-diversity: the candidate key or combination of attributes can 

be used to identify individual records from public databases exactly. The k-anonymity model is 

developed to reduce the probability of being identified by candidate key and thus protect privacy. 

K-anonymity model reduces the granularity of data representation by using the techniques of 
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generalization and suppression. As a result, any given record will map onto at least k other 

records in the database. However, when there is the homogeneity of sensitive values within a 

group, k-anonymity cannot protect k individual records from being identified. Thus l-diversity 

model is developed to fix the weakness of k-anonymity.  

Distributed privacy preserving data mining: when aggregate results needed to be obtained 

from multi-source databases, which might be collected and owned by multiple parties, it is 

common that performing privacy preserving data mining algorithms across distributed datasets. 

Suppose that the data can be represented in terms of a matrix ( m n ), where each row 

corresponds to an individual record or entry and each column corresponds to the attributes; then 

the data can be distributed among multiple sites as two typical ways: 

o Horizontally partitioned: individual records are distributed across multiple parties, and 

each of them has the data with all the same attributes, which can be represented in the form of a 

sub-matrix as 
im n , where 

im m . 

o Vertically partitioned: each party has the same set of entries, but the individual entries 

may contain different attributes, it can be represented by a sub-matrix of 
im n , where 

in n . 

The problem of Privacy Preserving Distributed Data Mining (PPDDM) overlaps closely with 

the field of cryptography for determining the secure multiple computation, which aims to design 

secure protocols to make sure those different parties, can perform joint computation by providing 

inputs without actual disclosure or sharing the individual inputs.  

1.5 Organization  

The remaining work is organized as follows: chapter one introduces the background and 

research motivations; chapter two lists the relevant work and literatures; chapter three proposes a 

privacy preserving framework for binary non-linear classification problem; chapter 4 proposes a 
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privacy preserving multi-class classification algorithm, chapter 5 and chapter 6 proposes two 

privacy preserving feature selection methods and chapter 7 concludes the work and future work.  
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2 RELATED WORK 

2.1 Introduction 

Data mining technology is widely used in many domains as a means of identifying useful 

knowledge, trends, and patterns from a massive amount of data. As the increasing available 

datasets, it has emerged more and more applications and needs for distributed data mining, where 

data are spread out across multiple parties. Thus it results in the growing concerns about privacy 

of data mining since it poses real privacy issues.  For example, the public agency of the Centers 

for Disease Control (CDC) would like to analyze the health records via data mining techniques 

to identify patterns of some disease, and they need the data of patient disease and prescriptions 

from different insurance companies. The problem is insurance companies are unwilling to share 

their data due to privacy constraints or business interests. Since data mining is generally aimed at 

identifying patterns and producing some models rather than learning specific data, one solution 

to this privacy issue can be addressed by the Privacy Preserving Distributed Data Mining 

(PPDDM) model. The PPDDM model will not access the original data, but still perform data 

mining rules to get the desired mining results, thus the opportunity for misuse data will be 

reduced.  

Therefore, we can define the privacy in the PPDDM model. No site should learn anything 

new from another site beyond the mining results. On the other hand, anything new learned in the 

process of mining must be derivable given one’s data and the final result [1]. The principle of 

PPDDM, therefore, can be summarized that nothing can be learned from other data except the 

final mining results. To achieve this goal, we can either aggregate the data to a trust third party 

being analyzed in the third party, or we can use the Secure Multiparty Computation (SMC) to 

make data stay with the owner and be communicated securely among multiple parties. In case 
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that the trust third party is unlike to do the analyzing work or unable to analyze data by 

performing data mining algorithms, the latter strategy using SMC can meet the increasing needs 

in distributed data mining without disclosing the sensitive information of individuals.  

2.2 Secure Multiparty Computation 

Secure Multiparty Computation (SMC) is derived from Yao’s Millionaires’ problem [6], 

which states that two millionaires would like to know who is richer without telling each other 

their net worth. For simple, this problem can be restated by comparing two numbers, each held 

by one party, and either party is unwilling to disclose its number to the other. Yao presented one 

solution to this problem and generalized it to any efficiently computable functions restricted to 

two parties. There are two basic adversarial models in SMC: 

Semi-Honest: in this model, the participants will follow the secure protocol, but keep curious 

and may attempt to dig some sensitive information from the received data from the other parties 

during the execution of the protocol.  

Malicious: in this case, the participants may do anything to learn sensitive information, such 

as abort the protocol at any time, send sophisticated inputs to others, or send spurious messages 

and collude with other malicious parties.  

The semi-honest model may seem questionable for preserving privacy if a party can be trusted 

to follow the secure protocol, why don’t we trust them with the data? The following example can 

explain this. Consider the situation that several credit card companies would like to detect fraud 

via jointly building data mining models, and every business has been authorized to access that 

data. Once the data processing is completed, the data are supposed to be removed, since storing 

data brings the companies responsibility and cost to save the data. If there is a way to build data 



9 

mining models across distributed parties without actually accessing the original data, then they 

can save the responsibility and cost to protect the data from other parties other than their own. 

However, no matter how secure the computation is, it is inevitable to leak some information. 

Still take the two millionaires as an example; once one party knows another party is richer or 

poorer, it can learn the upper bound or the lower bound of their net worth. In general, two kinds 

of information will leak, the information leaks from the secure computation function, and the 

information leaks from the computation process. Whatever is leaked from the former case, it is 

unavoidable as long as the function has to be computed. The latter case of information leakage 

during secure computation is provable prevented. Another key point is how to demonstrate that 

the security of the secure protocol used in the privacy preserving distributed data mining. It is 

common to restrict the secure against polynomial time adversary.   

2.3 Secure Protocols 

According to the SMC literature, the composition theorem [7] is a very useful theorem.  

Composition Theorem for the semi-honest model: Suppose that g is privately reducible to f 

and that there exists a protocol for privately computing f. Then there exists a protocol for 

privately computing g.  

The composition theorem states that if the sub-protocols are proved secure, then the entire 

protocol is secure. Therefore, if algorithms can be efficiently implemented on the sub-protocols, 

it can significantly improve the overall efficiency. Thus a lot of privacy preserving distributed 

data mining algorithms can be developed following the sub-protocols. These sub-protocols can 

be described using homomorphic encryption techniques [8]. Homomorphic encryption 

techniques allow operations such as search, comparison on encrypted data and obtain the same 

results as those based on plaintext data. Decryption becomes unnecessary during the whole 



10 

computing process. Thus data and computation do not need put in a third party, the risk of 

revealing information to other can be deduced. The following protocols only use homomorphic 

encryption, and all of them are secure in the semi-honest model with no collusion. According to 

the composition theorem, they can be combined to produce new privacy-preserving algorithms. 

2.3.1 Secure Sum Protocol 

In this secure protocol, the sum of values from each site will be securely calculated. Let v 

denote the sum and be represented as: 
1

s

i

i

v v


 , where v is known in the range [0…n]. In this 

secure sum protocol [9], one site will be assumed as a master site, numbered 1, and 2…s for the 

left sites. Normally, site 1 will uniformly generate a random number R in [0…n], adds it to its 

local value 
1v , and then sends the sum of 

1 modR v n  to site 2. Since R is chosen uniformly 

from [0…n], and then 
1 modR v n  also distributes uniformly in this region. Thus site 2 learns 

nothing from this value. Site 2 receives this sum from site 1, and sends 
2 modS v n to site 3, 

where S is the sum received from site 1, and 
2v  is its local value. In general, the site l  receives: 

1

mod
l l

i

i

v R v n




  . Since v is uniformly distributed, site l  learns nothing from another site. It 

then computes the sum and passes it to next site by 
1

mod
l

i

i

v R v n


  . 

The last site s also performs the above steps and sends the sum to site 1, since only site 1 

knows the value of R, and then it can subtract R from this sum value to get the actual result. The 

details of how this method operates are introduced in [9]. This protocol is proved secure for the 

semi-honest model but faces a clear problem of leakage information if collusion exists. For 

example, if the site l-1 and l+1 collude, and tell each other the values they sent/received, they 

can determine the value at the site l . 
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2.3.2 Secure intersection 

If several parties have their sets of items from a common domain, then the secure intersection 

protocol can be used to securely compute the cardinality of the intersection of these local sets. 

Given S parties having local sets of
1 2, ,..., sL L L , we wish to compute securely 1 2 ... sL L L   . 

The protocol of secure intersection is very useful to help find common rules or frequent items 

etc. in data mining algorithms. The owner of the item will be protected without disclosure, [9] 

provides an efficient solution. 

2.3.3 Secure Set Union 

The Secure Set Union is useful in data mining if each party gives its rules, frequent item sets, 

decision tree, etc. without revealing the owner of the item. The union of items can be evaluated 

using SMC technology if the domain of the item is small. However, the data domains in data 

mining are usually enormous, so the secure set union protocol becomes inefficient. The 

description of this protocol and improved version can be referred from [10].  

2.3.4 Dot Product Protocol 

The sub-protocol or dot product is another important tool to compute the dot product of two 

vectors securely. Many secure dot product protocols have been proposed in [11, 12]. 

2.4 PPDDM algorithms on horizontally partitioned data 

A distributed decision system that is capable of preserving the privacy of individual records 

can potentially address these issues of privacy. Recently there have been a number of attempts to 

solve the privacy-preserving problem in distributed data-mining applications; these include 

models built using decision trees [13-16], regression [17, 18] and the naive Bayes  technique [19-

21]. Some other methods have been built based on Support Vector Machines (SVM) [22-25]. 

The secure protocols mentioned in the above section and other protocols can be used in the 



12 

privacy preserving distributed data mining (PPDDM) algorithms on horizontally partitioned data. 

In each of the PPDDM algorithm, the functionality will be reduced to a computation of the 

secure protocols. Data at different locations can be horizontally distributed, which means that 

data records at different locations share common attributes, such as different banks collect data 

for their customers. Data can also be vertically distributed, that is to say different sites have same 

records but different attributes. Such as bank, insurance company and auto insurance company 

collect different information about same people. 

2.4.1 Classification  

Decision tree: The cryptographic technique is used in [11, 12] to protect privacy and for the 

first time to be employed to construct decision trees. The goal of this work is to securely build an 

ID3 decision tree based on the data that are horizontally partitioned between two parties. This 

work employs the secure log algorithm, secure polynomial evaluation, and secure comparison 

sub-protocols to compute the decision conditional entropy securely. [13, 14] proposed an 

alternative approach named DIDT (Distributed Id3-based Decision Tree), which uses the 

statistics of the values of an attribute among classes from multiple hospitals to build a global 

cross-table matrix, which is then used to build a decision tree. 

Support Vector Machine (SVM): SVM is another important classification technique and has 

been widely employed in main domains. To build SVM, the kernel matrix is needed with

ij i jG x x  , to securely calculate the dot product for all pairs of training data. The Privacy 

Preserving Support Vector Machine (PP-SVM) [22] used secure dot protocol to preserve 

individual information from being revealing. PP-SVM can be applied to the non-linear 

classification of a horizontally-partitioned dataset, but it requires a trusted intermediary to 

construct the actual SVM, which may restrict the preserving of patients privacy. The Distributed 
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Privacy Preserving Support Vector Machine (DPP-SVM) method proposed in [23] allows for 

privacy-preserving collaborative learning by employing a trusted server; however, DPP-SVM 

just supports linear kernel SVM and only deals with vertically partitioned data – that is, data 

distributed by data field rather than by patient. Also, DPP-SVM and PP-SVM may become 

vulnerable when the third party is not trustworthy. Traditional SVMs rely on a centralized 

dataset to which they have unrestricted access, so sets of partial datasets distributed among 

several sites create a substantial barrier for these systems in privacy-sensitive scenarios.  

Naïve Bayes Classification: A naïve Bayes classification is applied to the distributed car 

evaluation datasets in [17], where the private information of customers is preserved. To protect 

the privacy of data, a trusted third party has been used here. The decision-making systems 

mentioned above, try to improve the classification accuracy by using multiple insufficient 

datasets without leaking the actual data of the participating sites. However, few of them are 

practically used in biomedical applications, and some of the collaborative environments are not 

easy to use.   

2.4.2 Clustering 

Clustering is a well-studied data mining technique which aims at grouping similar data points 

together into a cluster. In the k-means clustering method, k initial cluster centers are chosen 

firstly, and then are updated iteratively. [26] shows that k-means clustering can be implemented 

on arbitrarily partitioned data via the SMC protocols of the secure dot product, secure 

summation, and secure comparison. Similarly, [27] employs secure sum protocol in the 

expectation maximization method for horizontally partitioned data.  



14 

2.5 Limitations of PPDDM 

Privacy-preserving distributed data mining techniques address many sophisticate approaches 

aiming to fix the dilemma between information sharing and privacy concerns. However, privacy 

if not free! Many of the PPDDM algorithms need the assistance of expensive cryptographic 

operations. Furthermore, protocols that are secure against malicious parties are even more 

expensive. Parameters that used in distributed data mining protocols need to be set very carefully 

to avoid an explosion computation. In addition, aggregating data together increase the volume of 

data for being mined, which brings a challenge to data mining algorithms. Therefore, efficient 

algorithms are in need to be developed to conquer the expensive cryptographic computation, as 

well as expensive computation for the bigger aggregated datasets.  

Although secure multiparty computation (SMC) provides distributed data mining a means for 

information sharing without actually reveal individual information, compared to noise addition 

method, the cryptographic techniques for PPDDM is lack of the flexibility of trade-off between 

privacy and accuracy. In the noise addition method, the variance of added noise data can be used 

as a parameter to adjust the information loss and increase the privacy. As a result, new 

algorithms are needed for PPDDM to a tradeoff between privacy and accuracy.  

PPDDM algorithms are developed to make a global decision system via revealing nothing 

other than the final result; however, not revealing anything may be overkill in some case. In 

some situation, revealing some information, such as the summarized information may not a 

privacy breach, while the techniques used to protect such information may increase the 

computation burden, hence slow down the whole process. Therefore, methods that leverage the 

different levels of privacy and efficiency will be developed.  
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This work addresses the three aspects of the limitations of PPDDM and aims to design a novel 

privacy preserving framework to improve the PPDDM algorithms in the applications of 

classification, based on which new data mining algorithms can then be developed.  
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3 PRIVACY PRESERVING NON-LINEAR SVM FRAMEWORK  

3.1 Introduction 

Over the past two decades, advances in data collection and storage technologies resulted in 

data explosion in every scientific domain. Machine learning methods become increasingly 

important tools to analyze massive amounts of data to discover useful knowledge in many 

applications [28-31]. In some domains, especially the detection of medical condition, decision 

must be made efficiently and reliably. However, training a classification model with a small 

dataset or a specific group of data may lead to an unreliable or inaccurate decision. 

Unfortunately, it is very common that local datasets of a certain diagnosis in some hospitals do 

not have sufficient records due to the difficulty and cost in data acquisition. In such a case, 

multiple volumes of distributed data need to be combined to yield strengthened capabilities for 

diagnosis prediction. Consequently, mining collective distributed similar databases from multiple 

sources or hospitals can possibly lead to a reliable decision-making model with higher accuracy.  

However, the distributed mining can result in issues in protecting the privacy of patients and 

the security of distributed datasets, which in turn restricts the free sharing of data due to the 

potential risk of divulging patient privacy [32-35]. Moreover, some data cannot be shared due to 

legal and commercial reasons. For example, the laws of HIPAA [36, 37] in the United States 

require that medical data cannot be released without appropriate authorization. Therefore, 

methods for building a global decision model based on distributed insufficient datasets should be 

developed to improve the classification accuracy and decision reliability without revealing the 

privacy of datasets at the same time.  

