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ABSTRACT 

The spatio-temporal attributes of intracellular calcium (Ca2+) transients activate 

various biological functions.  These Ca2+ signaling events are triggered extracellularly 

through different stimuli and controlled intracellularly by the major Ca2+ storage 

organelle and by numerous Ca2+ pumps, channels, and Ca2+ binding proteins. Ca2+ 

transients can be significantly altered as a result of defects with signal modulation, 

leading to different diseases.  Because of the fragility and intricacy of the Ca2+ signaling 

system, with the endo- and sarcoplasmic reticulum at the center, genetically-encoded 

Ca2+ probes that have been optimized for mammalian expression and fast kinetics are 

needed to observe global and local Ca2+ changes in different cells.  Here, we first report 



 
 

the crystal structure determination of our genetically-encoded Ca2+ sensor CatchER 

which utilizes EGFP as the scaffold protein.  Crystal structures of CatchER were 

resolved in the Ca2+-free, Ca2+-loaded, and gadolinium-loaded forms at 1.66, 1.20, and 

1.78 Å, respectively.  Analysis of all three structures established conformational 

changes in T203 and E222 produce the varying ratios of the neutral and anionic 

chromophore reflected in the absorbance spectrum where Ca2+ stabilizes the anionic 

chromophore and enhances the optical output. Since CatchER has miniscule 

fluorescence when expressed at 37˚C in mammalian cells, we enhanced its brightness 

by improving the folding at 37˚C, facilitating better chromophore formation.  The 

resulting mutants are the CatchER-T series of Ca2+ sensors with CatchER-T’ having the 

most improvement in brightness at 37˚C.  We also introduced the N149E mutation in the 

binding site to alter the Kd along with the brightness mutations.  The resulting mutants 

were characterized and found to have weaker Kds compared to wild-type CatchER, 

similar quantum yields, and altered ratios of the neutral and anionic chromophore in the 

apo form.  Then, CatchER-T’ was applied in situ to monitor Ca2+ changes globally in the 

ER/SR of C2C12, HEK293, and Cos-7 cells.  A new construct consisting of CatchER-T’ 

and JP-45 was created to monitor local Ca2+ dynamics in the SR lumen of skeletal 

muscle cells.  The results showed a difference between global and local SR Ca2+ 

release.  We also examined the potential and spectroscopic properties to utilize some of 

our sensors in T cells to monitor the magnesium (Mg2+) flux in immune cells with faulty 

MagT1 receptors to understand the role of Mg2+ in the immune response.          
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1 

1 INTRODUCTION 

1.1 Ca2+ and extracellular Ca2+ regulation 

 Calcium (Ca2+) is one of the most prevalent minerals in the human body, with ~1 

kg found in adults in restricted and unrestricted forms1.  The major duty and form of 

bound Ca2+ is mineralizing the skeleton2.  Because the bone environment is dynamic, 

skeletal Ca2+ helps maintain both intra- and extracellular Ca2+ levels.  The level of 

unbound Ca2+ in adults is ~10 g and can be found in serum (2.2-2.6 mM) as free ions, 

bound to globulin and albumin, or bound to carbonate, oxalate, and phosphate ions3.  

The physiological level of ionized Ca2+ is maintained at 1.0-1.8 mM to prevent toxicity4.  

This ionized portion is utilized for the extracellular and intracellular Ca2+ signaling 

cascade that activates many important functions5.  The balance of skeletal and free 

Ca2+ is hormonally regulated through the action of parathyroid hormone (PTH), 

calcitonin (CT), and 1,25(OH)2D (vitamin D) on its receptor targets in the kidneys, 

intestines, and bone6.  In addition to hormonal control of extracellular Ca2+, the ion 

regulates itself through its binding to and activation of the Ca2+ sensing receptor (CaSR) 

in the same tissues and the parathyroid gland3.   

1.1.1 CaSR  

  The CaSR is a member of the C family of G-protein coupled receptors (GPCR)7.  

Brown and colleagues were the first to clone this receptor from bovine parathyroid 

gland.  Their work showed that the CaSR has structural similarities to metabotropic 

glutamate receptors (mGluRs), specifically mGluR1 and mGluR5, as well as other 

members of the GPCR family8.  The CaSR has four major structural elements:  an 
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approximately 600 residue extracellular domain (ECD) housing the amino-terminal of 

the receptor, a linker domain composed of cysteine residues that connects the ECD to 

the first helix in the transmembrane domain, a transmembrane domain comprised of 

seven helices, and a cytosolic carboxy-terminal tail9.  The ECD of human CaSR 

contains 11 potential N-linked glycosylation sites that aid in surface expression of the 

CaSR.  Of the 11 glycosylation sites, eight are glycosylated, and the remaining sites 

become glycosylated if the other sites are manipulated10.   The CaSR functions as a 

homodimer formed by disulfide bonds between cysteine residues located in the ECD11.  

Ray and colleagues performed a series of serine substitutions for the 19 cysteine 

residues located in the ECD of the CaSR.  The resulting mutational analysis in HEK293 

cells showed cysteines 129 and 131 are critical for the disulfide bond formation required 

for dimerization12.   When both ECDs of the monomer units come together, they take 

on a venus-flytrap structure with a hinge region that allows the two lobes to open and 

close upon ligand or Ca2+ binding to the hinge region or the ECD13,7.  Although the 

CaSR principally detects and is activated by extracellular Ca2+, it also binds other 

divalent cations such as magnesium (Mg2+)8,14 in addition to aromatic amino acids, 

such as L-phenylalanine,  that help to heighten the sensitivity of the CaSR to Ca2+15,16.   

Direct measurements of Ca2+ and other ligands to the ECD have been unsuccessful in 

the past due to the weak affinity of these sites and the inherent fast release kinetics 

associated with them.  Zhang and colleagues recently expressed and purified the ECD 

of the CaSR in wild type 293-F cells and HEK293S (GnTI-) cells producing the complex 

glycosylated form and high mannose form of the ECD, respectively.  Their measured 

Ca2+ dissociation constant (Kd), using the ANS binding assay, was 3.8 ± 0.2 mM with a 
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Hill coefficient of 2.6 ± 0.2, for the wild type form of the ECD17.  Ca2+ generates half-

maximal stimulation of the CaSR at 3.2 ± 0.1mM with a Hill coefficient of 3.6 ± 0.3 as 

measured in tsA cells18.  The weak affinity and EC50 of the ECD for Ca2+ would imply 

that the ion is an impotent agonist for the CaSR since extracellular Ca2+ concentration is 

around 1.3 mM.  The positive cooperativity among the Ca2+ binding sites and structural 

organization of the ECD permit the sensitivity of the CaSR to small fluctuations in 

extracellular Ca2+, aiding its ability to govern serum Ca2+ levels through hormonal 

feedback mechanisms for Ca2+ homeostasis13.     

1.1.2 CaSR mediated hormonal regulation of serum Ca2+ levels 

 The systemic balance of Ca2+ levels is physiologically sustained through 

absorption of the ion from the gastrointestinal tract, retention and release of the ion from 

the kidneys, and its movement in and out of bone.  This Ca2+ gradient is maintained by 

the action of the CaSR expressed in these different tissues and the action of the CaSR 

expressed in the thyroid and parathyroid glands that triggers the release of hormones 

PTH, CT, and vitamin D39.  When the CaSR senses a decrease in extracellular Ca2+, 

PTH is released from the chief cells of the parathyroid gland.  The increase in serum 

PTH levels blocks CT release from the C-cells of the thyroid gland and hinders bone 

formation resulting in Ca2+ release from the bone microenvironment.  PTH also interacts 

with the PTH receptors on the kidneys, increasing Ca2+ reabsorption and onsite 

production of vitamin D3.  The newly synthesized vitamin D3 targets the gastrointestinal 

tract to increase Ca2+ absorption.  Prolonged elevation of serum Ca2+ levels induces the 

secretion of CT from the thyroid gland.  CT inhibits bone resorption by osteoclast cells 

and triggers Ca2+ excretion by the kidneys6,19,20.  Figure 1.1.1 depicts the hormonal 
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regulation of serum Ca2+.  Due to the delicate interplay of the subsystems that regulate 

serum Ca2+ levels, small imbalances can lead to many diseases such as hypercalcemia, 

hypocalcemia, and osteoporosis6.  The detection of Ca2+ by the CaSR, in the tissues 

responsible for its homeostasis and other tissues expressing the receptor, triggers the 

release of intracellular Ca2+ from the endoplasmic and sarcoplasmic reticulum (ER/SR) 

inside the cell through the production of inositol triphosphate (IP3)20.  The Ca2+ 

extruded into the intracellular environment is used as a second messenger in a host of 

intracellular processes and is regulated by various pumps, channels, receptors, and 

Ca2+ binding proteins (CaBPs)21. 
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Figure 1.1.1 Hormonal regulation of extracellular Ca2+ 

Serum Ca2+ levels are monitored by the CaSR and hormonally controlled by PTH, CT, 
and vitamin D3.  Increased levels of extracellular Ca2+ are sensed by CaSR on the 
parathyroid gland triggering the release of PTH from chief cells.  PTH binds to its 
receptor on bone and kidneys stimulating bone formation and Ca2+ excretion from the 
kidneys, respectively.  Decreased serum Ca2+ is sensed by CaSR on the thyroid gland 
causing CT to be released from C-cells.  CT acts on the kidneys increasing Ca2+ 
reabsorption.  The kidneys will produce vitamin D3 which acts on the gastrointestinal 
tract to increase Ca2+ reabsorption. 
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1.2 Intracellular Ca2+ regulation and signaling 

 The efficiency and speed of Ca2+ signaling is powered by the ability of cells to 

maintain the near 20,000-fold gradient between intracellular and extracellular Ca2+ 

concentrations22.  Resting cytosolic Ca2+ concentration in cells is 0.1 µM.  When cells 

are activated, the level of cytosolic Ca2+ rises to 1 µM, triggering many downstream 

processes5.  This rise in cytosolic Ca2+ can control a vast repertoire of cellular functions 

because of the adaptable nature and organization of the Ca2+ signaling system.  The 

Ca2+ channels, pumps, and CaBPs expressed in different tissues, i.e. the Ca2+ signaling 

toolkit (Figure 1.2.1), are tailored to yield Ca2+ signaling mechanisms that produce 

varied spatial-temporal patterns for the initiation of slow processes such as gene 

expression23 to fast processes such as neurotransmitter release21,24 shown in Figure 

1.2.2.   

 The intracellular Ca2+ signaling system has four major parts:  1.) the initial 

stimulus that spawns the countless Ca2+ mobilizing agents; 2.) the initiation of the ON 

machinery by the mobilizing agents that cause Ca2+ to move into the cytosol; 3.) the 

action of Ca2+ as a messenger molecule prompting processes sensitive to Ca2+; and 4.) 

restoration of the basal cytosolic and organelle Ca2+ concentration through the 

deactiviation mechanisms that remove the ion from the cytosol.  The consistent balance 

between the two mechanisms maintains the level of intracellular Ca2+.  All Ca2+ 

signaling systems will generate different Ca2+ transients based on the signaling 

components used5.  
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Figure 1.2.1 Components of the intracellular Ca2+ signaling toolkit 

The various pumps, channels, receptors and CaBPs of the Ca2+ signaling toolkit help 
shape the spatial-temporal elements of the Ca2+ signal.  Different receptors on the 
plasma membrane receive the extracellular stimulus triggering Ca2+ to flow from the 
extracellular environment into the cytosol, mobilizing Ca2+ from different compartments.  
Incoming Ca2+ triggers the release of more Ca2+ from its major storage organelle, the 
ER/SR, to further shape the Ca2+ signal for its activation of downstream processes.  
Pumps like the PMCA and SERCA extrude Ca2+ out of the cell and sequester Ca2+ back 
into the ER/SR and CaBPs bind free Ca2+ to maintain cytosolic Ca2+ levels at 0.1-1 µM.   
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Figure 1.2.2 Biological processes mediated by Ca2+ 

The varied signal patterns of Ca2+ activate diverse processes such as transcription, 
bone formation, muscle contraction, cell proliferation, fertilization, neurotransmitter 
release, learning and memory, and cardiac function. 



9 

1.2.1 Ca2+ pumps and exchangers    

 The role of Ca2+ pumps and exchangers is to direct Ca2+ ions out of the cell or 

back into organelles once the initial stimulus for the signaling event is removed.  The 

major Ca2+ pumps are the plasma membrane Ca2+ ATPase (PMCA) pump and the 

sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump found on the plasma 

membrane and the ER/SR membrane, respectively.  Both pumps are powered by ATP 

hydrolysis to move Ca2+ ions against the concentration gradient.  The PMCA and 

SERCA pumps are defined as P-type ATPases due to the creation of an aspartyl 

phosphate intermediate in the pumping process.  Each pump helps to restore cytosolic 

Ca2+ concentration to 0.1 µM22,25.   

1.2.1.1 Plasma membrane Ca2+ ATPase pump 

 There are four isoforms of the PMCA pump (PMCA1, PMCA2, PMCA3, PMCA4) 

found in mammals containing 1115 to 1258 amino acids with molecular masses ranging 

from 125 to 140 kDa.  Each isoform is encoded by a different gene.  The sequence 

homology among the isoforms is only 80%, but their global structures are the same 

containing ten transmembrane segments, two cytosolic loops, and cytosolic amino and 

carboxy terminal tails26,27.  Adding to the four basic isoforms, alternative splicing in the 

first cytosolic loop, site A, and in the calmodulin binding domain (CaM-BD) of the C-

terminal, site C, breed an abundance of variants with diverse functions.  The PMCA 

pump is primarily regulated by Ca2+-CaM and the CaM-BD.  At rest, the pump is auto-

impeded by interaction of the carboxy terminal tail with two primary cytosolic loops.  

Upon activation, Ca2+-CaM binds to the C-terminal tail causing it to dissociate from the 

cytosolic loops increasing the Ca2+ affinity (Km) of the pump from 10-50 µM to 0.2-0.3 
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µM27,28.  The PMCA pump co-transports protons with one Ca2+ ion per ATP consumed 

to decrease the cytosolic [Ca2+]22.   

1.2.1.2 Sarco-endoplasmic reticulum Ca2+ ATPase pump 

 The SERCA pump is another P-type ATPase pump that reduces cytosolic Ca2+ 

and refills the ER/SR by actively pumping the ion into the ER/SR lumen29.  The pump 

functions as a monomer with a mass of 110 kDa.  Three genes encode SERCA1, 

SERCA2, and SERCA3 isoforms whose amino acid sequences are highly conserved.  

From these three genes, alternative splicing generates over 10 variants of the pump 

adding to the diversity of its function in different tissues30.  SERCA1 is primarily 

distributed in fast twitch skeletal muscle.  SERCA2 is found in fast twitch and slow twitch 

muscle, cardiac muscle, smooth muscle, and non-muscle cells.  SERCA3 is expressed 

in non-muscle cells31.  The crystal structure of rabbit SERCA1a revealed a large 

cytosolic portion consisting of the Asp 351 phosphorylation site (domain P), the 

nucleotide binding site (domain N), and the anchor portion (domain A).  The 

transmembrane (domain M) portion of the pump contains 10 α-helices where two Ca2+ 

ions bind32.  The binding sites are side by side and are formed by M4, M5, M6, and M8 

helices.  When Ca2+ binds to the pump, the large cytosolic head changes from a closed 

to open conformation to facilitate translocation of the ions.  For each ATP molecule 

consumed, the pump transports two Ca2+ ions into the ER/SR lumen31,33.  Specific 

inhibitors of the SERCA pump include thapsigargin, from Thapsia garganica, and 

cyclopiazonic acid (CPA), from Aspergillus and Penicillum.  CPA has a low affinity for 

the pump and reversibly blocks the Ca2+ access point34.  Thapsigargin, on the other 
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hand, irreversibly binds to the Ca2+ free pump at residue F256 in the M3 helix with 

nanomolar affinity29.   

