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ABSTRACT

INCENTIVE COMPATIBLE PAYOFF MECHANISMS

FOR GENERAL RISK THEORIES

BY

YI (LILY) LI

AUGUST 2016

Committee Chair: Dr. James C. Cox

Major Department: Economics

This dissertation focuses on one methodological problem in experimental economics:

how to pay subjects, or in other words, payoff mechanism issue. For example, one popular

payoff mechanism is Random Lottery Incentive System (RLIS), that is, after subjects have

made all their choices, one among all their decisions is randomly selected as their payment.

Payoff mechanism is part of the incentive in economic experiments, and people respond

to incentives. When economists think they observe subjects’ responses to experimental

tasks, the observed behavior is actually the joint effect of the decision tasks and the payoff

mechanism used in the experiment. When the payoff mechanism is not incentive compatible,

it may distort behavior. Cox et al.(2015) have shown that with the same decision tasks,

when payoff mechanism changes, people make different choices.

When it comes to the experiments of decision making under risk, Holt(1986) firstly points

out that RLIS is incentive compatible when Independence Axiom is assumed. Independence

Axiom says that if one prefers Gamble A to Gamble B, when both gambles mix the same

proportion with a third Gamble C, one would prefer the combination of A and C to B

and C. Independence is one of the fundamental axioms of Expected Utility Theory (EUT).



Later decision models relax such axiom and allow violations of Independence, such as Rank

Dependent Utility Theory (RDU) and Cumulative Prospect Theory (CPT). Therefore, when

RDU or CPT is assumed, RLIS becomes incentive incompatible. It is well-known in the

literature that one round task, where subjects make one decision and get paid by their

choice, is incentive compatible with all the decision models. Harrison and Swarthout (2014)

have shown that when RDU is assumed, the estimation from the data using RLIS is different

from that using one round task. The gap in the literature is that under a multiple-round

setting, it’s still mysterious what incentive compatible payoff mechanisms are for the general

risk theories.

In the dissertation, I discuss the incentive compatible payoff mechanisms for general risk

models. The “general” refers to the models where well-behaved (complete and transitive)

preference is assumed. In Chapter 1, I propose a new payoff mechanism, which I call

“Accumulative Best Choice” (ABC) design and show that it is incentive compatible with

general risk models. I also test the validity of ABC in the lab. The data from two

experiments show that there is no significant difference for the choices or the estimates

under ABC design and under one round task at 5% level. In Chapter 2, with the data from

ABC design, I estimate the structural parameters for both EUT and RDU models, which

is so far the first using an incentive compatible payoff mechanism for RDU model under a

multiple-round setting. In Chapter 3, I apply ABC design on the most popular risk attitude

elicitation method: Holt and Laury (HL) (2002) multiple price list. With estimations for

EUT, Dual Theory of Expected Utility (DU) and RDU, I show that the HL list offers more

information about the probability curvature than the utility curvature.
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Introduction
This dissertation focuses on one methodological problem in experimental economics:

how to pay subjects, or in other words, payoff mechanism issue. For example, one popular

payoff mechanism is Random Lottery Incentive System (RLIS), that is, after subjects have

made all their choices, one among all their decisions is randomly selected as their payment.

Payoff mechanism is part of the incentive in economic experiments, and people respond

to incentives. When economists think they observe subjects’ responses to experimental

tasks, the observed behavior is actually the joint effect of the decision tasks and the payoff

mechanism used in the experiment. When the payoff mechanism is not incentive compatible,

it may distort behavior. Cox et al. (2015) have shown that with the same decision tasks,

when payoff mechanism changes, people make different choices.

When it comes to the experiments of decision making under risk, Holt(1986) firstly points

out that RLIS is incentive compatible when Independence Axiom is assumed. Independence

Axiom says that if one prefers Gamble A to Gamble B, when both gambles mix the same

proportion with a third Gamble C, one would prefer the combination of A and C to B

and C. Independence is one of the fundamental axioms of Expected Utility Theory (EUT).

Later decision models relax such axiom and allow violations of Independence, such as Rank

Dependent Utility Theory (RDU) and Cumulative Prospect Theory (CPT). Therefore, when

RDU or CPT is assumed, RLIS becomes incentive incompatible. It is well-known in the

literature that one round task, where subjects make one decision and get paid by their

choice, is incentive compatible with all the decision models. Harrison and Swarthout (2014)

have shown that when RDU is assumed, the estimation from the data using RLIS is different

from that using one round task. The gap in the literature is that under a multiple round

setting, it’s still mysterious what incentive compatible payoff mechanisms are for the general

risk theories.

In the dissertation, I discuss the incentive compatible payoff mechanisms for general risk

models. The “general” refers to the models where well-behaved (complete and transitive)

1



preference is assumed.

Chapter 1: I propose a new payoff mechanism, which I call “Accumulative Best Choice”

(ABC) design and show that it is incentive compatible with general risk models. I test the

validity of ABC in the lab for both a choice-pattern experiment and a preference estimation

experiment. The data from two experiments show that there is no significant difference for

the choices or the estimates under ABC design and under one round task at 5% level.

Chapter 2: In previous literature, when economists estimate RDU or CPT model,

they use the data generated from the experiments with the incentive incompatible payoff

mechanism. Now, with the ABC design I proposed in Chapter 1, which is incentive

compatible with general risk theories, we can estimate the RDU or CPT models without

the bias from the data generating process. In this chapter, I perform the analysis of the

data from “replicating” Harrison and Swarthout (2014) with ABC design. The data shows

that the ABC treatment generates data with no significant difference compared with one

round task treatment for all six structural models; As long as RDU model is assumed, RLIS

leads to different estimations compared with one round task design. The results from RDU

estimation show that the CRRA parameter is 0.571, and the probability weighting function

is inverse-S shaped. No gender effect has been found in this study.

Chapter 3: I apply the ABC design on the most popular risk attitude elicitation method:

Holt and Laury (2002) (HL) multiple price list design. Such implementation would allow

us to estimate models beyond EUT since ABC is incentive compatible with general risk

theories. The first result is that there’s no significant difference for the choices under the

ABC design and under when subjects choose from one lottery pair only. Then, with data

from the ABC treatment, I estimate the risk preferences with EUT, DU, and RDU models. I

find out that for the HL list, EUT is not a better model than DU, and estimation with RDU

model rejects the linearity in probability. It implies that the HL list offers more information

about probability weighting function rather than the utility function since it only has four

outcomes.

2



On the whole, these three chapters complete my exploration of discovering and applying

the incentive compatible payoff mechanisms for general risk models. That’s also the main

contribution of this dissertation: offering a tool for risk elicitation experiments so that we

can test risk theories or incorporate more risk models in the data analysis without worrying

about the confounding issue of the decision task and the payoff mechanism in the data

generating process.

3



Chapter 1

A New Incentive Compatible Payoff

Mechanism for General Risk Theories:

Theory and Experiments

1.1 Introduction

The ability to elicit risk preferences in an unbiased manner is crucial in general study of

individual behavior. Risk attitude is involved in many economic fields and issues: preferences

over time (Strotz (1955)), auctions (Cox et al. (1982)), tax behavior (Alm et al. (1992)),

searching behavior (Pissarides (1974), Schunk and Winter (2009), Spivey (2010)), health

outcomes (Gafni and Torrance (1984), Anderson and Mellor (2008)), climate change issues

(Leiserowitz (2006)), and agricultural economics (Lusk and Coble (2005)). The most popular

model to describe an individual’s behavior under risk is Expected Utility Theory (EUT),

initially proposed by Bernoulli, and axiomatized by von Neumann and Morgenstern (1944).

One of the key axioms of EUT is the Independence Axiom. It states that if someone prefers

Gamble A to Gamble B, he/she should also prefer the mixture of A and a third gamble C

to the mixture of B and C. Yet many empirical facts have called into question the validity

4



of Independence Axiom. As a result, many decision theories relax the Independence Axiom,

such as Rank Dependent Utility Theory (RDU) (Quiggin (1982)) and Cumulative Prospect

Theory (CPT) (Tversky and Kahneman (1992)).

When experimenters test the behavioral models, one of the most popular payoff mechanisms

they use is called Random Lottery Incentive System (RLIS). Each individual is required to

make choices among lotteries for a multiple-round task. RLIS mechanism states that at the

end of an experiment, one and only one round out of all rounds will be randomly selected as

the paying round. Then subjects get paid by the realized outcome of the lottery they chose

in that round. However, RLIS is only valid when Independence is satisfied (Holt (1986),

Cubitt et al. (1998), Azrieli et al. (2014)). What’s more, evidences from experiments show

that people do respond to variations of payoff mechanisms (Cox et al. (2015)), and lead

to different estimations of risk attitudes (Harrison and Swarthout (2014)). So far, the only

known incentive compatible payoff mechanism for general risk theories is the between-subject

design: to give each individual one round risk task and pay him/her choice1. Economists

expect more and would like to design an incentive compatible way to pay subjects under a

multiple-round setting. Such a question is of fundamental importance since one individual

making multiple choices allows us to do within-subject analysis and thus address a wider

range of questions. For example, in the field of decision theory, taking Allais Paradox as

an example, it is more desirable to see whether one individual makes inconsistent choices

in two lottery pairs. Or, if we want to learn how people update their belief in Bayesian

models, it must be through multiple choices by the same individual. Charness et al. (2012)

argue that between-subject designs are more conservative but with limitations, while within

designs are more attractive but may suffer from confounds.

In this case, the confound is that people may view a payoff mechanism as one part

of the experiment. When experimenters intend to test the model solely, they actually

test the joint effects of the decision tasks and the payoff mechanism. With such confound
1I’m using between-subject design and one round task interchangeably in the paper.

5



detected by previous literature, is it possible to resolve it? Is there a within-subject design

for testing general risk theories? The “general” risk theories in this paper refer to those

with the assumption of complete and transitive risk preferences, which includes the models

mentioned earlier, such as EUT, RDU, Dual Expected Utility Theory (DU, Yaari (1987))

and CPT with fixed reference point. However, the risk theories that allows the violations

of transitivity, such as CPT with endogenous reference point or reference-dependent utility

theory (Kőszegi and Rabin (2006)), regret theory (Bell (1982), Loomes and Sugden (1982))

and disappointment aversion (Bell (1985), Gul (1991)), are beyond the discussion range of

this paper. In this paper, I propose a new payoff mechanism Accumulative Best Choice

(ABC) design and show that it is incentive compatible despite Independence Axiom or

Reduction Axiom are assumed. The ABC design works as follows: In sequential choice

situation, that is, individuals are not informed of all the lottery options beforehand, each

individual’s choice from the preceding round will be carried over to become one of the

accessible lottery options in the following round, and eventually one gets paid by his or her

chosen lottery in the last round (The formal definition will be given in the next section).

Theory tells one story, while behavior may tell a different one. The empirical validity

of the ABC is tested in the paper, too. We should expect to see that it gives us the

same results as the between-subject design. I apply the ABC design on two types of risk

preference elicitation experiments: both a choice pattern experiment (from Cox et al. (2015))

with non-structural estimation and a preference estimation experiment (from Harrison and

Swarthout (2014)) with structural estimation. The key null hypothesis is that individuals’

choices or the estimates under the between-subject design are statistically the same as

under the ABC design. Data from both experiments show that the null hypothesis cannot

be rejected at the 5% significance level.

The contribution of this work is twofold. The first contribution is to show the ABC

design is theoretical incentive compatible; the second is to illustrate its validity in the lab.

Beyond these, it offers broader implications for applied work. Take time preference as an

6



example. Risk preference is embedded in time preference. Inconsistent behavior in elicitation

of time preferences is found to be empirically associated with smoking (Burks et al. (2012)),

BMI (Sutter et al. (2013), Courtemanche et al. (2015)), and credit card borrowing (Meier

and Sprenger (2010)). When measuring the time preferences with monetary rewards, most

studies with incentivized experiments use RLIS payoff mechanism (Tanaka et al. (2010),

Andersen et al. (2008)) and its variations (such as randomly selected one round, and only

partial participants that are randomly selected get paid by their choices of that round (Meier

and Sprenger (2010), Burks et al. (2012)); or randomly selected one round first, and then

whether sooner payment and later payment are paid are independently determined by two

random devices (Andreoni and Sprenger (2012))). With RLIS, the underlying assumption

is the Independence Axiom or Expected Utility Theory. On the other hand, theoretical

literature show that time inconsistent behavior can be explained by non-Expected Utility

models, too (Halevy (2008), Epper and Fehr-Duda (2015)). Adopting the ABC design in

the elicitation procedure allows a richer set of risk decision models. Therefore it could

benefit our understanding of people’s preferences over time and the correlations between

such preferences and the health or financial outcomes.