Numerous efforts were devoted recently to solve the privacy-preserving problem with reliable 

diagnosis based on distributed data, including models built using decision trees [13-16], 



17 

regression [17, 18] and naïve Bayes [19-21]. The cryptographic technique is used to protect 

privacy and to construct decision trees for the first time in [13, 14].  An alternative approach 

named DIDT (Distributed Id3-based Decision Tree) is proposed, which uses the statistics of the 

values of an attribute among classes from multiple hospitals to build a global cross-table matrix 

for subsequently building decision tree [15, 16]. A privacy preserving linear regression model is 

presented to address the important tradeoff between global statistical analysis and privacy [18]. 

In literature [17], the regression model is applied to the full statistical analysis of the combined 

database without actually combing the distributed databases. A naïve Bayes classification is 

applied to the distributed car evaluation datasets in [19], where the private information of 

customers are also preserved. To protect the data privacy, a trusted third party has been used 

here. The decision-making systems mentioned above try to improve the classification accuracy 

by using multiple insufficient datasets without leaking the actual data of the participating sites. 

However, few of them were practically used in biomedical applications. Moreover, some of the 

collaborative environments are difficult to use as well.   

Support Vector Machine (SVM) is one of the top 10 widely used tools for decision support 

[38]. The traditional model of SVM is built on a centralized repository of the dataset with free 

access to the dataset, while the distributed hospital datasets create a substantial barrier for 

researchers to build an efficient SVM classification model when privacy matters. Several 

privacy-preserving concern classification models based on SVM are developed in [22-25]. The 

Distributed Privacy Preserving Support Vector Machine (DPP-SVM) method proposed in [23] 

enables the privacy-preserving collaborative learning by employing a trusted server to integrate 

“privacy-insensitive’ intermediary results. The global model of DPP-SVM guarantees that the 

decision result is the same as that learned from combined data. However, DPP-SVM just 
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supports linear kernel SVM and only deals with the vertically partitioned data, in which patients 

with similar features are not distributed while the features of patients are distributed. Another 

privacy-preserving solution is also proposed for supporting vector machine classification (PP-

SVM) on horizontally partitioned data [22]. PP-SVM constructs a global classification model 

from distributed multiple parties with data represented by binary feature vectors. The gram 

matrix composed of the dot products of every data pair is computed using the secure set 

intersection cardinality to obtain the kernel matrix and then the global SVM model without 

disclosing any data. Though PP-SVM works for non-linear kernels and horizontally partitioned 

data, an untrusted intermediator is required to construct SVM, which may restrict the preserving 

of patients privacy.  

A distributed decision system based on multiple datasets that can preserve privacy effectively 

and make decision efficiently will become attractive. The current work aims to develop such a 

system by proposing a privacy preserving framework. In this framework, we also employ SVM 

as a classifier to make a decision based on horizontally partitioned data from multiple parties. 

There is no trust third party needed here; data will be encrypted via the Secure Sum Protocol, as 

mentioned in subsection 2.3.1. The party who wants to do distributed data mining will firstly 

send his encoded data to his next neighbor and then receive the complete encrypted data from the 

last participator. After this encrypting and collecting procedure, the party can start his data 

mining work. Since the kernel matrix in SVM involves lots of computation and memory space 

by calculating the dot product of any pair of data, including pairs of data in different locations, 

we employ the Nystrom approximation technique [39] to approximate the kernel matrix, thus 

reduce the computation and communication cost. Besides, the k-means clustering method [40] is 

used to select landmarks for Nystrom approximation, and thus the private information can further 
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be protected, details can be found from the subsection of 3.3. Moreover, to make the proposed 

framework feasible to non-linear SVM, we employ a kernel matrix decomposition method [41] 

to convert the non-linear separable SVM into a linear one. Thus a global linear classification 

model can be conducted from multisource data. In addition, the cutting-plan technique [42] is 

used to accelerate the training process of SVM. Consequently, the framework designed in this 

work cannot only solve the collaborative problem of privacy-preserving by building a global 

classification model via kernel approximation and decomposition, but also work for the non-

linear pattern. Moreover, costs for complex computation and unnecessary communication are 

avoided, and the training process is shortened; as a result, this framework is also feasible for 

dealing with the large scale of data sources.  

The proposed framework named Privacy-Aware Non-linear SVM (PAN-SVM in brief) is 

designed as a high-perform PPDDM framework. It is tested on 12 different datasets, and the 

results show that the proposed framework of PAN-SVM can efficiently achieve the privacy 

preserving distributed data mining with competitive classification accuracy compared with the 

results from a single dataset; details are introduced in the following subsections.   

3.2 Methods 

3.2.1 Support Vector Machines 

Support vector machines (SVMs) are state-of-the-art classification methods firstly introduced 

by Vapnik et al. [38]. They have been widely used in many fields due to their high accuracy and 

their ability to deal with high-dimensional data. For a binary classification problem, given a 

training dataset D of n samples D {( , ) | 1... }i ix y i n  , where xi ∈ R
p
 is a sample with p features 

and yi ∈ {-1, 1} is the class label of the sample xi. SVMs construct hyperplanes that separate the 

two classes in the training data. The optimal hyperplane will maximize the margin of separation 



20 

while minimizing classification errors and the optimization problem can be formulated as in 

equation (3.1):   
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Where w is the weight vector of a hyperplane f(x) = wx + b, and b is bias, C is the penalty 

parameter and ξ is slack variable. In the case that the two classes cannot be linearly separated, 

classification can still be performed by mapping the data from the original space into a higher 

dimensional space; we then attempt to select a mapping function such that the data are separable 

in the higher dimensional space. However, it can be very difficult to select an appropriate 

mapping, due in part to the huge number of dimensions. Fortunately, the “SVM problem” 

presented in equation (3.1) has a corresponding dual form, which is formulated by equation (3.2): 
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   (3.2)  

In this dual form, only the dot products between pairs of inputs ( ) ( )i jx x   are required. It is 

much easier to define a satisfactory function ( , ) ( ) ( )i j i jK x x x x    than it is to apply the 

mapping function to both inputs and then calculate the dot product on the transformed data 

points. The function K is called a kernel function. There are a number of kernel functions in 

common use, including the radial basis function (RBF) and the polynomial kernel. 

By substituting the kernel function K into equation (3.2), the dual objective function can be 

rewritten as in (3.3): 



21 

1 1 1

1
( , )

2
min

n n n

i j i j i j i

i j i

y y K x x
  

 


       (3.3) 

For a single data source with a given kernel function, it is possible to calculate a kernel matrix 

K for each pair of data points; however, this is not feasible when using multiple data sources that 

do not share data, since for a pair of data points xi and xj, it is not possible to compute K(xi, xj) if 

𝑥𝑖 and 𝑥𝑗 reside in different data sources. 

3.2.2 Proposed Framework 

The main structure diagram of the proposed Privacy-Aware Non-linear SVM (PAN-SVM) 

[43] for distributed data sources is shown in Figure 3.1. PAN-SVM consists of three layers: the 

bottom layer preserves privacy via encrypting protocol to protect local data and make them 

invisible to other parties; the medium layer approximates kernel matrix and converts the global 

non-linear SVM model into a linear one, and thus lots of computation are reduced and it makes  

PAN-SVM  be feasible to  with non-separable data; finally, the top layer accelerates the training 

process of the linear SVM model that receives from the medium layer. The working details and 

techniques used in each component layer of PAN-SVM are described in the following 

subsections. 

3.2.2.1 Bottom Layer: Privacy Preserving 

In this layer, the security of the data is guaranteed by the Secure Sum Protocol proposed in [9]. 

Suppose there are three or more data sources, site 1 uniformly generates a number

~ [1, ]X uniform S , adds it to its local value v1, and sends the sum 1 modX v S  to site 2. Since X 

is uniformly selected from 1~S,  is also uniformly distributed in the range of 1~S. 

Therefore, site 2 knows nothing about the local value of site 1. Site 2 receives the sum and adds 

it to its local data v2 mod S, and then passes the new sum to the next site without disclosing its 

1 modX v S
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local values, and so on, until to the first site. Since the sum is always uniformly distributed in 1 ~ 

S, each site cannot learn the preserved privacy information from the previous sites. In this layer, 

the encrypted data that will be sent to the medium layer are called landmarks [39], which are 

used to approximate the kernel matrix in the medium layer.  

 
Figure 3.1. Proposed framework of PAN-SVM. 

 

To build the proposed global SVM classification model, the low-rank Nystrom method [39] is 

used to approximate the kernel matrix in the medium layer. Since the quality of Nystrom 

approximation highly depends on landmarks, many sampling schemes [39, 44-46] are proposed 

to select the best landmarks. Among those state-of-the-art sampling approaches, [44] shows that 

the k-means clustering method can achieve significant performance and provide a low 

approximation error bound; helpfully, the k-means clustering algorithm is also simple to 

implement. Therefore, the k-means algorithm is adopted in every local dataset in the system. The 

data centers that are selected by k-means at each single site are treated as landmarks, which are 

encrypted and sent to the medium layer.  Compared with sending all data to the initiator, only a 
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small size of landmarks are needed, a large number of costly ommunication is then alleviated.  

Besides, the data centers selected by k-means clustering method, not data samples themselves are 

used to approximate kernel matrix; individual private information can further be protected.  

3.2.2.2 Medium Layer: Building a Global Classification Model 

Supposes there are total l landmarks are selected from all the data sources, and once they are 

transferred to the medium layer, the low-rank Nystrom approximation technique [44] and kernel 

matrix decomposition method are adopted to build a global linear classification model based on 

the landmarks. 

Kernel Matrix Approximation: the Nystrom method randomly picks l global landmark 

points, named a set of L, from all data sources, and then infers the kernel value of K(xi, xj) 

implicitly from the relations of xi and xj and with these landmarks. Let Ri be a 1×l vector that 

contains kernel values between  xi  and L respectively: Ri = [K(xi, L1), K(xi, L2), …, K(xi, Ll)] and 

similarly, Rj = [K(xj, L1), K(xj, L2), …, K(xj, Ll)]; finally, let A be the l×l kernel matrix between 

any pair of l andmarks.  Then, K(xi, xj) can be approximated by equation (3.4):  

1K( , ) T

i j i jx x R A R       (3.4) 

By approximation using the Nystrom method, the kernel values between any pair of samples 

can by replaced by equation (3.4). There is one main disadvantage of using standard Nystrom 

approximation; that is landmarks are sampled from the original data, therefore, sending these 

points directly to other data sources will increase the risk of divulging privacy even though under 

the protection of secure protocol.  In this system, the secure sum protocol is used to solve the 

privacy issue and the k-means clustering method used for selecting landmarks further masks the 

original data. 
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Kernel Decomposition: The kernel decomposition technique used here is proposed in [41], 

which attempts to convert the dual form of the SVM problem in equation (3.1) back to its primal 

form of equation (3.2). Zhang et al. in [41] show that the kernel matrix K can be decomposed 

into the form of K = FF
T
. If a kernel matrix of n samples can be decomposed into FF

T
, where F 

is a n×m matrix, then F can be treated as virtual inputs for a linear SVM model by mapping X 

from the original higher p-dimensional space into a much lower m-dimensional space, p ≫ m. 

Equation (3.4) can then be rewritten in a general form as in equation (3.5): 

1 1 1( ) ( )T T T T TK RA R R U U R R U U R          (3.5) 

 Here “A” is an l×l symmetric and positive semi-definite matrix; thus Eigen-decomposition of 

A can be expressed as A = UΛU
T
, where U and Λ are the eigenvectors and eigenvalues of A, 

respectively. If K is decomposed into a K = FF
T
 form, it is obvious that F can be approximated 

as in equation (3.6):  

1/2F RU          (3.6) 

It is interesting to note in equation (3.6) that it is not necessary to calculate any pair of the 

kernel values K(xi, xj) across data sources at all. Only the kernel value between each data point 

and the chosen landmarks need to be calculated, which can then be mapped on to the 

eigenvectors of the landmarks. Since approximating all pairs of (xi, xj) that are located at 

different locations requires a large amount of communication among data sources, which does 

not scale well when the number of data or data sources is significant. Since only small sizes of 

samples are used to approximate the kernel matrix, a large number of complex communication 

and computation cost are avoided. Moreover, the non-linear SVM is converted into a linear one 

by the Nystrom approximation and matrix decomposition techniques with the kernel matrix

TK FF , where F can be regarded as virtual points. Thus the global “linear” classification 
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model has been constructed with virtual points of F = RUΛ
-1/2

. This procedure is described in 

Algorithm 1.  

 

Figure 3.2. Matrix Decomposition 

3.2.2.3 Top Layer: Accelerating Training Process 

After converting all data from their representation in the non-linear space into virtual points in 

the final linear space, a linear SVM model is built. To further improve the efficiency of the 

proposed model, the cutting-plane technique introduced by Franc et al. [42] is used here. This 

approach can not only produce a linear SVM from large-scale data efficiently, but also be easily 

applied to the problem of preserving privacy when multiple data-sources are in use. 

Accelerate SVM with Cutting-Plane Technique: Traditionally, training SVM from a large 

dataset via equation (3.1) is a rather difficult task, because the size of the equation expands as the 

dataset expands: it has n slack variables i  and n constraints, where n is the number of samples. 

To address this, the cutting–plane technique eliminates all slack variables by replacing them with 

a single variable L, which is a summation of all ξi’s. However, this results in 2
n
 constraints: the 

combinations of n constraints in (3.7) and the predicted values for n data points. For a point i, ci 

= 0 if this point is correctly classified, and ci = 1 otherwise. The resulting new problem is then 

formulated in (3.7): 
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In practice, equation (3.7) can be solved easily with a smaller subset of 2
n
 constraints, starting 

by removing all constraints, and then iteratively adding the most violated constraint back. The 

optimal solution will be found within a few iterations. The process of finding the optimal 

solution can be formally defined in Algorithm 2.  

 

Figure 3.3. Algorithm for speeding up PAN-SVM. 
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The cutting plane technique also works well for the proposed distributed classification model. 

First, the virtual data points derived from the Nystrom low-rank approximation and 

decomposition techniques have a smaller size, which can be solved effectively in a few 

iterations, regardless of the size of the dataset. Second, in each iteration, the data sources only 

need to compute two parameters for a given value of w, in line 7 of Algorithm 2 in Figure 3.3.  

The proposed model effectively decreases the size of the global classification through matrix 

approximation and decomposition techniques; therefore, the iteration number also significantly 

decreases. In the following subsection, we will give a brief description of the Optimized Cutting 

Plane Algorithm (OCA) technique, proposed by Franc et al. in [42], which accelerates the 

converge process. OCA shows that the number of iterations required to converge to a stop 

criterion is approximately linear in the sample size.   

Linear Search: Franc et al. in [29] proposed an Optimized Cutting Plane Algorithm (OCA) 

to improve the convergence rate of the optimizing process of equation (3.7) by ensuring that the 

new constraint added in each iteration will lead to the lower objective. Originally, Algorithm 2 

will use the new w derived from line #10 to create a new constraint in line #4-9. On the other 

hand, OCA will keep the value of w before and after line #10 as wb and wa, respectively. Then, it 

will search for the optimal w in a (wa - wb) direction that has the minimum objective value. The 

new constraint created from this w guarantees that the iteration number required by OCA 

decreases.  
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Figure 3.4. Linear search. 

Generally, w can be defined as ( )b a bw w k w w   , where k≥0. The objective of value w 

can be written as where ci equals 1 when point i is misclassified by w and 0 otherwise. OCA 

searches for the optimal point by investigating in (3.8) and (3.9) when it changes from negative 

to positive. However, adopting the original OCA technique in the current scenario is not 

straightforward because it performs an extensive search by checking all possible k’s 

corresponding to individual data points. This process requires sharing data information among 

data sources. Instead, we propose to do a linear search with a constant step-size, λ. The search 

will start from wb and try ( ), 2 ( ),...,b a b b a bw w w w w w      until the value of ( ) /obj w k 

changes from negative to positive. If the derivation at wb is equal or greater than 0, then wb is the 

optimal solution for the problem. This simple search will avoid sharing data among data sources 
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while still speeding up the process. The linear search for privately distributed data sources is 

defined in Algorithm 3 as shown in Figure 3.4. 

