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ABSTRACT

THREE ESSAYS ON SOCIAL ISSUES IN EXPERIMENTAL ECONOMICS

By

DANIEL J. LEE

AUGUST, 2016

Committee Chair: Dr. Susan K. Laury

Major Department: Economics

This dissertation consists of three essays, all of which use the toolbox of experimental

methods to explore behavioral issues that fall out of the concepts of human capital and

public economics. The essays examine how an individual alters her behaviors in response to

changes in price, information, and social pressures. Understanding these behavioral changes

can help us to better explore the pathways that can then inform optimal policy design.

The first essay, Racial Bias and the Validity of the Implicit Association Test, examines

Implicit Bias from an economic standpoint. Implicit associations and biases are carried

without awareness of conscious direction. In this paper, I develop a model to study giving

behaviors under conditions of implicit bias. I test this model by implementing a novel

laboratory experiment—a Dictator Game with sorting to study both these giving behaviors,

as well as a subject’s willingness to be exposed to a giving environment. In doing so, I

adapt the Implicit Association Test (IAT), commonplace in other social sciences, for use

in economics experiments. I then compare IAT score to dictator giving and sorting as a

necessary test of its validity. I find that the presence of sorting environments identify a

reluctance to share and negatively predict giving. However, despite the IAT’s ever-growing

popularity, it fails to predict even simple economic behaviors such as dictator giving. These

results are indicative that implicit bias fails to overcome selfish interests and thus the IAT

lacks external validity.

In the second essay, Will Girls be Girls? Risk Taking and Competition in an All-Girls

School my coauthors and I conduct an experiment that tests the effect that all-girl schooling



has on risk taking and competitive behavior. In it, we compare decisions made by students

in an all-girls school to those made by students in a closely matched co-educational school.

We further investigate the developmental nature of this behavior by comparing choices made

by younger students (Grades 7-8) with those of older students (Grades 11-12). By focusing

on the structural differences between those who select into the all-girls’ school, we find that

although girls educated in a single-gender environment are the most risk averse, they are also

among the most competitive. These results lend support to the hypothesis that “nurture

matters” in the gender differences debate.

Finally, I discuss an essay on charitable giving, entitled The Richness of Giving: Charity

Selection and Charitable Gifts in a Large Field Experiment. It builds on previous work in

the charitable giving literature by examining not only how much subjects give to charity,

but also which charities subjects prefer. This choice is operationalized in an artefactual

field experiment with a representative sample of respondents. These data are then used to

structurally model motives for giving. The novelty of this design allows me to ask several

interesting questions regarding the choices one undertakes when deciding both whether and

how much to give to charity. Further, I ask these questions in the context of a standard

utility framework. Given the unique set up of this experiment, I also explore how these

distributional preference parameters differ by charity choice and from what we have observed

in the past. I find that there is more variation within demographics and charity types than

across distributions.

I close with a brief summary and personal reflection.
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Chapter I

Racial Bias and the Validity of the

Implicit Association Test

I.1 Introduction

The Center for American Progress estimates the costs of discrimination at $64 Billion per

year or roughly 2 million annually displaced American workers (Burns, 2012). Discrimination

is clearly costly. It is, almost universally, a unique and puzzling issue. And yet, though its

existence is widely acknowledged, it is rarely discussed publicly. In particular, in Becker’s

(1957) model of taste-based discrimination, animus is not only morally reprehensible, but also

damaging to both social welfare and efficiency as animus necessarily burns money. However,

evidence of animus is rarely observed in either naturally occurring data or field and laboratory

experiments. This is perhaps due to the nature of such experiments, which tend to focus on

non-visceral or unaroused decision making (cold-phase) when intuition dictates that personal

distaste is more likely to be expressed in hotter-phase decisions.

This paper speaks to a recent trend in the social social sciences–the claim that discrim-

ination from animus stems from implicit biases and associations. The concept of implicit

bias suggests that subtle cognitive processes govern our behavior. As a result, implicit biases
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are those that we carry without awareness of conscious direction (Kang, 2009). The devel-

opment of the Implicit Association Test (IAT henceforth, discussed further below) has lent

support to these claims by introducing a tractable measure of these implicit biases without

having to rely on self-reporting mechanisms, which are known to be unreliable. The IAT

is essentially several timed sorting tasks. In it, subjects match features, such as faces, to

highly and lowly associated attributes, such as good or bad words. Allegedly, it is easier for

an experimental subject to sort any feature with its more closely associated attributes. For

instance, a picture of a chair is more closely associated with a word “furniture” than a word

“food”, and hence more likely to be sorted faster as such. Thus, it is through this primitive

of differential timing that one reveals his or her implicit biases.

There is some common-sense validation to this argument. Frequently cited examples of

these biases in decision making are men being more associated with management or white

faces being more associated with pleasant words and feelings. As economists, we can think

of these biases as coming through on the hot-phase of our decision-making process. However,

to act on these biases in an IAT is costless, and can be thought of as a cheap-talk action.

Furthermore, there has yet to be an in-depth economics experiment to test the validity of

the IAT.

Regardless, meta-analyses seem to illustrate that these biases persist, (Bertrand et al.,

2005; Greenwald et al., 2009) but should we care, and if so, to what extent? The relevant

question isnt merely one of existence, but whether an individual is both willing and able to

act on these biases (e.g. in the case of a giving decision). To quote Dr. James Heckman,

“The authors of these [discrimination] papers focus on the question of whether society is

color blind, not on the specific question of whether there is market discrimination in realized

transactions” (Heckman, 1998).

Given this critique and the damaging effects of bias, we want to know whether a well-

functioning market can overcome implicit bias, or if it is robust to market interaction. Unfor-

tunately, there appears to be some evidence that implicit bias is robust. For instance, Price
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and Wolfers (2010) claim that, due to the split-second nature of the occupation, implicit

biases can explain their findings of discriminatory behaviors in NBA referees. This behavior

and similar ones suggest a role for the IAT in economic research. What we first need, there-

fore, is a clean experimental test to see if implicit bias can predict economic behaviors. That

is, is the IAT measuring the bias it claims to, and if so, does that bias influence behavior?

In this paper, I take a necessary first step in this line of research by writing a model

of giving under implicit bias. I then conduct a laboratory experiment that examines the

extent to which these IAT scores co-move with pro-social (giving) behaviors. Additionally,

I allow subjects to sort in and out of giving environments to better identify the biases of

different sharers and how they manifest in the market. I focus on giving behaviors because

of a growing body of work in the social sciences discusses the relationship between bias and

giving behaviors (Triplett, 2012). Furthermore giving behaviors are both non-strategic and

non-spontaneous, and therefore easily controlled by the subject.

This chapter proceeds as follows: The next section provides background on the IAT and

relevant literature. Section 3 describes my model. Section 4 outlines the experiment and

describes the data. Sections 5 through 7 present and discuss the results. A final section

concludes.

I.2 Background

I.2.1 The IAT

Bias cannot be randomly assigned, so the question remains, how can we measure it,

particularly when we may be unaware of the biases we hold? Describing implicit bias as

automatic, and analogizing the mechanics of it to those of a reflex, social psychologists

Greenwald, McGhee, and Schwartz first claimed to be able to test for it using their Implicit
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Association Test, introduced in 1998. The test is explained in their seminal paper as follows1:

An implicit association test (IAT) measures differential association of 2 target

concepts with an attribute. The 2 concepts appear in a 2-choice task (e.g., flower

vs. insect names), and the attribute in a 2nd task (e.g., pleasant vs. unpleasant

words for an evaluation attribute). When instructions oblige highly associated

categories (e.g., flower + pleasant) to share a response key, performance is faster

than when less associated categories (e.g., insect + pleasant) share a key. (Green-

wald et al., 1998)

Though screenshots of the IAT tasks are presented in Appendix A, this description merits

further discussion. The reader will note that at its core, the IAT is essentially four (timed)

sorting tasks. The first two tasks, also known as the “2-choice” tasks, are relatively simple,

requiring the subject to sort either concepts or evaluation attributes. In this paper, I utilize

a race (Black-White) IAT which has yet to be used in economics literature, despite the fact

that black-white relations remain one of society’s most divisive issues.

Here, the measure of interest is implicit racial bias. Concepts in the 2-choice task are

pictures of (black and white) faces, while the attributes are are (good and bad) words2. To

further illustrate, in the 2-choice tasks a subject may be asked to sort black faces on the left

and white faces on the right. Similarly, another 2-choice task would be sorting associated

attributes, in this case sorting good words on one side, and bad words on the other.

The other two stages combine these two sorting tasks in a “shared-response task”. Here

the IAT might say good words AND white faces on the left. In this case either a face or a

word will show up and you sort it accordingly. Then the task flips the association to say good

words AND black faces on the left. This is a key distinction because the test is not eliciting

a matching or opinion from subjects. Rather, this is simply a joint sorting task, designed to

1It may be difficult to visualize the assessment from this description alone, for further understanding I
recommend visiting Project Implicit R© at http://implicit.harvard.edu.

2examples of good words: Joy, Love, Peace, Wonderful, Pleasure, Glorious, Laughter, Happy ; examples
of bad words: Agony, Terrible, Horrible, Nasty, Evil, Awful, Failure, Hurt.
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measure the strength of the association between concept and attribute. While this concept

of associations may seem foreign to economists, it actually finds its roots in early utilitarian

philosophies, wherein people seek not pleasure itself, but rather the objects associated with

those pleasures (Mill, 1869). Table I.1 shows the the progression of IAT tasks.

Table I.1: Progression of IAT Tasks

Stage Name Description

Stage 1 Image Stimulus
Learning Trial

In this trial, the custom stimulus
(either images, when present, or
custom words) will be presented
and paired with the response to
either the ’e’ or ’i’ key.

Stage 2 Word Stimulus
Learning Trial

Most IATs that assess preference or
stereotypes use positive or negative
words as the associative stimuli. In
this second trial, these words are
presented.

Stage 3 Paired Test Trial #1 Stage 3 pairs the associations
learned in Stages 1 and 2 and ran-
domly presents a stimulus sampled
from either of those sets of stimuli.

Stage 4 Reverse Image or Word
Stimulus Learning Trial

Stage 4 is identical to Stage 1,
except that the associations are
learned with the opposite hand.

Stage 5 Paired Test Trial #2 Stage 5 combines the associations
learned in Stages 2 and 4.

Source: Meade (2009)

These IAT tasks are conducted at a computer terminal where responses are measured

by keystroke (e.g. E for left, I for right). The testing experience is comparable to a human

player interacting with a computer game. Empirical evidence has shown that the latent

sorting time of black faces and good words in the same column is longer than it is with white

faces and good words.

The standard scoring metric for the IAT is known as the D-Score (Greenwald et al.,

2003). It is similar to Cohen’s measure for effect size, d, and is calculated as the difference

mean latencies within test blocks divided by the standard deviation of latencies across test
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blocks. For the purposes of IAT scoring only paired trials (stages 3 and 5 in this experiment)

are considered test blocks3. The equation for this D-Score is illustrated in equation I.1 below:

D =
x3 − x5

SD3&5

(I.1)

Accordingly, the D-score can be either positive or negative. In the case of a Black-White

IAT, a positive score indicates a positive (automatic) preference for whites, and vice-versa

for a negative score4. A score of zero indicates little or no preference. The authors fur-

ther classify and interpret D-scores using the conventional measures for effect size (Cohen,

2013), with break points at ±0.15, 0.35, 0.65 for ‘slight’, ‘moderate’, and ‘strong’ associations,

respectively.

These authors and others have then used the IAT to make several claims. For instance,

these differences in latent sorting speed (and resulting D-scores) are measurements of im-

plicit bias (i.e. the strengths of the associations we hold) and these biases are persistent–with

extant anti-black biases even among minority groups (Nosek et al., 2002)! These are inter-

esting claims, with the benefit that if true, we can observe a personal bias which people may

not know, or may be unwilling to divulge. However, the claims are also dubious. While it is

understandable why the IAT and similar tests use the primitive of timing, we need something

stronger and more applicable in order to draw economic conclusions. As such, I ask what

is the IAT actually measuring? For instance, Norton et al. (2012) suggest not wanting to

appear biased (or wanting to appear race neutral) can cause a “race-paralysis” in this sort

of task.

My critique is twofold, in that questions of both internal and external validity remain

unanswered. Internally, consider the case of someone who may be particularly biased, but

also finds sorting tasks enjoyable. Inversely, consider a subject who is unbiased but maladroit

at sorting. Do we expect this sorting ability (or lack thereof) to offset the time differential?

3See e.g. table I.1.
4My critique notwithstanding, in this paper I will continue to use the terminology of preferences so as to

remain consistent with the literature.
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I formalize this aspect of my critique by adapting the notation of Borghans et al. (2008):

Ti,IAT = hi(fi, Vi) (I.2)

Let Ti,IAT denote person i’s performance on the IAT task. Output in this task is generated

by an individuals implicit associations, fi, as well as Vi, a vector of other determinants of

task productivity, such as sorting ability.

Now consider, without loss of generality, the case of two individuals, i and j, with

equivalent biases and productivity functions, yet one is better at sorting. That is fi = fj,

and Vi > Vj, implying differential task performance hi(fi, Vi) > hj(fi, Vj)⇒ Ti,IAT > Tj,IAT .

When we allow for heterogeneity in either the bias or the production function (or both) it

becomes evident that implicit bias remains unidentified.

Further, some may be quick to point out that these subjects are unmotivated. As Grether

and Plott (1979) note, this lack of motivation can be a true cause for concern in the validity

of psychology experiments. However, when the outcome of interest is cheap talk (as in the

IAT), unmotivated subjects may still be valid. The question of interest, which remains to

be answered, is whether or not this IAT cheap talk predicts bias in marketplace behaviors.

That is, is the IAT mapping into economically relevant decisions—is it externally valid? If

so, what are the dosage implications? That is how much more do severe levels of implicit

bias map into these decisions as opposed to moderate or even slight bias?

I.2.2 Literature Review

As such, the true rub lies within the application of this test. Several studies suggest we

should be interested in implicit bias by claiming that it has an effect on economic decision-

making5. Again, Price and Wolfers (2010) argue implicit bias explains discriminatory behav-

ior amongst NBA referees, although they do not use an IAT explicitly. Select few studies in

5For a more thorough review of the recent psychology and management literature regarding the IAT see
Jost et al. (2009).
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economics do. Of them, Lowes et al. (2015) find evidence of ethnic homophily while Reuben

et al. (2014) and Rooth (2010) find predictive evidence of negative hiring conditions. The

former uses an experimental labor market for women in STEM fields, and the latter uses a

correspondence study with an IAT follow-up. It finds that implicitly associated stereotypes

(e.g. Arabs are lazy) forecast interview callbacks in Sweden. However, none of these papers

use a Race IAT, which is the standard and most common. The alleged interaction between

implicit bias and labor market decisions suggests a role for further economic analysis in other

areas of decision-making, such as pro-social behavior.

Thus far, the economic study of bias has primarily dealt with competitive models–those

in which individuals optimize their own behavior. These models date back to Becker (1957)

as well as Phelps and Arrow (1972; 1973, respectively) who developed models relating taste-

based (preferential) and statistical (informational) bias, respectively. Since these two models

have different policy implications it is particularly important to properly identify the chan-

nels of bias. Briefly, in Becker’s model employers may experience a disutility from hiring

minority workers. Consequently, these workers may have to accept lower wages or similarly

increase productivity to ‘compensate’ employers in-kind for this bias6. In Arrow’s model

firms have limited information about potential employees and are forced to infer produc-

tivity information from primitive observables. In the following discussion, I will talk about

discrimination as resulting from these biases.

In this vein of “primitive observables” our natural inclination as economists to identify the

effects of bias is to plug some outcome of interest (e.g. wages, employment) into a regression

with some likely covariates (e.g. sex, race), control for as many factors as possible, and

interpret the results, or relegate bias to a residual. Comprehensive works by both Yinger

(1998) and Altonji and Blank (1999) review this regression model of identification. The

consensus is that there are markets in which discrimination both exists and is prevalent.

The empirical challenges in these studies, however, are twofold. First, with these reduced-

6This does not necessarily imply an absence of discrimination, although with enough unbiased employers,
discrimination can be competed away.
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form models, we cannot identify the causal pathways for this discrimination (such as implicit

cognition). Secondly, the observed outcomes may be severely biased due to missing data.

Charles and Guryan (2011) further critique this regression approach by asking what is the

ideal experiment the regressions are mimicking.

In this sense, a natural solution to these shortcomings is to run experiments. A popular

method in this research has been fictitious tests in the form of either audit or correspon-

dence studies. Both audit studies, which use trained testers (e.g. Gneezy et al., 2012) and

correspondence studies, which use fabricated paper applications (e.g. Bertrand and Mul-

lainathan, 2004; Hanson and Hawley, 2011; Hanson et al., 2011) provide further evidence of

the existence of discrimination, though they are largely silent on the magnitude of the effect.

In this paper, I help to identify the magnitude (or lack thereof) of any differential treatment.

Furthermore, both audit and correspondence studies have the potential to produce spurious

evidence of discrimination (Neumark, 2012), and are subject to the Heckman (1998) critique

of auditor influence and inferences drawn that are based on otherwise unobservable factors.

These critiques suggest a role for other field and laboratory experiments. Evidence for

bias is consistently found in the field. Furthermore, this evidence is persistent across a wide-

variety of circumstances and domains, from excessive in-group cooperation amongst kibbutz

members, when compared to Israeli city-dwellers (Ruffle and Sosis, 2006) to Pigouvian price

discrimination amongst sports card traders (List, 2004).

However, laboratory experiments have not yet found significant consensus regarding the

presence of bias, and an open question is the role of implicit bias. Several of these studies use

the methodology of a Voluntary Contribution Mechanism (VCM henceforth) public goods

game (Brown-Kruse and Hummels, 1993; Cadsby and Maynes, 1998; Solow and Kirkwood,

2002; Castillo and Petrie, 2010). An outstanding issue is that VCM games study group

behavior and are not reflective of the one-on-one interactions of the audit and correspondence

studies described above. Furthermore, laboratory experiments should be more reflective of

the discriminatory practices that we view to be most damaging to society and welfare. In
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this vein we consider experiments that incorporate power asymmetries that a standard VCM

game lacks, to mimic realms where bias is most present.

In response, several studies of note that have used 2-player games to measure discrimi-

nation. To study discrimination in culture, Ferraro and Cummings (2007) use the standard

ultimatum game with Hispanic and Navajo subjects in New Mexico. They find significantly

different behavior between the two groups. Furthermore, by eliciting subjective beliefs they

claim these different behaviors are indicative of statistical discrimination. Similarly, Fer-

shtman and Gneezy (2001) use a paired design to test for and disentangle channels of dis-

crimination in Israeli society. In their experiment, significantly less money was passed to

male Jews of Eastern origin in a trust game. However, this result was not replicated with a

dictator game, indicating statistical discrimination.

Slonim and Guillen (2010) use the design of a trust game to detect gender discrimination.

Further, to disentangle possible effects they include a treatment that allows for partner

selection. They find (almost) no discrimination without selection but significant taste-based

discrimination with selection. Finally, Eckel and Petrie (2011) use a trust game with a costly

option to see your partner’s picture and find both a demand for pictures, and increased first-

mover earnings under pictures.

These 2-player designs allow for much cleaner identification than the group play of a VCM

design, particularly when sorting or selection is used as a treatment cell7. The problem is this

set of games still involves strategic interactions. Thus, instead of trust or ultimatum, I find

a dictator game (the unique elements of which are described below) to be more appropriate

to studying bias in pro-social behavior. Here, since the second player is passive, any giving

is non-strategic and differences in giving can only be due to discrimination. This is discussed

further in the section on experimental design below. In his review of the dictator game

literature, Camerer (2003) notes that we tend to observe 10-30% of passed endowments.

These rates are problematic if they are only artefactual of the lab, and could be indicative

7Sorting refers to opting out of playing, whereas selection refers to picking ones partner.
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of experimenter demand effects or privacy concerns.

One check on the observed rates is to allow subjects to sort out of dictator giving, that

is offering dictators a potentially different payoff, $w′, to not play the dictator game (i.e.

allocate $w). There are three notable papers that address sorting, and thereby motives

for giving. In Dana et al. (2006) one third of subjects opted to take a private $9 payoff

instead of playing a $10 dictator game. Broberg et al. (2007) extend this design by eliciting

a subject’s willingness to pay to exit using a BDM mechanism. They find more subjects are

willing to exit, and for higher prices. Finally, and serving as the inspiration for this design,

Lazear et al. (2012) (LMW henceforth) examine both costly (exit) and subsidized (entrance)

sorting. Using a framework of social preferences, they find that sorting not only affects how

many people share, but also what kinds of people share.

Though not yet used to examine bias, the motives for giving argument and the particulars

of a sorting design apply nicely to this field of inquiry. It is my intent to describe these kinds

of people not only by their giving behaviors, but potentially by their implicit biases as

well. Further, I examine how these biases affect their decisions. This naturally follows from

the behavioral finding that subjects are more likely to opt out of cross-race environments

necessitating a judgment of racial characteristics relevant to common stereotypes (Norton

et al., 2012).

In addition to addressing the above problems, this paper contributes to the literature in

several novel ways. It is the first to examine the psychological pathways of bias by using

the IAT. This is important because as stated above different pathways may have different

economic implications for behavior. This paper is unique in providing racial information of

the recipients and allowing a sorting option with varying property rights in a dictator game.