In the environmental and energy field, Shaw and Woodward (2008) point out why

environmental economists should care about non-expected utility models; Riddel and Shaw

(2006) find evidence with survey data to support non-expected utility models. In the

taxation field, Dhami and Al-Nowaihi (2007) find evidence with simulation data to support

Prospect Theory rather than Expected Utility Theory when explaining the tax evasion

behavior. If economists or policy makers want to examine the issues with non-Expected

Utility Theory and incentivized experimental data, RLIS may mislead since it’s not incentive

compatible with risk theories that violate Independence. They may consider the ABC design

as one of the candidates.

The rest of the paper is arranged as follows: In Section 1.2, I will develop a theoretical

framework. Section 1.3 reports the experimental procedures in detail and displays the results

7



of data analysis. Section 1.4 concludes the paper with some further discussion.

1.2 Theoretical Framework and the Results

An n-round decision making task is defined as: D = {D1, · · · , Dn}, where Di(i =

1, · · · , n) is a collection of some lotteries drawn from a lottery pool L, and the lottery set

L0 in D is finite and predetermined. Subjects are required to choose one lottery for each

Di and their choices are recorded as a choice lottery vector c = (c1, · · · , cn), ci ∈ Di for all

i = 1, · · · , n.

1.2.1 Payoff Rule and Payoff Mechanism

From each individual’s choices c to what he or she eventually gets paid, it is the payoff

rule. We define a payoff rule φ as mapping any (c1, · · · , cn) to a collection of lotteries and

how they associate if more than one lottery is involved.

Suppose a lottery l = (x1, p1; · · · ;xm, pm). Given the nature of the lottery, eventually one

and only one out of x1, · · · , xm will be determined by a random device Ω as the outcome. Ω

determines the realized state of the worlds. We use Ω(l) to represent the realized outcome of

lottery l. Therefore, {Ω(l)} = {x1, · · · , xm}. A payoff rule φ is a mapping from (c1, · · · , cn)

to fφ(Ω1(c1), · · · ,Ωn(cn)), where fφ is a function of how to operate those random outcomes

from all the choice lotteries given that payoff rule φ. For example, flat-pay, if experimenter

informs subjects before they make any decision that they will get paid $10 in total regardless

what they choose (even though $10 with 100% probability may not appear in the decision

problems at all), then fφ = $10. If experimenter pays subjects only their choice in the first

round, then fφ = Ω(c1). Without causing confusion, when paying individuals their choice

lottery of one certain round, that is, fφ = Ω(ci), i = 1, · · · , n, we just use the notation as

φ(c) = fφ = ci.

Another example, fφ = Ω1(c1) + · · · + Ωn(cn), that is, subjects get paid by the sum of
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the outcomes of the choice lotteries of all rounds, and all the outcomes are independently

determined by independent random devices. Another possible way of paying all rounds is

proposed by Cox et al. (2015), what they call “Pay All Correlated”. It is that: after subjects

finish all their choices, first to array the outcomes of each chosen lottery comonotonically

(either all from the worst outcome to the best outcome, or the opposite direction), then

a random device will determine one same state for all the lotteries therefore realize the

outcomes for all the chosen lotteries at the same time. We can use fφ = Ω(c1) + · · ·+ Ω(cn).

There’s no superscription for Ω now. All the outcomes are determined by one common

random device.

fφ also can be a lottery. For example, fφ = (Ω1(c1), 1/n; · · · ; Ωn(cn), 1/n). That is, only

the realized outcome of one choice lottery from all rounds is as the payment. One example of

a complicated payoff rule is randomly selected multiple rounds to pay (Charness and Rabin

(2002)). It could be represented as a grand lottery of fφ = (Ωi(ci) + Ωj(cj) + Ωk(ck), 1/(
n
3 )),

where i 6= j 6= k and (n3 ) is the 3-combinations from an n-element set.

We could also modify fφ to add in the time attribute. Since there are n rounds, there

are (n + 1) time slots in the whole experiment. Extending fφ from a function to an 1 ×

(n + 1) vector can inform when the uncertainty is resolved. For example, compare fφ1 =

(0, · · · , 0,Ω1(c1) + · · · + Ωn(cn)) with fφ2 = (0,Ω1(c1), · · · ,Ωn(cn)). The payoff mechanism

φ1 is that resolving all the choice lotteries at the end of the experiment and paying subjects

the sum of the realized outcomes of all rounds. The payoff mechanism φ2 is that after

subject making each decision, the outcome of the choice lottery in that round is realized,

and eventually subjects get paid by the sum of all the realized outcomes of all the choice

lotteries.

In this framework, φ is a general symbol representing all possible payoff rules. It is

the bridge to connect subjects’ choices to their final payment. In essence, the payment

consists of a collection of lotteries and the procedure of realizations of those lotteries. As

long as the involved lotteries or the operation procedures of paying subjects are different in
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the experiment, we can treat them as different φ. Whether two payoff rules are equivalent

under some assumptions or contexts is beyond the discussion of this article.

Notice that there is an implicit assumption made here. It is assumed the realization of

the random events and the revelation of the results to subjects happen at the same time. It

is not an issue for the experiments of decision tasks under risk, but matters for those under

uncertainty (Baillon et al. (2014)).

We can define a payoff mechanism as (D,φ). If D = {D1, · · · , Dn} are fixed and

exogenously given by experimenters, then subjects’ choice c are independent with D. In

that case, φ, the payoff rule, can refer to the payoff mechanism which is the term well-known

in the literature. If choices c and task D are not independent, the payoff mechanism, the

whole package of (D,φ) tells us how c and D related as well as the payoff rule. We call such

bundle (D,φ) as a payoff mechanism. In previous literature, usually all the lotteries in every

Di (i = 1, · · · , n) in D are treated as fixed and determined by experimenters, therefore, the

only variable is φ in the discussion of the possible payoff mechanisms. In this setup, I only

restrict the lottery set in D, L0 is predetermined. Therefore, when we discuss the payoff

mechanism, we then have one more variable, D, the structure of the tasks, can be changed

as well. Thus, we enlarge the scope of the discussion.

A general experiment can be identified by (L0, D, φ). For every individual, the set of

all lotteries ∪{l|l ∈ {Di},∀i ∈ {1, · · · , n}} = L0 is fixed or predetermined. Compared

with a very close work by Azrieli et al. (2014), the setup is different in this paper. Azrieli

et al. (2014) denote (D,φ) as an experiment. In their settings, all the lotteries in every

Di, i = 1, · · · , n are fixed and determined completely exogenously by experimenters and

are the same across individuals. Under such setting, the incentive compatibility requires

that the payoff mechanism is either one round task only or RLIS when n > 1 with extra

assumption about the preference satisfying compound independence axiom. In my setting, I

include the task structure D as one more variable in the discussion of the payoff mechanism

(D,φ) while allowing dependence between c and D (Only the lottery set of the decision
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problems L0 is predetermined before the decision making process. Two individuals may

not see the same lotteries at the same round, or even not the same subset of L0 for the

whole experiments. However, the sets of the lotteries they meet in the experiment are

totally irrelevant of their choices. See more discussion in Section 1.2.3.). In this sense, the

domain of the payoff mechanism in this paper is more general than that in the previous

literature. Payoff mechanism (D,φ) is given exogenously by the experimenter. Subjects are

also informed of the number of rounds n.

1.2.2 Preferences

After discussing the payoff rule φ and the payoff mechanism (D,φ), let’s turn to the

preferences. Suppose for each individual, one has a binary relation � over the general

lottery pool L, which is complete and transitive, � is the corresponding asymmetric relation.

Such preference � is also known as the “true preference” in previous literature. We use

c∗ = (c∗1, · · · , c∗n) to denote the observed choices we see from the experiments, which is

assumed to be based on the optimization of the payment of the whole experiment φ(c).

C(D,φ,�) = {c∗1, · · · , c∗n} to denote the optimal choice lottery set chosen by the subject

with preference �.

1.2.3 Accumulative Best Choice Design

Cox et al. (2015) categorizes an experiment into two protocols:

• with prior information: each individual is fully informed of all the lotteries in the whole

experiment before they make any decisions, such as multiple price list (for example,

see Holt and Laury (2002));

• with no prior information: each individual is only informed of the lotteries in the past

and the current rounds, they don’t know what lotteries are in the upcoming rounds

(for example, see Hey and Orme (1994)).
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Note that when the protocol is with no prior information, then uncertainty may kick in

since the subjects don’t know what the later lottery options are. Epstein and Halevy (2014)

discuss that one’s uncertainty attitude about how different tasks are related could affect

his or her choices under risk. That’s the reason we must keep L0 predetermined, to let the

subjects know that their choices in earlier rounds have no effect on the lotteries they see in

the whole experiment, even though the lottery order may be different. Thus, we only deal

with risk preferences here.

We now introduce Accumulative Best Choice design formally:

Definition. [Accumulative Best Choice Design]: An payoff mechanism is called Accumulative

Best Choice (ABC) design if it satisfies: (1) it’s conducted with no prior information; (2)

φ(c) = cn; and (3)∀i = 1, · · · , n− 1, ci ∈ Di+1.

1.2.4 Incentive Compatibility

Definition. [Incentive Compatibility] An experiment is (L0, D, φ). For each round i,

ci ∈ C(D,φ,�) if and only if ci � xi,∀xi ∈ Di, i = 1, · · · , n for all well-behaved preferences

�, then we say such payoff mechanism (D,φ) is incentive compatible (IC).2

In words, IC refers to that given a payoff mechanism, for each individual, the choice

bundle of the experiment, where we assume one makes optimization for the whole experiment,

consists of one’s preferred option from their true preference in every round only. From the

definition of IC, we directly derive that if xi, yi ∈ Di with the preference xi � yi, IC requires

that yi /∈ C(D,φ,�).

1.2.5 Propositions

(All the proofs of the propositions are in Appendix A.)
2Relate this definition with close works by Cox et al. (2015) and Azrieli et al. (2014), both of them

use notations of another preference relation �m or �∗ to refer to subjects’ preferences given the payoff
mechanism. Here, I just adopt the notation of choice set to represent it. In essence, they all are equivalent.
Cox et al. (2015) also distinguish strong and weak IC; while in this paper, all IC refers to their weak IC.
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After constructing the framework, the question I would like to answer is that given

preferences only restricted on completeness and transitivity, to ensure incentive compatibility,

what conditionsD,n, φ need to satisfy? One sufficient answer to this question is ABC design.

Proposition 1. ABC design is IC for general risk theories.

There are three features in ABC design: (1) only paying last round, (2) the choices being

carried over; and (3) no prior information. Now, let’s take a look at each feature closely.

Are those three features all necessary for IC condition? What should a general IC payoff

mechanism look like?

Proposition 2. If a payoff mechanism (D,φ) is incentive compatible for general risk theories,

it must have the following three features:

1. (D,φ) is incentive compatible for Round n if and only if φ(c1, · · · , cn) = cn

2. If n > 1, to ensure IC for round i < n , ∀i = 1, · · · , n − 1, there exists some ki, i <

ki ≤ n such that ci ∈ Dki

3. If n > 1, with prior information, an IC payoff mechanism doesn’t exist.

This proposition states that all three features in ABC design are necessary. Part 1 says

if we experimenters want subjects to reveal their true preference in Round n, considering

all the general well-behaved preferences, we have to pay them for their choice in the last

round for sure. The premise of this proposition is not the complete IC condition, but one

necessary part of IC: If subjects reveal their true preference in every round for all n rounds,

they must reveal their true preference in the last round as well.

Based on this part of proposition, we can directly get the following corollary:

Corollary 1. When n = 1, an IC payoff mechanism (D,φ) is that: φ(c1) = c1, c1 ∈ D1.

The between-subject design is incentive compatible for general risk theories.
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Part 2 of Proposition 2 implies that the whole experiment needs to be chained-up. The

choices in previous rounds should be options in later rounds. That’s how we incentivize

subjects to treat unpaid rounds seriously: it is because the choices of unpaid rounds will

affect the options in the paying round. From this condition, we can get the following

corollary:

Corollary 2. If a payoff mechanism (D,φ) is IC, then, with the strategy s∗ = (s∗1, · · · , s∗n)

where s∗i � xi,∀xi ∈ Di, i = 1, · · · , n, then φ(s∗) ∈ d where d = {x : x � y,∀y ∈ D}.