3.3 Experimental Results and Discussions 

This section presents the experimental results obtained by PAN-SVM with real data and 

compares the performance of PAN-SVM with other existing techniques in common use. The 

experiments are conducted using MATLAB by simulating multiple data sources. All of the 

following algorithms are either implemented in pure MATLAB (that is to say, no .mex files), or 

by using MATLAB’s Statistics Toolbox [47].  

3.3.1 Datasets  

12 real world datasets gathered from different problem domains are used here for testing 

PAN-SVM; the datasets are listed in Table 3.1. The Pima Diabetes and Adult datasets are 

downloaded from the University of California, Irvine (UCI) Machine Learning Repository [48], 

and the microarray dataset GSE2990 is from the Gene Expression Omnibus (GEO) [49]; all 

others are from the repository of LIBSVM [50]. C is the penalty parameter for SVM and γ is a 

free parameter RBF kernel function. They are generated by 10-fold cross validation. 

Table 3.1: Summary of datasets used for testing PAN-SVM.  

Dataset # of Features # of Samples C γ  

Australian 14 690 512.0 0.0078125 

Breast cancer 10 683 0.125 0.125 

Pima Diabetes 8 768 512.0 0.0078125 

German 24 1,000 8.0 0.03125 

Heart 13 270 2048.0 0.0001220703125 

Ionosphere 34 351 8.0 0.5 

Liver disorders 6 345 8.0 0.5 

Splice 60 3,175 8.0 0.5 

Fourclass 2 862 8.0 0.03125 

Adult 123 32561 100.0 0.5 

Cod_rna 8 59535 32.0 0.5 

GSE2990 11119 183 32.0 0.0000305 
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3.3.2 Effectiveness 

The effectiveness of PAN-SVM is assessed on the 12 datasets described in Table 3.1 from 

three aspects as follows: 1) selection of landmarks, 2) comparison with existing single-dataset 

classifiers, and 3) comparison with existing distributed classifiers.  

3.3.2.1 Selection of Landmarks  

To simulate the multiple data sources that PAN-SVM is designed to work with, the data are 

randomly split into s equally sized groups (suppose there are s = 5 data sources here); a constant 

percentage of each dataset will be selected as landmarks. For example, in the Australian dataset, 

if 15% of the samples in the original dataset are selected as landmarks, then each of the 5 subsets 

contains 20 landmark points (floor ((690/5) ∗ 0.15) = 20).  

 

Figure 3.5. Classification accuracy varies as different numbers of landmarks. 

 

The Nystrom approximation method depends on the landmarks, but how many landmarks 

should be used to approximate the kernel matrix? Several tests are conducted on all of the 

datasets except the Four-class data to specify this question, as shown in Figure 3.5, from which 
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it can observe that as the percentage of landmarks varies from 5% to 85%, the classification 

accuracy of PAN-SVM does not vary dramatically (~3%). Based on these results, we can 

observe that PAN-SVM can achieve the highest classification accuracy when selecting 15% ~ 

35% samples from the data records as landmarks. Unlike the classification accuracy, the average 

training time increases as the number of selected landmarks increases (details are not shown 

here). Therefore, the number of landmarks can be selected varying from 15% to 35% of the 

original data size to tradeoff the loss of classification accuracy and the training efficiency of the 

classifier.  

3.3.2.2 Comparison with Single-dataset Classifiers 

We also evaluate our approach via eight small datasets, namely, Australian, Breast cancer, 

Pima Diabetes, German, Heart, Ionosphere, Liver disorders and Splice. The experimental results 

of classification accuracy are compared with those from a number of traditional classification 

models, such as Naïve Bayes, Decision Tree, LIBSVM with linear kernel function and LIBSVM 

with RBF kernel function, as shown in Table 3.2, which shows the performance comparison 

between PAN-SVM and other traditional classifiers on a single dataset. Note that these 

traditional models operate on a single integrated set of training data, which is unlike PAN-SVM. 

Two separate PAN-SVM models with RBF kernel are trained based on 15% and 25% of samples 

as landmarks, respectively. 5-fold cross-validation is used for each dataset. It can observe from 

Table 3.2 that both of the two PAN-SVM models can yield almost the same level of 

classification accuracy as the tested traditional SVM classification models. There is a slight 

sacrifice in accuracy when compared with LIBSVM with RBF kernel, which is reasonable. It is 

noticeable that PAN-SVM performs better than the Naïve Bayes classifier and the decision tree 

classifier in most cases, especially when a larger number of landmarks are used. 
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Table 3.2．Performance comparison between PAN-SVM and other traditional classifiers 

Datasets 
Naïve 

Bayes  

Decision 

Tree 

LIBSVM 

Linear 

LIBSVM 

RBF 

PAN-SVM 

(15%) 

PAN-SVM 

(25%) 

Australian 79.85 85.65 85.51 86.38 85.01 85.46 

Breast cancer 96.19 95.46 96.98 97.21 96.88 97.01 

Pima Diabetes 75.91 71.22 77.10 77.60 76.84 77.32 

German 72.40 72.20 76.58 76.30 75.40 75.50 

Heart 84.80 77.78 83.83 84.07 82.85 83.48 

Ionosphere 82.05 89.74 88.27 94.80 89.31 92.19 

Liver disorders 56.23 68.70 68.68 73.04 71.65 71.97 

Splice 84.20 92.90 79.97 87.70 82.36 83.02 

  

3.3.2.3 Comparison with other Distributed Classifiers  

Most distributed classification models usually assume that the data contained in the individual 

data source have similar properties, such as same distribution. In practice, however, it might not 

be the case. Therefore, it is useful to evaluate the classification accuracy of PAN-SVM by 

considering two different scenarios: 1) data points are randomly assigned to the different data 

source to make sure each source has similar data pattern or statistical distribution. 2) data points 

are split equally into s subsets based on different value segments of one feature and assign them 

to s data sources. For example, the Four-class database can be divided based on the value of 

feature one (f1) according to its three value segments: [-1, -0.307692], (-0.307692, 0.285714] 

and (0.285714, 1], as shown in Figure 3.6. This splitting method makes sure that the data at each 

source have different statistical distributions.  

PAN-SVM is then compared with a number of existing distributed classifiers: 1) SVM-

Ensemble  [51], which uses a simple, voting-based approach to a privacy-preserving distributed 

classification. Each participating institution trains their local model separately, and then the 

prediction outcome is determined by majority voting among the trained models. 2) Consensus-

based SVM [52], which also uses landmark points to handle non-linear patterns. However, it 

trains the global linear SVM by constructing local models in each of the participating data 
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centers and then iteratively comparing and adjusting those local models until they all agree on 

the same set of parameters. This synchronized process is usually implemented by the Alternating 

Direction Method of Multipliers (ADMM) technique [53], which adds the parameters’ deviation 

as a penalty to the objective functions of the local models.  

 
Figure 3.6. Four-class dataset is split into 3 groups by values of f1. 

Table 3.3: Performance comparison based on different distributions. 

Four-Class SVM-Ensemble PAN-SVM SVM-ADMM 

Random Distribution 99.16 99.90 99.46 

Different Distributions 84.48 99.94 99.69 

 

Table 3.3 presents the classification accuracy of PAN-SVM, SVM-Ensemble and SVM-

ADMM under two data division scenarios. PAN-SVM is built based on 35% samples as 

landmarks. It can be clearly the three classifiers are competitive when distributed data have a 

similar distribution. However, when the data are partitioned based on the value segments of some 

feature, the SVM-Ensemble method achieves poorer classification accuracy, while PAN-SVM 

and SVM-ADMM still work well. A simple explanation is that SVM-Ensemble uses only local 

information in predicting the unseen data; in general, the unseen data might come from a dataset 
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that has an entirely different statistical data distribution than the local dataset. Besides, it can be 

seen from Table 3.3 that PAN-SVM achieved comparable or a bit better performance regarding 

classification accuracy. 

3.3.3 Efficiency 

Both PAN-SVM and SVM-ADMM use landmark points to handle linear inseparable 

classification, and they are competitive regarding classification accuracy. The main difference 

between the two approaches is the method used to solve SVM. PAN-SVM uses the cutting-plane 

technique to solve a global SVM, while SVM-ADMM builds local models from each data source 

and iteratively synchronizes their parameters. To compare the efficiency of PAN-SVM with 

SVM-ADMM, multiple data source scenarios are simulated in MATLAB, and the average time 

and an average number of iterations required to solve SVM training process in each case are 

recorded. The implementation and parameters used for ADMM are based on Boyd’s example 

[53]. This efficiency test is divided into two parts: one is based on a small dataset, which is 

intended to test the stability of PAN-SVM, and the other is evaluated by larger datasets to test 

PAN-SVM’s scalability. 

3.3.3.1 Stability 

The stability testing is conducted on the Fourclass and Pima datasets. For the test, the data are 

split into multiple groups using the same two strategies as in the Effectiveness test section. Tests 

are performed via simulating 5, 10 and 20 distributed data sources. The time required to solve 

SVM in each case is recorded. The results are shown in Table 3.4 and Table 3.5, where μ and σ 

are the mean and standard deviation, respectively. Figure 3.7 (a) and (b) show the average 

training time taken by PAN-SVM and SVM-ADMM according to different distributions of 

multi-source datasets, respectively. (c) and (d) show the average training time taken by PAN-
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SVM and SVM-ADMM according to different numbers of data sources. From the testing results 

on Fourclass and Pima datasets, as shown in Table 3.4, Table 3.5 and Figure 3.7. We can observe 

that PAN-SVM is much faster and more consistent than SVM-ADMM. For the same small 

dataset, PAN-SVM takes less 0.1 seconds to build SVM, while SVM-ADMM spends more than 

2.5 seconds, which is about 250 times speedup.  

Table 3.4: Time (second) spent in solving PAN-SVM and SVM-ADMM on Four-class dataset.  

# of data sources 
PAN-SVM SVM – ADMM 

5 10 20 5 10 20 

Same Distribution 
µ=0.094 

σ=0.005 

µ=0.089  

σ=0.008 

µ=0.087 

σ=0.007 

µ=2.72 

σ=0.02 

µ=0.73 

σ=0.05 

µ=2.59 

σ=0.75 

Different Distributions 
µ=0.093  

σ=0.007 

µ=0.089  

σ=0.008 

µ=0.084 

σ=0.008 

µ=3.39 

σ=0.60 

µ=1.96 

σ=0.43 

µ=7.37 

σ=2.68 

Table 3.5: Time (second) spent in solving PAN-SVM and SVM-ADMM on Pima dataset.  

#of data sources 
PAN-SVM SVM - ADMM 

5 10 20 5 10 20 

Same Distribution 
µ=0.092 

σ=0.006 

µ=0.088  

σ=0.006 

µ=0.067 

σ=0.007 

µ=8.04 

σ=2.13 

µ=18.91 

σ=1.18 

µ=7.38 

σ=0.50 

Different Distributions 
µ=0.091 

σ=0.008 

µ=0.090 

σ=0.008 

µ=0.066 

σ=0.008 

µ=9.73 

σ=3.97 

µ=18.09 

σ=2.69 

µ=7.62 

σ=2.21 

 
Figure 3.7. Average training time of PAN-SVM and SVM-ADMM testing on Fourclass and 

Pima datasets.  

 



36 

The other two major differences are: 1) the speed of PAN-SVM is not affected by the 

distributions of different data sources, and the time spent to solve PAN-SVM almost keeps 

unchanged no matter whether the data distribution is the same or not. On the opposite, SVM-

ADMM is dramatically affected by the data distribution. 2) As the number of data sources 

increases from 5 to 20, the time needed to conduct PAN-SVM decreases; on the contrary, time 

that needed to build SVM-ADMM increases sharply as the number of data sources increases.  

Besides, the averages and standard deviations of the training time for SVM-ADMM are much 

larger than those of PAN-SVM (details are not shown here). Therefore, PAN-SVM is more much 

stable than SVM-ADMM when dealing with distributed data with different data properties (such 

as distributions).  

It is also interesting to note that for the Pima dataset SVM-ADMM requires less training time 

on 20 data sources than it is from 10 data sources. This may be because the larger the number of 

data sources, the faster SVM-ADMM can solve the quadratic optimization problem since each 

data source will have a smaller number of data. However, larger numbers of data sources tend to 

increase the deviation of parameters in each data-source. This can be seen in Figure 3.8 and 

Figure 3.9, which show the average number of iterations that ADMM used for the Fourclass and 

Pima datasets, respectively. In these figures, RandomSplit-5 represents 5 local datasets are split 

randomly; FeatureSplit-5 denotes data are split by features at 5 local data sources, and so forth. 

In both cases, the number of iterations and the variance of the number of iterations in each case 

increase when the number of data sources increases. It will also take longer for ADMM to build 

the SVM model when the data in the different data sources have different properties (like 

statistical distributions). 
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Figure 3.8. Number of iterations for quadratic optimization when building ADMM-SVM on 

Four-class dataset.  

 

 

Figure 3.9. Number of iterations for quadratic optimization when building ADMM-SVM on 

Pima dataset.  

3.3.3.2 Scalability to Large Scale Dataset 

Testing is also done to assess the ability of PAN-SVM to scale up to larger datasets of Adult, 

cod-RNA and GSE2990 datasets. All of the datasets are split into 5 simulated data sources, and 

tested through 5-fold cross-validation, and the results are shown in Figure 3.10 (a) and (b) show 
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the average training time and iterations of optimization as different sample sizes and features. 

The experimental results show that the average training time for small datasets (say sample size 

less than 1000) is less than one second. Moreover, Figure 3.10 (a) also show that the average 

time taken by PAN-SVM increases as sample size increases, but remains very fast on these 

tested datasets. 14 seconds are required for the Adult dataset, and 47 seconds for cod_rna dataset. 

In addition, Figure 3.10 (b) shows that the average training time required to train PAN-SVM is 

not affected significantly as the number of features increases.  

 

Figure 3.10. The average training time and average iteration counts of PAN-SVM according 

to sample size (a) and number of features (b), respectively.  

 

The blue curves in Figure 3.10 (a) and (b) show the changing trends of the average iteration 

counts when solving the quadratic optimization by PAN-SVM according to different sample size 

and feature numbers, respectively. The axis represents ‘database name--sample size’ in (a), and 

‘database name--feature number’ in (b). Unlike the average training time, the average iteration 
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counts do not always increase as the number of samples increases or the number of features 

increases.  

Further experiments are conducted to test the training time of PAN-SVM as the number of 

landmarks changes. The results are shown as illustrated in Figure 3.11, the average training time 

for PAN-SVM according to different numbers of landmarks (training sample size changes). 

From Figure 3.11 we can observe that the average training time increases as the number of 

landmarks increases. But as mentioned in previous paragraphs, PAN-SVM still works effectively 

on the testing datasets, only 14 seconds the Adult dataset, and 47 seconds for cod_rna dataset. 

 

Figure 3.11. Average training time of PAN-SVM as number of landmarks changes. 

 

Table 3.6: Rough comparisons of training speed in second.   

Dataset PAN-SVM SVM-ADMM[52] LIBSVM[54] Fourier+LS[55] Binning+LS [55] 

Adult 13.9 2245.7 550.2 9 90 

 

Table 3.6 shows a comparison of training time among several methods using the Adult 

dataset. The results presented for  LIBSVM [54] and random feature techniques [55] are taken 

from the relevant literature listed in Table 3.6. PAN-SVM outperformed LIBSVM and the 

Binning+LS random feature method [55]; notably, PAN-SVM also significantly outperforms 
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SVM-ADMM and is comparable with the random feature method Fourier+LS. The comparison 

results of relative training efficiency may be varying if same programming language and same 

platform are set up.   

Besides the time for the training process, the time consumed for k-means clustering, Nystrom 

approximation and matrix decomposition are also recorded, as shown in Figure 3.12, where 

trn_time denotes the time required by the training process, KM_time for k-means clustering, 

Nystrom_time for Nystrom approximation and Decop_time for matrix decomposition, 

respectively.  