By comparing the observed rates giving and differential exits to IAT scores, this paper

investigates validity of the IAT in a way the research was previously lacking. Accordingly

the extent of racial bias and the external implications of the test are thereby assessed.

11



I.3 Model Description

Assuming the IAT actually measures bias, it should also be able to predict economic

decisions reflecting that bias, such as giving and sorting behaviors. However, the directions

and theory underlying these decisions have not been fully explored. To that end I formalize

a model of giving under implicit bias.

LMW note that different kinds of sharers exist, and introducing a sorting environment

allows us to distinguish between these types, described as follows: Willing Sharers, who

prefer to share and enter into sharing environments; Reluctant Sharers, who prefer not to

share but do so to comply with social pressures, norms, or mores; and Non-Sharers who

simply do not share8.

In this vein, LMW aim to detect a reluctance to share. I revisit this analysis and extend

the definitions further by examining one potential pathway of this reluctance–conditional on

bias.

For the purposes of this experiment, consider a utility maximizing individual, henceforth

referred to as the dictator. The dictator is indexed by her level of bias, i, which I assume

manifests as animus and perfectly correlates to the dictator’s IAT D-score 9. The D-score

which is drawn from a standard normal distribution, that is i ∼ N(0, 1)10. In this model,

the dictator may be in an economic environment that allows sorting, and may also have

photographic information on her receiver. If the former, the dictator can take take up to

two possible actions. First, the sorting decision, that is the decision between allocating an

amount w (sorting in) or receiving an amount w′ (exiting out). Conditional on sorting in,

she must now make the decision of how much to give, that is how to split the endowment w

between herself, x, and the recipient, y, such that x+ y = w.

I further hypothesize that individuals also sort based on who they are sharing with, and

8Formal definitions for these types can be found in Appendix B.
9This assumption that the test is registering bias as opposed to cultural knowledge of stereotypes is

consistent with accepted interpretations of the IAT (Nosek and Hansen, 2008).
10The actual IAT D-score is truncated at -2 and 2, but this does not affect model predictions.
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this sorting also manifests itself as animus. As such, I also allow the dictator to consider

the race of the recipient r. This consideration only occurs if the dictator has photographic

information. Thus, the dictator has preferences over her environment D, her payoff, x, the

payoff to the recipient y and the similarity of the race of the recipient r. It is these preferences

that determine sorting or not sorting, and potentially the giving decision:

Ui = Ui(D, x, y, r) (I.3)

where D is an indicator variable such that D = 1 if the environment has sorting and 0

otherwise; and r is an indicator variable such that r = 1 if the dictator has photographic

information and is the same race as the individual, and 0 otherwise.

Within subjects, the theory of animus dictates that not only is an individual’s utility

greater for an equal amount given to the preferred race11:

i ≥ 0.15⇒ Ui(D, x̄, w − x̄, 1) ≥ Ui(D, x̄, w − x̄, 0) (I.4)

but also that a person is willing to take a utility hit to express his or her distaste. Here,

that means a willingness to sort out (even if the sort is costly) for the sole purpose of not

sharing :

i ≥ 0.15 ∧ (w < w′)⇒ Ui(1, w
′, 0, 0) > Ui(0, w, 0, 0) (I.5)

This unwillingness to interact is a core concept of animus. As such, across subjects, the

model of animus predictions that greater bias should have more costly sorting, in addition

to less sharing across races. That is:

Ui(D, x̄, w − x̄, 0) > Uj(D, x̄, w − x̄, 0)⇒ i < j, ∀x̄ < w (I.6)

w < w′ ⇒ Ui(1, w
′, 0, 0) > Uj(1, w

′, 0, 0),∀i > j (I.7)

11I have written this model as biased against people of color, but it is trivial to generalize to all racial bias.
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In this experiment, I restrict my focus to the across subject design. Broadly speaking, I

ask two initial empirical questions based on this model. If the answer to either of these first

two questions is yes, it suggests that there is a clear pathway from the the hot-phase IAT

task to some of the cold-phase decisions it has been used to explain. Absent evidence of this

pathway, I ask a final question concerning meta-awareness of bias:

1. Does the IAT predict giving behavior?

2. Does the IAT predict sorting out of giving environments?

3. Do biased givers attempt to mitigate their bias with small gifts?

I.4 Experiment

I.4.1 Procedures

Given that previous lab experiments have demonstrated that these different types of

individuals exist, I ask what are the IAT’s implications for both laboratory and naturally

occurring behavior. I use the toolbox of experimental economics to see if IAT performance is

related to differential treatment of receivers and if so, to what extent. In doing so, I examine

the IAT as a predictor of pro-social behavior in an experimental market. This behavior

includes giving as well as sorting out of potential giving environments.

To properly ask (and answer) these questions this experiment necessarily progresses in

two stages: first the dictator game (potentially with a sorting option), and second with the

IAT. Upon arriving at the lab subjects are randomly split into receivers and dictators. I will

now explain the two roles in turn.

In a standard dictator game, a first mover is given $10 and asked how much she would

like to give to a paired (and passive) player; her choice ends the game. Thus, giving in

this game is non-strategic. I begin with this standard (no information) treatment to gauge

dictator giving without information on the race of the recipient.
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From here, I differ from a standard game in that some treatments employ a sorting

environment. Specifically, I offer some dictators an exit option as in LMW. In other words,

dictators are given a chance to leave the game in such a way that the passive player never

knows he or she was playing a dictator game. In doing so, I aim to disentangle social pressure

as a motive for giving. This opportunity (choice) can be either costly or free. The costly

option is necessarily payoff dominated by at least one dictator game choice.

Finally, these treatments are run in two types of sessions: Ones with no information

(anonymous), and pictures sessions, where dictators can see who they are passing to, and

use that picture as a proxy for race. For the most part, we are concerned with outcomes in the

“Pictures” sessions. However, the anonymous treatments serve as an interesting comparison

and are necessary for commenting on the social closeness afforded by a picture. Further,

the cross between pictures sessions and sorting treatments allows us to see whether implicit

bias is affecting behavior on either the extensive or intensive margin. That is, the decision

to engage in giving as well as how much to give.

Table I.2: Dictators by Treatment

Sorting

Baseline Costly Free
No Information 20 13 20
Pictures 48 68 59
Total 68 81 79

Source: Author’s calculation

As such, this experiment necessitates a 2x3 design. The treatment cells are as follows:

A standard (baseline) dictator game, and two dictator games with sorting: costless and

costly. In costless sorting, the dictator receives the same amount in entry and exit ($10).

In costly sorting, the dictator receives $9 upon exit. These dictator games are all played

across both anonymous and pictured sessions. The treatment cells and number of dictators

that participated in each treatment are described further in table I.2 as well as in the data

section below.
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After roles are assigned, the dictators are randomly paired with a receiver, and in the

Pictures treatments shown a picture of that receiver’s face. The photos serve as a proxy for

race. In the No Information treatments dictators are not informed about their receivers. In

both versions, dictators are then explained the rules of the dictator game. In all but the

baseline treatment, they are asked whether or not they choose to participate. In the event

that a dictator elects to not participate (takes the exit option), their receiver is not given

any information about allocation task, and the dictators are given their exit fee ($9 or $10,

depending on treatment). Otherwise, dictators decide how to allocate a sum of $10 between

themselves and their receiver.

Meanwhile, the receivers are passive in their role. They have their pictures taken, are

guaranteed a show-up fee, and asked to participate in a different task. In this case, that

task is a real-money, 1x risk-preference elicitation (Holt and Laury, 2002), the results of

which I discuss in a companion paper (Lee, in-progress). The receiver task is constant across

treatments.

The next task in the experiment is a race IAT (as described above) on all subjects. I run

this task second because an IAT can possibly influence amounts passed. However, knowing

they have just participated in a dictator game should not influence IAT score, as evidence

shows it is difficult to fake or otherwise manipulate (Fiedler and Bluemke, 2005). I then

close by collecting demographic data in the form of a survey, and pay subjects privately.

Complete subject instructions and survey questions can be found in Appendices C and D,

respectively.

I.4.2 Data

These experiments were conducted during the summer and fall of 2015 at the Center for

Experimental Economics at Georgia State University (ExCEN). Subjects were recruited via

email using the center’s recruiter. While I strove for sessions to be racially balanced, this

was not possible given the makeup of the subject pool. However, I believe this to be non-
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Table I.3: Dictator Summary Statistics

Variable Mean Std. Dev. N
Male 0.399 0.491 228
Black 0.724 0.448 228
Catholic 0.092 0.29 228
Previous Experience 0.794 0.405 228
Business or Econ Major 0.268 0.444 228
Age 21.775 4.838 227
Year in School 3.149 1.07 221
GPA 3.302 0.448 189
Source: Author’s calculation

problematic given the experimental design, as well as the evidence cited above on implicit

attitudes and minority groups.

Table I.4: Baseline Comparison of Roles in the Experiment

Panel A: χ2 Tests
Covariate Dictator % Receiver % p-Value

Male 40.08 51.54 0.014*
Black 72.24 67.84 0.306
Catholic 9.257 9.69 0.873
Previous Experience 79.29 76.21 0.430
Business or Economics Major 26.87 21.59 0.189
Panel B: Rank-Sum Tests

Covariate Dictator Mean Receiver Mean p-Value
Age 21.78 21.15 0.216
Year in School 3.15 3.10 0.835
GPA 3.30 3.26 0.563
Notes: * Significant at the 5% level

Source: Author’s calculation

Overall, I ran 17 experimental sessions across the 6 treatments, with a roughly equal

balance of subjects across treatment rows12. In total, 227 dictators (i.e. 454 subjects) par-

ticipated in the experiment. Table I.3 describes the demographic breakdown of the dictators.

Dictators in this experiment are (on average) 22, with a 3.3 GPA. Roughly 72% are Black

and 40% are Male. Most have previous experience in economics experiments, and the modal

12Given my power analysis and the fact that receiving in the No-Information treatments is anonymous, I
didn’t require as many subjects.
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Table I.5: Experimental Summary Statistics

Variable Mean Std. Dev. N
Passed to Male 0.513 0.501 228
Passed to Black 0.675 0.469 228
Amount Passed 2.692 2.238 228
Opted Out (Total) 0.186 0.389 167

Opted Out (Costly) .148 0.357 81
Opted Out (Costless) 0.202 0.404 99

IAT D-score 0.054 0.495 225
Source: Author’s calculation

year in school is senior13.

Figure I.1: Distribution of Amounts Passed

Source: Author’s illustration

Non-parametric analyses in the form of χ2 and Rank-Sum tests examine covariate balance

between roles. For the most part, I find no significant difference across them, and conclude

13This is perhaps an artifact of running a summer experiment, where both former juniors and recent grads
identify as seniors.
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that the sample is balanced14. These results are reported in full in table I.4.

Finally, table I.5 provides a brief description of dictator choices and performance in the

experiment. On average, 27% of the endowment was passed, and a little more than 18% of

those offered an exit option opted out, with more people exiting when it is costless. Rank

Sum tests show sorting significantly decreases sharing, even when sorting is costly (Sorting:

z = 2.146, p < 0.05; Costly Sorting: z = 2.370, p < 0.05). These numbers are roughly

similar to previous findings. Full distributions of amounts passed are illustrated further in

figure I.1.

Figure I.2: Distribution of IAT D-scores

Source: Author’s illustration

14There were significantly more males in the receiver role (117 as opposed to 91), but this is likely a
byproduct of hypothesis testing across several covariates.
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Regarding the IAT, the average D-score was 0.05, suggesting little to no automatic bias.

I depict these scores in figure I.2 for further exploration. The scores follow a fairly normal

distribution, consistent with both model assumptions and extant results across a variety

of subject pools. The modal score is in the bin 0-0.15 (no automatic bias). However,

there is significant implicit bias in the sample. Over 44% of dictators have an IAT D-score

greater than or equal to 0.15, indicating a pro-white implicit bias. Consonant with the above

evidence, this bias is present and perhaps stronger in subjects identifying as black, with a

mean IAT score of 0.162.

I.5 Discrete Results

We have seen descriptively that sorting environments affect giving behaviors. However,

given the empirical questions asked above, I now turn my focus to the role of the IAT

in making these economic decisions. I first explore this role by simply looking at average

amounts passed, broken up by the dictator’s bias. Specifically, table I.6 shows the mean pass

broken down by both the strength of the association, and the recipient. First of all, these

differences are not significant. Secondly, if implicit bias had a one-to-one mapping into giving

behaviors, we would expect passes to black subjects would get smaller as we move down the

table (strengthen the bias towards whites), and the opposite pattern for whites. However,

these directional patterns do not emerge, particularly in the black recipient column. Here,

those who have dictators biased against them end up earning more on average.

Next, I take what we learned in table I.6 and discretize IAT score into the blunt question

of “do I (implicitly) like or dislike my recipient?”

I express this question in equation I.8:

Outcomei = α0 + β1(LikeReceiverj) + β2(DislikeReceiverj) (I.8)

Here, I regress an outcome variable on two variables Like and Dislike. The outcome takes
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Table I.6: Average Amount Passed by IAT score and Race of Receiver

Passed to:
Strength of Implicit Bias Black White Anonymous

Strong for Blacks 2.07 1.67 2.5
Moderate for Blacks 2.28 2.33 2.75

Slight for Blacks 3.43 1.67 2.83
Little to None 2.18 2.55 2.33

Slight for Whites 3.13 3.5 3.33
Moderate for Whites 2.47 2.33 2.54

Strong for Whites 2.68 3.33 2.4
Source: Author’s calculation

the form of either a continuous variable representing the percent of endowment shared, or

a binary variable indicating whether a dictator took an exit option. The two variables Like

and Dislike are essentially binary interaction terms defined formally as follows in equation

I.9:

Like =


1 when IAT ≥ 0.15 and Receiver is White

1 when IAT ≤ −0.15 and Receiver is Black

0 otherwise

Dislike =


1 when IAT ≤ −0.15 and Receiver is White

1 when IAT ≥ 0.15 and Receiver is Black

0 otherwise

(I.9)

That is to “like” your receiver means to either hold a pro-white bias and pass to a white

receiver, or hold a pro-black bias and pass to a black receiver. I later decompose the variable

into these two components (pro-white, white receiver and pro-black, black receiver). Sim-

ilarly, to “dislike” means to have the one of same IAT scores as above, but with the race

of your receiver flipped. Accordingly, the intercept term, α, represents those dictators who

hold little to no implicit bias (−0.15 < IAT < 0.15).

Results from these discrete estimations are presented in table I.7. In the first column we
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Table I.7: Discrete IAT Estimations

OLS–Percent Shared Probit–Opted Out
VARIABLES (1) (2) (3) (4)

Like Receiver 0.0696 0.0783
(0.0469) (0.336)

Pro-White, White Receiver 0.0529 -0.578
(0.0593) (0.568)

Pro-Black, Black Receiver 0.0774 0.292
(0.0507) (0.358)

Dislike Receiver 0.0291 0.166
(0.0492) (0.322)

Pro-White, Black Receiver 0.0423 0.0955
(0.0498) (0.337)

Pro-Black, White Receiver -0.0289 0.456
(0.101) (0.504)

Constant 0.229*** 0.229*** -0.887*** -0.887***
(0.0391) (0.0391) (0.257) (0.257)

Observations 172 172 126 126
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

find that unbiased givers share about 23% of their endowment, and being biased against (or

in favor of) your receiver does not significantly alter this giving pattern. Furthermore, both

directions of bias remain insignificant when decomposing the Like and Dislike variables into

their respective components in column 2.

Similarly, table I.7, columns 3 and 4 look at how bias influences the probability of opting

out. In both the blunt (column 3) and decomposed (column 4) measures, neither liking nor

disliking one’s receiver has any significant impact on giving.

These results indicate that bias does not affect the decision giving on average. However,

a relevant question is do dictators who are biased against black (white) receivers behave

differently than the average dictator with a black (white) receiver. To answer this question,

I conduct an exercise similar to the one outlined in equation I.8, but restrict the sample

based on race of receiver and only regress on the Dislike variable.
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Table I.8: Discrete Estimations, Conditional on Race of Receiver

Black Receiver White Receiver
VARIABLES (OLS) (Probit) (OLS) (Probit)

Dislike Receiver -0.00310 -0.132 -0.0727 0.952*
(0.0407) (0.290) (0.100) (0.576)

Constant 0.274*** -0.659*** 0.273*** -1.383***
(0.0267) (0.191) (0.0381) (0.374)

Observations 127 93 45 33
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

Even when we isolate the sample by race of receiver, biased dictators are not behaving

in ways that are not statistically different than the average dictator, nor is this difference

economically significant. While the above results are indicative that implicit bias fails to

overcome selfish concerns, they have mostly examined the effect of IAT score on economic

behaviors. Another way of looking at the question is to treat the data as observational, and

ask (with some abuse of notation) what is the treatment effect of being paired with someone

you hold a bias against?

To answer this question I exploit the random assignment of roles and partners and im-

plement propensity score matching. Here, I treat each person as having a particular bias

strength and direction, ranging from strongly pro-black to strongly pro-white (e.g. see table

I.6). I match on the strength and direction of this bias as well as covariates describing the

dictator’s age, race, and sex, and specify the treatment as passing to someone you hold a

bias against. That is, passing to a black person if you hold a pro-white bias and vice-versa. I

find no significant treatment effect of passing to someone you are biased against (ATT=0.14,

p=0.625 ).

Result 1 Existence of bias towards receiver does not predict dictator giving
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I.6 Continuous Results

However, we measure IAT score as a continuous variable, and are able to comment not

only on the existence of implicit bias, but also the strength of that bias. As such, one

would think that more severe biases would exert more influence on the giving and sorting

decisions. To address this dosage question, I standardize the IAT score and outline the

following reduced form empirical specification:

Outcomei = β0 + β1IATi + β2(IATi ∗Racej) + β′X + εi (I.10)

This standardization allows me to interpret coefficients as the effect of a one standard de-

viation increase in IAT score. In this specification I again regress an outcome variable on

two variables of interest: that dictator’s IAT score and an interaction term of dictator’s IAT

score with the race of her recipient, as well as a vector of demographic controls for both

dictators and receivers. The interaction term allows us to examine this giving conditional on

being paired with the object of one’s bias. This interaction is also consistent with the model

assumption that the IAT manifests as animus. The controls are necessary because observed

differences in the outcome variable may be driven by factors unrelated to a dictator’s implicit

bias. Different specifications below may highlight different sets of these parameters in my

analysis.

I.6.1 Dictator Giving

I continue with a graphical exploration of the IAT’s relationship to giving. Figure I.3

shows the amount passed given a dictator’s IAT score. Despite the IAT’s popularity in

academic work, there is no clear linear relationship between IAT score and amount passed

(ρ = −0.01). Further, in each “column” of IAT score there appears to be a similar bimodal

distribution of amount passed. This suggests that levels of implicit bias do not necessarily

map into the behaviors of interest.
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Figure I.3: Scatter Plot of IAT Score and Amount Passed

Notes: The solid line indicates the IAT-D ”bias” threshold of 0.15
Source: Author’s illustration

To confirm these findings econometrically, we turn to table I.9 which presents this paper’s

main estimates. In these models I restrict the sample to only the dictators in sessions with

photographs, although the results hold when expanded to the full sample. Additionally, I

have used both dictator and receiver dummies for African-American, rather than which race

a subject is biased against. While this may be a coarse measure, this modeling technique

makes more sense in terms of coefficient interpretation since IAT score is increasing in the

level of anti-black bias. Further, these results are consistent with the discrete estimations

from section V and robust to the alternate specification of “biased against receiver”15.

In panel A of table I.9 I start with a simple OLS and regress percent shared on the

15See, for instance, tables I.7 and I.13.
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parameters of interest. We see that neither implicit bias nor its interaction with a black

receiver yields a significant predictor of giving. These results hold true in specifications that

control for race and gender of dictator, the receiver, and both. Further, these controls also

have no significant effect on giving.

However, the presence of a sorting option consistently and significantly decreases the

amount shared by around 10%. This result suggests that in terms of giving behaviors,

people aren’t acting on their implicit biases, and perhaps are able to control any bias they

may hold. Instead, social preferences unrelated to the IAT, especially pressure to give,

appear to be strongly influencing these pro-social behaviors (or lack thereof).

Next, to account for the 27% of dictators who either gave nothing or opted out, I replicate

the OLS results with a left-censored Tobit model16. These results are shown in table I.9,

panel B, and are not categorically different than the OLS results. That is, IAT score is

positive but insignificant, the interaction term is negative but not significant, controls lack

significance, and the presence of a sorting option is strongly and negatively significant.

Following LMW, I assess the determinants of sharing in table I.10. Specifically, I compare

the relative importance of implicit bias (in column 1) to the presence of the sorting option,

as well as self-reported demographics that could potentially affect sharing (in column two).

Again, one’s amount of implicit bias does not significantly determine sharing. Magnitudes

of these results are similar when I run the full model, including IAT score with demographic

controls (column 3). Additionally, I calculate coefficients of partial determination17. This

measure shows that not only does implicit bias lack statistical significance, but one’s IAT

score accounts for less than 4% of the unexplained variance and lacks economic significance

as well.

The above exercises hold true when instead of looking at the coarse measure of race of

receiver, I look at the finer measure of being biased against one’s receiver. In figure I.4, I

16Robust standard errors are calculated using jackknife estimation. A double-hurdle model (Cragg, 1971)
would be inappropriate here because to account separately for the opt-out process requires restricting the
sample to only those in sessions with sorting. Results from this model are presented in Appendix E.

