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ABSTRACT

The fingerprint is known to be unique in every individual, and there is evidence that

such individuality exists with the brain. Neuroimaging studies that research brain finger-

print patterns typically consider relationships between individuals and their brain patterns.

However, there remains a question as to how such fingerprint patterns can be grouped among

the general population. In this study, we implemented clustering-based methods to evaluate

whether such subgrouping exists among individuals and evaluated the relationships between

these clusters and individuals’ developmental, cognitive, demographical, psychological sta-

tus in the Adolescent Brain and Cognitive Development study cohort. Multiplex community

detection and K-means clustering revealed the existence of clusters in our cohort, as well as

significant group differences between these clusters in these datasets, indicative of heteroge-

neous subgrouping of brain fingerprint patterns in the general population.
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CHAPTER 1

INTRODUCTION

Evidence of “fingerprint” patterns of the brain have been found in previous studies with

brain structure, function, and signals. Brain anatomical features, “brain prints”, can be

differentiated between individuals for cortical thickness, area, and volume Valizadeh et al.

(2018). Functional brain connectivity profiles have been used for identification of individuals

and prediction of cognitive behavior Finn et al. (2015); Cai et al. (2021, 2020). Significant

group differences have been found between localized regions (“fingerprints”) of brain white

matter connectivity across monozygotic twins, dizygotic twins, non-twin siblings, and other

genetically unrelated subjects Yeh et al. (2016). These studies all indicate that individuals

can be characterized based on brain ”fingerprint” patterns. However, are there individuals

that share some commonalities? In other words, is there evidence of subgrouping of individ-

uals? Under the hypothesis that a natural subgrouping might exist in the general population

of children in terms of brain structure and function, which could partially underlie the het-

erogeneity in the brain responses to stimuli observed in fMRI data Fahle & Spang (2003),

we performed a pilot attempt to answer this question in this study.

The aim of this study is to investigate structural and functional neuroimaging features

with clustering methods to identify potential brain communities embedded in the general

population of children. We applied community detection which identifies dense groups of

nodes referred to as communities in graph networks Traag et al. (2019). Multiplex commu-

nity detection Magnani et al. (2021) identifies communities using multiple layers of graph
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networks on the same set of nodes. Another clustering method, K-means clustering, was also

applied for verification of communities, which involves the selection of k points as clustering

centers (centroids) iteratively Zhu et al. (2021).
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CHAPTER 2

METHODS

2.0.1 Cohort

The Adolescent Brain and Cognitive Development (ABCD) study, an ongoing longitudinal

study following a cohort of over 10 thousand children recruited at ages 9-10 Barch et al.

(2018) from 21 sites across the USA, has collected rich datasets ranging from genetics, en-

vironmental, physical and mental health, to cognition and brain MRI imaging. A total of

1,685 brain MRI-imaging derived features, including measures for white matter, structure,

stop signal task functional MRI (fMRI) activation, Resting-State fMRI network correlations,

Emotional N-Back task fMRI activation, white matter fractional anisotropy and mean diffu-

sivity, were provided by the ABCD study for a total of 7,371 subjects at baseline. Previous

studies have shown evidence of scanner effects for some of these features Hagler Jr et al.

(2019). To disentangle scanner effects in our analysis, we separated data based on the man-

ufacturer of the scanner. For the Siemens scanner, data from a total of 4,962 subjects are

further split into the discovery (3,473 subjects) and replication (1,489 subjects) sets. Data

from both GE and Philips scanners with 2,409 subjects form the 2nd replication set with

different scanners. Finally, the 2nd replication set combined with the 1st Siemens replica-

tion set forms the 3rd replication set for a large sample of 3,898 subjects. Each scanner set

was harmonized with ComBat Fortin et al. (2018) to remove the variance contributed by

collection site differences.