Corollary 2 says an IC payoff mechanism should allow subjects to choose the most

preferred lottery of the whole experiment in the last round if they always reveal their true

preference in every rounds. So far, Part 1, Part 2 and Corollary 2 identify the candidate

of the IC payoff mechanisms family: it is some form of a “tournament”, a tournament of

the lotteries, and subjects get paid for the champion lottery. The intuition is clear: In

order to get paid by the champion lottery in the last round, they have incentive to kick

out the “loser” lotteries in every round. Such family of payoff mechanisms is also payoff

equivalent to single round decision task in which experimenters display all the lotteries at

once and let subjects pick one and pay them their choice lottery. With the single round

task, all the information from observing one individual’s choice is that he or she prefers the

chosen lottery to all the remaining lotteries. When we apply the ABC design and break

the procedure down to multiple rounds, we could get more information. For example, there

are four lotteries in the pool {A,B,C,D} and one’s preference is C � B � A � D. With

one round that showing four lotteries at one time, we’ll observe C is picked. All we can

infer is that C � A,C � B,C � D. If we apply ABC with binary lottery comparison, with

the lottery order of {A,B,C,D}, we can observe subject choosing B,C,C. In this case,

compared to the one-round setting, we have an extra piece of information which is B � A.

Every time subject changes the carried-over lottery, we have some more information about

his or her risk attitude.

The last part of Proposition 2 answers the following question: Will it work for n-round
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decision tasks if subjects are informed of all the lotteries beforehand? And the answer is no.

If they are informed of all the lotteries beforehand, they have the knowledge or information

power to “manipulate” the experiment. I haven’t made any assumptions about the mental

effort cost of making decisions. If such cost exists and one individual can easily identify

the most preferred lottery, then the optimal strategy is to make random choices before the

round in which the most preferred lottery appears and then choose his/her champion lottery

and carry it to the end.

Remark 1. It’s easy to check that ABC design satisfies all three parts of Proposition 2.

However, notice that ABC design is not the sufficient and necessary condition for incentive

compatibility since the way of chaining-up is not unique. The following example provides

another IC payoff mechanism but not the ABC design.

Example 1. There is a 4-round experiment. Lotteries are {A1, B1, A2, B2, A3, B3} and

there’s strict first order stochastic dominance relations between them: A3, B3 are strictly

better than A2, B2, and A2, B2 are strictly better than A1, B1. Use ci, i = 1, 2, 3, 4 to record

subjects’ choices. An IC payoff mechanism but not a ABC design can be as: (1) it’s under

with no prior information; (2) φ(c1, · · · , c4) = c4; (3) Di = {Ai, Bi} for i = 1, 2, 3,and

D4 = {c1, c2, c3}.

However, when the dominance relations break down, such payoff mechanism can be

problematic. If A1 is the most preferred lottery and appears in Round 1, then one individual

can choose A1 in Round 1, then randomly choose in Round 2 and 3, and choose A1 in Round

4 again and get paid by A1.

Besides no restriction on the domain on the theoretical side, ABC has another appealing

feature on the empirical side is its easiness to explain. The intuition with the “tournament”

metaphor is also easy for subjects to understand. In the following section, I conduct the

experiments that apply the ABC design. The instruction is in the Appendix. In both

experiments, only 1 subject seemed confused and carried over the Option A in his/her first
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round to the very end and violated first order stochastic dominance 6 times. All others

violated first order stochastic dominance no greater than three times.

To briefly summarize this section, we have three necessary conditions for a potential IC

payoff mechanism for general risk theories: (1) Experimenters only pay individual’s choice

of the last round; (2) The whole experiment needs to be chained-up; and (3) It must use the

protocol with no prior information. Also, I propose one payoff mechanism, the ABC design

and show it is sufficient for the incentive compatibility condition. In the next section, I will

discuss the empirical test of ABC design.

1.3 Empirical Validity of the ABC Design

Harrison and Swarthout (2014) argue that studying choice patterns and the preference

estimation approach are complementary to each other. In the two recent literature of

discussing payoff mechanism issues, Cox et al. (2015) use the choice pattern design, preferred

in testing for the violations of certain properties, such as Common Consequence Effect,

Common Ratio Effect (violations of Independence Axiom), as they focus on choices behavior

in certain lottery pairs. Harrison and Swarthout (2014) adopts Hey and Orme (1994)’s

approach: There are no real “trip wire” pairwise lotteries, and economists mainly rely on

econometric techniques (specifically conditional maximum likelihood) to infer the preferences.

To thoroughly examine the ABC design, I adopt both methodologies and conduct both

experiments from Cox et al. (2015) and Harrison and Swarthout (2014) (same lotteries,

same ways of lottery representations, same show-up fees) with ABC design procedure. Both

papers have the one round task data, which I will use to compare my ABC design data with.

In both experiments, the null hypothesis is: The choices or the estimates under ABC design

are the same as those under between-subject or one round task design. If ABC works, then

such null hypothesis should not be rejected.

The applications of ABC design for these two types of experiments are a little different.
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In Hey and Orme (1994) or Harrison and Swarthout (2014) type, there are no restrictions

on that one lottery must have its own counterpart. Therefore, to apply ABC design, we

can simply randomize the order of the lotteries beforehand, and carry subjects’ most recent

choice over to the next round. However, to apply ABC design in Cox et al. (2015) such

choice pattern type of experiment is a little tricky. Each lottery has its own counterpart, and

only comparisons within some certain lottery pairs are meaningful for detecting violations

only. However, in ABC design, current round choice is carried over to the next round.

So the question is, how can we get subjects’ choices for certain pairs of lotteries if we

don’t know their preferences beforehand? For this, I will assume that a lottery that is first

order stochastically dominated is not chosen. Details on how to use first order stochastic

dominance relations as bridges in choice pattern experiment are provided below.

1.3.1 Experiment I: Choice Pattern Experiment (non-structural)

Lottery Pairs

Cox et al. (2015)’s five lottery pairs allow us to directly observe the Common Ratio

Effect (CRE), Common Consequence Effect (CCE), Dual CRE and Dual CCE therefore the

violations of Independence Axiom (or EUT) or Dual Independence Axiom (or DU). They

use the same lottery pairs under different payoff mechanisms. One of their treatments uses

between-subject design: each individual is randomly assigned one of the five pairs, makes

one choice and gets paid for that choice. This treatment is their baseline, the gold standard

among all payoff mechanisms.
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Table 1.1: Lottery Pairs in Experiment I

Pair Less Risky (S) More Risky (R)

1 ($0, 0.75; $3, 0.25) ($0, 0.8; $5, 0.2)

2 ($6, 1) ($0, 0.2; $10, 0.8)

3 ($0, 0.75; $6, 0.25) ($0, 0.8; $10, 0.2)

4 ($6, 0.25; $12, 0.75) ($0, 0.05; $10, 0.2; $12, 0.75)

5 ($18, 1) ($12, 0.2; $22, 0.8)

Another feature of their lottery pairs is that between S (Safer) lotteries and between R

(Riskier) lotteries in different pairs, there are lotteries that are strictly first order stochastic

dominance related (S5 �SD S4 �SD S2 �SD S3 �SD S1, and R5 �SD R4 �SD R2 �SD

R3 �SD R1). Such first order stochastic dominance is the crucial feature to get the paired-up

lottery choices (S1 vs R1,...,S5 vs R5) through ABC design procedure.

ABC Design Experiment Procedure

The desirable comparisons are between Si and Ri as shown in Table 1.1. Recall that

ABC design carries over only the chosen lottery in a given round to the following round,

therefore we cannot ensure that Si and Ri are feasible in the same round. The key to make

it happen is the first order stochastic dominance. In my design, an individual who satisfies

the first order stochastic dominance will face lotteries Si and Ri i = 1, · · · , 5 at some round.

Since there are 5 S lotteries and 5 R lotteries, therefore 10 lotteries in total and the ABC

design needs 9 rounds.

For easier description, let’s switch the orders of lotteries in Pair 2 and Pair 3. That is,

define S ′2 = S3, R
′
2 = R3, S

′
3 = S2, R

′
3 = R2, and S ′i = Si, R

′
i = Ri for i = 1, 4, 5. Then we

have S ′5 �SD S ′4 �SD S ′3 �SD S ′2 �SD S ′1, and R′5 �SD R′4 �SD R′3 �SD R′2 �SD R′1. The

procedure goes like this:
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Figure 1.1: Complete Path of Experiment I with ABC design

• Step 1: In Round 1, each individual faces {R′1, S ′1}, and makes their choice c1 ∈

{R′1, S ′1};

• Step 2: In Round 2, if a subject chooses R′1 in Round 1, then he/she will face {R′1, R′2}

(R′1 is carried over from Round 1); if a subject chooses S ′1 in Round 1, then he/she

will face {S ′1, S ′2} (S ′1 is carried over from Round 1). It is shown in Figure 1.1 as the

procedures between Round 1 and Round 2.

Since R′2 �SD R′1, S
′
2 �SD S ′1, if a subject follows first order stochastic dominance,

then c2 = S ′2 if one faces {S ′1, S ′2}, and c2 = R′2 if one faces {R′1, R′2}. It is shown in

Figure 1.1 as the red arrows between Round 2 and Round 3.

• Step 3: In Round 3, if a subject chooses c2 = R′2, then he/she will face {R′2, S ′2} (R′2
is carried over from Round 2 and S ′2 is the new added option); if a subject chooses
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c2 = S ′2, then he/she will face {S ′2, R′2} (S ′2 is carried over from Round 2 and R′2 is the

new added option). So no matter what subjects choose in Round 1, S ′1 or R′1, as long

as they satisfy first order stochastic dominance, they face S ′2 and R′2 in Round 3.

• Step 4: In Round 4, subjects are divided into two paths again based on their choices

in Round 3, either S ′2 or R′2. If c3 = S ′2, then one will face {S ′2, S ′3}; if c3 = R′2, then

one will face {R′2, R′3}, as shown in the procedures between Round 3 and Round 4 in

Figure 1.1. And so on and so forth...

If individuals always follow first order stochastic dominance, their behavior can be

represented by the red paths in Figure 1.1. In even rounds, they make choices between two

lotteries that are ordered according to the first order stochastic dominance; in odd rounds,

they make choices between Si and Ri. If they don’t follow first oder stochastic dominance,

they still will meet the same all 10 lotteries through 9 rounds of the ABC design (see the

black arrow paths in Figure 1.1, as well as the mathematical expressions in Appendix C).

The subjects were all undergraduates from Georgia State University. I recruited 49

subjects from the same population in June 2015, and conducted ABC design using the

same lottery pairs. There were 10 lotteries, therefore in ABC design there were 9 rounds.

Subjects were informed that the choice they made in previous round will be carried over to

the next round, and they would be paid for their last choice. They were also informed why

choosing their preferred lottery in every round is the dominant (best) strategy (see subject

instruction in Appendix B for detail). I adopted the same strategy as Cox et al. (2015)

did. No show-up fee was offered. Instead, after subjects finish all their choices, I announced

that I would like to pay them $5 (the same amount as in Cox et al. (2015)) for completing

a demographic survey. The experiment was conducted with ZTREE software (Fischbacher

(2007)).
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Data Results

The byproduct of this design is that we can test whether first order stochastic dominance

is violated. The data shows that only 3 (out of 49) subjects made choices that violate first

order stochastic dominance. If subjects don’t follow such dominance assumption, they will

miss the paired-up lottery comparisons, therefore their choices are excluded in the following

analysis.

The null hypothesis is:

Hypothesis 1. The choices come from the same population under one round task design

and under ABC design.

If ABC design works, we expect that such null hypothesis is not rejected. The results

are displayed in Table 1.2 and 1.3. (The data of One Round and RLIS are from Cox et al.

(2015).)

Table 1.2: Proportions of Choosing Risker Lottery in Experiment I

One Round ABC RLIS

(Baseline) no prior info. with prior info.

