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ABSTRACT

ESSAYS ON SMOKING, DRINKING, AND OBESITY: EVIDENCE FROM A

RANDOMIZED EXPERIMENT

BY

BENJAMIN DAVID THOMAS JOHANNES UKERT

August 2016

Committee Chair: Dr. Rusty Tchernis

Major Department: Economics

This dissertation consists of three chapters analyzing risky health behaviors utilizing data from

the Lung Health Study (LHS), a randomized smoking cessation program. The first two chapters of

this dissertation analyze the effects of smoking on alcohol consumption and BMI, respectively. The

third chapter studies whether and how much the objective smoking information, which is defined

by clinicians, may be misreported.

The first chapter examines the effect of smoking on alcoholic beverage consumption. The

epidemiology literature suggests that both behaviors affect similar brain regions and are commonly

consumed together. So far, the economics literature has presented inconclusive causal evidence on

the relationship. Building on the theory of rational addiction, I estimate the relationship between

smoking and alcohol consumption using several different smoking measures. I report four salient

findings. First, self-reported and clinically verified smoking variables suggest that quitting smoking

lowers alcoholic beverages consumption by 11.5%. Second, cigarette consumption dating back 12

months affects alcohol consumption, and those with the highest past 12 months average cigarette

consumption see the largest increase in alcohol consumption. Third, I find that the length of quitting

affects future alcohol consumption as well. Continuously abstaining from smoking for 12 months

reduces alcoholic beverage consumption by 27.5% per week. Fourth, non-smoking for 12 months

also reduces the probability of drinking any alcoholic beverages by 31%.

The second chapter aims to identify the causal effect of smoking on body mass index (BMI).

Since nicotine is ametabolic stimulant and appetite suppressant, quitting or reducing smoking could



lead to weight gain. Using randomized treatment assignment to instrument for smoking, we es-

timate that quitting smoking leads to an average long-run weight gain of 1.8-1.9 BMI units, or

11-12 pounds at the average height. These results imply that the drop in smoking in recent decades

explains 14% of the concurrent rise in obesity. Semi-parametric models provide evidence of a di-

minishing marginal effect of smoking on BMI, while subsample regressions show that the impact

is largest for younger individuals, females, those with no college degree, and those with healthy

baseline BMI levels.

The third chapter analyzes and compares self-reported and clinically verified smoking infor-

mation. Descriptive statistics show that about 8% of clinically verified smokers self-report that

they do not smoke (under-report participation), and that smoking cessation treatment group par-

ticipants misreport smoking participation 2 to 1 relative to control group participants. In our first

methodological approach we regard the objectively verified smoking measure as the gold standard.

We estimate linear probability models and find that being male and married increases the proba-

bility of misreporting by 10 percentage points. Additionally, older participants are more likely to

misreport smoking status, while those using nicotine gum and with a higher BMI are less likely

to misreport. However, all variables can only explain a small fraction of the variation that ex-

plains misreporting. Our second methodological approach takes an agnostic view on whether the

clinically verified smoking information is accurate. We utilize BMI, Carbon Monoxide (CO), and

Cotinine level information to informwhether a person is a smoker. We estimate a Bayesian mixture

model to account for the heterogeneity in BMI, CO and Cotinine levels after a substantial decrease

in post treatment smoking participation. All of our models show that smokers are more likely as-

signed to the low BMI, high CO and high Cotinine level distributions. Among those classified

as misreporters, we find that 30% have a very high probability of being part of the non-smoking

distributions. As a result, we believe that objectively- verified smoking measure may not be better

than the self-reported measure.



ESSAYS ON SMOKING, DRINKING, AND OBESITY: EVIDENCE FROM A

RANDOMIZED EXPERIMENT

BY

BENJAMIN DAVID THOMAS JOHANNES UKERT

A Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree

of
Doctor of Philosophy

in the
Andrew Young School of Policy Studies

of
Georgia State University

GEORGIA STATE UNIVERSITY

2016



Copyright by

Benjamin David Ukert

2016



ACCEPTANCE

This dissertation was prepared under the direction of the candidate’s Dissertation Committee.
It has been approved and accepted by all members of that committee, and it has been accepted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics in the
Andrew Young School of Policy Studies of Georgia State University.

Dissertation Chair:

Committee:

Dr. Rusty Tchernis

Dr. Charles Courtemanche
Dr. Ian McCarthy
Dr. Tom Mroz

Electronic Version Approved:

Mary Beth Walker, Dean
Andrew Young School of Policy Studies
Georgia State University
August, 2016



ACKNOWLEDGMENTS

My academic achievements would have been impossible without the constant support of family

and friends. Specifically, the support and encouragement of my parents played a pivotal part in me

pursuing graduate studies.

I am also very grateful to the community at the Andrew Young School for all of its support.

First and foremost I want to give special gratitude to my adviser Rusty Tchernis. He recruited me

after taking the Bayesian Econometrics class and without his constant support and sharp mind my

dissertation would not have been possible. I am also grateful to him for consistently challenging

me to improve my writing and economic thought. Your kindness, open ear, and availability for a

fun chat during stressful times will be missed.

I am also grateful to Charles Courtemanche for his advice and support. I have had the oppor-

tunity to interact with him during class and in research. He is exceptionally great at writing clear

and concise papers, and I can only hope to reach your writing skills in some distant future. His

health economics class and STATA class reveal how to think about research and connect theory

to application. His wit and intuition are unique and he personifies everything that make him great

applied economist.

I am thankful to Tom Mroz for his constant support, his advice, and his incisive questions to

improve my research and my thinking about economics and econometrics. TomMroz is one of few

economists that I see as a complete economist. He has an unprecedented insight into econometrics

that allows him to provide help in almost any circumstance related to applied research.

I also owe thanks to Ian McCarthy, I value your calmness and your helpful comments.

Additionally, I want to thank Bess Blyler and her colleagues who make everything work so

smoothly around the department.

Finally, I am grateful to my wife Elena for her continuous support, her constant admiration and

love.

iv



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I The Effect of Smoking on Alcohol Consumption . . . . . . . . . . . . . . . . . . . . 4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Estimation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

The Impact of Smoking on Alcohol Consumption . . . . . . . . . . . . . . . . . . 14

Heterogeneous Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The Relationship Between Smoking and Drinking Among Excessive Drinkers . . 21

The Impact of Past Cigarette Consumption on Current Alcohol Consumption . . . 23

Identifying the Time-Effect of Permanently Quitting Smoking on Alcohol Con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Gender Differences on the Effect of the Habit Stock on Alcohol Consumption . . . 31

The Effect of Quitting Smoking on Alcohol Consumption after Five Years . . . . . . . . 36

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II The Effect of Smoking on Obesity: Evidence from a Randomized Trial . . . . . . . 38

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Econometric Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Average Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Short Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Long Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Falsification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Semi-Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Subsample Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Reconciling Our Results with Prior Literature . . . . . . . . . . . . . . . . . . . . . . . 66

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

III Misreporting Smoking Status and Consequences for Self-Reported Survey Data . . 72

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Econometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Parametric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Are Misreporters Different from Non-Smokers and Smokers? . . . . . . . . . . . . 86

Bayesian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Mixture Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix To Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix To Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix To Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



List of Tables

Table 1: Summary Statistics at Randomized Treatment Assignment Meeting . . . 10

Table 2: First Stage Estimates between Smoking Cessation Treatment and Smok-

ing at the First Annual Follow-up Visit . . . . . . . . . . . . . . . . . . . 15

Table 3: The Effect of Smoking on weekly Alcoholic Beverage Consumption . . . 17

Table 4: TheEffect of Smoking onWeeklyAlcoholic BeverageConsumptionAmong

Sub-Samples (Verified Smoking Variable Only) . . . . . . . . . . . . . . 20

Table 5: TheEffect of Smoking onWeeklyAlcoholic BeverageConsumption among

Excessive Drinkers (Verified Smoking Variable Only) . . . . . . . . . . . 22

Table 6: The Effect of the 12 Months Average Cigarette Consumption per Day

History on Drinking At the First Follow-up Meeting . . . . . . . . . . . . 26

Table 7: The Effect of the Length of Abstaining from Smoking on the Probability

of Drinking at the First Annual Follow-Up Visit . . . . . . . . . . . . . . 32

Table 8: The Effect of the Length of Abstaining from Smoking on Alcohol Con-

sumption at the First Annual-Follow-up Visit . . . . . . . . . . . . . . . 34

Table 9: Sub-sampleGender Effects of the Length of Abstaining fromSmoking on

the Probability of Drinking Any Alcoholic Beverages at the First Annual

Follow-up Visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 10: Long-Run Effects of Quitting Smoking . . . . . . . . . . . . . . . . . . . 36

Table 11: Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 12: Parametric Regression Results . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 13: Falsification Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 14: Subsample Results for Age and Gender . . . . . . . . . . . . . . . . . . . 64

Table 15: Subsample Results for Education and Baseline BMI . . . . . . . . . . . . 65

Table 16: Comparison ofAssociations Between Smoking andBMI inDifferentNHIS

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 17: Reconciling Our Results with those of EQ . . . . . . . . . . . . . . . . . . 69

viii



Table 18: Summary Statistics by Treatment Group Assignment at Randomization

Meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 19: Summary Statistics at First Follow-Up Visit . . . . . . . . . . . . . . . . . 81

Table 20: Regression Estimates on the Effect of Demographic Variables on Misre-

porting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 21: Summary Statistic at Randomization for Participants who Misreport by

Treatment Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 22: Changes in Smoking Variables fromBaseline to the First Annual Follow-

up Visit for Misreporters Compared to Smokers and Non-Smokers . . . 88

Table 23: Posterior Means and Variance of all Mixture Models . . . . . . . . . . . 95

Table 24: Posterior Probability Assignment to Lower and Higher Distributions for

Smokers and Non-Smokers at the First Annual Follow-up Visit . . . . . . 96

Table 25: Posterior Probability Assignment to the Lower and Higher BMI Com-

ponent for Misreporters in each Model . . . . . . . . . . . . . . . . . . . 99

Table A1: Cigarette Consumption per Day and Smoking Status by Month Prior to

the First Annual Follow-up Visit . . . . . . . . . . . . . . . . . . . . . . . 103

Table A2: The Effect of the Length of Abstaining from Smoking on Alcoholic Bev-

erage Consumption at the First Annual Follow-up Visit . . . . . . . . . . 104

Table A3: The Effect of the Length of Abstaining from Smoking on Alcoholic Bev-

erage Consumption at the First Annual Follow-up Visit . . . . . . . . . . 105

Table A4: The Effect of the Length of Abstaining from Smoking on Current Alco-

hol Consumption at the First Annual Follow-up Visit . . . . . . . . . . . 106

Table A5: Sensitivity of Estimates to Different BMI Depreciation Rates . . . . . . . 107

Table A6: Regression Estimates for Treatment Group 1 (SIA) Subsample . . . . . . 113

Table A7: Regression Estimates for Treatment Group 2 (SIP) Subsample . . . . . . 114

Table A8: Regression Estimates for Control Group (UC) Subsample . . . . . . . . 115

ix



List of Figures

Figure 1: Average Alcoholic Beverage Consumption for Beginning Sustained Non-

Smokers in Different Months Prior to the First Annual Follow-up Visit . 31

Figure 2: Effects of Becoming a Sustained Non-Smokers on Alcohol Consumption

by Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3: Changes Over Time in BMI and Smoking for Treatment and Control

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4: Estimated Short-Run Effect of Cigarettes Per Day on BMI from Semi-

Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5: Estimated Short-Run Effect of CO Level on BMI from Semi-Parametric

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6: Estimated Long-Run Effect of Simple Average Cigarettes Per Day on

BMI from Semi-Parametric Model . . . . . . . . . . . . . . . . . . . . . . 60

Figure 7: Estimated Long-Run Effect of Simple Average CO on BMI from Semi-

Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 8: CO andCotinine Levels by Smoking andMisreporting Status at the First

Annual Follow-Up Visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 9: Posterior Probability of All Misreporting Participants Belonging to the

Higher Mean Change BMI Distribution . . . . . . . . . . . . . . . . . . . 100

Figure A1:Semi-ParametricGraphs of Long-RunEffects of SimpleAverageCigarettes

per Day on BMI for Education and Age Subsamples . . . . . . . . . . . . 108

Figure A2:Semi-ParametricGraphs of Long-RunEffects of SimpleAverageCigarettes

per Day on BMI for Gender and Baseline BMI Subsamples . . . . . . . . 109

Figure A3:Semi-Parametric Graphs of Long-Run Effects of Simple Average CO on

BMI for Education and Age Subsamples . . . . . . . . . . . . . . . . . . 110

Figure A4:Semi-Parametric Graphs of Long-Run Effects of Simple Average CO on

BMI for Gender and Baseline BMI Subsamples . . . . . . . . . . . . . . . 111

x



Introduction

During the early 20th century, smoking was a conventional habit across social classes in the United

States. Tobacco consumption was considered a regular good. For example, R.J.Reynolds adver-

tised with this slogan: “More doctors smoke Camels than any other cigarette” (Gardner & Brandt

2006). As a consequence, by the mid 1960s smoking participation peaked at 42% among adults.

However, smoking participation has decreased every year since 1965. What caused the change?

One possible explanation is that smoking was not associated with health risks until the 60s. The

1964 surgeon general report is the first official statement summarizing the health risks associated

with smoking. Today, smoking is regarded as a health risk. According to the 2014 surgeon general

report, smoking accounts for 90% of all lung cancer deaths and 80% of all chronic obstructive

pulmonary disease (COPD) deaths. Moreover, the risk of dying from smoking increased within

the last 50 years among smokers (Thun et al. 2013).

The recognition of health risks associated with smoking prompted federal, state and local gov-

ernments to impose smoking restrictions. Some of the steps taken by policymakers to reduce smok-

ing include increasing cigarette taxes, introducing workplace smoking bans and requiring tobacco

free zones. Subsequently smoking prevalence decreased by roughly 20 percentage points from the

mid 70s.

Unfortunately, imposing smoking restrictions can result in severe unintended consequences.

Evidence suggests that higher cigarette prices lead to a higher BMI and obesity rate (Chou et al.

2004). Therefore, the overall health benefit from quitting smoking can be overstated if it does

not include the health risks associated with a potentially higher BMI. However, recent evidence

(Courtemanche 2009, Wehby et al. 2012) suggests that higher cigarette costs lower BMI. Thus, the

precise impact of cigarette cost on BMI remains controversial.

In addition, smoking restrictions may also affect alcoholic beverage consumption. Cigarette

consumption and alcohol consumption are highly correlated (Bobo et al. 1987, Grant et al. 2004),

but the literature is inconclusive on the causal relationship. If alcohol consumption and cigarette

consumption are complements, smoking restrictions would decrease alcohol consumption as well.

1



Therefore, the overall health benefits of quitting smoking are understated, as the benefits of lower

alcohol consumption are ignored.

My dissertation uses a randomized smoking cessation study, Lung Health Study (LHS), to in-

vestigate the effect of smoking on BMI and alcoholic beverage consumption. My first chapter

analyzes the causal relationship between smoking and alcoholic beverage consumption. I provide

evidence that smoking and alcohol consumption are positively correlated. My paper differs from

the previous literature in several ways. First, I estimate the relationship along the intensive and

extensive margin of smoking. Second, the LHS, a five-year panel study, allows me to look at the

effect of smoking in the short- and long-run. Third, I estimate a causal relationship at the individ-

ual level between cigarette consumption and alcoholic beverage consumption over-time. My main

results suggest that quitting smoking lowers the alcoholic beverage consumption by half a drink

per week. The effect is stronger the higher the cigarette consumption in the past, and the effects

persist over five years.

My second chapter evaluates the relationship between smoking and BMI. The chapter is the

result of co-authored work with Dr. Charles Courtemanche and Dr. Rusty Tchernis. We estimate

the effects along the intensive and extensive margin of smoking. We further provide evidence that

Eisenberg and Quinn (2006), who apply the same data, overestimate the effect of quitting smoking

on BMI. Lastly, we present evidence that quitting smoking not only reduces BMI, but that the effect

of smoking on BMI depends mostly on the intensity of smoking.

My third chapter has compares self-reported to objectively clinically verified smoking infor-

mation provided in the LHS, by generating a misreporting measure captured difference between

both smoking variables. The first methodological approach regard the objectively verified smoking

measure as the gold standard, and we estimate linear probability models and find that being male

and married increases the probability of misreporting. However, all variables can only explain a

small fraction of the variation that explains misreporting. The second methodological approach

takes an agnostic view on whether the clinically verified smoking information is accurate. We uti-

lize BMI, Carbon Monoxide (CO), and Cotinine level information to inform whether a person is a

2



smoker. All of our models show that smokers have a lower BMI, high CO and high Cotinine level.

However, all models also show that manymisreporters are similar to non-smokers in characteristics

affected by smoking, allowing us to conclude that the objectively verified smoking measure may

not clearly identify smokers from-non-smokers.

3



I The Effect of Smoking on Alcohol Consumption

Introduction

Smoking cigarettes is the leading cause of preventable deaths in the U.S., causing roughly 480,000

deaths per year (Center for Disease Control (CDC) 2012). It is well known that smoking causes

diseases such as lung cancer, stroke, coronary heart disease, and chronic obstructive pulmonary

disease (COPD).1 Despite a 50% decrease in smoking prevalence since the 1960s, an estimated

42 million U.S. adults smoke, generating roughly $289 billion per year in smoking related costs

(CDC news release 2014). Similarly, short- and long-term risks of excessive alcohol use, defined

as 15 or more drinks per week or 5 or more drinks per session for men, the third largest modifiable

risk factor in the U.S., include injuries, violence, dementia, stroke, and liver disease. Currently,

economic costs of excessive alcohol consumption account for about $249 billion per year (Sacks

et al. 2015).

Given the severe consequences of both risky behaviors, understanding how they influence each

other is an important policy question. A large health literature suggests that smoking and drinking

are highly correlated (Bobo et al. 1987, Bobo et al 2000, Bien et al. 1990). Increasing cigarette

taxes or expanding smoking ban regulation may induce smoking cessation, but could increase

drinking if they are substitutes. Therefore, the net health benefits of quitting smoking would be

overstated, as the costs of higher alcohol consumption are ignored. On the other hand, if quitting

smoking reduces drinking, the benefits of quitting smoking would be understated.

In this paper I exploit a randomized smoking cessation study, the Lung Health Study (LHS),

to investigate the relationship between cigarette smoking and alcohol consumption. My empirical

strategy uses the randomized intervention assignment as an instrumental variable for smoking. This

allows me to estimate a causal effect and analyze the effect of smoking on alcohol consumption

along the intensive and extensive margin. Additionally, I also analyze the effect by gender, marital

status, and among excessive alcohol users.
1Surgeon General Report 2015.
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This paper contributes to two strands of economic literature: First, it provides new evidence

on the causal relationship between smoking and drinking. The typical approach to identify com-

plementarity or substitutability is to regress consumption levels of one good on the price of the

other good. However, the current literature report inconclusive results on the relationship between

smoking and drinking.2 Cameron and Williams (2001) and Bask and Melkersson (2004) find com-

plementarity between smoking and drinking in both alcohol and cigarette demand equations, others,

such as Goel and Morey (1995) and Picone et al. (2004), find that smoking and drinking are sub-

stitutes. Additionally, Decker and Schwartz (2000) find complementarity in a cigarette demand

equation and substitutability in an alcohol demand equation.3 I find that quitting smoking reduces

alcohol consumption, implying both goods can be complements in consumption.

Second, I contribute to a growing literature on habit formation that tests how past cigarette

consumption, also known as the smoking habit stock, affects current consumption of alcohol or

other addictive goods (Goel and Morey 1995, Pacula 1997, 1998, Kenkel et al. 2001). Becker and

Murphy’s (1988) rational addiction model provides a formal theoretical framework that Bask and

Melkersson (2004) extend to two addictive goods and then show that, depending on the interaction

between both addictive goods, quitting one addictive good can increase or decrease the overall

consumption of another addictive good in the future. To date, there is mixed and limited empirical

evidence on the effect of past smoking on current alcohol consumption (see Bask & Melkersson

2004, Picone et al. 2004, and Pierani et al. 2009). I provide evidence that a smoking habit stock,

measured by up to 5 years of historic smoking decisions, increases current alcohol consumption.

I also show that the effect of the smoking habit stock on alcohol consumption is larger among

heavy smokers. Lastly, I show that those who permanently abstain from smoking longer consume
2For a general overview on the literature see Pierani et al. (2009).
3The application of different data and identification strategies may be an explanation for the empirical different

results among similar demand equations. For example, Bask and Melkersson (2004) use aggregate time series sales
volume data from Sweden and estimate demand equations based on the rational addiction model. Picone et al. (2004)
rely on individual level data from the Health and Retirement Survey (HRS) and apply an instrumental variable ap-
proach, using prices and lagged consumption as instruments for current consumption. Whereas Decker and Schwarz
(2000) concentrate on the estimation of the relationship between cigarette and alcohol prices on alcohol and cigarette
consumption levels, respectively. Another reason for the diverse results could be that the price variation is not exoge-
nous.
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considerable less alcohol.

Overall, I conclude that cigarettes and alcohol are positively correlated. Quitting smoking leads

to a reduction of alcoholic beverage consumption by 11.5% per week.4 Restricting the sample

to unmarried smokers shows that quitters reduce alcohol consumption by 16%. Similarly, when

looking at the sample of excessive alcohol users, defined as consuming 15 or more drinks per

week or 5 or more drinks per session, quitting smoking reduces alcohol consumption by roughly

11% per week.5 Excessive male drinkers reduce alcohol consumption by 14% drinks per week after

quitting smoking, while excessive female drinkers do not reduce alcohol consumption after quitting

smoking.6

Results also suggest that the habit stock of cigarettes affects current alcohol consumption signif-

icantly. Both the intensity and length of smoking significantly affect current alcohol consumption.

Consuming on average 20 cigarettes per day in the past year increases current alcohol consump-

tion by 28% from the mean baseline alcoholic beverage consumption level. Similarly, those who

quit smoking 12 months ago, whether successful or not, decrease current alcoholic beverage con-

sumption by 20% per week while also decreasing the probability of drinking any alcohol by 20%.

Abstaining from smoking continuously for 12 months leads to 27.5% fewer consumed drinks per

week and decreases the probability of any drinking by 30%. The effects of permanently quitting

for 12 months are particularly pronounced for women who reduce alcohol consumption by roughly

53% vs. 23% for men.

The rest of the paper is organized as follows. The next section provides a summary of the

conceptual framework. Section 3 discusses the data. Section 4 outlines the estimation strategy.

Section 5 presents the results. Section 6 concludes.
411.5% equal about 0.5 drinks per week on an average pre-treatment consumption of 4.35 drinks per week.
511% translates into 1.6 drinks per week.
6On average Excessive male drinkers consume 15 drinks per week pre-treatment. Males reduce alcohol consump-

tion by 2.1 drinks per week.
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Conceptual Framework

This section discusses a simple conceptual framework on the relationship between smoking and

alcohol consumption. We formulate the framework by taking advantage of the medical litera-

ture documenting in many cases a positive correlation between smoking and alcohol consumption

(Carmelli et al. 1993, Enoch et al. 2001, Swan et al. 1997). The Supplement outlines in detail the

theoretical implications for a model of addiction with two addictive goods. The outlined frame-

work considers a utility maximizing agent, and builds its foundation on the rational addiction model

by Becker and Murphy (1988), and Bask and Melkersson (2004). Consider an individual making

two simultaneous decisions: whether to consume alcohol and cigarettes, and the quantity of each

good. For simplification the individual does not maximize his lifetime utility, i.e. the individual

is myopic, and we assume complementarity between smoking and drinking. Opposite conclusions

will be drawn for the case of substitutability.

The Supplement presents two conclusions. First, the choice of quitting smoking immediately

decreases the consumption of alcoholic beverages. Complementary assumes that consuming both at

the same time also raises themarginal utility of both good. Thus, choosing not to consume cigarettes

will reduce the marginal utility of consuming alcoholic beverages. Formally, marginal utility must

equal marginal cost, and a reduction in the marginal utility of alcoholic beverages requires a de-

crease in consumption to satisfy the equality, ceteris paribus. Therefore, quitting smoking will

reduce alcohol consumption.

Second, quitting smoking will reduce alcohol consumption over-time. The habit stock, a func-

tion of past smoking and beverage consumption, increases the marginal utility of smoking and

also increases the marginal utility of alcoholic beverage consumption. The epidemiology literature

presents evidence supporting the aforementioned response to a change in the habit stock, as smok-

ing increases the nicotine intake affects the limbic system. Barrett et al. (2006) show that nicotine

increases dopamine output and higher dopamine levels lead to an increased craving for alcoholic

beverage consumption. Similarly, the consumption of cigarettes increases a person’s familiarity

with its psychological and physical benefits and contributes to habit formation, resulting in an in-
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creased desire to consume additional cigarettes and can spill over to alcohol consumption as well.

The influence of past physical and psychological experience on today’s behavior is summarized in

the form of the habit stock.

Similarly, a large literature on youth addictive behavior shows that the consumption of legal

addictive goods leads to future consumption of other legal and illegal addictive goods. The experi-

ence of ones addictive good consumption generates a benefit that can increase over time, and affect

the enjoyment of other addictive goods (See for example Pacula 1997 & 1998, Kenkel et al. 2001).

Put differently, today’s consumption depends on the habit stock. The longer someone smokes, the

higher the habit stock, while quitting smoking depreciates the habit stock over-time. The level of

the habit stock directly affects the marginal utility of alcohol consumption.7

In summary, the framework outlines the relationship between past and current smoking be-

havior on current alcohol consumption. Quitting smoking will cause two distinct changes in the

marginal utility of alcoholic beverage consumption. First, quitting smoking decreases immediately

the marginal utility of alcohol consumption, leading to lower alcohol demand. Second, quitting

smoking decreases the marginal utility of alcohol consumption over time through a depreciation of

the habit stock. Again, leading to a reduction in alcoholic beverage consumption.