 

Figure 3.12. Time consumed by different procedures of PAN-SVM.  

 

It can be seen that the training process takes most of the time needed by PAN-SVM for most 

datasets except GSE2990, whose time for k-means clustering is still less than 1 second.  The time 

required by matrix decomposition is always less than one second, which can be ignored here. K-

means clustering, as well as Nystrom approximating process, also only occupy a minor part of 

the total time required by PAN-SVM. Combining the experimental results as shown in Figure 
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3.12, we can conclude that PAN-SVM may hence still be scaled to large-scale datasets 

accordingly. 

Franc et al. [42] demonstrates that the quadratic optimization used in the Optimized Cutting 

Plane Algorithm will converge within a limited number of steps. PAN-SVM is tested on 12 

datasets – including the Adult and cod_rna datasets, and the highest iteration count converged to 

a constant number of 101. Franc et al. [42]  also shows that an SVM using the OCA can be 

trained in a practical amount of time on a large scale dataset (one with 12-million features and 50 

million samples) – in fact, they achieves a new performance record while doing so. Therefore, it 

is likely that PAN-SVM, which also uses OCA, can be scaled up to similar large datasets. 

However, the current implementation is based on Matlab, whose memory limitations prevent 

further experiments on such large-scale datasets; it is expected that, if PAN-SVM is re-

implemented in a less-limited language, it will be able to handle such large-scale datasets with 

millions of features and samples.  

3.4 Conclusions  

In this chapter, we proposed a framework to solve privacy-preserving classification for multi-

source data. PAN-SVM consists of three layers, which collaborate to make classification 

efficiently and prevent the disclosure of local data to third-parties. The k-means clustering 

method is employed to help the participating local data centers select better landmark points; 

these are then sent to the medium layer after being encrypted via the secure sum protocol, which 

prevents local data from being disclosed to third-parties. A global SVM is securely constructed 

in the medium layer from distributed datasets via Nystrom low-rank approximation and kernel 

matrix techniques, and the linear inseparable SVM is converted into a linear one. In the top layer, 

cutting-plane techniques are employed to accelerate the SVM training process. 
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 PAN-SVM has been tested on 12 datasets, and the experimental results show that it yields 

better classification accuracy than traditional classification methods (like Naive Bayes 

classification or decision trees) and that it possesses the same level of accuracy as traditional 

SVM, such as LIBSVM with RBF kernel function. PAN-SVM can be effectively trained in a 

distributed manner and can yield comparable or superior accuracy than some existed distributed 

classifiers. Moreover, PAN-SVM performs stably even when the data stored in different sources 

contain very different patterns or distributions. In addition, it can handle enormous numbers of 

data sources, because the average training time tends to decrease or does not vary significantly as 

the number of data sources increases.  

 PAN-SVM is also tested on three larger datasets, the Adult and cod_rna datasets each contain 

more than 30,000 samples, and GSE2990 contains more than 10,000 features. Experimental 

results show that even conducting on such large datasets, the training time is still less than one 

minute. The average training time is not affected by the number of features present either. Unlike 

the average training time, the average number of iterations required by the training process is 

bounded by a constant, which is approximate to 100 in our test. Even though these datasets are 

not big enough, PAN-SVM may still be scaled to large datasets with millions of features and 

records, if it is implemented in an efficient programming language as demonstrated by [42].   
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4 PRIVACY PRESERVING MULTI-CLASS CLASSIFICATION FOR 

HORIZONTALLY DISTRIBUTED DATASETS 

4.1 Introduction   

Nowadays, machine learning and data mining tools have become increasingly important to 

analyze and discover useful knowledge in many applications. Classification is a problem of 

identifying the categories for data belong to unknown groups by building effective classifiers 

based on known data samples as the training set. It is a very an important issue in machine 

learning and data mining research areas. Multi-class classification, as a branch of classification 

problem, has been being a hot topic and research direction in many domains during the past 

years and become more and more important in the era of big data. Researchers have proposed a 

significant number of state-of-the-art multi-class classification approaches and algorithms based 

on traditional but popular classification algorithms, such as Support Vector Machine (SVM), 

Decision Tree (DT), Naïve Bayes (NB) and K-Nearest Neighbor (KNN).  

Currently, the methods for solving multi-class classification problem can mainly be 

formulated into two cases. The first case aims to directly solve multi-classification by extending 

existed classifiers, such as SVM, DT classifier, NB classifier and KNN classifier to multi-class 

classifiers. On the opposite, the second case tries to solve the problem by converting it to 

multiple binary classification problems.  

As the interests of assembling data mining on distributed data increase, the privacy concerns 

also increase. Therefore, to develop privacy preserving multi-class classification algorithms has 

become urgent. This chapter introduces a Privacy Preserving Multi-Class Classification (PPM2C) 

[56] method for horizontally distributed data, details are represented in the Methods section, 

which is followed by the experimental results and conclusions.  
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4.2 Methods 

4.2.1 Multi-class Support Vector Machine 

Support Vector Machine (SVM) is a well-known sophisticated classification method and has 

been widely used in many domains. SVM was originally designed for binary classification 

problem and approaches used to extend it to multi-class classification problem are simply 

divided into two types. One is directly considering all data in one optimization formula, and the 

other indirectly solve the problem by constructing and combining multiple binary classifiers, 

which are usually SVM classifiers. The indirect way can also be formulated in two cases: One-

Versus-All (OVA) and One-Versus-One (OVO) or All-Versus-All (AVA), we name it OVO in 

the current work.  

1) One versus All: for a k-class classification problem, the OVA method constructs k SVM 

classifiers, the h
th

 SVM is trained by taking all of the samples in the h
th

 class with a positive label 

(+1), and all samples in the rest classes with a negative label (-1), as illustrated in Figure 4.1.  

 

Figure 4.1 One-Versus-All multi-class classifiers. 
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Thus given a dataset with D of m samples D {( , ) | 1... }i ix y i m  , where n

ix R is a sample 

with n attributes and {1,2,..., }iy k  is the class label of ix , and the h
th

 SVM solves the 

following problem in (4.1): 
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Where   is a kernel matrix, the Radial Basis Function (RBF) kernel is used here 

2
exp( ' )x x    and C is the penalty parameter. To train the h

th 
SVM is to find the maximal 

separate hyperplane by maximizing the term 2 / hw . After solving (4.1), there are k decision 

functions in the predicting step as descripted in (4.2): 
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There will be k output values for k classifiers. If the predicted value for x is positive, we say x 

in the class with the positive label in the current classifier. Otherwise, we say x in the class which 

has the largest value of the decision function in (4.3): 

1,2,...

(( ) ( ) ).arg max h T h

h k

class labe of x w x b


       (4.3) 

The advantages of OVA scheme is that only k binary SVM classifiers have to be trained for a 

k-class classification problem, which speeds up the whole training process. However, the one 

versus all method might make the training data unbalanced dramatically.  
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2) One Versus One: for a k-class classification problem, OVO will constructs k(k-1)/2 binary 

classifiers to separate each one of the other, such as class 1 vs. class 2, class 1 vs. class 3,…, 

class 2 vs. class 3…, class k-1 vs. class k, as illustrated by Figure 4.2.  

 

Figure 4.2 One-Versus-One multi-class classifiers. 

 

For training data from the i
th

 and j
th

 class, OVO will solve the classification problem 

formulated by (4.4). 
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       (4.4)  

There are different approaches that can be used to test unknown data after all the k(k-1)/2 

SVM classifiers are built. This is called a “Max Wins” strategy by a sign function. If it says x in 

the i
th

 class, then the vote for the i
th

 class will increase one; otherwise, the vote for the j
th

 class 
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will add one, then the predicted class for x is the one with largest voting value. Although it might 

have to train more binary classifiers for OVO than the OVA strategy, it is much faster. Since 

constructing several more SVM classifiers with smaller size is much faster than building fewer 

classifiers with larger size due to the quadratic programming optimization problems used in 

SVM. However, the “Max wins” might not be a good strategy in a case that the two classes have 

identical votes. In the current work, the OVA method is used for PPM2C. 

 

Figure 4.3. The workflow of PPM2C by using PAN-SVM. 

 

4.2.2 Workflow of PPM2C 

PPM2C [56] is based on the privacy preserving framework of PAN-SVM by converting the 

multi-class classification problem into building multiple binary PAN-SVM classifiers. Data are 

encrypted by the secure sum protocol and then transited to the destination securely. Encrypted 

data will be sampled by k-means clustering method, and then the sampled center data will be 

used to approximate the kernel matrix, which will be calculated in the process of building SVM 
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classifier. Thus sampled data with smaller size make the costly computation being avoided 

sharply and the complex computation of kernel matrix reduced significantly. The workflow of 

PPM2C is presented in Figure 4.3. 

4.3 Results and Discussions 

4.3.1 Datasets 

PPM2C is tested on 6 datasets with a different number of classes, samples size and number of 

features. DNA, Vowel and Letter datasets are download from LIBSVM repository [50], and Lung 

cancer dataset is download from the University of California, Irvine (UCI) Machine Learning 

Repository [48].  Leukemia data [57] was originally introduced by Golub et al., in 1999 and it 

contains expression levels of 7129 genes for 47 ALL (Acute lymphoblastic leukemia) leukemia 

patients and 25 AML (Acute myelogenous leukemia) leukemia patients. The tested Leukemia 

datasets with 3 and 4 classes are download from [58]. In the 3-class dataset, ALL is split into 38 

B-cell and 9 T-cell, and in the 4-class dataset, the AML is divided into 21 BM and 4 PB.  

Table 4.1. The descriptions of multi-class datasets. 

Dataset # of samples # of features # of class C γ  

Leukemia_3c 72 7129 3 512.0 0.0001220703125 

Leukemia_4c 72 7129 4 512.0 0.0001220703125 

DNA 2000 180 3 8.0 0.03125 

Vowel 528 10 11 2.0 2.0 

Lung 32 56 3 2048.0 0.00048828125 

Letter 15000 16 26 8.0 2.0 

 

The C in Table 4.1 is a penalty parameter of SVM, and γ is a free parameter in (Gaussian) 

Radial Basis Function (RBF) kernel. C and γ are generated by LIBSVM [50] by using 10-fold 

cross validation. The details about the datasets are presented in Table 4.1. 
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4.3.2 Performance Assessing 

In PPM2C, PAN-SVM is employed to construct the multiple SVM classifiers. The 

performance of PPM2C is assessed via the classification accuracy, which is formulated by (4.5). 

TP TN
Accuracy

TP FP TN FN




  
     (4.5) 

Where TP represents True Positive, TN states True Negative; FP denotes False Positive, and 

FN indicates False Negative. 

 

Figure 4.4. Workflow of PPM2C by using LIBSVM 

 

The experimental results of PPM2C are compared with those obtained by using LIBSVM [50] 

as a regular binary SVM classifier. The scheme is the same as using PAN-SVM, as shown in 

Figure 4.4. In the following paragraphs, PrivacySVM and RegularSVM are used to represent the 

two different binary classifiers of PAN-SVM and LIBSVM. 5-fold cross validation is used for 

each binary SVM classifier, and the results shown in this chapter are the average value from ten 
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rounds, each round contains a 5-fold cross validation results. In other word, the experimental 

results approximate the average of 50 tests. Besides, for PrivacySVM, different percentages for 

landmarks (introduced in chapter 3) are tested, from 25% to 90%. Each percentage is tested by 

10 rounds, and the results shown in the following two subsections are the average accuracies of 

these 14-time tests (25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% 

and 90%). Details are presented in subsection 4.4.3.  

4.3.3 Feasibility of PPM2C 

The feasibility of PPM2C by using PAN-SVM is firstly tested to check whether the proposed 

framework and scheme are workable or not. We say PPM2C is workable if it can achieve 

approximate classification accuracies as using a regular SVM, like LIBSVM. The experiments 

are tested on four benchmark datasets from UCI and LIBSVM repositories and two microarray 

datasets, and the results are denoted in curves as shown in Figure 4.5, which shows the changes 

of classification accuracy as the percentages of landmarks change. 

 

Figure 4.5. Classification accuracy changes as the percentages of landmarks change. 
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Since PAN-SVM is based on the landmarks, therefore, we calculated the classification 

accuracy with different percentages of landmarks and compared the results with those obtained 

by LIBSVM with the same number of samples, from 25% to 90%. Because there are only 47 

samples in the lung3c datasets, the percentages are chosen from 55% to 90% for this dataset to 

make sure there are enough landmarks to approximate the kernel matrix. In Figure 4.5, ‘privacy’ 

denotes PAN-SVM and ‘libsvm’ represents regular SVM. The classification accuracy is obtained 

by 5-fold cross-validation. 

From Figure 4.5, we can observe that among the six datasets, Leukemia_3c, Leukemia_4c, 

vowel and letter can achieve very close classification accuracy between PAN-SVM and 

LIBSVM, but there are some sacrifices in accuracy for PAN-SVM when compared with 

LIBSVM, and this is reasonable because the kernel function of PAN-SVM is approximated. For 

lung3c dataset, the average classification accuracy of PAN-SVM is a little higher than LIBSVM; 

the reason might be because the small size of samples in this dataset and LIBSVM cannot obtain 

enough information to build the predicting model. For DNA dataset, PAN-SVM outperforms 

LIBSVM, and the performance can be improved as high as 8%, the reason might be the sparse 

property of this dataset. Since PAN-SVM employs k-means clustering method to generate the 

landmarks, more supportive information might be obtained than LIBSVM. These results 

demonstrate that PPM2C that hires PAN-SVM is workable, feasible and reliable.    

4.3.4 Stability of PPM2C 

As discussed in previous literatures, the classification accuracy is usually assessed by cross-

validation, 5-fold cross validation is used in the current work. During the cross-validation 

process, data will be randomly split into k (k-fold) subsets, and at each training round, k-1 

subsets are used as training data, and the left 1 subset is used as testing set. In other word, all of 
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the samples will be involved in the whole process, we call this kind of cross-validation as CV1, 

which mentioned in [59]. However, as pointed by [60-62], a CV1 error may severely bias the 

evaluation, which is demonstrated by [59] via simulation data. [59] gave another evaluation, 

named CV2, which leaves the test samples out of training set before any feature selection step. 

Although no feature selection step is needed to test PPM2C, CV2 criterion can also be used to 

test the performance of PPM2C. In the current work, 1/5 of the total samples are randomly 

selected to be used as a separate testing set under CV2 and does not involve in the training 

process at all. All samples will involve in the training process under CV1. 

Figure 4.6 and Figure 4.7 show the experimental results tested on PAN-SVM and LIBSVM 

under CV1 and CV2 test situation. From Figure 4.6 and Figure 4.7, we can observe that the 

classification accuracy of PAN-SVM is slightly improved under CV2 on the three microarray 

datasets of leukemia3c, leukemia4c, and lung3c, but there is no significant difference between 

them. On the opposite, the classification of LIBSVM is reduced for these three microarray 

datasets under CV2. This phenomenon illustrates that LIBSVM has the problem of over-fitting, 

while PAN-SVM can mitigate this risk.  

 

Figure 4.6. Classification accuracy of PAN-SVM. 
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Figure 4.7. Classification accuracy of LIBSVM. 

 

The predicting accuracies are increased by PAN-SVM for datasets Leukemia_3c, 

Leukemia_4c, and Lung cancer, but the improvements are very slight (less than 1.68%), it may 

say that the improvement is not significant. In other word, PPM2C by employing PAN-SVM is 

stable, no matter for independent (separate data) testing dataset or not. On the opposite, the 

predicting performance of LIBSVM classifier is decreased (~5.19%) by using independent 

testing samples LIBSVM, which means that CV1 makes LIBSVM achieve high classification 

accuracy, especially for small datasets, such as Leukemia_3c, Leukemia_4c, and Lung cancer. 