17(R2 −R2
i )/(1−R2

i ) where R2
i is the R2 with predictor i removed from the equation.

26



Figure I.4: Sharing When Dictator is Biased

(a) Whole Sample

(b) Conditional on Staying In

Source: Author’s illustration
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Table I.9: The IAT’s Effect on Percent Shared

Panel A: OLS
Variable (1) (2) (3) (4) (5)

IAT D-score 0.0197 0.0169 0.0286 0.0262 0.0389
(0.0353) (0.0351) (0.0450) (0.0385) (0.0366)

IATxPassedBlack -0.0617 -0.0439 -0.0494 -0.0595 -0.0665
(0.0805) (0.0795) (0.0797) (0.0867) (0.0843)

Sorting Option -0.101*** -0.0960*** -0.0944*** -0.0867**
(0.0355) (0.0368) (0.0361) (0.0377)

Dictator Controls X X
Receiver Controls X X
Constant 0.269*** 0.343*** 0.388*** 0.339*** 0.382***

(0.0176) (0.0278) (0.0509) (0.0460) (0.0641)
Panel B: Tobit
Variable (1) (2) (3) (4) (5)

IAT D-Score 0.0298 0.0251 0.0361 0.0426 0.0549
(0.0485) (0.0481) (0.0483) (0.0535) (0.0516)

IATxPassedBlack -0.0854 -0.0574 -0.0632 -0.0883 -0.0959
(0.110) (0.109) (0.109) (0.120) (0.117)

Sorting Option -0.145*** -0.138*** -0.132*** -0.122**
(0.0448) (0.0462) (0.0452) (0.0469)

Dictator Controls X X
Receiver Controls X X

(0.0478) (0.0495)
Constant 0.222*** 0.327*** 0.366*** 0.323*** 0.359***

(0.0254) (0.0336) (0.0688) (0.0576) (0.0849)
Observations 172 172 172 172 172
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

graph box plots for a further analysis of what happens when a dictator is biased against the

race of his or her receiver. For these figures that means both passing to a black receiver when

biased against blacks (Receiver = Black|IAT ≥ 0.15) as well as passing to a white receiver

when biased against whites (Receiver = Black|IAT ≤ −0.15).

Clearly there is no difference in giving when I consider the whole sample in figure I.4a.

But, this result also holds when I consider only those dictators who did not take an exit
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Table I.10: Determinants of Sharing

Partial
Variable (1) (2) (3) R2’s

IAT D-score -0.00247 0.00850
(0.0169) (0.0195) 0.036

Sorting Option -0.0847** -0.0830*
(0.0423) (0.0448) 0.158

Age 0.00642*** 0.00614**
(0.00245) (0.00253) 0.148

Male 0.00345 -0.00223
(0.0407) (0.0426) 0.005

Black -0.0992* -0.107**
(0.0502) (0.0519) 0.185

Catholic -0.000280 0.00947
(0.0708) (0.0761) 0.012

Previous Experience -0.0258 -0.0277
(0.0466) (0.0468) 0.047

Major: Business or Econ 0.00407 0.00614
(0.0420) (0.0429) 0.012

GPA -0.112*** -0.110***
(0.0409) (0.0411) 0.219

Constant 0.268*** 0.657*** 0.659***
(0.0176) (0.164) (0.164)

Observations 172 146 143
R-squared 0.000 0.138 0.136
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

option in figure I.4b. We will see a similar result regarding dictators choosing to opt out in

the following subsection on Dictator Sorting.

Finally, I compare the picture treatments to the anonymous ones. Using rank-sum tests,

amounts given by the dictator do not appear to be different across these two treatment rows

(z = −0.039, p = 0.969). This holds when we ignore baseline treatments and consider only

those with a sorting option (z = −1.268, p = 0.205), or restrict the sample to dictators

paired with the object of their bias (z = −0.863, p = 0.388). Since a dictator cannot see his

or her receiver in the anonymous treatments, it is unlikely that implicit racial bias comes
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into play in this sharing decision. The lack of difference between the two treatment rows

here is further indicative of the null results above.

Given the overwhelming evidence above, I now declare the first result, regarding implicit

bias and dictator giving:

Result 2 Amount of Implicit Bias (as indicated by IAT D-score) does not predict dictator

giving

I.6.2 Dictator Sorting

Figure I.5: Bar Graph of IAT Scores and Sorting

Notes: The solid line indicates the IAT-D ”bias” threshold of 0.15
Source: Author’s illustration

Perhaps the above results are indicative that biased dictators are forward thinking with
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regard to these biases or otherwise self-aware enough to recognize their biases. If so, they may

be simply choosing not to enter sharing environments where they can express this distaste,

or similarly choosing to express this distaste through their opt-out. However, we see in figure

I.5 the average IAT score for dictators in treatments with an exit option. Under costly and

costless sorting schemes, the mean IAT score is descriptively smaller amongst those who

stay in (as compared to those who opt out), whereas in costless sorting the mean IAT score

is essentially the same. However, in both cases, this difference is not significant (Costly:

t = 1.04, p = 0.30; Costless: t = 0.03, p = 0.98).

Accordingly, I estimate the probability of opting out in table I.11. This model uses a

probit regression and necessarily restricts the sample to only those dictators with an exit

option (that is, those in sorting treatments, n=159,). The variable structure is intended to

mimic the experimental design, using dummy variables for treatment and a measurement

variable to indicate IAT score. In this model, there are no significant coefficients, suggesting

that overall, one’s IAT score does not seem to influence the decision to sort out, with this

result holding even when controlling for both the financial and social costs of sorting.

Nonetheless, this exploration again calls for a deeper analysis. Following equation I.10 I

look at the econometric results to confirm. In this case I ignore the anonymous treatments

(n = 127) and run probit estimations to determine what effect (if any) IAT score has on

the probability of opting out. Table I.12 shows the marginal effects of these estimations.

Consistent with the results above, the IAT has no significant effect on sorting. This holds

when I control for whether the sorting is costly and for race and gender of the dictator,

receiver, and both. Similar to the analysis under dictator giving, the signs of these coefficients

are also unexpected. We see that more biased dictators opt out less. Specifically, an increase

in IAT score by 1 standard deviation leads to roughly an 11% smaller chance of opting out.

As a check, I examine what happens to sorting when a dictator is biased against the race

of his or her receiver (n = 75). In this case I draw a bar graph in figure I.6. Confirming the

results above, there is no evidence that bias has an effect on sorting, even when the dictator
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Table I.11: The Probability of Opting Out

Probit Regression
Variable Coefficient

IAT D-score -0.095
(0.114)

Costless Sorting (Pictures) 0.369
(0.253)

Costly Sorting (Anonymous) -0.463
(0.547)

Costless Sorting (Anonymous) 0.116
(0.370)

Constant -0.976***
(0.184)

Observations 159
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

Table I.12: The IAT’s Effect on Sorting

Probit Marginal Effects
Variable (1) (2) (3) (4) (5)

IAT D-score -0.114 -0.105 -0.108 -0.111 -0.115
(0.0727) (0.0744) (0.0814) (0.0871) (0.0933)

IATxPassedBlack 0.234 0.206 0.214 0.201 0.207
(0.175) (0.177) (0.185) (0.194) (0.202)

Costly Sorting -0.0949 -0.0977 -0.0960 -0.102
(0.0731) (0.0730) (0.0721) (0.0722)

Dicator Controls X X
Receiver Controls X X
Observations 126 126 126 126 126
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

holds an implicit bias against the receiver’s race.

Finally, we extend the cross-treatment exercise from above and compare anonymous

sorting to sorting when photo information is present, by way of Pearson’s test. Again, there is

no statistical difference between opting out in the two treatment rows (χ2 = 0.611, p = 0.434).
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This holds in costly sorting

Figure I.6: Sorting When Dictator is Biased

Source: Author’s illustration

(χ2 = 0.623, p = 0.430), and when passing to someone who’s race you are biased against

(χ2 = 0.707, p = 0.400), As such it is also unlikely that implicit bias is influencing giving on

the extensive margin, inclusive of sorting decisions.

Result 3 Amount of Implicit Bias (as indicated by IAT D-score) does not predict sorting

in or out of the dictator game
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I.7 Small Gifts, a Robustness Check

Thus far, I have suggested that the IAT does not predict giving or sorting behaviors.

However, I have also left the door open for dictators to have awareness of their biases, meta-

cognitive abilities with respect to it, or both. This may suggest that differences in giving

are more subtle than the ones suggested above. For instance, what if biased dictators are

giving, but their giving is concentrated in small(er) gifts?

To test for this concentration, I utilize the Dislike variable from equation I.9 above,

noting that this variable highlights cases of both pro-white and anti-white bias. I also

generate dummy variables for various small gift amounts. I then run Pearson’s χ2 tests to

see if giving in those small amounts is different for biased and non-biased dictators in each

of the pictures treatments. Full results from these tests are depicted in table I.13.

Table I.13: The IAT and Small Gifts

p-value for Gift Size:
0 ≤ 1 ≤ 2 N

No Sorting 0.738 0.209 0.369 48
Sorting 0.646 0.319 0.968 127
Receiver is Black 0.367 0.256 0.647 130
Sorting & Receiver is Black 0.310 0.181 0.753 94
Whole Sample 0.927 0.893 0.496 175
*** p<0.01, ** p<0.05, * p<0.1
Source: Author’s calculation

Small giving is not different between biased and unbiased dictators in every specification.

This result suggests that biased giving is not concentrated in small giving, and lends further

credence to the above discussion of dictator giving as a whole.

Result 4 Biased givers are no more likely to give small (≤ $2) gifts
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I.8 Conclusion

Racial bias is a persistent concern in the social sciences. In the past two decades, a

proposed method of detecting it, the Implicit Association Test, has caught fire amongst the

academics who study bias. At the time of this writing, the IAT’s original paper has over 6600

citations, with researchers claiming it has implications on all sorts of economic outcomes,

from workplace discrimination and managerial behavior, to egalitarian ideals and general

social welfare. Yet, economists have only recently started to explore these claims in detail.

In this paper I have undertaken an in-depth examination of one of those claims in

particular—that implicit (racial) bias is a predictor of pro-social behavior. I focused on

these behaviors due to a growing literature suggesting the importance of the relationship

between bias and pro-sociality. In doing so, I critique the extant literature stemming from

the IAT. I then write a model of giving under conditions of implicit bias and conduct a

laboratory experiment to test those model predictions.

Specifically, I test biased giving using a dictator game where acts of giving are both non-

strategic and non-spontaneous, and therefore easily controlled (by the subject). Additionally,

in some treatments I include a sorting (exit) option to see if biased givers simply choose to

avoid the potential giving transactions altogether.

I find that, contrary to model predictions and previous literature, implicit bias fails to

predict giving on both the extensive and intensive margins. That is, not only does implicit

bias not predict amounts shared in the dictator game, it also does not predict examples of

zero sharing, or the choice to exit a giving environments. Furthermore, these results hold not

only in fine bins of analysis, but also wider and more powerful ones, such as when I restrict

my sample to small gifts, or dictators paired with receivers of the race they hold implicit

biases against.

To the best of my knowledge, this is the first paper to explore the implications of a

Race IAT in an economics experiment. As such, the analysis in this paper represents a

necessary step forward in this line of research that previously consisted of fascinating, but
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unsubstantiated claims.

The dictator game is a compelling example in that it consists of a very simple economic

decision. If the IAT fails to map into this class of cold-phase decisions, what are the impli-

cations for decisions which may be more complex but also require more deliberation, such

as hiring?

However, more research is needed as the dictator game is also a very clear-cut decision,

and perhaps the IAT could be better used to predict maps into so-called fuzzier or multi-level

economic decisions, decisions made in groups or ones where the use of heuristics have been

shown to play a prominent role.

In this vein, we might think of implicit bias as mapping into a spectrum of pro-social

activities with dictator giving at one end of the spectrum and a potentially different result

at the other. If this is true, then future field experiments could prove to be a fruitful area of

research.

Finally, as the popularity of the IAT grows in academia, so does its use in the public

domain. As such, this paper also speaks to policy in general, and jurisprudence in particular.

The typical anti-discrimination statute requires proof that harmful actions were “because

of” discrimination. More and more, implicit bias is being recognized as a source of this

liability. For instance, in a recent Supreme Court case regarding the Fair Housing Act, Chief

Justice Roberts wrote for the majority that:

Recognition of disparate impact liability under the FHA also plays a role in

uncovering discriminatory intent: It permits plaintiffs to counteract unconscious

prejudices and disguised animus that escape easy classification as disparate treat-

ment. In this way disparate-impact liability may prevent segregated housing pat-

terns that might otherwise result from covert and illicit stereotyping.

(Texas DoH v. ICP Inc., 2015)

Italics are my own. This means that bias is classified under the law as resulting in differential

treatment even if one is not aware of the held bias, as in an implicit bias. And hence, we
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need further explorations of implicit bias and its potential to map into this sort of decision

making, else we could be establishing ineffective policies.
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Chapter II

Will Girls be Girls?
Risk Taking and Competition in an All-Girls School

II.1 Introduction

At the time of this writing, there are only 21 female CEOs in the S&P 500, and it is

well known that this sort of vertical gender segregation exists throughout the labor market1.

Despite enormous amounts of research on the gender gap for both wages and positions, the

underlying reasons for this disparity remain unclear. However, one oft-cited explanation is

a basic difference in risk preferences and/or the willingness to compete (Johnson and Powell

1994; Niederle and Vesterlund 2007). This hypothesis suggests that women, either naturally

or through institutional environments, such as schools, develop skills not suited for upper

management.

In this paper, we follow a promising course of literature in this area, which focuses on

these differences and seeks to disentangle innate and immutable causes from those that are

the products of our environments—the so-called “nature-or-nurture debate”. In short, men

and women tend to have different emotional responses to risk and also possess differing levels

of confidence. The emotional responses are most likely hardwired (“nature”) whereas the

confidence levels may be a result of “nurture”.

1Catalyst, Inc. Knowledge Center (http:// http://www.catalyst.org/knowledge/women-ceos-sp-500).
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Given the profound amounts spent on education (over $600 Billion annually, almost 4%

of US GDP), we choose to examine this debate in the context of gender-specific peer effects,

by running an experiment in two closely matched, yet distinct educational environments—

co-ed and single sex schools. Specifically, we study the risk taking and competitive behavior

of girls educated in closely matched singer-gender and co-educational environments.

Of course it is extremely difficult to tease apart and isolate these factors, especially ab-

sent random assignment. To do so, we structurally estimate risk preference parameters, and

directly include these preferences when estimating the decision to compete. We also exam-

ine the developmental and formative components of these behaviors by comparing middle

school students (grades 7 and 8) with upper school students (Grades 11 and 12), and by

including the respective co-educational boys in our analysis. Further, we study the struc-

tural differences that exist between families choosing to send their daughters to a single sex

school as opposed to a co-educational one that has a similar mission. Consistent with the

above hypothesis, we find that though girls educated at a single-gender school are among the

most risk averse, they are also the most competitive—comparable in competitive behaviors

to their male counterparts.

This chapter proceeds as follows. The next section describes the relevant literature in-

forming our research. Section three outlines our experimental design. Section four describes

our data and hypotheses. Section five describes and interprets our results and is followed by

a concluding final section.

II.2 Literature Review

This paper follows from a long line of research disentangling the roles of nature and

nurture in the gender gap for wages and occupations. Polachek (1981) argues that the gender

gap is due to differences in abilities and preferences that result in occupational self-selection.

This hypothesis echoes concerns laid out in Heckman (1979). The higher intermittency rate
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of women in the workforce can be used to explain the gender gap. Further, the apparent

lack of women in the upper tiers of corporate management may be indicative that as a

group they are less willing to make the risky decisions that are necessitated in the corporate

world (Johnson and Powell, 1994). Similarly, Flory et al. (2015) find women shy away from

applying to jobs with competitive payment schemes.

These preference-based arguments rely on previously unidentified utility parameters, sug-

gesting a role for both the toolbox of experimental economics and richer data within those

experiments. In their review of the experimental literature, Croson and Gneezy (2009) find

that, in general, women tend to be more risk averse than men—a view consistent with con-

ventional findings in psychology2. Further, they find that men are more likely than women

to compete and that male performance levels increase more than female levels when under

competition.

Though men are generally more likely to compete, Gneezy et al. (2003) use different

incentive schemes and find that the performance of women in single sex tournaments is

higher than in the non-competitive treatment. Further studies show women competing as

much as men, given large enough rewards (Petrie and Segal, 2014). Thus, there are instances

in which women will perform in a competitive environment, however these results focus on

tournament entry without controlling for risk attitude. In a similar experiment, Datta Gupta

et al. (2013) find that men select the tournament choice more often than women and that a

woman’s degree of risk aversion influences her decision to select the tournament (as opposed

to a non-competitive piece-rate compensation scheme). Their experiment differs from Gneezy

et al. (2003) in two key ways. First, they increase the incentives to compete, and second, they

allow subjects to select their competitor. They find that participation in the tournament

increases with the higher incentive scheme and that the gender gap is reduced when the

subjects can choose their competitor3. These findings suggest a need for joint estimation.

2See Campbell (2002) for a review of these findings.
3For a more comprehensive view of the recent literature on the gender differences in competition, we

suggest Niederle and Vesterlund (2011).
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Given these observed differences, an outstanding question is what drives these differences

in competition rates? Niederle and Vesterlund (2007) suggest a major channel is differences

in confidence, with men over-competing and women shying away from competition. However,

this difference is not inherently universal as Gneezy et al. (2009) observe female competition

in a matrilineal society far exceeds that in a patriarchal one. This suggests that decreased

competitive behavior may not be intrinsic to female nature, but rather elected by subjects

due to familial and societal nurturing. We can also understand nurture to be institutional,

such as in Leibbrandt and List (2014) where simple changes in job postings can eliminate

the gender gap in wage negotiations.

Given the demonstrations that (1) nurture matters and (2) can affect the later life out-

comes, early-life experiments provide an ideal testing ground for these theories. Cárdenas

et al. (2012) vary the competitive task and find no gender differences in Colombia, with

mixed results in Sweden. While in Austria, Sutter and Glätzle-Rützler (2015) find young

boys consistently prefer to compete, and this preference persists throughout adolescence.

Furthermore, educational environments and interventions allow us to study the roles

of gender-peer effects. For instance, Fryer and Levitt (2010) note that there is no gender

gap for mathematics in kindergarten, yet after six years girls perform worse than their

male counterparts. However, a growing body of field and natural experiments suggests that

single sex schooling can improve student performance, be it math skills and self-confidence

(Eisenkopf et al., 2015) test scores and college attendance (Park et al., 2013), or grades and

pass rates (Booth et al., 2014). However, Oosterbeek and Van Ewijk (2014) do not find

strong gender effects on performance when the unit of treatment is an economics workgroup.

In the U.K. Booth and Nolen (2012a; 2012b) separately examine risk taking and com-

petitive behaviors of students in single sex schools. Using a one-shot gamble for the risk

task and a choice of payment scheme in the competition paper, their results indicate that

girls from single gender schools behaved closer to boys from co-ed and single gender schools

than girls from co-ed schools. However, only those students who sat for the 11+ exam were
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eligible for being placed in a single sex school, and perhaps more importantly, their parents

needed to be willing to have them sit for the 11+ exam, suggesting the need for further

research4.

In this vein, our paper continues and extends the line of research on the gender peer-

effects of risk taking and competitive behaviors. Specifically, we revisit the question of

single sex schooling as a mechanism to increase tournament entry using subjects from two

closely matched American schools (one single sex and one co-educational)5. By structurally

estimating a CRRA utility function, we extend previous examinations of risk-preference by

also studying the distribution of preference parameters in our data. Further, we include

these risk attitudes directly when estimating competitive behavior. Finally, we contribute

to the literature by considering the role adolescent development has on these behaviors by

including both middle school students and late secondary students from both schools in our

analysis.

II.3 Experimental Procedures

To investigate the risk taking and competitive behaviors of young women we utilized two

financially incentivized tasks henceforth referred to as the risk task and the competition task,

respectively. The subjects were informed that they would be paid based on their performance

in the tasks, and that only one task would be selected for payment. In order to study

these behaviors in the context of gender peer-effects and education, the experiments were

conducted using students in middle school (7th and 8th grade) and late secondary education

(11th and 12th graders) at two different, yet closely matched academic institutions.

In the risk task, we follow a Holt and Laury (2002) style multiple price list design to

elicit a subject’s risk attitude. In it, a subject makes choices over a series of ten gambles.

4http://www.elevenplusexams.co.uk/advice/what-is-11-plus.
5The schools selected for our analysis serve identical educational markets and have common mission

statements. Therefore, these two schools closely compete for applicants and the only major difference is that
one is a single sex school and the other is not.
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Each gamble consists of a choice over two simple lotteries, one being relatively “riskier” than

the other. The ‘safe’ lottery can produce earnings of either $8.00 or $6.40; while the ‘risky’

lottery can produce earnings of either $15.40 or $0.40 (these payments are 4x the baseline

levels used in Holt and Laury, 2002). The gambles were presented in order, starting from

winning the low prize with certainty, and decreasing that probability 10% for each successive

gamble (so in the last gamble, there was a 90 percent chance of the higher-payoff outcome

and a 10% chance of the lower-payoff outcome). A subject switching to the ‘risky’ lottery

relatively sooner indicates a lower degree of risk-aversion. To assist with the probabilities,

subjects were presented with gambles on successive sheets of paper displaying the gambles

numerically (with probabilities expressed in terms of the throw of a 10-sided die) and also

graphically (as pie charts). Examples of these risk decision sheets are in appendix F. For the

purposes of this experiment we assume a CRRA utility function and structurally estimate

the risk parameter, ρ, in a fashion similar to Andersen et al. (2008).