Cognitive assessments from NIH Toolbox Cognitive battery are used for analyses of group
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differences between different communities, including scores from the Picture Vocabulary

Task, Oral Reading Recognition Task, Flanker Task, Pattern Comparison Processing Speed

Test, and Picture Sequence Memory Test Thompson et al. (2019). Diagnostic assessment

from Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime version

(K-SADS-PL) are used for association analyses with depression, bipolar, psychosis, anxiety,

obsessive-compulsive disorder, eating disorder, attention deficit hyperactivity disorder, op-

positional defiant disorder, and autism Nishiyama et al. (2020). In addition, the pubertal

developmental scale Barch et al. (2018), the general psychopathology factor (p-factor) score

estimating individuals’ tendency to develop psychiatric disorders Farahdel et al. (2021), early

life stress score Thapaliya et al. (2021) summarizing physical abuse/trauma/sexual abuse,

household substance abuse, household mental illness, criminal in household, parent separa-

tion/divorce, emotional neglect, are also tested for association with clusters in this study.

2.0.2 Community Detection and K-means Clustering

A pairwise Pearson correlation matrix was first constructed by computing the Pearson cor-

relations for the 1,685 brain-imaging features between subjects. This correlation matrix was

used to construct two adjacency matrices for multiplex community detection: one for the

positive correlation layer and one for the negative correlation layer, each layer with equal

weights Traag & Bruggeman (2009). To construct the adjacency matrix, the correlations

were assigned a value of 1 if the absolute values were greater than 0.1 (approximately one

standard deviation from the mean) or assigned 0, otherwise. Communities are determined

based on the edges connecting the nodes by maximizing modularity computed as the differ-
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ence between the actual and expected number of edges in a community Traag et al. (2019).

The modularity ranges from 0 to 1 with a typical range of 0.3 to 0.7 Newman & Girvan

(2004).

Community detection is a method for identifying dense groups of nodes referred to as

communities in graph networks Traag et al. (2019). Multiplex community detection involves

a compact network model consisting of multiple layers of graphs which are formed from

graphs identified on the same set of nodes of interactions between the same type of entities

Magnani et al. (2021). Communities can be determined based on the weights of the links,

or edges, that connect the nodes, which can be positive or negative Traag & Bruggeman

(2009). Communities can be detected by optimizing modularity. Modularity is obtained

based on the maximizing the difference between the actual and expected number of edges in

a community Traag et al. (2019), and ranges from 0 to 1 (strong community structure) with

a typical range of 0.3 to 0.7 Newman & Girvan (2004).

Multiplex community detection with the Leiden algorithm using the leidenalg python

package Traag et al. (2019) and NetworkX Hagberg et al. (2008) for plotting was performed

on the discovery and replication sets with the positive and negative layers. To test the ro-

bustness of the results from the discovery set, we implemented community detection for 1000

runs with different initiations and obtained the average intersection between the obtained

communities. Furthermore, we also obtained the average intersection percentage between

clusters from community detection and clusters from K-means clustering over 1000 runs. K-

means clustering selected the same number of clusters as community detection using Pearson
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correlation as a distance metric.

Additionally, for replication purposes, K-means clustering using the means from the

communities of the discovery set as the centroids Pedregosa et al. (2011), (termed replication

K-means clustering) was performed on all 3 replication sets. The multiplex modularity of

these clusters was computed using the labels from the K-means results. We further compared

these multiplex modularity values with those derived with K-means clustering using random

centroids for 1000 runs.

2.0.3 Interpretation of Communities

To understand the impact of communities, we tested differences between communities in

terms of pubertal developmental status, sex, early life stress, general p factor score, as well

as K-SADS diagnostic status and cognitive assessments. Specifically, ANOVA and Tukey’s

multiple comparisons (α = 0.05) were performed for variables of pubertal developmental

status, early life stress, general p factor scores, and cognitive assessments. A chi-square test

of independence was applied to sex and K-SADS diagnostic data. We implemented these

analyses on the discovery set and all replication sets (replication K-means clustering results

used).

The general psychopathology dimension (also called the p factor) is derived from a broad

range of symptomatic measures, along with two or three other specific dimensions as latent

factors in a bifactor model verified by confirmatory factor analysis Caspi et al. (2014). Con-

firmatory factor analysis was used to verify a proposed or hypothesized model presented as

factor structures. As suggested in previous studies Caspi et al. (2014); Bornovalova et al.
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(2020), we hypothesized a bifactor model which included three latent factors: general p fac-

tor model, internalizing and externalizing factors within broad spectral behavioral measures

Farahdel et al. (2021). In our model, the three latent factors (general p, internalizing, and

externalizing factors) were uncorrelated and had unique variances, and included the ABCD

Child Behavior Checklist (CBCL) subscale scores as the inputs. The general p factor scores

were extracted for our subjects using this model.