Data

I utilize data from the LungHealth Study (LHS), a randomized smoking cessation trial implemented

to measure the effect of smoking cessation on lung function. O’Hara et al. (1993, 1998) present a

comprehensive analysis of the LHS recruitment and implementation. I briefly summarize the most

important aspects relevant to the paper. Recruitment took place between 1986 and 1989 within a

wide region of the 10 hospitals (9 in U.S. and 1 in Canada) participating in the study.8 Participation
7In a broader economic context, the habit stock of smoking has similar properties to the concept of human capital

stock in labor economics (Ben-Porath 1967). Education, training, and work experience increase the total human capital
stock, which improves productivity and consequently wages. Similarly, the human capital stock depreciates over time,
mostly due to age. Depreciation can be stopped or at least minimized by consistent investments into education or
training. The habit stock of cigarettes can be thought of in a similar fashion, replacing education, training and work
with cigarette consumption and productivity with smoking appreciation.

8Participants should live no more than 75 miles away from the hospital and should have no intentions to move
away from the area. This requirement was implemented to minimize attrition. The list of hospitals participating can
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required applicants to be 35 to 59 years old, show signs of mild lung function impairment, have

no history of certain medications, consume less than 25 alcoholic beverages per week.9, have no

severe illnesses, and have no chronic medical conditions.10 After 3 screening interviews the final

study samples included 5887 participants.11

After recruitment, participants were randomly assigned into three different groups, two treat-

ment groups that include smoking cessation treatment with an inhaled placebo (SI-P) and smoking

cessation treatment with an inhaled bronchodilator (SI-A) and a control group receiving no treat-

ment (UC). The only difference in treatment between the SI-P and SI-A group were that the SI-A

group received an inhaler with ipratropium bromide to treat early COPD symptoms, while the SI-P

group received a placebo inhaler. Both treat treatment groups, SI-A and SI-P, also received nico-

tine gum prescriptions, an intensive 12 session quit week accompanied by frequent contact with

support personal, and invitations to bring a spouse or relative to the meetings. The usual care group

received no treatment. Most of the treatment was completed within the first 4 months of the study

and there was no differential effect on smoking cessation for the SI-P and SI-A treatment group

members.

All participants were interviewed individually at a medical clinic near the residence of the par-

ticipant to collect information about average alcoholic beverage consumption, weight, age, gender,

employment status, smoking behavior, type of tobacco use and family smoking habits. Concerns

about measurement error in cigarette consumption as well as smoking status can be minimized

given that smoking status is annually verified by clinicians through carbon monoxide and cotinine

level tests at each of the annual follow-up visits. For the empirical analysis I use the objectively

verified binary smoking measure, the continuous carbon monoxide measure, and monthly informa-

tion on self-reported cigarette consumption per day. The results section presents mostly regression

outputs for the annual verified smoking status and the monthly self-reported smoking variables. In

be found online http://www.biostat.umn.edu/lhs/centers.html
9The alcohol limit was only implemented for the first third of the recruitment process and deleted afterwards.
10History of certain medication use includes medicine for tuberculosis, theophylline or other xanthines, beta-

blockers, insulin, any corticosteriods, antipsychotic drugs, nitroglyercine, digitalis, anticoagulants and antiarrhythmics.
Alcoholics were also excluded.

11The clinical trial ended in 1994.
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any case, I draw similar empirical conclusions when I use the carbon monoxide measure.

The sample includes 6 years of data: one pre-treatment year and five post-treatment years. Table

1 presents descriptive statistics at the randomization meeting. At that time, the average alcoholic

beverage consumption was close to 4.3 drinks per week. Among the portion of the sample that

drinks alcohol, the average alcoholic beverage consumption was 6.3 drinks per week. The average

age of smokers was 48 and the average cigarette consumption per day was roughly 30 cigarettes per

day. Additionally, The survey does not collect information regarding income, but a high average

education level, at 13.50 completed years, allowsme to assume that the average income level should

be higher than in the general population as well.12 The data does not have information on race, but

O’Hara et al. (1998) mention that the sample is 97% white.

Table 1: Summary Statistics at Randomized
Treatment Assignment Meeting

Variable SI-A SI-P UC
Drinks per week 4.30 4.39 4.36

(5.57) (5.56) (5.47)
Age 48.41 48.55 48.43

(6.84) (6.83) (6.84)
Marital Status 0.65 0.67 0.65

(0.47) (0.47) (0.47)
Education 13.57 13.56 13.68

(2.83) (2.84) (2.79)
Male 0.61 0.64 0.64

(0.48) (0.48) (0.48)
Cigarettes per Day 29.59 29.49 29.53

(14.08) (13.64) (14.11)
Carbon Monoxide 25.97 26.70 25.98

(13.47) (12.67) (12.66)
Observations 1961 1962 1964
Standard deviation in parenthesis. SI-A, SI-P and UC
refer to the three treatment groups. Data collected at
time of randomized assignment to intervention groups.
Cigarettes per day represents the self-reported average
daily cigarette consumption of each participant. Educa-
tion is measured in years of highest grade completed.

12The 1990 NHIS suggest an average level 12.50 years of completed education.
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The summary characteristics in Table 1 are balanced across treatment groups and signify a

successful randomization. T-tests and F-tests confirm the hypothesis that the variable means are

not different across treatment group. Besides the reported variables presented in Table 1,partic-

ipants are also asked about their average levels of cigarette consumption per day in every of the

past 12 months. Appendix Table A.1 presents the monthly smoking status and average cigarette

consumption per day surveyed at the first annual follow-up.

The LHS has two benefits relative to observational data. First, I have an objectively verified

smoking variable, reducing potentially the problem of mismeasurement relative to self-reported

information. Second, the data is randomized, allowing for causal inference. Due to the efforts to

retain contact with the participants, attrition rates were low. By the fifth annual follow-up visit at

the local clinic, 95 percent of men and 96 percent of women attended.13

Some limitations remain that are common across randomized control trials. The data consists of

smokers who responded to recruitment efforts to participate in a smoking cessation study. The self-

selection indicates that the sample may not be representative of the general smoking population and

may result in estimates that have questionable external validity. With that said, the estimates may in

fact not be valid because the latest Surgeon General Report documents that almost 70% of current

smokers indicate that they would be willing to quit smoking. Thus, generally smokers are willing

to quit, but may be unable to quit without any support group or intervention (2014 Surgeon General

Report). Therefore, any inference may be at least attributable to 70% of the smoking population.

Estimation Strategy

The empirical strategy estimates the effect of smoking on alcoholic beverage consumption, con-

ducts sub-sample analyses, and tests for differences in short- and long run effects. I identify the

relationship between smoking and drinking with two different models. First, I estimate whether

smoking and alcohol are complements in consumption. Second, I test how smoking in the past, the

habit stock of smoking, affects current alcohol consumption.
13See O’Hara et al. (1998) for more details on attrition.
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The first model estimates cross-sectional regression between current smoking status and current

alcohol consumption at the first annual follow-up visit. The cross-sectional data from the first

follow-up visit should identify the short-term effect of quitting smoking on drinking. I begin my

analysis with OLS:

Drinksit = γ0 + γ1Smokeit +Xiγ + µit (1)

Where the dependent variable, Drinksit, represents alcoholic beverage consumption per week

for person i at the first follow-up visit, Smokeit is equal to an indicator for whether a person is a

current smoker and zero otherwise, a continuous cigarettes per day variable, or a measure of carbon

monoxide level, andXi is a vector of demographic characteristics at baseline including age, gender,

education level, and marital status.

To generate exogenous variation in smoking, I utilize an instrumental variables approach, or a

two stage least square (2SLS) approach. The first follow-up visit allowsme to apply the randomized

smoking cessation treatment as an instrumental variable, because treatment was received earlier in

the year. The approach allows me to analyze the causal relationship between both choices.14 The

appropriate first and second stages are presented here:

Smokeit = β0 + Treatmentiβ +Xiβ + ϵit

Second Stage:

Drinksit = γ0 + γ1 ˆSmokeit +Xiγ + ηit

Where Treatmenti represents a vector of two dummy variables equal to one for participants in each

of the smoking cessation programs and zero otherwise. The underlying assumption on the treatment

suggests that it is uncorrelated with the error term ηit, and highly correlated with smoking status.
14I am unable to merge cigarette price data, because I have no state identifiers. This is the best I can do to understand

the contemporaneous relationship between cigarettes and alcohol.
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The random assignment to treatment allows for such a strong assumption. It is conceivable that the

treatment has a direct effect on drinking and violating the assumption of an uncorrelated error term

in the second stage. I test and reject that the treatment has a direct effect on drinking in the results

section. Therefore, the instruments should allow a2SLS estimation strategy to recover coefficients

that have a causal interpretation.

The second identification strategy estimates cross-sectional regressions between historic smok-

ing measures and current alcohol consumption. Such regressions should identify the habit stock

effect of smoking on alcohol consumption. Based on the addiction theory and the literature, I in-

clude the previous period’s smoking status.15 Moreover, the benefit of the LHS is that it includes

detailed monthly self-reported historic smoking information. Thus, it allows me to estimate the

effect of historic smoking measures that are a function of monthly information on alcohol con-

sumption. Those measures include dummy variables measuring the average intensity of cigarette

consumption in the last year, and also cumulative 12 months cigarette consumption variables with

and without some form of depreciation over-time. The general setup of the regression follows

equation (1) with the only difference being the inclusion of lagged smoking measures:

Drinksit = γ0 + γ1Smokeit−1 + γ2Xit + µit (2)

All variables are exactly the same as defined in equation (11), except that smoking is some measure

of historic 12 months cigarette consumption. Where applicable, I use a 2SLS estimation strategy to

control for endogeneity. The instrument should yield be valid because treatment group assignment

was random and occurred at least 13 months prior to the information collected on cigarette con-

sumption and alcoholic beverages. In both cases, I use the random assignment to smoking cessation

groups as a instrument for current and lagged smoking status.

I also estimate the effects of smoking on the probability of drinking, where I replace the left-

hand side variable in (1)-(2) with a binary indicator equal to one if the person drinks alcohol and zero

otherwise. As a robustness check, I also estimate the relationship between smoking and drinking
15See the Supplement that explains the theoretical background of the habit stock effect.
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with Negative Binomial (NB) models, because the dependent variable is a count variable with

an over-dispersed variance. Regular NB estimates will result in biased coefficients. I apply a

control function approach to account for endogeneity. NB control function approach estimates

are abbreviated with CF-NB. The approach includes the predicted residuals from the IV’s first

stage as an independent variable in the second stage. This is a commonly used approach for non-

linear correction for endogeneity.16 Lastly, I also estimate equation (11) with a log-transformed

dependent variable, where I generate log-drinks per week variable by adding a constant of one to

each observation before taking logs.

The results section presents estimates fromOLS, 2SLS, NB, NB-CF, log, and log-2SLSmodels.

The 2SLS and control function estimates have a ‘causal’ interpretation under the assumption that

the instrumental variables have no direct effect on drinking. They estimate a local average treatment

effect (LATE). In other words, the causal effect estimates how a shock in cigarette consumption

induced by the intervention changes the level of alcohol consumption. Equation (1) estimates the

instantaneous effect of quitting smoking on alcohol consumption for those who received the treat-

ment earlier in the year. Therefore, equation (1) implies a temporal relationship by definition of

the LATE, which I explore deeper with equation (2) where I estimate how past smoking decisions

affect current alcohol consumption. The latter equation is a first step at getting at the effect of the

smoking habit stock, because past quitters are less likely to smoke today.

Results

The Impact of Smoking on Alcohol Consumption

O’Hara et al. (1993) show that the smoking cessation treatment was effective in reducing smok-

ing. I verify their results by presenting estimates for the first stage of the 2SLS approach. Table

2 presents marginal effects for the treatment variables and shows that the treatment was effective

in reducing smoking. Stock et al. (2002) provide evidence that large F-statistics indicate a strong
16See Wooldridge, J. Econometric Analysis of Cross Section and Panel Data, 2nd Edition or Cameron, C. and

Travedi, P. Microeconmetrics Methods and Application
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instrument. In this case F-statistics are well above 10 in both regressions with and without demo-

graphic variables.

Table 2: First Stage Estimates between Smoking Cessation Treatment and
Smoking at the First Annual Follow-up Visit

First Stage IV Regressions

Verified Smoking Status Self-Reported Smoking Status

Dep. Var. Smoke Carbon Monoxide Smoke Cig. per day
Treatment (SI-A) -0.272*** -8.014*** -0.322*** -11.731***

(0.013) (0.464) (0.014) (0.476)
Treatment (SI-P) -0.267*** -7.782*** -0.311*** -11.108***

(0.013) (0.470) (0.014) (0.482)
Demographics Yes Yes Yes Yes
F- Stat 115.21 95.08 144.86 125.98
Observations 5,584 5,269 5,584 5,584
R-squared 0.0867 0.092 0.109 0.134
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1,
5, and 10 percent level. All first stages include demographic characteristics. Every row
entry represents a different regression on the dependent smoking status in year 1.

A concern remains regarding the validity of estimated coefficients from the 2SLS models.

Specifically, Courtemanche et al. (2015) show that including a dummy variable for smoking sta-

tus is invalid in a 2SLS setup under the condition that the treatment affects smoking intensity, but

does not lead to smoking cessation. In other words, I have to test whether the instrument affects

drinking among those who do not change their smoking habits. A significant association suggests

that those who reduce cigarette consumption, but do not quit smoking, reduce alcohol consump-

tion. This will lead to a biased estimator, because I would be unable to capture the reduction in the

intensive margin of smoking with the objectively verified smoking measure. I test this hypothesis

by running cross-sectional regressions and limiting the sample to subsets of smokers. First, I gen-

erate five post treatment sub-samples limiting the sample to objectively verified smokers in each

year. Second, in separate regressions, I limit the sample to individuals satisfying a non-sustained

quitter measure. The non-sustained quitter measure, which is only available for follow-up years 2

through 5, only includes individuals who smoke in at least one of the follow-up waves. All sub-
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samples have very similar demographic characteristics to those presented in Table 1, with the only

difference that those participants did not quit smoking permanently. All tests should identify if the

treatment has an effect on those who temporarily change smoking status. Across both restrictions

and all regressions, I find no significant effects of the treatment on drinking.17 I conclude that there

is no evidence that the exclusion restriction is violated in the 2SLS model and that the estimator

should not be biased the objectively verified smoking dummy measure.

Next, I concentrate on the estimates on the effect of smoking on alcohol consumption from

equation (1). Table 3 provides marginal effects for OLS, 2SLS, NB, control function approach

NB, log, and log-2SLS estimates. Each coefficient in Table 3 represents estimates from a different

regression of equation (1). For comparison purposes, Table 3 presents the effect of smoking on

alcohol consumption for the objectively verified and self-reported smoking variables. Addition-

ally, I also generate a quasi objectively-verified cigarette consumption measure and estimates yield

similar average effects of quitting smoking on drinking.18

TheOLS andNB estimates suggest that those who quit smoking at the first annual visit consume

less alcohol than smokers. All results are significant at least at the 5% percent level. The OLS

results for the binary smoking variable reveal that smokers consume roughly half a drink more

than quitters, implying an increase of 11.5% from the mean alcoholic beverage consumption level

at randomization. Similarly, OLS results for the cigarettes per day variable present the same average

effect for an average smoker consuming 20 cigarettes per day. However, all 2SLS estimates are

insignificant, but present similar point estimates to the OLS results. There is good reason for the

insignificant but similar 2SLS estimates. In any 2SLS estimation standard errors increase fromOLS

estimates. There is also a good reason why the coefficient does not change. The highly effective

smoking cessation program generates many non-smokers in the treatment group, but only few non-

smokers in the control group. Therefore, the variation in the OLS is very similar to the variation in
17The reduced form results are not included. Results will be made available upon request.
18I generate the quasi-objectively verified cigarette per day variable measure by comparing the verified smoking

status variable to the self-reported cigarette consumption per day. If the self-reported cigarette per day variable and
objective smoking dummy variable do not suggest the same smoking status, i.e. dummy variable indicates smoker
(equal to one), but self reported cigarette consumption measures equals zero. In all cases of mismatch I drop those
observations, leaving me with a quasi-objective cigarette measure.
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the 2SLS estimates. In other words, there is very little endogeneity.

Table 3: The Effect of Smoking on weekly Alcoholic Beverage Consumption

Obj. Verified Smoking Status: Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.447** 0.483 0.438** 0.524 0.038 0.099

(0.185) (0.741) (0.182) (0.705) (0.029) (0.104)
Carbon Monoxide 0.020* 0.022 0.015* 0.023 0.0004 0.003

(0.010) (0.026) (0.008) (0.024) (0.001) (0.003)
Observations 5584 5584 5584 5584 5584 5584

Self-Reported Smoking Status: Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.633*** 0.420 0.585*** 0.476 0.071*** 0.085

(0.180) (0.630) (0.186) (0.581) (0.027) (0.088)
Cigs per Day 0.024*** 0.012 0.022*** 0.014 0.0002** 0.002

(0.006) (0.017) (0.005) (0.016) (0.0008) (0.002)
Observations 5584 5584 5584 5584 5584 5584

† Coefficients in Columns 5-6 represent percentage changewhenmultiplied by 100. On average a drinker
consumes 6.40 drinks per week.
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5, and 10 percent
level. All models include demographic characteristics. Every row entry represents a different regression
on the dependent variable, drinks per week, at the first annual follow-up visit. Log Drinks per Week
refers to regressions where the dependent variable is transformed into logs.

I also apply two approaches to identify if the OLS coefficient is biased. First, I test if non-

smokers differ from smokers in observable characteristics. If they do not differ in observable char-

acteristics, it is less likely that they only differ in unobservable characteristics. There is no evidence

that smokers differ from non-smokers in observable characteristics. Second, I test for difference

in coefficients between OLS and 2SLS with the Hausman test. However, the Hausman test is not

valid for an endogenous dummy variable because the errors are not distributed normally. As a

result, I only apply the Hausman test for the non-reported cigarettes per day and carbon monoxide

variables. The hypothesis of the Hausman test is that OLS and 2SLS coefficients are equal to each

other cannot be rejected at the 10 percent level for all estimates. In other words, the endogeneity of

the OLS estimate is not strong enough to justify the use of 2SLS estimate with increased standard
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errors.

Separately, I also run Probit and IV-Probit to estimate to understand if there are any exten-

sive margin effects on drinking. Unreported Probit and IV-Probit estimates present no statistically

significant effect of quitting smoking on alcohol cessation.

Overall, I conclude that smokers consume more alcohol, implying that cigarettes and alcohol

are complements in consumption. However, significantly different effects of smoking on alco-

hol consumption for gender and socioeconomic status may persist. Previous studies support this

notion (See Pierani et al 2009, Picone et al. 2004) and the next subsection discusses sub-sample

differences.

Heterogeneous Effects

Smoking can have different effects by gender, age, and socioeconomic background. For example,

women aremore easily addicted to cigarettes thanmen (See 2001 SurgeonGeneral Report -Women

and Smoking). Genetic differences also cause women to absorb more alcohol and take longer

to metabolize alcohol. Therefore, this leaves women with higher alcohol levels in their blood

than men, conditional on drinking the same amount of alcohol. As a consequence, women are

more susceptible to alcohol’s long-term negative health effects than men (Ashley et al. 1977).

Married participants are exposed to a different household environment than singles that reduces

the likelihood of smoking and that reduces how often they report being in poor health (Schoenborn

2004).

Separately, sub-sample analysis among drinkersmay be an important sample to analyze because

drinkers may be affected differently by the treatment cessation program than non-drinkers.19 Cur-

rent drinkers and smokers may experience complementarity in consumption while non-drinkers

may experience substitutability. Therefore, quitting smoking may strongly reduce alcohol con-

sumption among the sample consuming both, a result that may not be observable in the full sam-
19Among the sample of drinkers at randomization, I tested for difference in demographic characteristics by treatment

groups and did not find any significant differences.
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ple.20 Initially, I tested the hypothesis that all coefficient are equal across gender and marital status

in Table 3, which was rejected at the 1 percent level. Moreover, the hypothesis that the coefficients

of smoking are equal across gender was rejected at the 10 percent level. While I was unable to

reject the null hypothesis of no difference in smoking across age, I include results for a sample

including people between 45 to 55 years old. The 45 to 55 age range may represent the longest

addicted smokers that are still receptive to quitting smoking while allowing for spillover effect in

alcohol consumption.

Table 4 presents sub-sample estimates for individuals who drink alcohol at randomization, by

gender, by marital status, and only for those between the ages of 45-55. The results are presented

in the same format as Table 3. All OLS results in column 1 present statistically significant results,

except for the sub-sample of individuals between the ages of 45-55. Given that the objectively ver-

ified smoking variable does not suffer from mis-measurement and present similar average effects

as the continuous smoking measure, I concentrate my discussion on those results. The effect of

smoking on drinking is larger in the sub-sample estimates of smokers who drink at the time of ran-

domization than for the full sample estimates. The effect is also larger for males than females and

non-married participants relative to married participants. For example, among those who drink at

randomization, quitting smoking reduces alcohol consumption by 0.6 drinks per week. Moreover,

male smokers consume roughly 0.5 drinks more than non-smokers, and non-married smokers con-

sume 0.7 drinks more than non-smokers. The coefficients in the female and married sub-sample

estimates are roughly half the magnitude than in the their counterpart male and non-married sub-

sample regressions. Again, all 2SLS estimates are insignificant at the 10 percent level, but Hausman

tests suggest that OLS estimates can be utilized for all groups except for the age 45-55 sample.21

Overall, the OLS marginal effects present significant changes in average alcohol consumption

per week for several groups. For example, the mean baseline alcohol consumption among drinkers
20I suspect that the full-sample results which includes some individuals who don’t drink at randomization, may result

in attenuated results towards zero.
21I find that some sub-sample Probit estimates suggest that smoking decreases the probability of drinking by about

4-6%. IV-Probit estimates indicate no significant effect and present significantly different marginal effects. I conclude
that there is no effect on the extensive margin of drinking.
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Table 4: The Effect of Smoking on Weekly Alcoholic Beverage Consumption Among
Sub-Samples (Verified Smoking Variable Only)

Drinks at Baseline> 0 Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.607*** 0.211 0.595*** 0.321 0.060** 0.139

(0.235) (0.889) (0.230) (0.876) (0.030) (0.108)
Observations 3878 3878 3878 3878 3878 3878

Males Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.520** 0.386 0.506* 0.345 0.034 -0.007

(0.261) (1.028) (0.261) (1.035) (0.039) (0.132)
Observations 3491 3491 3491 3491 3491 3491

Females Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.355*** 0.837 0.351 0.768 0.048 0.319*

(0.227) (0.837) (0.222) (0.814) (0.042) (0.169)
Observations 2093 2093 2093 2093 2093 2093

Married Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.343 0.578 0.338 0.572 0.028 0.061

(0.218) (0.770) (0.216) (0.735) (0.035) (0.115)
Observations 3749 3749 3749 3749 3749 3749

Not Married Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.694** 0.334 0.661** 0.534 0.060 0.215

(0.346) (1.785) (0.334) (1.671) (0.052) (0.223)
Observations 1835 1835 1835 1835 1835 1835

Age: Between 45-55 Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 0.239 1.971* 0.252 1.865** 0.0264 0.274*

(0.271) (1.014) (0.263) (0.894) (0.043) (0.148)
Observations 2532 2532 2532 2532 2532 2532

† Coefficients in Columns 5-6 represent percentage change when multiplied by 100.
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5, and
10 percent level. All models include demographic characteristics. Every row entry represents
a different regression of the binary verified smoking variable on drinks per week in year 1. Log
Drinks per Week refers to regression estimates with a log transformed dependent.
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of 6.3 drinks per week suggests that quitting smoking reduces alcohol consumption by 10% for the

average drinker at baseline. The average level of alcohol consumption per week among male and

non-married smokers can be reduced by 11% and 16% if they quit smoking. Besides the demo-

graphic sub-samples, it is important to analyze the effect of quitting smoking among the excessive

drinking population alone. One might worry that the presented results are less important because

they concern moderate drinking levels. However, even at moderate levels of drinking the risk of

mortality increases significantly (Bouchery et al. 2006). Therefore, reducing moderate drinking

levels can significantly reduce the death toll. Since the cost of excessive drinking is extremely large

the next subsection concentrates on heavy and binge drinkers.

The Relationship Between Smoking and Drinking Among Excessive Drinkers

The Center for Disease Control (CDC) defines excessive drinking if someone is a heavy drinker,

defined as consuming 15 or more drinks per week for men, or binge drinker, defined as consuming

5 or more drinks per session per day for men. That group represent at least half the death toll

and three quarters of all costs associated with alcohol consumption alone (CDC 2016).22 Thus,

identifying the relationship between smoking and drinking is especially important among the high-

risk population. Table 5 presents estimates for 4 different samples – a sample including heavy

drinkers consuming more than 14 drinks per week, a sample of heavy and binge drinkers defined

by the male standard, and samples of excessive drinkers by gender.

The estimates for the heavy drinking sub-sample do not suggest that quitting smoking reduces

alcohol consumption. However, the estimates are imprecise because of the small sample size.