We choose to measure competitiveness as a self-selection into a competitive setting.

Specifically, our competition task elicits a subject’s willingness to compete following Gneezy

et al. (2009). In it, each subject is randomly assigned a member of his or her session as a

competitor and given ten chances to lob a tennis ball underhand into a bucket from three

yards away and paid based on his or her performance in this task. Subjects are told that the

assignments were determined before the session, and that they would not be told who they

are paired with in the experiment. However, they can observe the other subjects in their

group. Since these assignments are pre-determined the person they are competing against

could have chosen either payment method, and assignments are not commutative. That is,

the person you are competing against is not necessarily competing against you, let alone

competing at all. Before beginning to lob, each individual subject must select a preferred

payment scheme—which is either “piece-rate” or “competitive”.

The performance of one’s competitor is immaterial for the piece-rate scheme. Subjects

are simply paid $2 for each successful lob (meaning the ball was thrown inside of the bucket).
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However in the competitive payment scheme, subjects are paid $0 if they fail to lob more

than their competitor; if they lob more than their competitor, they are paid $8 for each

successful ball that exceeds their competitor’s number of successful lobs. For example, if a

subject elects to compete and successfully lobs 4 balls, while her competitor successfully lobs

2 balls, she earns $16. On the other hand, if she had only lobbed 1 ball in the bucket, she

earns nothing. Ties are paid $0 and negative earnings are not permitted.

Paper instructions are given to subjects, and read out loud to all participants in the

session. After completing the competition task, we randomly selected which task is chosen

for payment by way of a coin flip. All payments were made to subjects in the form of gift

cards to either Starbucks or Chick-Fil-A fast-food restaurant (subjects chose which they

preferred to receive). After all tasks were completed subjects filled out a short demographic

questionnaire. Complete subject instructions as well as the questionnaire can be found in

appendix F.

In many of the previous experimental studies of gender and education, there have been

obvious sample selection issues. Ours is not unique in this respect. However, gender differ-

ences aside, the schools were chosen based on similar mission statements and the respective

educational markets they serve. Furthermore, we are the first to undertake an experimental

study of risk and competition within a United States single sex institution. While our confi-

dentiality agreement with the schools prohibits us from naming the schools, the similarities

in the two institutions lead us to believe, a priori, that observed differences in choices will

be due to nurture rather than nature. That is, they arise from the differences in the school-

ing environments, parenting, and peer influences. Therefore, our study is on the structural

differences that exist between families that elect to send their daughters to private single

sex school versus an alternate private co-ed school with a similar mission. While we are not

able to precisely isolate the mechanism that generates the differences observed, our results

are informative to the debate surrounding these preference parameters and gender. In the

next section we discuss this selection argument further.
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II.4 Data

Table II.1: Number of Subjects

Females Females Males
(SS) (CE) (CE) Total

Middle School (Grades 7-8) 80 25 40 145
Upper School (Grades 11-12) 42 56 34 132
Total 122 81 74 277

Our experimental subjects were housed in the middle and upper grades of their schools.

Table II.1 describes the breakdown of experimental subjects by school and grade level. Over-

all, 277 students participated in the experiment, with a roughly equal split between upper

schools and middle schools. 44% of the subjects attended the SS (Single sex) school, and

boys comprised 47.7% of the CE (Co-ed) subjects, and 26% of the sample in all.

As part of the experiment, we aimed to demonstrate the demographic closeness of these

schools. Publicly available data from the National Center for Education Statistics are shown

in Figure II.1. While the SS school serves a higher percentage of students of color, they are

otherwise strikingly similar, particularly with respect to the universe of private education as

a whole.

Table II.2: Summary Statistics—Sports Participation

Panel A: Grades 7-8
Females Females Males

Plays in a: (SS) (CE) (CE)
Team Sport 0.75 (0.43) 0.72 (0.46) 0.5 (0.42)
Hand-Eye Sport 0.71 (0.46) 0.72 (0.46) 0.8 (0.41)
Lettering Sport 0.86 (0.35) 0.88 (0.34) 0.88 (0.34)
Panel B: Grades 11-12

Females Females Males
Plays in a: (SS) (CE) (CE)
Team Sport 0.53 (0.50) 0.34 (0.48) 0.38 (0.49)
Hand-Eye Sport 0.56 (0.50) 0.43 (0.5) 0.35 (0.49)
Lettering Sport 0.73 (0.45) 0.57 (0.5) 0.59 (0.5)
Notes: Presented as difference in mean with standard deviation in parentheses

Additionally, we gathered data on sports participation, educational attainment, and fam-
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Figure II.1: Demographic Comparison of SS and CE Schools

Source: National Center for Education Statistics

ily environment within these schools. These data not only serve to help us test hypotheses

relating to risk and competition (described below), but also further illustrate the demo-

graphic similarities of the schools. Table II.2 provides descriptive statistics on the rates of

sports participation among subjects. As shown in the table, participation rates appear equal

within age groups regardless of gender of school. Participation hovers around 75% in middle

school, but begins to diverge as the children get older, presumably because older children

have access to a greater array of extracurricular activities.

In fact, we illustrate this closeness by failing to reject the hypothesis that team sport

participation differs between schools in either the middle school or upper school test groups
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(Kruskal-Wallis test, p = 0.93, p = 0.22, respectively). However, we can conclude that

participation in team sports decreases across the two age groups (Pearson’s χ2, p = 0.00)6.

Table II.3: Summary Statistics—Educational Attainment

Panel A: Grades 7-8
Females Females Males

Variable: (SS) (CE) (CE)
HW hours/night 2.02 (1.24) 1.69 (0.79) 1.43 (0.98)
Math test hours 2.23 (7.25) 1.70 (1.22) 1.22 (1.2)
Highest math class 2.58 (.522) 2.56 (0.51) 2.83 (0.75)
# of AP classes 0.05 (0.28) 0.04 (0.2) 0.03 (0.16)
# of AP Math/Sci 0.00 (0) 0.04 (0.2) 0.03 (0.16)
Panel B: Grades 11-12

Females Females Males
Variable: (SS) (CE) (CE)
HW hours/night 2.53 (1.09) 2.23 (1.3) 2.24 (1.21)
Math test hours 2.02 (4.52) 1.56 (1.27) 1.76 (1.9)
Highest math class 6.09 (1.14) 6.00 (0.74) 6.08 (0.67)
# of AP classes 2.2 (2.08) 3.08 (2.25) 2.61 (2.41)
# of AP Math/Sci 0.84 (1.1) 1.23 (1.43) 1.05 (1.74)
Notes: Presented as difference in mean with standard deviation in parentheses

We see a similar pattern when looking at educational attainment per student. Table 3

examines activities such as coursework and time spent studying. Again, group means are

fairly similar by age but differ between the middle and upper schools. Perhaps the two

most illuminating measures of educational attainment we have are the coursework variables:

number of AP classes taken and highest math class taken since these measures are housed

entirely within the schools. With few exceptions, middle schoolers do not sit for AP classes,

and within the upper schools, students take roughly the same number of AP classes (Kruskal-

Wallis test, p = 0.13). Furthermore, when we restrict the scope of educational attainment to

just mathematics, the students remain similar. Every subject in the sample has progressed

beyond 6th grade math. In middle school, the highest math class a subject has taken is

usually Pre-Algebra or Algebra 1, (KW, p = 0.30), and Pre-Calc for high schoolers (KW,

6To clarify, by team sports we mean baseball, basketball, cricket, football, hockey, kickball, lacrosse,
soccer, softball, ultimate frisbee and volleyball.

47



p = 0.36).

Unfortunately, we cannot randomly assign subjects into a single sex school. As such, a

concern with selection into the schools is that there is an unobserved component of the edu-

cation production function that affects both the risk taking and competitive behavior of girls

as well as their school choice. However, the prior closeness between the two schools as well

as these demographic similarities and our survey data on athletics and family environment

suggest that any family considering enrollment in one likely considers the other as well. One

potential difference is that the co-ed school serves more grades. If increased exposure to

single sex schooling increases its impact on risk taking and competitive behaviors, we would

expect to see larger difference in the older girls. Regardless, we are comfortable positing that

our estimates reflect the treatment effect of the all girls school, conditional on selecting into

it.

Our interest in demographics also reflects our prior belief that a subject’s willingness

to compete is not only affected by personal preferences, but also the composition of the

experimental group. This belief echoes the concerns made by Gneezy and Rustichini (2004),

among others. However, here group composition goes beyond number of athletes in one’s

group, and also reflects the gender composition of the group in the co-ed school, since

experimental sessions were conducted within (but not across) schools and subjects were

not separated into all-male or all-female groups at the co-ed school. We look more closely

at gender composition below; however we present an overview of the group composition in

Figure II.2, which shows the distribution of CE groups by their percent women. Obviously, SS

groups are entirely women, so adding them to the figure would merely skew the distribution.

CE groups are 52% female on average. It is noteworthy that while we do not have any entirely

female groups within the CE sessions, we do have groups that are mostly women (75% or

greater). Furthermore, 31% of groups are more than 50% female with another 27% being

50% exactly. This variation in gender mix allows us to control for the SS-CE comparison

econometrically.
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Figure II.2: Gender composition of CE groups

Figures II.3 and II.4 examine the athletic composition of the participant groups by percent

of players on team sports and players on sports that require substantial hand-eye coordina-

tion, respectively. Across figures II.3 and II.4 these distributions are similar since many team

sports involve significant hand-eye coordination (and vice-versa). Within each figure, we see

the distributions starting out very tightly packed in middle school and becoming diffuse as

we move to older students, confirming the earlier conclusion that sport participation declines

as we transition from middle to upper school. Specifically, the SS upper schoolers have the

widest distributions of both team and hand-eye sports. As discussed earlier it is important

to note that here, the CE sessions were, by construction, co-educational. Thus, figures 3

and 4 only consider the 2x2 design of experimental sessions (CE and SS; middle school and

upper school), as opposed to looking at all 6 test groups separately.
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Figure II.3: Hand-Eye sports participation by experimental group

Recall, the purpose of these experiments is to revisit competing theories of nature ver-

sus nurture. In particular, we examine the nurturing effects that selecting into an all-girl

schooling environment has on the risk taking and competitive behavior of women. Given

this goal and the resulting data, it is now appropriate to discuss relevant hypotheses. First

we consider the 4 central hypotheses, which are informed by conventional wisdom and the

recent literature:
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Figure II.4: Team sports participation by experimental group

Hypothesis 1 Girls educated in a single sex school are less risk averse than girls educated

in a co-education school.

Hypothesis 2 The risk profile of girls at a single sex school is similar to that of boys at a

co-educational school.

Hypothesis 3 Girls in a single sex school are more likely to elect to compete than girls in

a co-education school.

Hypothesis 4 The competition profile of girls at a single sex school is similar to that of

boys at a co-educational school.

We exploit the closeness of our sample and the richness of our dataset in our examination of
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these hypotheses. To this end, we also consider several tangential hypotheses, which follow

from H1-H4, and are unique to our experiment:

Hypothesis 5 5.a: Competitive sports positively influence competitive behavior.

5.b: Competitive sports positively influence risk taking behavior.

This influence may come about from multiple channels. For example, people who partic-

ipate in sports may be more willing to compete in the experiment, non-athletes may be less

willing to compete when in an athletic group, or some combination thereof.

These experiments also investigate the influence adolescent development has on this be-

havior. Accordingly, we specify a hypothesis addressing differences across age groups.

Hypothesis 6 The behavior of SS young girls is approximately equal to the behavior of CE

young girls.

Given our supposition that “nurture exceeds nature”, we expect younger girls to be

similar across schools. However, we want to know if the differences between girls are causing

selection into individually optimal educational environments, or are different schools shaping

different behaviors in female students? In addressing this question, we implicitly view boys as

a reference group, and assume that the difference between girls and boys is inversely related

to the year in school (which proxies the length of exposure to educational environment). We

now specify two final hypotheses:

Hypothesis 7 Due to exposure, differences in competition rates between SS and CE girls

are greater in the older cohorts.

Hypothesis 8 Competition rates increase with the number of girls in a group.

Differential rates in competition imply that the presence of boys stabilizes or normalizes

female behavior. Thus there may be group effects with regards to the gender makeup of

the group. Coming full circle, these suggestions are closely related to hypothesis 1—the risk
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posture of girls across schooling. However, hypothesis 8 does not identify the channel for

choice to compete. That is, we remain agnostic whether we have observed SS girls being

more competitive or a preference for competing (not competing) against girls (boys).

II.5 Results

Table II.4: CRRA Risk Attitudes

Panel A: Summary Statistics
SS SS CE CE CE CE

Middle Upper F-Middle F-Upper M-Middle M-Upper
0.46 0.50 0.40 0.38 0.36 0.38

(0.05) (0.01) (0.05) (0.08) (0.04) (0.05)
Notes: Presented as as means with standard deviation parentheses

Panel B: Rank-Sum Test Results
SS CE CE CE CE

Upper F-Middle F-Upper M-Middle M-Upper
SS 0.00 0.00 0.00 0.00 0.00

Middle (35396) (16510) (48132) (30261) (24416)
SS 0.00 0.00 0.00 0.00

Upper (6628) (21388) (12858) (10165)
CE 0.53 0.00 0.16

F-Middle (9563) (5488) (4243)
CE 0.01 0.56

F-Upper (18093) (14431)
CE 0.07

M-Middle (8458)
Notes: Presented as p-value with adjusted variance in parentheses

Hypotheses 1 and 2 concerned risk attitudes, so first we consider the risk profiles of our

subjects. Using the data elicited from our risk task, we specify a CRRA utility function

and conduct a structural estimation of risk attitudes. Table II.4, panel A, lists summary

statistics on risk preference. The reader will note that preferences range from risk neutral

(ρ = 0.028) to solidly risk averse (ρ = 0.53), where SS subjects are the most risk averse,

regardless of age group. There is no statistical difference in risk aversion between age groups

(p = 0.376). However, boys are considerably less risk averse than girls (p = 0.00), consistent
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with findings in the previous literature. Both in general and throughout the sample, SS girls

tend to be the most risk-averse, with CE girls being less so, and CE male subjects are the

least risk averse.

Figure II.5: Box plot of risk Preferences across test groups

Figure II.5 shows information on risk preference using box plots. It not only illustrates

that the central tendency of the SS girls is to be more risk averse, as stated above, but also

how uniform SS girls are in their risk preference. Boys in our sample were the least risk

averse. Hypothesis testing confirms this result—that SS girls are in fact more risk averse

than both CE boys and girls. This result is remarkably robust regardless of specification. It

holds in the middle and upper schools as well as both parametrically and non-parametrically.

As a formal test of hypothesis 1 we conduct Mann-Whitney (MW) tests (Table II.4, panel

B) against the null hypothesis that risk attitudes between groups have the same central
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tendency. For both middle and upper school girls, we strongly reject this null in favor

of the alternative that SS are more risk averse (p = 0.00, p = 0.00). Furthermore, the

results hold when we ignore grade level and just compare school type (SS vs. CE, p = 0.00).

Formal testing of hypothesis 2 requires the same methodology, with the specification modified

to compare SS girls to (CE) boys. Table II.5, panel B, shows that in both the middle

school and the upper school, there is a significant difference between SS girls and (CE) boys

(p = 0.00, 0.00); thus, we strongly reject the nulls from both hypotheses 1 and 2.

Result 1 Girls from the single sex school are not significantly less risk averse than coed girls

Result 2 Girls from the single sex school are significantly more risk averse than coed boys

However, despite this apparent risk aversion, it is remarkable that SS girls opt to compete

more than their CE counterparts. This result is discussed in more depth below, following a

discussion of the gender neutrality of the competition task.

Table II.5: Lobs made by test group

Group: Mean SD Min Max
SS-Middle 2.363636 1.485979 0 7
SS-Upper 2.955556 1.91828 0 7
CE, F-Middle 2.8 1.632993 0 6
CE, F-Upper 2.571429 1.38639 0 6
CE, M-Middle 3.625 2.034163 0 8
CE, M-Upper 3.323529 2.211822 0 9
Total 2.841155 1.782576 0 9

We examine this appropriateness three ways: loosely termed performance, earnings, and

rationality. Performance is simply how well a subject did in the task. That is, how many

balls were successfully lobbed in the bucket, described in detail in table II.5. We see that

at least one person in each test group missed every ball, and no subject successfully lobbed

all ten. However, there is some difference between boys and girls. This difference is perhaps

better illustrated in figure II.6, the histograms of performance by gender, given grade level,

which shows this difference is mostly coming through the tails. More girls are successfully
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Figure II.6: Histogram of performance by gender, by age

lobbing fewer than three and no girl lobbed more than seven. While there is some significance

to this performance gap (Pearsons χ2, p = 0.01), there is also a great deal of overlap between

the distributions. This overlap holds for both age groups, and the difference is only coming

through the right tail. As such, we are comfortable drawing statistical inferences from this

task.

Furthermore, subjects tend to earn the same amount across genders and age groups.

Figure II.7 depicts box plots of earnings; note that each of our test groups had similar

median earnings. Most of the sample earned less than $20, and girls are well represented

among the highest earners. In fact, of the 15 possible MW pairwise tests in table II.6, the

only test groups who experienced significantly different earnings were the SS middle schoolers

compared to the SS high schoolers (p = 0.03).

Finally, we ask the question: how much would subjects have earned had they switched

their competitive choice (If one who chose to compete opted for piece-rate payment and

vice versa). For exposition, we term this maximizing argument “rationality”. We measure

rationality in absolute (differenced-earnings) terms. That is if a subject would have earned

more in the other payment scheme (differenced-earnings are less than zero), he or she made

an “irrational” choice. In these terms, Mann-Whitney tests in table II.7 show no group was

pairwise more rational than another. Specifically, the smallest p-values were 0.08 and 0.09,
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Figure II.7: Earnings by Test Group

for SS middle schoolers when compared to their two female upper school counterparts. All

other p-values were greater than 0.317.

Given these similar earnings patterns across the sample, we formally examine the decision

to compete in hypotheses 3 and 4. Table II.8 outlines descriptive statistics and the results

of our tests of these hypotheses, conducted using Pearson’s χ2 tests. Middle school boys

appear to be the most competitive, opting to compete 60% of the time. Remarkably, even

though SS girls are more risk averse than CE girls, they also choose to compete more often.

Addressing hypothesis 3, SS middle schoolers compete significantly more than both CE

middle school girls (p = 0.00) and upper school girls (p = 0.01). SS upper schoolers compete

more than CE middle girls (p = 0.04) but their choices are not significantly different than the

7These results are robust to when we consider only the binary state (that is rational or irrational), where
no p-value is less than 0.10.
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Table II.6: Experimental Earnings

Panel A: Summary Statistics
SS SS CE CE CE CE

Middle Upper F-Middle F-Upper M-Middle M-Upper
5.17 8.13 5.04 5.89 9.25 7.35

(8.14) (9.74) (3.66) (5.25) (10.88) (9.58)
Notes: Presented as as means with standard deviation parentheses

Panel B: Rank-Sum Test Results
SS CE CE CE CE

Upper F-Middle F-Upper M-Middle M-Upper
SS -2.10 -1.20 -1.65 -1.86 -1.04

Middle (0.036) (0.23) (0.00) (0.06) (0.30)
SS 0.731 0.561 -0.192 0.68

Upper (0.464) (0.575) (0.85) (0.494)
CE -0.166 -0.683 0.078

F-Middle (0.868) (0.494) (0.938)
CE -0.66 0.233

F-Upper (0.51) (0.816)
CE 0.646

M-Middle (0.518)
Notes: Presented as z-score with p-value in parentheses

CE upper school girls (p = 0.53). There is no statistical difference in the choice to compete

between SS middle schoolers and either middle school or upper school boys (Pearson’s χ2, p =

0.67, 0.57; respectively). In the SS upper school we see a similar result. Though middle

school boys compete marginally more, this result is not statistically significant. Thus, our

findings regarding competition are predominately consistent with hypotheses 3&4—that SS

girls compete similar to boys and more than CE girls.

Result 3 Middle-school girls in a single sex school are significantly more likely to compete

than girls in a co-educational school.

Result 4 The competition profile of girls at a single sex school is not significantly different

from that of boys at a co-educational school.

While non-parametric tests provide a good overview of the competition choice problem,

a structural model allows us to recover deep preference parameters and jointly estimate
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Table II.7: Subject Rationality

Panel A: Summary Statistics
SS SS CE CE CE CE

Middle Upper F-Middle F-Upper M-Middle M-Upper
5.17 8.13 5.04 5.89 9.25 7.35

(8.14) (9.74) (3.66) (5.25) (10.88) (9.58)
Notes: Presented as as means with standard deviation parentheses

Panel B: Rank-Sum Test Results
SS CE CE CE CE

Upper F-Middle F-Upper M-Middle M-Upper
SS 0.0855 0.3658 0.0837 0.0687 0.6571

Middle (35168) (16309) (47649) (30033) (24159)
SS 0.4378 0.7444 0.7193 0.3980

Upper (6591) (21224) (12817) (10112)
CE 0.6071 0.3091 0.8350

F-Middle (9453) (5436) (4200)
CE 0.4418 0.4748

F-Upper (17933) (14311)
CE 0.3170

M-Middle (8451)
Notes: Presented as z-score with p-value in parentheses

those parameters while providing a more complete interpretation of the decision to compete.