An independent dataset being separated from the training process means fewer samples and 

information are used to construct the classifier, which might be the reason why LIBSVM 

performs poorly under CV2 situation, which illustrates that the regular SVM has the problem of 

over-fitting under CV1 situation. On contrast, PAN-SVM is much more stable than LIBSVM 

and has better classification ability for small data.  

To further demonstrate the stability of PPM2C using PAN-SVM, more tests are done. Since 

PAN-SVM depends on landmarks for approximating kernel matrix, so the tests are conducted 

according to different percentages (25%, 30%, 35%, 40%, 45%, 50% and 55%) of landmarks at 
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CV1 and CV2 situation, respectively. The experiment is tested on Leukemia_3c, Leukemia_4c, 

DNA and Lung cancer datasets and the experimental results are as shown in Figure 4.8 and 

Figure 4.9.   

 

Figure 4.8. Classification of PAN-SVM under CV2 with different landmarks. 

 

 

Figure 4.9. Classification of PAN-SVM under CV1 with different landmarks. 
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From Figure 4.8 and Figure 4.9, we can observe that no matter using complete data at CV1 

case or separate data at CV2 case, the classification accuracy has no obvious change by using 

different numbers of landmarks, and the change are from 0.13% to 1.16% for the whole dataset, 

and from 0.34% to 1.59% for the separate dataset. The accuracy curves generated under CV1 are 

relatively smooth than those under CV2. This evidence demonstrates PAN-SVM’s ability to 

classify data with small size; the predicting accuracy also keeps stable under different landmarks 

(sample sizes). On the opposite, LIBSVM becomes less effective when dealing with the very 

small dataset. 

4.4 Conclusions  

In this chapter, a Privacy Preserving Multi-Class Classification (PPM2C) method is proposed 

based on our previously proposed privacy preserving classification framework of PAN-SVM. 

PPM2C converts the multi-class classification problem into multiple binary classifiers, which are 

PAN-SVM classifiers here. It works just like PAN-SVM, data are encrypted via the Secure Sum 

Protocol at the bottom layer, and sampled landmarks are used to approximate kernel matrix, 

which has to be computed during SVM training process. PPM2C inherits the privacy preserving 

and effectiveness properties of PAN-SVM but can solve multi-class classification problem.  

The performance of feasibility and stability of PPM2C are assessed by testing on six 

benchmark datasets under two situations, say CV1 and CV2 and compared between Privacy 

SVM (PAN-SVM) and Regular SVM (LIBSVM). In case of CV1, all data involve in the cross-

validation process for training and testing, while for the type of CV2, an independent dataset is 

randomly sampled from the whole dataset and used as test samples. Firstly, the feasibility of 

PPM2C is tested under CV1 and compared that with LIBSVM, and the experimental results 

indicate that the privacy SVM can work as effective as regular SVM and can even achieve higher 
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classification accuracy for some datasets with small size or sparse data. Tests on the separate 

data show that PPM2C with PAN-SVM outperforms the LIBSVM at the level of predicting 

accuracy, especially for small data. However, PAN-SVM has no significant improvement when 

using separate data (CV2) compared with complete data (CV1). LIBSVM works on the opposite; 

the predicting accuracy decreases via using separate data. These experimental results 

demonstrate that PPM2C is stable and can reduce the risk of over-fitting like LIBSVM.  

Further experiments are conducted for PAN-SVM using different percentages of landmarks. 

The testing results show that PPM2C’s ability to predict is not affected by sample size, and it 

works much more efficiently than LIBSVM for a dataset with small size. 

  



57 

5 PRIVACY PRESERVING FEATURE SELECTION VIA VOTED WRAPPER 

METHOD FOR HORIZONTALLY DISTRIBUTED DATASETS  

5.1 Introduction  

In the era of big, data mining approaches have been widely used to analyze the massive 

amount of data, and they have become increasingly important tools to discover useful knowledge 

in many domains. Nowadays, a lot of scientific fields have experienced a huge growth in data 

volume and data complexity, which brings data miners many opportunities, as well as challenges. 

For example, assembling datasets from distributed locations has become increasingly common 

[63-65], since applying data mining techniques on the aggregated datasets can build much more 

reliable prediction models and attain useful patterns from a wider picture, which benefits for 

medical research, improving customer service and homeland security, etc. However, mining on 

sharing data might divulge the sensitive information about individuals; it thus leads to increasing 

concerns about privacy during the process of data mining, therefore new sophisticated distributed 

data mining algorithms that can preserve privacy needed to be developed.  

The huge number of data attributes or dimensions often makes a curse to data mining tasks. 

Feature selection techniques address the issue of dimensionality reduction by selecting some 

available subset of features via predetermined selecting criteria to decrease the complexity the 

data mining tasks and thus improve the performances (such as classification accuracy) of data 

mining algorithms. Take the classification problem into consideration, by doing feature selection, 

irrelevant and redundant features are usually eliminated. Thus the computational complexity of 

classification procedure is reduced, and a better classifier with generalization ability will be 

constructed, and the risk of over-fitting is also be reduced. Therefore, feature selection plays a 

vital role in optimizing classification procedure.  
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Feature selection methods can be grouped into two categories according to their searching 

directions: forward selection and backward selection. Forward selection usually starts searching 

relevant features from an empty subset and adds one or some at each step until a stop criterion is 

met. On contrast, the backward selection methods usually start searching for the whole feature 

space and eliminate or remove one or some at each step, until some the predetermined stop 

criteria are reached.  

Moreover, feature selection methods can also be classified into three main groups: filter, 

wrapper and embedded approaches [66] according to different selecting strategies and 

procedures of algorithms. The filter methods usually take account of the statistical properties of 

features and rank them according to some criteria of relevant information. This step is always 

before the classification step and is entirely independent of data mining algorithms; they are 

usually fast. Just as the name implies, the wrapper methods often wrapped the feature selection 

step in the process of mining algorithms. Compared with the filter methods, wrapper methods 

have the advantages of taking account into the performance of mining algorithms or tasks. Thus 

a better classification model will be built with high performance, says high classification 

accuracy. However, it needs to repeatedly train and test the data and build classification model at 

each step when a subset of features are selected; the computational complexity thus increased 

sharply. In recent years, many approaches of wrapper feature selections are developed [59, 67-

70]. The third kind of feature selection approaches is named embedded method, which performs 

feature selection in the process of the building data mining model by adding or modifying the 

optimizing process of classification [71, 72].   

Feature selection algorithms can also be classified into two categories based on the 

relationship of features: feature ranking and subset selection. In the ranking list, the importance 
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of each gene is unequal. Usually the most top one is supposed to be the most important one, and 

so forth; while in the subset selection, each feature is equal, they work together making the 

classifier obtain the best performance.  

Nowadays, feature selection has become an important research field and been playing a 

crucial step for data mining algorithms via eliminating the curse of dimensionality. Many feature 

selection approaches related to data mining tasks have been proposed as data are integrated into a 

central location. However, as the needs for new privacy preserving data mining algorithms 

increase, the needs for privacy preserving feature selection algorithms also grow rapidly, and the 

privacy concerns of sharing data by distributed parties also brings significant challenges to 

feature selection. In this chapter, a Privacy Preserving Feature Selection algorithm via Voted 

Wrapper methods (PPFSVW)  [73] is proposed. PPFSVW is based on our previous work PAN-

SVM [43] to protect individual privacy and tested on six benchmark datasets, including gene 

expression datasets. Details about PPFSVW are described in Methods section, and the 

experimental results are shown in the Results and Discussion section, followed by the conclusion 

at last.  

5.2 Methods 

5.2.1 PAN-SVM Classifier 

As mentioned above, wrapper methods usually integrate feature selection step in the process 

of mining algorithms. When applied to a classification problem, methods used for selecting 

features are closely related to classifiers. In the current work, the classification accuracy is used 

as the wrapper method, and one of our previous works, PAN-SVM introduced in chapter 3 is 

used to be as the classifier for preserving privacy during the step of feature selection.  
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PAN-SVM contains three layers, which can finish corresponding functions. The bottom layer 

protects individual data privacy, where sampled data from multiple parties will be encrypted via 

the Secure Sum Protocol and sent to the remote miner. Data are sampled by k-means clustering 

methods and used as landmarks. At the medium layer, the landmarks will be used to approximate 

kernel matrix via Nystrom technique and the computation cost of kernel matrix will be further 

reduced via eigenvalue decomposition method. After the step of kernel matrix approximation 

and decomposition, non-linear separable SVM will be converted a linear separable one in this 

layer. Linear SVM will be optimized and speeded up by linear search and cutting plane 

techniques at the top layer. Although the classification accuracy of PAN-SVM sacrifices slightly 

when compared with the traditional SVM, such as LIBSVM with RBF kernel, the individual 

private information is preserved; furthermore, the training process is speeded up when compared 

with other distributed classification methods. Details about PAN-SVM can be found from [43].  

5.2.2 Wrapper Methods 

5.2.2.1 SVM-RFE 

Just as the name implies, the wrapper methods often wrapped the feature selection step in the 

process of mining algorithms. Compared with the filter methods, wrapper methods have the 

advantages of taking account into the performance of mining algorithms or tasks. Thus a better 

classification model will be built with high performance, says high classification accuracy. 

However, it needs to repeatedly train and test the data and build classification model at each step 

when a subset of features are selected; the computational complexity thus increased sharply. In 

recent years, many approaches of wrapper feature selections are developed [59, 67-70]. Among 

these methods, the Recursive Feature Elimination (RFE-SVM) proposed by Guyon [74] is very 

popular. RFE-SVM employs Support Vector Machine as a classifier and aims to find the best 
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subset with r features by ranking the whole feature set according to a criterion of w
2
, which is 

formulated in equation (5.1): 

.
m

i i i i

i

w y x       (5.1) 

Where w is the weighted vector of SVM classifier, αi is nonzero if xi is support vector, 

otherwise, αi equals to zero. Therefore, this criterion can also be explained as the weighted sum 

of support vectors, which tries to achieve high performance by maximization the separation 

margin in SVM. The elimination procedure can be described by three steps: 

Step 1. Train SVM classifier. 

Step 2. Calculate the ranking scores w
2
 for all features according to equation. 

Step 3. Eliminate the feature which has the smallest ranking score. 

The elimination procedure iterates the above steps until all features are eliminated and ranked, 

top features that make the classifier attain highest accuracy performance will be selected. 

However, over-fitting is an important issue in machine learning study, since SVM-RFE is aiming 

to find the features that maximum the separation margin, over-fitting also exists.  

5.2.2.2 RSVM 

To improve the robustness to noise and outliers, another Recursive Support Vector Machine 

(RSVM) is proposed in [59]. RSVM shares the same iterative procedures with SVM-RFE, but 

different ranking criterion, which is formulated by equation (5.2). RSVM also starts from the 

whole feature set and backwardly eliminates the feature with the least ranking score.  

score ( )j j jranking w m m       (5.2) 

Where wj represents the weight of the j
th

 feature, jm and jm denotes the means of j
th

 feature 

in the positive and negative class, respectively. Unlike SVM-RFE, this method of RSVM takes 
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account into the classification information via weight, as well as the data itself by calculating the 

means of each class. By this recursive iteration step, a feature subset with smaller and smaller 

size will be selected, and the classification can also be performed on the selected features at each 

step. Top features with high selected-frequency will be chosen as the final selection results. 

However, this method is greatly affected by the class label, since the class means are used to 

calculate the ranking criterion, which makes the selection method unstable.  

5.2.2.3 SVM-t 

To conquer the disadvantages of RSVM and develop a stable selection method, Tsai et al. [70] 

proposed another wrapped feature selection method named SVM-t. It also follows the workflow 

of SVM-RFE and RSVM to eliminate least important features via backward selection procedure 

but employs t-statistics to be as the ranking criterion, as denotes in the equation (5.3).   
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    (5.3) 

Where n and -n denotes the number of support vectors for the positive class (+) and negative 

class (-), respectively. j

 and -

j indicate the means of the j
th

 feature in class+ and class-; js and 

-

js represent the standard deviations of the j
th

 feature in class+ and class-, respectively. SVM-t 

just uses the most important subset of data, says support vectors, to evaluate the importance of 

each feature and construct the ranking criterion. It works well when data have significant 

statistical differences. 

5.2.3 Workflow of PPFSVW 

SVM-RFE directly chooses the weight vector as a ranking criterion, but it does not consider 

class information and has a high risk of over-fitting. RSVM outperforms SVM-RFE in the way 
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of improving its robustness to noise and outliers, but unstable to class label assignment. SVM-t 

uses only the support vectors information and outperforms other two methods when considering 

distinct variance between informative and non-informative genes, but it is only suitable for linear 

support vector machine. The current work proposed a feature selection algorithm via integrating 

these three methods during the feature elimination stage, for inheriting their advantages and 

improves the prediction accuracy, in the meanwhile; protect individual privacy via employing 

the privacy preserving framework of PAN-SVM. 

PPFSVW [73] shares the common workflow with SVM-RFE, RSVM, and SVM-t, but has 

two main differences from them in the way of choosing eliminating feature at each step. First, 

PPFSVW employs PAN-SVM as classifier, which can guarantee the privacy to be preserved; 

second, it calculates the ranking scores for each feature according to equations (5.1), (5.2) and 

(5.3), respectively, and then eliminate the least important one via voting by the three 

measurements. 

 Step 1: Train PAN-SVM. 

 Step 2: Calculate ranking scores using the criteria of SVM-RFE, RSVM, and SVM-t.  

 Step 3: Rank features according to the scores, and obtain three ranking lists. 

 Step 4: Choose one feature that needed to be eliminated at this iteration in the following way: 

o If there is one feature which is selected by at least two methods, remove it, and go to step 

1 until all features are ranked; otherwise, 

o Calculate the classification accuracy by 5-fold cross validation for classifiers, which with 

the three selected features eliminated, respectively, and then remove the feature, which 

has highest negative affection to the classifier, and then go to step 1 until all features are 

ranked. 
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 Step 5: Return a ranked list. 

 

Figure 5.1. Workflow of PPFSVW. 

 

The workflow chart is presented in Figure 5.1. In step 3, three feature ranking lists will be got 

according to the three ranking criteria formulated in the equation (5.1), (5.2) and (5.3), and the 

least important one in each list will be temporally chosen and voted in step 4 to decide which one 

should be eliminated finally at this iteration. If the three temporally selected features are different  
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from each other, PPFSVW will train classifiers with the three features eliminated respectively by 

5-fold cross validation. For example, features 1, 2, and 3 are three temporally selected features 

waiting for eliminating, PPFSVW will train classifier number one with feature 1 being 

eliminated and get the classification accuracy of 90%, classifier number two with feature 2 being 

eliminated and get accuracy of 93%, and classifier number three with feature 3 being eliminated 

and get accuracy of 92%. Number two classifier obtains the highest accuracy by eliminating 

feature 2, it says feature 2 makes the highest negative affection to classifier. In other word, it is 

the least important one among the three temporally selected features; therefore, PPFSVW will 

eliminate feature 2 at this iteration and restore features 1 and 3. The eliminated feature will be 

put at the head in the queue of the ranking list. This procedure will repeat until all features are 

eliminated and ranked, with the most important feature at the top and least important one at the 

bottom (the tail in the queue).  

5.3 Experiment Results and Discussions 

5.3.1 Datasets 

The performance of PPFSVW is assessed on six benchmark datasets, including 3 microarray 

datasets with different numbers of features, which are shown in Table 5.1. C and γ are the 

penalty parameter for SVM and a free parameter for Radial Basis Function kernel (RBF) used in 

SVM. They are generated by 10-fold cross validation. 