The sub-sample including all excessive drinkers suggests that quitting smoking reduces alcohol

consumption by 1.68 drinks per week. The OLS coefficient is statistically significant at the 10 %

level, while the 2SLS estimates present insignificant results. Hausman tests do however indicate

that OLS estimates are preferred to 2SLS. Among the sample of excessive male drinkers, the OLS

estimates suggest that quitting smoking reduces alcohol consumption by 2 drinks per week. 2SLS
22Heavy drinking for females is defined as consuming more than 7 drinks per week and binge drinking as consuming

more than 3 drinks per occasion.
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Table 5: The Effect of Smoking on Weekly Alcoholic Beverage Consumption among
Excessive Drinkers (Verified Smoking Variable Only)

Heavy Drinkers>14 Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 1.106 -1.932 1.100 -1.867 0.069 -0.097

(1.170) (5.622) (1.150) (5.814) (0.100) (0.416)
Observations 347 347 347 347 347 347

Excessive Drinkers Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 1.68* -0.500 1.513* -1.501 0.132 -0.254

(0.885) (4.114) (0.877) (4.658) (0.084) (0.348)
Observations 591 591 591 591 591 591

Male Excessive Drinkers Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke 2.124** 2.117 1.982* 1.818 0.192* -0.041

(1.023) (4.535) (1.027) (4.611) (0.098) (0.372)
Observations 472 472 472 472 472 472

Female Excessive Drinkers Negative Binomial Log Drinks per Week

OLS 2SLS NB CF-NB OLS† 2SLS†
Smoke -0.095 -2.158 0.039 -1.965 -0.021 -0.067

(0.695) (2.991) (0.687) (3.767) (0.077) (0.381)
Observations 416 416 416 416 416 416

† Coefficients in Columns 5-6 represent percentage change when multiplied by 100.
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5, and
10 percent level. All models include demographic characteristics. Every row entry represents a
different regression on the dependent variable Drinks per Week in year 1. Log Drinks per Week
refers to regressions where the dependent variable is transformed into logs.
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estimates have the same point estimate, but are again insignificant. Among the sample of excessive

female drinkers, I find insignificant estimates across all specifications, but the 2SLS estimates have

economic significance implying a 3 drinks per week increase for quitters. I speculate that gender

specific difference in addiction may contribute to this result. For example, if females are more

heavily addicted to drinking, then quitting smoking may not result in an immediate response in

alcohol consumption. Instead, changes in alcohol consumption may occur more gradually over

time. 23 On the other hand, they may suffer from oral-fixation and there increase alcoholic intake.

In summary, I conclude that quitting smoking reduces alcohol consumption by roughly 1.6

drinks or 11% per week among excessive drinkers. Also, quitting smoking reduces alcohol con-

sumption by 2 drinks per week for males and does not statistically affect consumption levels for

females. The results have important policy implications, because individuals consuming alcohol

at excessive levels burden large costs onto society. Therefore, policymakers need to implement

strategies that effectively reduce alcohol consumption to below excessive levels. On average, ex-

cessive drinkers consume roughly 14 drinks per week. Subsequently, quitting smoking reduces

alcoholic beverage consumption below the excessive threshold. It also suggests that those people

consume about 6.5 drinks per month less than smokers. These effects can have significant income

effects and health benefits. Among the sub-sample of excessive male drinkers, the reduction of 2

drinks per week translates into a decrease in consumption of 15% per week. Again quitting smoking

will lead on average to an alcoholic beverage consumption below the CDC threshold of excessive

drinking.24

The Impact of Past Cigarette Consumption on Current Alcohol Consumption

The preceding results only investigate the contemporaneous effect of quitting on alcohol consump-

tion without taking the habit stock effect into account. This analysis has three motivations. First,
23Among the sub-samples, I find statistically significant effects on the extensive margin of drinking in Probit models

by gender, suggesting that smoking reduces the probability of drinking by 6% and 9% for males and females. While
IV-Probit present different insignificant effects.

24Initial consumption for heavy and binge drinking men prior to the smoking cessation program is roughly 15 drinks
per week.
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the empirical evidence and the rational addiction model suggest that the smoking habit stock affects

current alcohol consumption. Second, the previous section compares the instantaneous relationship

between smoking and drinking, but it can be difficult to understand how one consumption choice

affects another consumption choice immediately. It is possible that a smoking cessation treatment

changes smoking behavior and affects alcohol consumption over time rather than at the same point.

For example, health consciousness and changes towards healthy behaviors are a process that can

be initiated by quitting smoking, but it takes time to change other risky behaviors. Third, relating

past smoking status on current alcohol consumption can be understood as a long-term effect.

I begin by regressing weekly alcoholic beverage consumption on different historic smoking

variables. Specifically, I regress last year’s smoking status on today’s alcohol consumption. How-

ever, including a smoking status dummy variable excludes the variation among individuals along

the intensity of historic smoking. A clear feature of the habit effect in the rational addiction model

is that the intensity of smoking conveys information on the level of addiction. Someone smoking in

the past, on average, one cigarette per day should see a different response in alcohol consumption

than someone consuming, on average, 20 cigarettes per day. The availability of monthly cigarette

consumption in all of the last twelve months allows me generate a more comprehensive measure of

the habit stock that affects today’s alcohol consumption. Thus, I utilize all 12 months of smoking

information collected at the first annual follow-up visit to generate a measure of the habit effect.

My preferred specification includes dummy variables for different average levels of past 12

months cigarette consumption.25 This measure differentiates between smoking status as well as

in the intensity of past smoking. For simplification, I generate dummy variable bins in steps of

5 cigarettes s consumed per day in the last year. For example, a participants is in the very low

average smoking bin if the person smoked on average 1-5 cigarettes per day in each month of the

last year. The low smoking bin includes participants with an average cigarettes consumption of

6-10 cigarettes per day in the last year of each month. The heaviest smokers includes highest bin
25I have also generate a cumulative 12 months cigarette consumption variable. For the cumulative variable I also

included depreciation rates from 0-100% per year. I have also modeled non-linear polynomials relaxing the linearity
assumption of the cumulative smoking measure. In all cases I find similar results
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includes those who consume on average 36 or more cigarettes per day. Such a categorization leads

to an estimation of 8 dummy variables in the regression. I have also used different bin ranges and

draw to similar conclusions. I estimate the average long-term smoking status as the average of the

five annual smoking information. The model for the short-term average smoking level is presented

here:

Drinksit = γ0 +
N∑
j=1

γjCigsi,j + γXit + µit (3)

Where Cigsi,j is a dummy variable equal to one in the jth bin for individual i if his 12 months

average cigarette consumption falls in that bin range and equals zero otherwise. The omitted cate-

gory includes participants who are non-smokers in the last 12 months.

Endogeneity in the OLS estimates may be one concern that leads to biased estimates. However,

as presented earlier, OLS did not seem to suffer from endogeneity and most of the variation in

the extensive margin of smoking occurs among participants in the treatment group. Additionally,

the changes on the intensive margin of smoking are also very strong among the treatment group

participants with only small reductions in the average consumption of cigarettes among the control

group.26 As a result, the coefficients should not be significantly affected by bias.

Table 6 presents marginal effects for eight dummy variables representing different average

levels of cigarette consumption in the last 12 months in column 1. Columns 2 and 3 present sub-

sample estimates by sex. The estimates follow the theoretical predictions that higher past con-

sumption affects alcohol consumption more strongly. Participants with above average levels of

cigarette consumption consume significantly more alcohol today than those with below average

cigarette consumption levels. Specifically, column 1 shows that participants averaging between

1-5 cigarettes per day do not consume more alcohol than non-smokers. The low consumption of

cigarettes suggests that it may represent “stress” smokers or people who quit smoking for several

months. Someone consuming 6 to 10 cigarettes per day also consumes roughly 1 drink per week

more than non-smokers, a significant increase in alcohol consumption. Estimates also show that
26The average consumption of cigarettes per day at randomization is 29.5 cigarettes. At the first annual follow-up

visit the average cigarette consumption among the treated is about 12 cigarettes per day and 24 cigarettes among the
control group.
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those consuming on average 31 to 35 cigarettes per day do not consume more than non-smokers.

This finding may be surprising, but may have to do with the fact of the small population in that cate-

gory (181 observations). Column 2-3 show that the effect of past smoking on alcohol consumption

is larger for females and that past smoking increases alcohol consumption significantly.27

Table 6: The Effect of the 12 Months Average Cigarette
Consumption per Day History on Drinking At the First Follow-up

Meeting

Dep. Var. Drinks per week

Average 12 Months Consumption: OLS Men Female
1-5 Cigarettes per Day ≡ 1 0.571 0.420 .923***

(0.353) (0.516) (0.313)
6-10 Cigarettes per Day ≡ 1 0.973*** 0.738 1.489***

(0.375) (0.553) (0.3253)
11-15 Cigarettes per Day ≡ 1 1.285*** 1.187** 1.625***

(0.377) (0.548) (0.370)
16-20 Cigarettes per Day ≡ 1 1.184*** 1.137* 1.468***

(0.405) (0.615) (0.356)
21-25 Cigarettes per Day ≡ 1 1.418*** 1.202* 1.955***

(0.462) (0.676) (0.440)
26-30 Cigarettes per Day ≡ 1 1.660*** 1.278** 2.493***

(0.408) (0.575) (0.454)
31-35 Cigarettes per Day ≡ 1 0.754 0.196 1.794***

(0.501) (0.718) (0.535)
36+ Cigarettes per Day ≡ 1 1.731*** 1.616*** 2.007***

(0.438) (0 .596) (.512)
Observations 5579 3488 2091
Robust standard errors are in parenthesis. ***,**, and * indicate signifi-
cance at the 1, 5, and 10 percent level. All models include demographic
characteristics. Each column present results from a single regression. The
Bins variable indicates dummy variablesmeasuring average cigarette con-
sumption in that specific range.

In unreported regressions I also estimate the relationship between a binary smoking variable

measuring smoking status 12 months ago. All estimates are similar in magnitude and are signifi-

cant at least at the 5% level. Suggesting that not smoking 12 months ago decreases current alcohol
27As a robustness check I also regressed drinks per week on one continuous average 12 months cigarette per day

consumption variable. The results present significantly smaller effects for the average smoker. Including square and
cube terms of average cigarette consumption generates similar results to those presented in table 6.

26



consumption by roughly 1 drink per week or 23%. 2SLS estimates are insignificant, but a Haus-

man test indicates that OLS estimates are preferred to 2SLS estimates. Probit estimates suggest

that quitting smoking 12 months ago reduces the probability of drinking by 20%, but I find no

statistically significant IV-Probit estimates.28

In summary, the smoking historic influences current alcohol consumption significantly. I find

large heterogeneous effects from the intensity of past smoking decisions on alcohol consumption.

Low levels of smoking tend to have no effect on alcohol consumption, but consuming one pack per

day increases alcohol consumption by about 1.2 drinks per week. Suggesting a significant increase

in overall alcohol consumption of about 28% from the baseline mean. The results, however, have

some caveats., because I only measure an average consumption across the last 12 months. The fact

that some people may quit smoking in some months and relapse in others may misrepresent the

average cigarette consumption per day. Therefore, the next section tries to identify the effect of

those participants who continuously abstain from smoking on alcoholic beverage consumption.

Identifying the Time-Effect of Permanently Quitting Smoking on Alcohol Consumption

Table 6 presents estimates on the effect of 12 months historic average cigarette consumption on

current alcohol consumption. The 12 months average cigarette consumption variable allows for

the possibility that some people change the level of cigarette consumption (or quit smoking) across

month, i.e. they might consume in one month 30 cigarettes and do not smoke in the next month,

which would result in an average consumption of 15 cigarettes per day. Therefore, t this section

tries to understand whether permanently quitting smoking affects alcohol consumption differently.

Additionally, I investigate how the length or timing of quitting smoking affects alcohol consump-

tion.

The addiction theory implies that the level of the habit stock matters as well as the timing of

quitting smoking matters on future alcohol consumption. For example, consider two people with

the same level of the habit stock, where one of the smokers quits smoking and the other continuous
28Results are not reported, but are available upon request. I ran Linear Probability Models (LPM), and Hausman

tests suggest that OLS estimates can be used over 2SLS estimates.
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smoking. The habit stock of the quitter depreciates over time, while the continuous smoker does

not see a change in the habit stock. As a result, at any future point in time alcohol consumption

of the quitter should be differently affected due to the lower habit stock.29 The following para-

graphs explain how I try to measures the timing and the differential habit stock effect on alcohol

consumption.

Specifically, I estimate the timing effect by generating a sample of beginning non-smokers

measured by the months of quitting from the first annual follow-up visit. I specifically exclude

temporary non-smokers (those who relapse in later months). The empirical strategy includes a

dummy variable equal to one if a participant quits smoking permanently. For example, to measure

the effect of 12 months non-smoking on alcohol consumption, the dummy variable equals one if

a person quits smoking 12 months prior to the first annual follow-up visit and does not smoke

in the following 11 months up to the first annual follow-up visit. The dummy variable equals

zero for those participants who are 12 months continuous smokers and part of the control group.

I utilize smokers in the control group as a counterfactual because they have the least differences

in demographic characteristics from the treatment group.30 This gives me a measure of how much

alcohol smokers would have consumed had they not quit. In other words, the counterfactual thought

experiment suggests that what would have happened if the person did not quit smoking for twelve

months, but instead smoked the full year.

The LHS includes self-reported information on smoking for all 12 months prior to the first an-

nual follow-up year, allowing me to run 12 regression between beginning non-smokers in a given

month and alcohol consumption at the first annual follow-up visit. To clarify, each regression,

therefore, includes a different mutually exclusive treatment group from month to month. The treat-

ment group changes from month to month as it only includes beginning sustained non-smokers,

while always including the continuous smokers of the control group. By limiting the sample, I

identify the actual changes in alcohol consumption due to permanent smoking cessation and im-
29A detailed explanation of the theoretical background is in the Supplement part 3
30The estimation strategy can be thought of as a classical difference in differences model, where quitting smoking

is the exogenous treatment for the smokers.
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plicitly measure changes in the habit stock of cigarettes. The regression equation is similar to

equation (1) but includes the here-discussed definition of the smoking variable. For example, for

the 12 month sustained non-smoker the new smoking variable equals one if the following equation

holds, and zero for the continuous smokers in the control group:

Non− Smoker12month = 1, iff
[ 12∑
m=1

smokeim
]
= 0

Non− Smoker12month = 0, iff
[ 12∑
m=1

smokeim
]
= 12

Similarly, Smoke11month equals one for smoking in m = 1 and non-smoking in months m =

2, 3, ..., 12, and zero as defined above. To reiterate, each regression only includes one of the 12

generated smoking variables and treatment group is limited to those who smoked in month t − 1

but quit from month t until the first follow-up meeting.

2SLS estimates will identify the effect of sustained non-smokers in the treatment group relative

to continuous smokers in the control group.31 I impose one additional strong assumption to estimate

valid 2SLS models. I assume that the random assignment to the treatment group, which happened

at different times following the third screening survey also results in a random date of receiving

treatment. The first date of possibly receiving treatment would be 12months prior to the first annual

follow-up visit. Therefore, I assume that those who permanently quit for 12 months are only 12

months non-smokers because they received the treatment earlier in the year than people who quit

smoking for 11 months.

The estimates include a different sample than the estimates presented in Table 6. The inter-

pretation of quitting smoking in month 12 suggests that the participant did not smoke in all of the

following months up to the first annual follow-up visit. The previous section did not make any re-

strictions on month-to-month smoking habits. To distinguish the results from the previous section

I refer to a smoker quitting in month 12 who remain a non-smoker in all of the following months
31Non-parametric estimation strategy should yield similar results, where I could compare the difference in alcohol

consumption between permanent quitters in the treatment group relative to continuous smokers in the control.
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as a “12 month sustained non-smoker”. The sample of sustained non-smokers may be different

from the overall sample and suffer from sample selection. I tested for differences in any of the five

observable characteristics (gender, education level, marital status, age, and cigarette consumption

at baseline) for the 12-8 months sustained non-smoker from the control group participants. I only

find a statistically significant difference in marital status for 12, 10 and 9 months sustained quitters

and gender for 12 months sustained quitters. In total I conducted 20 tests and had to reject in 5 cases

and only once at the 1% level. I conclude that there may be some evidence for possible differences

by marital status between treatment and control group.

Figure 1 graphs the OLS and 2SLS marginal effects on the effect of becoming a sustained non-

smokers for 12 to 8 months on alcohol consumption.32 I find statistically significant results for 12

months sustained non-smokers. 2SLS results indicate that 12 months sustained non-smokers con-

sume 1.2 drinks per week or 27.5% less than continuous smokers. 11 through 9 months sustained

non-smokers consume about 0.6 drinks more per week than a 12 month sustained non-smoker.

Nevertheless, sustained quitters beginning in month 11 through 9 consume 0.6 drinks, or 14%, less

that continuous smokers.33 Overall, the marginal effects follow the expected inverse relationship

between quitting smoking and alcohol consumption. Quitting smoking later in the year and closer

to the first annual follow-up visit results in a higher habit stock of smoking, which increases alcohol

consumption.

Similarly, I also find large extensive margin effects of quitting smoking permanently on drink-

ing. Table 7 includes average marginal effects for probit, and CF-probit estimates. 12 months

sustained non-smokers are 31% less likely to drink than continuous smokers. 11 months sustained

non-smokers are roughly 5% less likely to drink than continuous smokers.34 The extensive margin

effects follow the results from Figure 1. The longer one permanently abstains from smoking the
32I present only months 12 through 8, because limiting the sample has its cost on observations and power. Beginning

in month 7 and any later month sustained quitters represent only a small fraction of the sample, questioning any internal
validity. For example, in June only 36 people become sustained quitters for the rest of the year. Beginning in August,
the average month sees 11 sustained quitters. Therefore, I am not confident that the estimates frommonth 7 and onward
represent representative average effects.

33Appendix Table A.2& A.3 present regression and Negative Binomial marginal effects.
34Logit results presents similar average marginal effects. Table not included.
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Figure 1: Average Alcoholic Beverage Consumption for Beginning Sustained Non-Smokers
in Different Months Prior to the First Annual Follow-up Visit

Figure 1 plots OLS and 2SLS marginal effects from Table A.2. Results present the
effect of becoming a sustained non-smoker in months 12,11,10... prior to the first
annual follow-up visit on alcohol consumption.

larger the effects on alcohol consumption.

Taking all results, I conclude that the length of quitting smoking affects alcohol consumption

differently. Moreover, since the average cigarette consumption as baseline for those who per-

manently quit 12 months is about 30 cigarettes per day, I conclude that the estimates are similar

compared to Table 6, and therefore providing evidence that the effect is robust to specification.35

Additionally, the theoretical model supports the prediction that a longer period of abstaining from

smoking decreases the habit stock through depreciation and results in a larger drop in alcohol con-

sumption. Next, I present results by gender, as Pierani et al. (2009) also suggest that those differ.

Gender Differences on the Effect of the Habit Stock on Alcohol Consumption

Pierani et al. (2009) present significantly different results for the habit stock by gender. This

section estimates the gender difference in the effect of permanently quitting smoking on alcohol

consumption. Table 8 presents OLS and 2SLS estimates for all beginning sustained non-smokers
35On average a 12 through 8 months sustained quitter consumed close to 30 cigarettes per day which leads to very

similar point estimate for the 12 month sustained quitter.
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Table 7: The Effect of the Length of Abstaining from
Smoking on the Probability of Drinking at the First

Annual Follow-Up Visit

Dep. Var. Any Drinks

Length of Non-Smoking Probit CF-Probit
12 Months Sustained Non-Smoker -0.39*** -0.31***

(0.02) (0.03)
11 Months Sustained Non-Smoker -0.04*** -0.05

(0.03) (0.03)
10 Months Sustained Non-Smoker -0.01 -0.01

(0.026) (0.03)
9 Months Sustained Non-Smoker -0.016 -0.02

(0.03) (0.027)
8 Months Sustained Non-Smoker -0.004 -0.001

(0.04) (0.04)
7 Months Sustained Non-Smoker -0.003 -0.026

(0.06) (0.08)
6 Months Sustained Non-Smoker -0.021 -0.099

(0.08) (0.10)
5 Months Sustained Non-Smoker -0.10 -0.021

(0.08) (0.12)
4 Months Sustained Non-Smoker -0.021 -0.10

(0.09) (0.12)
3 Months Sustained Non-Smoker 0.057 -0.30

(0.09) (0.01)
2 Months Sustained Non-Smoker 0.017 -0.12

(0.09) (0.14)
1 Month Sustained Non-Smoker 0.04 -0.03

(0.08) (0.13)
Robust standard errors are in parenthesis. ***,**, and * indi-
cate significance at the 1, 5, and 10 percent level. Column 1
presents Probit estimates between a binary drinking indicator,
equal to one if the person quit smoking continuously begin-
ning that months and zero otherwise, and alcoholic beverage
consumption per week. All estimates present average marginal
effects.
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beginning in month 12 through 1 before the first follow-up visit. Figure 2 graphs 2SLS marginal

effects by gender for months 12 to 8 beginning sustained non-smokers. The figure shows that the

shorter the period of abstaining from smoking the higher the alcohol consumption. Across the

length of quitting the trend for females are more linear than males. However, among the male

sub-sample I only find statistically significant OLS results for 12 months non-smoking. I find

statistically significant OLS and 2SLS marginal effects for 12 and 11 months female sustained

non-smokers. Specifically, I find that female 12 month sustained non-smokers consume 1.8 drinks

per week less, while 12 months male non-smokers consume 1 drink per week less than continuous

smokers.

Figure 2: Effects of Becoming a Sustained Non-Smokers on Alcohol Consumption by
Gender

Figure 3 presents 2SLS marginal effects for Table 8. Results present the effect of
becoming a sustained non-smoker in months 12,11,10... prior to the first annual
follow-up visit on alcohol consumption.

Similarly, I also estimate probit and CF-profit models by gender. Table 9 presents probit, and

CF-probit average marginal effects. I find that 12 months sustained male and female non-smokers

are 30% and 32% less likely to drink, respectively. Both estimates are statistically significant at

the 1% level. Additionally, 11 months female sustained non-smokers are roughly 10% less likely

to drink than continuous female smokers. Interestingly, women are slightly more likely to quit
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Table 8: The Effect of the Length of Abstaining from Smoking on Alcohol
Consumption at the First Annual-Follow-up Visit

Female Male

Length of Non-Smoking OLS 2SLS OLS 2SLS
12 Months Sustained Non-Smoker -1.744*** -1.791*** -1.111* -0.986

(0.365) (0.379) (.596) (0.633)
11 Months Sustained Non-Smoker -1.014* -1.096** -0.445 -0.527

(0.540) (0.548) (0.618) (0.620)
10 Months Sustained Non-Smoker -0.422 -0.583 -0.750 -0.647

(0.445) (0.449) (0.500) (0.509)
9 Months Sustained Non-Smoker -0.215 -0.328 -0.891* -0.893*

(0.485) (0.511) (0.496) (0.502)
8 Months Sustained Non-Smoker -0.040 -0.230 -0.428 -0.099

(0.713) (0.736) (0.735) (0.789)
7 Months Sustained Non-Smoker 0.572 -2.377 -1.144 -1.915**

(1.838) (0.677) (1.084) (0.823)
6 Months Sustained Non-Smoker -1.408 -0.701 0.254 -0.993

(0.937) (1.486) (1.392) (1.584)
5 Months Sustained Non-Smoker -0.947 2.917*** 1.149 1.959

(1.073) (0.399) (1.940) (2.488)
4 Months Sustained Non-Smoker 0.033 0.460 -0.009 -0.464

(1.272) (2.177) (1.717) (1.671)
3 Months Sustained Non-Smoker -0.071 -0.444 -3.284*** -1.033

(1.272) (2.179) (1.006) (1.233)
2 Months Sustained Non-Smoker -2.158*** 2.551*** -1.678 -3.185***

(0.362) (0.418) (1.240) (1.087)
1 Month Sustained Non-Smoker -1.417 -1.249 0.811 0.869

(0.929) (1.414) (1.223) (1.802)
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5,
and 10 percent level. All models include demographic characteristics. Every row entry
represents a different regression and different sample on the dependent variable Drinks per
Week in year 1. Table 8 presents OLS and 2SLS marginal effects for a binary indicator
equal to one for a beginning non-smoker for the rest of the year and zero for a continuous
smoker.
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drinking than men. This is counterintuitive to the current evidence that women tend to become

addicted more easily and should have a more difficult time quitting abruptly.

Finally, the evidence shows that women reduce alcoholic beverage consumption and are more

likely to quit drinking if they become a sustained non-smoker for 12 or 11 months. 12 month

non-smoking females reduces alcohol consumption by 53% per week and 11 months non-smoking

females reduce alcohol consumption by 29% relative to baseline consumption levels at the random-

ization meeting. Among men, those who become sustained non-smokers for 12 months decrease

alcohol consumption by 23%. The evidence suggests that the length of quitting affects alcohol

consumption significantly. Moreover, I present evidence that implies that the habit stock affects

females more than males, because the change in alcoholic beverage consumption among females

is twice as large as the change for males. In a different light, the estimates suggest that there are

long-term benefits from quitting smoking via a reduction in alcoholic beverage consumption.

Table 9: Sub-sample Gender Effects of the Length of Abstaining from Smoking
on the Probability of Drinking Any Alcoholic Beverages at the First Annual

Follow-up Visit

Female Male

Length of Non-Smoking Probit CF-Probit Probit CF-Probit
12 Months Sustained Non-Smoker -0.37*** -0.32*** -0.40*** -0.30***

(0.04) (0.05) (.03) (0.03)
11 Months Sustained Non-Smoker -0.10* -0.12* -0.01 -0.01

(0.054) (0.06) (0.03) (0.04)
10 Months Sustained Non-Smoker -0.02 -0.03 -0.006 -0.01

(0.04) (0.005) (0.03) (0.03)
9 Months Sustained Non-Smoker 0.01 0.01 0.01 0.02

(0.04) (0.05) (0.03) (0.034)
8 Months Sustained Non-Smoker 0.05 0.05 -0.03 -0.02

(0.07) (0.07) (0.04) (0.05)
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5,
and 10 percent level. Table 8 presents average Probit marginal effects and Probit Control
Function Approach marginal effects for a binary variable equal to one if the person is a
beginning sustained non-smoker for the rest of the year and zero for a continuous smoker.
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The Effect of Quitting Smoking on Alcohol Consumption after Five Years

All previous results present short-term average effects on the effect of smoking on alcohol con-

sumption. This section estimates the long-term effects and compares them with the short-term

effects. It is possible that people who quit smoking abruptly decrease alcohol consumption by the

first follow-up visit, but increase consumption in the long-term. To this end, I present OLS and

2SLS long-run estimates for two different smoking variables on alcohol consumption by the 5th

annual follow-up visit. I present long-term effects for the objectively-verified smoking variable

and the 12 months sustained quitters variable from the previous sections.