All Pairs: R
R+S

% 71.43 (231 obs) 75.22 (230 obs) 55.50 (40 obs) 61.50 (40 obs)

Pair 1: R
R+S

% 60.53 (38 obs) 78.26 (46 obs) 62.50 (40 obs) 72.50 (40 obs)

Pair 2: R
R+S

% 84.48 (58 obs) 78.26 (46 obs) 55.00 (40 obs) 50.00 (40 obs)

Pair 3: R
R+S

% 72.41 (58 obs) 76.09 (46 obs) 52.50 (40 obs) 57.50 (40 obs)

Pair 4: R
R+S

% 71.05 (38 obs) 69.57 (46 obs) 67.50 (40 obs) 77.50 (40 obs)

Pair 5: R
R+S

% 61.54 (39 obs) 73.91 (46 obs) 40.00 (40 obs) 50.00 (40 obs)

In both tables, the key variable is the proportion of R Choices in all pairs (overall risk

tolerance) or within each pair (violations). Table 1.2 shows that in the sense of being close

to the baseline, except for Pair 1, the ABC design outperforms both versions of RLIS (with
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Table 1.3: Test Results for Experiment I

One Round ABC p-value
T-test Pearson Test

All Pairs: R/(R+S)% 71.43 (231obs) 75.22 (230obs) 0.359 0.358
95% CI (T-test) [65.56, 77.30] [69.60, 80.84]

Pair 1: R/(R+S)% 60.53 (38obs) 78.26 (46obs) 0.079∗ 0.077∗
95% CI (T-test) [44.24, 76.81] [65.88, 90.65]

Pair 2: R/(R+S)% 84.48 (58obs) 78.26 (46obs) 0.420 0.415
95% CI (T-test) [74.88, 94.09] [65.88, 90.65]

Pair 3: R/(R+S)% 72.41 (58obs) 76.09 (46obs) 0.675 0.671
95% CI (T-test) [60.56, 84.27] [63.28, 88.89]

Pair 4: R/(R+S)% 71.05 (38obs) 69.57(46obs) 0.884 0.882
95% CI (T-test) [55.95, 86.16] [55.75, 83.38]

Pair 5: R/(R+S)% 61.54 (39obs) 73.91(46obs) 0.227 0.222
95% CI (T-test) [45.56, 77.52] [60.73, 87.10]

T-test refers to the two-sided T-test. * p < 0.1; ** p < 0.05; ***p < 0.01

and without prior information). Table 1.3 shows the statistical test results of the choice

differences between One Round and ABC treatments. We can see that for two-sided T test

or Pearson test, the p-value of Pair 1 is significant at 10% level but not at 5% level, and

all other p-values are not significant.3 Therefore, the null hypothesis cannot be rejected at

5% significant level. In other words, ABC design works empirically for this choice pattern

experiment.

1.3.2 Experiment II: Preference Estimation Experiment (structural)

Lotteries and ABC Design Experiment Procedure

In the setting of Harrison and Swarthout (2014), there are 69 lottery pairs. Those pairs

consist of 38 different lotteries (see Appendix D for the lottery list). The ABC design

with those 38 lotteries is conducted as the follows: the orders of lotteries are independently

randomized for each subject beforehand. Subject’s choice in the preceding round will be
3Proportion test gives qualitative the same result.
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carried over to the following round, and eventually one gets paid for the realized outcome

of the chosen lottery of the last round.

There were 20 rounds in the experiment. The experiment was conducted in July 2015

and April 2016. The subjects were all undergraduates from Georgia State University. 51

subjects participated in the experiment. So in total there were 1020 observations. To get

better comparisons with Harrison and Swarthout (2014), I adopted their $7.50 show-up fee

and used pie representations of lotteries as they did. The experiment was conducted with

ZTREE software(Fischbacher (2007)).

Data Results

Among those 38 lotteries, some are first order stochastically dominated by others. Therefore,

it is possible that subjects see such dominance pairings in some rounds. Even though first

order stochastic dominance is not required when analyzing the data, it can be used to check

whether subjects understand the ABC design procedure. For example, one subject kept

the same option for all 20 rounds, and violated first order stochastic dominance 6 times. I

treat this subject as not understanding the procedure. And each of the rest of 50 subjects

violates first order stochastic dominance for no more than 3 times. Therefore, after excluding

that individual, I have 50 × 20 = 1000 observations. Out of 1000 observations of binary

lottery pairs, 762 pairs have dominance relations. In total, all 50 subjects violated first order

stochastic dominance for 19 times.

The data set consists of the ABC design data (1000 observations) with one round task

data (75 observations) from Harrison and Swarthout (2014). Following their non-parametric

estimation approach (as well as Hey and Orme (1994) andWilcox (2010)), in the EUTmodel,

assume

U($5) = 0, U($10) = u10, U($20) = u20, U($35) = u35, U($70) = 1
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and in RDU model, assume more probability weighting parameters as:

ω(0) = 0, ω(1/4) = ϕ1/4, ω(1/2) = ϕ1/2, ω(3/4) = ϕ3/4, ω(1) = 1

(Please see Harrison and Rutström (2008) or Appendix F for details on the estimation

methods).

The key parameter in testing whether ABC design works is the binary dummy variable

“pay1” (to keep the same variable name with the original paper). The “pay1” dummies

equal to 1 for the one round task treatment, and equal to 0 for the ABC design. So the key

hypotheses is that:

Hypothesis 2. The estimated coefficients for the variables “pay1” are not significantly

different from 0.

The full estimation result table is in Appendix G. The data show that there’s no

significant effect of “pay1” under both models. Overall, according to χ2 test, in EUT

model, there’s no significant effect of treatment for utility weighting (The null hypothesis

is that the dummy variables “pay1” equal to 0 for u10, u20, u35 and µ jointly, χ2 = 2.06,

and Prob> χ2 = 0.725.) In RDU model, there’s no significant effect of treatment for the

utility weighting (χ2 = 0.91, and Prob> χ2 = 0.823), and for the probability weighting

(χ2 = 3.81, and Prob> χ2 = 0.282 ). Across all coefficients including the noise µ χ2 = 6.74,

and Prob> χ2 = 0.456.

In summary, all estimates of the “pay1” dummy variables are insignificant. Hypothesis

2 cannot be rejected.

1.4 Conclusion and Discussion

With this chapter, I ask the question that other than the between-subject design, whether

it is possible to find an incentive compatible payoff mechanism for general risk theories. One
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answer is the Accumulative Best Choice design I proposed in the paper: Subjects are not

informed of all the lotteries in the experiment beforehand, their choice from the preceding

round will be carried over to the following round as one of the lottery options, and eventually

they get paid for their choice in the last round. I defined incentive compatibility and assumed

preferences only restricted on well-behaved-ness, I derive three necessary conditions for a

“proper” payoff mechanism for testing general risk theories: (1) experimenters must only

pay subject’s last choice; (2) the whole experiment needs to be chained-up, and (3) the use

of no prior information protocol.

The intuition behind these conditions rests on avoid wealth effect and/or portfolio effect,

requiring that experimenters pay the choice of one certain round. However, it’s impossible

to incentivize subjects for the rounds after the paying round, so the paying round has to be

the last round. On the other hand, we must find a way to incentivize subjects for the rounds

before the last; choices from the previous rounds must have some forms of connections to

the options of the last round. Thus, the whole experiment needs to be chained-up. Even

though the current choice is not paid, since one’s choice now affects the options one sees at

the paying round, subjects have an incentive to treat the current round seriously. In other

words, such incentive compatible payoff mechanisms require that the decision tasks cannot

be totally exogenous even though the lottery set is exogenous and fixed.

The “chaining-up” idea is not new in preference elicitation experiment. The Trade-off

(TO) method, first proposed by Wakker and Deneffe (1996) and used in many following

experiments (for example, see Abdellaoui (2000)) is an alternative way of chaining up the

experiment. TO method consists of several stages. At Stage i, each individual is asked

to elicit the prize xi to make lottery (xi, p; r, 1 − p) and (xi−1, p;R, 1 − p) indifferent for

them, where p, r, R are fixed and given exogenously by experimenters, and xi−1 is elicited

by subjects themselves in Stage i − 1 (with x0 = 0 for i = 1). Compared to certainty

or probability equivalent methods, the advantage of TO method is to elicit utility values

without assuming whether subjects weighting probability or not. However, such method
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is not incentive compatible. In Wakker and Deneffe (1996)’s experiment, all the questions

are hypothetical, which cannot make sure subjects truthfully reveal their preferences. In

Abdellaoui (2000)’s experiment, one of six elicitation values (xi(i = 1, · · · , 6)) in the

gain domain is randomly selected to pay. Such payoff mechanism incentivizes subjects

to overstate all xi(i = 1, · · · , n) in order to gain higher monetary payment (Harrison and

Rutström (2008)). In TO method, subjects can construct their own lotteries. With the

ABC design, they do not state any numerical values. The lottery set is fixed and given by

experimenters. In this regard, subjects cannot control the lottery options they meet in the

experiment.

I show that the ABC design is theoretically incentive compatible and tested it empirically

in the lab. The data from both one choice pattern experiment (Experiment I) (Cox et al.

(2015)) and one preference estimation experiment (Experiment II) (Harrison and Swarthout

(2014)) show that there are no significant differences between the choices under one round

task design and under the ABC design.

In Experiment I, the implementation of the ABC design takes advantage of first order

stochastic dominance relations. It is “path dependent” in the sense of that subjects may face

different orders of the lotteries due to their choices. But at the end, the whole lottery set they

see in the experiment is fixed. Each individual has encountered choices for every required

lottery pair if their behavior follows first order stochastic dominance. The implementation is

easier in risk preference elicitation exercises. In Experiment II, with adoption of econometric

techniques, lotteries are not required to be paired-up in a certain way to make inference

about risk preferences. In this scenario, to apply ABC design we can just predetermine a

random order of the lottery set and subjects’ current choice will not affect the order of the

lotteries they see in the future.

How applicable the ABC design is for the decision tasks under risk? From Experiment

I and II, we know that the ABC design can be applied to the experiments that test the

paradoxes if there exists first order stochastic dominance between different lottery pairs,
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as well as those that estimate the risk preferences when it mainly relies on econometric

techniques and no certain lottery pairs need to be paired-up.

Now that we have an incentive compatible payoff mechanism for general risk theories,

then it can be linked immediately to the research questions: (1) Test of the ABC design

with more evidence; (2) Unbiased estimation of people’s risk attitude; (3) Can the ABC

design be applied to other types of experiment under risk, such as the multiple price list?

These three questions are answered in the later two chapters.

Some other open questions are: (4) Is the ABC design incentive compatible for general

uncertainty models? (5) Are other incentive compatible payoff mechanisms for risk and

uncertainty different from one round or ABC design? The second line of my research focuses

on the empirical studies. I’d like to revisit using risk preferences elicited with the ABC design

to understand behavior in other fields, such as health outcomes, tax compliance and credit

card savings. These questions are on my current research agenda.
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Chapter 2

Estimating Structural Risk Models with

a New Incentive Compatible Payoff

Mechanism

2.1 Introduction

Expected Utility Theory (EUT) has been the most popular model to explain behavior

under risk since Bernoulli firstly used the transformations of prizes to solve the St. Petersburg

Paradox in the 18th century. However, since the mid-1900s, more and more evidence have

been found that people violate EUT sometimes, such as Allais (1953) Paradox. Alternative

non-EUT models have popped up from then with introducing probability weighting function

along with the utility function. Nowadays, some alternate popular non-EUT models are:

Rank Dependent Utility Theory (RDU, Quiggin (1982)), Cumulative Prospect Theory

(CPT, Tversky and Kahneman (1992)), Dual Expected Utility Theory (DU,Yaari (1987)).

However, almost all the estimations of non-EUTmodels suffer the bias from data generating

process – the incentive incompatibility between the non-EUT model and Random Lottery

Incentive System (RLIS) as the payoff mechanism in the experiments. RLIS refers to the
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payoff mechanism that when an individual finishes all the decisions, one of the decisions will

be randomly selected as his or her payment. As firstly pointed out by Holt (1986), RLIS

is incentive compatible with models having linear probability, the EUT model. Cox et al.

(2015) show that people do respond to different payoff mechanisms. Further later, Harrison

and Swarthout (2014) use structural models to estimate risk preferences. They find out

that when RDU is assumed, the estimation from RLIS data is significantly different from

the one round task data. One round task refers to the payoff mechanism that subjects are

only given one round of decision task and get paid by their choices. It’s incentive compatible

with all the theories and therefore is the gold standard.