The Diabetes and Ionosphere data are downloaded from LIBSVM repository [50], the 

Wisconsin Breast Cancer data (WBC) is downloaded from  University of California, Irvine 

(UCI) Machine Learning Repository [48]. The colon data [57, 58, 75] contain 62 samples 

including 22 normal samples and 40 colon cancer samples. Each sample is described by the 

expression levels of 2000 genes. The Leukemia data [57, 58], originally introduced by Golub et 
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al., in 1999, contains 47 ALL (Acute lymphoblastic leukemia) leukemia patients and 25 AML 

(Acute myelogenous leukemia) leukemia patients with expression levels of 7129 genes. DLBCL 

data [76], the distinct types of diffuse large B-cell lymphoma (DLBCL) with expression levels of 

4026 genes, contains 47 samples, 24 of them are from "germinal center B-like" group and 23 are 

"activated B-like" group.  

Table 5.1 Details about datasets used for PPFSVM. 

Dataset # of samples # of features C γ  

Diabetes (DIA) 768 8 512.0 0.0078125 

Ionosphere 351 34 8.0 0.5 

Colon 62 2000 32.0 0.0078125 

Leukemia 72 7129 128.0 0.0001220703125 

Lymphoma 47 4026 2.0 0.0078125 

Breast Cancer (WBC) 569 30 128.0 8.0 

 

5.3.2 Performance Assessing 

The performance of PPFSVW will be assessed by the measurement of classification accuracy, 

which is formulated by the equation (5.4), Where TP represents True Positive, TN denotes True 

Negative, FP means False Positive and FN states False Negative. 

TP TN
Accuracy

TP FP TN FN




  
    (5.4) 

The Cross Validation (CV) method is often used to assess the performance of classifier due to 

lack of data that can be utilized as separate testing samples (like 5-fold cross validation, Leave 

One Out method). During the cross-validation process, data will be randomly split into k (k-fold) 

subsets, and at each training round, k-1 subsets are used as training data, and the left 1 subset is 

used as testing set. However, as pointed by [59], the feature selection results may vary due to 

even a single difference in the training set, especially for small datasets. Many feature selection 
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methods are done with all samples, and the cross-validation step is only done during the 

classification process, which makes the feature selection external to the cross-validation 

procedures, and leads to ‘information leak’ in the feature selection step. It calls this kind of error 

made by cross-validation as a CV1 error. [60-62] also points out that CV1 error may severely 

bias the evaluation of feature selection. [59] also demonstrates the existing of the bias via 

simulation data and suggests another error evaluation method, named CV2. Under the CV2 

scenario, a separate dataset is used as test samples and leaves out of training set before any 

feature selection step. In the current work, PPFSVW will be tested and evaluated under the two 

testing schemes. We use ‘Separate’ to denote that the testing is conducted under CV2, and 

‘Whole’ to denote the experiment is conducted under CV1. 5-fold cross-validation is used to 

generated the classification accuracy at each selecting iteration.  

5.3.3 Effectiveness and Performance Improvement 

In this chapter, a novel feature selection algorithm of PPFSVW is proposed; the proposed 

workflow can be applied to both regular classifiers and privacy preserving classifiers. In the 

current work, the effectiveness of the proposed algorithm is firstly assessed via conducting 

experiments on PAN-SVM, as well as a popular regular SVM package LIBSVM [50, 77].  

Table 5.2. Comparison of classification accuracy (%) between before and after feature 

selection via PAN-SVM. 

PAN-SVM Separate (CV2) Whole(CV1) 

Datasets Voted NoSelection Improvement Voted NoSelection Improvement 

DIA 79.35 76.48  2.86  80.13  76.76  3.37  

Ionosphere 96.86 93.94  2.91  96.29  93.03  3.27  

Colon 100.00 81.92  18.08  100.00  82.00  18.00  

Leukemia 92.86 87.14  5.72  94.29  89.65  4.64  

WBC 96.64 96.64  0.00  96.46  96.69  -0.23  

DLBCL 100.00 87.76  12.24  100.00  89.05  10.95  

SUM 565.70  523.88  41.82  567.17  527.17  39.99  
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The experimental results are represented as bar charts and shown in Figure 5.2 and Figure 5.3, 

Table 5.2 and Table 5.3, respectively. The experiments are conducted under both CV1 and CV2 

testing scenario, which are shown as Whole and Separate, respectively. PAN-SVM is shown as 

‘PrivacySVM,' aiming to emphasize its difference from regular SVM at the aspect of privacy 

preserving property, and ‘RegularSVM’ denotes LIBSVM. ‘Voted’ denotes the classification 

accuracy which is obtained after applying the proposed algorithm and ‘NoSelection’ denotes the 

accuracy that is obtained without a feature selection procedure. 

 
Figure 5.2. Performance improvement achieved after feature selection via PAN-SVM. 

 

From Figure 5.2 and Table 5.2, we can observe that the classification accuracy of PAN-SVM 

is significantly improved after executing the proposed feature selection algorithm, especially for 

the Colon, DLBCL and Leukemia microarray data, and improvements are 18.08%, 12.24% and 

5.72% under CV2 testing scenario, and 18%, 10.95% and 4.64% under CV1 testing situation. 

The classification accuracy is also improved for datasets DIA and Ionosphere, and they are 2.86% 

and 2.91%, 3.37% and 3.27% for CV2 and CV1, respectively. There is no improvement for WBC 

datasets under CV2 and a slight sacrifice under CV1. The results indicate that PPFSVM works 
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better for microarray datasets, which always include small sample size and much higher gene 

number. From Figure 5.2 and Table 5.2, we can also observe that under CV2 test situation, the 

classification accuracy can be improved slightly higher by PAN-SVM, when compared with the 

total improvements added from each dataset, but there is no significant difference (41.82% vs. 

39.99% in total) between the improvements obtained under CV1 and CV2. 

 
Figure 5.3. Performance improvement achieved after feature selection via LIBSVM. 

Figure 5.3 and Table 5.3 also show that LIBSVM can also achieve higher predicting accuracy 

after executing the proposed feature selection workflow, and can significantly improve the 

classification performance after selecting informative features or genes. Moreover, LIBSVM can 

obtain much higher performance improvement under CV2 testing environment than that under 

CV1 situation; it is 36.32% vs. 26.76% in total when adding all of the improvements from each 

dataset. The reason is because LIBSVM can achieve slight higher prediction accuracy under 

CV1 than that under CV2 before a feature selection procedure, which indicates that LIBSVM has 

the problem of over-fitting, whereas, PAN-SVM has no such a problem; therefore it may say that 



70 

PAN-SVM can reduce or avoid the risk of over-fitting when compared with regular SVM. 

Details about PAN-SVM can be found from the previous work described in Chapter 3 and [43]. 

The results shown in Figure 5.2, Figure 5.3, Table 5.2 and Table 5.3 indicate that the 

proposed algorithm or workflow is workable and feasible, and more importantly it works 

efficiently and can significantly improve the classification performance by selecting informative 

features or genes no matter for LIBSVM or privacy preserving classifier of PAN-SVM. 

Table 5.3. Comparison of classification accuracy (%) between before and after feature 

selection via LIBSVM. 

LIBSVM Separate (CV2) Whole (CV1) 

Datasets Voted NoSelection Improvement  Voted NoSelection Improvement  

DIA 75.95  75.63  0.32  77.91  76.54  1.37  

Ionosphere 97.50  93.04  4.47  97.50  93.78  3.72  

Colon 100.00  82.79  17.21  100.00  82.30  17.70  

Leukemia 92.86  90.00  2.86  94.29  93.10  1.19  

WBC 98.41  93.54  4.87  98.23  96.10  2.13  

DLBCL 95.56  88.95  6.61  91.11  90.46  0.65  

SUM 560.27  523.94  36.32  559.04  532.28  26.76  

 

5.3.4 Comparison with Other Methods 

5.3.4.1 Classification Accuracy Improvement 

We firstly conducted our experiments on the six benchmark datasets and compared some of 

the results obtained by the proposed algorithm in this chapter with those obtained by other state-

of-the-art methods, such as Fisher-SVM, FSV, RFE-SVM and KP-SVM [74, 78]. The accuracies 

obtained from these four methods shown in  Table 5.4 are cited from [78]. DIA, WBC, and Colon 

are three common datasets which are used as benchmark datasets in the paper [78] and in the 

current work.  

There is no privacy preserving issue or testing scheme in [78], therefore, we can compared 

our experimental results conducted via regular SVM under CV1 test situation, which are shown 



71 

in the last column in Table 5.4, from which we can observe that the proposed method of 

PPFSVW outperforms the other methods for all of the three datasets DIA, WBC, and Colon. 

Besides, experimental results obtained by LIBSVM under CV2 and by PAN-SVM are also listed 

in Table 5.4 for a better comparison, and the results show that the proposed algorithm in this 

chapter outperforms all the other four state-of-the-art methods.  

Table 5.4. Classification accuracy after feature selection achieved by different methods. 

Datasets  Fisher 

SVM 

FSV RFE 

SVM 

KP 

SVM 

Privacy 

SVM 

(CV2) 

Privacy 

SVM 

 (CV1) 

Regular 

SVM 

(CV2) 

Regular 

SVM 

(CV1) 

DIA 76.42 76.58 76.56 76.74 79.35 80.13 75.95 77.91 

WBC 94.7 95.23 95.25 97.55 96.64 96.46 98.41 98.23 

Colon 87.46 92.03 92.52 96.57 1.00 1.00 1.00 1.00 

 

 

Figure 5.4. Comparison of classification accuracy achieved by PAN-SVM under CV2. 

 

Furthermore, we also conducts our experiments on the six benchmark datasets described in 

Table 5.1 and compares the results obtained by PPFSVW with those obtained by SVM-RFE, 

RSVM, and SVM-t. The classification accuracies achieved by different methods under two test 
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scenarios are shown as in Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 in the form of bar 

charts and the results of accuracy improvement achieved by these four methods are shown in 

Table 5.5, Table 5.6, Table 5.7 and Table 5.8, respectively.  

Table 5.5. Accuracy improvement achieved by different methods via PAN-SVM under CV2. 

  SVM-RFE RSVM SVM-t PPFSVW 

DIA 2.86% 2.99% 2.60% 2.86% 

Ionosphere 1.77% 2.63% 3.77% 2.91% 

Colon 18.08% 18.08% 18.08% 18.08% 

Leukemia 8.57% 5.72% 5.72% 5.72% 

WBC 0.00% 0.00% -0.35% 0.00% 

DLBCL 12.24% 12.24% 12.24% 12.24% 

Sum 43.53% 41.66% 42.06% 41.82% 

 

From Figure 5.4 and Table 5.5, we can observe that all of the four methods, SVM-RFE, 

RSVM, SVM-t, as well as the proposed method of PPFSVM in this chapter can significantly 

improve the classifier predicting performance after executing the feature selection procedure for 

most datasets except the WBC dataset. However, different methods have different behaviors 

when working with various datasets. For example, the method of SVM-t works better on 

Ionosphere dataset, but achieves worse classification results when compared with the other three 

methods on the microarray datasets, which contain much more features, and fails to improve the 

classifier’s predicting performance for WBC datasets. RFE, RSVM, and PPFSVW can achieve 

almost the same level accuracy improvement for DIA, Colon, WBC and DLBCL datasets, but 

slightly lower for Ionosphere dataset and higher on Leukemia data. Compared with the total sum 

improvement on all datasets, RFE-SVM defeats all other three feature selection methods 

benefiting from its higher improvement on the Leukemia data.  

The results in Figure 5.5 and Table 5.6 show the classification performance and comparison 

of classification accuracy improvements that have been achieved by SVM-RFE, RSVM, SVM-t 



73 

and PPFSVM under CV1 test situation using a separate testing sample set. These results indicate 

a similar pattern made by these four feature selection methods via PAN-SVM under CV1 to that 

under CV2. All of these four methods can improve the classifier’s ability to predict unknown 

samples, for DIA, Ionosphere, Colon, Leukemia and DLBCL datasets, and achieve a significant 

improvement for microarray datasets. The performance improvement has no significant 

difference among these four methods.  

 

Figure 5.5. Comparison of classification accuracy achieved by PAN-SVM under CV1. 

 

Table 5.6. Accuracy improvement achieved by different methods via PAN-SVM under CV1. 

  RFE RSVM SVM-t PPFSVW 

DIA 2.71% 2.71% 2.71% 3.37% 

Ionosphere 2.69% 1.27% 1.55% 3.27% 

Colon 18.00% 18.00% 18.00% 18.00% 

Leukemia 6.06% 3.21% 6.06% 4.64% 

WBC -0.41% -0.23% -0.76% -0.23% 

DLBCL 10.95% 10.95% 10.95% 10.95% 

Sum 40.01% 35.91% 38.52% 39.99% 
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Figure 5.6. Comparison of classification accuracy achieved by LIBSVM under CV2. 

 

Table 5.7. Accuracy improvement achieved by different methods via LIBSVM under CV2. 

 

  RFE RSVM SVM-t PPFSVW 

DIA 0.05% 0.18% 0.32% 0.32% 

Ionosphere 4.11% 4.47% 4.47% 4.47% 

Colon 17.21% 17.21% 17.21% 17.21% 

Leukemia 2.86% 1.43% 0.00% 2.86% 

WBC 3.99% 4.16% 4.87% 4.87% 

DLBCL 2.16% 2.16% 4.38% 6.61% 

Sum 30.37% 29.61% 31.24% 36.32% 

 

Figure 5.6 and Figure 5.7 show the comparison of classification accuracies by using LIBSVM 

as the classifier for SVM-RFE, RSVM, SVM-t and the proposed algorithm workflow in this 

chapter. Table 5.7 and Table 5.8 show accuracy improvements achieved by these four different 

methods via employing LIBSVM. Each method is tested under CV1, and CV2 testing mode and 

the accuracies at each iteration step are obtained by 5-fold cross-validation, as well as the final 

accuracy using the series of selected features. 
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Figure 5.7. Comparison of classification accuracy achieved by LIBSVM under CV1. 

 

Table 5.8. Accuracy improvement achieved by different methods via LIBSVM under CV1. 

 

  RFE RSVM SVM-t PPFSVW 

DIA -0.85% 0.07% -0.85% 1.37% 

Ionosphere 3.72% 4.08% 3.72% 3.72% 

Colon 17.70% 17.70% 17.70% 17.70% 

Leukemia 1.19% -0.24% -1.67% 1.19% 

WBC 1.07% 1.25% 2.49% 2.13% 

DLBCL 0.65% 0.65% 2.87% 0.65% 

Sum 23.47% 23.50% 24.26% 26.76% 

 

From Figure 5.6, Figure 5.7, Table 5.7 and Table 5.8, we can observe that all of these four 

methods perform better under CV2 testing environment, which is similar to PAN-SVM. 

However, the overall improvement achieved by LIBSVM under CV2 is much higher than that 

under CV1 when summarizing all of the improvements together (as shown in the last line in 

Table 5.7 and Table 5.8) than PAN-SVM, the reason is probably because the ability of PAN-

SVM to reduce overfitting, and the regular SVM cannot achieve higher or same level of 

predicting accuracy for separating testing samples under CV2 scenario. Besides, when compared 

all the overall improvements (as shown in the last line in Table 5.7 and Table 5.8) achieved by 
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these four different methods, we can observe that the proposed workflow can make the classifier 

achieve higher classification accuracy than the other three methods and have significant 

improvements, no matter under CV1  or CV2 test environment. In other word, the proposed 

workflow in this chapter works better for regular SVM and can preserve individual privacy when 

employing PAN-SVM as the classifier. 

5.3.4.2 Number of Selected Features  

We also compare the selected number of features by these four methods on datasets DIA, 

Ionosphere, Colon, Leukemia, WBC and DLBCL, and only show the results achieved by PAN-

SVM under CV2 test situation. The results are represented as curves in Figure 5.8 and the detail 

descriptions are shown in Table 5.9, from which we can observe that PPFSVW can make the 

classifier achieve the highest predicting accuracy for DIA dataset by the top 5 features (with 

accuracy 79.35%), which is the same as SVM-RFE and is fewer than 7 (79.48%) and 8 (79.09%) 

for RSVM and SVM-t, respectively. For the Colon data, the classifier can achieve the best 

classification performance with top 53 features (with accuracy 100%) after conducting PPFSVW 

algorithms, but 63 (accuracy 100%), 61 (accuracy 100%) and 617 (accuracy 100%) for RFE-

SVM, RSVM, and SVM-t, respectively.  