Table 10: Long-Run Effects of Quitting Smoking

Objective Smoking Status: Short-Run Long-Run

OLS 2SLS OLS 2SLS
Smoking status at first follow-up visit 0.447** 0.482 0.497** 0.542

(0.185) (0.741) (0.195) (0.771)
12 months sustained non-smokers -1.251*** -1.183*** -1.112*** -1.115***

(0.403) (0.428) (0.401) (0.422)
Robust standard errors are in parenthesis. ***,**, and * indicate significance at the 1, 5,
and 10 percent level. All models include demographic characteristics. Every row entry
represents a different regression on the dependent variable Drinks per Week in year 1 for the
Short-Run and year 5 for the Long-Run.

Table 10 presents the main results and shows no significant changes in coefficient size after five

years. I test for differences between the short-run OLS and long-run OLS coefficients but do not

find statistically significant differences.36 The key take away is that the short-run effect of lower

alcohol consumption persists after five years.

Conclusion

This paper presents strong evidence that smoking and alcoholic beverage consumption is positively

correlated. On average, quitting smoking reduces alcohol consumption by roughly 0.5 drinks per

week or 11.5%. Among excessive alcohol users, quitting smoking reduces alcohol consumption
36A Table presenting those results can be made available upon request.
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by about 1.7 drinks or 15% per week. The estimates also reveal heterogeneous smoking habit

stock effects on alcohol consumption. I show that participants consuming on average between

1-5 cigarettes per day in the last 12 months prior to the first annual follow-up meeting do not

increase current alcohol consumption relative to non-smokers. However, consuming on average 20

cigarettes per day increases current alcohol consumption by 1.2 drinks per week. . Additionally,

I show that the longer the participant abstains from smoking the stronger the negative effect on

alcohol consumption

The study suggests that smoking interventions present a powerful policy approach that min-

imize cigarette and alcohol demand. Smoking interventions have a dynamic second-order effect

on alcohol demand, suggesting that policymakers could have underestimated the total benefits of

smoking interventions. I hypothesize that the second-order effects from a smoking intervention

can also be partially achieved in the general smoking population, if they are combined with an

effective nicotine prescription program. However, the consistently shrinking smoking population

lessens the total second order benefits, requiring broader actions targeting non-smoking drinkers.

A separate literature points out that quitting smoking increases BMI, but the mechanisms are

still debated.37 Alcoholic beverage consumption significantly increases caloric and could be one

mechanism through which recent quitters compensate or ameliorate the painful detoxification pro-

cess to stay away from cigarettes. This paper provides evidence that quitters do not substitute their

physical and psychological cigarette dependence by increasing alcoholic beverage consumption.

To the contrary, especially for sustained non-smokers, those who stop smoking tend to drink less

alcoholic beverages, cutting additional calories out of their diet.

Lastly, a back of the envelope calculation estimating the costs savings from the intervention

that would otherwise have occurred due to excessive alcohol consumption suggests annual saving

of about 645,000 dollars.38 The recent passage of the Affordable Care Act also requires insurers to

cover smoking cessation treatment costs of the insured and could generate cost savings similar as
37See Courtemanche 2009, Chou et al. 2004.
38918 LHS participants were classified as continuous non-smokers by the 5th year. 129 were classified as excessive

drinkers at the baseline meeting. Based on Sack et al. 2015 a conservative estimate suggests that the cost of excessive
drinking per excessive drinker is at 5000 dollars.
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the LHS per person. For example, taking current estimates from Sachs et al. (2015), a 1 percentage

point drop in smoking participation can save around 300 million dollars annually that would have

otherwise been incurred from excessive drinking.39

II The Effect of Smoking on Obesity: Evidence from a Ran-

domized Trial

Introduction

In the last 40 years obesity40 rates have steadily increased in the United States (US), rising from 13%

in the early 1960s to 35% in 2011-2012 (Flegal et al., 1998, Ogden et al., 2014). This rise in obesity

has contributed significantly to increasing rates of diabetes, heart disease, and stroke (Mokdad et

al. 2001, Manson et al. 1990, Rexrode et al. 1997), with Flegal et al. (2005) finding that obesity-

related diseases lead to 112,000 deaths per year. Wang et al. (2011) project that by 2030 the number

of obese adults in the USwill grow by another 65million. Cawley andMeyerhoefer (2012) estimate

that obesity leads to $190 billion per year in medical expenses, while Wang et al. (2011) project

that this number will increase by $48 to $66 billion by 2030.

During the same time frame, the percentage of adults who use tobacco in the US declined from

42% to 19% (National Center for Health Statistics, 2011). The 1964 Surgeon General’s Report

concluded that smoking leads to adverse health conditions such as lung cancer and heart disease

and increases mortality risk (US Department of Health and Human Services, 1964). Subsequently,

federal and state governments launched an aggressive tobacco control campaign featuring adver-

tising restrictions, warning labels, information-spreading programs, cigarette taxes, and smoking

bans in public places. Despite the success of these efforts in reducing smoking, tobacco is still

responsible for one out of every five deaths in the United States and at least $130 billion per year
39CDC and the LHS suggest that 15 percent of smokers consume at excessive alcohol levels
40Obesity is defined as having a body mass index (BMI) greater than 30, where BMI is equal to weight in kilograms

divided by height in meters squared.

38



in medical expenses (US Department of Health and Human Services, 2014).

The inverse trends in smoking and obesity raise the question of whether they are causally re-

lated, in which case tobacco control policies may had the unintended consequence of contributing

to the rise in obesity. Quitting or reducing smoking could increase body weight since nicotine can

act as an appetite suppressant and metabolic stimulant (Pinkowish, 1999). In standard economic

models of body weight (e.g. Philipson and Posner, 1999), nicotine’s appetite-suppressing proper-

ties could be seen as decreasing the marginal utility of food consumption, leading to less eating and

therefore lower body weight. Stimulating the metabolism would mean more calories burned hold-

ing physical activity constant, again reducing weight. On the other hand, smoking reduces lung

capacity (Hedenstrom et al., 1986), which could lead to weight gain by increasing the marginal

disutility from exercise.

A large public health literature documents that individuals tend to gain weight following smok-

ing cessation. A meta-analysis of 15 studies found that individuals who quit smoking gain an

average of four pounds more than a comparison group of continued smokers (U.S. Department of

Health and Human Services, 1990). Another meta-analysis, which included a larger number of

studies (62) but no comparison group, found that weight gain steadily increases in the year after

smoking cessation, ultimately reaching 4.67 kg (10.3 lbs) (Aubin et al., 2012). Evidence regarding

longer-run effects is mixed. Some studies have found that much of the weight gain after quitting

smoking is temporary (Chen et al., 1993; Mizoue et al., 1998), but others conclude that the effect re-

mains sizeable five to ten years after cessation (Flegal et al., 1995; Travier et al., 2012; Williamson

et al., 1991). These associational estimates could be susceptible to bias from unobservable char-

acteristics, such as time preference and level of interest in one’s health, that likely influence both

the probability of smoking cessation and weight trajectory. Additionally, studies that simply track

changes in weight without utilizing a comparison group of continued smokers are susceptible to

additional confounding from the tendency to gain weight with age.

The economics literature has attempted to move closer toward causality by examining the ef-

fects of plausibly exogenous sources of variation in economic factors that influence smoking on
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BMI. The results from this literature are mixed. Chou et al. (2004), Rashad et al. (2006), and Baum

(2009) estimate positive relationships between cigarette costs and BMI. Since higher cigarette

prices have been shown to reduce smoking, these results are consistent with reduced smoking lead-

ing to weight gain. However, Gruber and Frakes (2006), Courtemanche (2009), and Wehby and

Courtemanche (2012) estimate the effect of cigarette costs on BMI to actually be negative, while

Nonnemaker et al. (2009) and Courtemanche et al. (forthcoming) find little evidence of an effect

in either direction. The discrepancies in observed results in the literature hinge on methodologi-

cal issues such as whether cigarette prices or tax rates are used as the measure of cigarette costs,

whether time is modeled using a quadratic trend or time period dummies, and whether the dif-

ference between short-run and long-run effects is considered. A particularly controversial issue

is whether cigarette costs can actually be considered exogenous. Cigarette prices may depend on

the demand for cigarettes, while high cigarette taxes may be more politically palatable in states

where a relatively small percentage of the population smokes. Fletcher (2014) considers a differ-

ent tobacco-control policy – workplace smoking bans – and finds evidence that smoking cessation

induced by these bans increases BMI.

To our knowledge, the only paper that uses a randomized intervention to estimate the causal

effect of smoking on weight is Eisenberg and Quinn (2006; hereafter EQ). EQ use the Lung Health

Study (LHS), which randomly assigned smokers to a comprehensive smoking cessation program

and then tracked their health for five years. EQ do not actually use the LHS microdata, but instead

take advantage of the fact that O’Hara et al. (1998) report differences between the treatment and

control groups’ average changes in weight and smoking status to compute a Wald instrumental

variables (IV) estimate of the weight gain from quitting smoking. EQ find that quitting smoking

leads to a very large average weight gain of 9.7 kg (21.4 pounds), about two to five times the

magnitude typically found in the associational literature.

Despite their use of randomization, there are reasons to suspect that EQ’s estimate is overstated.

They use assignment into the smoking cessation program as an instrument for ”sustained quitting”,

which is defined as being a medically verified quitter in all five LHS follow-up waves. The IV
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strategy therefore requires the strong assumption that the program only affects weight through its

effect on sustained quitting. However, in addition to helping some smokers quit immediately and

permanently, the program may help others quit smoking in some but not all follow-up periods,

and still others by reducing their number of cigarettes smoked per day even though they never quit

entirely. To the extent that such partial quitting exists and influences BMI, EQ’s estimated average

effect of quitting smoking will be biased upwards.

We contribute to the literature on the effect of smoking on weight in several ways. First, we

provide, in our view, the most reliable estimates to date of the average causal effect of quitting

smoking on weight. We use the LHS microdata to exploit the randomized nature of the study

while also constructing detailed smoking measures – such as cigarettes smoked per day and average

carbon monoxide (CO) level over the entire five-year period of the study – that account for delayed

or temporary quitting as well as smoking intensity. Our preferred estimates imply that quitting

smoking leads to an average weight gain of 1.5-1.7 BMI units (10-11 pounds at the average height)

at the end of the first year of the study period. The effect persists over time, reaching 1.7-1.9 BMI

units (11-12 pounds) by the end of the fifth year – a magnitude that implies that the fall in smoking

explains around 14% of the rise in BMI in recent decades. Our estimated effects are toward the

high end of the range of results from the associational literature, but substantially smaller than EQ’s

estimate that uses randomization but relies on the ”sustained quitting” measure.

Our paper also contributes by providing new information related to the heterogeneity of the ef-

fect across the smoking and weight distributions as well as by demographic characteristics. We

estimate a semi-parametric instrumental variables model that allows the data to determine the

functional form of the relationship between smoking and BMI. The results suggest a diminish-

ing marginal effect, with additional smoking having little long-run impact on BMI beyond about

a pack of cigarettes per day or a CO level of about 20 parts per million (ppm). We also conduct

subsample analyses by age, gender, education, and baseline BMI and find that on average younger

individuals, females, those with no college degree, and those with healthy baseline BMI levels gain

the most weight in response to smoking cessation.
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Data

This section provides a brief introduction to the LHS, with an emphasis on the information most

relevant for our paper. O’Hara et al. (1993, 1998) provide a more detailed discussion of the LHS,

and further information is also available online at https://www.clinicaltrials.gov.

The purpose of the LHS was to observe changes in the severity of chronic obstructive pul-

monary disease (COPD) among smokers. The study consisted of 5887 smokers with initial ages

between 35 and 59. Recruitment started in 1986 and ended in 1989. The clinical trial ended in

1994. To be eligible for selection, potential participants had to show signs of mild lung function

impairment, have no history of certain medications, consume less than 25 drinks per week, and

have no severe illnesses or chronic medical conditions. Each year all participants were extensively

interviewed individually at a medical clinic near the residence of the participant (no more than 75

miles away from the participant’s permanent residence). The data therefore consist of the baseline

period (1989) plus five annual follow-up periods (1990 through 1994). Attrition was relatively

low, as 5,297 individuals remained in the sample in the final wave. The attriters included 315

participants who died during the study period.

Participants were randomly assigned into three different groups: two treatment groups and one

control group. Both treatment groups received a special intervention (SI) consisting of free nicotine

gum, an intensive quit week, and frequent contact with support personnel with invitations to bring

a spouse or relative to the meetings. The only difference between the two treatment groups is that,

in addition to the SI, one group received an inhaled bronchodilator (SI-A) while the other received

an inhaled placebo (SI-P). Most of the intensive intervention treatments were completed within the

first 4 months of the study. The control group referred to as the usual care (UC) group received no

intervention and members continued to use their own private sources for medical care.

The LHS collected information about weight, height, smoking behavior, family smoking habits,

health status, and demographic characteristics. Weight and height were measured by medical staff

at the participants’ clinic visits, so our BMImeasure is not susceptible to the concern aboutmeasure-
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Table 11: Summary Statistics

(Means, with Standard Deviations in Parentheses)
Variable SI-A SI-P UC
Age 48.41 48.55 48.43

(6.84) (6.83) (6.80)
Cigarettes per Day 29.59 29.49 29.53

(14.08) (13.60) (14.11)
Carbon Monoxide 25.97 26.70 25.98

(13.47) (12.67) (12.66)
BMI 25.42 25.67 25.55

(3.91) (3.92) (3.92)
High School Degree 0.29 0.30 0.29

(0.45) (0.46) (0.45)
Some College 0.34 0.34 0.35

(0.47) (0.47) (0.47)
College Degree 0.22 0.22 0.24

(0.41) (0.42) (0.42)
Male 0.60 0.64 0.64

(0.49) (0.48) (0.48)
Married 0.65 0.67 0.65

(0.47) (0.47) (0.47)
Observations 1961 1962 1964

ment error that is common in the economics of obesity literature.41 The data contain self-reported

smoking information as well as CO test results. We consider three different measures of smoking:

a dummy variable for whether the respondent currently smokes (clinically measured through the

CO test), number of cigarettes typically smoked per day (self reported), and CO level in ppm. We

also utilize the LHS’ information on education (dummies for high school graduate, some college,

and college graduate), gender (dummy for male), age (years), and marital status (dummy for mar-

ried) as controls. Note that we do not control for race/ethnicity because 97% of LHS participants

were white. Our sample is therefore not representative of the overall population of US smokers

along this dimension.

Table 11 presents descriptive statistics for the three groups at the time of randomization. Aver-

age cigarette consumption was roughly 30 cigarettes per day, average CO level was about 26, and
41See Courtemanche et al. (2015) for an overview of the challenges involved with using self-reported weight and

height.
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the average respondent was just slightly overweight. The summary statistics for all variables are

very similar across the three groups, indicating the randomization was successful.

Figure 3: Changes Over Time in BMI and Smoking for Treatment and Control Groups
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Figure 3 displays changes throughout the sample period in the average number of cigarettes

smoked per day, objectively-verified smoking status, CO level, and BMI for each group. Sharp

decreases in cigarette smoking, smoking status and CO level are evident for both treatment groups

in the first year after the intervention. The decrease in smoking for the control group is much more

moderate. Average BMI is trending upward for all three groups, but the two treatment groups

experience much sharper increases in BMI than the control group in the first year. The graph

therefore suggests both that the intervention was effective in reducing smoking and that smoking

reduces BMI. We next use econometric methods to estimate the magnitude of these effects.
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Econometric Analyses

Our econometric objectives are to identify 1) the average short- and long-run causal effects of quit-

ting smoking on weight gain, 2) how the effect of smoking on weight changes across the smoking

distribution, and 3) how the effect of smoking on weight varies by demographic characteristics and

baseline BMI.We begin by using parametric regressions to answer the fist question and running fal-

sification tests to evaluate the validity of the models. We then conduct semiparametric estimation

allowing for a flexible relationship between smoking and weight to address the second question.

Next, we answer the third question with subsample analyses. Finally, we address issues related to

the generalizability of the results and show why our results differ from those of EQ.

Average Effects

Short Run

We begin by aiming to identify the average causal effect of quitting smoking on weight gain with a

series of parametric regressions. Economists typically consider body weight to be a capital stock.

Individuals start with an exogenous endowment of weight that changes over time due to deprecia-

tion as well as “investments” that take the form of caloric intake or expenditure. In the LHS, weight

at the end of the first follow-up year can therefore be modeled as a function of weight at baseline

and investments – such as smoking – in year one. This leads to the model

bmii1 = β0 + β1bmii0 + β2Si1 + β3tXi + εi1 (4)

where bmii1 is individual i’s BMI at the end of year 1, bmii0 is BMI at the beginning of the study

(year 0), Si1 is smoking in year 1, Xi is a vector of demographic controls that are assumed to be

constant over time since they are only available for the baseline wave, and εi1 is period 1’s error

term. β2, the coefficient of interest, gives the short-run association between smoking and weight.

We estimate the OLSmodel given by (4) as well as an IV model that uses the randomized treatment
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assignment to instrument for Si. The first stage of the IV model is given by

Si1 = γ0 + γ1wi0 + γ2si_ai + γ3si_pi + γ4Xi + µi1 (5)

where si_ai and si_pi reflect whether the individual was assigned into the SI-A or SI-P treatment

group, respectively. The second stage of the IV model is identical to (4) except it replaces Si1

with the predicted value generated by (5). In the IV model, β2 can be interpreted as the short-run

local average treatment effect (LATE) of intervention-induced changes in smoking on BMI. We

estimate linear models in both stages due to their relative ease of interpretation, their ability to

produce reliable average effects (e.g. Angrist and Pischke, 2009), and the inherent difficulties with

non-linear IV estimation (e.g. Terza et al., 2008). We define Si1 three different ways: a dummy

for smoking cessation, number of cigarettes smoked per day, and CO level. We next discuss these

three smoking variables.

The first smoking measure is a dummy equal to one if and only if individual i was a medically

validated non-smoker at the end of year one. We consider this to be a naive measure of smoking be-

cause it ignores variation in smoking intensity among smokers. This could lead to an overstatement

of the average weight gain from quitting smoking estimated by IV models. When a quit dummy is

used as the smoking measure, the IV estimator effectively scales the difference in BMI between the

treatment and control groups by the difference in smoking cessation rates between the two groups.

The validity of this estimator therefore hinges on the assumption that the randomized intervention

only affected the BMIs of people who fully quit smoking. To the extent that the intervention also

affected the BMIs of those who cut back on smoking but did not quit entirely, the difference in

BMI will be scaled by too small a number and the resulting IV estimate will be too large. (This

point is central to our critique of EQ, and we will discuss it in more detail in Section 3.5.)

Our second smoking measure is therefore self-reported number of cigarettes smoked per day,

with a value of zero assigned to those who reported quitting. This measure incorporates both re-

ducing smoking and quitting entirely and therefore is not susceptible to the above criticism. In
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order to make the results using cigarettes per day comparable to β̂2 from the regressions using

the smoking cessation dummy, we need to compute an implied average weight gain from quitting

smoking. Since the best way to do this is not immediately obvious, we consider several possibili-

ties. First, we use the average weight that would be gained if all individuals in the sample switch

from their baseline number of cigarettes to none. We do this by multiplying the coefficient esti-

mate on the cigarettes smoked per day variable by each individual’s number of cigarettes smoked

at baseline, and then taking the average across all individuals. Formally, this means we compute(
N∑
i=1

β2cigdayi0

)
/N , where cigday is cigarettes smoked per day and i indexes the N observa-

tions. Second, we use the same formula but average over only those individuals who actually quit

smoking. Third, we only average over quitters from the treatment groups. Fourth, we compute the

effect of quitting smoking from the sample mean baseline smoking level, i.e. β2cigdayi0. Fifth

and sixth, we again compute β2cigdayi0 but using only quitters, and quitters from the treatment

group, respectively. The estimated average weight gain from quitting smoking is similar using all

six approaches, so we only report the results using the first method: averaging the predicted effects

across all individuals. Results from the other approaches are available upon request.

A key limitation with cigarettes per day is its self-reported nature. At issue for the validity

of our IV estimates is not whether cigarettes per day are reported with error, but whether this

error is correlated with treatment status. It is not obvious that this is the case, but it is possible

that, for instance, being assigned into the treatment group creates more pressure to report progress

toward smoking cessation, leading to differentially large reporting error among the treatment group.

Alternatively, perhaps reporting error simply rises with number of cigarettes smoked per day, in

which case we would expect the amount of error in the follow-up periods to be highest among the

control group.

We therefore also utilize a third smoking variable that is both clinically measured and incorpo-

rates both the intensive and extensive margins of smoking: CO level from a test conducted during

the follow-up interview. Using the CO regression estimates to compute the average weight gain

from quitting smoking is somewhat more complicated than using cigarettes smoked per day since

47



even non-smokers generally have a positive CO level. We therefore compute each individual’s pre-

dicted effect of quitting smoking as the effect of switching from her baseline CO level to the mean

CO level for non-smokers, rather than to a CO level of zero. For the mean CO level of non-smokers,

we use Deveci et al.’s (2004) estimate of 3.61 ppm; this is similar to the mean CO level of verified

non-smokers in the follow-up waves of the LHS. The average effect of quitting smoking on weight

across the entire sample is therefore given by
(

N∑
i=1

β2(COi0 − 3.61)

)
/N where CO is CO level in

ppm. Note that CO levels are only available at baseline for 922 individuals, so our average effect

is computed using only this portion of the sample (though our regressions still utilize the full sam-

ple). We doubt that this limitation is of consequence since reported numbers of cigarettes smoked

per day at baseline are virtually identical for those with missing baseline CO levels and those with

non-missing levels. We have also considered analogs of the other five approaches to computing

the average effects of quitting smoking discussed above and verified that, as with cigarettes per

day, the results are robust.

While using CO levels solves the probability of reporting error, it should be noted that it is

not immune to all sources of measurement error. In particular, it only reflects smoking in the

past couple of days. Therefore, for some people self-reported number of cigarettes smoked per

day could actually be more indicative of typical smoking behavior than clinically measured CO.

Consequently, we take an agnostic view about which measure is preferred and present the results

for both alongside each other throughout the paper.42

Long Run

The above specifications estimate the short-run causal effect of smoking on BMI. We also aim to

identify the long-run effect by asking how smoking across all five follow-up waves affects BMI at

the end of the study (year five). Comparing the short- and long-run effects is important since, as
42If we regress CO level in the first follow-up year on cigarettes smoked per day as well as the interaction of cigarettes

with the two treatment dummies, the R-squared is 0.48. This suggests that, while cigarettes smoked per day and CO
are highly correlated, they do convey different information. Additionally, the coefficients on the interaction terms are
positive and significant, though small. In other words, measurement error does appear to be slightly correlated with
treatment status. Both of these results underscore the importance of verifying that the results are similar using the two
different measures.
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discussed in Section 1, the evidence from the associational literature is mixed as to whether at least

some of the weight gained after quitting smoking is temporary. Ideally, we would like to estimate

bmii5 = β0 + β1bmii0 +
5∑

t=1

β2tSit + β3Xi + εi5 (6)

where bmii5 is individual i’s BMI at the end of year 5 and Sit is smoking in year t. However, the

need to utilize IV estimation prevents us from allowing separate coefficients for each of the five

smoking variables, as this would require five instruments. In other words, in order to operationalize

an IV model we need to compress the five years of smoking information into a single variable Si.

The easiest way to do this is to take a simple average across the five years:

Si =
Si1 + Si2 + Si3 + Si4 + Si5

5
. (7)

However, this approach assumes that smoking in each of the five periods has the same effect

on weight. To the extent that weight is a depreciating capital stock, we might expect smoking in

more recent years to have a larger effect on BMI than smoking in more distant years. We therefore

also estimate models defining S as a weighted rather than simple average of quit status in the five

follow-up years:

Si =
Si1 + (1− δ)Si2 + (1− δ)2Si3 + (1− δ)3Si4 + (1− δ)4Si5

1 + (1− δ) + (1− δ)2 + (1− δ)3 + (1− δ)4
. (8)

Since we do not have a sufficient number of instruments to credibly estimate the depreciation rate

δ, we simply try several plausible values: 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. In all our regressions,

the coefficient estimate on the baseline BMI variable will barely be below one, so we consider it

probable that the “true” value of δ is toward the low end of this range; i.e. there is little reason to

consider values of δ above 0.3.

We estimate equation (6) using both OLS and IV, with si_ai and si_pi again serving as the in-

struments. We again use the three different measures of Sit: smoking cessation, cigarettes smoked
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per day, and CO level. For the cigarettes per day and CO regressions, we compute implied average

effects of quitting smoking in the same manner as the short-run specifications.

Results

Table 12 reports the results of interest from the parametric regressions. Panel A presents the OLS

and IV estimates of the effects of the different smoking measures on BMI. Panel B shows the

estimated effects of the treatment dummies on the smoking variables from the first stage of the IV

models, along with the F-statistic from a test of their joint significance. The first three columns

show the effect of year 1 smoking on year 1 BMI (short-run effect), with the first column using

the binary quitting variable as the smoking measure, the second using cigarettes smoked per day,

and the third using CO. The last three columns present the effects of the simple averages of these

three smoking measures across years 1-5 on BMI in year 5 (long-run effect). The results using

the weighted averages, available in Appendix Table A1, are similar to those obtained using simple

averages.

Coefficient estimates are shown in the table, with heteroskedasticity-robust standard errors in

parentheses. The stars represent 0.1%, 1%, and 5% significance levels. For the regressions with

the non-binary smoking measures cigarettes per day and CO, the implied average effects of quit-

ting smoking on BMI are presented in brackets. In other words, the numbers in brackets from the

cigarettes and CO regressions are comparable to the coefficient estimates from the quit status re-

gressions. The row labeled “Hausman” gives the p-values from Hausman tests of the consistency

of the OLS estimator compared to IV. The sample sizes, provided in the row labeled “N”, vary

somewhat across specifications due to differing amounts of missing information. In unreported

regressions (available upon request), we re-estimated the models using only observations with no

missing smoking information and verified that any meaningful differences between the results can-

not simply be attributed to the difference in samples.