My contribution in this chapter is first to use an incentive compatible payoff mechanism

to estimate the parametric RDU models when the decision task involves more than one

round. In the last chapter, I proposed a new payoff mechanism, which I called Accumulative

Best Choice (ABC) design. I have shown that it’s incentive compatible with general risk

theories that assume well-behaved risk preferences. ABC works in the following way: In the

decision experiment under risk, each subject is not informed of all the options beforehand;

one’s choice from the previous round is carried over to the following round to become one of

the options; eventually each subject gets paid by their choice in the last round. By applying

ABC with the experiments in Cox et al. (2015) and Harrison and Swarthout (2014), I

compare the choices under ABC with those under one round task in the original papers.

The data from both experiments show that I cannot reject the null hypothesis that the

choices under ABC and one round task are the same at 5% significance level. Now, the next

question is: what can we tell now about risk preference? That’s the theme of this chapter.

Following the methodology of series papers by Glenn Harrison and his coauthors (Harrison

and Rutström (2008, 2009), Harrison and Swarthout (2014), Andersen et al. (2008)), I will

use the data under ABC design to estimate parametric models, both EUT and RDU.

The rest of this paper arranges as the following: Section 2.2 will review the models and

methodology of structural estimation; Section 2.3 will show the results of multiple structural
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models; Section 2.4 is conclusion and discussion.

2.2 Structural Estimation Methodology

2.2.1 Models

This section reviews the models and the estimation methodology (see more details in

Harrison and Rutström (2008)). I choose the two most popular models in the field of

risk as my candidates for estimations: Expected Utility Theory (EUT, von Neumann and

Morgenstern (1944)) and Rank Dependent Utility Theory (RDU, Quiggin (1982)).1

To avoid complication, all the lottery options in this paper are simple lotteries. Suppose

a lottery l has series of prizes (x1, · · · , xm)(xi ≥ 0, ∀i = 1, · · · ,m, x1 ≤ x2 ≤ · · · ≤ xm) over

the probability distribution (p1, · · · , pm)(0 ≤ pi ≤ 1,
∑
pi = 1, i = 1, · · · ,m). That is, the

lottery has probability pi to win the prize xi(i = 1, · · · ,m). Those m events are exclusive

and exhaustive.

Expected Utility Theory tells us that the utility of the lottery l is calculated as:

EU(l) = p1u(x1) + · · ·+ pmu(xm)

If we want to calculate the utility of l according to Rank Dependent Utility Theory, first

we need to find out the weighted accumulative probability: w(pm), w(pm+pm−1), · · · , w(pm+

· · · + p1))(0 ≤ w(.) ≤ 1, w(0) = 0, w(1) = 1, w(a) ≥ w(b) if a ≥ b). The next step is to

calculate decision weight: wi = w(pm + · · · + pi) − w(pm + · · · + pi+1),∀i = 1, · · · ,m.

Eventually, Rank Dependent Utility of the lottery l is calculated by:

RDU(l) = w1u(x1) + · · ·+ wmu(xm)

1Cumulative Prospect Theory (CPT,Tversky and Kahneman (1992)) under the gain domain is identical
to RDU model.
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In the non-parametric models, those u(x) andW (p) are the numbers we need to estimate;

in the parametric models, u(x) and w(p) can be calculated from the assumed functions, such

as power function, the parameters in the assumed functions are what we’ll estimate then.

This paper focuses on the parametric estimation.

2.2.2 Structural Functions

Utility Functions

I adopt two utility functions: the simple CRRA function and a more general function:

Expo-Power(EP) function (Saha (1993)), which includes CRRA and CARA as its special

case. To be specific,

CRRA function: u(x) =
x1−r

1− r

Following Holt and Laury (2002),

EP function: u(x) =
1− exp(−αx1−r)

α

When α goes toward 0, Expo-Power reduces to CRRA.

Probability Weighting Functions

I also consider two probability weighting functions here: the single-parameter Tversky

and Kahneman (1992)’s inverse-S function, and the two-parameter Prelec (1998) function.

TK function: w(p) =
pγ

[pγ + (1− p)γ]1/γ

Prelec function: w(p) = e−η(− ln p)σ

When σ = 1, it collapses to the power function w(p) = pη.

So in total, to consider the single models, I have 2 EUT models (CRRA, EP) and 4 RDU
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models (CRRA&TK, CRRA&Prelec, EP&TK, EP&Prelec).

2.2.3 Structural Estimation Methodology

Same as Chapter 1, the estimation methodology follows Harrison and Rutström (2008).

Please see detail in Appendix F.

2.3 Estimation Results

The lottery options are from Harrison and Swarthout (2014), which consists of 38

different lotteries (see Appendix for the whole list of lotteries). All the lotteries have 5

possible prizes ($5, $10, $20, $35, $70) and 5 possible probabilities (0, 0.25, 0.50, 0.75, 1).

There were 20 rounds in the ABC treatment. For each individual, 21 lotteries were

randomly drawn from those 38 lottery pool before they make any choices (independently

drawn for each subject). In each round, they chose one to keep between the two lotteries.

The lotteries are displayed as the pie chart (same as the original paper).Their choice from

preceding round was carried over to the following round to become one of the options, and

they got paid for their choice in Round 20. One’s payment was determined by rolling dices

themselves plus $7.50 show-up fee (the same setting as the original paper). I conducted the

experiment in the ExCEN lab at Georgia State University, with all the subjects Georgia

State undergraduates. 51 subjects completed the task. One subject always chose the same

option for 20 rounds, and eventually violated first order stochastic dominance 6 times during

the 20 rounds, therefore I treat him/her as the confused subject and exclude him/her from

the following analysis.

In Harrison and Swarthout (2014), they have the 1-in-1 treatment, that is, subjects only

have 1-round decision task, and get paid for their choice, that is, one round task; and 1-in-30

treatment, which is, subjects have 30-round decision task, and get paid for one of their

choices randomly selected from those 30 choices, that is, RLIS treatment. Combining my
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treatment ABC data with the one round data and RLIS data from Harrison and Swarthout

(2014), I’m able to show more in-depth analysis about the payoff mechanisms as well as the

risk attitudes.

Table 2.1: Data Summarization

Treatment Subjects Observations

One Round Task 75 75

RLIS 208 6240

ABC 50 1000

2.3.1 The comparisons between ABC, One Round Task and RLIS

One round task is the gold standard for testing all payoff mechanisms since it’s always

incentive compatible. To check the effects of different payoff mechanisms, we can add

treatment dummies for each estimated coefficient to check whether it’s significantly different

from 0. Table 2.2 gives out the summarized results (see Appendix H for the full results.)

There’s no significant difference for all 6 structural models between ABC treatment and

one round task treatment. ABC and RLIS are not significantly different under EUT with

EP utility function and different for the rest models. RLIS and one round task are not

significantly different for EUT models, but different for all RDU models.

The most important general result is that ABC passes further tests of parametric

estimations besides the nonparametric estimations as shown in the first chapter. The one

round task dummies are not significantly different from 0 in the second half of the table

when EUT is assumed, which are consistent with the theoretical derivation that RLIS is

incentive incompatible with EUT.
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Table 2.2: Payoff Mechanism Effects

Treatment Dummy
EUT RDU

CRRA EP CRRA&TK CRRA&Prelec EP&TK EP&Prelec

ABC
one round

RLIS *** *** *** *** ***

RLIS
one round *** *** ** ***

ABC *** *** *** *** ***

Note: star refers to the significance of the p-value of the joint F-test for all the treatment dummies in each model.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

2.3.2 Risk Preference with Allowance for Heterogeneity

From previous section we can claim that at least we find no evidence to against the

ABC when we apply EUT or RDU models. So the next question is, what’s the risk attitude

estimated with the ABC treatment? Table 3 shows the estimated parameters of the six

structural models.
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Table 2.3: Estimated Parameters for Single Models

Expected Utility Models Rank Dependent Utility Models

CRRA EP CRRA&TK EP&TK CRRA&Prelec EP&Prelec

r 0.724∗∗∗ 0.865∗∗∗ 0.571∗∗∗ 0.793∗∗∗ 0.579∗∗∗ 0.787∗∗∗

α -0.679∗∗ -0.559∗ -0.542∗∗

γ 0.832∗∗∗ 0.829∗∗∗

η 0.965∗∗∗ 0.979∗∗∗

σ 0.809∗∗∗ 0.801∗∗∗

µ 0.426∗∗ 0.105 0.675∗ 0.205∗ 0.659 0.212

H0 : γ = 1 (p-value) 0.0183∗∗ 0.0190∗∗

H0 : η = 1, σ = 1 (p-value) 0.0842∗ 0.0755∗

Log lik. -187.64651 -187.62716 -185.1809 -185.11597 -185.28842 -185.22123

N 1000 1000 1000 1000 1000 1000

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

From Table 2.3, we can see that the parameter r is greater than 0 for all models,

which indicates people are risk averse. All the models show the concavity of the utility

function. r in EUT(CRRA) is higher than that in RDU(CRRA&TK, CRRA&Prelec). When

incorporating probability weighting, the degree of risk aversion on the utility side decreases.

For the RDUmodels with both TK and Prelec probability weighting functions, we reject that

the probability is linear (see H0 hypothesis test results in Table 2.3). Akaike Information

Criterion (AIC) value (Akaike (1974)) has been used to do the model selection for decision

models (for example, Carbone and Hey (2000), Buschena and Zilberman (2000)). In this

case, The CRRA&TK has the lowest AIC value, which indicates it’s the most preferable

model among these six models. γ = 0.83 shows that it’s an inverse-S function: people

over-weigh low probability and under-weigh high probability. Comparing the results with

the data under RLIS, from Appendix H, we can see that both r and γ are significantly

higher under RLIS.

Also, we can include some demographic dummy variables: female (=1, if female; =0,
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if male), black (=1, if black; =0 if non-black), age21 (=1, if age>21; =0, if age≤21),

busiecon (=1, if major in Business or Economics; =0, if major in other fields), birthorder

(=1, if being the oldest child; =2, if being the middle child; =3, if being the youngest child;

=4, if being the only child.) The full results are shown in the appendix.

One interesting finding is that the joint F-test (χ2 test) for the female dummies in each

model is not significant. Contradicting to most literature that find there’s gender difference

in risk preference, there’s no gender difference detected in this study.

2.3.3 the Efficiency of the ABC Design

I would like to mention more about the efficiency of ABC design. In conventional

risk experiments, all the lottery pairs are given exogenously by experimenters. Because

of the feature of ABC design that subjects can carry over their choice to the next round,

experimenters lose some control over the lottery pairs they would like subjects to compare.

For example, in the original experiment I “replicate”, Harrison and Swarthout (2014), for each

of their 69 lottery pair, there’s no first order stochastic dominance (FOSD) relations between

the two lotteries. The “problem” of FOSD is that the data in FOSD pairs being “useless”.

Most decision models satisfy FOSD assumption (There are exceptions though, for example,

Prospect Theory with variable reference point model). If we observe a subject choose the

dominant lottery in the FOSD pair, then we don’t have useful information to infer which

model fits the data better since all of the models fit. If one has an experiment consisting of

10 binary lottery choices, with 9 of them being FOSD pairs, then such experiment is very

inefficient.

In the ABC treatment in this experiment, out of 1000 observations, 762 pairs of lotteries

exist first order stochastic dominance relations. Therefore, the inferences with the real

“useful” data are from the rest 238 binary lottery pairs. This is the case where I assign

the lotteries totally random from the lottery pool. Of course, one could partially control

the lottery selection. For example, based on the rank of expected value (EV), we could
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categorize the lotteries into three subsets “low EV”, “mid EV” and “high EV”. We could

randomize the lotteries within each subset, and start from “low EV”, then to “mid EV” and

at last go to “high EV”. In that way, it will prevent some cases such as the high EV lotteries

appear at the very beginning, and then most of the rest of the experiments are all FOSD

pairs. Or, one could fully control the order of the lotteries. Another way is that one could

select the lottery pool such that there are no two lotteries in the set having FOSD relations.

2.4 Conclusion and Discussion

Two main results can be drawn from this paper: First, the ABC design passes the

tests of parametric structural models. There are no significant differences found between

ABC and one round task. Second, RDU is unbiasedly estimated for the first time from the

data generating process under a multiple-round decision task setting. The results show the

concave utility curve and the inverse-S shaped probability weighting curve. No gender effect

has been found.

From the estimation results, we do see that the estimations with RDU models are

significantly different compared RLIS treatment with both One round task and ABC treatment.

The impact of this payoff mechanism effect may spread beyond the decision theory studies.