Table 5.9. Selected feature number by different methods. 

 
DIA Ionosphere Colon Leukemia WBC DLBCL 

RFE 5 (79.35) 12 (95.71) 63 (100) 4565 (95.71) 18 (96.64) 114 (100) 

RSVM 7 (79.48) 12 (96.57) 61 (100) 6380 (92.86) 17 (96.64) 147 (100) 

SVM-t 8 (79.09) 10 (97.71) 617 (100) 5420 (92.86) 21 (96.28) 166 (100) 

PPFSVW 5 (79.35) 17 (96.86) 53 (100) 4826 (92.86)_ 11 (96.64) 121 (100) 

 

For WBC data, the number of best-selected feature subset is 11 (accuracy 96.64%), which is 

fewer than 18 (accuracy 96.64%), 17 (accuracy 96.64%) and 21 (accuracy 96.28%) for SVM-

RFE, RSVM, and SVM-t, respectively.  
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Figure 5.8. Comparison of accuracy as the number of selected features increases. 
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For the three datasets of DIA, Colon, and WBC, PPFSVW cannot only select fewer features 

but also keep the classifier with higher or almost same level of classification accuracy. For the 

Ionosphere data, although PPFSVW selects a subset of features with a larger number than other 

methods, it makes the classifier achieve the highest classification performance. For the Leukemia 

and DLBCL data, PPFSVW is defeated by SVM-RFE but still works better than RSVM and 

SVM-t with fewer features but the same level of accuracy.  

From these results, we can conclude that PPFSVW can make the classifier achieve higher or 

same level of classification performance with fewer features, especially when compared with 

RSVM and SVM-t. The selected six datasets are different at their sample sizes and feature 

numbers; the other three existing sophisticated methods outperforms each other on different 

datasets, but PFSVW can always make the classifier achieve competitive results compared with 

the other three, which indicate that PPFSVW is much stable and robust. 

5.4 Conclusions 

In this chapter, we proposed a privacy preserving feature selection method (PPFSVW) via 

integrating three popular wrapper methods in the way of voting at feature eliminating phase. 

PPFSVW is based on our previous work of PAN-SVM, which is a privacy preserving framework 

for binary classification on SVM; therefore, PPFSVM inherits the privacy preserving property of 

PAN-SVM and can protect individual privacy during the procedure of feature selection. The 

privacy preserving strategy for distributed data is needed as the privacy concerns increase rapidly 

nowadays.  

PPFSVW shares the common workflow with RFE-SVM, RSVM, and SVM-t, but different 

from them at the step of choosing to be eliminated feature at each iteration. It combines the three 

criteria used by these three methods, and votes to be eliminated one. If eliminating feature cannot 
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be decided by voting, PPFSVW will construct classifiers and compare the negative affection to 

classifiers which caused by those temporarily selected three features, and the one with highest 

negative affection will be eliminated at this iteration. 

The feasibility and performance of the proposed workflow are assessed on six benchmark 

datasets, including three microarray datasets, and they are different at sample size and feature 

numbers. The experiments are also conducted under two different testing situations, CV1 and 

CV2. Our experimental results indicate that the proposed algorithm workflow can work 

effectively to improve the classification performance regarding accuracy via selecting 

informative features and genes, for both PAN-SVM with privacy preserving consideration and 

LIBSVM without privacy consideration under CV1 and CV2. Besides, PPFSVW outperforms 

other state-of-the-art feature selection methods of Fisher-SVM, FSV, RFE-SVM and KP-SVM 

[74, 78] for DIA, Ionosphere and Colon datasets. Furthermore, we also conducted the proposed 

workflow on PAN-SVM and LIBSVM and compared their classification accuracies with those 

obtained from SVM-RFE, RSVM, and SVM-t. The experimental results show that PPFSVW has 

no significant difference from these three methods when employing PAN-SVM, but works better 

when conducting on LIBSVM. The reason for this is because of the stability and ability of PAN-

SVM to reduce the risk of over-fitting. In addition, our experimental results also show that 

PPFSVM can make the classifier achieve higher or same level classification accuracy with fewer 

features when compared with SVM-RFE, RSVM and SVM-t. 
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6 PRIVACY PRESERVING FEATURE SELECTION VIA INTEGRATING FILTER 

AND WRAPPER METHODS FOR HORIZONTALLY DISTRIBUTED DATASETS  

6.1 Introduction  

Nowadays, a lot of scientific fields have experienced a huge growth in data volume and data 

complexity, which brings to data miners lots of opportunities, as well as many challenges. For 

example, how to mine distributed data and meanwhile preserve individual information as the 

growing concerns of privacy issue? Recently, assembling data from distributed parties has 

become increasingly common [63-65], since applying data mining techniques on the aggregated 

data can build much more reliable prediction models and attain useful patterns from a wider 

picture, which can benefit from medical research, improving customer service and homeland 

security, etc. However, this might divulge the sensitive information about individuals. It thus 

leads to increased concerns about privacy during the process of data mining, which in turn 

prevents different parties from sharing information.  

Besides, data mining tasks often suffer from the curse of high dimensionality of data attributes 

or features. How to effectively select relevant and informative features and solve the issue of 

dimensionality? For example, microarray data have been widely used to investigating a lot of 

biological questions, such as gene expression in different situations, classification of diseases; 

however, gene selection is still a challenging task in the tumor-related classification. Since the 

gene expression data usually contain thousands of genes, but only decades or hundreds of 

samples. Feature selection techniques address the issue of dimensionality reduction by selecting 

an available subset of features via predetermined selecting criteria. It is usual a pre-processing 

procedure which aims at speeding up learning the process and decrease the space complexity of 

classifier. Besides, the selected informative features, such as the genes, are very important in 
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biological research to help diagnose cancer or special diseases. Feature selection, therefore, plays 

a vital role in optimizing the mining procedure and selecting informative and relevant attributes.   

Many sophisticated methods [79-82] have been employed to find very important genes; 

however, traditional filter methods of feature selection may help to find dependent genes, but the 

accuracy cannot be guaranteed, which is much more important to biological data. Wrapper 

methods of feature selection can guarantee the classification accuracy, but they are usually time-

consuming. Distributed feature selection by sharing data from multiple parties can be a solution 

to the issue of small size, but privacy concerns increase. Many feature selections related to data 

mining tasks have been proposed as data are integrated into a central location, while the privacy 

concerns of sharing data by distributed parties bring a great challenge to feature selection.  

In this chapter, a Privacy Preserving Feature Selection method via Integrating Filter and 

Wrapper methods for horizontally distributed data (PPFSIFW) [83] is proposed. Details about 

PPFSIFW are presented in Method section. PPFSIFW is assessed and tested on six datasets, 

including 3 gene expression datasets, and the results are addressed in the Results and Discussion 

section, and followed by the conclusion at last in the Conclusion section.  

6.2 Methods 

6.2.1 Existing Filter Feature Selection Methods 

According to different selecting strategies and procedures of algorithms, feature selection 

methods can be formulated into three main categories: filter, wrapper and embedded approaches 

[66]. The filter methods usually take account of the statistical properties of features and rank 

them according to some criteria of relevant information. This step is always before the 

classification step and is entirely independent of data mining algorithms. Therefore, they are fast, 

and the effects of the subset of features on the performance of the mining algorithms will also be 
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avoided. Chi-square, Fisher Criterion Score [84], Welch-t-test [85] and Between versus Within 

Class Scatter Ratio [86] are some measurements that are usually used to filter a subset of 

features. The importance of each feature will be calculated according to these measurements, and 

least important ones will be discarded.  

The respective Fisher score [84] to calculate the importance of each feature can be 

formulated by equation (6.1):  
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Where j

 and j

  represent the mean value of the j
th

 feature in the positive class (with label 

+1) and negative class (with label -1), respectively, and j

  and j

  stand for the standard 

deviations of the j
th

 feature in the positive and negative class, respectively.  

The welch- t-statistics [85] is another filter criterion, as denotes in the equation (6.2).  
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Where n
+
and n

-
 denotes the number of support vectors for the positive class (+) and negative 

class (-), respectively. 𝜇𝑗
+ and 𝜇𝑗

− indicate the means of the j
th

 feature in class+ and class-, and 

𝑠𝑗
+and 𝑠𝑗

−represent the standard deviations of the j
th

 feature in class+ and class-, respectively. 

The Between versus Within Class Scatter Ratio [86] is another popualr filter method for 

feature selection procedure, and it is formulated as in equation (6.3):  
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Where Sw and Sb denote the within class and between class scatter matrix, respectively, and S 

is the within versus between class scatter ratio, it is a vector with n (number of features) 

elements. c equals to the number of class; here c equals to 2 for binary classification. xj 

represents the j
th

 record in the i
th

 class, nc denotes the number of samples in the i
th

 class; μi 

denotes the mean of the i
th

 class, and μ denotes overall mean in these c classes.  

Just as the name implies, the wrapper methods often wrapped the feature selection step in the 

process of mining algorithms. Compared with the filter methods, wrapper methods have the 

advantages of taking the performance of mining algorithms into account. Thus a better 

classification model will be constructed. However, it needs to repeatedly train and test the data 

and build classification model at each step when a subset of features are selected; the 

computational complexity thus increased sharply. Some popular wrapper methods can be found 

in [59, 70, 74]. The third kind of feature selection approaches is named embedded method, which 

performs feature selection in the process of the constructing data mining model by adding or 

modifying the optimizing process of classification, for examples in [71, 72].   

Besides, feature selection algorithms can also be classified into two categories based on the 

relationship of features: feature ranking and subset selection. In the ranking list, the importance 

of each gene is unequal. Usually the most top one is supposed to be the most important one, and 

so forth; while in the subset selection, each feature is equal, they work together making the 

classifier obtain the best performance.  

6.2.2 PAN-SVM Classifier 

As mentioned above, wrapper methods usually integrate a feature selection step in the process 

of mining algorithms. For a classification problem, methods used for selecting features are 

closely related to classifiers. Features will be evaluated by the classification accuracy at each 
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step. In the current work, one of our previous works, a privacy-preserving framework named 

Privacy-Aware Non-linear SVM for Multi-source Big Data (PAN-SVM in brief) [43] is used as 

the binary classifier for preserving privacy during the step of feature selection. PAN-SVM 

contains three layers, which can finish corresponding functions. The bottom layer protects 

individual data privacy, where sampled data from multiple parties will be encrypted via the 

Secure Sum Protocol [9] and sent to miner. Data are sampled by k-means clustering methods and 

used as landmarks [39, 44]. At the medium layer, the landmarks will be used to approximate 

kernel matrix via Nystrom technique [39, 44] and the computation cost of kernel matrix will be 

further reduced via eigenvalue decomposition method. After the step of kernel matrix 

approximation and decomposition, the non-linear separable SVM will be converted a linear 

separable one in this layer. Linear SVM will be optimized and speeded up by linear search and 

cutting plane techniques [42] at the top layer. Although the classification accuracy sacrifices 

slightly when compared regular SVM, like LIBSVM [87], the individual private information is 

preserved; furthermore, the training process is speeded up when compared with other distributed 

classification methods. Details about PAN-SVM can be found from [43].  

6.2.3 Workflow of PPFSIFW 

In this chapter, the proposed privacy preserving feature selection algorithm PPFSIFW [83] 

integrates three filter methods of Fisher score, welch-t-test and between versus within class 

scatter ratio, uses PSN-SVM as classifier and the classification accuracy as a wrapper method. It 

follows the workflow as following:  

Step 1: Calculate the three measurements mentioned in (6.1), (6.2) and (6.3). 

Step 2: Choose features that selected by all of the three measurements and remove the rest 

ones. The feature will be selected if it meets the thresholds of the three measurements. We 
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call the selected feature set at this step as voted feature set. A large number of features can be 

eliminated at this step depending on the thresholds that user defines. 

Step 3: Ranking the selected features in the voted set (Wrapper method). 

1) Computer the overall classification accuracy with the selected features by filter methods, 

denoted as overall_acc.  

2) Compute the classification accuracy for each classifier (PAN-SVM) that without feature 

i (i = 1…k), for data with k features, there will be k classifiers, denotes as ith_acc. 

3) Rank the features by accuracies obtained in previous step.  

4) Remove a feature in this way: suppose ith_acc is the highest accuracy among the k 

accuracies obtained in 2), if ith_acc > overall_acc, then remove feature i, since it 

increases the classification accuracy by removing it. Otherwise, if there is no feature 

increases accuracy, a local maxima accuracy of ith_acc is obtained, then set overall_acc 

= ith_acc and remove feature i, since it gives the classifier highest negative affection.   

5) Repeat the ranking step 

Step 4: Return a ranked list of features in the voted set. 

In step 2, user can define his own threshold to decide the approximate number of features he 

wants to keep or eliminate. Such as, when using the Welch-t-test measurement, features that have 

p-value larger than 0.01 will be eliminated. Therefore, a large number of features can be 

removed at this step, only a small size keeps left. In step 3, the highest negative affection can be 

understood in this way. For example, if removing feature i, the classifier can achieve 98% 

classification accuracy, while removing feature j, the accuracy is 90%, it says i has higher 

negative affection to classifier than feature j, so feature i will be eliminated at this step. 5-fold 
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cross validation is used at each iteration for every classifier. PPFSIFW returns a ranking list of 

the selected features by filter methods. 

6.3 Results and Discussions 

6.3.1 Datasets 

PPFSIFW is assessed and tested on six benchmark datasets including 3 microarray datasets 

with a different number of features, details about these datasets are shown as in Table 6.1.  

Table 6.1. Description of testing datasets. 

Dataset # of samples # of features C γ  

Diabetes (DIA) 768 8 512.0 0.0078125 

Ionosphere 351 34 8.0 0.5 

Colon 62 2000 32.0 0.0078125 

Leukemia 72 7129 128.0 0.0001220703125 

Lymphoma 47 4026 2.0 0.0078125 

Breast Cancer (WBC) 569 30 128.0 8.0 

 

The Diabetes and Ionosphere data are downloaded from LIBSVM repository [87], the 

Wisconsin Breast Cancer data (WBC) is downloaded from  University of California, Irvine 

(UCI) Machine Learning Repository [48], and the microarray datasets of Leukemia, Lymphoma, 

and colon [57] are download from [58]. C and γ are penalty parameter for SVM and a free 

parameter for Radial Basis Function kernel (RBF) used in SVM. They are generated by 10-fold 

cross validation. 

6.3.2 Performance Assessing 

The Cross Validation (CV) method is often used to assess the performance of classifier 

according to the classification due to lack of data that can be utilized as separate testing samples. 

During the cross-validation process, data will be randomly split into k (k-fold) subsets, and at 
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each training round, k-1 subsets are used as training data, and the left 1 subset is used as testing 

set. However, as pointed by [59], the feature selection results might vary due to even a single 

difference in the training set, especially for small datasets. Many feature selection methods are 

done with all samples, and the cross-validation step is only done during the classification process, 

which makes the feature selection external to the cross-validation procedures, and leads to 

‘information leak’ in the feature selection step. It calls this kind of error made by cross-validation 

as a CV1 error. [60-62] also points out that CV1 error may severely bias the evaluation of feature 

selection. [59] also demonstrates the existing of the bias via simulation data and suggests another 

error evaluation method, named CV2. Under the CV2 scenario, a separate dataset will be used as 

test samples and leaves out of training set before any feature selection step. The performance of 

PPFSIFW will be assessed by the measurement of classification accuracy, which is formulated 

by the equation (6.4):  

TP TN
Accuracy

TP FP TN FN




  
    (6.4) 

Where TP represents True Positive, TN denotes True Negative; FP means False Positive and 

FN states False Negative.  