The first column presents the short-run estimates using the quit dummy. The OLS regression

estimates that quitting smoking increases BMI by 1.295 units, or 8.2 pounds at the US average
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height of 66.55 inches.43 This is well within the range of estimates from the associational literature

discussed in Section 1. The IV estimate is a larger 2.202 BMI units, and the Hausman test strongly

rejects the consistency of OLS. This IV estimate equates to 13.9 pounds, which is larger than most

estimates of the average short-run weight gain from quitting smoking from the associational liter-

ature.

The next two columns use the smoking measures that incorporate intensity: cigarettes per day

and CO. In the IV specifications, we estimate that in the short run an additional cigarette smoked

per day reduces BMI by 0.052 units while an additional ppm of CO reduces BMI by 0.077 units.

The average effects of quitting smoking implied by these two regressions are 1.52 and 1.71 BMI

units, which translate to 9.6 and 10.8 pounds at the mean height. These estimates are 31% and

22% smaller than the 13.9 pounds we obtained using the quit dummy. This is consistent with our

prediction that neglecting to account for smoking intensity leads to an exaggerated IV estimate of

the average weight gain from quitting smoking.

The last three columns turn to the long-run estimates. The key result is that the long-run effects

are slightly stronger than the short-run effects. This is an important result, as the issue of whether the

effect diminishes over time has been a point of contention in the associational literature, as discussed

in Section 1. In the IV specification using average quit status, quitting for all five follow-up years is

estimated to increase BMI by 2.646 units, or 16.7 pounds. An additional cigarette smoked per day

over the five years reduces BMI by 0.065 units, while an additional ppmof average CO reduces BMI

by 0.082 units. These latter two estimates imply average weight gains from quitting smoking of

1.91 and 1.81 units of BMI, or 12.0 and 11.4 pounds. As with the short-run estimates, these results

suggest that incorporating smoking intensity is necessary to avoid overstating the magnitude of the

weight gain from smoking cessation.

We can use these long-run results to estimate the percentage of the rise in BMI that can be

attributed to falling smoking, under the admittedly strong assumption that the results generalize.
43Average height is computed by taking a simple average of the male and female heights given by

http://www.cdc.gov/nchs/fastats/body-measurements.htm.
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Table 12: Parametric Regression Results

Short Run (BMI Year 1) Long Run (BMI Year 5)
Quit Cigarettes CO Average Average Average

Quit Cigarettes CO
Panel A: Effects of Smoking Measures on BMI
OLS 1.295∗∗∗ -0.031∗∗∗ -0.032∗∗∗ 2.299∗∗∗ -0.052∗∗∗ -0.060∗∗∗

(0.047) (0.001) (0.002) (0.077) (0.002) (0.003)
[0.91] [0.72] [1.52] [1.33]

IV 2.202∗∗∗ -0.052∗∗∗ -0.077∗∗∗ 2.646∗∗∗ -0.065∗∗∗ -0.082∗∗∗
(0.148) (0.004) (0.006) (0.285) (0.007) (0.011)

[1.52] [1.71] [1.91] [1.81]
Hausman 0.000 0.000 0.000 0.211 0.047 0.030

Panel B: Effects of Treatment Dummies on Smoking Measures (First Stage of IV)
SI-A 0.277∗∗∗ -11.952∗∗∗ -8.025∗∗∗ 0.206∗∗∗ -9.092∗∗∗ -6.634∗∗∗

(0.013) (0.489) (0.464) (0.012) (0.431) (0.416)
SI-P 0.272∗∗∗ -11.390∗∗∗ -7.728∗∗∗ 0.211∗∗∗ -8.874∗∗∗ -6.380∗∗∗

(0.013) (0.495) (0.472) (0.012) (0.437) (0.417)
F Statistic 320.6 371.1 190.3 227.8 284.3 163.6

N 5345 5344 5274 5446 4966 4517
Notes: Heteroskedasticity-robust standard errors are in parentheses. ***,** and * indicate
significance at the 0.1, 1, and 5 percent levels. For the non-binary smoking measures, the
implied average effect of quitting smoking is in brackets. The controls for education, gender,
marital status, age, and baseline BMI are included in all regressions.

52



This percentage is given by dbmi
dcigday

∆cigday

∆bmi
∗ 100%. For dbmi

dcigday
, we use the long-run IV estimate

for cigarettes smoked per day: -0.065. ∆cigday and ∆bmi are the changes in the population

means of cigarettes smoked per day and BMI among those at least eighteen years old. We compute

these using the oldest and newest waves of the National Health and Nutrition Examination Sur-

vey (NHANES) that contain data on both smoking (self-reported) and BMI (medically measured):

1971-1974 (NHANES I) and 2011-2012. This period spans the entirety of the sharp rise in obesity,

which did not begin until the late 1970s. During this time frame, average cigarettes smoked per

day fell from 9.165 to 2.188, so ∆cigday = 6.977. Average BMI rose from 25.425 to 28.617, so

∆bmi = 3.192. Plugging in these numbers suggests that the drop in smoking explains 14.2% of

the rise in BMI. We view this as a relatively substantial contribution to the trend. Courtemanche

et al. (2015) examine the extent to which 27 different economic factors contributed to the rise in

BMI, finding that the increased prevalence of big box grocers and restaurants explain 17% and

12%, respectively, while no other factors explain more than 4%.

Finally, the first-stage estimates in Panel B of Table 12 show that the treatment was effective

in reducing smoking. In the short run, being assigned into the SI-A or SI-P groups increased the

probability of quitting by 27-28 percentage points while decreasing cigarettes smoked per day by

11-12 and CO level by 8 ppm. In the long run, SI-A or SI-P assignment increased the fraction of

the five follow-up years quit by 0.21 while decreasing average cigarettes per day by 9 and average

CO by 6-7 ppm. The treatment variables are all highly significant in the first stage and the F-

statistics from the test of their joint significance are easily large enough to conclude that they are

sufficiently strong instruments. Also noteworthy is the fact that there is essentially no difference in

the coefficient estimates for the two treatment variables; in other words, the inhaled bronchodilator

given to the SI-A group did not influence smoking. This also means that, though our IV model is

technically overidentified, the instruments are not sufficiently distinct to make an overidentification

test informative or to consider instrumenting for two endogenous variables.
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Falsification Tests

We next conduct falsification tests to support our contention that the IV results using cigarettes per

day and CO are more credible than those using the quit dummy. In our IV models, the identifying

assumption is that the randomized treatment only influences BMI via the smoking variable. Our

falsification tests evaluate this assumption by asking whether the instruments influence the BMIs

of individuals who did not change their smoking habits during the sample period, according to each

smoking measure. A significant association would provide evidence that the randomized interven-

tion influenced BMI through pathways other than the particular smoking measure, invalidating the

causal interpretation of the corresponding IV estimate. For the quit measure, we restrict the sample

to those with values of 0, meaning those who smoked in the first follow-up wave for the short-

run analysis and those who smoked in all five follow-up waves for the long-run analysis. For the

continuous smoking measures, there are obviously very few individuals with literally no change in

smoking across the sample period (i.e. the exact same number of cigarettes smoked per day/CO

level in the baseline period as in the follow-up waves), so a judgment call is required as to what

magnitude change in smoking should be considered ”meaningful”. We report results restricting the

sample to those whose post-treatment level of smoking is within 25% of their baseline level; re-

sults using neighboring cutoffs are similar. Using these subsamples, we estimate the reduced-form

version of the short- and long-run IV models; i.e. we regress BMI on the two treatment variables

plus the controls.

Ex ante, our prediction is that the binary quit measure will perform the worst in the falsification

tests since it leaves people in the sample who did actually experience a meaningful change in smok-

ing but did not quit entirely. Note that it is not obvious that the falsification tests will produce null

results even for the smoking measures that incorporate intensity, though, since it is conceivable that

the treatment could affect BMI through pathways other than smoking. For instance, perhaps being

exposed to an intensive health-related intervention might increase some people’s level of general

health consciousness, which could lead to improved health behaviors along other dimensions be-

sides smoking. The falsification tests are therefore important in assessing whether even our most
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conservative estimates of the effect of smoking on weight can be given a causal interpretation.

Table 13 reports the results. The left half of the table presents the results from the short-run

falsification tests (“effects” of the treatment dummies on year 1 BMI for those with unchanged

smoking status) while the right half shows the long-run results (year 5 BMI). For comparison pur-

poses, the first column of each half of the table presents the reduced-form results for the full sample.

The remaining three columns of each half include those with no meaningful changes in the quit,

cigarettes per day, and CO variables, respectively. The sample sizes in the tests based on cigarettes

per day are smaller than those using quit status simply because more individuals are excluded as

the measure of smoking becomes more comprehensive. The sample sizes in the two columns us-

ing CO are very small because, as discussed previously, much of the sample is missing baseline

CO information, preventing the calculation of the percentage change. The falsification tests using

cigarettes per day are therefore much more highly powered – and consequently more informative

– than those using CO.

The columns labeled “full sample” show that, in both the short and long run, the reduced-form

effects of the two treatment variables on BMI are between 0.54 and 0.61 before excluding any ob-

servations. Dropping those who quit smoking reduces the magnitude of these effects by about half,

but significant effects of 0.21-0.28 remain. There is therefore clear evidence that the intervention

affected BMI through a pathway besides quitting smoking, implying that the IV estimates using

quitting smoking are too large. The falsification test results are much more favorable if we also ex-

clude those with meaningful (>25%) changes in smoking intensity. In the two regressions that use

cigarettes per day, the coefficient estimates for the treatment variables are small (between -0.014

and 0.091) and highly statistically insignificant. There is therefore no evidence that the exclusion

restriction in the IV model is violated if cigday is used as the smoking measure. Excluding on the

basis of changes in CO also leads to highly insignificant effects, with three being negative (the op-

posite direction of the full-sample relationship) and one positive. The estimates are imprecise due

to the small sample size, so these results are not as compelling as those using cigday, but the lack

of a clear pattern is at least somewhat reassuring. To summarize, the results in this section suggest
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Table 13: Falsification Test Results

Short Run (BMI Year 1) Long Run (BMI Year 5)
Full Quit=0 <25% <25% Full Average <25% <25%

Sample Change Change Sample Quit=0 Change Change
in Cigs. in CO in Avg. in Avg.

Cigs. CO
SI-A 0.596∗∗∗ 0.278∗∗∗ 0.091 -0.253 0.541∗∗∗ 0.210∗ 0.086 -0.368

(0.048) (0.051) (0.130) (0.365) (0.075) (0.082) (0.121) (0.342)
SI-P 0.614∗∗∗ 0.214∗∗∗ 0.049 -0.127 0.561∗∗∗ 0.252∗∗ -0.014 0.204

(0.049) (0.052) (0.127) (0.378) (0.074) (0.084) (0.118) (0.367)
N 5345 3812 1703 231 5446 2958 1379 211

See notes for Table 12.

that while the IV results using the quitting indicator are contaminated by an alternative effect, the

results using both number of cigarettes and CO levels are more reliable.

Semi-Parametric Estimation

An issue with the parametric regressions for cigday and CO is that they assume that smoking

intensity affects BMI linearly. This is a strong assumption, as it seems likely that there is ei-

ther a non-linear dose-response effect of nicotine on metabolism/appetite or a non-linear effect of

metabolism/appetite on weight-related behaviors. While it is not clear that this will bias estimates

of the average weight gain from quitting smoking, such a restrictive functional form is likely to lead

to systematically inappropriate predictions for at least some individuals. Moreover, given the com-

plicated chain of biological and behavioral pathways through which smoking influences BMI, the

nature of the non-linearity is not clear ex ante. In other words, it is not obvious that the non-linearity

could be captured through simple approaches such as logarithmic or quadratic specifications. We

therefore next estimate a semi-parametric model that allows the data to determine the functional

form of the relationship between smoking and BMI. Specifically, we implement Robinson’s (1988)

semi-parametric double residual estimator with local smoothing. This approach allows us to model

the expectation of the dependent variable at every point on the distribution of the independent vari-

able, thereby enabling the prediction of the weight gained (or lost) from switching from any level
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of smoking to any other level.44

Semi-parametric IV models can be estimated using a control function approach (Blundell and

Powell, 2004; Lee, 2007). The first stage takes the same form as equation (5). The second stage

differs from equation (4) in two ways. First, it does not specify the functional form for the smoking

measure. Second, rather than using the predicted value of the smoking variable from the first-stage

regression, the second stage includes the residual from the first stage as a regressor.45 The second

stage short-run regression can therefore be expressed as

bmii1 = β0 + β1bmii0 + f(Si) + β2Xi + β3µ̂i + εi (9)

where S is either cigday or CO and µ̂ is the first-stage residual. The second stage long-run regres-

sion is similar but replaces bmii1 with bmii5 and Si with the average smoking measures discussed

previously.

The estimation was conducted using the Stata program “semipar” by Deparsy and Verardi

(2012). The first step is to estimate E(bmi|S), E(µ|S) and E(X|S), which are approximated by

the predicted values b̂mi, µ̂, and X̂ by a kernel weighted local polynomial regression. The second

step is to form the residuals µ̂1 = bmi − b̂mi, µ̂2 = X − X̂, µ̂3 = µ − µ̂. Then the coefficients

β̂0, β̂1, β̂2, and β̂3, representing the relationships between the independent variables and BMI, are

estimated by regressing µ̂1 on µ̂2 and µ̂3. Thus, all parameters in equation (9) are identified except

the relationship between cigarette consumption and BMI. The last step is, therefore, to identify this

relationship with a non-parametric regression of cigarette consumption on the predicted BMI resid-

ual, ˆbmii1 − β̂0 − β̂1bmii0 − β̂2Xi − β̂3µ̂i. This relationship is estimated at every level of cigarette

smoking, allowing independent marginal effects. The idea behind this strategy is to estimate the

non-parametric cigarette function by the residual variation that is unrelated to the parametric inde-

pendent variables.
44For simplicity, we round smoking values to the nearest integer; e.g. if someone averaged 21.2 cigarettes per day

over the five follow-up waves we round this to 21.
45For an overview of the control function approach to dealing with endogeneity, see Heckman (1979) and Heckman

and Robb (1986).
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We calculate the average effect of quitting smoking onBMI using the semi-parametric estimates

as follows. When using the cigarettes smoked per day variable, we first calculate the change in

predicted weight from switching from the number of cigarettes smoked at baseline to zero. We then

take the average of these predicted changes across all individuals in the sample. The process for

the CO variable is similar; the only difference is that we compute the predicted effect of switching

to the average CO level for non-smokers of 3.61 ppm, as opposed to zero.

In semi-parametric estimation, the confidence interval becomes very wide at extreme values

where there are very few observations. We therefore drop the top 1% of the smoking distribution,

which means those who smoke more than 50 cigarettes per day on average across the five follow

up years and those with average CO levels of over 50 ppm. We doubt that this restriction is conse-

quential, since if we drop the same individuals in the parametric regressions the results (available

upon request) remain similar.

Figure 4: Estimated Short-Run Effect of Cigarettes Per Day on BMI from Semi-Parametric
Model
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Figure 5: Estimated Short-Run Effect of CO Level on BMI from Semi-Parametric Model
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Figures 4 and 5 present the short-run semi-parametric IV results for cigday and CO, respec-

tively. The graphs display both the point estimates for each integer level of smoking and the 95%

confidence intervals.Figure 2 shows that the short-run relationship between cigarettes smoked per

day and BMI is highly nonlinear. Specifically, smoking has a diminishing marginal effect on BMI

throughout most of the distribution, with the shape of the curve being approximately quadratic.

Quitting smoking from levels of 10, 20, 30, and 40 cigarettes per day is predicted to lead to weight

gains of 1.22, 1.58, 1.66, and 1.94 BMI units, respectively. Most of the effect of smoking on weight

therefore appears to occur at levels below 20 cigarettes per day. Taken literally, this would sug-

gest that heavy smokers could cut back to a pack a day without fear of substantial weight gain.

Figure 3 shows that the short-run effect of CO on BMI is less obviously non-linear than the effect

of cigarettes per day. The curve is somewhat flat at very low levels of CO – specifically two to

five ppm – but recall that even non-smokers often have non-zero CO so changes at such low levels

probably do not reflect changes in smoking behavior. Starting at five ppm, the graph begins to take
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a quadratic shape, but unlike the graph for cigarettes per day we do not observe a complete leveling

off until the far right tail of the distribution.

Figures 6 and 7 turn to the long-run results using simple averages of the smoking measures; the

graphs using weighted averages are very similar and are available upon request. Figure 6 shows

that the shape of the long-run relationship between cigarettes per day and BMI is roughly similar to

the shape of the short-run relationship, as it is approximately quadratic and levels off at around 20

cigarettes per day. Figure 5 displays a similar pattern of results for CO level. CO has a diminishing

marginal effect on BMI, and most of the weight gain from reduced CO comes at levels below about

20 ppm. The long-run relationship between CO and BMI therefore flattens out more quickly than

the short-run relationship.46

Figure 6: Estimated Long-Run Effect of Simple Average Cigarettes Per Day on BMI from
Semi-Parametric Model
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46Note that there is some evidence that additional CO actually leads to higher BMI at the far right tail of the dis-
tribution: CO levels of around 47-50 ppm. However, this should be interpreted with caution as it is based on a very
small number of individuals. Accordingly, the confidence intervals in this portion of the distribution are quite large.
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The average effects of quitting smoking on BMI implied by these semi-parametric graphs are

generally similar to those from the parametric specifications. Using cigarettes per day, the average

effect of quitting is 1.67 BMI units in the short run and 1.93 in the long run, compared to 1.52 and

1.91 from the corresponding parametric regressions. For CO, the average effect is 1.80 in the short

run and 1.99 in the long run, compared to the parametric regressions’ estimates of 1.33 and 1.81.

The results presented in this section suggest that the marginal effect of smoking on weight is likely

to be modest for levels of smoking above 20 cigarettes a day, which would be impossible to detect

using linear specifications.

Figure 7: Estimated Long-Run Effect of Simple Average CO on BMI from Semi-Parametric
Model
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Subsample Analyses

We next conduct subsample analyses to evaluate whether the effect of smoking on BMI differs by

age, gender, education, or baseline BMI. Heterogeneous effects could occur because of differences

in either the biological effects of nicotine on appetite or metabolism or the behavioral responses to

these biological effects. Given the complicated nature of these relationships, we make no ex ante

predictions about the patterns of heterogeneity. For age, we split the sample into three groups: those

under 45, 45-54, and 55 and over at baseline. We use these splits because there are no individuals

under 35 or over 64 in the LHS. For education, we consider subsamples of those with no college

education, some college, and a four-year college degree or greater. There are not enough individuals

with less than a high school degree or greater than a college degree to enable further stratification.

For baseline BMI, we are interested in whether quitting smoking leads to larger weight gains among

those who were already at risk of weight-related ailments prior to the intervention. We therefore

split the sample into those with healthy weights at baseline (BMI<25) and those who were already

overweight or obese (BMI≥25).

Table 14 displays the results for cigarettes per day (Panel A) and CO (Panel B). For brevity,

Table 14 contains only the results from long-run parametric IV regressions using simple averages

of the smoking measures. Semi-parametric graphs for each subsample are available in Appendix

Tables A1-A4. Short-run estimates and those using weighted rather than simple averages lead to

broadly similar conclusions and are available upon request.

The results suggest that the effect of smoking on weight is strongest for younger individuals,

women, those without a college degree, and those with healthy baseline BMIs. Quitting smoking

leads to an average weight gain of 2.19-2.21 BMI units for those under 45, 1.88-1.98 for 45-54 year

olds, and 1.33-1.45 for those 55 and older. One possible explanation is that the health consequences

from obesity become more salient with age, so older individuals may have a stronger incentive than

others to mitigate weight gain after smoking cessation. Again averaging over the four specifica-

tions, the average effect of quitting smoking on BMI is 2.04-2.45 units for women compared to

1.56-1.59 for men. Stratifying by education, the average effects of smoking cessation are around
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1.83-1.98 for those with no college education, 1.82-1.93 for those with some college but no degree,

and 1.64-1.73 for those with a college degree. There is therefore some evidence of a small reduc-

tion in the effect of smoking on weight as education rises, with the largest gap being between those

without a college degree and those with a degree. Perhaps education enables individuals to limit

weight gain through an improved understanding of nutrition and exercise. Alternatively, education

is correlated with income, and additional income may enable the purchase of healthier foods, gym

memberships, or over-the-counter products that can help counteract weight gain. Finally, the av-

erage weight gain from quitting smoking is 1.98-2.05 BMI units for people with healthy baseline

BMI levels compared to 1.7-1.82 for those who started the study overweight or obese. This result

suggests that individuals who are at higher risk of health consequences from weight gain take more

steps than others to limit the amount of weight gained after smoking cessation.

In all, though, perhaps the most striking results from Tables 14-15 is that, while some het-

erogeneity appears to exist, the overall amount of heterogeneity is relatively small. Negative and

highly significant effects of smoking on weight are evident for all subsamples. The smallest av-

erage effect of quitting smoking on BMI from any specification (55 and over, parametric, CO) is

a still sizable 1.33. The lack of substantial heterogeneity in the effect within the sample provides

perhaps some assurances that the results are generalizable outside the sample. The next section

evaluates the generalizability issue in more detail.

External Validity

We next perform some checks related to external validity. One obvious concern about the gener-

alizability of the results is that the LHS was conducted in the early 1990s, raising the question of

the relevance for current policy debates. (With that said, many of the frequently cited associational

estimates are from studies using data that are as old or older.) Another concern related to generaliz-

ability is that the LHS’ participants are not a random sample of smokers: participants had to desire

to quit smoking, have mild (but not major) lung function impairment, and live within reasonable

proximity of the locations for follow-up visits. As discussed in the Data section, the end result was
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Table 14: Subsample Results for Age and Gender

(IV with Year 5 BMI Only)
Age Gender

<45 45 to 54 ≥55 Women Men
Average Cigarettes -0.074∗∗∗ -0.066∗∗∗ -0.052∗∗∗ -0.091∗∗∗ -0.051∗∗∗

(0.014) (0.010) (0.015) (0.015) (0.008)
[2.21] [1.98] [1.45] [2.45] [1.56]

N 1514 2275 1177 1894 3072

Average CO -0.093∗∗∗ -0.083∗∗∗ -0.069∗∗∗ -0.101∗∗∗ -0.069∗∗∗
(0.021) (0.015) (0.021) (0.020) (0.012)
[2.19] [1.88] [1.33] [2.04] [1.59]

N 1374 2065 1078 1714 2803
See notes from Table 12.

a sample that was almost exclusively white (97%) and exclusively middle-aged (starting age 35-59,

ending age 40-64).

We attempt to at least somewhat alleviate these concerns by conducting additional analyses with

the National Health Interview Survey (NHIS), a large nationally representative survey conducted

annually by the Centers for Disease Control and Prevention. The NHIS contains self-reported data

on smoking, weight, and height, along with the same control variables used in our LHS analyses

(except for baseline BMI, since the NHIS is not a panel). We use the NHIS to see if the association

between cigarettes smoked per day and BMI varies along the dimensions of the generalizability

issues: time period, race, and age. Obviously a causal analysis is not possible with the NHIS, but

verifying that the association between smoking and weight is not particularly unique among the

LHS population should provide at least some assurance that the causal effect is not likely to be

unique either. We first estimate the association among the NHIS’ best available analog to the LHS

sample: white 35-64 year olds in 1990-1994 (the years of the five LHS follow-up waves). We

then evaluate whether this association has changed over time by estimating the same model among

35-64 year old whites in the five most recent NHIS waves currently available: 2009-2013. Next,

we examine the issue of lack of representativeness by race by returning to the 1990-1994 NHIS

waves and restricting the sample to 35-64 year old non-whites. Finally, we estimate the model for
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Table 15: Subsample Results for Education and Baseline BMI

(IV with Year 5 BMI Only)
Education Baseline BMI

No Some College < 25 ≥ 25
College College Graduate

Average Cigarettes -0.068∗∗∗ -0.065∗∗∗ -0.059∗∗∗ -0.072∗∗∗ -0.061∗∗∗
(0.011) (0.014) (0.013) (0.010) (0.011)
[1.98] [1.93] [1.73] [2.05] [1.82]

N 2082 1722 1162 2369 2597

Average CO -0.088∗∗∗ -0.080∗∗∗ -0.071∗∗∗ -0.090∗∗∗ -0.077∗∗∗
(0.016) (0.021) [0.019] (0.014) (0.016)
[1.83] [1.82] [1.64] [1.98] [1.70]

N 1895 1555 1067 2161 2356
See notes from Table 12.

whites of an age outside of the 35-64 range (i.e. 18-34 year olds combined with those 65+) in order

to evaluate the implications of the lack of representativeness by age.47

Table 16 reports the results. The first column shows that, in the sample most comparable to the

LHS, each additional cigarette smoked per day is associated with a reduction in BMI of 0.038 units.

This implies an average weight gain from quitting smoking of 0.8 BMI units. The second column

shows that the association between cigarettes smoked per day and BMI is stronger in the 2009-2013

sample than the 1990-1994 sample (-0.061 compared to -0.038), but the average effects of quitting

smoking are nonetheless fairly similar (0.91 BMI units compared to 0.8) which is similar to the

short-run OLS estimate from the LHS. This is because the average number of cigarettes smoked

among smokers has dropped over the past two decades. In other words, β2 may have grown over

time but cigday has shrunk for the average smoker, leaving
(

N∑
i=1

β2cigdayi0

)
/N roughly constant.

Next, the third column provides evidence that the association between smoking and BMI for non-

whites is stronger than for whites, but the implied average effects of quitting smoking are similar.