1.2.1.3 Na+/Ca2+ and Na+/Ca2+/K+ exchangers 

 The sodium Ca2+ (NCX) and sodium Ca2+ potassium (NCKX) exchangers are the 

predominant machineries used for the extrusion of signal Ca2+ across the plasma 

membrane35.  The NCX and its three isoforms are a part of the large mammalian solute 

carrier 8 (SLC8) gene family. NCX1 is the most widely expressed isoform with high 

expression in heart, brain, and kidney and low levels of expression in other tissues.  

NCX2 is only abundant in the brain, and NCX3 is only expressed in skeletal muscle and 

at minimal levels in a few regions of the brain.  Only NCX1 and NCX3 can be 

alternatively spliced in the cytosolic portion of the protein to produce variability among 

spliced isoforms36.  The NCX and NCKX share structural similarities that include a 

cleavable extracellular N-terminal signal peptide, 10 transmembrane α-helices, two 

hydrophobic α-repeat regions, a large cytosolic loop, and a C-terminal cytosolic tail.  

The two α-repeat regions have opposing orientations in the plasma membrane and are 

between TM2 and TM3 (α1-repeat) and TM7 and TM8 (α2-repeat).  Both areas are 

crucial for cation binding and transport36,37.  In the NCX, the large cytosolic loop is 

located between TM5 and TM6 and contains two Ca2+ binding domains (CBD1 and 

CBD2).  Four Ca2+ ions bind to CBD1 producing a conformational change activating the 

Ca2+/Na+ exchange function of NCX.  CBD2 has a seven-fold weaker affinity for Ca2+ 

than CBD1, only binding Ca2+ at elevated levels.  In the same cytosolic loop resides the 

XIP domain that is responsible for Na+-dependent inactivation37.  The NCX establishes 

an electrochemical gradient across the plasma membrane by exchanging 3 Na+ for 1 
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Ca2+ ion.  The NCX can also operate in the reverse to allow Ca2+ to enter the cytosol, as 

seen in cardiac cells during depolarization35.     

 The NCKX is a part of the SLC24 exchanger gene family with five isoforms38.  

NCKX1 has been researched the most and is highly expressed in the eye.  NCKX2 is 

widely expressed throughout the brain and in cone photoreceptors and ganglion cells of 

the retina.  NCKX3 and NCKX4 are abundantly expressed in the cortex and thalamus of 

the brain.  NCKX5 is broadly expressed in the skin, eye, brain, and thymus showing up 

at lower levels in other tissues38.  Structural characteristics of the NCKX are similar to 

that of the NCX36.  The α-repeat regions are conserved among the NCKX isoforms and 

are similar in sequence to the α-repeats of the NCX.  The α-repeats are composed of 25 

amino acids, primarily acidic, that cause a substantial decrease in cation transport when 

mutated.  Within the α-repeat region, Aspartic acid (Asp) at position 575 is vital for K+ 

transport.  Glutamic acid (Glu) 188 and Asp548 are considered essential for Ca2+ 

transport37.  The NCKX transfers 4Na+ ions for 1Ca2+ and 1K+ ion.  It can be inferred 

from the transport stoichiometry that Ca2+ efflux through the NCKX is controlled by the 

internal and external Na+ and K+ gradients, respectively.  Because of its carriage 

capacity, the NCKX can sustain larger Ca2+ gradients and is more reluctant to operate 

in the reverse mode in response to robust membrane depolarization when compared to 

the NCX38.   

1.2.2 Ca2+ channels   

 Extracellular and internal store Ca2+ are primary sources of signal Ca2+ 21.  These 

two components of the signal event are introduced into the cytosol through different 

Ca2+ channels embedded into the plasma membrane and the membrane of Ca2+ 
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storage organelles22.  Various stimuli, including changes in membrane potential and 

ligand binding, activate the opening of these channels spurring cellular changes induced 

by the accumulation of cytosolic Ca2+21.  In the following subsections, we will discuss 

the channels responsible for mobilizing Ca2+ into the cytosol. 

1.2.2.1 Voltage-gated Ca2+ channels 

 Voltage-gated Ca2+ channels (VGCCs or VOCs) allow Ca2+ into the cell in 

response to voltage changes across the plasma membrane39.  The diverse Ca2+ 

activation currents found in cells can be divided into low voltage currents, with electrical 

potentials of -60 to -70 mV that are rapidly disabled, and high energy currents, with 

depolarizing potentials greater than -40 mV and slower inactivation39.  The high voltage 

currents are further categorized based on physical properties and antagonists of the 

current.  L-type currents are large conductance currents and are sensitive to 1,4-

dihydropyridine.  N-type currents are neuronal and can be inhibited by ω-conotoxin 

GVIA peptide from cone snail.  P/Q-type currents were first isolated in Purkinje neurons 

and are blocked by ω-agatoxin IVA from spider venom.  R-type currents are residual or 

resistant currents and are inhibited by SNX-482.  Low voltage currents are designated 

T-type currents, or transient currents, and show insensitivity to Ca2+ blockers.  L-type 

and T-type currents can be detected in many cell types such as cardiac, skeletal, and 

neuronal; however, the remaining types dominate in neurons40,39.   

 Structurally, VGCCs are complexes composed of multiple subunits including the 

transmembrane α2 and δ disulfide associated subunit, the cytoplasmic β subunit, the 

transmembrane γ subunit, and the chief transmembrane Cavα1 subunit that forms the 

channel pore40,41.  The Cavα1 subunit consists of four homologous domains with each 
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containing six transmembrane segments (S1-S6).  The loop that connects S5 and S6 

forms the channel pore.  In each domain, S1-S4 forms the gating machinery pairing 

activity with depolarization.  S5 and S6 form the inner lining of the pore.  Channel 

deactivation, regulation, and subunit binding occur at the cytosolic N- and C-terminals 

and loops I-II, II-III, and III-IV that link the domains of the Cavα1
40.  Ten isoforms of the 

Cavα1 subunit exist.  Due to its importance for channel function, the Cavα1 subunit is 

used to divide VGCCs into three families:  Cav1, Cav2, and Cav339.  Cav1.1-Cav1.4 

produce L-type currents and are distributed in cardiac, skeletal muscle, endocrine, 

neuronal, and retinal cells.  Cav2.1-Cav2.3 generate P/Q, N, and R-type currents, 

respectively, and are distributed in nerve terminals and dendrites.  Cav3.1-Cav3.3 

produce T-type currents and are expressed in cardiac muscle, skeletal muscle, and 

neurons42.  The β subunit has four isoforms, and its association with the Cavα1 leads to 

increased channel expression and trafficking which increases the Ca2+ current.  The α2δ 

subunit, like the β subunit, increases channel trafficking to the plasma membrane.  The 

γ subunit aides in the modification of the biophysical properties of the Cavα1 subunit39,40.  

1.2.2.2 Transient receptor potential channels 

 Transient receptor potential channels (TRP) are similar in function to VGCCs in 

that they are voltage sensitive, but only weakly.  TRPs are non-selective ion channels 

that allow the influx of Ca2+ and sodium ions across the plasma membrane into the 

cytosol leading to depolarization43.  TRPs and their isoforms are divided into the 

following six subfamilies based on sequence similarities:  TRPC, TRPML, TRPV, 

TRPM, TRPA, and TRPP. The modeled channel structure includes six transmembrane 

domains with the ion pore region between transmembrane segments five and six.  
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TRPs can integrate multiple stimuli that induce activity and signal amplification44.  These 

activators include ligands such as 2-APB, DAG, Ca2+, and Mg2+, receptors such as 

GPCRs, and changes in temperature. Because TRPs are considered signal integrators 

and amplifiers, they function mainly as cellular sensors and aide in growth cone 

guidance43. 

1.2.2.3 Ryanodine receptor and the inositol 1,4,5-triphosphate receptor 

 The Ca2+ released from the ER/SR makes up the bulk of the Ca2+ signal.  The 

inositol 1,4,5-triphosphate receptor (IP3R) and the ryanodine receptor (RyR) are the 

main Ca2+ release channels on the ER/SR membrane.  Ca2+ activates both receptors 

through a process called Ca2+-induced Ca2+ release (CICR), allowing more Ca2+ to 

discharge from the ER/SR to propagate the Ca2+ signal25.   

 The RyR exists in three isoforms in mammals: RyR1, RyR2, and RyR3.  RyR1 

and RyR2 are the predominant isoforms found in skeletal and cardiac muscle, 

respectively, while RyR3 is dominant in the thalamus, hippocampus, corpus striatum, 

and smooth muscle45,46.  High resolution cryo-electron microscopy structures of the RyR 

show it exists as a homotetramer with a total mass over 2 MDa making it the largest ion 

channel.  The large cytosolic portion of the RyR has a mushroom-like shape with the 

rest of the channel embedded in the SR membrane47,48.  This large cytosolic portion of 

the RyR is where many proteins bind to regulate its function such as FKBP12 (RyR1), 

FKBP12.6 (RyR2), calmodulin, CaMKII, S100A proteins, and DHPRs49.  Ca2+ activates 

and inhibits RyR1 activity.  When Ca2+ concentration is ~1µM, the receptor is active, 

and it is deactivated when the Ca2+ concentration reaches 1 mM50.  Myoplasmic free 

magnesium is a potent inhibitor of RyR1 in resting skeletal muscle cells.  If the 
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physiological concentration of magnesium is lowered from 1 mmol/L to 0.05 mmol/L, the 

receptor opens resulting in a steep decrease in SR Ca2+.  Cytosolic ATP also triggers 

the Ca2+ release channel activity51.  Caffeine exerts a stimulatory effect on RyRs by 

enhancing their affinity for Ca2+ without disrupting magnesium binding52.   4-chloro-m-

cresol (4-CmC) is a potent agonist of the RyR, having a 10 fold higher sensitivity than 

caffeine for inducing SR Ca2+ release with both regularly employed to study RyR-

mediated Ca2+ release in healthy and diseased cells53.  RyR1 is highly localized in the 

terminal cisternae region of the SR membrane facing the t tubules in skeletal muscle 

cells.  The DHPRs, situated on the t tubule membrane, interact directly with RyR1 to 

activate Ca2+ release when membrane depolarization occurs54.  Residues 1,635-2,636 

of RyR1 were shown to interact with the DHPR to mediate Ca2+ release and E-C 

coupling55.  Later, it was discovered that residues 1-1,680 at the N-terminal portion of 

RyR1 facilitate E-C coupling56.  RyR1 also enriches the activity of the DHPR through a 

backward current57.  RyR1 and RyR2 are also controlled luminally through interactions 

with calsequestrin, junctin, and triadin58.  The process linking depolarization to muscle 

contraction, E-C coupling, the specialized junction it occurs in, and the associated 

proteins will be discussed more in section 1.4.1.     

 The inositol-1,4,5-triphosphate receptor (IP3R) is the major Ca2+ release channel 

on the ER membrane of non-excitable cells59.  Its presence in excitable cells servers to 

amplify the Ca2+ signal generated from depolarization60.  The IP3R is a member of a 

vast ion channel superfamily61.  Like RyR, the IP3R functions as a tetramer having a 

large cytosolic domain resembling a mushroom and six transmembrane segments with 

the Ca2+ binding portion homologous to that of the RyR62.  Three isoforms of the IP3R 
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exist with IP3R1 being well studied63.  IP3 is generated as a second messenger from the 

breakdown of phosphoinositol-4,5-bisphosphate (PIP2) by phospholipase C (PLC) 

through activation of GPCRs59.  Channel opening is activated by both Ca2+ and IP3 

where IP3 increases the response of the channel to Ca2+ giving it a bell-shaped 

response curve similar to RyR5.  Channel opening allows the release of Ca2+ from the 

ER and other internal stores expressing the receptor59.  Several molecules interact 

indirectly or directly with the IP3R triggering its activation.  ATP increases IP3-mediated 

Ca2+ release through the IP3R at concentrations of 100 µM64.  ATP binds to the 

purinergic receptor P2YR, a GPCR, triggering production of IP3 that binds to the IP3R to 

release Ca2+ from the ER65,66.   

1.2.3 Ca2+ binding proteins 

 At the molecular level, Ca2+ can influence cellular activity and overall function 

due to the presence of CaBPs.  These binding proteins are responsible for binding free 

Ca2+ during influx acting as shuttles and activators changing the spatial and temporal 

aspects of the Ca2+ signal67.  CaBPs can be divided into two major subgroups:  Ca2+ 

buffer proteins and Ca2+ sensors.  Ca2+ buffer proteins are a small group of the EF-hand 

family of CaBPs that have Ca2+ Kd values in the high nanomolar to low micromolar 

range, so in resting cells, these binding proteins are primarily in the Ca2+ free state.  

Upon electrical, mechanical, or hormonal stimulation, Ca2+ buffer proteins readily bind 

the influx of Ca2+ ions with various affinities68.   Parvalbumin, for example, is a well-

known cytosolic Ca2+ buffer primarily found in fast-twitch muscle with 3 EF-hands, two 

are functional, and one is non-functional.  The functional EF-hands are mixed in that 

they bind Ca2+ and Mg2+ ions69.  Parvalbumin has a strong affinity for Ca2+ with Kd 
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values between 4-9 nM with a rapid kon and slow koff of 2.5x108 M-1s-1 and 1.01 s-1, 

respectively.  The kinetic properties of parvalbumin allow for fast response to the rapid 

Ca2+ increase in active muscle cells70.  The second subgroup of CaBPs are the Ca2+ 

sensors which make up the majority of the EF-hand family.  Depending on the 

concentration of this type of CaBP, they may also function as buffer proteins71.  The 

ability of the Ca2+ sensor proteins to translate the cytosolic Ca2+ increase into a 

mechanical signal, due to the conformational change that takes place, and trigger many 

downstream processes is attributed to their uniqueness as regulatory proteins.  Ca2+ 

controls the action of these proteins72.  The quintessential example of a Ca2+ sensor is 

calmodulin (CaM)73.  CaM is composed of 4 EF-hands resembling a dumb bell with two 

globular domains at either end separated by a helical linker region in the Ca2+ bound 

form.  In the Ca2+ free form, CaM is in a globular closed conformation.  CaM binds four 

Ca2+ ions with positive cooperativity (Kd ~ 5x10-7- 5x10-6 M) with the C-terminal domain 

having a higher affinity than the N-terminal74.  CaM binds Ca2+ at a rate of 1x108 M-1s-1 

and releases it at 238 s-1 70.  With processes occurring on a timescale of microseconds 

to hours, from exocytosis to fertilization, CaBPs help to tailor the duration of the signal 

to accommodate specific cellular events in different cell types21.  Ca2+ probes are 

needed that can bind and release Ca2+ quickly, with low affinity, to monitor these rapid 

changes in [Ca2+] .   