More and more studies introduce non-EUT model and probability weighting into empirical

micro studies, such as Wakker and Stiggelbout (1995), Bleichrodt and Pinto (2000), Jones

et al. (2006). The lesson from this paper is that we need to make sure what we measure

is what we intend to measure. If the payoff mechanism, is not incentive compatible with

our assumed model, then the data generating process itself may sabotage the validity of the

data.
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Chapter 3

When Multiple Price Lists Meet General

Risk Theories

3.1 Introduction

Among various risk elicitation methods with economic experiments, Holt and Laury

(2002) (henceforth HL) design is the most popular one.1 The original HL design, proposed

in Holt and Laury (2002), is shown in Table 3.1. Ten pairwise lotteries are arrayed and

displayed in a table, known in the literature as “multiple price list”. In each of the ten rows,

the pair of lotteries, Option A and Option B, have the same probabilities for events with

“good” and “bad” outcomes. All the Option As in the table share the same payoff amount

of “good” and “bad” outcomes; similarly for Option Bs. Down the list, the probability of

the “good” outcome increases, and therefore the probability of the “bad” outcome decreases.

Subjects are required to make a choice between Option A and Option B for each row. Each

subject gets paid for one decision randomly selected from all decisions, a payoff mechanism

also well-known as Random Lottery Incentive System (RLIS).
1Up to Mar. 27 2016, citation of Holt and Laury (2002): 3474, Binswanger (1980, 1981) Eckel and

Grossman (2002) and Eckel and Grossman (2008) in total: 3015, Gneezy and Potters (1997):580 (Data
Source: Google Scholar Citation)
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Table 3.1: Holt and Laury (2002) Design

Option A Option B
Expected

Payoff Difference

($2.00, 0.1; $1.60, 0.9) ($3.85, 0.1; $0.10, 0.9) $1.17

($2.00, 0.2; $1.60, 0.8) ($3.85, 0.2; $0.10, 0.8) $0.83

($2.00, 0.3; $1.60, 0.7) ($3.85, 0.3; $0.10, 0.7) $0.50

($2.00, 0.4; $1.60, 0.6) ($3.85, 0.4; $0.10, 0.6) $0.16

($2.00, 0.5; $1.60, 0.5) ($3.85, 0.5; $0.10, 0.5) -$0.18

($2.00, 0.6; $1.60, 0.4) ($3.85, 0.6; $0.10, 0.4) -$0.51

($2.00, 0.7; $1.60, 0.3) ($3.85, 0.7; $0.10, 0.3) -$0.85

($2.00, 0.8; $1.60, 0.2) ($3.85, 0.8; $0.10, 0.2) -$1.18

($2.00, 0.9; $1.60, 0.1) ($3.85, 0.9; $0.10, 0.1) -$1.52

($2.00, 1.0; $1.60, 0.0) ($3.85, 1.0; $0.10, 0.0) -$1.85

As discussed earlier in Chapter 1, Holt (1986) first points out that RLIS is incentive

compatible when Independence Axiom is assumed. Therefore, theoretically, the institution

of the original HL design should work when economists estimate risk preferences with

Expected Utility Theory (EUT) model. Most literature adopting the HL design follow the

analysis in Holt and Laury (2002) to estimate the parameters in EUT models with CRRA

or Expo-Power (Saha (1993)) utility functions. There are a few studies that check non-EUT

models with multiple price lists. They find the evidence of probability weighting under some

structural models (Harrison and Rutström (2008), Drichoutis and Lusk (2012)). Given the

payoff mechanism in those experiments are RLIS, further robustness check is needed with

non-EUT estimations.

Meanwhile, some evidence shows the violations of separation or Independence with

multiple price lists. Andersen et al. (2006) point out that people tend to choose the midpoint
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of the list. Bosch-Domènech and Silvestre (2013) show that with the removal of three bottom

rows in the list, significantly fewer safe options are chosen. Freeman et al. (2015) use their

price lists to compare subjects’ choices in one specific row when they complete the whole

lists and with RLIS payment protocol with those when subjects make one decision only

about that certain lottery pair and get paid by their choices. The latter is the gold standard

to compare the payoff mechanism effects since one task only is incentive compatible with all

theories. They find out that significantly different proportions of the safer lottery are chosen

under those two treatments. Such results reject separation effect, that is, subjects treat

each decision separately from others; and Independence Axiom, which requires subjects’

preference between two gambles do not change when they mix with a third one with the

same proportion.

Now, the open question is: How can we infer non-EUT risk preferences via the data

from the HL design? That is the research question I’m going to answer in this chapter. In

the first chapter, I proposed a new payoff mechanism, Accumulative Best Choice (ABC)

Design, and showed that it’s incentive compatible for general risk theories. ABC works in

the following way: subjects are not informed of all the lotteries beforehand; their choice in

preceding round is carried over to the next round to become one of the options; eventually

subjects get paid for their decisions in the last round. I’m going to apply the ABC design to

the HL design and estimate both EUT and Rank Dependent Utility (RDU,Quiggin (1982))

structural models. To my knowledge, this is the first paper to use an incentive compatible

payoff mechanism for general risk theories with the multiple price list to elicit risk preferences

with EUT and RDU models.

The rest of the paper is arranged as the following: Section 3.2 shows my design; Section

3.3 analyzes the results; Section 3.4 is conclusion and discussion.
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3.2 Experimental Design

3.2.1 HLabc treatments (N=64)

In this implementation, considering the time use in the experiment (in total about 45

minutes including experimenter explaining instructions, subjects making decisions, each

subject drawing a ball to determine their payments) and the minimum wage of $7.25/hour

in Georgia, I use the 5X of the prizes on the original HL design to keep the saliency of the

payment. The adjusted prizes for Option A are $10 and $8, and for Option B are $19.25

and $0.5. The following table shows the lottery pairs used in the experiment:

Table 3.2: HLabc Treatment Design

Option A Option B

Row 1 A1 : 3/10 of $10, 7/10 of $8 B1 : 3/10 of $19.25, 7/10 of $0.5

Row 2 A2 : 4/10 of $10, 6/10 of $8 B2 : 4/10 of $19.25, 6/10 of $0.5

Row 3 A3 : 5/10 of $10, 5/10 of $8 B3 : 5/10 of $19.25, 5/10 of $0.5

Row 4 A4 : 6/10 of $10, 4/10 of $8 B4 : 6/10 of $19.25, 4/10 of $0.5

Row 5 A5 : 7/10 of $10, 3/10 of $8 B5 : 7/10 of $19.25, 3/10 of $0.5

Row 6 A6 : 8/10 of $10, 2/10 of $8 B6 : 8/10 of $19.25, 2/10 of $0.5

In the ABC design, only one option is carried over from the preceding round to the

following round. However, in the HL list, what we want to compare is the pairwise options,

Option A and Option B within each row. To apply the ABC design, I use a procedure

very similar to that of the choice-pattern experiment in Chapter 1, which takes advantage

of ranking lotteries according to the first order stochastic dominance. A quick inspection

of the HL list: An Option A in a lower row always first order stochastically dominates any

Option A in its upper rows, similar for Option Bs. The feature of the design is that the
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increasing probability of the “good” outcome leads to the decreasing probability of the “bad”

outcome as well as the expected payoff differences (the last column of Table 3.1). We expect

to see that subjects start with Option A, then at some row switch to Option B and stick

with it until the last row. Such dominance feature allows us to establish the bridge between

rows when we apply ABC.

In the first round, subjects are given two options in Row 1, A1 and B1 in Table 3.2. If a

subject chooses A1, then in the second round, he or she will choose between the carried over

choice, A1, with the new option, A2 in Row 2. Similarly, if a subject chooses B1 in the first

round, then he faces B1 and B2 in the second round. If individual’s behavior satisfies first

order stochastic dominance, then one should choose A2 (or B2) in the second round. Then,

in the third round, the subject will compare between A2 and B2 (if his choice in the second

round is A2, then the new option in Round 3 is B2; if his choice in the second round is B2,

then the new option is A2). So on and so forth. The key to making the bridge from one

row to another in the HL list is the dominance relations across rows. As long as subjects’

behavior satisfy dominance, in the odd rounds, they make comparisons between the options

within the same row; in the even rounds, they face dominant pairs across two adjacent rows.

One thing needs to be noted in ABC design is that individuals are not informed of all

the options beforehand. The reason that ABC could work is that if one didn’t truthfully

reveal his or her preference in some round, since he or she doesn’t know what options are

in the future, it is possible that he or she would never see an option as least as good as

the forgone option. In that case, one ends up with a less preferred option. However, if one

always reveals own true preference in each round, he or she can get the “champion” option of

all the options. Therefore, choosing preferred option in each round is the weakly dominant

strategy for every individual. Such reasoning could be totally sabotaged if subjects are

shown all the options beforehand. If a subject who identifies the most favorable option and

carries that one over to the paying round. Before the first best option shows up, he or she

could make random choices. Therefore, to apply ABC design, we must let subject make one
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choice at a time. Also, Lévy-Garboua et al. (2012) has shown that doing decisions without

prior information can also reduce the bias of choosing the midpoint of the list, a critique of

HL put forward by Andersen et al. (2006).

Failure of ABC could also happen if subjects have strong subjective belief or prediction

about the pattern of the options. For example, in this case, after a few rounds, subjects

may realize that in the even rounds the options are always easy to choose, and the options

always get better and better. Given the whole list, subjects may learn the pattern through

the procedure and make random choices until near the end of the experiment. That’s the

reason why I use only part of the HL list to reduce the chance of learning. Given the feature

of the whole HL list where the top rows and the bottom rows have larger absolute values of

expected payoff difference, we expect that most subjects choose Option A(safer option) at

the top rows and Option B(riskier option) for the bottom rows. As predicted, most studies

show that with the prize scales no greater than 20X, more than 90% subjects choose the

safer option for the top two rows and more than 80% subjects choose the riskier option for

the bottom two rows (Holt and Laury (2002, 2005), Bosch-Domènech and Silvestre (2013),

Andersen et al. (2006), Dave et al. (2010), Deck et al. (2012)). Therefore since most people

switching in the middle rows and given the concern of learning effect mentioned earlier, I

chop off the top two rows and bottom two rows in the whole HL list and use the middle

part, as shown in Table 3.2.

There were 65 subjects in this treatment. However, one subject violates first order

stochastic dominance. That is, this subject didn’t fully compare all six pairwise lotteries in

the Table 3.2. Therefore, this subject’s data is excluded from the following analysis.

3.2.2 HLrow3 Treatment (N=41)

In this treatment, subjects are given the lottery pair in Row 3 in Table 3.2 to choose

from and get paid by their choice. This treatment is to take the suggestion by Freeman

et al. (2015), use one pair lottery between-subject design as the control group to detect the
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systemic bias with the list. To the purpose of this dissertation, it allows us to test the ABC

design with the choice list. In total, 41 subjects participated in this treatment.

The experiments were conducted in Experimental Economics Center (ExCEN) at Georgia

State University. All the subjects were undergraduates from Georgia State University.

Subjects were informed that the choice they made in previous round would be carried over to

the next round, and they would be paid for their last choice. They were also informed why

choosing their preferred lottery in every round is the dominant (best) strategy (see subject

instruction in Appendix B for detail). I adopted the same strategy as Cox et al. (2015)

did: No show-up fee was offered. Instead, after subjects finish all their choices, I announced

that I would like to pay them $5 (the same amount as in Cox et al. (2015)) for completing

a demographic survey. The experiment was operated with ZTREE software (Fischbacher

(2007)). See Appendix B for subject instruction (The only thing in instruction changed

compared to Experiment I in Chapter 1 is total number of rounds. In HLabc Treatment,

given there are 6 pairwise lotteries, there are 11 rounds.)

3.3 Data Analysis and Results

3.3.1 Choice Pattern

First, let’s take a look at how many people choose Option A in each pair.
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Figure 3.1: % of Safer Options Chosen in Each Pair

The dash lines are from Holt and Laury (2005). The prizes are one time and twenty

times of those in the original HL design (Table 3.1). The data in the graph are from the

treatments are with real payments, not hypothetical ones. The solid lines are from the

current study. The blue line (diamond) consists of all 64 subjects in HLabc treatment.