Again, this is because on average non-white smokers consume fewer cigarettes than white smokers.
47The associations of the control variables with BMI are very different for the 18-34 year old age group and the 65+

age group. Therefore, in the regression combining 18-34 year olds with those 65 and older, we include as additional
covariates the interactions of each control with an indicator for whether the individual is in the 18-34 portion of the
sample or the 65+ portion.
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Table 16: Comparison of Associations Between Smoking and BMI in Different NHIS
Samples

(OLS Results Only)
1990-1994 2009-2013 1990-1994 1990-1994
White White Non-White White

Age 35-64 Age 35-64 Age 35-64 Age Not
35-64

Cigarettes -0.038∗∗∗ -0.061∗∗∗ -0.059∗∗∗ -0.040∗∗∗
(0.002) (0.0 05) (0.007) (0.002)
[0.80] [0.91] [0.79] [0.68]

N 51253 53136 10114 60424
Notes: The controls for education, gender, marital status, and age are
included in all regressions. NHIS sampling weights are used. See other
notes from Table 12.

The final column shows that the association between smoking and BMI among those who are not

between the ages of 35 and 64 is virtually identical to the association among those who are in

this age range. The average effect of quitting smoking is, however, slightly smaller among the

non-35-to-64 sample due to a lower number of cigarettes smoked among smokers.

In sum, though there is likely some heterogeneity across age, race, and time, these results pro-

vide at least some assurance that the lack of representativeness of the LHS is not driving our con-

clusions. Smoking is inversely associated with weight in all NHIS subsamples. The associations

between cigarettes smoked per day and BMI all fall within a reasonably tight range of -0.038 to

-0.061. The implied average effects of quitting smoking are all between 0.68 and 0.91 BMI units,

which equate to 4.3 to 5.7 pounds. These magnitudes are within the range found in the associational

literature and are well below the estimates from our LHS IV specifications. This underscores the

importance of accounting for endogeneity when evaluating the relationship between smoking and

weight.

Reconciling Our Results with Prior Literature

We close our empirical analysis by reconciling our results with those of EQ, who used previously

published LHS summary statistics from O’Hara et al. (1998) to estimate a very large 21.4 lb av-
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erage weight gain from smoking cessation. We first replicate EQ’s results and then show that our

finding of a considerably smaller effect can be attributed to our use of more comprehensive smoking

measures.

We replicate EQ by computing a Wald IV estimate of the form

β̂WALD =
bmi1 − bmi0

quit1 − quit0
(10)

where subscript one indicates the treatment group (combination of the SI-A and SI-P groups) and

zero the control group (UC). bmi1 and bmi0 are average BMIs among the treatment and control

groups, respectively, at the end of the study period (year 5). quit represents EQ’s measure of

quitting smoking, called “sustained quitting,” which is a dummy variable equal to one if and only

if the individual was a medically verified non-smoker in all five follow-up waves. This is a very

stringent measure, as anyonewho smokes any amount in any of the five follow-up years is classified

as a non-quitter.

The validity of the Wald estimator hinges on the assumption that the intervention only affected

the weight of individuals for whom quit = 1. To the extent that the intervention also affected the

weight of any other individuals (i.e. those with quit = 0), the denominator will effectively be too

small. The observed difference in average weight between the treatment and control groups will

therefore be scaled by too small a number, and the estimated effect of quitting smoking on weight

will consequently be overstated. We suspect that the Wald estimator’s identifying assumption

is violated since there are two types of individuals categorized by EQ as having quit = 0 whose

smoking behavior (and therefore weight) likely responded to the intervention to at least some extent.

The first type consists of those who quit smoking for part but not all of the 5-year follow-

up period. If, for instance, someone quit smoking for the first two years, relapsed in year three,

and then quit again for years four and five, this person is not classified as a quitter by EQ, but it

seems likely that they would have gained almost as much weight as someone who quit for all five

years. There are 1114 people in the treatment group who quit smoking in at least one follow up
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wave but were not sustained quitters. Therefore, not accounting for this group has the potential to

substantially impact the results.

The second type consists of those who reduced smoking but did not quit entirely. Given the

highly addictive nature of cigarettes, it seems likely that there are at least some people who were

able to cut back on their cigarette intake as a result of the intervention but were unable to quit

completely. Indeed, among those in the treatment group who never quit in any of the five follow-

up waves, average cigarettes smoked per day still fell from 31 to 22. There is no reason to suspect

that the biological pathways through which smoking affects weight occur only along the extensive

margin of smoking, so people who cut back on smoking would likely experience at least some

amount of weight gain. Additionally, some people may also be a blend of the two types; e.g.

someone who responds to the intervention by gradually cutting back on smoking until successfully

quitting at the end of the third year.

After replicating EQ’s results using the “sustained quitting” variable, we then re-compute the

Wald estimate using our more nuanced long-run smoking measures discussed earlier in Section

3.1.2. Our “average quitter” measure addresses the issue of people who quit in some but not all

follow-up years. The average cigarettes per day and average CO variables also address the issue of

cutting back but not quitting entirely.

Table 17 reports the results. The first column shows that, replicating EQ’s Wald estimator,

we obtain an average estimated weight gain from quitting smoking of 3.196 BMI units, or 20.13

lbs at the average height. This is very similar to the result obtained by EQ, differing slightly be-

cause EQ used weight as the dependent variable rather than BMI. (We are unable to directly use

weight because the LHS microdata suppress height and weight and only provide BMI.) The second

column shows that using simple average quitter rather than sustained quitter reduces the average

estimated weight gain from quitting smoking by about 17% to 2.655 BMI units. In the last two

columns, we see that using the simple averages of cigarettes per day and CO attenuates this mag-

nitude even further, to 1.84 and 1.58 BMI units, respectively. Ultimately, then, accounting for

both temporary/delayed quitting and smoking intensity reduces the estimated average weight gain
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Table 17: Reconciling Our Results with those of EQ

(IV with Year 5 BMI Only)
Sustained Average Average Average
Quit (EQ) Quit Cigarettes CO

Smoking Variable 3.196∗∗∗ 2.655∗∗∗ -0.063∗∗∗ -0.072∗∗∗
(0.736) (0.605) (0.015) (0.021)

[1.84] [1.58]
N 5446 5446 4966 4517

Notes: No control variables are included. See other notes for Table 12.

from smoking cessation by 42%-51% relative to using the naive sustained quitter measure. Since

the Wald estimates using our preferred smoking measures from Table 17 are quite similar to those

from our preferred long-run specifications in Table 12, we conclude that the difference between our

results and those of EQ is due to the different smoking measures rather than our use of a covariate-

adjusted regression model in Table 12. This is not surprising given the randomized design. Note,

however, that the standard errors are lower in Table 12, so including covariates is still beneficial in

that it improves the precision of the estimates.

Conclusion

This paper aimed to provide the most credible answers to date to several questions related to the

relationship between smoking and weight. First, what is the average short-run causal effect of quit-

ting smoking on body weight? Our preferred estimates suggest that this effect is around 1.5-1.7

BMI units, or 10-11 pounds at the average height. Second, does the weight gain from quitting

smoking disappear over time? The answer appears to be no, as the weight gain actually becomes

slightly larger in the long run. The long-run effect is around 11-12 pounds, which implies that the

fall in smoking explains about 14% of the rise in obesity in recent decades. Third, how does the

impact of smoking on weight vary across the smoking distribution? We find evidence of a dimin-

ishing marginal effect, with additional smoking having little long-run impact beyond about a pack

of cigarettes per day or a CO level of 20 ppm. Finally, how does the effect of smoking on weight

vary by age, gender, education, and baseline BMI? Our results suggest that, while quitting smoking
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leads to sizeable weight gain for all subsamples, the impacts are largest for younger individuals,

females, those with no college degree, and those with healthy baseline BMI levels.

Our estimated average effects of quitting smoking on weight fall within the range of estimates

from the associational public health literature, albiet toward the high end of the range. It is clear,

though, that our estimates are markedly smaller than those of EQ despite the fact that they utilized

the same randomized intervention. The fact that our results are closer to the associational esti-

mates than to those of EQ illustrates a broader methodological point about the dangers of using IV

estimation uncritically even when the instrument is randomized or as-good-as-randomized. The

randomization merely ensures the validity of the estimated reduced-form relationship between the

instrument and outcome. Obtaining a reliable second-stage estimate requires the assumption that

the endogenous variable is the only pathway through which the randomized instrument affects the

outcome. This can be a difficult assumption to satisfy. As our paper shows, even if conceptually

there is only one pathway through which the intervention can plausibly impact the outcome, careful

measurement of that pathway is critical.

Our results also have interesting implications for the economics literature on tobacco control

policies. As discussed in the introduction, the literature on the effect of cigarette costs (prices or

taxes) on BMI reaches conflicting conclusions, with several studies suggesting the effect is either

very small or negative – implying that quitting or reducing smoking actually leads to weight loss.

Is it possible that the causal effect of an aggressive smoking cessation program is to increase BMI

while the casual effect of higher cigarette costs is either zero or negative? This seems conceivable

for two reasons.

First, the LATE from a price-induced reduction in smoking may differ from the LATEs from

smoking ban-induced or aggressive smoking cessation program-induced reductions in smoking.

Different smokers could be affected by these different types of interventions; for instance, it seems

reasonable to think marginal smokers would be the ones to respond to cigarette price increases

whereas those with strong addictions would be the ones to volunteer for a comprehensive program.

Perhaps those with strong addictions are relatively more likely to “quit at all costs”, even if it means
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gaining a substantial amount of weight.

Second, perhaps cigarette prices/taxes affect BMI through pathways besides smoking behavior.

In other words, people who quit smoking in response to higher cigarette prices may gain weight,

but this could be counteracted by weight losses among those whose cigarette consumption is un-

changed – a large share of the population given the price inelasticity of cigarettes (Chalopuka and

Warner, 2000). Smokers who do not reduce their consumption when prices rise experience poten-

tially sizeable negative income effects, which could lead to weight loss by reducing overall food

consumption or frequency of eating out at restaurants. Moreover, cigarette taxes generate rev-

enue for the state, which can be used to provide funding for nutrition education or health-related

programs such as Medicaid. These, in turn, could reduce the BMIs of even non-smokers.

To close, we should emphasize that our results should not be interpreted as suggesting that

individuals should be reluctant to quit smoking out of fear of gaining weight. The large body of

epidemiologic evidence that smoking is bad for health implies that any increase in obesity-related

ailments after quitting smoking is far outweighed by the health improvements along other dimen-

sions. Instead, our findings should be interpreted as a call for further investigation into medical

and policy interventions that can limit the weight gain from smoking cessation. If this side effect

of an otherwise healthy decision could be eliminated, it stands to reason that the health gains from

tobacco control efforts would become even greater.

To that end, Farley et al. (2012) provide a review of the literature on the effectiveness of various

interventions in limiting the weight gain after quitting smoking. Some evidence suggests that the

drugs dexfenfluramine, phenylpropanolamine, naltrexone, bupropion, and fluoxetine can reduce

weight gain in the short run, though there is insufficient evidence to draw clear conclusions about

whether the effects persist after the drugs are discontinued. Weight management education alone

does not seem to reduce weight gain and might actually hinder efforts to quit smoking, whereas

weight management education combined with personalized support appears more successful. For

all types of interventions reviewed by Farley et al. (2012), their ability to draw clear conclusions

was hindered by a lack of available research and small sample sizes in the studies that do exist.
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Much more research is needed regarding which interventions can help limit weight gain following

smoking cessation as well as how best to incentivize (e.g. more generous insurance coverage)

interventions that prove effective.

III Misreporting Smoking Status and Consequences for Self-

Reported Survey Data

Introduction

Smoking has been the number one cause of preventable death in the last 60 years. Today, the es-

timated cost of smoking totals 300 billion dollars per year in the US alone (2014 Surgeon General

Report). As a result, federal and state governments invest large amounts of resources to decrease

smoking participation. Over the past 50 years, smoking participation among U.S. adults has de-

creased by more than half, from around 40% in the mid-1960s to 20% by 2015 (CDC 2014).

Scientists and policymakers are interested in understanding how public policies contributed to

the decline in smoking. A large body of literature suggests that policies, such as cigarette tax in-

crease and the introduction of smoke free zones, contributed substantially to the decline in smoking

(Carpenter et al. 2008, DeCicca et al. 2008, Levy et al. 2003, Evans 1999,). However, most of the

studies utilize self-reported smoking information. Self-reported smoking information can be mis-

reported and therefore may lead to biased estimates. Overall, not much is known about the level of

misreporting and who misreports smoking status.

This paper analyzes misreporting in smoking status among adults. We utilize data from the

Lung Health Study (LHS), a randomized smoking cessation study that includes self-reported and

objectively verified smoking information. The data allows us to generate a binary misreport-

ing variable capturing discrepancies between the self-reported and objectively verified smoking

variables.48 In our initial methodological approach we take the clinical smoking measure as the
48Objectively verified smoking status is estimated based on Cotinine saliva and Carbon Monoxide (CO) tests during

the hospital visit.
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gold-standard. First, we address whether misreporting is a pure mechanical result of strict Carbon

Monoxide (CO) and Cotinine cutoff levels, where clinicians classify participants either as smokers

or non-smokers.49 Second, we evaluate whether misreporting differs by treatment group. In other

words, do participants who receive treatment misreport at different levels than those in the con-

trol group. Third, we regress our misreporting variable on demographic characteristics including

household smoking attributes. We also perform sub-sample analyses by treatment group.

In our second methodological approach we take an agnostic view on whether the objective

smoking measure should be preferred to the self-reported measure. We use objectively verified

BMI, CO and Cotinine data to inform whether a person is in reality a “true” smoker. We esti-

mate a Bayesian mixture model which relaxes the assumption that observations are drawn from

one distribution, but rather two underlying distribution. We believe that the LHS is a well suited

dataset for this exercise for several reasons. First, the LHS consists of a sample of heavy smokers

at the beginning of the trial. Second, upon receiving the very effective smoking cessation treat-

ment, many participants quit smoking, leading to significant weight gain and reduction in CO and

Cotinine levels in a short amount of time (Courtemanche et al. 2016). Thus, our post-treatment

data comprises a mixture of smokers and non-smokers, where on average, quitting smoking leads

to a significant increase in BMI, and reduction in CO and Cotinine levels relative to continuous

smokers. As a result, we infer whether participants who misreport smoking status belong to the

higher BMI distribution, and lower CO and lower Cotinine distributions. We also estimate whether

misreporters are more likely to be part of the non-smoking distribution of changes in BMI, CO, and

Cotinine levels relative to pre-treatment levels.

We believe that this paper contributes significantly to the economics literature. Currently there

is limited andmixed evidence onwhether smokersmisreport. As a result, papers analyzing smoking

behavior rarely discuss the problem of applyingmisreported smoking data. Most research uses self-

reported information to identify causal effects in topics such as the relationship between cigarette

taxes and smoking participation (Tauras 2006, Chaloupka et al. 2000). This could potentially be a
49CO is measured in parts-per-million (ppm) of exhaled air using either theMiniCO (Catalyst Research) or the EC50

(Vitalograph). Cotinine is measured from a saliva sample taken during the meeting
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problem since self-reported smoking status can be misreported between 3% to 70% (Brachet 2008,

Webb et al. 2003, Boyd et al. 1998). Similarly, Bound (1991) discusses that many self-reported

survey responses may be misreported in the same survey. Therefore, any analysis comparing sev-

eral self-reported variables applies mismeasured independent and dependent variables. As a result,

conclusions from such data can be biased.50

Misreporting levels in smoking participation are less understood. In contrast to self-reported

public program participation which can be matched with administrative data, smoking information

can normally not be matched with administrative smoking information. There are several reasons

for missing administrative smoking information. First, governments have public program partici-

pation information, as they need to know who they are paying benefits to, but collecting informa-

tion on “correct” smoking participation requires tax resources without any tangible benefits to the

government. Second, surveys collecting self-reported information are much more cost effective

in accumulating information for a large sample of the population. As a result, self-reported and

clinically verified smoking information are most commonly available in Randomized Controlled

Trials (RCT).

Our descriptive analysis reveals that the number of treatment group participants misreporting

smoking status is twice as large as in the control group. We speculate that a treatment group par-

ticipant’s knowledge of receiving treatment and the intended treatment goal may explain at least

a portion of the higher misreporting level in the treatment group. Second, our results show that

participants misreport across the CO and Cotinine level distributions, implying that clinicians take

into account additional information beyond CO and Cotinine levels to make decisions regarding

smoking status.

Our regression results show that being male, married and of older age significantly increases the
50There is also a large literature analyzing the level of misreporting in social welfare programs such the Supplemental

Nutrition Assistance Program (SNAP) andMedicaid by matching self-reported survey information, such as the Current
Population Survey (CPS), with administrative data. Several papers show that misreporting, in this case under-reporting,
in SNAP participation can reach over 30% (Meyer et al. 2009). Additionally, The recognition of large levels of
misreporting lead to the development of new estimation strategies to recover unbiased coefficients under the presence
of misreporting (Kreider et al. (2012), Almada et al. 2015, Lewbel 2007, Nguimkeu et al. 2016).
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probability of misreporting, while having a higher BMI51 and consuming nicotine gum decreases

the probability of misreporting. For example, being male or married increases the probability of

misreporting by 10 percentage points. Our regression sub-sample analyses by smoking cessation

group present heterogeneous effects. We only find a significant relationship between misreport-

ing, gender, marital status, nicotine gum use and BMI for those participants randomized into the

smoking cessation treatment group.

Our secondmethodological approach reveals two distinct distributions separating smokers from

non-smokers across outcome measure. For example, utilizing the change in BMI from baseline to

year 5 as the dependent variable, we find that the first distribution has an average of 0.21 BMI

units and the second distribution has an average of 1.56 BMI units, where smokers are much more

likely to be part of the first, small change in BMI, distribution (84%) and non-smokers are much

more likely to be part of the second higher BMI distribution (97%). Our analysis comparing the

distribution probabilities for those participants who were objectively classified as smokers, but

self-reported to be non-smokers, shows a 77% average probability of belonging to the high, large

change in BMI, distribution . As a result, even though they are objectively classified as smokers, the

participants are much more likely to be part of the higher BMI distribution. We rely on descriptive

statistics and the mixture model results to calculate that at least 29% of misreporters may be in fact

falsely classified as smokers.

The rest of the paper is organized as follows. Section 2 discusses the literature on misreporting

with an emphasis on under-reporting of program participation. Section 3 discusses the data. Sec-

tions 4-5 present the parametric and non-parametric estimation strategies and present the results.

Section 6 concludes.
51Body Mass Index (BMI) is equal to weight in kg divided by height squared in centimeters. Revealing a measure

if someone’s weight is considered underweight, normal, overweight, or obese.
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Literature Review

There is a large empirical literature estimating misreporting levels in public program participation

and a smaller literature on smoking misreporting levels. Similarly, a growing literature proposes

methodology to recover unbiased estimates for misreported data. We discuss all of these aspects

with an emphasis on under-reporting also referred to as false negatives.

Many studies report that people misreport public program participation. The seminal study by

Meyer, Mok and Sullivan (2009) compares ten transfer programs in five different surveys.52 They

compare weighted self-reported survey data to records of administrative aggregates and find that

overall under-reporting is significant and has been increasing over time. It is particularly severe

for the workers compensation and the AFDC/TANF program where under-reporting reaches 50%

in surveys such as the PSID and CPS. Similarly, under-reporting for the food stamp program is

close to 40% in the PSID and SIPP. Other studies, such as Meyer & Goerge (2011) and Marquis &

Moore (1990 & 2010), find similar levels of under-reporting. Additionally, Bollinger and David

(1997) find that participation in food stamp programs is a particularly prone to being misreported

because of the social “stigma” associated with its program participation.

Under-reporting is not only confined to public program participation. Bound (1991) discusses

that self-reported survey responses may be misreported across the board. One explanation for

that can be that people misreport to mimic socially desirable behavior (Ansolabehere and Hersh

2012). Similarly, Card’s (1996) study finds significant under-reporting in union coverage as well.

Ezzati et al. (2006) show that women under-report their weight and middle aged men over-report

their height. Even in situations where socially desirable behavior might not be identifiable, under-

reporting is still large. Wolf (2004) takes advantage of GPS data and shows that people under-report
52The programs they look at are Unemployment Insurance (UI), Workers’ Compensation (WC), Social Security

Retirement and Survivors Insurance (OASI) and Social Security Disability Insurance (SSDI), Supplemental Security
Income (SSI), the Food Stamp Program (FSP), the Earned Income Tax Credit (EITC), Aid to Families with Dependent
Children/Temporary Assistance for Needy Families (AFDC/TANF), the Special Supplemental Nutrition Program for
Women, Infants and Children (WIC) program and the National School Lunch Program (NSLP). The surveys are the
Current Population Survey – Annual Demographic File/Annual Social and Economic Supplement (CPS), the Survey
of Income and Program Participation (SIPP), the Panel Study of Income Dynamics (PSID), the American Community
Survey (ACS), and the Consumer Expenditure Interview Survey (CE Survey).
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the number of trips taken by car by 11% to 81%.

Less is known regarding the level of under-reporting of smoking behavior in the population.

Studying the level of misreporting relies on a comparison between self-reported and clinical smok-

ing information, such as carbon monoxide or cotinine levels, nicotine’s main metabolite. However,

even if an objective measure is available, a clinician has to make a judgment call by defining coti-

nine and carbon monoxide thresholds after which a person is classified as a smoker. As a result, the

evidence on the level of misreporting is mixed. Evidence from samples of pregnant women show

that under-reporting reaches 35% while over-reporting reaches 10% (Brittonet al. 2004). Simi-

larly, Boyd et al.(1998) & Bardy et al.(1993) report smoking under- and over-reporting in a sample

of pregnant women and neonatal mothers between 26-38% and 3-14%, respectively. One possible

explanation for under- and over-reporting may lie in the unequal thresholds that define a smoker

relative to a non-smoker. Nevertheless, it is surprising that all samples observe over-reporting in

smoking status, because we find no evidence in our sample. It could be explained by the demogra-

phy of the sample. Another explanation for over-reporting may be that pregnant women only quit

smoking during pregnancy, and therefore still classify themselves as smokers.

A separate growing literature produces methodological work to recover unbiased estimators

in the presence of misreporting (Aigner 1973, Bollinger & David 1997, Hausman et al. 1998,

Brachet 2008). Mahajan (2006) and Hu & Schennach (2008) formalize a model for a mismeasured

binary independent variable and show that under certain assumptions correct marginal effects can

be obtained. Hug (2010) proposes a solution to misreporting with linear and non-linear estimation

techniques. McCarthy and Tchernis (2011) apply Bayesian methods to estimate consistent and

unbiased coefficients under misreported program participation. Lewbel (2007) as well as Mahajan

(2006) rely on an instrumental variable approach without the typical conditional independence

assumptions. Brachet (2008) proposes a two-stage estimator, similar to a two-part model, where

treatment effects are estimated in the second stage. Berg and Lien (2006) introduce a model that can

handle misreporting and non-response simultaneously. Lastly, Kreider et al. (2012) followManski

(1995) & Pepper (2000) to identify an average treatment effect bound rather than the parameter.
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Our paper contributes to both literatures.

Data

We use data from the the LHS, a randomized smoking cessation trial, to observe changes in the

severity of chronic obstructive pulmonary disease (COPD). The study recruited 5887 smokers with

initial ages between 35 and 59 at 10 clinical centers in the US and Canada. Recruitment lasted from

1986 to 1989 and the clinical trial ended in 1994. Participants were interviewed annually at a clinic

near their residence. The data includes the baseline year (1989) and the five annual follow-up years

(1990-94).53 Eligible smokers had to show signs of mild lung function impairment, have no history

of certain medications, consume less than 25 drinks per week, have a BMI under 40, and have no

severe illnesses or chronic medical conditions.

Participants were randomly assigned into treatment and control groups, with an additional ran-

domization arm within the treatment group to receive either a bronchodilator with medical benefits

(SI-A) or a placebo inhaler (SI-P) with no medical benefits. Both treatment groups received a

special intervention (SI) focusing on a behavior intervention consisting of a physician message,

interventionist meetings, an intensive quit week, and frequent contact with support personnel with

invitations to bring a spouse or a relative to the meetings. Additionally, both treatment groups re-

ceived free nicotine gum. Most of the intensive intervention treatments were completed within the

first 4 months of the study. The control group, or usual care (UC) group, received no intervention

and group members were referred to their own private sources for medical care.

We take advantage of information on BMI, Carbon Monoxide levels, Cotinine levels, smoking

behavior, family smoking habits, and demographic characteristics. BMI was calculated from mea-

sured weight and height by medical staff at the participants’ clinic visits. Information on smoking

behavior includes self-reported smoking status as well as self-reported average cigarette consump-

tion per day. The data also includes a binary indicator measuring the objective smoking status

measured by a clinician who has access to information on CO and Cotinine levels taken from par-
53Attrition was low, only 5% of participants did not interview in the final follow-up
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ticipants at each of the annual follow-up visits.54 We also utilize variables measuring self-reported

smoking participation in the household. Specifically, we have binary variables identifying if the

spouse smokes, if the child smokes, if anyone else smokes, and a continuous variable measuring

the number of smokers living with the participant. Lastly, we use information on education level,

gender, age, and marital status.

We utilize self-reported and objectively verified smoking variables to generate a measure of

a misreporting, a dummy variable quantifying whether the self-reported and objective smoking

information present conflicting evidence after the first annual follow-up visit. For example, the

misreporting variable equals one if participants report being a non-smoker while the objectively

verified measure suggests that the participant is a smoker and vice versa. The data show a clear sign

of under-reporting in smoking status (false negative) with no-one over-reporting smoking status.

In other words, some smokers report being a non-smoker while the objective measure suggests

otherwise.

Table 18 presents descriptive statistics for the treatment and control groups at the time of ran-

domization. Across all groups the variables are balanced, suggesting that randomization was suc-

cessful. The sample represents heavy smokers, consuming about 30 cigarettes per day and about

40% of participants had someone smoking in the household. This is expected because approxi-

mately 65% of participants were married and heavy smokers are more likely to have a spouse who

is also a smoker. The sample is on average more highly educated, 13.57 of completed years of edu-

cation, than the general population of the early 90s. Additionally, the average age is 48, indicating

that we are most likely looking at heavy smokers that have been smoking for many years.