We explored brain differences between the communities using the original brain-imaging

features and the principal components of imaging features for both the discovery and replica-

tion sets. In the discovery set, pairwise t-tests were first performed between each community

for each of the 1,685 features. PCA Pedregosa et al. (2011) was applied to the features to

reduce the dimensionality to 100 principal components (PCs) (≥ 65% variance explained).

Pairwise t-tests were then implemented between communities for each PC. To decide the

contributing features for each PC, PCA weights were standardized using the Z-score method

and the contributing features for each PC were determined as features that had absolute

z-scores above two standard deviations. PCA weights of the discovery set were used to

transform the replication datasets to PCs. ANOVA and Tukey’s multiple comparisons were

implemented onto the PCs of replication sets.

T-Distributed Stochastic Neighbor Embedding (t-SNE) Pedregosa et al. (2011) was ap-

plied to the discovery and replication sets to reduce the dimensionality of the top five PCs

to obtain a three-dimensional visual representation.
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CHAPTER 3

RESULTS

3.0.1 Community Detection and K-means Clustering

Community detection on the discovery set resulted in 4 communities with the multiplex

modularity score of 0.495. Each community is labeled with a specific color code [Fig. 3.1], and

the percentages of subjects in each community were 29.00% for blue, 25.34% for green, 24.42%

for red, and 21.25% for yellow. The intersection percentage of each community from 1000

random initiation runs were approximately 80% for the red, green, and blue communities,

while both three or four communities were detected. About half of the runs resulted in

detection of the yellow community with an average percent intersection of approximately

60%. The intersection percentage between the communities from community detection and

communities from K-means clustering with four initial cluster centers out of 1000 runs was

approximately 70% for each community. Community detection on the Siemens replication

set resulted in three communities and the percentages of subjects in each community were

38.15% blue, 35.66% green, and 26.19% red, with a multiplex modularity of 0.526.

Replication K-means clustering resulted in the following percentages for each community

in the Siemens replication set: 29.08% blue, 26.86% green, 26.66% red, and 17.39% yellow

[Fig. 3.1] with a multiplex modularity of 0.503. The multiplex modularity values of K-

means clustering with random centroids was less than 0.503 for all 1000 runs. For the 2nd

replication set, the percentages of each community were 28.97% blue, 22.75% green, 25.45%

red, and 22.83% yellow with a multiplex modularity of 0.427. For the 3rd replication set the
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percentages of each community were 29.09% blue, 24.24% green, 25.91% red, and 20.75%

yellow with a multiplex modularity of 0.467.

Discovery Replication

Figure 3.1 Communities in the Discovery and K-means Replication set

3.0.2 Interpretation of Communities

The results of the ANOVA for the general p factor scores were not significant for the discovery

and the 2nd replication sets. Figure 3.2 shows results from the 1st and 3rd replication sets,

where the red community was found to be significantly greater than the blue community.

Across communities, there were significant sex differences in all discovery and replication

sets [Tab. 3.1]. For the pairwise comparisons, except the blue and yellow communities in the

1st replication set, all other pairs showed different sex distributions. The green community

had significantly more males, the red community had significantly more females, while the

blue community had almost equal females and males.
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Figure 3.2 Multiple Comparisons Interval Plots (95% CI) of the General p Factor

Table 3.1 Percentage of males in each community

Disc. Rep. 2nd rep. 3rd rep.
(GE, Philips) (GE, Philips, Rep.)

Blue 49.45 ns50.34 49.71 49.91
Green 65.00 66.49 64.04 65.10
Red 31.74 31.47 27.90 29.41
Yellow 54.87 ns57.56 57.64 57.59

ns means No Significance between indicated clusters (all
other differences are significant).
Disc. is Discovery and Rep. is replication.

For the male pubertal developmental status, the ANOVA tests were significant for dis-

covery set and the 2nd and 3rd replication sets. Multiple comparisons showed significant

differences between the blue and green, and red and green communities of the Discovery set

[Fig. 3.3]. For the female pubertal developmental status, ANOVA tests were only significant

in the discovery set, where the blue community showed significantly higher values than the

green community [Fig. 3.3].