The red line (square) only include those who are “consistent”. Based on previous studies,

“consistent” behavior refers to one of the following: (1) choose Option A at the first few rows,

and switch to Option B at some row and stick with Option B ever after. For example, if one

is risk neutral, he or she should choose Option A for the first four rows, and Option B for the

rest; (2) Always choose Option A; (3) Always choose Option B. Otherwise it is considered

“inconsistent”. The inconsistent rate in literature on average is between 10%-15% (Charness

and Viceisza (2015), 14% is calculated from the HL meta-analysis by Filippin and Crosetto

(2014)), and can be much higher in the fields (for example, 75% in Senegal (Charness and

Viceisza (2015)) and 55% in Rwanda (Jacobson and Petrie (2009))). In this study, the

inconsistent rate is 28.13%, in line with Lévy-Garboua et al. (2012)’s result that higher
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inconsistent rates are found when HL is conducted sequentially (average 37.5% inconsistent

rate in their sequential treatments).

Now let’s check whether there’s a treatment effect for the choices in Row 3. For Row

3, 60.98% subjects choose Option A in HLrow3 treatment and 65.63% in HLabc treatment.

The results from both T-test and Wilcox-Mann-Whitney test show that the choices for

Row 3 under HLabc and HLrow3 are not significantly different (p-value for T-test: 0.6326;

p-value for Wilcox-Mann-Whitney test: 0.6303).

So far, with all the results we have from all three chapters, we haven’t found any

significant difference between the ABC design and the one task design.

3.3.2 Risk Preference Estimation Methodology

Now, let’s use the HLabc data to estimate risk preferences. The estimation methodology

follows Harrison and Rutström (2008) (see Appendix F for detail).

In this analysis, I assume CRRA utility: u(x) = x(1−r)/(1 − r) as the transformation

of outcome and the one-parameter inverse-S function by Tversky and Kahneman (1992):

w(p) = pγ/(pγ + (1− p)γ)1/γ as the transformation of probability.

Another exercise along with this is that we add the gender dummy on each parameter

to check the gender effect.

3.3.3 Results

Table 3.3 shows the estimated results from EUT, DU, and RDU. One interesting finding:

for RDU estimation, we can reject the linear probability assumption, but not the linearity

in the prize. Comparing EUT and DU, we see that DU has slightly higher log likelihood.

From the model selection perspective, both AIC and BIC prefer DU (EUT: AIC: 429.416;

BIC: 437.3173; DU: AIC: 428.3337; BIC: 436.235). However, the result from the non-nested

model Vuong (1989) test shows that neither EUT nor DU is significantly better than the

other. The implication is that, when we do the estimation for the HL design, at least we
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may want to consider other models than EUT. Drichoutis and Lusk (2012) argue that in

the HL list, there are only four outcomes, but with ten different probabilities. The HL list

offers more information on probability weighting function than on utility function.

Table 3.3: Estimated Results for Different Models

Current Study Data HL(2005) with Real Payments Data

EUT DU RDU EUT RDU

r 0.396∗∗∗ (0.0678) -0.0915 (0.516) 0.76∗∗∗ (0.04) 0.85∗∗∗ (0.08)

γ 0.565∗∗∗ (0.0187) 0.524∗∗ (0.213) 1.46 (0.35)

µ 1.147∗∗∗ (0.186) 1.221∗∗∗ (0.144) 1.307∗∗ (0.544) 0.94∗∗∗ (0.15) 0.89∗∗∗ (0.14)

Log Lik. -212.708 -212.167 -212.153 -330.93 -325.50

N 384 384 384 960 960

Standard errors in parentheses, clustered by individual. Null hypothesis for γ is γ = 1

HL(2005) data estimated by Harrison and Rutström (2008)

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Compared with the estimations by Harrison and Rutström (2008) with the data from

Holt and Laury (2005), we can see the results are quite different. First of all, one thing needs

to be noted that HL(2005) data including two HL lists, 1X and 20X, while I use only one

price list in this paper. For the EUT model, since HL(2005) data covers a wider range of the

prizes, it may boost the tendency of risk aversion. r = 0.396 still rejects the risk neutrality

assumption, and is in line with the estimation with 1X treatment in Holt and Laury (2002)

and the meta-analysis of 62 studies using HL design by Filippin and Crosetto (2014)2. For

the estimation of RDU model, the difference is even larger. My estimation cannot reject

the linearity in the outcome, but can reject the linearity in probability, while Harrison and

Rutström (2008)’s result shows the opposite. When we allow probability weighting, the

disadvantage of single HL list is that it only has four outcomes. We need more variation on

the prizes to get more accurate estimation when we allow the risk aversion from both the
2In Filippin and Crosetto (2014), they used the function of u(x) = xr, and get the result of r = 0.64.
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prize and the probability sides. That’s one of the possible reasons to explain the insignificant

r parameter in my estimation with RDU model.

The estimated noise µ is higher compared to most studies with HL list. It is in line with

the higher inconsistent rate when HL list is conducted sequentially as in this paper.

Table 3.4: Gender Effect

EUT DU RDU

r constant 0.323∗∗∗ (0.102) -0.167 (0.956)

female 0.118 (0.136) 0.0842 (1.138)

γ constant 0.587∗∗∗ (0.0334) 0.509 (0.380)

female -0.0343 (0.0403) 0.00887 (0.452)

µ constant 1.199∗∗∗ (0.326) 1.183∗∗∗ (0.239) 1.330 (1.032)

female -0.0896 (0.396) 0.0526 (0.298) -0.0114 (1.233)

Log Lik. -211.83288 -211.26433 -211.2389

N 384 384 384

Standard errors in parentheses, clustered by individual

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3.4 shows the results of gender effect checking. From the table, we couldn’t find

any “female” dummy significantly different from 0. I also did the robustness test to check

whether the joint “female” dummies are different from 0 in each model, and all the results

are negative.

3.4 Conclusion and Discussion

In this chapter, I apply the ABC design on the multiple price list. Such implementation

would allow us to estimate models beyond EUT since ABC is incentive compatible with
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general risk theories. The first result is that there’s no significant difference for the choices

of Row 3 under the ABC design and the gold standard – one decision only. Then, I estimate

the risk preferences with data from HLabc treatment. I find out that for the HL list, EUT is

not a better model than DU, and estimation with RDU model rejects linearity in probability.

The immediate implication is that the HL list offers more information about probability

weighting rather than the transformation of the outcome. The further implication is that if

we want to get a more accurate estimation of risk preference, we may need more than one

list so that they would cover more outcomes to help us infer utility function. For example,

a dual list is adopted in Bruner (2009) and Drichoutis and Lusk (2012) where they vary the

outcomes but hold the probability of the lotteries constant. Binswanger (1980,?) design,

which later popularized by Eckel and Grossman (2002, 2008) (EG) matches such dual HL

list idea. In EG design, they offer six lotteries to the subjects and let them choose one. All

the lotteries have the probability of 50% for “good” outcome and 50% for “bad” outcome.

This design is neat and simple for providing information about utility curvature. There is a

battery of literature to compare the elicited risk preferences by different methods. An even

further implication of this paper is that for different elicitation procedures, such as HL and

EG, we might have to treat them as complementary methods rather than competing ones.
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Conclusion
This dissertation aims at answering a methodological question: What are the incentive

compatible payoff mechanisms for general theories under a multiple round setting? If we just

assume people have well-behaved preferences, how should we pay them in the experiments

of decision making under risk? The literature offers one answer: one round task design –

people making one decision and getting paid by their choice. That is incentive compatible

with all risk theories. However, it remains mysterious when we want one individual making

multiple decisions.

In the first chapter of this dissertation, I propose a new payoff mechanism, Accumulative

Best Choice (ABC) design. It has three features: (1) With no prior information. That is,

subjects are not informed of all the lotteries beforehand; (2) The choice in the preceding

round will be carried over to the following round to become one of the options; (3) eventually

one is get paid by his or her choice in the last round. In the first chapter, I have shown

that the ABC design is incentive compatible with risk models that assume well-behaved

preferences. Also, all those three features are necessary for the family of incentive compatible

payoff mechanisms for general risk theories. I apply ABC on both choice-pattern and

preference estimation experiments to test its validity. Given that one round task is incentive

compatible with all the theories, it’s our gold standard. The key hypothesis is the choices

or the estimates under the ABC design are not different from those under the one round

task design. Data from both experiments show that such hypothesis cannot be rejected at

5% significant level.

With the first step paved (ABC is incentive compatible), the next step is to examine

risk preferences with different models with ABC. In Chapter 2, I estimate six structural

models of EUT and RDU and the payoff mechanism effects. The estimates under ABC

design are not significantly different from those under one round task design for all models.

However, the results under RLIS are significantly different from those under one round

task design for all RDU models. That further confirms that the incentive incompatible
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payoff mechanism can lead to the biased estimation. The impact of this payoff mechanism

effect may spread beyond the decision theory studies. More and more studies introduce

non-EUT model and probability weighting into empirical micro studies, such as Wakker

and Stiggelbout (1995), Bleichrodt and Pinto (2000), Jones et al. (2006). The Akaike

Information Criterion prefers the RDU model with CRRA utility function and the TK

probability weighting function. r = 0.57 indicates concave utility function and γ = 0.83

indicates inverse-S shaped probability weighting function, where people under-weigh low

probability and over-weigh high probability.

The third chapter is to apply ABC on the most popular risk preference elicitation

method: the multiple price list by Holt and Laury (2002). To apply ABC on the list,

I use the first order stochastic dominance relations between lotteries across rows in the

same column as the intermediate rounds to make people move from one row to the row

below. Again, I compare the choices under ABC with one round task and find no significant

difference. Now I can estimate the risk models with the data from HL list beyond EUT

model. The results show that compared with DU, EUT is not a better model and DU is even

preferred by AIC value. The estimation of RDU model rejected the linearity in probability

but not that in utility, which is possibly due to the HL list only has four outcomes that

couldn’t offer enough information about utility function if we allow probability weighting.

On the contrary, plenty of variations on the probability side offer more information about

the curvature of probability weighting function. Therefore, we either need another list or

another elicitation method to gain more information about utility function.

On the whole, the ABC design is a tool that makes us worry no more about the

confounding of the payoff mechanism when we elicit risk preferences with general risk

models. So far, we see that ABC passes all the tests in all chapters: It generates no

significant different choices or estimations compared with one round task (with only one

test significant at 10% level, but not 5% level; all the rest tests are not significant at 10%

level). As discussed in Chapter 2, different ways of applying ABC may affect the efficiency
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of gathering information. For example, for the choice-pattern experiment in Chapter 1 or

the multiple price list, deliberate use of the first order stochastic dominance would help to

get the information if we have specific paired-up lotteries we would like subjects to compare.

How to apply ABC properly is a case by case problem, and can be customized according to

different research questions and tasks.
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Appendix A

Theory Appendix: notations and proofs

Let me switch the order of proof for simplification. I’ll prove Proposition 2 first, and

then show Proposition 1.

A.0.1 Proof of Proposition 2

Part 1:

Proof. Let’s first prove if φ(c) = cn, then it is IC for Round n: Given φ(c) = cn and one’s

preference is � and choices in Round 1 to n − 1 are c1, · · · , cn−1. For xn, yn ∈ Dn, assume

that xn � yn,∀yn ∈ Dn. then φ(c1, · · · , cn−1, xn) = xn � φ(c1, · · · , cn−1, yn) = yn, ∀yn ∈ Dn,

therefore, xn ∈ C(D,φ,�), which means it’s incentive compatible for Round n.

Then, let’s show: If a payoff mechanism is IC for Round n, then φ(c) = cn

Step 1: φ(c) 6= ~̄m, where ~̄m is constant, irrelevant of choice c.

Suppose φ(c) 6= cn. Given one’s preference is � and choices in Round 1 to n − 1 are

c1, · · · , cn−1. For xn, yn ∈ Dn, without more restrictions about the preferences, we just

assume the preference that xn � yn and yn ∈ C(D,φ,�). This violates IC for Round n.

However, if φ(c) = cn, then φ(c1, · · · , cn−1, xn) = xn � φ(c1, · · · , cn−1, yn) = yn, therefore,

xn ∈ C(D,φ,�) and yn /∈ C(D,φ,�). Thus, φ(c) = cn satisfies IC for Round n.
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Part 2:

Proof. Suppose ∃i0, 1 ≤ i0 < n such that {ci0} ∩j=i0+1,··· ,n Dj = ∅, and ∀i 6= i0, 1 ≤ i < n,

there exists ki, i < ki ≤ n, where ci ∈ Dki . Suppose xi0 , yi0 ∈ Di0 . Assume a preference �,

xi0 � yi0 ,∀yi0 ∈ Di0 . Since {ci0} ∩j=i0+1,··· ,n Dj = ∅, then {ci0} ∩Dn = ∅. Given the result

from Part 1, if φ is IC for Round n if and only if φ(c) = cn ∈ Dn, so we have φ(c) is irrelevant

of ci0 . Thus, xi0 , yi0 ∈ C(D,φ,�). However, IC for Round i0 requires that yi0 /∈ C(D,φ,�)

since xi0 � yi0 . Contradiction.