6.3.3 Effectiveness of PPFSIFW 

In order to check whether the proposed feature selection algorithm (Feature Selection via 

Integrating Filter and Wrapper method, FSIFW in brief) is workable or not and its effectiveness, 

the proposed workflow mentioned in section 6.2.3 is applied to PAN-SVM [43] and LIBSVM 

[77], under CV1 and CV2 testing scenario, respectively.  
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The comparisons of classification accuracy before and after FSIFW are shown in Figure 6.1 

and Figure 6.2, respectively. In both figures, the ‘NoSelection’ in blue bar denotes the overall 

classification accuracy with all features (without feature selection step), and ‘Filter-Wrapper’ in 

red bar represents accuracy that improved by FSIFW (with the proposed feature selection step). 

‘PrivacySVM’ denotes PAN-SVM, we used PAN-SVM as the classifier to preserve individual 

privacy, and ‘RegularSVM’ means no privacy aware, we use the popular SVM package of 

LIBSVM [77] as a regular SVM as a classifier. 

It can be seen from these figures, the classification accuracy of PAN-SVM is improved after 

executing the proposed algorithm of FSIFW for all of the six datasets no matter under which 

testing schema. The classification accuracy of LIBSVM is also improved for most of the cases, 

 

 

Figure 6.1. Classification accuracy improvement of PAN-SVM by FSIFW. 
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except for the Leukemia data under the CV1 testing scenario. As mentioned in the previous 

chapters, LIBSVM has the issue of overfitting, especially for the small dataset. It can achieve 

higher classification accuracy under CV1, which is why there is no obvious improvement after 

the feature selection step.  

 

Table 6.2. Classification accuracy improvements. 

  PrivacySVM  

CV2 

PrivacySVM  

CV1 

RegularSVM  

CV2 

RegularSVM 

 CV1 

DIA 3.39% 2.10% 4.86% 4.56% 

Ionosphere 0.35% 3.42% 5.18% 1.78% 

Colon 3.08% 8.00% 1.21% 7.70% 

WBC 2.47% 1.12% 3.82% 2.26% 

DLBCL 5.57% 10.95% 11.05% 9.54% 

Leukemia 8.57% 3.45% 1.43% -3.45% 

Sum 23.43% 29.04% 27.55% 22.39% 

 

 

 

Figure 6.2. Classification accuracy improvement of LIBSVM by FSIFW. 
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Table 6.2 also lists the improvements in accuracy achieved by PAN-SVM and LIBSVM 

under CV1 and CV2 scenario, from which we can observe that the classification accuracy can be 

improved as high as 11.05%, which demonstrates that the proposed algorithm of FSIFW is not 

only workable but also effective to enhance the classifier’s ability to predict unknown samples.  

6.3.4 Comparison with Other Methods 

6.3.4.1 Performance Comparison under CV1 and CV2  

Further comparison between the classification accuracies made by PAN-SVM is conducted to 

check whether there is any difference under CV1 and CV2 testing schema. The detail results are 

shown as in Figure 6.3 and Table 6.3, from which we can observe that before feature selection 

step the overall classification accuracies with all of the features are comparable for datasets DIA, 

Ionosphere, Colon, and WBC, but the classification performance of classifiers gets enhanced 

slightly under CV1 schema for datasets DLBCL and Leukemia.  

After the feature selection step by PPFSIFW, the classification accuracies are improved 

significantly for all of the datasets, no matter under which testing situation, but there is no 

obvious pattern found. The results described in Table 6.3 show a wider picture and illustrate that 

the accuracy can be improved higher under CV1 test condition. It makes sense because there 

exists ‘information leak’ during the feature selection step under CV1 test schema. 

Table 6.3. Classification accuracy improvement by PPFSIFW under CV1 and CV2. 

  CV2  CV1  CV2_# of feature CV1_# of feature 

DIA 3.39% 2.10% 4 4 

Ionosphere 0.35% 3.42% 2 8 

Colon 3.08% 8.00% 34 157 

WBC 2.47% 1.12% 10 4 

DLBCL 5.57% 10.95% 394 444 

Leukemia 8.57% 3.45% 537 631 

Sum 23.43% 29.04% 981 1248 
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6.3.4.2 Comparison of Classification Accuracy  

We also compare the proposed method in this chapter with other state-of-the-art methods, 

such as Fisher-SVM, FSV, RFE-SVM and KP-SVM [74, 78], the result data are selected from 

[78] and listed as in Table 6.4, where DIA, WBC and Colon are three common datasets in [78] 

and the current work. From Table 6.4, we can observe that the proposed method PPFSIFW 

outperforms the other methods for datasets DIA and WBC, which own few features and defeated 

by Fisher-SVM, RFE-SVM, and KP-SVM on Colon data with high dimensionality. The 

proposed feature selection algorithm of PPFSIFW is based on our previous work PAN-SVM [43], 

which encrypted the data to protect individual information and approximated the kernel matrix 

for reducing communication and computation cost, it is reasonable for accuracy sacrificed for 

some data.  

Table 6.4. Classification accuracy comparison among different methods. 

  

Dataset 

Fisher 

SVM 

FSV RFE 

SVM 

KP 

SVM 

PPFSIFW 

(CV2) 

PPFSIFW 

(CV1) 

DIA 76.42 76.58 76.56 76.74 79.87 78.86 

WBC 94.7 95.23 95.25 97.55 99.11 97.81 

Colon 87.46 92.03 92.52 96.57 85.00 90.00 

 
Figure 6.3. Classification Accuracy comparison achieved by PPFSIFW. 
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In chapter 5, we propose another privacy preserving feature selection via voted wrapper 

methods, named PPFSVW. In chapter 5, PPFSVW is assessed on six benchmark datasets and 

compared with other state-of-the-art methods of SVM-RFE, RSVM, and SVM-t. In this chapter, 

the PPFSIFW is proposed, and it shares the common classifier of PAN-SVM with PPFSVW 

aiming to protect individual privacy during the feature selection procedure. Different from 

PPFSVW, it integrates three popular filter methods of Fisher score, Welch-t-test and between 

verses within class scatter ratio together, and votes which features should be kept. The voted 

features then will be ranked according to their contributions to the classification accuracy of the 

classifiers. PPFSIFW integrates the advantages of filter methods, so it is much faster than 

traditional wrapper methods. In the voting step, PPFSIFW can filter and eliminate a significant 

number of features according to user-defined thresholds.  

In this chapter, we compare the selected features number by PPFSVW and PPFSIFW on the 

six benchmark datasets; details are shown as in Figure 6.4, which shows the classification 

accuracy of PAN-SVM after executing PPFSVW and PPFSIFW under CV2 (top figure) and 

CV1 (bottom figure), respectively. We can observe that both feature selection method can 

significantly enhance the classifier’s ability to predict, but they behave differently on different 

datasets under different test situations. Under CV2, PPFSIFW works better than PPFSVW on 

datasets DIA, WBC, and Leukemia. PPFSIFW works a little better for a dataset with enough 

sample size and few features, but a little poor on microarray dataset which normally contain 

small sample size but have high dimensionality. 

Table 6.5 lists more details about the classification accuracy improvement achieved by 

PPFSIFW and PPFSVW under CV1 and CV2 scenarios. From Table 6.5, it can be seen clearly 

that PPFSVW outperforms PPFSIFW in most cases. The classification accuracy achieved by 
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PPFSVW can be an improvement as high as 41.82% in total under CV2 and 39.99% in total 

under CV1, and they are 23.43% for PPFSIFW under CV2 and 29.04% under CV1. They are 

much lower than those obtained by PPFSVW. 

 

Table 6.5. Classification accuracy improvement achieved by PPFSIFW and PPFSVW. 

  Separate (CV2) Whole (CV1) 

  IFW VW IFW VW 

DIA 3.39% 2.86% 2.10% 3.37% 

Ionosphere 0.35% 2.91% 3.42% 3.27% 

Colon 3.08% 18.08% 8.00% 18.00% 

WBC 2.47% 0.00% 1.12% -0.23% 

DLBCL 5.57% 12.24% 10.95% 10.95% 

Leukemia 8.57% 5.72% 3.45% 4.64% 

Sum 23.43% 41.82% 29.04% 39.99% 

 

 

Figure 6.4. Accuracy comparison of PAN-SVM after executing PPFSIFW and 

PPFSVW. 
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6.3.4.3 Comparison of Selected Feature Number 

From the previous section, we know that PPFSVW outperforms PPFSIFW in most cases, 

which is reasonable, since filter methods are always independent of the classifier, and they 

usually a pre-process procedure; whereas, the wrapper methods usually involve in the training 

and classification process. Thus the classification accuracy can be improved more. In this 

section, the selected feature numbers by PPFSIFW and PPFSVW are compared, details are 

shown as in Table 6.6. Here the selected features mean a subset of features that together can 

make the classifier achieve highest classification accuracy. From Table 6.6 we can observe that 

PPFSIFW usually selected a subset with fewer features in most cases under CV2 and CV1, such 

as for datasets DIA, Ionosphere, Colon, WBC, and Leukemia. The sizes of selected features are 

much smaller for Leukemia data, which are 537 versus 4826 under CV2 and 631 versus 6039 

under CV1. Besides, the classification accuracy achieved by PPFSIFW is higher than that 

achieved by PPFSVW under CV2. It is hard to conclude that which method is better, PPFSIFW 

is faster and usually selects fewer features, while PPFSVW can achieve higher classification 

accuracy but with more features and slower.  

Table 6.6. Comparison of selected features by PPFSIFW and PPFSVW. 

  

  
Separate Whole 

IFW VW IFW VW 

DIA 4 5 4 5 

Ionosphere 2 17 8 10 

Colon 34 53 157 55 

WBC 10 11 4 18 

DLBCL 394 121 444 105 

Leukemia 537 4826 631 6039 

6.4 Conclusions 

In this chapter, we proposed a privacy preserving feature selection method via integrating the 

state-of-the-art methods of filter and wrapper (PPFSIFW).  PPFSIFW is based on our previous 
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work named PAN-SVM, which is a framework for privacy preserving for binary classification 

using SVM. Therefore, PPFSIFW inherits the privacy preserving property and workable for 

distributed data mining tasks which have the privacy issues.  

PPFSIFW integrates three filter methods, Fisher score, Welch-t-test and between versus 

within class scatter ratio. Features are firstly evaluated by the three measurements and then 

selected according to their scores. Features with scores that meet the predetermined thresholds of 

the three measurements will be voted, selected and kept for next step. Therefore, users can adjust 

the thresholds and decide about how many features should be chosen, a huge number of features 

can be removed at this step and sharply reduce the computation cost. The remained features will 

further be ranked according to the wrapper method of classification accuracy. PPFSIFW uses 

classification accuracy as the ranking criterion. During the ranking step, features will be picked 

up from the voted feature subset in order according to their negative affection to classifiers. If 

eliminating feature i can make classifier obtain higher classification accuracy than removing 

feature j; we say feature i has higher negative affection than feature j, therefore, feature i will be 

eliminated from the remaining list and put into the ranking list before feature j. At last, PPFSIFW 

will return a feature ranking list, with the most important feature on the top, and then the final 

selected feature subset can be decided from the ranking list, from top to bottom, how many 

features can make the classifier achieve highest classification accuracy.  

PPFSIFW is tested on six benchmark datasets, including three microarray datasets under two 

testing schema, CV1, and CV2. The experimental results show that PPFSIFW can significantly 

improve the classification performance by selecting informative features no matter under which 

testing environment. The classification performance improvement has no obvious pattern for 

different datasets when tested under CV1 and CV2, in overall, higher improvement can be 



96 

obtained under the CV1 testing scheme, but fewer features are selected under the CV2 testing 

situation when using a separate dataset as testing samples. 

The ability of PPFSIFW to enhance the classification performance of a classifier is also 

compared with other state-of-the-art methods of Fisher-SVM, FSV, RFE-SVM and KP-SVM [74, 

78]. PPFSIFW outperforms the other four methods on two datasets that have few features but 

defeated on the microarray dataset of Colon. Slight sacrifice on accuracy is acceptable for 

PPFSIFW, since it is based on PAN-SVM, which employs the Nystrom technique to 

approximate the kernel matrix in order to speed up the computation and communication for 

distributed mining. The most important difference of PPFSIFW from the other methods is that it 

can preserve individual privacy during the procedure of significantly improving the classifier 

accuracy. In future work, we will deploy PPFSIFW on cloud and scale it to much bigger and 

complex datasets.   
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7 CONCLUSIONS AND FUTURE WORK 

The privacy is a major concern for the distributed data mining applications. New sophisticated 

distributed data mining approaches with privacy issue aware are urgently needed. This work 

aims to design a framework with a serial of algorithms to keep a good state of equilibrium 

between privacy, accuracy, and efficiency of data mining algorithms. The new privacy 

preserving framework named PAN-SVM is proposed in chapter three. It is workable and 

efficient compared with other state-of-the-art methods based on testing results on 12 benchmark 

datasets. In chapter four, a privacy preserving multi-class classification method for horizontally 

distributed data, named PPM2C, is proposed. It follows the One-versus-All schema and employs 

PAN-SVM as the binary classifier; therefore it can guarantee the privacy. In chapter 5 and 6, two 

privacy preserving feature selection methods, say PPFSVW and PPFSIFW, are developed. 

PPFSVW integrates there popular wrapper methods of SVM-RFE, RSVM and SVM-t to achieve 

higher classification accuracy, and protect individual privacy. PPFSIFW integrates three popular 

filter methods of Fisher, Welch-t-test and between versus within class scatter ratio, and selects a 

temporary feature set via voting according to the three measurement scores to eliminate a large 

number of features and then rank the remaining features according to their contributions to 

classification accuracy. PPFSIFW works effectively on six benchmarks. It select a small 

relatively good feature subset more quickly than PPFSVW, but has lower classification accuracy 

than PPFSVW.  

The proposed algorithms PAN-SVM, PPM2C, PPFSVW, and PPFSIFW are workable and 

efficient. However, there are still a number of limitations. Such as in the proposed model of 

PAN-SVM, the secure sum protocol is used to transmit landmarks while maintaining data 

privacy; however, this protocol can be compromised if multiple data sources collude. For 
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example, data source 1iS   and 1iS   can determine the exact value sent from iS  by comparing the 

values that they send and receive. Also, the version of PAN-SVM used in testing is implemented 

in Matlab; memory limitations in Matlab limit it to datasets with millions of samples and 

features, so do the other three methods. To scale the proposed algorithms to real big data, we will 

deploy PAN-SVM, PPM2C, PPFSVW and PPFSIFW on the cloud. Besides, the k-secure sum 

protocol with zero probability of data leakage proposed in [88] will be used instead of the 

original secure sum protocol to make PAN-SVM more secure and efficient, thus no data will be 

disclosed.  

However, not all individuals equally concern about their privacy. For example, people may 

not regard the disease of flu as private, but HIV as very sensitive information. As a result, we 

may wish to treat the information in a given dataset very differently for an anonymous purpose. 

Besides this personalized anonymity, another interesting model [89] allows a person to specify 

the level of privacy for his or her sensitive information and has the advantage for direct 

protection of the sensitive values of individuals.  

  To a nutshell, the needs for distributed data mining with privacy preserving concerns are 

increasing. Examples may include that collaboration among corporations or agencies without 

divulging individual trade secrets. Even within a single multi-national corporation, sharing 

information may be restricted due to different cultures or national laws. This increasing need for 

privacy preserving distributed data mining will also require flexible solutions that can balance 

privacy, efficiency, and accuracy, as well as can be tailed for individual privacy needs for 

different distributed data mining tasks. The current PPDDM algorithms only assume that each 

party is honest, semi-honest or malicious. In fact, there are many real world scenarios where 

parties that participate in the secure protocol are “rational”. This assumption may affect the 
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PPDDM protocols and may make the algorithms more complex. Clearly, further research is 

needed to explore the effectiveness of the rational behavior in PPDDM.  
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