1.3 Magnesium 

 The magnesium (Mg2+) ion plays an important role in physiology75.  Although 

magnesium has a smaller ionic radius than Ca2+, it readily binds water molecules 

increasing its hydration radius76.  The increased hydration radius allows magnesium to 
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bind in sites designated for Ca2+.  Thus, the magnesium ion must be discussed.  The 

magnesium ion is found in great abundance in the human body.  In healthy individuals, 

serum levels of Mg2+ are between 0.7-1.05 mM with tight regulation by absorption and 

excretion through the intestines and kidneys.  Mg2+ in serum only accounts for 1% of the 

24 g of total Mg2+ found in the body with the majority of it residing in muscle, bone, and 

other tissues75.  Intracellularly, Mg2+ has an almost negligible electrochemical gradient 

unlike that of its counter ion Ca2+, leaving its speculated role as a second messenger 

unclear77,78.  Intracellular levels of Mg2+ are maintained between 0.5-1.2 mM with levels 

at ~1 mM in the ER/SR and the high milli-molar range in the mitochondrion.  Cytosolic 

Mg2+ only represents 5-10% of cellular Mg2+ 77.  Levels of free cytosolic Mg2+ are 

maintained through different membrane transporters such as TRPM779, MRS280, and 

MagT181.  The importance of MagT1 will be discussed later in Chapter 5.  Mg2+ flows 

into the cell by diffusion.  Extrusion of this ion occurs against an electrochemical 

gradient that is commonly coupled to Na+ exchange, where two Na+ ions are exchanged 

for one Mg2+ ion.  In addition to its structural role in nucleic acids and its role as a 

cofactor and activator in many enzymatic reactions, Mg2+ also binds to ATP to stabilize 

its charge.  Implicated in its function in ATP, the level of free cytosolic Mg2+ is effected 

by the rate of energy production occurring in the mitochondrion, where increases in ATP 

production lower [Mg2+]i82.   Along with its function in energy metabolism, Mg2+ also 

plays important role in bone formation and the proper function of the heart, brain, and 

skeletal muscle75.  Hypomagnesemia, a clinical state in which serum Mg2+ levels fall 

below 0.5 mM, effects physiological processes involving Mg2+ adversely83.   The 

pathological results of improper Mg2+ regulation include coronary artery disease, 
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neurological disorders, asthma, vascular calcification, and muscle cramps, to name a 

few75.   Magnesium and its role in physiology, with emphasis on the immune response, 

will be discussed in Chapter 6.  

1.4 ER/SR Ca2+ signaling 

 The ER and the sarcoplasmic reticulum (SR), its counterpart in striated muscle 

cells, are not only the site for protein synthesis inside the cell, but they are also key 

organelles in most signaling events, being able to receive and transmit signals84,54.    

Stimuli that activate the ER/SR include reactive oxygen species (ROS), inositol 1,4,5-

triphosphate (IP3), sterols, sphingosine-1-phosphate (S-1-P), and Ca2+, just to name a 

few.  The input stimuli are converted to output signals such as stress signals, 

transcription factors, and Ca2+. The dual role of Ca2+ in ER/SR mediated signaling 

points to its excitatory nature and ability to continue the Ca2+ signaling event through 

Ca2+ induced Ca2+ release (CICR)84.  The ryanodine receptor and the inositol 1,4,5-

triphosphate receptor (IP3R) are Ca2+ release receptors located on the membranes of 

the SR and ER, respectively, that are activated by Ca2+85.  The distribution of these Ca2+ 

release channels, associated proteins, and SERCA pump varies in the ER and SR86.  

The organization of the SR Ca2+ release and refilling machinery is highly specific, as is 

the case in cardiac87 and skeletal muscle cells88.  The localized Ca2+ domains that arise 

from the spatial organization of sarcolemmal and SR associated Ca2+ channels and 

CaBPs generate local elevations in Ca2+ near the release channels needed for 

excitation-contraction coupling to occur88,58,89.  The complex organization of the SR 

makes analyzing and quantifying the changes involved in Ca2+ signaling a challenge.  In 

the following subsections, we will discuss the morphology and organization of the SR 
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and the implications of the local Ca2+ signals generated from this organelle.  It is 

important to have a Ca2+ probe that can effectively monitor the fast kinetics of Ca2+ 

release and changes in global and local levels of ER/SR Ca2+.  Our work designing a 

probe for this purpose is addressed in Chapter 5.     

1.4.1 Morphology and organization of the SR for E-C coupling 

The ER appears as an uninterrupted network with three distinct forms and 

accompanied specialized functions90.  The rough ER (RER) appears as flattened sacs 

and is speckled with ribosomes for protein synthesis.  The smooth ER (SER) is an 

elongated, cylindrical network with key functions in Ca2+ storage and release.  

Surrounding the nucleus is an extension of the ER called the nuclear envelope (NE).   

The NE is also dotted with ribosomes and supplies the nucleus with Ca2+ for gene 

transcription90,91. The SR is a morphologically distinct version of the smooth ER 

specialized for Ca2+ release to fuel muscle contraction88.  It consists of large sink 

portions referred to as terminal cisternae (TC) connected to elongated tubes termed the 

longitudinal SR.  RyR1s are located solely in the TC, while SERCA pumps are found 

exclusively in the longitudinal SR.  The distribution of these primary receptors within the 

SR divide this organelle into two divergent subdomains tasked with the release and the 

uptake of Ca2+ 92.  Within the muscle cell, the TC is distributed to be in proximity to the 

tubule invaginations of the sarcolemma membrane called the transverse tubules (t 

tubules).  Located on the t tubule membrane are the DHPRs that allow Ca2+ to flow into 

the myoplasm in response to depolarization.  The space between the SR TC membrane 

and the t tubule membrane is referred to as the junctional zone54.  This extended SR 

network consisting of the TC, longitudinal SR, and the t tubules surrounds the myofibrils 
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in repeating units near the sarcomere ensuring delivery of Ca2+ for contraction to 

occur93.  The immense amount of Ca2+ released from the SR in response to the action 

potential fuels excitation-contraction (E-C) coupling54,58,94.  This large reservoir of Ca2+ 

required to generate contractile force repetitively from a train of action potentials is 

maintained by the low affinity, high capacity Ca2+ binding and release of CASQ195.  

CASQ1 is concentrated in the SR TC where it forms long polymers near the opening of 

RyR1 in a Ca2+ dependent manner96,97.  Polymerized CASQ1 can bind 40-50 mol of 

Ca2+/mol of CASQ1 with a 103 M-1 affinity over a high Ca2+ concentration range of 0.01-

1 M.  Its exceptional buffering function makes CASQ1 the sole mechanism for fast Ca2+ 

binding and release from the SR95.  CASQ1 modulates Ca2+ release through the RyR1 

by acting as a luminal Ca2+ sensor through its association with integral membrane RyR 

associated proteins junctin and triadin.  When junctin and triadin are present, CASQ 

inhibits RyR function when luminal Ca2+ is at 1 mM.  As luminal Ca2+ increases, CASQ 

depolymerizes releasing Ca2+ and increasing RyR activity98.  In skeletal muscle cells, an 

additional protein associated with the junctional zone, having an important role in E-C 

coupling, was discovered called JP4599.  JP45 interacts with the DHPR at the cytosolic 

portion of its N-terminal and with CASQ1 at its C-terminal situated in the SR lumen100.  

Deletion studies of JP45 from young mice resulted in a loss of skeletal muscle strength 

due to decreased expression of the DHPR which is essential for E-C coupling101.  These 

local Ca2+ signals that activate the contractile proteins in the junctional zone are fueled 

by global changes in SR Ca2+ and are critical for E-C coupling to occur.  Mutations in 

these junctional zone/RyR1 associated proteins lead to many musculo-skeletal 

diseases102.  For this reason, we designed a targeted Ca2+ probe called CatchER-T’-
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JP45 to understand the local changes in Ca2+ occurring in this area of the TC.  This 

work will be discussed in Chapter 5. 

1.5 Diseases and disorders associated with disrupted Ca2+ signaling 

 As cells grow and separate into their respective tissue types during the 

developmental process, diverse elements of the Ca2+ signaling machinery will be 

expressed that will render different properties to the generated Ca2+ signal21, 25.  These 

components are under continuous modification to adjust to environmental changes and 

ensure the preservation of the Ca2+-mediated response for the particular cell type.  

When problems arise with constituents of the signaling network, Ca2+ itself will trigger 

transcription of the defunct components to restore the signal25.  Many major diseases 

are attributed to dysfunctional elements in the Ca2+ signaling network, primarily the IP3R 

and RyR that mediate Ca2+ release from the ER/SR103.  A few of those diseases will be 

discussed in this section. 

1.5.1 Heart disorders 

 Ca2+ is a critical component of the various aspects of the signaling system in 

cardiomyocytes that work together to generate the contractile force needed to pump 

blood throughout the body104.  Some of these areas include the electrophysiological 

mechanisms used to generate the action potential, E-C coupling, myofilament 

activation, energy manufacture and metabolism, cell death, and transcriptional control of 

cardiac machinery105.   A breakdown or mutation in any of the components in the 

previously mentioned areas will cause electrical and mechanical problems within the 

heart104.  Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a heart 

disorder that causes abnormal heart rhythm106.  CPVT is characterized by rapid heart 
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rate through β-adrenergic receptor stimulation.  Commonly occurring in kids and 

teenagers, CPVT causes fainting and sudden death.  When left untreated, CPVT has a 

31% mortality rate in patients 30 years of age107.  The clinical characterization of CPVT 

is fainting connected to seizures brought on by stress or exercise.  Mutations in the 

cardiac isoform of RyR, RyR2, have been identified in familial cases of CPVT108.  RyR2 

plays a major role in Ca2+ regulation and release from the SR in cardiomyocytes109.  

Activation of the L-type Ca2+ channel allows Ca2+ to flow into the cytosol from the 

extracellular environment.  The circulating Ca2+ opens RyR2, through CICR, allowing 

prompt discharge of Ca2+ from the SR.  The elevated cytosolic Ca2+ level induces 

contraction and is taken back up into the SR104, 110.  Improper regulation of this cycle is 

associated with many heart disorders such as CPVT107.               

1.5.2 Malignant Hyperthermia 

 Malignant hyperthermia (MH) is a genetic skeletal muscle disease caused by 

mutations in RyR1111,112.  Commonly induced by certain anesthetics, MH is the 

underlying cause of anesthesia-related deaths in patients who are seemingly healthy.  

The anesthetics known to initiate MH include isoflurane, sevoflurane, haloethane, 

desflurane, enflurane, and the muscle relaxer succinylcholine113.  In some reported 

cases of MH, abrupt changes in temperature and stressors triggered the disease.  

Clinical hallmarks of MH include rapid heart rate, high blood pressure, sustained muscle 

contractions, increased CO2 levels, trouble breathing, and severe increase in core 

temperature.  Untimely diagnosis of MH leads to death.  The hypermetabolic state 

mirrored in MH is attributed to escalated Ca2+ release from the SR caused by defects in 

RyR1 situated on the SR membrane112,113.  Hundreds of mutations to human RyR1 
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have been linked to MH, thus far, with research still ongoing.  The majority of these 

mutations are confined to three locales in RyR1:  C35-R614 in the N-Terminal, D2129-

R2458 in the central region, and I3916-G4942 in the carboxy terminal, but several 

mutations still exist outside of these areas114.  MH mutations have also been identified 

in the human CACNL1A3 gene coding the α1 subunit of the DHPR located on the 

sarcolemma115.  The DHPR and the RyR1 are in close contact with one another.  When 

skeletal muscle cells are depolarized, the DHPR converts the voltage change to a 

conformational change that triggers SR Ca2+ release through the RyR1 leading to 

muscle contraction in a process known as excitation-contraction coupling (E-C 

coupling).  In MH, mutations in RyR1 and the DHPR prevent communication between 

the two causing a breakdown in E-C coupling112.  The abnormal handling of SR Ca2+ 

leads to muscle rigidity caused by elevated myoplasmic Ca2+ and increased glycogen 

and glucose breakdown sparked by phosphorylase kinase galvanization by Ca2+ 114.  

These frenzied metabolic reactions consume O2, ATP, and glycogen reserves and 

create exorbitant amounts of metabolic waste products, leading to an eventual 

disturbance in ion levels and ensuing cellular destruction116.  Clinical treatment of MH 

involves the administration of the muscle relaxer Dantrolene, the only pharmacological 

agent known to treat the disease117.  Dantrolene imposes a hindrance on the DHPR, 

blocking L-type currents and diminishing Ca2+ release from the SR; however, 

expression of RyR1 was found necessary for Dantrolene to exert an inhibitory effect on 

the DHPR through modification of the coupling between these channels118.     



26 

1.5.3 Alzheimer’s Disease 

 Alzheimer’s disease (AD) is medically defined as the continuous deterioration of 

mental capacity leading to noticeable declines in behavior and memory associated with 

aging119.  Currently, the prevalence of AD is ranked highest among all other 

neurological maladies and has no cure.  The majority of AD cases that arise are late 

onset or sporadic AD (SAD).  Familial AD (FAD), or early onset AD, constitutes a small 

percentage of cases and has genetic origins.   In both cases, AD manifests in the brain 

as lesions of amyloid-beta (Aβ) protein, fibrous tangles of tau (τ) protein, and cell death 

resulting in the reduction of brain mass and ultimately death120,121.  Amyloid plaque 

formation is caused by the improper cleavage of the neuroprotective amyloid precursor 

protein (APP) by secretase enzymes resulting in copious amounts of the cytotoxic, 42 

residue fragment Aβ122.  Mutations in APP and presenilins 1 and 2 (PS1 and PS2), 

which are located in the ER membrane of neurons, lead to a buildup of Aβ in cases of 

FAD.  A common denominator in all cases of AD is the mishandling of neuronal 

intracellular Ca2+, primarily IP3R and RyR-mediated Ca2+ release from the ER119,123.  

Resting free intracellular Ca2+ levels were dramatically increased in the neurons of 

transgenic mice exhibiting AD compared to normal neurons.  This increase was due to 

the influx of Ca2+ through voltage gated channels and its release from the ER through 

the IP3R and RyR124.  PS1 and PS2 mutants of FAD were shown to excite IP3R activity 

causing amplified Ca2+ signaling from the ER which increased Aβ production125.  

Injection of Aβ aggregates into Xenopus oocytes alone elicited IP3R stimulation through 

GPCR production of IP3 resulting in vigorous Ca2+ release from the ER and 

cytotoxicity126.  Reduction in IP3R levels and blocking of RyR activity was shown to 



27 

alleviate AD symptoms in AD mouse models solidifying IP3R and RyR-mediated Ca2+ 

release from the ER in neurons as therapeutic targets for AD127,128.                           

1.6 The inception of Ca2+ imaging with synthetic dyes 

 As detailed in the preceding sections, the movement of Ca2+ outside and inside 

the cell is central to many functions in living organisms.  When the flow of Ca2+ is 

impeded, various pathologies will ensue25.  A popular tool used for understanding the 

Ca2+ signaling pathways in different functions is Ca2+ indicators.  Two groups of Ca2+ 

indicators exist:  synthetic and genetically-encoded129,130.  The latter will be discussed in 

a later section.  Organic Ca2+ dyes are highly sought after for Ca2+ imaging because of 

their broad emission spectra and ease of use in cells129.  A drawback to using synthetic 

indicators is their lack of targeting specificity to different organelles.  Ca2+ dyes 

compartmentalize in cells, making it difficult to measure Ca2+ in one specific organelle.  

Another disadvantage to using synthetic indicators is their leakage from the cell during 

long experiments131.  Introducing dextran tags on the dyes allows them to stay in cells 

longer129.  The origin of Ca2+ dyes and a few of the commonly used indicators will be 

discussed in this section.    

The first Ca2+ chelator dyes were designed by Roger Tsien in the 1980s132,133.  

Quin2, located in Figure 1.6.1A, is a fluorescent quinolone Ca2+ dye that binds Ca2+ in a 

1:1 ratio.  Its excitation and emission wavelengths are 339 nm and 492 nm, 

respectively.  Quin2 has a Ca2+ Kd of 60 nM, in the absence of magnesium, and a Kd of 

115 nM in the presence of 1 mM magnesium.  The AM ester form of Quin2 was used to 

measure the resting intracellular Ca2+ concentration in mouse and pig lymphocytes 

which was determined to be 120 nM134.  
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Figure 1.6.1 Structures of the first and commonly used synthetic Ca2+ dyes 

Structures of quin2 (A), BAPTA (B), fura-2 (C), and Mag-fura-2 (D).  Quin2 was the first 
Ca2+ dye created with a Ca2+ Kd of 60 nM.  Poor fluorescence makes Quin2 less 
suitable for monitoring Ca2+ flux in situ.  BAPTA (B) is a derivative of EGTA and is more 
selective for Ca2+ over magnesium.  Fura-2 (C) is the most commonly used, ratiometric 
Ca2+ imaging dye derived from BAPTA and EGTA.  Mag-fura-2 (D) is a weaker affinity 
Ca2+ dye originally created to detect magnesium. 