In the replication, 2nd and 3rd replication sets, the red community had consistently lower

scores than all other communities for the Flanker Task, and the blue community was found to



11

have higher scores than all other communities with the Pattern Comparison Speed Processing

Test [Fig. 3.4].

Figure 3.3 Multiple Comparisons Interval Plots (95% CI) of Male and Female Pubertal
Developmental Status

Figure 3.4 Multiple Comparisons Interval Plots (95% CI) of the Flanker Task and Pattern
Comparison Processing Speed Test



12

For Picture Vocabulary, Oral Reading, and Picture Sequence Memory tests, there were

significant differences across all communities except for the Picture Sequence Memory assess-

ment scores in the 2nd and 3rd replication sets. As shown in Figure 3.5, the red community

has consistently lower scores than the other communities in all three assessments and all

datasets except the Picture Sequence Memory assessment scores in the 2nd replication set.

Figure 3.5 Multiple Comparisons Interval Plots (95% CI) of the Picture Vocabulary, Oral
Reading, and Picture Sequence Memory Tests

The ANOVA tests showed significant differences between communities for age and early

life stress scores for all datasets. Multiple comparisons were performed and plotted in Figure

3.6. The chi-square test for the K-SADS-PL assessments reported no significant differences.
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Figure 3.6 Multiple Comparisons Interval Plots (95% CI) of Age, Early Life Stress

For visual presentation purposes, t-SNE was applied to the top five PCs and visualized

in three dimensions of embedded space shown in Figure 3.7. There is some overlap between

clusters.

Discovery Replication

Figure 3.7 Three dimensions of the t-SNE Embedded Space
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For the brain features associated with each community, pairwise t-tests on the original

feature space showed that greater than 30% of features had significant differences between

communities in the discovery set for each pair (α = 0.05, Bonferroni correction = 0.05/1685 =

2.97E-5). Given the large amount of significant differences with the original features, further

analysis was done on the principal components. Pairwise t-tests on the 100 PCs revealed

that 6 to 10 PCs had significant differences between each community pair with α = 0.05/100

= 0.0005 in the discovery set. The comparison of the first five PCs across communities of

the discovery set are shown in Figure 3.8. For all significant differences, the relative order of

communities remained unchanged between the discovery and replication sets within each of

the corresponding five PCs.

For example, the yellow community had the highest mean in PC 1 of the discovery set as

well as in PC 1 for all replication sets, and the green community had the lowest mean in PC

2 for the discovery and each of the replication sets. There were significant differences in all

PCs except between the blue and green communities of PC 1 in the 1st replication set, and

between the blue and yellow communities in PC 5 for the discovery and all of the replication

sets. The top feature variables in these principal components were derived from brain white

matter, EN-back, SST, cortical area, and cortical thickness [Tab. 3.2].
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Figure 3.8 Multiple Comparisons Interval Plots (95% CI) of the Scores from each PC
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Table 3.2 Contributing features for the top five PCs

PC ABCD Imaging Feature Type Top Feature Variables

1 EN-back (0-back, 2-back, place, emo-
tion) APARC ROI

Posterior cingulate, precuneus, insula

White matter (fractional anisotropy)
Destrieux ROI

Superior frontal gyrus, superior tempo-
ral sulcus, middle frontal gyrus

2 SST (Correct Stop vs. Correct Go con-
trast) Destrieux ROI

Supramarginal gyrus, opercular part
of the inferior frontal gyrus, superior
frontal sulcus

SST (Incorrect Stop vs. Correct Go
contrast) Destrieux ROI

Inferior temporal gyrus, anterior trans-
verse collateral sulcus, parahippocam-
pal gyrus

White matter (fractional anisotropy)
Destrieux ROI

Precuneus, superior parietal lobule,
cuneus

3 White matter (fractional anisotropy)
Destrieux ROI

Superior parietal lobule, intraparietal
sulcus and transverse parietal sulci, su-
perior frontal gyrus

EN-back (0-back, 2-back, place, emo-
tion) APARC ROI

Posterior cingulate, caudal anterior cin-
gulate, precuneus

White matter (mean diffusivity) De-
strieux ROI

Central sulcus, cuneus, middle occipital
sulcus and lunatus sulcus

4 White matter (fractional anisotropy)
Destrieux ROI

Orbital gyri, middle frontal sulcus,
middle temporal gyrus

Cortical Thickness Destrieux ROI Superior temporal sulcus, superior
parietal lobule, superior frontal gyrus