Of course, there are additional methods for examining this decision to compete, which we

consider for robustness and sensitivity. Assuming the choice to compete is a latent process,

a great benefit of our design is our use of multiple tasks to identify these latent parameters.

Furthermore, there is reason to believe risk attitudes affect the decision to compete. For

instance, Datta Gupta et al. (2013) find that a woman’s degree of risk aversion influences

her decision to select each compensation scheme. Using our experimental data, we estimate

a joint structural model of risk attitude and the decision to compete. However, we show that

these attitudes do not significantly impact the decision to compete.

Marginal effects from the relevant estimation are shown in table II.9, with upper school

boys serving as the reference group8. These effects show significant differences in risk attitude

between upper school boys and both male and SS middle schoolers. Consistent with our

8Consistent with the existing literature, we conduct our estimation using frequency weighting.
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Table II.8: Decision to Compete

Panel A: Summary Statistics
SS SS CE CE CE CE

Middle Upper F-Middle F-Upper M-Middle M-Upper
0.558 0.4 0.16 0.339 0.6 0.5

(0.499) (0.495) (0.374) (0.477) (0.496) (0.507)
Notes: Presented as as means with standard deviation parentheses

Panel B: Pearson’s χ2 Test Results
SS CE CE CE CE

Upper F-Middle F-Upper M-Middle M-Upper
SS 0.091 0.001 0.012 0.666 0.569

Middle (2.8519) (12.0587) (6.2573) (0.1858) (0.3244)
SS 0.038 0.529 0.066 0.376

Upper (4.2955) (0.3962) (3.3887) (0.7849)
CE 0.098 0.001 0.007

F-Middle (2.7324) (12.1467) (7.2648)
CE 0.011 0.131

F-Upper (6.4136) (2.2768)
CE 0.388

M-Middle (0.7438)
Notes: Presented as p-value with χ2 score in parentheses

earlier results, boys are less risk averse and girls are more risk averse. Specifically, as we

shift focus to middle school boys the average coefficient of relative risk aversion decrease by

0.06.

Turning to SS middle schoolers, CRRA coefficients increase by 0.127. However, the lack

of significance in the competition column suggests these differences in risk attitude are not

driving decisions to compete. This result is consistent with Wozniak et al. (2014) as well as

Kuhn and Villeval (2015) who find controlling for risk attitude has little impact on female

willingness to compete and cooperate, respectively.

Another measure of competitiveness, “residual competitiveness,” has recently been used

in the economics literature (Buser et al. 2014, further explored by Reuben et al. 2015).

This measure is obtained by saving the residual from a (robust) linear probability model

regression of the decision to compete on performance and CRRA risk attitude, two variables
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Table II.9: Joint Estimation (Marginal Effects)

ρ Compete
SS Middle 0.127*

(0.0138)
SS Upper 0.0105

(0.0149)
CE, F-Middle 0.0174

(0.0171)
CE, M-Middle -0.0619*

(0.0152)
CE, F-Upper -0.00156

(0.0142)
ρ -0.133

(0.493)
Constant 0.395* -0.139

(0.0113) (0.212)
N 30,470 30,470
Notes: Standard errors in parentheses, * p < 0.01

considered to be implicit in the choice to compete9. Thus, higher (i.e. more positive)

residuals are indicative of more competitive behavior. We report these means and compare

them formally in table II.10. Clearly, SS middle schoolers are highly competitive with CE

girls (all ages) being the least competitive. Specifically, students in the SS middle school

are more competitive than upper school boys (p = 0.01) and upper school SS girls are as

competitive as (that is not significantly less competitive than) middle school boys (p = 0.47)

or upper school boys (p = 0.32).

Earlier, we considered extracurricular activities such as participation in sports. Given the

nature of these activities, it is reasonable to think that they influence competitive behavior.

This influence can come across as athletes competing differentially and/or subjects having

preferences over competing against athletes. For these reasons, we specified hypotheses

5.a and 5.b—that competitive sports positively influence both risk taking and competitive

behaviors. To test these, we first ran a probit regression of team sports participation and the

9Probit regressions have roughly the same deviance residual, but are considerably less intuitive to inter-
pret.
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Table II.10: Residual Competitiveness

Panel A: Summary Statistics
SS SS CE CE CE CE

Middle Upper F-Middle F-Upper M-Middle M-Upper
0.117 -0.047 -0.292 -0.112 0.132 0.039
(0.5) (0.493) (0.38) (0.478) (0.491) (0.508)

Notes: Presented as as means with standard deviation parentheses

Panel B:Rank Sum Test Results
SS CE CE CE CE

Upper F-Middle F-Upper M-Middle M-Upper
SS 1.77 3.4 3.68 2.24 2.39

Middle (0.077) (0.0001) (0.0002) (0.025) (0.017)
SS 2.32 1.47 0.079 0.446

Upper (0.02) (0.142) (0.937) (0.656)
CE -1.6 -2.43 -1.85

F-Middle (0.11) (0.015) (0.063)
CE -1.08 -0.85

F-Upper (0.28) (0.396)
CE 0.179

M-Middle (0.858)
Notes: Presented as z-score with p-value in parentheses

proportion of subjects in the group who compete in a team sport on the subject’s decision

to compete. Table II.11, column (1) illustrates the marginal effects. We see that those who

participate in a team sport compete significantly more. Specifically, if a subject plays a team

sport, he or she is almost 17% more likely to compete. Looking over to column (2), which

includes controls for test group (with upper school boys as a reference group) we see that

those who participate in a team sport still compete about 17% more than others, and having

more athletes in your group has a significant negative impact on the choice to compete. The

implication here is athletes are more apt to compete, and subjects dislike competing against

athletes10. However it does not appear that participation in sports influences risk attitudes.

Thus we find support for Hypothesis 5.a, but not for 5.b.

Result 5 Competitive sports favorably influences competitive behavior, but has no effect on

10This interpretation is conditional on subjects knowing the sports their group members participate in, a
safe assumption given our subject pool.
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risk attitude.

Table II.11: Probit of Sports on Decision to Compete (Marginal Effects)

(1) (2)
Plays in a Team Sport 0.167** 0.176***

(0.0660) (0.0674)
Percent of Group in a Team Sport -0.0637 -0.584**

(0.157) (0.286)
SS-Middle 0.214

(0.143)
SS-Upper -0.0514

(0.117)
CE, F-Middle -0.228

(0.144)
CE, F-Upper -0.181*

(0.101)
CE, M-Middle 0.245*

(0.146)
Note: N=277, Standard errors in parentheses, ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Earlier we noted that middle schoolers tend to be less risk-averse than the upper schoolers

in general. This observation suggests that exposure to the school environment may influence

risk attitude. As such, we examine the effect that school choice has on the behavior of young

girls in hypothesis 6, positing that girls are similar across school types. However, we have

shown that in middle school, SS girls are significantly more risk averse (Table II.4, p = 0.00),

yet compete significantly more than their CE counterparts (Table II.8, p = 0.00), thus we

reject hypothesis 6.

Result 6 In young girls, both risk taking and competitive behavior is significantly different

across school types.
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Table II.12: “Difference-in-Differences” Estimations

(CRRA) (Competed?)
Upper School -0.0242* 0.179

(0.0138) (0.115)
Single Gender 0.0616*** 0.398***

(0.0132) (0.110)
Upper*SS 0.0625*** -0.338**

(0.0175) (0.146)
Constant 0.403*** 0.160*

(0.0115) (0.0958)
R-squared 0.416 0.072
Note: N=203, Standard errors in parentheses, ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

The difference between both risk attitudes and competition decisions suggests we can

consider the treatment effect of exposure to single sex schooling on girls. Hypothesis 7 asks

whether these differences increase with said exposure. As a formal test of it, we restrict our

attention to female subjects and calculate a “pseudo difference-in-differences” estimation:

y = β1 + δ1(Upper School + β2(SS) + δ2(Upper*SS) + µ

where y can be specified as the decision to compete or the CRRA coefficient and δ2 is the

treatment effect of exposure to single sex education, conditional on selecting in. Table II.12

presents the results from this estimation. In both specifications, the coefficient on exposure,

δ2, is significant, yet the sign of the effect switches depending on whether we are measuring

its effect on risk attitude or the decision to compete. Specifically, we measure that the

coefficient of relative risk aversion increases by 0.06, while the decision to compete decreases

by 34%.

However, taking seriously the simulations of Bertrand et al. (2004), we note this “treat-

ment” is at the school level, and clustering is therefore infeasible. We instead refer to the

above evidence as supporting the following observation:

Observation 1 Conditional on selecting into it, the treatment effect of increased exposure

to single sex schooling is that girls become more risk averse, and compete less.
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At first glance, this observation may seem bizarre, but it is actually quite profound, and

underscores the fact that the various differences between girls are coming through at the

middle school grade levels11.

Table II.13: Female Competition in Groups of Majority (> 50%) Girls

Panel A: Summary Statistics
Decision to Compete Residual Competitiveness

0.428 -0.021
(0.502) (0.505)

Note: All groups were CE, Upper, Presented as as means with standard deviation parentheses

Panel B: Rank Sum Test Results
Decision to Compete Residual Competitiveness

vs. SG, Middle 1.269 2.225
(0.204) (0.026)

vs. SG, Upper -0.256 0.432
(0.798) (0.666)

Notes: Presented as z-score with p-value in parentheses

Bearing the above in mind, there is a shortcoming that needs to be addressed. In sessions

conducted at the co-ed school, we did not have any all-female groups. However, there is

significant variability in the CE group composition (see Figure II.2). This variability led us

to specify hypothesis 8, which relates competitive behavior to the gender composition of the

subject group. This suggests that the SS preference to compete may actually be a preference

to compete against girls (or reluctance to compete against boys)12. In our sample, 35 CE

(upper school) girls had groups of at least 50% girls. We leverage this variability in group size

and composition, and conduct Mann-Whitney U tests on this sub-sample to test hypothesis

8. An argument in favor of a female preference to compete against girls arises when we

restrict the analysis to this sub-sample and present these findings in Table II.13. It shows

that CE girls in these heavily female groups now opt to compete 43% of the time—over 50%

more than CE girls on average. Furthermore, they are no longer significantly different from

11One seminar participant went so far as to suggest that SG schools may have a homogenizing effect on
young women.

12There are other possibilities, for instance opting to (not) compete could suggest a preference (aversion)
to feedback.
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SS girls in either middle school (p = 0.204) or upper school (p = 0.798). Thus we fail to

reject the null of hypothesis 8, which may suggest that group gender composition is driving

observation 1. That is, with more girls in a CE group, the more similar it looks to an SS

group, or in other words:

Observation 2 Tournament entry rates significantly increase with the number of girls in a

group.

II.6 Concluding Remarks

In a November 2014 article of the New York Times, a third grade math teacher commented

that she turns math lessons into games because her male students enjoy competition (Rich,

2014). Research has demonstrated that this sort of preference has implications for both

educational and later-life outcomes. Recently, policy makers have proposed increases in

single sex schooling as a way to increase equity in education and decrease the gender gap that

may result from differences in these preferences. However, these proposals lack a theoretical

understanding of why these differences exist and may lead to unintended consequences.

In this paper, we run an experiment to disentangle competing theories in the context of

single sex education. While much of the evidence on the subject suffers from the question

of who is selecting into these schools, we attempt to mitigate these sample selection issues.

We conduct our experiment in two closely matched schools and focus our results on the

structural differences that exist conditional on selecting into a single gendered environment.

Our experimental results suggest that indeed, girls educated in coed environments do

shy away from competition. However, girls schooled in single sex environments compete just

as much as their male, coed counterparts. Additionally, they elect to compete despite an

apparent risk aversion across financial gains.

These results speak to the nature-versus-nurture debate and lend credence to the conclu-

sion that nurture matters when it comes to making competitive choices. Furthermore, single
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sex schooling appears to be nurturing in such a way that the competition is rational—that

is, it is not being guided by a preference for risk, but rather an appropriate calculation of

that risk.

These findings are relevant to recent policy proposals and controversies regarding gender

segregated education. They demonstrate several effects that single sex schooling can have

on economically relevant decisions. Our paper has expanded this line of research in both

experimental design and estimation techniques. However, we conclude by stressing the need

for further research in this area.
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Chapter III

The Richness of Giving:
Charity Selection and Charitable Gifts in a Large Field Experiment

III.1 Introduction

In 1772, Alexander Hamilton famously arrived in New York City from St. Croix as the

result of charitable donations from the local populace. Over 200 years later, benevolent

giving to charity now hovers at slightly above 2% of US GDP, and approximately 76% of

Americans contribute to at least one charitable organization each month (World Giving

Index, 2013). However, we still know very little about the decision to donate to charity, the

motivations behind it, and in particular, the mechanism behind one’s charitable choice.

In this paper we examine this mechanism by means of an economic experiment. Charita-

ble giving in many lab and field experiments (artefactual or otherwise), has previously been

modeled as a 2-dimensional dictator game. That is, a game played between oneself and a

charity. However, to the best of our knowledge, no one has yet examined the mechanism

behind one’s choice of said charity or operationalized it in these experimental environments.

In these giving experiments the charities to which a subject can donate tend to be either

anonymous, presented without a choice, or only selected through what we call the restricted

choice method (such as from an ad-hoc list of ten charities). Accordingly, in this paper we
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run an experiment where the unsure components are not only how much the subjects chose

to give, but also to which charities they chose to give. In this way, our experiment examines

this choice mechanism, and uses it to disentangle motives behind giving.

These charitable and philanthropic motives were first discussed by Becker (1974). In

this essay he outlines the following three rationales: improvement of the general well being,

receiving social acclaim, and avoidance of scorn. In the years hence, we have come to think

of these motives as efficiency concerns, warm glow, and social pressures, respectively.

Whereas the formalization of social pressures remains relatively novel (DellaVigna et al.

2012; Lazear et al. 2012), the concepts of efficiency and warm glow, sometimes thought

of a pure and impure altruism, have long been discussed. In an effort to improve model

predictions and comment on the nature of individual donations, Andreoni (1989) introduces

impure altruism, and then (1990) formalizes a theory of warm-glow giving, where a person

exhibiting warm glow can have both altruistic and egoistic motives for giving. Later papers

have suggested alternate reasons for this warm-glow, such as signaling benefits of giving to

others (Bénabou and Tirole 2006, Ellingsen and Johannesson 2008).

Taken in the context of our model, we can think of pure altruism (as opposed to warm-

glow) as dependent on the relative price of giving. One notable implication of here, is that

pure altruism is only concerned with the amount of public good ultimately provided. As such,

giving can be fully crowded out by what other individuals, firms, or governments provide.

In a broad overview of the subject, Vesterlund (2006) further discusses these motives for

giving, citing observational and experimental evidence in the context of a classical demand

setting.

Distinguishing between these motives is important to both further our economic un-

derstanding of giving and, subsequently, inform optimal policies. Given these pro forma

descriptions, economic experiments have previously tried to disentangle motives for giving

by focusing on design and design choice. In particular, experiments have tended to use either

linear public goods games (e.g. Andreoni 1993; Goeree et al. 2002) or dictator games, similar
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to the modified one we use in this paper1.

In the first paper to introduce real charities as a dictator recipient, Eckel and Grossman

(1996) vary receipts between anonymous subjects and the American Red Cross. They find

that subjects are more willing to donate to charity and conclude (some form of) altruism is a

motivating factor. To disentangle altruistic motives, Crumpler and Grossman (2008) extend

this design, with the stipulation that the experimenter will fully crowd out any amount

donated to charity. As such, any subject still opting to donate is taken as an incidence of

warm glow.

As a response to Crumpler and Grossman, Tonin and Vlassopoulos (2014) use multiple

to decisions to identify warm glow, noting that otherwise the observed effect could in fact

be purely altruistic feelings towards the experimenter. In doing so, they are able to place

bounds on the magnitudes of various motives for giving. However, these quantities are not

parameter estimates, and the authors note that their results may not generalize to other

settings.

As such, we design our experiment to create a richness of data and subject pool. This

allows us to impose a standard utility (CES) framework and estimate a structural model to

fully quantify (rather than rule out) motives for giving.

Though this emphasis on structure is relatively novel in the literature its importance has

been clearly stated. Recent papers (e.g. Huck et al. 2015) have used this methodology to

focus on the fundraising side of philanthropy. However, DellaVigna et al. (2012) stress the

importance of these approaches to estimate individual motives for giving. We extend this

line of research to examine these motives inframarginally.

Further, Vesterlund (2006) cautions against interpreting aggregate elasticities when not

all contributors experience the same changes in marginal tax rate. Rather, to better inform

tax policy, individual elasticity estimates should be used. Chay et al. (2005) voice a similar

concern that individual elasticities are necessary for unbiased welfare estimates in the market

1For this reason I will focus on dictator games in this brief review.
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for clean air.

Taking these concerns into account, we set up our experiment such that the data act as

a lens to examine charitable choices, i.e., the choices one undertakes when deciding where

to give, whether to give, and how much to give to charity. Previous dictator designs have

tended to not vary the price of giving or subject income in the experiment. The novelty of our

design, as well as the richness of our data and that fact that we observe it at the individual-

level, allows us to impose a structure (discussed further below) that we use to recover the

deep parameters of these preferences for giving. In this note we examine rationality of

these choices and decompose our parameter estimates across demographics and the types of

selected charities.

We also take seriously the advice of DellaVigna et al. (2013) who note the inherent

difficulties of predicting which causes individuals will give to. We ask experimental subjects

to choose their most preferred charity from a much richer set of organizations. In doing so

we are also able to gather data that inform us of charity preference. Though non-causal, we

correlate these data with subject demographics and estimated parameters. We ask if there

are interesting co-movements between distributional preferences and various these chosen

charities. If so, do these preference parameters for charitable giving differ from what we

have observed in the past with person-to-person gifts? Finally, we ask if we can exploit this

information and the in-subject heterogeneity to increase charitable giving in the naturally-

occurring world.

As such, our paper speaks to the literature in both public and behavioral economics. Our

contribution to these literatures is our development and estimation of the structural model

in the context of a richer set of both givers and recipient organizations. In so doing, we

estimate and comment on full parameter distributions, rather than simple sample averages.

This paper proceeds as follows: Section 2 presents our contextual framework, experi-

mental design, and data. Section 3 discusses the consistency of choices and our structural

estimates. Section 4 looks at the mechanism of charitable choice and selected charity. A

71



final section concludes.

III.2 Experimental Design

III.2.1 The ALP

For the purposes of structurally measuring distributional preferences in our experiment,

we required a large and diverse sample of subjects that differs from the standard undergrad-

uate population. In this sense, we classify our work as an artefactual field experiment to use

the terminology of Harrison and List (2004). Accordingly, we chose to embed our software

in the RAND Corporation’s American Life Panel (ALP henceforth) and conduct and incen-

tivized experiment. The ALP is a 6,000 member, U.S.-based, Internet panel. Its unique

interface allows researchers to conduct sophisticated experiments matched with individually

rich demographic data. Panelists are recruited through a number of different ways, includ-

ing randomized recruitment, providing us with a representative sample, as well as HRS-style

demographic data2.

The composition of our subject pool is described in table III.1, which has demographic

information on those who completed the experiment, those who started but did not finish,

as well as comparative US population data from the American Community Survey3.

Subjects in our experiment hail from every state except Alaska. They range in age from

22 to 92. Our sample is 55% female and slightly less than 80% white. 45% of our subjects

hold a college degree and the employment figures are roughly similar to the US population

as a whole.

2For more information on the ALP, please visit: https://mmicdata.rand.org/alp/.
3For the purposes of GARP and CES analysis, we consider a “complete” experiment as completing 45 or

more dictator allocations.
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Table III.1: Subject Demographic Averages

Variable Completed Started US Adults
Female 0.55 0.566 0.58
Age (Median) 57 57 37.4

18-44 0.229 0.217 0.599
65+ 0.269 0.29 0.137

Caucasian 0.799 0.783 0.763
African American 0.1 0.11 0.137
Native American 0.012 0.016 0.017
Asian or Pacific Islander 0.022 0.022 0.063
Hispanic or Latino 0.169 0.165 0.169
HS Diploma 0.955 0.955 0.862
College 0.448 0.446 0.267
Employed 0.553 0.54 0.577
Unemployed 0.059 0.051 0.058
Not in the Labor Force 0.389 0.409 0.361
Note: US Population Data come from the American Community Survey

http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

III.2.2 Charity Navigator

While there is vast anecdotal evidence that charitable givers prefer to give locally, empir-

ical evidence on the subject remains mixed. Furthermore, local (as well as national) causes

can be highly idiosyncratic in nature. As such, we required a large and diverse set of charities

in addition to the diversity of our subject pool.

To develop this set we turned to the website Charity Navigator, an agency used to rate

charitable organizations4. Founded in 2001, Charity Navigator rates over 7000 charities and

is the largest and most used rating agency in the United States. Using information from

IRS form 990 returns, Charity Navigator assigns each charity a star rating on the bases of

efficiency (financial health), and accountability (transparency)5. Empirical evidence suggests

a positive impact of these star ratings on charitable behavior (Gordon et al. 2009; Brown

et al. 2014).