 

 Depicted in Figure 1.6.1B, 1,2-bis(ο-aminophenoxy) ethane-N,N,-N',N'-tetraacetic 

acid (BAPTA) is a synthetic Ca2+ dye that was derived from the Ca2+ chelator ethylene 

glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA).  BAPTA has an 

excitation maximum of 254 nm and emits at 363 nm.  Compared to EGTA, BAPTA has 

a higher selectivity for Ca2+ than magnesium with a Kd of 1.1 x 10-7 M for Ca2+ and 17 

mM for magnesium in the presence of 0.1 M KCl.  BAPTA is also less sensitive to 

fluctuations in pH and has faster kinetics with an off rate of 60 s-1 132,135.   

A                                                            B 

 

 

C                                                                     D 
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The most widely used synthetic Ca2+ indicator, thus far, is fura-2 (Figure 1.6.1C) 

with a stilbene chromophore containing tetracarboxylate ligands similar to its 

predecessors EGTA and BAPTA133.  The Ca2+ Kds of fura-2 in cytosolic buffer 

conditions are 135 nM without magnesium and 224 nM in the presence of 1 mM 

magnesium.  Fura-2 has a better selectivity for Ca2+ over magnesium, compared to 

Quin2, with a magnesium Kd of 9.8 mM.  A key feature of fura-2 is that it is a ratiometric 

indicator.  Fura-2 has an absorbance peak at ~380 nm.  As Ca2+ is added and the 

complex forms, the 380 nm peak decreases and a new peak at ~340 nm forms and 

continues to increase.  It has single wavelength emission at ~512 nm.  The ratiometric 

property of fura-2 allows for the correction of dye variability and instrument 

inefficiency129,133.  Fura-2 has been used extensively in different cell types and tissues 

to monitor changes in cytosolic Ca2+.  It has been applied in mast cells where emptying 

of intracellular Ca2+ stores was found to stimulate a steady inward current of Ca2+ 

termed Ca2+-release activated Ca2+ (ICRAC)136.  Fura-2 has also been used in MCF-7 

cancer cells to identify the contribution of increased Orai1 expression and store 

operated Ca2+ entry to activation of membrane androgen receptors137.  Because of the 

high affinity of fura-2 for Ca2+133, it cannot be applied to Ca2+ storage organelles 

containing millimolar amounts of Ca2+.  A different Ca2+ indicator, such as mag-fura-2, 

that can detect Ca2+ levels in organelles is preferred. 

Mag-fura-2 (Figure 1.6.1D), previously known as FURAPTRA, was created from 

the O-aminophenol-N,N,O-triacetic acid chelator APTRA by Robert E. London and 

colleagues138.  Mag-fura-2 was initially used and created to measure free magnesium in 

the cytosol.  The magnesium Kd of mag-fura-2 is 1.5 mM.  Consequently, mag-fura-2 
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also binds Ca2+ with a Kd of 53 µM.  Like fura-2, mag-fura-2 is also ratiometric having an 

absorbance max at ~380 nm in the absence of metal with a peak shift and increase at 

340 nm as the dye-metal complex forms.  Mag-fura-2 fluoresces at 510 nm, and like 

fura-2, it exhibits 1:1 binding stoichiometry.  It is a pH insensitive Ca2+ dye with a pKa of 

5.0139.  It was first used to measure a cytosolic magnesium concentration in rat 

hepatocytes of 0.59 mM139, and was later applied in cultured embryonic chicken heart 

cells where the resting [Mg2+]i was 0.48 mM140.  Hofer and colleagues were the first to 

take advantage of the proclivity of mag-fura-2 AM to compartmentalize in cells to 

investigate the effect of Cl- on the release and reuptake of Ca2+ in an IP3-sensitive 

organelle141.    

In addition to the indicators discussed above, several other organic Ca2+ dyes 

are available for the study of Ca2+ and Mg2+ flow inside the cell.  A listing of these dyes, 

Kds, and other properties can be found in Table 1.6.1.   

Table 1.6.1 Properties of commonly used Ca2+ and Mg2+ dyes 
 

Indicator Ca2+ Kd 
(µM) 

Mg2+ Kd 
(mM) 

Λex and λem 
(nm) 

Quantum 
Yield 

BAPTA132,135 0.11  17 254, 363 0.027 

Quin2134 0.060 0.000115 339, 492 --- 

Fura-2133 0.135 9.8 340/380, 
512 

0.49 

Mag-fura-2139 53 1.5 340/380, 
512 

--- 

Fluo-4142 0.345 --- 494, 516 0.14 

Mag-fluo-4142 22 4.7 493, 516 --- 

Rhod-2143 1.0 --- 553, 576  0.102 
*Kd – dissociation constant; λex – excitation wavelength; λem – emission wavelength; 
quantum yield – ratio of photons emitted to photons absorbed  
*/ separates excitation wavelengths of ratio metric dyes   
*Ca2+ and magnesium Kds were determined at room temperature. Buffer conditions 
are found in the provided references for each dye.         
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1.7  The discovery of GFP and fluorescent proteins 

 The isolation of green fluorescent protein (GFP) from the Aequorea victoria 

jellyfish gave light to and revolutionized the field of cell imaging144,145.  In 2008, Osamu 

Shimomura, Martin Chalfie, and Roger Tsien were awarded the Nobel Prize in 

chemistry for their work contributing to the discovery and development of GFP, which 

will be discussed in detail later in this section.  While studying bioluminescence in 

jellyfish, Shimomura isolated and identified Aequorin and GFP as the light generating 

moieties in Aequorea victoria and the fluorescence resonance energy transfer (FRET) 

mechanism by which the two create bioluminescence146.  Aequorin emits blue light 

when it binds four Ca2+ ions and its cofactor coelentrazine147,148.  The emitted blue light 

serves as excitation light for GFP that emits the green light observed146.  Shimomura 

showed GFP fluorescence came from its unique, integrated chromophore and not 

cofactors149.  Douglas Prasher was the first to clone and sequence the GFP gene150, but 

he was not included in the Nobel Prize.  Chalfie was the first to express the cloned GFP 

DNA in E. coli and C. elegans, beginning its use as a marker for gene expression and 

pointing to its future use in various aspects of biological imaging151.  The work of Roger 

Tsien made GFP a more effective tool for visualizing physiological elements and 

processes. Tsien determined the mechanism of fluorophore formation in GFP152, and 

was able to solve the crystal structure of the S65T mutant, enhanced GFP (EGFP)153.  

The structure of wild type GFP was determined, prior to the structure of EGFP, by Yang 

and colleagues154.  Tsien’s mutagenesis work targeting the GFP chromophore and 

surrounding residues revealed key mutations that produced different emission 

wavelength variants of GFP capable of FRET152,155. By initiating the early research 
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elucidating the biochemistry156 and chromophore157 of the red tetrameric protein DsRed 

from Discosoma sp., Tsien was able to produce a monomeric form of DsRed called 

mRFP1158.  From mRFP1, Tsien produced mutants, called mFruits, with red-shifted 

emission wavelengths extending the color palette of available FPs159,160.  The 

advancements made with Aequorea victoria GFP led researchers to identify GFP-like 

proteins in other sea animals, such as coral and crustaceans, which cover the visible 

spectrum.  GFP variants and GFP-like proteins are continuously used not only as 

fluorescent tags, but as biological sensors of physiological elements and compounds 

such as Ca2+ which will be discussed in the next section161.            

 GFP, located in Figure 1.7.1, is a single chain of 238 amino acids with a 

molecular mass of 27 KDa150.  The tertiary fold of the protein is that of a beta barrel 

consisting of 11 beta strands where each contains 9-13 residues.  Central to the protein 

fold is a greek key motif connecting the second half of the beta barrel (strands 7-11)162.  

The beta barrel is a virtually impeccable cylinder at 42 Å long with a 24 Å diameter.  The 

top of the barrel is covered by three short alpha helices, with another at the bottom.  

GFP has two characteristic absorption peaks at 395 nm and 475 nm corresponding to 

the neutral and anionic forms of the chromophore.  Inside the solvent-inaccessible beta 

barrel is a central alpha helix, primarily composed of hydrophobic residues154,153.  Within 

the central helix is the chromophore formed by the autocatalytic cyclization of residues 

S65, Y66, and G67.  Formation of the p-hydroxybenzylideneimidazolinone chromophore 

is as follows: 1). the protein folds into its tertiary structure; 2). the nucleophilic amide 

group of G67 attacks the carbonyl group of S65 forming the imidazolinone ring; 3). 

dehydration of the imidazolinone ring; 4). dehydrogenation of the α-β bond of Y66 
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Figure 1.7.1 Structure and chromophore formation of GFP 

A) Crystal structure of GFP containing the S65T mutation created in pymol (PDB: 
1ema).  The chromophore is in yellow.  B) Reaction scheme for chromophore formation 
in GFP.  After the protein folds into the β-barrel, the chromophore forms through an 
autocatalytic cyclization where the amide group of G67 attacks the carbonyl group of 
S65 forming the imidazolinone ring with the loss of water and a final dehydrogenation of 
the α-β bond of Y66 by molecular oxygen producing the conjugated chromophore. C) 
Representation of the overall fold of GFP.  The numbers correspond to the residues 
found in each of the secondary structure elements.  N and C mark the amino and 
carboxy terminals of the protein. Adapted from Ormo, et al., Science,1996 and Reid, et 
al., Biochemistry, 1997. 
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by molecular oxygen producing the final conjugated chromophore162.  The oxidation 

step has a rate constant (kox) of 1.51 x 10-4s-1 making it the rate limiting step for 

chromophore formation163.   

 As stated previously, the 395 nm and 475 nm absorbance peaks correspond to 

the neutral and anionic ground states of the GFP chromophore that emit light at ~510 

nm164.  The absorbance spectrum of GFP depicting its dual excitation peaks is located 

in Figure 1.7.2A.  The amplitude of the 395 nm absorbance peak is three times larger 

than that of the 475 nm peak making more of the neutral chromophore present in wild 

type GFP162.  When the chromophore absorbs 395 nm light, the pKa of the chromophore 

is reduced causing dissociation of the phenolic proton in a process termed excited state 

proton transfer (ESPT)165 which is depicted in Figure 1.7.2B.  In a 0.9 Å resolution 

structure of GFP, two proton wires, or extensive hydrogen bond networks, were 

revealed on either side of the chromophore.  One is involved in chromophore formation 

and the other, called the active site wire, is responsible for shuttling the 

photodissociated proton during ESPT.  The active site wire is formed by hydrogen 

bonds from many residues with key residues being N146, Y66, E222, S72, T203, H148, 

and E5166.     
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Figure 1.7.2 UV absorbance spectrum of GFP and scheme for ESPT 

A) Absorbance spectrum of GFP reflecting the two ionization states of the chromophore.  
The neutral chromophore corresponds to the 395 nm peak and the anionic 
chromophore corresponds to the 475 nm peak.  In EGFP, the S65T and F64L mutations 
make the anionic chromophore dominant with a large peak occurring at 488 nm in the 
absorbance spectrum.  B) During ESPT, the hydroxyl group of the tyrosine residue in 
the chromophore will lose its proton after being excited with 395 nm light or return back 
to the ground state and emit light at 460 nm.  If the proton dissociates, the anionic 
species will return to the ground state, emitting light at 510 nm.  The anionic 
chromophore can be directly excited at 475 or 488 nm and will also fluoresce at 510 nm.  
The ionization state of the GFP chromophore is also heavily dependent on the pH of the 
solvent.  Modified from Wineman-Fisher, et al., Phys.Chem.Chem.Phys., 2014 and 
Zhuo, et al., J. Phys. Chem. B, 2015. 

 

Mutational analysis of GFP has identified the amount of tolerable deletions the 

beta barrel can withstand before fluorescence is lost and mutations that improve the 

folding of the protein162.  Residues 7-229 are required to maintain GFP fluorescence, 

which means only six residues from the N-terminal and nine residues from the C-

terminal can be deleted without disrupting the folding of the protein167.  Many mutations 

have been identified to help improve expression of GFP at 37˚C such as F99S, F64L, 

V163A, M153T, S175G, I167T, and S72A.  However, implementing these mutations 

A        B  
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have only improved the folding ability of the protein and not its overall brightness162.  In 

superfolder GFP, the S30R Y39N mutations yielded a four-fold increase in the actual 

brightness at 37˚C compared to the commonly used cycle 3 GFP folding variant168,169.   

The F64L and S65T mutations were made to GFP to produce its brightest and most 

widely used mutant, EGFP170.  EGFP only contains the anionic form of the chromophore 

with a single excitation peak at 488 nm and emission at 510 nm.  The F64L mutation 

improves the folding efficiency of the protein at 37˚C by improving the packing of 

hydrophobic residues V29, L18, and F27 around the chromophore and reducing the 

solvent accessible area.  The S65T mutation suppresses the neutral chromophore and 

promotes the formation of the anionic chromophore by disrupting the hydrogen bond 

between E222 and S65170,171.    

 In the quest to improve the fluorescence and utility of expressed GFP, key 

mutations were found that shifted the emission spectrum and subsequent perceived 

color of the protein162.  Substituting a Histidine residue for the Tyrosine in the 

chromophore at position 66 shifts the GFP emission from green to blue creating blue 

fluorescent protein (BFP).  BFP has excitation and emission maxima at 383 nm and 445 

nm.  Although this new chromophore mutation produced a different color variant of 

GFP, it made the chromophore more flexible, which made it more prone to 

photobleaching, and reduced the quantum yield165,172.  Substituting a Tryptophan at 

position 66 in the GFP chromophore shifts the emission from green to cyan producing 

cyan fluorescent protein (CFP) with excitation and emission wavelengths of 433 nm and 

475 nm respectively.  When the M153T, V163A, N146I, and N212K mutations were 

introduced to CFP, the quantum yield increased to 0.67 which is similar to wild-type 
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GFP155.  Mutating serine to glycine at position 65 and the threonine at position 203 to 

tyrosine in GFP creates a π-π stacking interaction that stabilizes the dipole moment of 

the chromophore produced in the excited state, generating yellow fluorescent protein 

(YFP). YFP excites at ~514 nm and emits at ~527 nm.  The new chromophore 

environment in YFP rearranges the internal hydrogen bond network and packing 

interactions within the β-barrel making the protein sensitive to photobleaching and 

chloride ions165.  Citrine, an improved version of YFP consisting of the 

S65G/V68L/Q69M/S72A/T203Y mutations, has a more stable pKa of 5.7, improved 

photostability, and reduced chloride sensitivity due to the Q69M mutation.  The 

methionine side chain fills the once open halide binding cavity173.  Additional mutations 

F46L/F64L/V163A/M153T/S175G were introduced into EYFP, S65G/S72A/T203Y, to 

produce Venus174.  The F46L mutation increases the speed of chromophore maturation 

while the other mutations improve the folding of the protein, making the fluorescence 

more visible at 37°C expression in mammalian cell application175,174.  Variants of BFP, 

CFP, and YFP are commonly used in the construction of forster resonance energy 

transfer (FRET) pair Ca2+ sensors.   The emitted light from BFP or CFP (donor) is used 

to excite YFP (acceptor).  CFP and YFP have been optimized for use in FRET pair Ca2+ 

sensor design176.  Camelons, designed by Miyawaki and colleagues, are FRET pair 

Ca2+ sensors containing BFP or CFP at the N-terminal fused to CaM and the M13 

binding peptide with a YFP variant at the C-terminal177.  The various fluorescent protein-

based Ca2+ probes with advantage of targeting to specific organelles will be discussed 

in the next section.  
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1.8 Genetically-encoded Ca2+ indicators 

 In the past 30 years, the Ca2+ imaging world has been revolutionized by the 

discovery and manipulation of fluorescent proteins145.  Using site-directed mutagenesis, 

circular permutation, and fused FP constructs, a variety of Ca2+ probes have been 

created to monitor cytosolic and organellar Ca2+130.  GECIs fall into two major 

categories: single fluorophore and FRET pair.  Single fluorophore sensors are non-

ratiometric and experience a change in fluorescence intensity when Ca2+ binds.  Most of 

the single fluorophore sensors are large chimeras of a FP connected to CaM and M13, 

the CaM binding peptide.  Chelation of Ca2+ by CaM induces a conformational change 

that rearranges the chromophore environment, inducing fluorescence change178,179.  