5 EN-Back (0-back, place) APARC ROI Paracentral, caudal anterior cingulate,
lateral occipital

EN-Back (2-back vs. 0-back, 2-back)
APARC ROI, 2-back vs. 0-back ASEG
ROI

Right caudate, caudal anterior cingu-
late, posterior cingulate

Cortical Area Destrieux ROI Superior frontal gyrus, anterior part of
the cingulate gyrus and sulcus, orbital
gyri

Blue-colored rows represent features with positive weights. Red-colored rows represent
features with negative weights.
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CHAPTER 4

DISCUSSION

In a population of a healthy cohort of children ages 9-10, where we would typically assume

no significant heterogeneity in brain structure and function, we found evidence of heteroge-

neous subgrouping based on the children’s brain imaging derived features, indicating that

brain “fingerprint” patterns can be grouped between individuals. In the discovery set, four

communities were detected from community detection with graph networks formed from

pairwise Pearson correlations between 1,685 brain imaging features among subjects. The

multiplex modularity was around 0.5 for all graph networks labeled based on community

detection or K-means clustering, indicating a moderate cohesion between the clusters of

each network. Further investigation revealed that there were large amounts of significant

differences between the communities from the t-tests of the 100 principal components as well

as the original feature space of the discovery set. Additionally, in the top five principal com-

ponents, there were significant differences between all clusters except for the blue and yellow

community in the fifth principal component. Visualization of the t-SNE three-dimensional

embedded space illustrated that the clusters are visually distinct with some overlap.

Most of the contributing features in the top five PCs are from brain white matter, es-

pecially in the PCs with the most negative contributions. Brain white matter is known to

be highly unique between individuals and has been used as a local connectome fingerprint

Yeh et al. (2016). Brain imaging features from EN-back task were also commonly associated

with top PCs. EN-back fMRI is mainly used to measure working memory and emotional
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processing. Previous research has shown evidence of functional connectome fingerprinting

in predicting cognitive behavior Finn et al. (2015). These results are in line with significant

differences found in cognitive assessments between the communities, specifically in picture

vocabulary and reading test scores for all datasets.

Further investigation into our findings reveals some patterns that are specific to commu-

nities. For example, the red community was found to have significantly lower scores in the

cognitive assessments and higher scores in early life stress than other communities (some

differences were not significant). Moreover, the red community also had significantly higher

values than most communities for male pubertal developmental status, indicating higher lev-

els of maturity. We would expect higher early life stress with lower scores on the cognitive

assessments based on previous research involving the association of cognitive decline with

increased psychopathology Krugers & Joëls (2014). The red community also was found to

have higher general p factor scores than the blue community for the replication and 2nd

replication sets. Higher early life stress has been found to be associated with increased risk

of developing psychopathology Krugers & Joëls (2014). The red community also had signifi-

cantly higher scores than other communities in the 5th PC, indicating the key involvement of

brain structure and functional features of the cingulate. The blue community had the highest

age, Pattern Comparison Processing Speed Test scores, and modest pubertal developmental

status. It also had the highest scores in the 3rd and 4th PCs, which are predominantly asso-

ciated with brain white matter features and cortical thickness. Cortical thinning and white

matter maturation are associated with brain development Tamnes et al. (2010). The green
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community was found to have relatively higher cognitive assessment scores, lower early life

stress scores, younger ages, and lower pubertal developmental status (though some of the

differences may not be significant). The green community also has the lowest scores in the

2nd PC. The yellow community that had the highest scores in 1st and 2nd PCs was found

to have lower pubertal developmental status, higher cognitive assessment scores, and lower

early life stress scores (some differences were not significant). Overall, in all the differences

that were significant, there were no differences in the order of the clusters between each

scanner dataset, indicating that there was no evidence of scanner effects.
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CHAPTER 5

CONCLUSION

We found evidence of heterogeneous subgrouping based on children’s brain features, indi-

cating that brain fingerprint patterns can be grouped between individuals. Future studies

should consider further investigation into this subgrouping, as well as ways to account for

this heterogeneity.
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