The Charity Navigator website is organized as follows. Each rated charity is placed into

4http://www.charitynavigator.com.
5For a more detailed yet concise description of this star rating methodology, please refer to Table I in

Gordon et al. (2009).
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one of nine categories, and each category has as associated list of (between 2 and 6) unique

causes. For instance, “Patient and Family Support” is a cause in the “Health” category. At

the time of this writing, the top rated charity in that cause is Camp John Marc.

For the purposes of this experiment, we scraped the Charity Navigator website for the

top 10 ranked charities within each cause, providing us with a list of 340 charities in total.

The complete list (with associated categories and causes) can be found in appendix G.

III.2.3 Experimental Procedures

As such, subjects in this experiment were first obliged to select their preferred charity

from this list (that is, the charity to which they wish to donate). Immediately after, each

subject makes a series of allocation decisions reflective of a charitable contribution. These

decisions each consist of a modified dictator game played between the subject and his or

her chosen charity. In the standard dictator game, an active player (the dictator) is given

an endowment of wealth, w, and divides it between herself and a passive player such that

total payoffs are given by πd + πo = w. This stipulation necessarily restricts the slope of the

budget line to −1.

We differ from this standard dictator framework in two crucial ways. Firstly, the passive

player is a charity of the dictator’s own choosing. Secondly, we follow the generalization of

the dictator game developed by Andreoni and Miller (2002). Budget sets are still linear in

this game form, but the price of giving (donating) varies such that total payoffs are now

represented as xi + pgg = w where xi is the payoff to oneself and pg is the relative price of

donating to charity. The purpose of this variation is twofold. First, we answer the seminal

question: can this giving be consistent with individually rational behavior? That is, are

patterns of giving are consistent with the axioms of revealed preference? Secondly, the price

and income variation over several decisions allows use to trace out each subject’s preferences

for giving.

When subjects first log onto the experimental interface, they are given a instructions
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Figure III.1: Average Fraction Donated

and a broad overview of the experiment. We explain to them that they will be selecting a

charity of their choice and then given opportunities to allocate between themselves and that

charity. To select a charity, subjects are taken through a set of expandable and collapsible

tables adapted from the Charity Navigator website. The tables consist of populated lists. A

subject is first instructed to pick a category. Each choice of category feeds into its associated

list of causes. The selection of a given cause expands the list to the top 10 highest rated

charities (as determined by the Charity Navigator website) for that particular cause. From

there the subject is instructed to pick his or her preferred charity. If the subject so desires,

or if no charity is to his or her liking, a charity write-in option is provided.

After selecting a charity, each session consists of 50 independent dictator problems. The

number number of choices allows us to generate the rich data needed for individual level
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statistical inference6. In each round, the subject is asked to allocate tokens between two

accounts: the personal account of the participant (henceforth self ), and the account of the

chosen charity (henceforth charity). Each decision problem starts by having the computer

select a budget line randomly from the set of lines that intersect at least one axis at or above

the 50 token level and intersect both axes at or below the 100 token levels. The budget lines

selected for each subject in his decision problems are independent of each other and of the

budget lines selected for other subjects in their decision problems.

Next, the subject chooses an allocation along the budget line. To choose an allocation,

subjects use the mouse or the arrows on the keyboard to move the pointer on the computer

screen to the desired allocation. This point-and-click design is adapted from Fisman et al.

(2007). The benefits to using this software are manifold. Among them, the ability to repre-

sent consumer choice problems graphically is simple and easy for subjects to understand, and

the choice environment allows for the generalization of individual preferences. Additionally,

the design can be easily adapted to many other kinds of individual choice problems. A sub-

ject’s view of the computer program dialog window is shown in the attached experimental

instructions located in appendix H.

The payoff for each decision round is determined by the number of tokens each account

(self and charity). At the end of the experiment, the computer randomly selects one decision

round for payment for each participant. The subject is then paid the amount earned in that

round using to the conversion rate 2 tokens = 1 dollar.

The average subject passed 54% of her tokens. Figure III.1 shows this distribution of

percent of tokens donated to charity at the subject level.

6This number reflects the Bronars calibration in Choi et al. 2007 who show that the distribution of
consistency values is skewed to the left as the number of budget sets increases.
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III.3 Results

Broadly speaking, motives for giving tend to reflect either the efficiency or “warm-glow”

concerns discussed above. We can think of the parameters for these concerns as boiling down

to whether or not the act of giving itself is independent of the price of giving. Accordingly,

in this section we examine the parameters within this analytical framework.

III.3.1 Rationality

However, before we can examine these equity/efficiency tradeoffs, we must first confirm

that the data generated by each experimental subject are governed by the principles of utility

maximization. Given that each subject has preferences over herself, xi and the charity, g,

we want to know whether observed choices can be expressed via a utility function Ui =

ui(xi, g), and subsequently, maximize said function. That is, are the data consistent with

the Generalized Axiom of Revealed Preference or GARP. The practice of seeing if the data

satisfy GARP follows Varian (1982)7.

In order to see if, how, and to what extent the data comply with GARP we use Afriat’s

(1972) Critical Cost Efficiency Index (CCEI) as follows:

Define a generalization of the revealed preference relation RD(et) such that

xtRD(et)x iff etptxt ≥ ptx, that is, x would not be affordable at a fraction et

of the income available when the person chose xt. Define R(et) as the transitive

closure of RD(et). Then define GARP(et) as “if xtR(et)xs, then etpsxs ≤ psxt.”

Then the CCEI is the highest value of et such that there are no violations of

GARP(et). (Andreoni and Miller 2002)

In short, the CCEI measures the extent to which budget constraints need to be relaxed

in order for violations to no longer violate. By construct, it is bounded between 0 and 1,

7Note that we restrict our analysis to Walrasian budget sets and therefore implicitly treat preferences as
well-behaved.
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Figure III.2: Distribution of Aftriat’s CCEI

with scores closer to 1 being closer to satisfying GARP. That is, scores closer to 1 are “more

rational”. Among those who completed the experiment, the distribution of CCEI scores are

illustrated as a histogram in figure III.2.

In our data subjects exhibit significant rationality. Over 75% of the data have a CCEI

score greater than 0.8. The mean CCEI score is 0.883, and the modal score in the histogram’s

highest bin8.

Given this consistent behavior on the part of our panel it is appropriate to think of

charitable giving as a standard utility maximizing activity. Further, we have generated

enough data to estimate these standard parameters at the individual level. As such, we now

test the structural properties of each subject’s individual utility function.

8i.e., the bin closest to (and inclusive of) 1.
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III.3.2 Structural Model

Similar past experiments (e.g. Fisman et al., 2015) have shown that subjects exhibit

remarkable heterogeneity. Given these demonstrations and our observed pattern of CCEI

scores sufficiently close to 1, we hereby treat the data as generated by a well-behaved utility

function, ud.

Further, to maintain consistency with the previous literature, we assume ud is both

separable and homothetic. These two assumptions taken in concert with the restriction

imposed by our design that choices must be budget balanced imply that ud is of the family

of CES utility functions (equation III.1). In fact, we estimate these CES utility functions

using non-linear tobit MLE (discussed in turn below), and find that this subject heterogeneity

is more pronounced within demographics and charity types, rather than across them.

ud = [απρd + (1− α)πρo ]
1
ρ (III.1)

This utility function only has 2 components. Since people are behaving consistently (maxi-

mizing) we choose to keep the model parsimonious and do not include additional parameters.

However, given that some subjects are inconsistent, future research would perhaps benefit

from imposition of additional parameters or more flexible functional forms.

Within the context of a CES framework, these two parameters of interest are ρ and α.

Previously, these parameters have been interpreted in terms of person-to-person giving (see

e.g., Fisman et al., 2007). However, they are also immensely important in terms of charitable

giving, and can easily generalize to other settings as well.

The parameter ρ represents the curvature of each individual’s indifference curves, and

thereby her sensitivity to price9. Further, α represents the relative weight one puts on self

as opposed charity. As such, we interpret α as the warm-glow parameter.

For any ρ, when α = 1
2

the subject equally weights the payoff to herself and her selected

9It follows that 1
ρ−1 = σ is the (constant) elasticity of substitution.
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charity. Meanwhile, when ρ > 0, charitable preferences are weighted towards efficiency in

the sense of increasing total payoffs or the “size of the pie”. When ρ < 0, preferences are

weighted towards equity–reducing differences in payoffs or the “slices of the pie”10. For these

reasons, we extend previous interpretations of ρ and tie it in closely with the concepts of

“pure” altruism in previous giving literatures and “efficiency” in the public goods literature.

Figure III.3: Distribution of Estimated Rho (ρ)

Rho (ρ)

The mean estimated ρ is -2.70 and the median is -0.259. However, the distribution

of estimated rho parameters (depicted in figure III.3) is perhaps more informative. The

distribution is noteworthy in that is highly skewed left with a large spike at ρ ≈ −20. Most

10i.e. the elasticity of substitution is < −1.
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Figure III.4: Estimated Median Rho (ρ) Values by Subgroup

Dots indicate median values, circles indicate 25th and 75th percentiles, bars indicate 95% confidence intervals for medians

subjects (58%) have a ρ < 0, while 441 (42%) have ρ > 0. In figure III.4 we decompose the

ρ distributions with socio-demographic data collected by the ALP. While the medians differ

by subgroup, overall, the distributions appear similar.

We examine this further with pairwise distributional (Kolmogorov-Smirnov) tests in table

III.2. In these tests, the comparison group is all subjects not in the specified subgroup. For

instance, the comparison group for men is women, for a college degree it is everyone with

less than a college degree. P-values for the ρ distributions are shown in the 3rd column of the

table. While some subgroups (7 out of 22) exhibit statistical difference in their distributions,

this is likely an artifact of multiple hypothesis testing. Further, there are fewer differences

in distribution, then there are differences in means.
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Alpha (α)

Similar to ρ we interpret α in a slightly different fashion than previous work. Whereas

similar person-to-person giving functions have interpreted α as fair-mindedness, in our con-

text (charitable giving and contribution to a public good) we find “warm-glow” to be a more

appropriate interpretation.

The distribution of estimated alpha parameters is depicted in figure III.5.

Figure III.5: Distribution of Estimated Alpha (α)

Again, the full distribution appears to be more informative than the summary stats. The

mean estimated α is 0.46, and the median is 0.49, both of which are in line with Fisman et al.’s

(2007) interpretative definition of “fair-mindedness”. Interestingly however, the distribution

appears to be tri-modal with large spikes at 0, 0.5, and 1. Overall, 366 subjects (34.7%)

have an α between 0.45 and 0.55, while just 75 (7%) have α > 0.95. Again, we decompose
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the α distributions with socio-demographic data in figure III.6. The results are striking in

that the means are very close to 0.5 with tight confidence bounds.

Figure III.6: Estimated Mean Alpha (α) by Subgroup

Dots indicate mean values, circles indicate 25th and 75th percentiles, bars indicate 95% confidence intervals for means

P-values for the distributional tests on α are shown in table III.2, column 5. The tests

were calculated the same way as above. As above, there are fewer differences in distribution

then there are differences in means. Further, 10 out of the 22 subgroups exhibit statistical

significance, although again, no corrections were made for multiple testing.

III.4 Charity Selection

Since Eckel and Grossman (1996), standard experimental practice has been to give to

actual charities. However, within these experiments there is often not enough data to com-

ment on charity preference. Several studies offer no choice at all (e.g. Davis et al. 2005).

Furthermore, in studies that offer no choice, several conceal the charitable organization.

Harrison and Johnson did not identify their charity (the ACLU of South Carolina) in their
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Table III.2: Pairwise Kolmogorov-Smirnov Tests by Subgroup

Rho (ρ) Alpha (α)
Variable D P-Value D P-Value
Male 0.0399 0.778 0.986 0.013**
Less than HS 0.2307 0.014** 0.1833 0.086
HS Diploma 0.0669 0.604 0.1515 0.006***
Some College 0.0566 0.538 0.0549 0.577
College 0.0849 0.112 0.0607 0.448
Age<=37 0.2504 0.00*** -0.1753 0.001***
Age 38-50 0.0945 0.092 0.0854 0.161
Age 51-60 0.048 0.701 0.0343 0.957
White (Non-Hispanic) 0.0823 0.091 0.2195 0.00***
African American 0.0923 0.366 0.1308 0.069
Hispanic/Latino 0.1144 0.037** 0.2161 0.00***
Lower Income 0.0699 0.239 0.1073 0.014**
Middle Income 0.0953 0.019** 0.0963 0.017**
Upper Income 0.1439 0.00*** 0.1344 0.00***
Employed 0.0646 0.228 0.0691 0.167
Unemployed 0.1317 0.241 0.1042 0.516
Retired 0.1039 0.018** 0.0749 0.182
Disabled 0.0915 0.322 0.1565 0.01***
Homemaker 0.1245 0.183 0.0864 0.606
Never Married 0.1082 0.067 0.1367 0.009***
Married 0.0836 0.056 0.0783 0.086
Separated, etc. 0.1148 0.009*** 0.0606 0.428
Note: Comparison group is all subjects not in the specified subgroup, *** p<0.01, ** p<0.05

experiment, but afforded subjects the opportunity to examine the check written. Similarly,

Buchheit and Parsons (2006) disguise the name of the charitable organization. Furthermore,

in papers with choices, the choice at hand is necessarily reflective of the actual choice one

makes in charitable giving. For instance, donors inMcDowell et al. (2013) are only given a

choice of two charities. In what has become something of a standard, Eckel and Grossman

(2003) provide a list of ten charities to choose from. They note that:

The charities were selected to reflect as broad a range of services and client groups

as possible. The sample included international charities (African Christian Re-

lief, Doctors Without Borders USA, and Feed The Children); national charities

(I Have A Dream Foundation); and local organizations (Women’s Haven of Tar-
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rant County and American Red Cross, Tarrant County Chapter). The charities

covered health (AIDS Outreach Center and Cancer Care Services); environmental

(Earth Share Texas); and social service charities (YMCA of Arlington). Charities

were selected from the Texas State Employee Charitable Campaign booklet for

1997, which was provided to state employees during the workplace charity cam-

paign. All charities included in the booklet meet state tax eligibility standards.

A brief description of each charity was given to the subjects, taken verbatim from

the Texas State Employee Charitable Campaign booklet.

(Eckel and Grossman 2003)

Italics are my own. Other charitable giving papers following this procedure include

Grossman et al. (2012), Tonin and Vlassopoulos (2013), and Harrison and Phillips (2013).

We account for these previous restrictions of choice by allowing subjects to not only select

from a markedly broader list of charities, but also by allowing them the option to switch

their charitable choice once they know the rules of the game.

Table III.3: Selected Categories and Causes

Category N Top Cause N
Animals 328 Rights,Welfare, & Services 272
Arts, Culture, & Humanities 42 Performing Arts 19
Education 131 Other Programs & Services 101
Environment 65 Protection & Conservation 59
Health 298 Medical Research 109
Human Services 307 Food Banks & Distribution 97
International 31 Development & Relief Services 13
Public Benefit 26 Advocacy & Civil Rights 12
Religion 93 Media & Broadcasting 29

Given our diverse subject pool, it follows that subjects have a wide range of charitable

concerns. Table III.3 gives information on the distribution of selected types and the most

popular cause within each type. The three most popular charitable categories are Animals,

Human Services, and Health, respectively. Three divisions which by conventional wisdom,
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rely on very different donor types11.

Figure III.7: Word Cloud of Selected Charities

Excluded Words: Association, for, foundation, in, institute, of, the, to

Of course, the universe of selected charities within these categories presents even finer and

more diverse bins. As a means of description, figure III.7 displays a word cloud comprised

of the names of every selected charity in our dataset. Clearly the most prominent words

are related to our top categories (e.g. Rescue, Research and Cancer), but an interesting

observation is also the high number of geographic indicators in the cloud (e.g. Southeastern,

Greenville, Downtown).

11We have more data on charitable selection than structural estimates as most subjects classified as not
completing the experiment still selected a charity (N=1321 ).
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III.4.1 Rationality Across Type

Above, we noted that subjects exhibit rational, utility maximizing behavior. We build

on this analysis further by asking the follow-up question: does this rationality differ across

charity type? By way of example, we ask whether a subject who prefers to donate to charities

supporting education is more consistent in those charitable choices (as indicated by CCEI

score) than one who donates to religious causes? In this way, we follow the framework of

Choi et al. (2014).

Figure III.8: Distributions of CCEI Scores

Figure III.8 illustrates the distributions of these scores across all charitable categories.

First we note that every type of charity has a mean CCEI greater than 0.84. Further, while

that leaves the door open for some slight variation in means, the distributions of rationality

are all very similar.
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Table III.4: Correlation between CCEI and Selected Category (OLS)

Category Coefficient
Arts, Culture & Humanities 0.0414***

(0.0140)
Education -0.0291*

(0.0150)
Environment 0.00620

(0.0179)
Health 0.00225

(0.0108)
Human Services -0.00445

(0.0109)
International 0.0264

(0.0260)
Public Benefit 0.00210

(0.0297)
Religion -0.00179

(0.0207)
Constant 0.884***

(0.00730)
Observations 1051
R2 0.01
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

We continue to explore this observation using OLS in table III.4, where only one category

(Arts, Culture & Humanities) exhibits significantly more rationality than the reference group

(Animals). Kolmogorov-Smirnov testing confirms this difference (p = 0.046).
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Figure III.9: CES Parameter Distributions Across Charity Types

(a) Estimated Mean α̂

(b) Estimated Median ρ̂
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III.4.2 Structural Estimates Across Type

Given the rationality exhibited both throughout the dataset and within specific charitable

types, we follow the logic from the previous section and examine estimated parameters across

charity type.

Again, we compare the distributions of the key parameters (namely ρ and α) across

charitable categories. Figure III.9 shows the distributions of our imputed parameters. An

observation of note is that there appears to be more within category variation than across

category variation.

Figure III.10: Classifying Subjects’ Preference over Own Income

The bars indicate the percentage of subjects in each cell.
We classify a subject as fair-minded if 0.45 < α̂n < 0.55; a subject is classified as selfish if α̂n > 0.95

Using Fisman et al.’s 2015 definitions of fair-mindedness and selfishness, we further com-

pare α̂ distributions in figure III.10. Interestingly enough, the givers to religious charitable

causes have the highest number of selfish participants.

We further examine a subject’s equity-efficiency trade offs by means of ρ̂ distributions

in figure III.11. Again, Religious causes provide interesting insight into motives for giving,

where givers’ preferences for equality vastly outnumber those who are efficiency-focused.

Compare this to givers of Public Benefit causes, where we see almost the exact opposite.

Public Benefit Charities (e.g. The United Way) are the only category which efficiency-focused
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Figure III.11: Classifying Subjects’ Preference over Total Income

The bars indicate the percentage of subjects in each cell. We classify a subject as equality focused if ρ̂n < 0; a subject is
classified as efficiency focused if ρ̂n > 0

subjects outnumber those who are equality focused.

III.5 Concluding Remarks

This paper examines motives for giving, and further decomposes those motives based on

where subjects actually prefer to donate.

Our study concerns an experimental design that is strongly informed by theory. In doing

so, we create a rich data set that allows us to impose the structure of a standard utility

function (CES) to better understand these motives.

The benefits of this design are manifold. In particular, we are able to estimate parameters

at the individual level, and thereby comment on full parameter distributions, rather than

simple sample averages.

Further, decomposing by charity is a necessary step to build on previous literature.

Rather than rely on conventional wisdom, we find that differences within outnumber dif-

ferences across demographic and charity types. In doing so, we reveal empirical evidence for

how charities can best target potential donors.
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As such, our paper speaks to multiple literatures including public and behavioral eco-

nomics, and structural econometrics. Of course, more work in this area is needed, and this

paper is merely the first in a series of rich questions to be asked. In forthcoming projects, we

aim to further disentangle motives for giving and better inform policy by adding extra di-

mensions to the charitable choice such as highlighting individual receivers within a charitable

organization.
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Chapter IV

Summary and Personal Reflection

In a recent conversation...

...with a colleague, he lamented the tendency of economics experiments to attempt to answer

several questions at once—a practice at odds with other experimental sciences such as chem-

istry and physics. I agree with this standpoint and note that this tendency is particularly

severe when we forsake simplicity in pursuit of a magnum opus.

And yet, when my advisor asked me to reflect on what I’ve learned over the course of

my graduate work, I immediately lost sight of my own advice. I began to draft (what I

hoped was) an irreverent and holistic economic model of dissertation writing. In it, I quoted

luminaries such as Ackerloff, Friedman, and Varian; and used words like stochastic and

lexicographic.

Those words are not in this draft. In the former, I neglected to reflect. Reflect on

what areas of research interest me, why they do, and what I’ve learned from them. Most

importantly, I neglected to reflect on who I am as a scholar.

This reflection is surprisingly difficult. One of the great joys of an economics dissertation

is it can be structured to highlight a broad set of research skills. However, this can make it

hard to draw unifying insight from the work as a whole.
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What follows is the story of my experience writing the dissertation. While the results

of my research are presented in the preceding chapters, here I aim to focus on the lessons

gleaned from conducting the research, replete with its associated laurels and hurdles.

IV.1 Implicit Bias

I had been vaguely aware of the concept of implicit bias as it grew in the cultural con-

sciousness. I had read Blink (Gladwell, 2005), and I had seen the episodes of Oprah. In spite

of this, I didn’t become interested in it as an area of research until the fall of 2012, when my

father happened to be in town for a conference on employment law.