Our Ca2+ sensor CatchER, and its variants, do not use CaM as the chelator.  A Ca2+ 

binding site, consisting of five negatively charged residues, was mutated on the surface 

of the cycle 3 variant of GFP in a chromophore sensitive location that altered the 

protonation of the chromophore180.  The addition of Ca2+ stabilizes the charge on the 

chromophore, increasing the fluorescence intensity181.  For single fluorophore sensors, 

Ca2+ binding produces changes either in absorbance or the quantum yield that lead to 

the change in fluorescence intensity.  Single fluorophore sensors are commonly referred 

to as intensiometric because the fluorescence intensity change at only one wavelength 

is measured130.  FRET pair, or ratiometric, sensors involve the fusion of two FPs with 

CaM and M13 in the center of the construct.  In these indicators, the emission energy of 

one FP (donor) is used as the excitation energy for the other FP (acceptor).  The 

fluorescence change is measured by exciting the donor FP and measuring the emission 

of the donor and acceptor to calculate the ratio182.  The efficacy of energy transfer is 
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dependent on the distance between the two FPs and the extent of overlap between the 

emission and excitation of the donor and acceptor, respectively130.  The conformational 

change that occurs between CaM and M13 when Ca2+ binds brings the FPs closer 

together for FRET to occur130,183.  The two previously mentioned categories can be 

divided further into four subcategories: bioluminescent indicators, single fluorophore 

indicators utilizing a CaBP in the construct, grafted single fluorophore indicators, and 

FRET pair indicators179.  Figure 1.8.1 shows examples of the Ca2+ sensors from each of 

the subcategories.  Examples of each sensor type and their targeting ability for 

measuring Ca2+ transients in subcellular environments such as the ER/SR will be 

discussed in this section. 

 The first GECI used was the bioluminescent protein aequorin isolated from 

Aequorea victoria where it acted as the FRET pair donor to GFP147.  Aequorin is a 21 

kDa globular protein containing four E-F hand motifs where only three actively bind Ca2+ 

with a Kd of 1 µM. At the center of the protein exists a hydrophobic pocket where its 

cofactor coelenterazine binds, acting as the chromophore148.  Aequorin is excited at 403 

nm and emits light at 470 nm.  The chelation of Ca2+ ions by the three binding sites 

induces a conformational change converting coelenterazine to coelenteramide and CO2 

with light emission184.  Recombinant aequorin has been used to monitor changes in 

cytosolic Ca2+ in mammalian cell lines such as HeLa, ins-1, and L929 and cultured 

myocytes and neurons185.  It has also been targeted to the mitochondria of CHO.T cells 

to monitor Ca2+ concentration186.  Aequorin has also been used as a chimera fused to 

GFP to sense cytosolic Ca2+ in mouse neuroblastoma cells187.  Longer emission  
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Figure 1.8.1 Four categories of genetically-encoded Ca2+ indicators 

A) Aequorin is a type of single fluorophore Ca2+ sensor and is also a bioluminescent 
indicator.  Aequorin binds three Ca2+ ions and the cofactor coelenterazine to produce 
emission at 470 nm.  B) GCaMP is considered a single fluorophore sensor since only 
one FP is used in the construct, but GCaMP and GCaMP like sensors use a native 
CaBP, like CaM or TnC, as the Ca2+ binding moiety.  GCaMP utilizes cpGFP, CaM, and 
the M13 binding peptide.  When CaM binds Ca2+ and M13, the conformational change 
triggers closing of the cavity created in cpGFP and fluorescence increases.  C)  Grafted, 
single fluorophore sensors, such as Ca-G1, fuse an EF-hand from a CaBP to a 
chromophore sensitive area in a FP.  D) FRET pair, or ratiometric, sensors involve the 
fusion of two FPs with CaM and M13 in the center of the construct. Cameleons, a type 
of FRET sensor, use CYP as the donor and YFP as the acceptor.  The Ca2+ induced 
conformational change in CaM brings the two FPs closer together for FRET to occur. 
Modified from McCombs, et al., Methods, 2008. 

 

constructs of aequorin have been produced using Venus and mRFP1, making Ca2+ 

imaging in deep tissues with aequorin possible188.  Because aequorin-based Ca2+ 

probes use the luminescent cofactor coelenterazine to produce fluorescence, intensity 

measurements can vacillate with cofactor depletion130.  Recently, a new aequorin-GFP 

fusion probe called GAP was created that does not require recombination with 

coelenterazine189. GAP is a ratiometric Ca2+ sensor with excitation maxima at 403 nm 

A             B 

C                       D 
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and 470 nm and emission at 510 nm.  GAP has a Ca2+ Kd of 200 nM, which is suitable 

for measuring cytosolic Ca2+, with a Hill coefficient of 1.  It has good selectivity for Ca2+ 

over magnesium and a large dynamic range.  The ER-targeted low affinity version of 

GAP, erGAP1, has a Kd of 12 µM with a Hill coefficient of 1.  In HeLa cells, erGAP1 

detected ATP+carbachol stimulated Ca2+ release from the ER which yielded a 20% 

decrease in the intensity ratio and a 58.8 ± 7.5% intensity decrease with ATP+histamine 

stimulation.  erGAP1 had a two to threefold reduction in the intensity ratio with caffeine 

stimulated ER Ca2+ release in dorsal root ganglia neurons.  No data was provided for 

Ca2+ binding and release kinetics. Constructs were also created to target the nucleus, 

Golgi, and the mitochondria189.             

The creation of Camgaroo and Pericam Ca2+ sensors were the first attempts in the 

GECI field to use native CaBPs in the construct either by grafting or fusion178.  Xenopus 

CaM, without the M13 binding peptide, was inserted between residues 144 and 146 of 

EYFP, ECFP, and EGFP to produce these new Ca2+ sensors.  The EYFP grafted 

Camgaroo, termed Camgaroo-1, had the largest Ca2+ response and a Ca2+ Kd of 7 µM.  

Camgaroo-1, however did not fold properly at 37°C, was pH sensitive, and could not be 

targeted to organelles190.  Exposing Camgaroo-1 to error-prone PCR resulted in 

Camgaroo-2 with similar Ca2+ affinity and fluorescence change to its predecessor.  

Camgaroo-2 folded well in HeLa cells and was easily targeted to the mitochondria173.  

Using a similar grafting strategy, our lab created the Ca-G series of GECIs with the 

insertion of an EF-hand or Ca2+ binding loop between residues 144-145, 157-158, and 

172-173 of EGFP191.  Ca-G1, the most promising variant, has EF-hand III of CaM 

inserted into EGFP between residues 172 and 173.  Ca-G1 is ratiometric with excitation 
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peaks at 398 nm and 490 nm and single wavelength emission at 510 nm.  With its 

single EF-hand, Ca-G1 has a weak Ca2+ affinity of ~0.4 mM.  Its weak affinity made it 

suitable to measure ER Ca2+ changes in HeLa and BHK cells with the addition of the 

ER retention sequence and tag.  Although its affinity makes it suitable for measuring 

ER/SR Ca2+, Ca-G1 is pH sensitive with a pKa of 7.5191.                 

Cameleons are genetically encoded FRET pair sensors consisting of two 

fluorescent proteins, normally cyan and yellow FPs, with calmodulin and M13, from 

myosin light chain kinase, in the center of the construct.  These sensors have been 

applied in different cell lines to monitor Ca2+ dynamics from the ER/SR and cytosol177 

but primary application is cytosolic due to their strong affinity for Ca2+.  Recently, ER-

targeted cameleons with a red hue were developed based off of the optimal cameleon 

D1ER.  The new red shifted cameleon called D1ERCmR2 has the fluorescent proteins 

Clover positioned at the N-terminal acting as the FRET pair donor and mRuby2 at the 

C-terminal acting as the FRET pair acceptor.  D1ERCmR2 has two in vitro Kds of 0.8 

µM and 60 µM with an in situ Kd of 220 µM determined in HeLa cells.  D1ERCmR2 can 

be used in tandem with fura-2 to measure ER and cytosolic Ca2+ concentrations192.  As 

for the kinetics of cameleon sensors, not much data has been reported.  Cameleons 

YC2.0, one of the first yellow cameleons, has a dissociation time constant (Ƭrt) of 83 ms.  

YC-Nano140 has a Ƭrt of 303 ms130.    

Because of the large size of FRET pairs and limited signal intensity, new probes, 

called GCaMP, were developed using a single circularly permuted EGFP (cpEGFP) 

fused to calmodulin and M13.  The use of cpEGFP increased the signal intensity of the 

probes for use in cells but their affinities for Ca2+ are high with Kd values in the 
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nanomolar range193,194.  The original GCaMP indicator, published in 2001, has a Ca2+ Kd 

of 235 nM with a dissociation time constant of ~200 ms193.  The Ca2+ induced 

fluorescence change mechanism was discovered from crystal structure analysis of 

GCaMP2.  The Ca2+ induced conformational change in CaM creates new contacts 

between CaM and cpGFP.  CaM residues change the chromophore environment of 

cpGFP, preventing solvent access to the chromophore aiding fluorescence increase194.  

Since its unveiling, several variants of GCaMP have been created and used to monitor 

Ca2+ transients in different environments such as mouse cardiac cells in vivo 

(GCaMP2)195, chemosensory neurons of C. elegans and D. melanogaster 

(GCaMP3)196, and in the brain cells of mice, Caenorhabditis, Drosophila, and zebra fish 

(GCaMP5s)197.  GCaMP6f is a newer construct in the GCaMP family with the ability to 

sense Ca2+ nanosparks that initiate EC coupling in the junctional zone dyad space in rat 

cardiomyocytes.  By targeting the sensor to the junctional zone using resident proteins 

junctin and triadin, Ca2+ nanosparks that are 50 times smaller than standard sparks 

were seen198.  All of the initial GCaMP variants mentioned have strong affinities for Ca2+ 

that limit their use to cellular environments with minimal Ca2+ concentrations like the 

cytosol, and only use cpGFP.  None of the initial GCaMPs have Ca2+ affinities low 

enough to target to organelles like the ER/SR193,195,197.  A new subfamily of GCaMPs 

was created, from random mutations to GCaMP3, termed genetically encoded Ca2+ 

indicators for optical imaging (GECOs).  Green (G-GECO), red (R-GECO), and 

ratiometric blue-green (GEM-GECO) variants were created.  Although the color palette 

was expanded, the new GECO variants still have high Ca2+ sensitivity199.  Robert 

Campbell and colleagues created low affinity red GECOs, LAR-GECO1 and LAR-
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GECO1.2, with Ca2+ Kds of 24 µM and 12 µM, respectively.  LAR-GECO1 was used to 

monitor thapsigargin inhibition of ER refilling in HeLa, HEK293, and U2-OS cells co-

transfected with CatchER.  LAR-GECO had larger decreases in intensity over all three 

cell lines200.  In 2014, new low affinity, GECO-type indicators were created based on 

cfGCaMP2.  The lead variant, from a library of 58 mutants, had a Ca2+ Kd of 368 µM 

and a large dynamic range.  This new variant termed Ca2+-measuring organelle-

Entrapped Protein IndicAtor 1 in the ER (CEPIA1er) was able to monitor ER Ca2+ 

dynamics in HeLa cells with thapsigargin and histamine treatment201.  Variants of 

CEPIA were also created with different emission wavelengths such as red (R-CEPIAer), 

green (G-CEPIAer), and ratiometric blue-green (GEM-CEPIAer) with Ca2+ affinities of 

565 µM, 672 µM, and 558 µM, respectively201.  Table 1.8.1 lists some of the current 

indicators, their affinities, the organelle they are suited for, and the area of the color 

palette they fill.             

Although the CaM-based biosensors are the most widely used, earlier versions 

had some drawbacks such as the lack of Ca2+ response when targeted to particular 

regions of the cell and reduced dynamic range when expressed in vivo178.  To combat 

the interference of CaM-based biosensors with regulatory processes in the cell, Heim 

and Griesbeck began designing ratiometric GECIs based on the skeletal muscle and 

cardiac variants of troponin C (TnC) with part of their binding peptide, troponin I, used 

as the linker202.  The best variant, TN-L15, utilized TnC from chicken skeletal muscle 

with 14 amino acids deleted from the N-terminal.  TN-L15 has CFP as the donor FP at 
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Table 1.8.1 Ca2+ Kds and subcellular targets of current GECIs  

Subcellular 

compartment 

CYAN/Yellow GREEN Yellow RED 

Intracellular 

(0.1-1 μM Ca2+) 

GEM-GECO199 

(Kd = 0.3 μM) 

GCaMP193 

(Kd = 0.5 μM) 

 

G-GECO199 

(Kd = 0.6-1.2 

μM) 

Flash 

pericam203 

(Kd = 0.7 μM) 

R-GECO199 

(Kd = 0.5 μM) 

aYC3.6204  

(Kd = 0.3 μM) 

 
aTN-XL205  

(Kd = 2.5 μM) 

Mitochondria/ Nuclear 

envelope 

(1-10 μM Ca2+) 

aCameleon-2206 

(Kd = 0.07; 11 μM) 

 
aYC4.6204 

(Kd = 0.06, 14.4 μM) 

 Ratiometric 

pericam203 

(Kd = 1.7 μM) 

 

Camgaroo-

2173 

(Kd = 5.3 μM) 

 

ER/SR 
(0.2-1 mM Ca2+) 

aD1ER207 

(Kd = 0.8, 60 μM) 

 
aCameleon-4206  

(Kd = 0.08, 700 μM) 

 
aGEM-CEPIA1er201 

(Kd = 558 µM) 

CatchER180 

(Kd = 190 μM) 

 

G-

CEPIA1er201 

(Kd = 672 µM) 

 R-

CEPIA1er201 

(Kd = 565 µM) 

*Kd – dissociation constant. 
*Colors correspond to characteristic emission wavelength of each indicator. 
*All Kds were obtained at room temperature.  Additional conditions can be found in the provided 
references. aRatiometric containing Cyan and Yellow FPs. 

 

the N-terminal and Citrine as the acceptor FP at the C-terminal with the truncated TnC 

in between.  TN-L15 exhibited a 140% increase in ratio change in vitro with a Kd of 1.2 

µM for Ca2+ and a Kd of 2.2 mM for magnesium.  Because of its high affinity for Ca2+, 

TN-L15 was targeted to the cytosolic side of the plasma membrane in primary 

hippocampal neurons and HEK293 cells to monitor Ca2+ flux from the membrane to the 

cytosol202.  By replacing Citrine in TN-L15 with the circularly permutated variant Citrine 

cp174 and mutating residues in EF-hand III and IV of TnC, the improved variant TN-XL 
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was produced.  TN-XL has a 400% change in its fluorescence ratio when Ca2+ 

saturation is reached in vitro with a Ca2+ Kd of 2.5 µM and a Hill coefficient of 1.7.  Off 

rate kinetics from stopped-flow experiments showed TN-XL had time constants of 142 

ms and 867 ms205.           