Table 19 presents descriptive statistics for the self-reported, the objective verified smoking

status, and the dependent variable measuring if those two aforementioned variables present con-

flicting results. In total 316 individuals are classified as misreporters, meaning that they self-report

that they do not smoke while the objective measure suggests that they are smoking. About 7% in

the treatment groups misreport smoking status and only 3% in the control group misreport smoking
54Again, CO is measured in parts per million (ppm) and Cotinine is measured in nanograms per milliliter (ng/mL)
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Table 18: Summary Statistics by Treatment Group
Assignment at Randomization Meeting

Variable SI-A SI-P UC
Cigarettes per Day 29.59 29.49 29.53

(14.08) (13.60) (14.11)
Cotinine Level 367.07 369.42 363.11

(203.76) (200.04) (204.82)
Carbon Monoxide 25.97 26.69 28.98

(13.48) (12.67) (12.67)
BMI 25.42 25.67 25.55

(3.91) (3.92) (3.92)
Smoker in HH 0.39 0.40 0.39

(0.49) (0.49) (0.49)
HH Spouse Smokes 0.27 0.29 0.27

(0.45) (0.45) (0.44)
HH Child Smokes 0.13 0.11 0.12

(0.34) (0.31) (0.32)
HH Other Smokes 0.06 0.05 0.06

(0.24) (0.23) (0.23)
Education Level 13.57 13.56 13.68

(2.84) (2.84) (2.79)
Male 0.60 0.64 0.64

(0.49) (0.48) (0.48)
Married 0.65 0.67 0.65

(0.47) (0.47) (0.47)
Age 48.41 48.55 48.43

(6.84) (6.83) (6.80)
Observations 1961 1962 1964
Notes: Standard Deviations in Parentheses. SI-A and
SI-P are the treatment arms and UC is the control.
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status. The analysis by group assignment suggests that misreporting is related to treatment status.

The difference in misreporting levels by treatment group may also reflect differences in observable

characteristics among misreporters. For example, heavy smokers in the treatment group may be

more likely to misreport smoking status than those in the control group.

Table 19: Summary Statistics at First Follow-Up Visit

Variable SI-A SI-P UC
Self-reported Smoking Status 0.56 0.57 0.88

(0.50) (0.50) (0.33)
Objectively verified Smoking Status 0.63 0.65 0.91

(0.48) (0.48) (0.29)
Mismeasured Smoking Status 0.07 0.07 0.03

(0.26) (0.25) (0.16)
Observations 1867 1866 1865
Notes: Standard Deviations in Parentheses. SI-A and SI-P are the
treatment arms and UC is the control.

There are concerns that the CO and Cotinine measures only represent short-term measures of

smoking status or possible exposure to second hand smoke. CO has a half-life of about 5 hours

while Cotinine has a half-life of about 7 days (Jo & Oh 2003). Therefore Cotinine levels should

reveal more accurate long-term smoking patterns. To this end, a typical approach in the literature

is to classify smokers as having a CO and Cotinine levels above 10ppm and 10 ng/mL, respec-

tively (Carey & Abrams 1988). The Lung Health Study utilized thresholds of 10 ppm for CO and

20ng/mL for Cotinine (Murray et al. 1993). However, it is possible to have smokers with lower

concentrations, and e non-smokers with above threshold concentrations.55 A typical non-smoker

has a CO level below 4ppm (Deveci et al. 2004), but can have Cotinine levels of up to 30mg/ml

(Laugesen et al. 2009). Moreover, having non-smokers consume nicotine gum can also lead to

high levels of saliva Cotinine (Gross et al. 1995). Therefore, it is not easy to clearly separate

non-smokers from smokers considering that many factors affect CO and Cotinine levels.

We begin by comparing CO and Cotinine levels among objectively classified smokers, non-

smokers, and misreporters at the first annual follow-up visit, because this is the first time we can
55For more information see http://www.healthnz.co.nz/CObreath.htm
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generate our misreporting measure. Figure 8 includes three graphs that includes reference lines for

the 10 ppm and 10ng/ml threshold limits for CO and Cotinine levels, respectively. The top left

graph shows that many smokers tend to have high CO and Cotinine levels, but there are also a few

smokers with CO and Cotinine levels below the thresholds of 10. Moreover, among non-smokers

(top right graph) we find very few participants with CO levels above 10 ppm, but a relatively

uniform distribution of Cotinine levels. The distribution of CO and Cotinine levels among mis-

reporters mimics more closely the distribution of smokers, however, there are many misreporters

with CO levels below the typical 10 ppm threshold. Overall, Figure 8 suggests that CO seems to

be an important clinician measure whether somebody is classified as a smokers or not. Moreover,

the graphical evidence suggests that there are many misperoters with CO levels below the thresh-

old that classifies them as smokers. Next we discuss our empirical strategy to identify whether

misreporters differ from non-smokers at the first annual follow-up visit.

Figure 8: CO and Cotinine Levels by Smoking and Misreporting Status at the First Annual
Follow-Up Visit

0
50

10
0

15
0

C
O

 (
pp

m
)

0 100 200 300 400 500
Cotinine (ng/ml)

Smokers

0
10

20
30

40
C

O
 (

pp
m

)

0 100 200 300 400 500
Cotinine (ng/ml)

Non-Smokers

0
20

40
60

C
O

 (
pp

m
)

0 100 200 300 400 500
Cotinine (ng/ml)

Misreporters

82



Econometric Analysis

Regression Analysis

In our first approach we take the objective smoking status variables as accurately representing each

participant’s smoking status. We estimate regression models to identify how demographic vari-

ables, CO, and Cotinine levels correlate with misreporting status. Our motivation for this approach

is the following - if household smoking variables are positively correlated with misreporting, then

this could indicate that clinicians may misinterpret CO and Cotinine information. It is possible

that a non-smoker exposed to second-hand smoking reports a high CO level. Additionally, a non-

smoker consuming nicotine gum increases Cotinine levels significantly. Thus, if clinicians do not

account for these influences participants may be wrongly classified as misreporters. To this end,

we include a dummy variable for whether the participants consumed nicotine gum in the last 23

hours before the annual follow-up visit. We also include different types of dummy variables mea-

suring household smoking. First, we include whether the person reports that they have a smoker

living with them. Second, we include a variable measuring the number of smokers in the house-

hold. Third, we include dummy variables for whether the spouse, child, or someone else smokes

in the household. Given the nature of our binary dependent variable, we estimate Probit and Linear

Probability Models (LPM). The basic LPM specification is given here:

Si1 = γ0 + γ1HHi + γ2Xi + µi1 (11)

where Si1 is a binary indicator measuring misreporting smoking status for individual i at the first

follow-up visit. In all of the regressions our references group are verified non-smokers, i.e non-

misreporters. HHi reflects a vector of binary household smoking information as outlined in the

data section and summarized in Table 18. We include different combinations of household smoking

variables in our regressions to test the robustness of our results. Xi includes education level, marital

status, age, nicotine gum use, and BMI of the individual. Similarly, we estimate equation (11) with

Probit and Logit models to estimates if the LPM results are robust to model specification.
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Parametric Results

Table 20 presents six regression estimates for equation (11), where each regression includes a

different set of household smoking characteristics. Column 1 includes the baseline model with no

household smoking variables, and columns 2-6 include different variables of household smoking

participation. In unreported Probit regressions we find that the marginal effects are not statistically

different from the LPM results.

Across specification we find that being older, married, and male increases the probability of

misreporting, while using nicotine gum and having a higher BMI decrease the probability of mis-

reporting. Specifically, we find that being a married male increases the probability of misreporting

by about 10%. In contrast, consuming nicotine gum decreases the probability of misreporting by

7%. To put all results in perspective, about 14.9% of non-smokers are misreporting, suggesting

that the marginal effect presents large changes relative to the baseline misreporting level. To our

surprise all observable characteristics only explain a fraction of the variation in misreporting as

documented by the R-squared of only 0.03.

Next, we estimate sub-sample regression of equation (11) by treatment status. Table 20 presents

evidence that a larger proportion of treatment group participants misreport relative to the control

group. Thus, we also report results restricting the sample by treatment group in Appendix Tables

A6-8. Ex ante, we believe that the relationship between demographic characteristics and misre-

porting status can be different for these sub-samples for reasons discussed previously in the data

section.

Among the sub-sample results by treatment assignment, we find evidence in both treatment

group regressions that being male increase the probability of misreporting, while the use of nico-

tine gum and having a higher BMI decreases the probability of misreporting. Interestingly, we find

that the positive relationship between age and misreporting is only significant in the SIA treatment

group sub-sample in Table A6 and that the positive effect of being married on misreporting is only

significant in the SIP treatment group in Table A7. In the control group, we find that being of older

age and having a smoking spouse decreases misreporting, with some regression specifications pre-
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Table 20: Regression Estimates on the Effect of Demographic Variables on Misreporting

Dependent Variable: Misreporting Smoking Status
Male 0.0651*** 0.0646*** 0.0650*** 0.0650*** 0.0667*** 0.0669***

(0.0177) (0.0177) (0.0177) (0.0177) (0.0177) (0.0178)
educ -0.000531 -0.000714 -0.000584 -0.000608 -0.000221 -0.000279

(0.00310) (0.00310) (0.00310) (0.00309) (0.00307) (0.00307)
Married 0.0297* 0.0305* 0.0300* 0.0325* 0.0323* 0.0292

(0.0179) (0.0179) (0.0179) (0.0182) (0.0182) (0.0185)
Age 0.00344*** 0.00343*** 0.00344*** 0.00345*** 0.00342*** 0.00339***

(0.00126) (0.00126) (0.00126) (0.00126) (0.00126) (0.00127)
BMI -0.00960*** -0.00957*** -0.00960*** -0.00960*** -0.00959*** -0.00960***

(0.00214) (0.00214) (0.00214) (0.00214) (0.00214) (0.00214)
Nicotine Gum -0.0715*** -0.0723*** -0.0717*** -0.0730*** -0.0729*** -0.0724***

(0.0171) (0.0172) (0.0171) (0.0172) (0.0173) (0.0172)
HH Smoker -0.0146

(0.0191)
# Smokers in HH -0.00355

(0.0147)
HH Spouse Smokes -0.0227 -0.0269 -0.0265

(0.0232) (0.0231) (0.0231)
HH Child Smokes 0.0435 0.0450

(0.0301) (0.0302)
HH Other Smokes -0.0510

(0.0422)
Constant 0.207** 0.213** 0.209** 0.210** 0.201** 0.207**

(0.103) (0.103) (0.103) (0.103) (0.102) (0.103)

Observations 1,803 1,803 1,803 1,803 1,803 1,803
R-squared 0.030 0.030 0.030 0.030 0.031 0.032
Notes: Regressions include Heteroscedasticity robust standard errors in parentheses. Each column presents esti-
mates for a different regression. Sample includes non-smokers and misreporters.
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senting a positive effect of being married on misreporting. We conclude that this is a profound

result because it implies that endogenous misreporting occurs by treatment group assignment. We

tested the hypothesis whether the marginal effects in the treatment group sub-samples are differ-

ent from the control group, and find significant differences in the nicotine gum and HH spousal

smoking status variables.

In conclusion, we find that under-reporting in smoking participation is prevalent in the LHS

where participants know that they will be subjected to clinical tests. Our regression estimates

indicate that being male, married, and of older age increases the probability of misreporting, while

having a higher BMI and consuming nicotine gum decreases the probability of misreporting. Our

sup-sample analysis presents evidence for endogenous misreporting, emphasizing the need to apply

models that correct for endogenousmisreporting. We believe that LHS treatment group participants

may feel social pressure to show that the smoking cessation programworked and therefore are more

likely to misreport than control group participants. However, overall the observable variables only

account for a small fraction of the variation that explains misreporting. Therefore, future research

needs to expand the set of control variables to explore other reasons for misreporting. In our next

step we analyze whether the objective smokingmeasure does a good job at identifyingmisreporters.

Are Misreporters Different from Non-Smokers and Smokers?

We begin the second part of the paper to analyze whether misreporters are different from smokers

and non-smokers. Specifically, we compare the means of several smoking variables (Cigarettes

per Day, CO and Cotinine levels at baseline) for misreporters to smokers and non-smokers. If

misreporters are more similar to smokers than non-smoker, then this provides some evidence that

clinicians correctly identified misreporters.

Table 21 summarizes observable smoking characteristics at the baseline meeting for all misre-

porters by treatment group and compares them to baseline characteristics of participants classified

as smokers and non-smokers by the first annual follow-up visit. We find that the mean cigarette

consumption of misreporters is statistically different from themean cigarette consumption of smok-
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ers. Specifically, misreporters consume about 2 cigarettes less cigarettes at the baseline interview

compared to those who smoke. There is also evidence, that misreporters consume less cigarettes

per day than non-smokers. Since misreporters consume less cigarettes at baseline than smokers

and non-smokers it is conceivable that a good proportion of misreporters was able to quit smoking

or reduce cigarette consumption significantly.

Table 21: Summary Statistic at Randomization for Participants who Misreport
by Treatment Group

SI-A SI-P UC Non-Smokers Smokers
Cigarettes per Day 26.76* 25.66* 23.83* 27.95 30.45

(12.87) (14.11) (13.18) (14.39) (13.69)
CO Baseline Visit 33.46 32.06 N/A 30.88 34.15

(16.11) (17.85) N/A (17.47) (16.48)
CO Screening Visit* 26.3 27.5 30.5 25.28 26.52

(14.09) (13.79) (14.46) (13.57) (12.58)
Cotinine level 368.54 368.34 433.02* 341.33 375.52

(180.73) (203.70) (341.86) (207.80) (198.63)
Observations 138 130 48 1539 4019
Notes: Standard deviation in parentheses. SI-A and SI-P are the treatment arms and
UC is the control arm. * implies that only a fraction of the misreporters observations
are available 25,18,10, respectively, and also that the mean is significantly different at
the 5% level from the mean of smokers. Smokers and non-smokers are defined by their
smoking status at the first annual follow-up visit.

We continue our descriptive analysis by comparing the changes from the baseline year to the

first annual follow-up visit in average BMI, Cotinine, and CO levels for misreporters to smokers

and non-smokers. Table 22 summarizes the changes for all variables by group. T-tests suggest that

almost all means among misreporters are significantly different from non-smoker means. Specif-

ically, we find that the changes in cigarette consumption, CO, and Cotinine are all smaller than

for those classified as non-smokers. However, it is noteworthy that among misreporters we find

significant reductions in CO and Cotinine levels which are relatively closer to non-smokers than

smokers. Moreover, misreporteres saw a threefold increase in BMI relative to smokers with an av-

erage gain of about 0.9 BMI units, but an almost 50% smaller increase in BMI than non-smokers.

We also find evidence that misreporters consume nicotine gum at significantly lower rates than
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non-smokers, but also at significantly higher rates than smokers. We have also compared changes

across the same variables after five years and find an even larger decreases in Cotinine level among

misrepoters. Thus, misreporters seem to be descriptively closer to non-smokers than smokers, how-

ever, the changes in the smoking variables are all lower than among non-smokers.

Table 22: Changes in Smoking Variables from Baseline to the First Annual
Follow-up Visit for Misreporters Compared to Smokers and Non-Smokers

Variable SI-A SI-P UC Non-Smokers Smokers
Change in BMI 0.89* 0.95* 0.82* 1.61 0.29

(1.60) (1.45) (1.15) (1.66) (1.29)
Change in Cotinine -137.72* -154.38* -270.06 -252.17 -61.53

(177.91) (250.82) (365.77) (240.64) (211.95)
Change in CO (s2) -11.17* -17.58 -6.68* -20.22 -1.96

(10.86) (13.66) (15.63) (13.72) (13.03)
Change in CO Baseline -19.95* -20.95* N/A -25.99 -8.74

(15.99) (16.00) N/A (17.58) (17.41)
Change in Cigarettes -26.76 25.66* -23.83* -27.95 -6.79

(12.87) (14.11) (16.08) (14.39) (11.95)
Nicotine Gum 0.19* 0.23* 0.15 0.34 0.09

(0.40) (0.42) (0.36) (0.47) (0.29)
Observations 138 130 48 1533 3542
The changes in CO are based on different reference dates. The “s2” refers to changes
from the second screening interview where a few participants were voluntarily tested.
However there are only few observations per group available, 20,17,8,249, and 517, re-
spectively. Baseline refers to the change from the randomization visit where only treat-
ment participants were interviewed. However the sample is significantly larger with
110,105, N/A, 1286, and 1816 observations in each column, respectively. * indicates
that means are significantly different from the means of non-smokers at the 10% level.

The descriptive analysis presents evidence that misreporters reduce cigarette consumption, CO,

and Cotinine levels significantly. However, it is unclear whether those reductions lead to cessation

or just to lower levels of consumption. We calculate a back of the envelope estimate on the level

of miss-classification of misreporters by counting all misreporters whose change in either BMI,

Cotinine or CO level are larger or equal to themean change for non-smokers. This rough calculation

reveals that 206 misreporters may be in fact non-smokers. However, since many non-smokers

can show high levels of CO and Cotinine due to external influences, such as household smoke
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and nicotine gum use, CO and Cotinine levels may have been elevated at the first examination.

Therefore, we revisit the objective smoking measure in the fifth annual-follow-up visit and find

that 108 of the misreporters are now classified as non-smokers. Since, the intervention and most

changes in the smoking measures persist after five years it is unlikely that many of the misreporters

quit smoking after the first annual follow-up visit. To get a better estimate than the aforementioned

rough missclassifcation calculation our next section models a latent variable framework that tries

to distinguish smokers from non-smokers.

Bayesian Mixture Model

In our second methodological approach we take an agnostic view on whether the objectively veri-

fied smoking measure should be preferred to the self-reported smoking measure. Specifically, we

have no prior on whether the objective smoking variable presents the underlying “true” smoking

status. Rather our goal is to identify if the objectively verified smoking variable has information

that will more accurately predict the change in BMI, CO and cotinine levels. Our data is well suited

for such exercise, because the data includes a sample of smokers with a large proportion quitting

smoking after receiving treatment within the first year. Courtemanche et al. (2016) show that

quitting smoking leads to significant weight gain, therefore people misreporting smoking status

should not have experienced a large increase in weight, because they are in reality smokers. On

the other hand, if they quit smoking then they should have experienced significant decreases in CO

and cotinine levels.

We believe that a mixture model is a well suited approach. Broadly, the idea behind the mix-

ture model is to separate a population into subpopulations, where we only use information from the

overall population to make inference about the subspopulation. The approach allows us to derive

properties such as distribution means and probability assignment for each participant to each dis-

tribution. In our case, we have a strong smoking cessation treatment that generates an immediate

change in BMI, CO and Cotinine levels, that separates smokers from non-smokers.

Specifically, we apply a Bayesian mixture model (Koop et al. 2007) that implements a latent
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variable framework where it estimates the probability for each individual belonging to eachmixture

component. We, generally utilize the objective smoking variable as an “instrument” that assigns

each person to one of the two distributions. Ideally the objective smoking variable helps assign each

smoker to their correct distribution made up of smokers, rather than the distribution of non-smokers

as measured by their BMI, CO and Cotinine levels.

We also estimate the model in levels rather than changes. Since a participant’s demographic

characteristics define a participant’s BMI, and BMI is a stock that evolves over time, we include an

extensive set of control variables that influence the mixture component assignment. For example,

it is important to include gender and age information, because males and older participants weigh

more than their female and younger counterparts. To this end we also include the baseline BMI,

CO, and Cotinine levels to account for the pre-treatment outcome levels where appropriate. The

other explanatory variables are marital status, age, education level, presence of a household smoker,

and nicotine gum use. The general density setup of the mixture model is the following:

p(Yi|Xi, θ) = [1− Φ(X ′β)]ϕ(Yi;µ1; σ
2
1) + Φ(X ′β)ϕ(Yi;µ1 + α;σ2

2) (12)

where the key components of the mixture model are the Y means µ1 and µ1+α and variances σ2
1 and

σ2
2 of each mixture component ϕ, respectively. Yi represents the dependent variable for each indi-

vidual i at the first follow-up visit. The probability of being in each component of the mixture, Φ,

adjusts given the variables summarized inXi. The mixture assignment probability can be rewritten

in a latent variable framework:

p(Yi|Xi, θ, z
∗
i ) = ϕ(Yi;µ1; σ

2
1)

I(z∗i <0) + ϕ(Yi;µ1 + α;σ2
2)

I(z∗i >0) (13)

where the latent probability, z∗i , is determined by the independent variables:

z∗i = X ′β + ϵi, ϵi ∼ N(0, 1) (14)

In this case the latent variable z∗i has to be greater than zero to include an individual in the sec-
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ond mixture component. For example, if Xi includes strong positive predictors suggesting that a

person has a higher BMI, then the latent variable z∗i will be more likely to have a value greater

than zero. This may result in a separation in the mixture component assignment for differentialXi

characteristics. To complete the model, the following flat prior specifications are included:

µ1 ∼ N(µ, Vµ)

α ∼ N(µα, Vα)

σ2
j ∼ IG(ai, bi), j = 1, 2

[β] ∼ N(µβ, Vβ)

We assume that α is drawn from a normal distribution. To identify the mixture model there has

to be a restriction on either the priors, the mixture component, or the hyper parameters (parameters

in the model besides those defined in the priors or mixture model so far). In this model we restrict

the mean of the secondmixture component to be larger than the first component. The joint posterior

distribution for this model is proportional to:

(
N∏
i=1

[
ϕ(Yi;µ1;σ

2
1)

I(z∗i <0)ϕ(Yi;µ1 + α; σ2
2)

I(z∗i >0)
]
ϕ(z∗i ;X

′β, 1)

)
× p(β)p(µ1)p(α)p(σ

2
1)p(σ

2
1)

We estimate the posterior conditionals based on the following specification:

µ1|θ−µ1 , Bmi ∼ N(Dµ1dµ1 , Dµ1)

Dµ1 = (ι′Σ−1ι+ V −1
µ )−1

dµ1 = ι′Σ−1(Bmi− zα) + V −1
µ µ)

Note ι is a Nx1 vector of ones, and z is equal to:
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zi = I(z∗i > 0) and Σ ≡ Diag{(1− zi)σ
2
1 + ziσ

2
2}

The mean of the second component of ϕ includes α, and α is drawn from:

α|θ−α, Y ∼ TN(0,∞)(Dαdα, Dα)

Da = (n2/σ
2
2 + V −1

α )−1

dα =
N∑
i=1

z(Yi − µ1)/σ
2
2 + V −1

a µα

Note that n2 =
∑

i zi and n1 = N − n2 =
∑

i(1− zi)

The Betas are drawn from:

β|θ−β, Y ∼ N(Dβdβ, Dβ)

with Dβ = (X ′X + V −1
β )−1 and dβ = X ′z∗ + V −1

β µβ

The variances σ2
1 and σ2

2 are drawn from:

σ2
1|θ−σ2

1
, Y ∼ IG

n1

2
+ α1,

[
b−1
1 + .5

N∑
i=1

(1− zi)(Yi − µ1)
2

]−1


σ2
2|θ−σ2

2
, Y ∼ IG

n2

2
+ α2,

[
b−1
2 + .5

N∑
i=1

zi(Yi − µ1 − α)2

]−1


\

Lastly, we draw z∗i with initially drawing U from a two point distribution Uϵ{0, 1} from:

Pr(U = 1) =
[1− Φ(X ′β)]ϕ(Yi;µ1;σ

2
1)

[1− Φ(X ′β)]ϕ(Yi;µ1; σ2
1) + Φ(X ′β)ϕ(Yi;µ1 + α, σ2

2)
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This gives the relative probability of the distribution in the first vs the second component. We

subtract Pr(U = 1) from a random variable drawn from the uniform distribution of the interval

(0,1). If the probability of U becomes negative, we draw z∗i truncated {0,∞} and vise versa:

z∗i |U, θ−z∗ , Y


TN(−∞,0)(X

′β, 1) if U = 1,

TN(0,∞)(X
′β, 1) if U = 0

Lastly, we use hyperparameter values for the priors on µ, α, σ2
j and β. Specifically, µ = 5.5, Vµ =

.4, µα = .4, Vα = .4, a1 = a2 = 2, b1 = b2 = 100,µβ = 0kx1, Vβ = 4I2. We estimate the model for

10000 iterations and drop the first 2500 simulations.

Mixture Model Results

We present results for six estimations in Table 23 – three mixture models where the dependent

variables are BMI, CO, and Cotinine level, and three models where the dependent variables are

the changes in BMI, CO, and Cotinine level. All models include an extensive set of explanatory

variables as described in the previous section. Table 23 presents posterior means and standard

deviations in parentheses for the first and second mixture components. The average BMI for the

first distribution is 23.21 BMI units, while the second component has an average BMI of about

29 BMI units (µ1 + α). The means are significantly different in each distribution, as measured

by the distance from their standard deviations. Similarly, we find that the model with the change

in BMI as the dependent variable presents two positive means, suggesting that overall participants

gain weight by the first year. Among our estimates including the CO or Cotinine measures, we find

that the first component mean is significantly lower than the second component mean. Moreover,

we find that the estimates utilizing the changes in CO or changes in Cotinine level present first

component means that are negative, indicating a population that decreased CO and Cotinine levels

from the baseline year.

Table 23 does not reveal whether the mixture model assigns smokers correctly to the first mix-
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ture component while assigning non-smokers to the second, higher mixture component. Table 24

reports the posterior probabilities of non-smokers and smokers belonging to each distribution.56 Ex

ante, we expect that smokers are more likely to have a lower BMI, have higher levels of CO and

Cotinine, and also have less changes in BMI units, CO, and Cotinine levels. In other words, we

expect to have more smokers in the first component of the mixture models with the dependent vari-

able measuring BMI and changes in BMI. We expect that because smokers do not change behavior

and therefore do not expect large changes in our dependent variables. On the other hand, we expect

to have more smokers in the second component of in the model with the dependent variables of CO

level, Cotinine level, change in CO level, and change in Cotinine level.