One day, I met him for lunch and he began telling me about his experience taking an

IAT a few sessions earlier. “I could feel myself slowing down” he was saying. Fresh off my

first graduate field courses in experimental, I was struck by what I viewed as several flaws

with this comment.

While my goals in writing the paper have become more nuanced since then, many of those

insights are still in chapter 1: the differences between cheap talk and incentivized action, the

role of marketplace decisions, the vectors of skills that various tasks could be highlighting.

Outside of the paper’s own results, a great lesson here is not only that economic inspi-

ration can come from anywhere, but also the dividends that payoff in wheting and honing a

thesis through the process of workshopping and presenting.

Having said that, the paper was not without its difficulties. From the stance of implemen-

tation, my subject pool was not as balanced as I had envisioned in designing the experiment.

However, there is no perfect lab, and this realization was actually quite liberating for me.

On the analysis side, this chapter has null results which come with their own provisos and

limitations. After relentlessly scrutinizing and torturing the data I have come to believe that

these are true null results, and learned many things in the process about how to better ask

and answer questions. I think my committee would want me to stress the importance of
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asking questions that aren’t mere statistical exercises, but look for economic significance,

and in doing so learning to ask questions where even null results are interesting results.

IV.2 Girls’ School

In the fall of 2013, I was called into a meeting with my advisor and the (then) director

of graduate studies. Given all my neuroses, I assumed something terrible was about to

happen. That “something terrible” was the girls’ school paper, what is now chapter 2 of this

dissertation, and my first coauthorship.

While any first is bound to have a learning curve1, perhaps my most valuable lessons

came from this paper’s “seconds,” by which I mean the follow-up experiments. Though not

part of chapter 2, per-se, this experience offers a microcosm of dissertation lessons as a whole.

These follow-up experiments had elements that were both extremely fortunate and ex-

tremely lacking. For instance, our IRB application was accepted without revisions, but our

subject recruitment was underwhelming. It is not my aim to disparage any of the parties

involved, or even comment on the merits of lab versus field environments. Rather I wish

to pay deference to that fact that, whether providential or ill-fated, any experimental en-

deavor is replete with chance. Experimentation is necessarily a process where the outcome

is unknown, and as such, makes the researcher susceptible to Murphy’s Law. In course, I’ve

found that there are great benefits to additional groundwork and preparedness.

IV.3 Charitable Giving

Experimental economics is a top-heavy process. Rather than cleaning and coding data,

we spend a great deal of our time tweaking and adjusting designs, such that when the data

are ready the analysis tends to be fairly straightforward. I found this to be the case even in

my third chapter, which was by far the most structural of the three.

1Including the importance of debugging code, where special thanks are due to Glenn Harrison
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In many ways, this chapter was the synthesis of what I had already been assimilating

while writing the dissertation. Along with my coauthors I was able to refine the question

to fill an interesting hole in the literature, I was perpetually writing, even during some of

(what felt like) the more stagnant experimental design phases, and I learned to better lean

on the advice and assistance of others.

In the chapter’s opening footnote, I remark that the paper is part of a larger, ongoing

project. While this is particularly true with regards to “The Richness of Giving,” the same

could be said for the research process as a whole.

IV.4 Concluding Remarks

Though we often forget from the solitude of our laptops, this reflection serves to remind

me how collaborative academe is. Not only the act of coauthorship itself, but the entire

research process: brainstorming ideas, workshopping papers, debugging, writing, editing.

This collaboration is compounded in economics experiments where we need assistance to

run the damn things.

A common thread from my lessons in collaboration is the maintenance of perspective.

Whether it is the context of a broader literature in your problem, how to best communicate

that problem to others, or just proper respect paid to those you collaborated with in the

first place.

In this vein, as I stand on the precipice of my doctorate, I am very grateful for the support

of my Chair, Dr. Susan Laury. My committee members Drs. Charles Courtemanche, John

A. List, and Michael K. Price. Non-committee coauthors Drs. Shachar Kariv and Kurt

E. Schnier, as well as numerous peers, assistants, funding agencies and anyone else whose

invaluable assistance made “Three Essays on Social Issues in Experimental Economics” a

possibility. Many kind thanks are owed to all.
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Appendix A) IAT Screenshots 
 

On Screen Instructions 

 
 

Concept (Facial) Sorting 
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Attribute (Word) Sorting 

 
 
 

Grouped Sorting (Highly Associated) 
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Grouped Sorting (Less Associated) 

 
  

99



Appendix B

In this appendix, I adapt the language of Lazear et al. (2012) and include formal defini-
tions of Reluctant, Willing, and Non-sharers

Definition 1. A Willing Sharer (i) shares a positive amount in a sharing environment
and (ii) prefers to be in such an environment when w = w′.
(i) arg maxx∈[0,w] U(1, x, w − x) < w
(ii) maxx∈[0,w] U(1, x, w − x) > U(0, w, 0)

Definition 2. A Reluctant Sharer (i) shares a positive amount when in a sharing envi-
ronment but (ii) prefers to not have the option when there is no financial reward to sharing.
(i) arg maxx∈[0,w] U(1, x, w − x) < w
(ii) maxx∈[0,w] U(1, x, w − x) < U(0, w, 0)

Definition 3. A Non-Sharer (i) does not share, even if the environment allows for it.
(i) arg maxx∈[0,w] U(1, x, w − x) = w
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Appendix C) Subject Instructions 
Treatment: Pictures, Costly Sorting 

Instructions 
 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 In the first part of this experiment, you have been given the choice of whether or not to 
participate in the following activity.  That is, participating in this activity is optional.   
 You have been randomly paired with the participant displayed on your screen.  This 
person is completing a different task that may include different payments, and does not know 
that he or she is participating with you.  If you choose to participate, you will be given $10.  It is 
your task to decide how much to distribute between yourself and the person with whom you are 
paired.  In other words, you must decide how much money, between $0 and $10 to give to the 
other person and how much to keep for yourself.  You may select any amount between $0 and 
$10.  For example, you may decide to give $9 to the other person and keep $1 for yourself, or 
you may instead decide to give $1 to the other person and keep $9 for yourself.  If you choose to 
participate, I will explain the activity to the other person.  That is, the other person will learn the 
rules of the allocation task and the assigned amounts you assigned.  He or she will not see your 
picture.  The assigned amounts will then be paid to both you, in addition to your show-up fees. 
 Moreover, you may decide to not participate in the above activity.  If you choose this 
option, you will receive a fixed amount of $9 (plus the $5 for participation).  The other person 
will receive $5 for participation.  He or she will not receive any information about this activity.  
Please indicate your choice on the sheet below. 

Decision Sheet 
I wish to (circle one) Participate/Not Participate 
If you are participating, please indicate 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Treatment: Pictures, Costless Sorting 
 

Instructions 
 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 In the first part of this experiment, you have been given the choice of whether or not to 
participate in the following activity.  That is, participating in this activity is optional.   
 You have been randomly paired with the participant displayed on your screen.  This 
person is completing a different task that may include different payments, and does not know 
that he or she is participating with you. If you choose to participate, you will be given $10.  It is 
your task to decide how much to distribute between yourself and the person with whom you are 
paired.  In other words, you must decide how much money, between $0 and $10 to give to the 
other person and how much to keep for yourself.  You may select any amount between $0 and 
$10.  For example, you may decide to give $9 to the other person and keep $1 for yourself, or 
you may instead decide to give $1 to the other person and keep $9 for yourself.  If you choose to 
participate, I will explain the activity to the other person.  That is, the other person will learn the 
rules of the allocation task and the assigned amounts you assigned.  He or she will not see your 
picture.  The assigned amounts will then be paid to both you, in addition to your show-up fees. 
 Moreover, you may decide to not participate in the above activity.  If you choose this 
option, you will receive a fixed amount of $10 (plus the $5 for participation).  The other person 
will receive $5 for participation.  He or she will not receive any information about this activity.  
Please indicate your choice on the sheet below. 

Decision Sheet 
I wish to (circle one) Participate/Not Participate 
If you are participating, please indicate 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Treatment Pictures, No Sorting 
Instructions 

 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 You have been randomly paired with the participant displayed on your screen.  In this 
part of the experiment, you will be given $10.  It is your task to decide how much to distribute 
between yourself and the person with whom you are paired.  In other words, you must decide 
how much money, between $0 and $10 to give to the other person and how much to keep for 
yourself.  You may select any amount between $0 and $10.  For example, you may decide to 
give $9 to the other person and keep $1 for yourself, or you may instead decide to give $1 to the 
other person and keep $9 for yourself.  After you make your decision, I will explain the activity 
to the other person, that is, the other person will learn the rules of the allocation task and the 
assigned amounts you assigned.  He or she will not see your picture.  The assigned amounts will 
then be paid to both you, in addition to your show-up fees. 
  

Decision Sheet 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Treatment: No Information, Costly Sorting 
Instructions 

 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 In the first part of this experiment, you have been given the choice of whether or not to 
participate in the following activity.  That is, participating in this activity is optional.   
 You have been randomly paired with a participant in this room.  This person is 
completing a different task that may include different payments, and does not know that he or 
she is participating with you.  If you choose to participate, you will be given $10.  It is your task 
to decide how much to distribute between yourself and the person with whom you are paired.  In 
other words, you must decide how much money, between $0 and $10 to give to the other person 
and how much to keep for yourself.  You may select any amount between $0 and $10.  For 
example, you may decide to give $9 to the other person and keep $1 for yourself, or you may 
instead decide to give $1 to the other person and keep $9 for yourself.  If you choose to 
participate, I will explain the activity to the other person.  That is, the other person will learn the 
rules of the allocation task and the assigned amounts you assigned.  He or she will not learn who 
you are.  The assigned amounts will then be paid to both you, in addition to your show-up fees. 
 Moreover, you may decide to not participate in the above activity.  If you choose this 
option, you will receive a fixed amount of $9 (plus the $5 for participation).  The other person 
will receive $5 for participation.  He or she will not receive any information about this activity.  
Please indicate your choice on the sheet below. 

Decision Sheet 
I wish to (circle one) Participate/Not Participate 
If you are participating, please indicate 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Treatment: No Information, Costless Sorting 
Instructions 

 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 In the first part of this experiment, you have been given the choice of whether or not to 
participate in the following activity.  That is, participating in this activity is optional.   
 You have been randomly paired with a participant in this room.  This person is 
completing a different task that may include different payments, and does not know that he or 
she is participating with you. If you choose to participate, you will be given $10.  It is your task 
to decide how much to distribute between yourself and the person with whom you are paired.  In 
other words, you must decide how much money, between $0 and $10 to give to the other person 
and how much to keep for yourself.  You may select any amount between $0 and $10.  For 
example, you may decide to give $9 to the other person and keep $1 for yourself, or you may 
instead decide to give $1 to the other person and keep $9 for yourself.  If you choose to 
participate, I will explain the activity to the other person.  That is, the other person will learn the 
rules of the allocation task and the assigned amounts you assigned.  He or she will not learn who 
you are.  The assigned amounts will then be paid to both you, in addition to your show-up fees. 
 Moreover, you may decide to not participate in the above activity.  If you choose this 
option, you will receive a fixed amount of $10 (plus the $5 for participation).  The other person 
will receive $5 for participation.  He or she will not receive any information about this activity.  
Please indicate your choice on the sheet below. 

Decision Sheet 
I wish to (circle one) Participate/Not Participate 
If you are participating, please indicate 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Treatment: No Information, No Sorting 
Instructions 

 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group A Instructions 
 You have been randomly paired with a participant in this room.  In this part of the 
experiment, you will be given $10.  It is your task to decide how much to distribute between 
yourself and the person with whom you are paired.  In other words, you must decide how much 
money, between $0 and $10 to give to the other person and how much to keep for yourself.  You 
may select any amount between $0 and $10.  For example, you may decide to give $9 to the 
other person and keep $1 for yourself, or you may instead decide to give $1 to the other person 
and keep $9 for yourself.  After you make your decision, I will explain the activity to the other 
person, that is, the other person will learn the rules of the allocation task and the assigned 
amounts you assigned.  He or she will not learn who you are.  The assigned amounts will then be 
paid to both you, in addition to your show-up fees. 
  

Decision Sheet 
Amount of money to give to the other person: _________________ 
Amount of money to keep for yourself : _________________ 
(these two quantities must sum up to $10.00) 
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Receiver Instructions (Constant Across Treatments) 
Instructions 

 Thank you for agreeing to participate.  This is an experiment in two parts.  We are 
interested in how people make decisions in social situations.  Please read the instructions 
carefully, as your task may not be the same as those around you.  During the session please do 
not talk or communicate with the other participants.  If you have a question, please raise your 
hand and a research assistant will come answer it. 
 Everyone has already earned $5 for showing up.  Additionally, you may have an 
opportunity to earn more.  We will pay you privately in cash at the end of the session.  None of 
the other participants will know the amount you have earned. 

Group B Instructions 
 In the first part of this experiment, you are asked to complete the attached questionnaire.  
You will earn money based on how you answer these questions.  After finishing, you will be 
asked to participate in an additional activity. The additional activity will not affect your payment 
in this part of the experiment.   
In this questionnaire, you will be presented with a table that contains information on 10 different 
decisions that you must make.  For each of the 10 decisions you must select either option 1 or 
option 2.  The outcome of each option depends on the role of a 10-sided die.  You will be paid 
based on your decisions in this questionnaire and partly on chance. Below is an example of the 
first three decisions you will make: 
Decision  Option 1  Option 2 
1 Roll 1 for $2 or 2-10 for $1.60 Roll 1 for $3.85 or 2-10 for $0.10
2 Roll 1,2 for $2  or 3-10 for $1.60 Roll 1,2 for $3.85  or 3-10 for $0.10
3 Roll 1-3 for $2 or 4-10 for $1.60 Roll 1-3 for $3.85 or 4-10 for $0.10

 
Here is how I will pay you for this activity: I will first roll the 10-sided die to determine which 
decisions will receive  payment  and  then  re-roll  the  10-sided  die  to determine your final 
earnings based on whether or not you selected option 1 or 2.   All die rolls will be conducted 
after you have completed the experiment.   
In the example above, suppose that I roll the 10-sided die and it lands on 1.  Then the first row 
will be selected for payment.  Now supposed I reroll the die and it lands on 6.  If this is true you 
will receive  $1.60  if  you had  selected  Option  1  and  $0.10 if  you had  selected Option 2.  
However, if the 10-sided die lands on 1 you will receive $2.00 if you had selected Option 1 and 
$3.85 if you had selected Option 2.   
Please indicate your decision for each of the 10 rows on the opposite side of this sheet:
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Please indicate your choice by circling either option 1 or 2 in the far right column. Only choose one option for each decision: 
 

Decision  Option 1  Option 2 My Choice 
1 Roll 1 for $2 or 2-10 for $1.60 Roll 1 for $3.85 or 2-10 for $0.10 Option 1 Option 2 

2 Roll 1,2 for $2  or 3-10 for $1.60 Roll 1,2 for $3.85  or 3-10 for $0.10 Option 1 Option 2 

3 Roll 1-3 for $2 or 4-10 for $1.60 Roll 1-3 for $3.85 or 4-10 for $0.10 Option 1 Option 2 

4 Roll 1-4 for $2 or 5-10 for $1.60 Roll 1-4 for $3.85 or 5-10 for $0.10 Option 1 Option 2 

5 Roll 1-5 for $2 or 6-10 for $1.60 Roll 1-5 for $3.85 or 6-10 for $0.10 Option 1 Option 2 

6 Roll 1-6 for $2 or 7-10 for $1.60 Roll 1-6 for $3.85 or 7-10 for $0.10 Option 1 Option 2 

7 Roll 1-7 for $2 or 8-10for $1.60 Roll 1-7 for $3.85 or 8-10for $0.10 Option 1 Option 2 

8 Roll 1-8 for $2 or 9,10 for $1.60 Roll 1-8 for $3.85 or 9,10 for $0.10 Option 1 Option 2 

9 Roll 1-9 for $2 or 10 for $1.60 Roll 1-9 for $3.85 or 10 for $0.10 Option 1 Option 2 

10 Roll 1-10 for $2 or -  for $1.60 Roll 1-10 for $3.85 or -  for $0.10 Option 1 Option 2 
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Appendix D) Demographic Survey 

Demographic Survey 
Below are several questions relating to your background. Your answers here will 
help us in conducting statistical analysis.  Your name will not be matched with 
your responses and all information will be kept confidential. Please indicate if you 
prefer not to answer a particular question or if you would like to leave the study at 
any time. Please answer the questions honestly and to the best of your ability. 
 
1) What is your age? _________ 
 
2) What gender do you identify with: 

□ Male 
□ Female 
□ Prefer Not to Answer 

 
3) Which of these groups best 
describes you? 

□ White 
□ Black or African-American 
□ Hispanic 
□ American Indian or Alaska 

Native 
□ Asian 
□ Native Hawaiian or Other 

Pacific Islander 
□ Other 
□ Prefer Not to Answer 

 
4) What religion do you currently 
identify with? 

□ Catholic 
□ Protestant 
□ Muslim 
□ Jewish 
□ Agnostic 
□ No Religion 
□ Don’t Know 
□ Prefer Not to Answer 
□ Other 

5) Have you participated in an 
economics experiment previously? 

□ Yes 
□ No 
□ Don’t Know 
□ Prefer Not to Answer 

6) What is your current year in 
school? 

□ Freshman 
□ Sophomore 
□ Junior 
□ Senior 
□ Graduate Student 
□ I am not currently enrolled 

in school 
□ Prefer Not to Answer 

 
7) What is your GPA? 
 

□ ____________ 
□ Prefer Not to Answer 

 
8)What is your Major? 
 
  _____________________ 
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Appendix E

Scatter plots of IAT score and Amount Passed by Race and Bias of Dictator

In this appendix we start by looking at giving in finer bins in the photo treatments.
Specifically the bias of the dictator. Here our definition of bias is IAT scores beyond ±0.15.
The greatest difference in means exists between passing to the same and other for those
holding an Anti-Black bias. This difference is not significant.

Table 1: Average Amounts Passed By Bias and Equivalence of Race

IAT Threshlod

Anti-White None Anti-Black

Same Race
2.964

(1.971, n=28)
2.179

(2.342, n=28)
2.516

(2.206, n=48)

Other Race
2.742

(2.756, n=31)
2.600

(2.591, n=10)
3.233

(1.960, n=30)
Avg. Pass 2.847 2.289 2.792
Total Obs 59 38 78
Std. Deviations & Observations in Parentheses

IAT cutoffs at bias thresholds of ≤ −0.15 and ≥ 0.15

Next we look at giving in the context of a double-hurdle model (Cragg, 1971). This more
flexible model, displayed in table 2 allows two separate processes for choosing to stay in,
and how much one participates conditional on staying in. However, in order to specify these
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processes, it is necessary that I restrict the sample to those sessions with a sorting option
(n=126). Even with this increased flexibility, IAT is still neither a significant predictor of
dictator giving nor sorting.

Table 2: The IAT’s Effect on Percent Shared Hurdle Model

Panel A: Hurdle
Variable (1) (2) (3) (4)

IAT D-score 0.0584 0.107 0.108 0.154
(0.116) (0.118) (0.119) (0.226)

Receiver is Black 0.340 0.338 0.350
(0.271) (0.271) (0.276)

Receiver is Same Gender -0.559** -0.558** -0.561**
(0.253) (0.253) (0.253)

Costly Sorting -0.0440 -0.0535
(0.236) (0.239)

IATxPassedBlack -0.129
(0.533)

Constant 0.428*** 0.525** 0.550* 0.552*
(0.116) (0.257) (0.290) (0.290)

Panel B: Above
Variable (1) (2) (3) (4)

IAT D-score -0.363 -0.383 -0.381 -0.976
(0.311) (0.303) (0.300) (0.611)

Receiver is Black -0.487 -0.554 -0.735
(0.696) (0.692) (0.702)

Receiver is Same Gender 0.878 0.922 1.029*
(0.606) (0.600) (0.604)

Costly Sorting -0.589 -0.609
(0.570) (0.564)

IATxPassedBlack 1.600
(1.412)

Constant 3.251*** 3.167*** 3.510*** 3.555***
(0.345) (0.636) (0.696) (0.688)

Sigma 2.306*** 2.265*** 2.246*** 2.223***
(0.264) (0.256) (0.252) (0.247)

Observations 126 126 126 126
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix F 
 
 
STUDENT INSTRUCTIONS 
There are two separate games that you are going to play today.  You will first play Game 1 and 
then proceed to Game 2. Listed below is a description of the two games and the tasks/decisions 
you will make.  After you have completed both games we will flip a coin to determine which game 
you will receive payment.  You will only receive payment for one of the two games. 
 