Thus far, current genetically encoded Ca2+ probes have a significant disadvantage 

in their use of native CaBPs or other functional domains that bind Ca2+.  In this case, the 

reporter construct can potentially interfere with cellular processes that involve the native 

protein since high expression levels of the indicator are needed for Ca2+ imaging144,179.   

1.9 Previous work leading to CatchER and questions to be addressed 

 In the past, our lab has demonstrated our knowledge and skill for designing novel 

CaBPs using non-native CaBPs as the scaffold208,209, and manipulating the binding 

affinity of these designed CaBPs by altering the number of charged residues in the 

metal binding site210,211.  Using our previously published results and subsequent 

statistical analysis of coordination chemistry in native CaBPs212,213, we designed two 

novel EGFP-based sensors Ca-G1 and CatchER (Ca2+ sensor for detecting high 

concentration in the ER)191,180.  Ca-G1 was created using the grafting approach to 

incorporate EF-hand III of CaM into EGFP at residue 172.  Ca-G1 has two excitation 

peaks at 398 nm and 490 nm with single wavelength emission at 510 nm.  Ca-G1 is 

advantageous as a ratiometric sensor, with a Ca2+ Kd ranging from 0.4-0.8 mM, but has 

a small dynamic range and slow kinetics191.  CatchER has a similar absorption profile as 

Ca-G1 with 395 nm and 488 nm excitation peaks and single wavelength emission at 

510 nm, but it is not ratiometric.  CatchER has a large fluorescence intensity change 

induced by Ca2+ binding and a Kd between 120-180 µM with a Ca2+ off rate of 700 s-1 
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which makes it capable of measuring Ca2+ release from the ER/SR in various cell 

types180.  CatchER also has a 44% in fluorescence lifetime with Ca2+ bound214.  We 

have also applied this strategy to mCherry with our red sensor MCD1 having faster 

release kinetics than CatchER but a smaller fluorescent dynamic range upon Ca2+ 

binding (unpublished results).  All of our designed sensors have the advantage of being 

easily targeted to cellular compartments containing high concentrations of Ca2+ like the 

ER/SR, fast kinetics and affinities to cover the wide range of [Ca2+] in different 

organelles, and a Ca2+ response that is not transduced by a native CaBP.  

  Although CatchER has been highly requested and used by various labs, a 

common issue is its unsatisfactory fluorescence at 37°C in mammalian cells which is 

the temperature mammalian cells grow efficiently.  The absorbance spectrum of 

CatchER also resembles that of wtGFP with two excitation peaks even though EGFP, 

having a single excitation peak, is the scaffold for CatchER.  Through this research, 

there were several questions we wanted to address: 1) What structural elements cause 

the optical property changes seen in CatchER? 2) Can we make mutations to the 

sensor to broaden the Kd range and improve the fluorescence intensity at 37°C for 

mammalian cell studies? 3) Can we use the sensor to quantify drug-induced Ca2+ 

release and kinetics in different receptor mediated signaling pathways? and 4) Can we 

target the sensor to measure local Ca2+ changes near channels to further compare the 

local and global changes that occur during signaling events?     

1.10 Overview of this dissertation 

 To determine the structural basis for the fluorescence enhancement of CatchER 

upon Ca2+ binding and other key residues that can improve the optical properties and 
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binding affinity, crystals of CatchER were grown and the structure was determined and 

analyzed.  Various mutations were made to CatchER to generate different variants with 

different Kds and fluorescence enhancement.  Some of the variants have been used in 

situ in different cell types to monitor Ca2+ release in the presence and absence of 

receptor agonists and blockers.  The majority of the Ca2+ imaging work done was 

carried out with an improved variant, CatchER-T’.  CatchER variants were also used to 

monitor magnesium transients in T lymphocytes.   

 Chapter two will discuss the materials and methods used to carry out the 

research for this dissertation.  Chapter three will go over the crystallization and structure 

determination of CatchER.  Chapter four will discuss the effects of adding an additional 

negatively charged residue to the binding site of CatchER and monitoring the drug 

effects in situ using variants containing the S30R and/or Y39N mutations.  Chapter five 

will discuss the optimization of CatchER to CatchER-T’ using the S30R Y39N mutations 

from superfolder GFP that were shown to improve the folding and subsequent 

brightness of the protein at 37˚C.  Chapter six will discuss the use of CatchER variants 

for the in situ monitoring of Mg2+ in T cells.  Chapter seven will go over the major 

conclusions and significance of the research put forth in this dissertation. 

  



49 

2 MATERIALS AND METHODS 

2.1 Primer design and PCR  

 Primers were designed based on the segment of DNA containing the residue to 

be mutated.  Primers were between 18-34 base pairs in length.  Mutations, deletions, or 

insertions were placed within or near the complimentary portion of the primer pair.  Non-

overlapping segments of each primer complimented the template DNA to insure 

hybridization with the template and mutation success.  Tm values of the non-

overlapping segments for each primer pair were made to match one another215.  The 

PCR reaction was set up using pfu DNA polymerase (GBioscience).  To the PCR tube, 

2 µL of dNTPs, 1 µL of template DNA (20-50 ng), 5 µL of 10X pfu buffer, 1 µL of pfu 

DNA polymerase, and 2 µL each of the forward and reverse primer was added and 

brought to a final volume of 50 µL.  The contents of the tube were mixed by pipetting.  

The tube(s) was then placed in the thermocycler, and the following program was run:  

step 1: 95˚C for 1 min., step 2: 95˚C for 1 min., step 3: -5˚C the Tm of the non-

overlapping region for 1 min, step 4: 72˚C for 13 min., repeat steps 2-4 for 12 cycles, 

step 5: -5˚C the Tm of the complimentary region for 1 min, step 6: 72˚C for 30 min, 

repeat steps 5 and 6 for one cycle, and step 7: hold at 4˚C.  After completion, 1 µL of 

Dpn1 enzyme and 5 µL of 10X CutSmart buffer were added to the PCR product and 

incubated for 1-2 h at 37˚C.  After incubation, 2-8 µL of the PCR product was 

transformed into DH5α cells, grown in 10 mL of LB, and extracted using the Qiagen Mini 

Prep Kit.  The concentration of the purified DNA was determined using the absorbance 

peak at 260 nm and calculated using a web-based DNA concentration calculator.  

Samples were then sent to GENEWIZ for sequencing. 
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2.2 Transformation  

For this procedure, 50 μl of BL21 DE3 cells and 0.5 μl of the protein DNA was 

mixed in an eppendorf tube and allowed to sit on ice for exactly 30 minutes.  The 

DNA/bacteria mixture was then placed in a 42°C water bath for exactly 90 seconds and 

then placed back on ice for 2 minutes.  Fifty micro-liters of Lurea Bertani (LB) media 

was added and mixed into the DNA/bacteria mixture and allowed to incubate at 37°C for 

30 minutes.  After incubation, 50 μl of the solution was streaked onto an agar plate 

containing the antibiotic kanamycin near a lighted Bunsen burner.  A control plate was 

made with only the BL21 DE3 cells.  The plates were then placed upside down in the 

37°C incubator overnight. 

2.3 Inoculation 

The next day, one colony of bacteria was chosen for expression.  Operating next 

to a lighted Bunsen burner, one healthy colony of bacteria from the transformation plate 

was retrieved using an inoculating loop.  The colony was then added to 10 mL of 

autoclaved LB media and 6 μl of kanamycin in a 50 mL falcon tube.  In the case of 

mCherry and its variants, 1 μL of ampicillin is used for every 1 mL of LB in inoculation 

and expression.  The bacteria mixture was allowed to grow in the shaker at 37°C 

overnight at 200-230 rpm.   

2.4 Expression  

A full diagram of the expression procedure can be found in Figure 2.4.1.  To 1 L 

of autoclaved LB media in a 2.8 L flask, 600 μl of 50 mg/ml kanamycin was added for a 

final concentration of 0.03 mg/ml for kanamycin.  One milliliter of this solution was 

placed into two disposable cuvettes to be used as optical density (OD) references in the 
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UV-VIS spectrophotometer.  Fifty milliliters of the 250 mL inoculate was added to each 

flask containing 1 L of LB+kanamycin or LB+ampicillin.  The flask was then placed in 

the shaker and allowed to shake at 37°C at 200-230 rpm.  In a labeled disposable UV 

cuvette, 1 ml aliquots of the bacteria mixture were taken at 1hr intervals for OD 

determination at 600 nm.  Once the UV absorbance of the mixture reached 0.6, the 

bacteria were induced with 200 μl of 1 M IPTG with a final concentration of 0.2 mM once 

added to the mixture.  As the absorbance approached 0.6, 1 ml aliquots were taken at 

decreased time intervals.  After the addition of IPTG, the flask(s) were then allowed to 

shake at 25°C overnight, taking 1 ml samples of the mixture for OD analysis at 1-2 hr 

intervals and a final sample from overnight.  One sample before induction (BI), and after 

induction overnight (AI/ON) were taken and centrifuged for 1 min at 6,000 rpm to collect 

the cell pellets for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) analysis. 
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Figure 2.4.1 Expression procedure for Ca2+ sensors 

To overexpress our Ca2+ sensors, the plasmid DNA for the selected sensor is 
transformed into BL21 (DE3) cells or a different bacteria cell strain.  The transformed 
cells are plated onto LB agar and allowed to grow overnight at 37°C.  The next 
afternoon, a colony from the dish is selected and inoculated into 10 mL of LB, with the 
appropriate amount and type of antibiotic, and allowed to shake overnight at 37°C.  The 
next day, the inoculate is poured into 1 L of LB with the antibiotic and allowed to shake 
at 200 rpm at 37°C while monitoring the O.D. every hour or every two hours.  Once the 
O.D. reaches 0.6, 200 µL of 1 M IPTG is added to the flask to induce overexpression of 
the desired protein and the temperature is reduced to 25°C to ensure correct folding of 
the sensor and chromophore formation.  The next day, the content of the flask is 
centrifuged at 7,000 rpm to collect the cell pellet for purification. 

 

For fluorescence analysis before and after expression, the same samples were used 

before gel electrophoresis with three additional samples taken after induction.   

For the SDS gel samples, 200 μl of the SDS gel sample buffer was added to 

each cell pellet in an eppendorf tube and vortexed until mixed.  The samples were then 
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boiled for 10 min at 95°C to 100°C.  Around 6-10 μl of each sample was loaded onto a 

15% SDS gel and allowed to run at 118 volts for 1 hr 20 min or until the samples neared 

the bottom of the gel.  The gel was then stained with the coomassie blue staining buffer 

and microwaved for 45 sec.  The gel was then placed into destaining buffer overnight to 

allow the protein bands to develop. 

For fluorescence analysis, the cell pellets from each sample were re-dissolved in 

200 μl of 10 mM Tris pH 7.4.  The samples were then placed on a 96 well plate and 

were analyzed. 

2.5 Collecting the cell pellet   

Once the absorbance reached 1.2-1.5, the flasks were removed from the shaker.  

The content of the flasks were poured into the large centrifuge containers.  For 1 L of 

LB/bacteria, three centrifuge containers were used.  The bottles were then balanced in 

pairs: the two centrifuge bottles containing the bacteria mixture and the final container 

containing the bacteria was balanced against water.  The balanced pairs were placed 

across from each other in the large centrifuge and allowed to run at 7,000 rpm for 35 

min.  The cell pellet was then collected and placed in the -20°C freezer. 

2.6 Cell lysis 

Sonication is a technique used to lyse cells using sound waves.  Inside a falcon 

tube the cell pellet from expression was re-dissolved in 10ml of extraction buffer with a 

pH of 8 and vortexed.  The tube was then kept on ice for sonication.  Before placing the 

sonication rod inside the falcon tube, it was cleaned with ethanol and water.  The cells 

were sonicated with 30 pulses for a total of six times with 2 to 5 min cooling breaks in 
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between.  After sonication, the solution of lysed cells and protein was placed into a 

small centrifuge tube and balanced with water.  The tubes were placed across from 

each other in the small centrifuge and were allowed to run for 40 min on 17,000 rpm.  

After centrifugation, the supernatant was poured into a beaker and syringe filtered for a 

total of 3 times into a clean falcon tube using a 0.45 μm filter.  The filtrate was then 

stored in the 4°C refrigerator if it was not being purified the same day.  A sample of the 

cell pellet after sonication was taken for SDS gel analysis along with 20 μl of the filtered 

supernatant.   

The sonication technique is primarily employed when large amounts of protein 

are not required.  However, for crystallization purposes, the French press was used to 

lyse the bacterial cells.  The French press instrument uses large amounts of pressure to 

burst bacterial cells, releasing all the contents inside216.  The shear force exerted upon 

the cells when the pressure is released causes the cells to burst.  Another advantage to 

this technique is that less heat is produced.  The French press cell is kept cold to 

minimize temperature increases that could damage the protein of interest. 

2.7 Purification using Immobilized Metal Ion Affinity Chromatography (IMAC) 

and gel filtration chromatography 

In order to get pure samples of the EGFP-based Ca2+ sensors, a form of IMAC 

called HisTag purification, outlined in Figure 2.7.1, was utilized using a 5 mL HiTrap 

chelating column on a Fast Protein Liquid Chromatography system (FPLC).  Gel 

filtration chromatography was also implemented, using a 100 mL Hi Load Superdex 75 

16/60 column as an extra purification step.  The Ca2+ probes contain a 6X Histidine 

sequence that will interact with 0.1 M NiSO4 when loaded onto a 5 mL HiTrap chelating  
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Figure 2.7.1 HisTag purification procedure for Ca2+ sensors  

A form of IMAC called HisTag purification is implemented to purify the Ca2+ probes 
containing a 6X histidine tag at the N-terminal of the protein.  A 5 mL HiTrap NTA 
chelating column is washed with 1 M nickel sulfate that interacts with the NTA 
molecules in the column, turning the column a blue-green color.  Following column 
charging with nickel sulfate, the excess is washed away with Buffer A, leaving the 
column a light blue color.  After column washing, the sample loop is washed manually, 
and the protein is loaded into the sample loop.  Using the designated gradient 
purification program, the sample is injected and bound onto the column through the 
nickel-HisTag interaction and eluted using an imidazole gradient where the protein of 
interest elutes out at 37% Buffer B.    

 

column.  Once the NiSO4 solution was loaded onto the column (blue color), the protein 

sample was then injected into the FPLC and loaded onto the column (green color) using 

50 mM phosphate and 250 mM sodium chloride at pH 7.4 (Buffer A).  After the protein 

was loaded onto the column, the sample was eluted using a gradient of Buffer B 

containing Buffer A and 0.5 M imidazole.  After the protein was eluted, the fractions 

containing the protein (green color) were collected.  Twenty micro-liters of each protein 

containing fraction were placed into eppendorf tubes for SDS gel analysis to determine 



56 

the fractions with the highest concentration of protein and purity.  The chelating column 

was then washed with a solution of 100 mM EDTA and 1 M NaCl at pH 8, to remove the 

nickel sulfate, until the column was free of blue color.  For gel filtration, two column 

volumes of 10 mM Tris pH 7.4 were washed through the column at 1 mL/min.  The gel 

filtration program was run, after 2 mL sample injection, using 10 mM Tris pH 7.4 at 0.5 

mL/min, to minimize the pressure in the column, to elute the pure protein in 2 mL 

fractions.  The protein was collected and 10 uL samples of each fraction were taken for 

SDS-PAGE analysis.  The protein was re-concentrated if it was for protein 

crystallization. 

2.8 Dialysis   

After HisTag purification, the fractions containing the most protein were 

combined and placed into dialysis bags and placed into 2 L of 10 mM Tris at pH 7.4.  