The first panel of Table 24 reveals that the average probability that a non-smoker belongs to the

high BMI distribution is 67%. In contrast, the probability for a smoker to belong to the high BMI

distribution is 47%. Thus, there is is still significant mixture of smokers and non-smokers in the

high BMI distribution. One reason may be that we are missing important explanatory variables that

assigns smokers from non-smokers into each distribution. The second panel presents results for the

distribution probabilities for smokers with the dependent variable measuring the change in BMI.

Here we find a clear separation, smokers and non-smokers belong to the second BMI distribution

with a large gain in BMI, as reported in Table 24, with an average probability of 16% and 97%.

Thus, as previously expected most participants with a large gain in BMI are non-smokers. Across

the other four estimated models we find a similar expected separation of smokers and non-smokers

by distributional means. Those with low levels of CO and Cotinine as well as large decreases in CO

and Cotinine levels are more likely to be non-smokers, while smokers are more likely to belong to

the higher mean CO, and Cotinine distributions and the distributions with smaller changes in CO

and Cotinine levels.

Next, we focus on the distribution assignment of participants that misreport smoking status. As

discussed, those individuals enter the model as smokers and it is of pertinent interest to understand
56The Posterior probability of a smoker belonging to the higher distribution (delayed component) is equal to 1 −

Φ(Xβ). Where beta includes the constant and the coefficient on smoking. Similarly, the probability can also be
calculated by dividing the sum of zi by the number of iterations among smokers.
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Table 23: Posterior Means and Variance
of all Mixture Models

Dependent Variable BMI (N=5337)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

23.21 28.84 2.49 3.73
(1.68) (0.75) (0.53) (0.73)

Dependent Variable ∆BMI (N=5337)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

0.21 1.56 1.00 1.86
(0.12) (0.15) (0.08) (0.04)

Dependent Variable CO (N=3312)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

4.80 24.12 2.28 13.91
(0.45) (0.50) (0.19) (0.26)

Dependent Variable ∆CO (N=3312)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

-25.63 -8.52 19.12 15.46
(1.01) (0.94) (0.39) (0.81)

Dependent Variable Cotinine (N=5040)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

5.53 275.52 6.52 163.30
(27.89) (22.08) (32.64) (4.36)

Dependent Variable ∆Cotinine (N=5040)
Mean µ1 Mean µ2 Mean σ1 Mean σ2

-136.61 -24.61 293.67 119.28
(7.83 ) (5.63) (11.75) (10.14)

Notes: α + µ1 presents the mean of the sec-
ond mixture component. Standard deviation
in parentheses.
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Table 24: Posterior Probability Assignment to
Lower and Higher Distributions for Smokers

and Non-Smokers at the First Annual Follow-up
Visit

Dependent Variable BMI
Prob. Low BMI Prob High BMI

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.53 0.33 0.47 0.67
Dependent Variable ∆BMI
Prob. Low ∆BMI Prob High ∆BMI

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.84 0.03 0.16 0.97
Dependent Variable CO

Prob. Low CO Prob High CO

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.01 0.99 0.99 0.01
Dependent Variable ∆CO

Prob. Low ∆CO Prob High ∆CO

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.08 0.98 0.92 0.02
Dependent Variable Cotinine
Prob. Low Cotinine Prob High Cotinine

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.01 0.52 0.99 0.48
Dependent Variable ∆Cotinine
Prob. Low ∆Cotinine Prob High ∆Cotinine

Smoker=1 Smoker=0 Smoker=1 Smoker=0

0.33 0.99 0.67 0.01
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which mixture component they are most likely part of. For example, if they are in fact smokers,

we suspect that they are assigned with a higher probability to the low BMI and low change in BMI

distribution. However, if those smokers are indeed non-smokers then we expect to find possibly

mixed results, i.e. that a large portion is assigned to the high BMI distribution. Ideally, if the

objective measure corrects for misreporting, then this additional smoking information should help

identify the mixture component assignment. On the contrary, including self-reported smoking in-

formation should add more noise into the model because it assumes they are non-smokers while

in fact they are not. In summary, we focus on the distribution assignments of the misreporters to

understand whether they are more likely to be non-smokers than smokers.

Specifically, we analyze how 270 individuals, who self-reported to be non-smokers but the

objective measures indicates that they are smokers, are assigned to the distributions across all six

models.57 Since we only have a sub-sample reporting CO levels, the results reflect estimates among

215 misreporters. Table 25 presents the distribution probabilities for misreporting participants in

all mixture models.

The first panel presents the probability assignment to the BMI distributions. We find an average

probability of belonging to the high BMI distribution of 48%. The second model reveals that mis-

reporters belong to the high change BMI distribution with a probability of 77%. As a result, even

when we utilize the objective smoking variable in the mixture models, there are many misreporters

that belong to the high BMI distribution that is much more likely to consist of non-smokers. How-

ever, the probability assignment for the CO and Cotinine level mixture models estimates show that

misreporters are much more likely to be part of smoking distributions with 97% and 99%, respec-

tively. The relatively high levels of CO and Cotinine levels among many smokers and non-smokers

may lead to such an probabilistic assignment. Thus, we concentrate on the changes in CO and Co-

tinine models that show a similar probability assignment for misreporters to the distributions that

see large changes in the levels. Misreporters have an average probability of being part of the large

decrease in CO and Cotinine distributions with 14% and 42%, respectively. We derive from this
5746 individuals who are also misreporters have no BMI information in the sample
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result that the objective smoking measure may not necessarily be more accurately measuring true

smoking status. We reiterate that the descriptive statistics and the mixture model estimates suggests

that there is a good amount of misreporters that ”mimic” features of non-smokers.

We proceed by estimating a more sophisticated level of misreporting. Our previous descrip-

tive evidence suggested that 206 misreporters may in fact be not misreporting. We now add an

additional layer of identification. Specifically, we condition on whether any of the 206 participants

have a probability assignment of greater than 90% of belonging to the distributions mostly made

up of non-smokers as defined by mixture models. For simplicity, we count how many misreporters

belong to the high change in BMI distribution, low change in CO distribution and low change in Co-

tinine distributions. As an example, Figure 9 presents the probability assignment for misreporters

to the high change in BMI distribution. Our final new calculation finds that between 68 and 109

misreporters may in fact be not misreporting smoking status.58 Thus this indicates that depending

on the sample used, between 26% and 51% of misreporters may not be misreporting.

Nevertheless, it is possible that most of the misreporters only reduced cigarette consumption,

but never quit completely. We argue that this is only of limited concern, because there is ample

evidence that many of the misreporters are in fact non-smokers. By the second annual follow-up

95 of the misreporters are objectively classified as non-smokers. It is unlikely that all of them quit

in year two, because there was no smoking cessation treatment or hospital support after the first

four months. Instead, we believe that it is more likely that most of them are misclassified, because

there were no objective clinical measures that clearly separated non-smokers from smokers – as

reported in Figure 9.
58Each separate calculation finds that 109 misreporters in the low CO change distribution, 78 in the high BMI change

distribution and 68 in the low change Cotinine distribution satisfy the criteria.
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Table 25: Posterior Probability Assignment
to the Lower and Higher BMI Component

for Misreporters in each Model

Dependent Variable BMI (N=270)
Prob. Low BMI Prob High BMI

Misreporting=1 Misreporting=1

0.52 0.48
Dependent Variable ∆BMI (N=270)
Prob. Low ∆BMI Prob High ∆BMI

Misreporting=1 Misreporting=1

0.23 0.77
Dependent Variable CO (N=215)

Prob. Low CO Prob High CO

Misreporting=1 Misreporting=1

0.03 0.97
Dependent Variable ∆CO (N=215)
Prob. Low ∆CO Prob High ∆CO

Misreporting=1 Misreporting=1

0.14 0.86
Dependent Variable Cotinine (N=263)
Prob. Low Cotinine Prob High Cotinine

Misreporting=1 Misreporting=1

0.01 0.99
Dependent Variable ∆Cotinine (N=263)
Prob. Low ∆Cotinine Prob High ∆Cotinine

Misreporting=1 Misreporting=1

0.42 0.58
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Figure 9: Posterior Probability of All Misreporting Participants Belonging to the Higher
Mean Change BMI Distribution

In summary, our Bayesian mixture model approach utilizing information on BMI, CO, and Co-

tinine level presents evidence that smokers belong to a different distribution than non-smokers in

all measures. Moreover, we find that a significant portion of the misreporters have a high proba-

bility of belonging to the distribution made up of mostly non-smokers. In the end we estimate that

about 30% to 50% of misreporters may in fact be not misreporting smoking status. We believe that

this finding shows the importance of accounting for misreporting and we believe that descriptive

evidence and the mixture model approach allows researchers to identify “true” misreporters.

Conclusion

This paper provides new evidence to several questions regarding misreporting in self-reported

smoking information. Descriptive statistics show that smoking cessation treatment group partici-
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pants misreport twice as much as participants in the control group. We suspect that being in the

treatment group contributes to the higher rate of misreporting by treatment group assignment. It is

also conceivable that the participant’s perception of being treated to achieve a personal and socially

desirable outcome magnifies the misreporting level.

Our results indicate that being male, married, and of older age increases the probability of

misreporting significantly. Our preferred estimates suggest that being male and married increases

the probability of misreporting by about 10 percentage points. Sub-sample analyses by treatment

group show that the relationship between demographic characteristics and misreporting is larger in

the treatment groups than in the control group.

We also provide evidence that the objectively verified smoking measure may not be necessarily

“better” compared to the self-reported smoking measure. In our second methodological approach

we take an agnostic view on whether participants classified as misreporters are in fact misreporting

smoking status. We utilize BMI, CO and Cotinine level information to inform if someone is a

smoker and focus on those classified as misreporters. We apply a two distribution mixture model

and our estimates suggest that there are two separate distributions. For example, our results indicate

that when we model the two distributions of changes in BM, from the pre-treatment BMI level to

the first annual follow-up visit, that the high change in mean BMI distribution is mostly made up

of non-smokers. Based on descriptive evidence and the mixture model results, we believe that

at least 30% of misreporters may in fact not be misreporting smoking status, reaching as high as

50%. Moreover, our results imply that common explanatory variables can help reveal wrongly

misreported smoking participation in a mixture model framework.

Our results also have implications for the smoking literature. We show that participants who

receive a smoking cessation treatment misreport at higher levels than in the control group. It is

possible that the knowledge or perception of treatment may also occur in government programs.

One such treatment could be a state’s cigarette tax increase. If smokers are aware of a tax increase

they may be more likely to under-report smoking participation in survey responses. In this case,

the negative correlation between state cigarette taxes, and smoking participation may be overstated.
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As a result, claims that higher taxes reduce smoking participation should be revisited.

We also provide evidence on the level of misreporting in smoking. We find relatively low lev-

els of under-reporting in our adult sample. Clinicians classify 8% of self-reported non-smokers as

smokers. Evidence from RCTs presents under reporting smoking levels up to 35% among pregnant

women. Additionally, we find no evidence of over-reporting smoking participation. We conclude

that under-reporting of smoking participation is significantly lower than in other studies. Addi-

tionally, we find evidence suggesting that a significant portion of misreporters may in fact not

be misreporting their status at all. Thus, misreporting levels may in fact be even lower than the

reported 8%.

Lastly, we provide evidence that can be relevant for the methodological literature addressing

misreporting. We find that misreporting is endogenous along different demographic dimensions.

Our results provide a benchmark to identify which characteristics need to be controlled for to

achieve exogenous misreporting, a condition required by many papers to recover unbiased esti-

mators. We also question the validity of estimators relying on exogenous misreporting if they

cannot account for the demographic characteristics that affect misreporting, such as the presence

of additional household smokers.
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Appendix To Chapter I

Table A1: Cigarette Consumption per Day and Smoking Status by
Month Prior to the First Annual Follow-up Visit

By Month Mean Smokers Mean Cigarettes per Day
12 Months Before Visit 0.88 26.77

(0.32) (16.99)
11 Months Before Visit 0.79 22.54

(0.40) (17.56)
10 Months Before Visit 0.70 18.53

(0.46) (17.20)
9 Months Before Visit 0.63 16.00

(0.48) (16.66)
8 Months Before Visit 0.62 15.62

(0.48) (16.50)
7 Months Before Visit 0.63 15.76

(0.48) (16.37)
6 Months Before Visit 0.65 16.02

(0.47) (16.19)
5 Months Before Visit 0.66 16.11

(0.47) (16.05)
4 Months Before Visit 0.66 16.21

(0.47) (15.97)
3 Months Before Visit 0.66 16.27

(0.47) (15.95)
2 Months Before Visit 0.67 16.27

(0.47) (15.93)
1 Month Before Visit 0.68 16.23

(0.46) (15.76)
Standard errors are in parenthesis. Columns 2 presents an average smok-
ing status for a binary variable in each months. Column 3 presents self-
reported average cigarette consumption in each month.
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Table A2: The Effect of the Length of Abstaining from
Smoking on Alcoholic Beverage Consumption at the First

Annual Follow-up Visit

Dep. Var. Drinks per Week

Length of Non-Smoking OLS 2SLS
12 Months Sustained Non-Smoker -1.251*** -1.183***

(0.403) (0.428)
11 Months Sustained Non-Smoker -0.614 -0.695

(0.451) (0.454)
10 Months Sustained Non-Smoker -0.578 -0.571

(0.356) (0.363)
9 Months Sustained Non-Smoker -0.587 -0.630*

(0.360) (0.370)
8 Months Sustained Non-Smoker -0.284 -0.112

(0.549) (0.588)
7 Months Sustained Non-Smoker -0.770 2.096***

(0.958) (0.676)
6 Months Sustained Non-Smoker -0.232 -0.958

(1.042) (1.306)
5 Months Sustained Non-Smoker 0.522 1.249

(1.438) (2.160)
4 Months Sustained Non-Smoker 0.346 89.03

(1.105) (73.67)
3 Months Sustained Non-Smoker -2.003** -0.626

(0.785) (1.188)
2 Months Sustained Non-Smoker -1.963*** -2.812

(0.718) (0.616)
1 Month Sustained Non-Smoker 0.298 0.049

(0.926) (1.263)
Robust standard errors are in parenthesis. ***,**, and * indicate
significance at the 1, 5, and 10 percent level. Columns 2-3 present
OLS and 2SLS estimates for a binary variable equal to one if a person
becomes a sustained quitter for the rest of the year and zero for a
continuous smokers. Each row entry presents a separate marginal
effect.
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Table A3: The Effect of the Length of Abstaining from
Smoking on Alcoholic Beverage Consumption at the First

Annual Follow-up Visit

Dep. Var.Drinks per Week

Length of Non-Smoking NB CF-NB
12 Months Sustained Non-Smoker -1.49*** -1.39**

(0.479) (0.548)
11 Months Sustained Non-Smoker -0.769 -0.862*

(0.484) (0.497)
10 Months Sustained Non-Smoker -0.557 -0.572

(0.375) (0.383)
9 Months Sustained Non-Smoker -0.558 -0.608

(0.383) (0.398)
8 Months Sustained Non-Smoker -0.225 -0.076

(0.553) (0.575)
7 Months Sustained Non-Smoker -0.786 -2.62***

(1.02) (1.00)
6 Months Sustained Non-Smoker -0.288 -0.892

(1.034) (1.46)
5 Months Sustained Non-Smoker 0.122 0.617

(1.26) (1.69)
4 Months Sustained Non-Smoker 0.114 -0.048

(1.105) (1.47)
3 Months Sustained Non-Smoker -2.06* -0.404

(1.21) (1.49)
2 Months Sustained Non-Smoker -2.749** -5.01***

(1.18) (1.63)
1 Month Sustained Non-Smoker 0.017 -0.30

(0.860) (1.35)
Robust standard errors are in parenthesis. ***,**, and * indicate
significance at the 1, 5, and 10 percent level. Columns 2-3 rep-
resent Negative Binomial and Control function approach Negative
Binomial marginal effects for a binary variable equal to one if a
person becomes a non-smoker for the rest of the year and zero for
a continuous smokers. Each row entry presents a separate average
marginal effect.

105



Table A4: The Effect of the Length of Abstaining from Smoking on Current
Alcohol Consumption at the First Annual Follow-up Visit

Female Male

Length of Non-Smoking NB CF-NB NB CF-NB
12 Months Sustained Non-Smoker -1.983*** -2.127*** -1.142* -0.882

(0.538) (0.614) (.683) (0.790)
11 Months Sustained Non-Smoker -1.170* -1.286** -0.567 -0.658

(0.632) (0.661) (0.641) (0.652)
10 Months Sustained Non-Smoker -0.399 -0.528 -0.751 -0.629

(0.449) (0.467) (0.539) (0.544)
9 Months Sustained Non-Smoker -0.198 -0.298 -0.931* -0.936*

(0.475) (0.513) (0.547) (0.557)
8 Months Sustained Non-Smoker -0.0263 -0.245 -0.349 0.0276

(0.675) (0.738) (0.765) (0.775)
7 Months Sustained Non-Smoker 0.112 -3.729** -1.437 -2.395**

(1.478) (1.813) (1.250) (1.215)
6 Months Sustained Non-Smoker -1.460 -0.642 0.358 -0.961

(1.353) (1.780) (1.382) (2.006)
5 Months Sustained Non-Smoker -1.494 -65.52*** 0.911 1.584

(1.681) (4.437) (1.657) (1.907)
4 Months Sustained Non-Smoker 0.226 0.472 -0.211 -0.571

(1.167) (1.944) (1.687) (1.803)
3 Months Sustained Non-Smoker 0.0982 0.093 -4.392*** -1.264

(1.117) (1.923) (1.928) (1.549)
2 Months Sustained Non-Smoker -3.086*** -4.274*** -2.023 -5.139*

(0.802) (1.249) (1.862) (2.817)
1 Month Sustained Non-Smoker -1.730 -1.520 0.661 0.580

(1.577) (2.294) (1.047) (1.536)
This table presents presents Negative Binomial and Negative Binomial with control func-
tion approach average marginal effects for a binary indicator equal to one for a person
becoming a sustained non-smoker in a month and zero if he is continuous smoker. This is
a supplement for Table 8 presenting OLS and 2SLS results.
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Appendix To Chapter II

Table A5: Sensitivity of Estimates to Different BMI Depreciation Rates

(IV With Year 5 BMI Only)
Long Run (BMI Year 5)

Average Average Average
Quit Cigarettes CO

δ = 0 2.646∗∗∗ -0.065∗∗∗ -0.082∗∗∗
(0.285) (0.007) (0.011)

[1.91] [1.81]
δ = 0.05 2.675∗∗∗ -0.066∗∗∗ -0.083∗∗∗

(0.288) (0.007) (0.011)
[1.94] [1.83]

δ = 0.1 2.706∗∗∗ -0.067∗∗∗ -0.084∗∗∗
(0.291) (0.007) (0.011)

[1.97] [1.86]
δ = 0.15 2.738∗∗∗ -0.068∗∗∗ -0.086∗∗∗

(0.294) (0.008) (0.011)
[2.00] [1.89]

δ = 0.2 2.772∗∗∗ -0.069∗∗∗ -0.088∗∗∗
(0.297) (0.008) (0.011)

[2.03] [1.93]
δ = 0.25 2.808∗∗∗ -0.070∗∗∗ -0.089∗∗∗

(0.300) (0.008) (0.011)
[2.07] [1.96]

δ = 0.30 2.844∗∗∗ -0.072∗∗∗ -0.091∗∗∗
(0.304) (0.008) (0.012)

[2.10] [2.00]
N 5446 4966 4517

See notes for Table 2.

107



Figure A1: Semi-Parametric Graphs of Long-Run Effects of Simple Average Cigarettes per
Day on BMI for Education and Age Subsamples
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Figure A2: Semi-Parametric Graphs of Long-Run Effects of Simple Average Cigarettes per
Day on BMI for Gender and Baseline BMI Subsamples
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Figure A3: Semi-Parametric Graphs of Long-Run Effects of Simple Average CO on BMI
for Education and Age Subsamples
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Figure A4: Semi-Parametric Graphs of Long-Run Effects of Simple Average CO on BMI
for Gender and Baseline BMI Subsamples
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Appendix To Chapter III
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Table A6: Regression Estimates for Treatment Group 1 (SIA) Subsample

Dependent Variable: Misreporting Smoking Status

Male 0.0764*** 0.0757*** 0.0761*** 0.0772*** 0.0786*** 0.0792***
(0.0261) (0.0261) (0.0262) (0.0261) (0.0261) (0.0261)

Education -0.00541 -0.00610 -0.00577 -0.00585 -0.00532 -0.00541
(0.00441) (0.00446) (0.00444) (0.00442) (0.00438) (0.00437)

Married 0.00103 0.00311 0.00278 0.00819 0.00904 0.00552
(0.0281) (0.0280) (0.0281) (0.0283) (0.0283) (0.0286)

AGe 0.00485** 0.00488** 0.00491** 0.00483** 0.00472** 0.00473**
(0.00199) (0.00199) (0.00199) (0.00198) (0.00198) (0.00198)

BMI -0.0118*** -0.0116*** -0.0117*** -0.0117*** -0.0118*** -0.0120***
(0.00316) (0.00316) (0.00316) (0.00317) (0.00316) (0.00316)

Nicotine Gum -0.116*** -0.118*** -0.117*** -0.119*** -0.119*** -0.118***
(0.0244) (0.0245) (0.0245) (0.0247) (0.0247) (0.0247)

HH Smoker -0.0347
(0.0276)

# HH Smokers -0.0149
(0.0208)

HH Spouse Smokes -0.0508 -0.0548* -0.0524
(0.0327) (0.0326) (0.0325)

HH Child Smokes 0.0384 0.0430
(0.0412) (0.0413)

HH Other Smokes -0.0995*
(0.0595)

Constant 0.299* 0.312* 0.304* 0.309* 0.304* 0.313**
(0.157) (0.159) (0.158) (0.158) (0.157) (0.157)

Observations 804 804 804 804 804 804
R-squared 0.051 0.052 0.051 0.053 0.054 0.056
Notes: Regressions include Heteroscedasticity robust standard errors in parentheses.
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Table A7: Regression Estimates for Treatment Group 2 (SIP) Subsample

Dependent Variable: Misreporting Smoking Status

Male 0.0628** 0.0631** 0.0631** 0.0631** 0.0644** 0.0646**
(0.0265) (0.0265) (0.0265) (0.0265) (0.0266) (0.0268)

Education 0.00208 0.00215 0.00224 0.00217 0.00236 0.00234
(0.00481) (0.00482) (0.00483) (0.00483) (0.00483) (0.00484)

Married 0.0473* 0.0473* 0.0474* 0.0454* 0.0447* 0.0419
(0.0261) (0.0262) (0.0262) (0.0266) (0.0266) (0.0271)

Age 0.00146 0.00146 0.00147 0.00144 0.00149 0.00146
(0.00187) (0.00188) (0.00187) (0.00187) (0.00187) (0.00188)

BMI -0.00874*** -0.00876*** -0.00873*** -0.00873*** -0.00876*** -0.00871***
(0.00321) (0.00322) (0.00321) (0.00321) (0.00321) (0.00321)

Nicotine Gum -0.0525** -0.0519** -0.0516** -0.0504* -0.0503* -0.0498*
(0.0261) (0.0263) (0.0262) (0.0264) (0.0264) (0.0263)

HH Smoker 0.00782
(0.0304)

# HH Smokers 0.0123
(0.0239)

HH Spouse Smokes 0.0233 0.0209 0.0208
(0.0383) (0.0380) (0.0382)

HH Child Smokes 0.0411 0.0419
(0.0505) (0.0507)

HH Other Smokes -0.0325
(0.0602)

Constant 0.228 0.225 0.221 0.225 0.217 0.220
(0.151) (0.151) (0.151) (0.151) (0.150) (0.152)

Observations 792 792 792 792 792 792
R-squared 0.024 0.024 0.024 0.024 0.025 0.026
Notes: Regressions include Heteroscedasticity robust standard errors in parentheses.
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Table A8: Regression Estimates for Control Group (UC) Subsample

Dependent Variable: Misreporting Smoking Status

Male 0.0567 0.0524 0.0504 0.0468 0.0508 0.0514
(0.0513) (0.0523) (0.0526) (0.0515) (0.0531) (0.0530)

Education 0.00516 0.00498 0.00528 0.00723 0.00789 0.00815
(0.00936) (0.00937) (0.00939) (0.00934) (0.00921) (0.00927)

Married 0.0647 0.0707 0.0744 0.0917* 0.0880* 0.0910*
(0.0476) (0.0491) (0.0496) (0.0504) (0.0507) (0.0504)

Age 0.00588* 0.00580* 0.00586* 0.00630** 0.00638** 0.00656**
(0.00317) (0.00317) (0.00316) (0.00315) (0.00316) (0.00319)

BMI -0.00657 -0.00694 -0.00719 -0.00700 -0.00630 -0.00625
(0.00617) (0.00609) (0.00606) (0.00606) (0.00612) (0.00614)

Nicotine Gum 0.131 0.129 0.133 0.143 0.143 0.146
(0.101) (0.101) (0.101) (0.0997) (0.1000) (0.100)

HH Smoker -0.0389
(0.0589)

# HH Smokers -0.0421
(0.0503)

HH Spouse Smokes -0.144** -0.157** -0.157**
(0.0669) (0.0663) (0.0665)

HH Child Smokes 0.0640 0.0659
(0.0927) (0.0930)

HH Other Smokes 0.0627
(0.139)

Constant -0.127 -0.102 -0.101 -0.158 -0.195 -0.213
(0.272) (0.268) (0.267) (0.270) (0.270) (0.271)

Observations 207 207 207 207 207 207
R-squared 0.046 0.048 0.050 0.063 0.065 0.066
Notes: Regressions include Heteroscedasticity robust standard errors in parentheses.
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