Part 3:

Proof. From the definition of IC, we should have φ(s∗) = φ(s∗1, · · · , s∗n) � φ(c), s∗i � si, ∀si ∈

Di, i = 1, · · · , n,∀c and φ(s∗) � φ(c) if c /∈ {s∗}. Since subjects are informed of all the

lottery options at the beginning, suppose for a preference �, a � y,∀y ∈ D\{a} and

a /∈ {D1}.

Since ∪{Di} = L0, then there must be some k, 1 < k ≤ n where a ∈ {Dk} but a /∈

{Di},∀1 ≤ i < k. Pick up the chain where a could be potentially involved: From Part

2, we know that there must exist a k < k1 ≤ n, such that ck ∈ {Dk1}. If k1 = n, then

the chain is {Dk, Dn}. If k1 < n, then from Part 2, there must exist a k1 < k2 ≤ n, such

that ck1 ∈ {Dk2}. If k2 = n, then such chain is {Dk, Dk1 , Dn}. If k2 < n, repeat the

procedure. After repeating a definite m(m < n) times, we’ll have km = n, then such chain

is {Dk, Dk1 , · · · , Dkm−1 , Dn}.

Suppose x1, y1 ∈ D1. Assume a preference � with x1 � y1. Consider two choice lotteries

vectors: c′ = s∗ = (x1, s
∗
2, · · · , s∗n) and c′′ = (c′′1, · · · , c′′n) where c′′1 = y1; c

′′
i = a,∀i =

k, k1, · · · , km−1, n; c′′j ∈ Dj,∀j ∈ {1, · · · , n}\{1, k, · · · , km−1, n}. Firstly, we can see that

c′ ∈ {s∗}, c′′ /∈ {s∗}. Then, if φ is IC, we can get φ(c′) = s∗n = a. On the other hand side,
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we also can get φ(c′′) = c′′n = a. Thus, we have x1, y1 ∈ C(D,φ,�). However, IC requires

y1 /∈ C(D,φ,�).

A.0.2 Proof of Proposition 1

Proof. First we see that the ABC design satisfies all the necessary conditions for IC above.

Then let’s see why it’s incentive compatible:

Step 1: φ(s∗1, · · · , s∗n) = s∗n � φ(s) = sn, s
∗
i � si, ∀si ∈ Di, i = 1, · · · , n,∀s ∈ {c}. (s∗ is

the weakly dominant strategy)

Now, let’s prove: If an experiment is an ABC design experiment, with strategy s∗ ∈

{(s∗1, · · · , s∗n) : s∗i � si,∀si ∈ Di,∀i = 1, · · · , n} and the given payoff mechanism φ : φ(c) =

cn, then φ(s∗) = s∗n � φ(s), ∀s. Given the nature of ABC and the strategy s∗, we have

that {cn} = {cn−1, Dn} = {s∗n−1, Dn} = {cn−2, Dn−1, Dn} = {s∗n−2, Dn−1, Dn} = · · · =

{D1, · · · , Dn} = {s∗1, · · · , s∗n−1, Dn}. Since cn = s∗n, therefore cn = s∗n � s∗1, cn = s∗n �

s∗2, · · · , cn = s∗n � s∗n−1 and cn = s∗n � yn,∀yn ∈ D. Thus, φ(s∗) = s∗n � φ(s) = sn,∀s where

sn ∈ D.

Step 2: {s∗} is the only weakly dominant strategy set.(subjects may regret if

deviating from {s∗})

From Step 1, we know that with strategy s∗, a subject can ensure his payment as his most

favorable lottery throughout the whole experiment. Now, let’s see why it’s strategy-proof.

With any well-behaved preference �, suppose there exists some c′′ = (c′′1, · · · , c′′n) /∈ {s∗}.

Then, there exists at least one k ∈ {1, · · · , n}, such that xk � c′′k, where c′′k, xk ∈ Dk. We

show that c′′k /∈ C(D,φ,�)

(1) k = n. We have φ(c′′1, · · · , c′′n) = c′′n and φ(c′′1, · · · , c′′n−1, xn) = xn � φ(c′′) = c′′n.

Therefore, c′′k /∈ C(D,φ,�).

(2) k < n. Given the nature of ABC, after making m choices where m = 0, · · · , n − 1

({c0} = ∅), to look forward, we have {cm+1} = {Dm+1} = {cm, Dm+1}, therefore {cm+2} =
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{Dm+2} = {cm+1, Dm+2} = {cm, Dm+1, Dm+2}. So on and so forth. Eventually, we have

{cn} = {Dn} = {cn−1, Dn} = · · · = {cm, Dm+1, · · · , Dn}

Since ABC is with no prior information, consider the scenario of where xk � y,∀y ∈

{Dk+1, · · · , Dn}. In that sense, φ(c′′1, · · · , c′′k, · · · , c′′n) = c′′n ∈ {c′′k, Dk+1, · · · , Dn}, with the

strategy (c′1, · · · , xk, xk, · · · , xk), we have φ(c′1, · · · , xk, xk, · · · , xk) = xk � φ(c′′) = c′′n. Thus,

c′′k /∈ C(D,φ,�).
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Appendix B

Subject Instruction for Experiment I
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Appendix C

Complete Path of Experiment I

For easier expression, define S ′i = Si and R′i = Ri for i = 1, 4, 5, and define S ′2 = S3,

S ′3 = S2, R′2 = R3, R′3 = R2. Now under the first order stochastic dominance relations, we

have: S ′5 �SD S ′4 �SD S ′3 �SD S ′2 �SD S ′1, and R′5 �SD R′4 �SD R′3 �SD R′2 �SD R′1

The first round: D1 = {S ′1, R′1}. For the following even rounds,D2k = {c2k−1, S ′k+1}|c2k−1=S

and D2k = {c2k−1, R′k+1}|c2k−1=R for k = 1, · · · , 5. For the following odd rounds, D2k+1 =

{c2k, R′k+1}|c2k=S and D2k+1 = {c2k, S ′k+1}|c2k=R for k = 1, · · · , 5. It can be depicted as the

following path. If subjects follow the first order stochastic dominance, then they should

always be on the red path. The odd rounds of the red path are the target rounds.
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Appendix D

Lottery List for Experiment II (from

Harrison and Swarthout (2014))
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Appendix E

Subject Instruction for Experiment II
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Appendix F

Estimation Methods for Experiment II

The estimation methodology follows Harrison and Rutström (2008). First is to set up the

parameters we would like to estimate, either parametric or non-parametric. Then consider

different decision models:

F.1 Expected Utility Model

For a lottery l = (x1, p1; · · · ;xK , pK), we can calculate its expected utility with Uk =

u(xk):

EUi = Σk=1,··· ,K(pk × Uk)

Given the binary lottery comparison in our case, the latent indexes with Fechner error noise

µ are:

∇EU = (EUB − EUA)/µ

After that, use the logistic function Φ(·) to link to the observed choices:

prob(choose lottery B) = Φ(∇EU)
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. Eventually to estimate the parameters by maximize the conditional log-likelihood of

lnL(u; y) =
∑
i

[yi ln Φ(∇EU) + (1− yi) ln(1− Φ(∇EU))]

(y = 0 if choose Option A, y = 1 if choose Option B)

F.2 Dual Expected Utility Theory Model

Yaari (1987) proposes a model with linear in prize and nonlinear in probability, which

can be written as:

DUi = Σk=1,··· ,K(wk × xk)

To calculate wk, we need to array all the lotteries comonotonically based on the outcomes.

For example, a lottery l = (x1, p1; · · · ;xK , pK), to calculate its dual expected utility, here we

arrange to make it as x1 ≤ x2 ≤ · · · ≤ xK with the corresponding probabilities (p1, · · · , pK).

Given a probability weighting function w(p), where w(0) = 0, w(1) = 1, w(p) is increasing on

[0, 1]. For both parametric or nonparametric estimation, the decision weight wk is calculated

as: wk = w(pK + · · ·+ pk)− w(pK + · · ·+ pk+1).

And then similarly, we have:

∇DU = (DUB −DUA)/µ

and

lnL(u; y) =
∑
i

[yi ln Φ(∇DU) + (1− yi) ln(1− Φ(∇DU))]
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F.3 Rank Dependent Utility Model

RDU is the combination of EUT and RDU, with non-linearity on both prizes and

probabilities, where

RDUi = Σk=1,··· ,K(wk × Uk)

So relatively

∇RDU = (RDUB −RDUA)/µ

and

lnL(u; y) =
∑
i

[yi ln Φ(∇RDU) + (1− yi) ln(1− Φ(∇RDU))]
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Appendix G

Result Table for Experiment II in

Chapter 1
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Appendix H

Full Structural Estimation Result Tables

in Chapter 2
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Table H.3: Estimations for Single Models with Allowance for Heterogeneity

Expected Utility Models Rank Dependent Utility Models

CRRA EP CRRA&TK EP&TK CRRA&Prelec EP&Prelec

r

female -0.0419 (0.0752) -0.0209 (0.0401) -0.0477 (0.0669) -0.0512 (0.0592) -0.0627 (0.0755) -0.0436 (0.0572)

black -0.0640 (0.0608) -0.119 (0.0774) -0.0756 (0.0578) -0.148∗∗ (0.0647) -0.0768 (0.0603) -0.108∗ (0.0573)

age21 0.0314 (0.0739) 0.0643 (0.0502) 0.106 (0.0679) 0.0790 (0.0507) 0.0345 (0.0729) 0.0810∗∗∗ (0.0268)

busiecon 0.0311 (0.0634) -0.0568 (0.0533) -0.0344 (0.0689) -0.0936∗ (0.0530) 0.0150 (0.0724) -0.103 (0.113)

birthorder -0.00193 (0.0330) 0.0641 (0.0421) 0.0330 (0.0337) 0.0830∗∗∗ (0.0281) 0.0176 (0.0369) 0.0949∗∗∗ (0.0309)

constant 0.803∗∗∗ (0.159) 0.699∗∗∗ (0.255) 0.478∗∗ (0.218) 0.472 (0.443) 0.831∗∗∗ (0.220) 0.597∗∗∗ (0.156)

α

female 0.0179 (0.196) 0.0445 (0.151) -0.0202 (0.199)

black 0.401 (0.514) 0.184 (0.395) 0.237 (0.196)

age21 -0.321 (0.361) -0.152 (0.285) -0.350 (0.292)

busiecon 0.328 (0.388) 0.151 (0.302) 0.238 (0.203)

birthorder -0.261 (0.307) -0.104 (0.223) -0.201 (0.215)

constant 0.217 (0.361) -0.00417 (0.174) 0.524 (0.724)

γ

female -0.148 (0.158) 0.0532 (0.174)

black -0.405 (0.268) 0.0829 (0.167)

age21 0.639∗ (0.383) -0.00582 (0.182)

busiecon -0.484∗ (0.294) 0.0618 (0.210)

birthorder 0.305∗∗ (0.149) 0.0511 (0.121)

constant 0.714∗∗∗ (0.233) 0.579∗∗∗ (0.196)

η

female -0.960 (0.964) -1.306 (1.391)

black 0.269 (0.942) 0.661 (1.563)

age21 -1.202 (1.036) -1.060 (1.370)

busiecon 0.0432 (0.763) -0.890 (0.829)

birthorder -0.445 (0.542) -0.231 (0.610)

constant 2.269 (1.475) 2.042 (1.693)

σ

female -0.145 (0.132) -0.160 (0.178)

black 0.0157 (0.162) 0.261 (0.260)

age21 0.0492 (0.197) -0.142 (0.209)

busiecon -0.0779 (0.142) 0.0448 (0.222)

birthorder 0.151∗ (0.0858) 0.0497 (0.132)

constant 0.710∗∗ (0.299) 0.874∗∗ (0.379)

µ

constant 0.379∗∗ (0.177) 0.0738 (0.102) 0.857 (0.540) 0.372 (0.622) 0.290 (0.185) 0.0359 (0.0680)

N 1000 1000 1000 1000 1000 1000

Standard errors in parentheses and clustered by individual

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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