This technique helps to remove the imidazole salt from the protein and change the 

protein buffer from Buffer B to 10 mM Tris pH 7.4.  The protein was allowed to dialyse 5 

times changing the buffer every 2-3 h monitoring the absorbance at 280 nm for 

complete removal of imidazole.  After dialysis, protein samples were concentrated to 1-5 

mL using the Amicon concentrator with N2 gas and a 10 kDa membrane.  Protein 

samples were then stored with/without the addition of 20-25% glycerol in -20˚C for later 

use. 

2.9 Crystallization using the hanging drop vapor diffusion method   

Using the hanging drop method of vapor diffusion, screening of crystal growth 

conditions for the free and Ca2+ loaded form of sensor variants was carried out.  Five 

micro-molar EGTA was added to the protein samples for apo form crystallization.  A 24 
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well crystallization plate was used.  Around the top of each well, vacuum seal grease was 

added to prevent air from entering inside the well and to promote vapor diffusion.  To 

each well, the calculated amount of each mother liquor component was added to make 

up 1 mL in each well.  The pH value of the mother liquor changed for each horizontal row.  

Different amounts of PEG were added to each vertical row of the 24 well plate using the 

stock solutions of PEG.  In a 2:2 ratio, 2 μl of protein was placed on a round siliconized 

glass cover slip (Hampton Research, Laguna Niguel, CA) and 2 μl of the well solution 

was added to the drop.  This process was repeated for each well.  The cover slips were 

then carefully inverted and placed on top of each well with applied pressure to ensure the 

wells were sealed.  Observations were recorded immediately after and then every few 

days following crystallization. 

Crystals of Ca2+ free and Ca2+ loaded CatchER were obtained via the hanging drop 

method of vapor diffusion using 2 μL protein: 2 μL reservoir solutions at room temperature 

in 24-well VDX plates (Hampton Research, Aliso Viejo, CA). Ca2+ free CatchER crystals 

(0.9 mM protein, 5 μM EGTA) grew in solutions containing 53 mM HEPES pH 7.0, 1 mM 

β-mercaptoethanol, 50 mM (NH4)2SO4, and 16% PEG 4000 or 51 mM HEPES pH 7.0, 1 

mM β-mercaptoethanol, 50 mM NaOAc, and 17% PEG 4000. The Ca2+ loaded CatchER 

complex was created by adding 50 mM CaCl2 to a 0.9 mM protein solution (final 

concentration of 0.45 mM). Crystals grew in mother liquors containing 51-53 mM HEPES  
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Figure 2.9.1 Crystallization via hanging drop vapor diffusion  

A literature review of crystal conditions for FPs was done prior to setting up a crystal 
screening tray to narrow down the screening conditions.  Utilizing a 24 well 
crystallization plate, prescreening of crystal conditions was done by varying the %PEG 
used by column and the pH by row at room temperature.  The concentration of salt and 
other additives was held constant.  Concentrations of salt, PEG, buffer, and other 
additives were calculated for 1 mL, filtered, and added to each well using filtered ddH2O 
to make the final volume 1 mL.  Two microliters of the protein sample was placed onto 
round glass coverslips and mixed with 2 µL of well solution taken from the 
corresponding well.  The slides were placed over the well, encircled with vacuum seal 
grease, using some pressure to ensure a good seal.  A mother liquor was created from 
the conditions that produced well formed crystals and was used to setup a whole tray of 
the optimized conditions to grow as many crystals for X-Ray crystallography.  This 
procedure was followed to obtain the Ca2+ free and Ca2+ loaded crystals of CatchER.  
Ca2+ free CatchER crystals were soaked in mother liquor containing gadolinium to get 
gadolinium loaded CatchER crystals. 

 

pH 6.9-7.4, 1 mM β-mercaptoethanol, 50 mM NaOAc, and 16-17% PEG 3350. Crystals 

of CatchER-Gd3+ were obtained via the soaking technique. Crystals of apo CatchER were 
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soaked for 1 to 2 days in a solution of mother liquor with the final concentration of GdCl3 

ranging from 1 mM to 4.5 mM. The crystals were mounted in liquid nitrogen with 20-30% 

(v/v) glycerol as cryoprotectant. X-ray diffraction data for the crystals were collected on 

the SER-CAT beamline of the Advanced Photon Source, Argonne National Laboratory, 

Argonne, IL. 

2.10 Crystal structure determination   

X-ray data collection was done by Dr. Irene Weber’s group at Georgia State 

University.  The crystal structures of CatchER were determined by Ying Zhang in Dr. 

Irene Weber’s group.  Crystals of CatchER were sent to the Advanced Photon Source 

at Argonne National Laboratory, Argonne, Illinois, USA.  X-ray diffraction data was 

collected using the SER-CAT beamline.  Structural data for the Ca2+ free, Ca2+ bound, 

and Gd3+ bound crystal structures were deposited into the Protein Data Bank (PDB) 

with codes 4l13, 4l1i and 4l12 respectively.  A detailed protocol for the X-ray data 

collection and the molecular replacement done to obtain each structure is in the 

published article181.   

2.11 CatchER-Gd3+ stoichiometry via Job Plot  

The method of continuous variations (Job Plot)217 was used to confirm 1:1 

binding of CatchER to Gd3+.  Duplicate samples of 40, 35, 30, 25, 20, 15, and 10 µM 

CatchER (actual concentrations were 38, 35, 30, 24, 20, 15, and 10.5 µM based on 

absorbance at 280 nm) were prepared in 20 mM PIPES pH 6.8.    The absorbance and 

fluorescence spectra of each sample was recorded before and after adding 10, 15, 20, 

25, 30, 35, and 40 µM of Gd3+ respectively to keep the total [CatchER + Gd3+] equal to 
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50 µM. The relative amount of Gd3+ bound CatchER was calculated using the following 

derived equation: 

FCa
2+

 bound

FCa
2+

 free
= 

Sf x Cf + Sb x Cb

Sf x CT
=

Sf(CT - Cb) + Sb x Cb

Sf x CT
 

= 1+ 
Cb(Sb - Sf)

Sf x CT
 

a = 
Sb - Sf

Sf
 

Cb

CT
 x a = 

FCa
2+

 bound

FCa
2+

 free
 – 1 

Cb x V= (
FCa

2+
bound

FCa
2+

free
 - 1) x

CT

a
 

where Cb is the amount of CatchER bound to Gd3+, FGd3+ bound/FGd3+ free is the ratio 

of the fluorescence intensity with and without Gd3+, C is the concentration of CatchER, 

and a is a constant of the difference between the quantum yields of the bound and free 

forms of CatchER divided by the quantum yield of the free form. Sf and Sb are the 

coefficients of the Ca2+ free and Ca2+ bound CatchER, respectively, and Cf and Cb are 

the concentrations of Ca2+ free and Ca2+ bound CatchER, respectively.  CT is the total 

concentration. 

2.12 Optical property determination of CatchER variants 

The quantum yield is a measure of the ratio of photons emitted to photons 

absorbed (Figure 2.12.1) that tells the efficiency of fluorescence218.  In this experiment, 

protein variant samples were prepared in triplicate in different concentrations (within the 

sensitive range for absorbance readings) in 10 mM Tris pH 7.4 with 5 µM EGTA.  

Samples of wild type protein (EGFP) were also prepared in different concentrations 

Equation 2.1 

 Equation 2.2 

 Equation 2.3 

 Equation 2.4 

 
Equation 2.5 
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Figure 2.12.1 Perceived brightness of protein sample (A) and scheme for quantum 
yield (B)  

A) The brightness of the fluorescent protein is the perceived intensity of its 
fluorescence.  Brightness is a product of the extinction coefficient and the quantum 
yield.  B) Simplified jablonski diagram of the absorbance and emission of light.  When 
light is absorbed, electrons will move from the ground state (S0) to the excited state (S1).  
At this point, relaxation will occur to the lowest unoccupied molecular orbital where the 
electron will then fall back to ground state emitting a photon (kf).  Emission, however, is 
also effected by non-radiative decay processes (knr).  The quantum yield is a ratio of kf 
to the sum of all the knr processes. 

 

in the same buffer because EGFP was used as the internal standard and needed in the 

final calculation.  Fluorescence and absorbance of each sample was taken with and 

without 10 mM Ca2+.  Slit widths for the fluorescence measurements were adjusted based 

on the most concentrated sample and were 0.15 mm and 0.60 mm for excitation and 

emission, respectively.  The fluorescence and absorbance values from each 

concentration point at each respective excitation wavelength were then plotted against 

each other (fluorescence vs. absorbance) in K-graph and fit using a linear equation for 

both apo and holo-form.  The slope of the line for the variant and for EGFP were used in 

the final calculation using the following formula, 

ϕ = ϕr( Fp Ap)/( Fr Ar)⁄⁄  

A           B 

Equation 2.6 
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where Fp/Ap is the slope of the line for the variant, Fr/Ar is the slope of the line for EGFP, 

and  фr is the quantum yield of the internal standard which is 0.6 for EGFP. 

The extinction coefficient is a measure of how strongly a compound absorbs light at a 

given wavelength as a function of concentration and cell path length.  It is constant at a 

specific wavelength.  The extinction coefficient was measured by absorbance using the 

alkali denaturation assay (Figure 2.12.2) which is a standard assay for fluorescent 

proteins.  This experiment is done after data has been collected from the quantum yield 

sample set (same day).  To denature the samples, 0.1 M NaOH was added to each, and 

samples were mixed by inversion.  The absorbance of each denatured sample was taken 

at the new absorbance peak which is ~447 nm for fluorescent proteins that have been 

denatured by this standard method.  The absorbance of native to denatured protein was 

plotted in K-graph and fit using a linear equation.  The slope of the line was used in the 

final calculation.   

The perceived brightness was determined by multiplying the extinction coefficient 

and quantum yield.  The following formula was used to calculate the extinction coefficient: 

ℇp,395/488 nm = ℇp,447 nm(Ap,395/488 nm/Ap,447 nm) 
 

where Ap,395/488/Ap,447  is the slope of the line and Ɛp,447 is the extinction coefficient of 

denatured wild-type GFP at 447 nm which is 44,000 M-1cm-1. 

 

 

Equation 2.7 
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Figure 2.12.2 Measurement of the extinction coefficient of Ca2+ probes via the 
Alkali denaturation assay 

The extinction coefficient of fluorescent proteins reflects how well the chromophore 
absorbs light.  The Alkali denaturation assay is the established method used to 
determine the extinction coefficient of the chromophore of fluorescent proteins at their 
maximum absorbance wavelength by taking the absorbance ratio of the native protein 
to the denatured protein.  Native protein samples are prepared at different 
concentrations, within the sensitive range of the UV-Vis spectrophotometer, and the 
absorbance spectrum of each is collected.  Then, 10 µL of 0.1 M NaOH is mixed into 
each sample to unfold the protein and the absorbance spectrum of each is collected.  
The absorbance maximum of each folded sample is plotted against the new absorbance 
maximum of the denatured sample at 447 nm.  The resulting line is fitted and the slope 
is used in the final calculation.        

 

2.13 Apparent pKa determination of CatchER variants 

  The apparent pKa of the sensor variants was determined in order to know the pH 

sensitivity of the chromophore.  Ten duplicate samples containing 10 μM protein and 5 

µM EGTA were prepared in each of the buffers listed in Table 2.13.1 below.  After 

preparation, samples were allowed to incubate at 4°C overnight.  The next day, the actual  
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Table 2.13.1 Buffer concentrations and pH values used for pKa measurement 

Buffer pH 

0.5 M NaOAc  1.0 

10 mM NaOAc  3.1 

10 mM NaOAc  4.1 

10 mM NaOAc  4.5 

10 mM NaOAc  5.1 

10 mM MES  5.5 

10 mM MES  6.3 

10 mM PIPES  7.2 

10 mM Tris  8.0 

10 mM Tris  9.2 

 

pH of each sample was measured and recorded before beginning the analysis (pH of 

apo-form).  Samples were analyzed using the fluorimeter without Ca2+ and with the 

addition of 5 mM Ca2+.  Once the experiment was completed, the pH of each sample was 

measured and recorded again (pH of holo-form).  Fluorescence intensity was then 

normalized and plotted vs. pH to obtain the pKa via curve fit in K-graph.  The proposed 

reaction scheme and derivation of the pKa equation was used to fit the normalized data,  

HP ↔ H+ + P- 

pH = pKa + log
[P]

[HP]
 

f = 
F - Fmin

Fmax - Fmin
 

Fmin = [P]Tc1 

Fmax = [P]Tc2 

F = ([P]T - [P])c1 + [P]c2 

Equation 2.8 

 
Equation 2.9 

 

Equation 2.10 

 
Equation 2.11 

 Equation 2.12 

 Equation 2.13 
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f = 
[P]Tc1 - [P]c1 + [P]c2 - [P]Tc1

[P]Tc2 - [P]Tc1
= 

[P]

[P]T
 

[P]

[HP]
= 

1

1
f - 1⁄

 

f = 
1

1 + exp(
pKa - pH

c
)

 

where H+ is the proton; P is the protein; f is the normalized ΔF change; [P]T is the total 

protein concentration; c1 or c2 is the extinction coefficient of HP or P fluorescence, 

respectively; F is the real-time fluorescence intensity; Fmin is the fluorescence at the 

lowest pH; Fmax is the fluorescence at the highest pH; and c is a constant for 

adjustment. The value theoretically equals log e.   

2.14  In vitro Kd of CatchER variants via Fluorescence Spectroscopy    

Samples of 10 µM sensor with 5 µM ethylene glycol tetraacetic acid (EGTA) were 

prepared in triplicate in 1 mL volumes in 10 mM Tris, pH 7.4.  The samples were placed 

in quartz fluorescence cuvettes, and 0-15 mM Ca2+ or Mg2+ was added to each sample 

using 0.1 M and 1 M Ca2+ stock solutions or Mg2+ solutions .  The fluorescence 

response of the sensor to increasing Ca2+ concentrations was monitored using a 

fluorescence spectrophotometer (Photon Technology International, Canada) with the 

Felix32 fluorescence analysis software.  Slit widths were set at 0.3 mm for excitation 

and emission.  The samples were excited at 395 nm and 488 nm with emission 

collected from 410-600 nm for 395 nm excitation and from 500-600 nm for 488 nm 

excitation.  The absorbance spectrum before and after titration was obtained using a 

Shimadzu UV-1601 spectrophotometer. Fluorescence and absorbance traces were 

Equation 2.14 

 

Equation 2.15 

 

Equation 2.16 
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plotted using Kalidegraph (KGraph).  The data was normalized to show the relative 

change in relation to the basal fluorescence using the following equation, 

y = 
(F - Fmin)

(Fmax - Fmin)
 

where F is the fluorescence intensity at any point, Fmin is minimum fluorescence 

intensity, and Fmax is the maximum fluorescence intensity.  The normalized data was 

then plotted and fitted in KGraph to obtain the dissociation constant (Kd) using the 

following equation for 1:1 binding,  

[PM]

[PT]
=  

[MT]

Kd + [MT]
 

where [PM] is the concentration of protein-metal complex, [PT] is the total protein 

concentration, [MT] is the total metal concentration, and Kd is the dissociation constant.   

[PM]/[PT] represents the change in complex formation.  A complete derivation of the 1:1 

binding equation was done in previous work181.  To determine the Ca2+ Kd at 

physiological concentrations of salt, enough KCl was weighed and dissolved in Tris 

buffer used to prepare the protein samples to make the final concentration of KCl 150 

mM.  The pH of the buffer was adjusted to be 7.4 after addition of KCl.  The subsequent 

titrations proceeded as previously outlined.  