GAME 1 
In game one you will be presented with a folder that contains information on 10 different decisions 
that you must make.  For each of the 10 decisions you must select either option A or option B.  
The outcome of each option depends on the role of a 10-sided die.  The decision task is illustrated 
two different ways.  At the top of each page you will see a pie chart that graphically illustrates the 
probable outcomes of your decision.  Listed below the pie chart is a verbal description of the game.  
To determine the outcome of the game the study leader will roll a 10-sided die with your payment 
depending on the die number.  After you have made all 10 of your decisions, the study leader will 
first roll the 10-sided die to determine which of the 10 decisions you will receive payment and then 
re-roll the 10-sided die to determine your final earnings based on whether or not you selected 
option A or B.   All die rolls will be conducted after you have completed both Game 1 and 2.  
Below is an example of the decision task you will make: 
 

  
Option A      Option B 
$10 if throw of die is 1 – 4      $7 if throw of die is 1 – 4 
$2 if throw of die is 5 – 10    $4 if throw if die is 5 – 10 
 
Suppose that the study leader rolls the 10-sided die and it lands on 6.  If this is true you will receive 
$2.00 of you had selected Option A and $4.00 if you had selected Option B.  However, if the 10-
sided die lands on 3 you will receive $10.00 if you had selected Option A and $7.00 if you had 
selected Option B.  The color-coded pie chart illustrates how probable each outcome is, the larger 
the area the more probable the outcome.  For instance, under Option A there is a 40% chance that 
you will earn $10.00 and a 60% percent chance you will earn $2.00.  Under Option B there is a 
40% chance you will earn $7.00 and a 60% chance you will earn $4.00.  
  

$10.00

$2.00

$7.00

$4.00
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GAME 2 
In Game 2 you will be asked to under hand lob (you must under hand lob) a tennis ball ten times 
into a basket that is 10 feet away.  You must remain behind the line when tossing each of the tennis 
balls.  Before playing the game you must decide which payment method you wish to receive.  
Under option A you will receive $2 for every tennis ball that you successfully under hand lob into 
the basket.  Under option B you will be randomly paired with one of your fellow students and if 
you lob more tennis balls in the basket then they do you will receive $8 for each tennis ball that 
exceeds the number lobbed into the basket by your competitor.   At no time during the game will 
you know which student in your class is the student you have been paired with; you will be 
informed of your earnings upon completion of both Game 1 and 2.  For instance, if you lob 6 tennis 
balls into the basket and your paired competitor lobs 4 tennis balls into the basket you will earn 
(6-4)*$8=2*$8=$16 in the game.  However, if they had lobbed 6 tennis balls in the basket as well 
you would earn (6-6)*$8=0*$8=$0.  In the case that your competitor lobs more tennis balls in the 
trash can than you, you will earn $0 (it is not possible to lose money). 
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Student Survey 
Student Number____________ 
 

1. How old are you?  ________________________ 
2. What grade are you in at school? _______________________ 
3. Please circle your gender. 

a. Girl 
b. Boy 

4. What sports teams have you played on in the past year (it is ok to write “none” if you 
don’t play any sports)?  

 
 
 
 
 

5. Please circle all of the math courses that you have taken, including your current math 
course. 

a. 6th grade math 
b. pre‐algebra 
c. algebra I 
d. geometry 
e. algebra II 
f. pre‐calculus 
g. calculus 
h. statistics 
i. AP calculus 
j. economics 

6. How much time do you spend doing homework every day?  ____________________ 
7. If you had a math test coming up, how many hours would you spend studying for it?  

____________________ 
8. How many AP courses have you taken? ______________________  
9. How many AP courses have you taken in math or science? _____________________ 
10. On average how many hours do you spend with a parent every day? __________ 
11. How many times a week do you eat dinner as a family? __________ 
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Appendix G 
 
Complete List of Charitable Organizations 
 
Category: Animals 
Cause: Animal Rights, Welfare, and 
Services 
Greenville Humane Society 
American Veterinary Medical Foundation 
Southeastern Guide Dogs 
Banfield Charitable Trust 
Puppies Behind Bars 
Michigan Anti-Cruelty Society 
San Francisco SPCA 
Days End Farm Horse Rescue 
Peggy Adams Animal Rescue League 
Main Line Animal Rescue 
Cause: Wildlife Conservation 
Big Cat Rescue 
Wildlife Conservation Network 
WildAid 
International Primate Protection League 
Orangutan Foundation International 
American Bird Conservancy 
Pheasants Forever 
Trout Unlimited 
American Eagle Foundation 
Pollinator Partnership 
Cause: Zoos and Aquariums 
Clearwater Marine Aquarium 
North Carolina Aquarium Society 
Columbus Zoo and Aquarium 
Houston Zoo 
Texas State Aquarium 
Birmingham Zoo 
Detroit Zoological Society 
National Aquarium, Baltimore 
Cincinnati Zoo & Botanical Garden 
The Philadelphia Zoo 
Category: Arts, Culture, and Humanities 
Cause: Libraries, Historical Societies and 
Landmark Preservation 
Archaeological Conservancy 
The Seattle Public Library Foundation 
Minnesota Historical Society 
Louisville Free Public Library Foundation 

Civil War Trust 
Western Reserve Historical Society 
George Washington’s Mount Vernon 
Center for Jewish History 
The New York Public Library 
The Friends of the Saint Paul Public Library 
Cause: Museums 
Chrysler Museum of Art 
Walking Mountains Science Center 
Santa Barbara Museum of Art 
Los Angeles County Museum of Art 
Children’s Museum of Richmond 
Honolulu Museum of Art 
Missouri History Museu 
Children’s Museum of Houston 
American Museum of Natural History 
Metropolitan Museum of Art 
Cause: Performing Arts 
Houston Ballet 
La Jolla Playhouse 
Fractured Atlas 
Colorado Springs Fine Arts Center 
Paul Taylor Dance Foundation 
Brooklyn Academy of Music 
On the Boards 
San Francisco Ballet 
Boston Lyric Opera 
The Raymond F. Kravis Center for the 
Performing Arts 
Cause: Public Broadcasting and Media 
Vermont Public Radio 
NPR 
Center for Investigative Reporting 
StoryCorps 
Maine Public Broadcasting Network 
Twin Cities Public Television 
New Hampshire Public Radio 
Graywolf Press 
Texas Public Radio 
KUOW Puget Sound Public Radio 
Category: Education 

115



Cause: Universities, Graduate Schools, 
and Technological Institutes  
University of Delaware 
Medical College of Wisconsin 
Emory University 
Northeastern University 
Drexel University 
New York University 
Dartmouth College 
Baylor University 
Carnegie Mellon University 
Cornell University 
Cause: Private Elementary and 
Secondary Schools  
Epiphany School 
The Kinkaid School 
Pace Academy 
KIPP DC 
Grand Rapids Christian Schools 
Kimball Union Academy 
Mercersburg Academy 
Wesleyan School 
Abraham Joshua Heschel School 
Harlem Academy 
Cause: Private Liberal Arts Colleges  
Davidson College 
St. Olaf College 
Claremont McKenna College 
University of Puget Sound 
Furman University 
Wheaton College 
Lafayette College 
Gustavus Adolphus College 
Wellesley College 
Spelman College 
Cause: Other Education Programs and 
Services 
Step Up For Students 
DonorsChoose.org 
Communities In Schools National Office 
The Parent-Child Home Program 
National Medical Fellowships 
GreatSchools 
I Know I Can 
Small Steps Nurturing Center 
The BISON Children’s Scholarship Fund 

BELL 
Category: Environment 
Cause: Environmental Protection and 
Conservation  
North Cascades Institute 
Rare 
Living Lands and Waters 
Alliance for the Great Lakes 
World Resources Institute 
The Sierra Club Foundation 
Trees Atlanta 
Texas Parks and Wildlife Foundation 
Conservation Law Foundation 
Teton Science Schools 
Cause: Botanical Gardens, Parks, and 
Nature Centers 
Western Pennsylvania Conservancy 
New England Wild Flower Society 
San Francisco Parks Alliance 
Grand Teton National Park Foundation 
Golden Gate National Parks Conservancy 
Naples Botanical Garden 
Thomas Irvine Dodge Nature Center 
World Forestry Center 
Cincinnati Parks Foundation 
The Battery Conservancy 
Category: Health 
Cause: Diseases, Disorders, and 
Disciplines 
United Cerebral Palsy of Greater Chicago 
National Kidney Foundation of Michigan 
Glaucoma Research Foundation 
National Alopecia Areata Foundation 
Cure Alzheimer’s Fund 
Immune Deficiency Foundation 
HelpHOPELive 
Breast Cancer Connections 
Children’s Organ Transplant Association 
FSH Society 
Cause: Patient and Family Support 
Camp John Marc 
Sharsheret 
Make-a-Wish Foundation of the Texas Gulf 
Coast and Louisiana 
Camp Sunshine, Maine 
Mercy Medical Airlift/Mercy Medial Angels 
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Operation Access 
Make-a-Wish Foundation of Masachusetts 
and Rhode Island 
Dream Foundation 
Tom Coughlin Jay Fund Foundation 
Boston Ronald McDonald House 
Community Volunteers in Medicine 
Cause: Treatment and Prevention 
Services 
International Planned Parenthood 
Foundation/Western Hemisphere Region 
St. Petersburg Free Clinic 
Resource Center 
Cenikor Foundation 
Venice Family Clinic 
Arlington Free Clinic 
Wisconsin Women’s Health Foundation 
Planned Parenthood of Maryland 
Fan Free Clinic 
Cause: Medical Research 
Masonic Medical Research Laboratory 
The Lustgarten Foundation for Pancreatic 
Cancer Research 
Breast Cancer Research Foundation 
The Multiple Myeloma Research 
Foundation 
Sabin Vaccine Institute 
Alliance for Aging Research 
Cancer Research Institute 
Sansum Diabetes Research Institute 
Damon Runyon Cancer Research 
Foundation 
Oklahoma Medical Research Foundation 
Category: Human Services 
Cause: Children’s and Family Services  
Forever Young Foundation 
Harlem Children’s Zone 
Cradles to Crayons 
Mary’s Center 
Dave Thomas Foundation for Adoption 
Martha’s Table 
Jewish Family Service of San Diego 
Families Forward 
Emergency Family Assistance Association 
Court Appointed Special Advocates of 
Collin County 

Cause: Youth Development, Shelter, and 
Crisis Services  
Do Something 
Boys & Girls Clubs of Central Florida 
Place of Hope 
Girls Inc. of Omaha 
Royal Family Kids 
Big Brothers Big Sisters of Eastern Missouri 
Harlem RBI 
St. Anne’s 
United Friends of the Children 
Boys & Girls Clubs of Metropolitan Phoenix 
Cause: Food Banks, Food Pantries, and 
Food Distribution 
Midwest Food Bank 
The Billings Food Bank 
Weld Food Bank 
San Antonio Food Bank 
Second Harvest Food Bank of North Central 
Ohio 
Central Illinois Foodbank 
Second Harvest Food Bank of Northwest 
Pennsylvania 
Northern Illinois Food Bank 
The Food Bank of Lower Fairfield 
Ozarks Food Harvest 
Cause: Multipurpose Human Service 
Organizations 
New York Cares 
Good Sports 
National Fallen Firefighters Foundation 
Higher Ground Sun Valley 
Special Olympics Arizona 
United States Soccer Foundation 
100 Club of Arizona 
Armed Services YMCA 
Adaptive Sports Association 
All Hands Volunteers 
Cause: Homeless Services 
Preble Street 
Homeless Emergency Project 
Durham Rescue Mission 
The Lord’s Place 
SOME 
Abode Services 
Safe Haven Family Shelter 
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Downtown Women’s Center 
Primavera Foundation 
The INN 
Cause: Social Services 
Emergency Outreach Colorado 
Air Warrior Courage Foundation 
Fisher House Foundation 
Boca Helping Hands 
Eva’s Village 
Navy SEAL Foundation 
Homes for Our Troops 
Special Operations Warrior Foundation 
Surrey Services for Seniors 
REDF 
Category: International 
Cause: Development and Relief Services 
Wings of Hope 
Life in Abundance International 
Aga Khan Foundation, USA 
Child Aid 
ECHO 
Fistula Foundation 
Kids Alive International 
International Institute of Rural 
Reconstruction (IIRR) 
Kiva 
GlobalGiving 
Cause: International Peace, Security, and 
Affairs  
V-Day 
Polaris Project 
United Nations Foundation 
Women’s Learning Partnership 
StandWithUs 
Shared Hope International 
International Center for Journalists 
Institute of International Education 
Birthright Israel Foundation 
Human Rights Watch 
Cause: Humanitarian Relief Supplies  
Books for Africa 
Project C.U.R.E. 
Heart to Heart International 
Direct Relief 
Matthew 25: Ministries 
Outreach 

Feed My Starving Children 
Brother’s Brother Foundation 
Project HOPE 
MedShare International 
Cause:  Foreign Charity Support 
Organizations  
Palestine Children’s Relief Fund 
CommonHope 
Hadassah, The Women’s Zionist 
Organization of America 
The Citizens Foundation, USA 
American-Israeli Cultural Foundation 
Sankara Eye Foundation, USA 
American Society for Yad Vashem 
Fonkoze USA 
BRAC USA 
Solid Rock International 
Category: Public Benefit 
Cause: Advocacy and Civil Rights  
Equal Justice Initiative 
Chicago Foundation for Women 
Physicians for Reproductive Health 
Acton Institute for the Study of Religion and 
Liberty 
Compassion & Choices 
Injured Marine Semper Fi Fund 
NumbersUSA 
Institute for Justice 
National Immigration Law Center 
Freedom From Religion Foundation 
Cause: Fundraising Organizations 
Charities Aid Foundation America 
Robin Hood Foundation 
Jewish Community Federation of San 
Francisco, the Peninsula, Marin and Sonoma 
Counties 
Greater Kalamazoo United Way 
Arthritis National Research Foundation 
United Way of Summit County 
United Way of Cass-Clay 
The Rose Foundation for Communities and 
the Environment 
Elton John AIDS Foundation 
AIDS United 
Cause: Research and Public Policy 
Institutions 
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RESULTS Educational Fund 
Carnegie Institution for Science 
Public Interest Projects 
Center for Food Safety 
North Carolina Agricultural Foundation 
The Brookings Institution 
Mount Desert Island Biological Laboratory 
The Federalist Society for Law and Public 
Policy Studies 
Kentucky Youth Advocates 
Woods Hole Oceanographic Institution 
Cause: Community Foundations 
The Community Foundation for Northeast 
Florida 
The Community Foundation of Louisville 
Community Foundation of North Texas 
Orange County Community Foundation 
The Columbus Foundation 
Parasol Tahoe Community Foundation 
Community Foundation for Southeast 
Michigan 
Princeton Area Community Foundation 
Community Foundation of Middle 
Tennessee 
Community Foundation of New Jersey 
Cause: Community and Housing 
Development 
Habitat for Humanity of Greater Los 
Angeles 
Habitat for Humanity of East Bay 
San Gabriel Valley Habitat for Humanity 

Rebuilding Together 
Habitat for Humanity of Washington, D.C. 
Enterprise Community Partners, Inc. 
Cleveland Housing Network 
Habitat for Humanity of Monroe County, IN 
Habitat for Humanity of Omaha 
Houston Habitat for Humanity 
Category: Religion 
Cause: Religious Activities 
Mission Waco Mission World 
Young Life 
International Messengers 
Urban Youth Impact 
Commission To Every Nation 
Hebrew Free Burial Association 
Maoz Israel Ministries 
Forward Edge International 
Asian Access 
Mission Arlington/Mission Metroplex 
Cause: Religious Media and Broadcasting 
Andrew Wommack Ministries 
Ramesh Richard Evangelism and Church 
Health 
Educational Media Foundation 
Lutheran Bible Translators 
WAY Media, Inc. 
Pioneer Bible Translators 
Lamb & Lion Ministries 
Billy Graham Evangelistic Association 
SAT-7 
Blue Ridge Broadcasting Corporation 
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Appendix H 
 
Experimental Screens and Instructions 
 
Instructions (TEXT ONLY) 
 
Welcome to the survey 
Login code:______________ 
 
Please remember that participation in this survey is voluntary and you may skip over any questions that 
you would prefer not to answer.  You will not be identified in any reports on this study. 
 
This is an experiment in decision‐making. Your payoffs will depend partly on your decisions and partly 
on chance. Please pay careful attention to the instructions as a considerable amount of money is at 

stake.  

During the experiment we will speak in terms of experimental tokens instead of dollars.  Your payoffs 
will be calculated in terms of tokens and then translated into dollars at the end of the experiment at the 
following rate: 

2 Tokens = 1 Dollar 
You are free to stop at any time.  If you do not complete the experiment now, you may return to 
complete the experimental session at any time between now and 04‐01‐2016.  If you do not complete 
the experiment before then, you will not receive any payment.  Details of how you will make decisions 
and receive payments will be provided below. 
 
This is an experiment in two stages.  For stage one, you will be presented with information on several 
charitable organizations taken from the website www.CharityNavigator.com; afterwards you will be 
asked to select a preferred organization. 
 
In stage two you will participate repeatedly in 50 independent decision problems that share a common 

form.  We next describe in detail the process that will be repeated in all decision problems and the 

computer program that you will use to make your decisions.  

In each decision problem you will be asked to allocate tokens between yourself and the charitable 

organization you selected in the previous stage.  We will refer to the tokens that you allocate to yourself 

as tokens that you Hold, and tokes that you allocate to the chosen charity as Pass. 

Charity navigator is a website that evaluates organizations which rely on public support and actively 
solicit donations from the public.  It rates organizations which file IRS Form 990 along several 
dimensions and has been acclaimed by numerous publications as among the best or most useful 
websites. 
 
They have identified 9 charitable categories and several causes within each category.  The table on the 
next screen is adapted from the charity navigator website and contains information on the top ten 
charities within each cause.  Please review the information in this table carefully and select your most 
preferred charity.  If you like, you can also write in a different charity of your choice. 
 
The Charity I select is___________ 
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Each choice will involve choosing a point on a line representing possible token allocations to you (Hold) 

and to your charity (Pass). In each choice, you may choose any Hold / Pass pair that is on the line. 

Examples of lines that you might face appear in the diagrams below.  In each graph. Hold corresponds to 

the vertical axis and Pass corresponds to the horizontal axis.  The points on the diagonal lines in the 

graphs represent possible token allocations to Hold (tokens to you) and Pass (tokens to the charity) that 

you might choose. 

By picking a point on the diagonal line, you choose how many tokens to hold for yourself and how many 
to pass to the charity.  You may select any allocation to Hold or Pass on that line. 
 
If, for example, the diagonal line runs from 50 tokens on the Hold axis to 50 tokens on the Pass axis (See 
Diagram 4), you could choose to hold all 50 tokens for yourself or pass all 50 tokens to the  
 
To further illustrate, in the example below, choice A represents an allocation in which you hold y tokens 
and pass x tokens.  Thus if you chose this allocation you will keep y tokens for yourself and pass x tokens 
to the charity.  Another possible allocation is B, in which you hold w tokens and pass z to the charity. 
 
Each of the 50 decision problems will start by having the computer select a diagonal line at random. All 
of the lines that the computer will select will intersect with at least one of the axes at 50 or more tokens, 
but will not intersect either axis at more than 100 tokens. The lines selected for you in different decision 
problems are independent of each other and depend solely upon chance.  
 
The computer program dialog window is shown here. In each round, you will choose an allocation by 
using the mouse to move the pointer on the computer screen to the allocation that you wish to choose 
(note that the pointer does not need to be precisely on the diagonal line to shift the allocation). When 
you are ready to make your decision, left‐click to enter your chosen allocation. After that, confirm your 
decision by clicking on the OK button. Note that you can choose only Hold and Pass combinations that 
are on the diagonal line. Once you have clicked the OK button, your decision cannot be revised. 
 After you submit each choice, you will be asked to make another allocation in a different decision 
problem involving a different diagonal line representing possible allocations. Again, all decision 
problems are independent of each other. This process will be repeated until all 50 decision rounds are 
completed. At the end of the last round, you will be informed that the experiment has ended. 
 
Next, you will have a practice decision round. The choices you make in this practice round will have no 
impact on the final payoffs to you or to the charity. In this round, you may choose any combination of 
tokens to Hold (tokens to you) and Pass (tokens to the charity) that are on the line. To choose an 
allocation, use the mouse to move the cursor on the computer screen to the allocation that you desire. 
When you are ready to make your practice choice, left‐click to enter your chosen allocation. To revise 
your allocation in the first practice round, click the CANCEL button. To confirm your decision, click on the 
OK button. You will then be automatically moved to the second practice round. After you complete the 
practice round, click NEXT to proceed to the next screen. 
 
 
Payoffs will be determined as follows: At the end of the experiment, the computer will randomly select 
one of the 50 decisions you made to carry out for real payoffs. You will receive the tokens you held in 
that round (the tokens allocated to Hold). Your selected charity will receive the tokens that you passed 
(the tokens allocated to Pass). Note that the charity you selected is not making any allocation decisions. 
At the end of last round, you will be informed of the round selected for payment, and your choice and 
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payment for the round. At the end of the experiment, the tokens will be converted into money. Each 
token will be worth 0.50 dollars, and payoffs will be rounded up to the nearest cent. Recall that you are 
free to stop at any time, and you may return to complete the experimental session at any time between 
now and 04‐01‐2016. If you do not complete the experiment between now and 04‐01‐2016, neither you 
nor your selected charity will receive any payment. 
 
To review, in every decision problem in this experiment, you will be asked to allocate tokens to Hold and 
Pass. At the end of the experiment, the computer will randomly select one of the 50 decision problems 
to carry out for payoffs. The round selected depends solely upon chance. You will then receive the 
number of tokens you allocated to Hold in the chosen round. The charity you selected will receive the 
number of tokens you allocated to Pass in the chosen round. Each token will be worth 50 cents. If 
everything is clear, you are ready to start. Please click NEXT to proceed to the actual experiment. 
 
Experiment Screens: 
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