Equation 2.17 

 

Equation 2.18 
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2.15 In vitro Kd of CatchER variants via equilibrium dialysis and ICP-OES 

spectrometry 

2.15.1 Equilibrium dialysis 

The absorbance spectrum of each equilibrium dialysis sample was collected 

using a Shimadzu UV-1601 spectrophotometer before and after equilibration.  In 15 mL 

falcon tubes, 20 uM samples of the EGFP-based sensors were prepared with a final 

volume of 5.5 mL.  5.5 mL of 10 mM Tris pH 7.4 was used as the blank.  As a positive 

control, 5.5 mL of 20 µM of alpha-lactalbumin was prepared along with EGFP and 

myoglobin as negative controls.  Absorbance spectra were taken of each sample to 

confirm that each was ~20 µM.  Sample concentrations were adjusted accordingly.  An 

accurate concentration of each calculated at 280 nm was used in the final Kd 

calculation.  After collecting the absorbance spectra, 4 L of 10 mM Tris pH 7.4 was 

prepared and 3.8 L was placed in a 4 L beaker with a magnetic stir bar.  To the 3.8 L 

buffer, 20 µM of Ca2+ was added and allowed to mix for a few minutes, then 6 mL of the 

buffer/Ca2+ mixture was placed in a 15 mL falcon tube and labeled t = 0.  The samples 

were then placed in 18 mm wide Spectra/Por dialysis bags (Spectrum Labs) with a 3.5 

kDa molecular weight cutoff (bags were pre-soaked in water for 30 min before use).  

The dialysis samples were then placed in the beaker on a stir plate and allowed to 

equilibrate for 48 h at room temperature, shown in Figure 2.15.1, taking two more 6 mL 

samples of the buffer after 24 h (t = 1) and after 48 h (t = 2).  After setting up the 

equilibrium dialysis experiment, Ca2+ standards were prepared to obtain the Ca2+ 

standard curve from ICP-OES.  The standards and volumes associated are found in 

Table 2.15.1.   
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Figure 2.15.1 Schematic of equilibrium dialysis of CatchER variants 

Protein samples in dialysis bags are allowed to equilibrate against a buffer solution 
containing a certain concentration of Ca2+ for 48 h.  At the end of 48 h, samples are 
analyzed for Ca2+ content using ICP-OES.  The concentration of protein and final 
amount of Ca2+ in each sample is used to calculate the Kd. 

 

Table 2.15.1 Prepared Ca2+ standards for ICP-OES standard curve  
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2.15.2 ICP-OES 

After 48 h equilibration, the samples were analyzed using the Varian 720-ES 

ICP-OES.  Before using the instrument, 1 L of 2% HNO3 and 500 mL of 2 ppm yttrium 

internal standard were prepared.  Before turning on the instrument, the Argon (Ar) gas 

was opened and the water bath was turned on.  The pump lines were tightened placing 

both the white line (for sample) and orange line (for internal standard) into the 2% HNO3 

(orange line was placed in internal standard solution before beginning the analysis).  

The ICP worksheet computer program was then opened.  In the program, go to 

‘instrument’ to turn on the pump.  After 5 min the plasma was turned on.  Once the 

plasma flame ignited, the instrument was allowed to stabilize for 30 min.  While the 

instrument stabilized, the samples were collected (with clean gloves) from the dialysis 

bags and placed in labeled 15 mL falcon tubes.  Sample tubes were then placed in a 

holder along with the standard curve solutions to allow for easy access during the 

analysis.  In the ICP program, a new worksheet was created as follows:  go to 

‘worksheet’, ‘new’, and select VAIMDB_Varian ICP-OES Data (000); choose an old file 

for this type of analysis, then click ‘method’ and ‘worksheet’; rename the worksheet and 

click ‘ok’; go to ‘method’, ‘edit method’, then ‘standards’ and update concentrations for 

standard curve in ppb;  go to ‘tools’ and ‘standard names’ to change names of 

standards; go to ‘sequence editor’ and enter the # of samples (excluding the metal 

standards) changing the name of the samples under the ‘sequence’ tab (put them in the 

order you want them analyzed in).  After organizing the worksheet, seven Ca2+ emission 

wavelengths were chosen to collect intensity data at:  396.847, 317.933, 219.779, 

370.602, 643.907, 220.861, and 373.690.  Once the worksheet setup was complete, the 
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analysis was started by pressing start (play button). Between samples, the white line 

was placed in the 2% HNO3 solution to clean the line for each sample measurement.  At 

the end of the analysis, the plasma was turned off and then the Ar gas.  The pump was 

allowed to run for 10 min to clean the instrument of any residue then turned off.  After 

15-20 min, the water bath was turned off.  The intensity data was exported to an Excel 

file.  The standard curves were plotted for each wavelength (intensity vs. ppb) to obtain 

the [Ca2+] in ppb for each sample at each wavelength.  Parts per billion concentrations 

were then converted to micro-molar concentrations. Calculation of the Kd is based on 

the following formulas, 

Kd = 
[Ca2+]free[P]free

[P-Ca2+]
 

[P-Ca2+] = [Ca2+]variant - [Ca2+]free 

[P]free = [P]total - [P-Ca2+] 

where [Ca]free is the concentration of Ca2+ found in the buffer after equilibration is 

reached (t = 0 sample) determined by ICP-OES, [Ca-P] is the concentration of Ca2+ 

found inside the dialysis bag of each sample ([Ca]variant) determined by ICP-OES minus 

[Ca]free, and [P]free is the 280 nm concentration of protein sample ([P]total) minus the 

concentration of [Ca-P].  All calculations were done in Excel.  Concentrations of Ca2+, in 

µM, found in each sample and Kd values are tabled in the results section along with 

standard curves, absorbance spectra, and bar graphs comparing the concentrations of 

Ca2+ found in each sample at each wavelength.   

  

Equation 2.19 

 
Equation 2.20 

 Equation 2.21 
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2.16  Ionic strength effect on Ca2+ binding kinetics via stopped flow 

spectrofluorometry   

To determine the electrostatic nature of Ca2+ binding to our sensors, we used 

stopped flow spectrofluorometry to determine the Ca2+ binding kinetics at increased salt 

concentrations with the help of Dr. Gadda. The kinetics of our probes were investigated 

using an SF-61 stopped-flow spectrofluorometer (10-mm path length, 2.2-ms dead time 

at room temperature; Hi-Tech Scientific) at room temperature. Fluorescence intensity 

changes were recorded with a 455-nm long-pass filter with excitation at 395 nm.  

Protein samples were prepared at 40 µM in 5-10 mL from a concentrated protein stock 

and diluted with the Tris-KCl buffer to be mixed with.  A list of the buffers used can be 

found in Table 2.16.1. The buffers were prepared at 2X concentration so the final 

dilution in the mixing chamber would be the desired concentration.  In the stopped flow 

instrument, buffer and protein were loaded into separate syringes, shot against each 

other, and the fluorescence intensity trace was recorded.  Because the contents of both 

syringes were mixed together, the concentrations of each were diluted by half with a 

final protein concentration of 20 µM.  Approximately five shots were recorded for each 

point, and the best three were averaged.  The raw data was fitted using the following 

equations,  

F = F∞ - ∆F exp(-kobs ∙ t) 

F = F∞ + ∆F exp(-kobs ∙ t) 

Equation 2.22 

 Equation 2.23 
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which describes F, the fluorescence intensity, at any given time; F∞, the fluorescence at 

infinite time; ΔF, the amplitude of the fluorescence change; kobs, the observed rate 

constant; and t, the time. 

 

Table 2.16.1 Buffers used to measure Ca2+ binding kinetics of CatchER variants 

Protein Ca2+ buffers (10 mM Tris, pH 7.4) (mM) 

CatchER 0 mM KCl 0, 0.16, 0.4, 0.8, 1.6, 4 

150 mM KCl 0, 0.8, 2, 4, 8, 20 

149E 0 mM KCl 0, 0.1, 0.25, 0.5, 1, 2.5 

150 mM KCl 0, 0.2, 0.5, 1, 2, 5, 10, 20 

CatchER-T 0 mM KCl 0, 0.12, 0.3, 0.6, 1.2, 3 

150 mM KCl 0, 0.34, 0.85, 1.7, 3.4, 8.5, 15, 20 

 

2.17 Creating CatchER-JP45 construct using restriction enzyme digest and 

ligation 

 In the pcDNA3.1+ vector, CatchER resides between the BamH1 and EcoR1 

restriction enzyme sites.  After the EcoR1 site, there is an additional Not1 cleavage site.  

JP45 resides in the pDsRed2-N3 vector containing the fluorescent protein DsRed 

between the BamH1 and Not1 restriction sites.  To make the CatchER-JP45 construct, 

an enzyme digest was done using BamH1 and Not1 on both plasmids.  To an 

Eppendorf tube, 2-20 μL of plasmid was added along with 1 μL of both enzymes, 2 μL 

of 10x reaction buffer N3 which both enzymes were most efficient at, and water to make 

the final reaction volume 20 μL.  The reaction was placed in the 37°C incubator for 3 h 

or overnight.  All samples were loaded onto an agarose gel and ran at 80 v.  The gel 

was analyzed for the presence of two bands: plasmid vector by itself (higher bp amount) 

and the fragment excised by the restriction enzymes (lower bp amount).  The bands 
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representing CatchER and the JP45 vector were cut, and the DNA was extracted using 

a gel extraction kit (Qiagen) using an elution volume of 30 μL for CatchER and 50 μL for 

the JP45 vector.  The fragments were then ligated together, and the DNA was used to 

transform XL10 Gold cells following the normal transformation procedure implementing 

a 45 s heat shock and an hour 37°C incubation period with 100 μL of NZY media 

containing 25 µL of 20% glucose, 12.5 µL of 1 M MgSO4 and 12.5 µL of 1 M MgCl2.  

Plates were analyzed for clones the next day.  To easily sequence the insertion of 

CatchER into the C-terminal of the construct, the JP45 red-forward primer 5’-

GAGAAGCCAAGTAAAGGGGAGAAACTGAAG-3’ was designed using a small 

sequence of DNA at the end of JP45. 

2.18 Mammalian cell culture and transfection   

Human Embryonic Kidney (HEK293), Cos-7, and C2C12 myoblast cells (all from 

ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich), 

high glucose with 10% Fetal Bovine Serum (FBS) and optional 100 µg/mL penicillin-

streptomycin, in a humidified incubator at 37˚C with 5% CO2.  HEK293 and Cos-7 cells 

were trypsinized and seeded onto 22 mm x 40 mm glass microscope slides 

(Fisherbrand®) where they were allowed to grow for 2 days.  Cells were then transiently 

transfected with 2 µg of CatchER-T’ DNA in the pcDNA+3.1 vector using Lipofectamine 

2000 (Life Technologies) in a 1:3 w/v ratio for DNA:Lipofectamine, following the 

manufacturer protocol, in 3 mL of OPTI-MEM for 4-6 h at 37˚C.  Due to the difficulty of 

transfecting adherent cell lines, a different transfection procedure and reagent was used 

that has been shown to improve the transfection efficiency of C2C12 cells219.  C2C12 

myoblast cells were trypsinized and seeded onto glass slides, as previously mentioned.  
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The cells were then transiently transfected with 2 µg of variant pcDNA+3.1 using the 

transfection reagent Effectene at a fixed1:8 w/v DNA:Enhancer ratio and a 1:4 w/v 

DNA:Effectene ratio in 3 mL of DMEM and 2 mL of OPTI-MEM for 24 h at 37˚C.  After 

transfection of all cell lines, the media was replaced with fresh DMEM, and cells were 

incubated for 48 h at 37˚C to ensure expression of the sensors.  Differentiated C2C12 

cells were transfected using the same method, changing the media to DMEM 

supplemented with 2% FBS.  Cells were allowed to differentiate for 4-6 days, changing 

the media every other day, then imaging was done. 

2.19  Fluorescence microscopy  

 Live cell fluorescence imaging was done using a Leica DM6100B inverted 

microscope with a cooled EM-CCD camera (C9100-13, Hamamatsu).   CatchER-T’ and 

its constructs were excited at 488 nm using a Till Polychrome V Xenon lamp (Till 

Photonics) with an HQ480/20× excitation filter, a D535/25 emission filter, and a 

515DCXR dichroic mirror (Chroma Technology Corp.).  Slides were viewed through a 

40X oil immersion objective.  One frame was taken every 5 s.  Fura-2 AM was excited 

at 340/380 nm with the same light source utilizing the D340xv2,   D380xv2, and 

D510/80 excitation and emission filter set with a 400DCLP dichroic mirror.  Rhod-2 AM 

was excited at 550 nm.  Slides were mounted using vacuum seal grease to the bottom 

of a bath chamber with a ~1 mL capacity.  Solutions were exchanged using a vacuum 

perfusion system.  All imaging was done at room temperature.  Intensity measurement 

data and pictures were collected using Simple PCI software (Hamamatsu). 
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2.20 Monitoring response to agonists and antagonists of ER/SR Ca2+ release 

and reuptake channels  

Slides containing attached cells were mounted onto the bath chamber with 

vacuum seal grease.  The fluorescence response of CatchER variants to ryanodine 

receptor agonists caffeine and 4-cmc, IP3R and purinergic receptor agonist ATP, and 

SERCA pump antagonists thapsigargin and CPA were carried out in Ringer’s Buffer 

(121 mM NaCl, 2.4 mM K2HPO4, 0.4 mM KH2PO4, 1 mM MgCl2,10 mM HEPES, 10 mM 

glucose, pH 7.25) with or without 1.8 mM CaCl2.  To monitor [Ca2+]i, 4 µM Rhod-2 AM 

was mixed with pluoronic F-127 in a 1:1 v/v ratio and added to slides in 6 cm dishes 

containing 2 mL of Ringer’s buffer.  Slides were incubated for 30 min to 1 h at room 

temperature and allowed to de-esterify for 10 min in the dark.  The fluorescence data 

was normalized by dividing all fluorescence values (F) by the basal or Ca2+ free 

fluorescence value (F0).  A list of all the agents commonly used in Ca2+ imaging, 

preparation details, their targets and affects are located in Table 2.20.1. 
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Table 2.20.1 Agents used to stimulate or inhibit Ca2+ release for cell imaging 

Agents Stock 
[Agent] 

Solvent Applied 
[Agent] 

Target Anticipated effect 

IP
3
 10 mM DMSO 10 µM IP

3
R 

[Ca
2+

]
ER

    ; [Ca
2+

]
cyt

  

Histamine 50 mM Steril H
2
O 200 µM IP

3
R 

[Ca
2+

]
ER

    ; [Ca
2+

]
cyt

 

Caffeine 40 mM Steril H
2
O 10 mM RyR 

[Ca
2+

]
ER

    ; [Ca
2+

]
cyt

  

4-cmc 20 mM Steril H
2
O 200 µM RyR 

[Ca
2+

]
ER

    ; [Ca
2+

]
cyt

 

CPA 50 mM DMSO 15 µM SERCA 
[Ca

2+

]
ER

    ; [Ca
2+

]
cyt

 

Thapsigargin 1 mM DMSO 2 - 5 µM SERCA 
[Ca

2+

]
ER

    ; [Ca
2+

]
cyt

 

Digitonin 25 
mg/mL 

Steril H
2
O 25 µM plasma 

membrane 
permeablize 
membrane 
irreversibly 

Saponina 10% (w/v) Steril H
2
O 0.001 - 

0.005% 
plasma 

membrane 
permeablize 
membrane 
irreversibly 

Ionomycin 10 mM DMSO 2-10 µM membranes 
shuttles Ca

2+ 

across 
membranes 

Multiple stocks of each agent are prepared and stored at -20°C. aSaponin is sensitive to freeze thaw 
cycles and will lose its permeablization ability over time. 

 

2.21  In situ Kd and calibration   

Cells were permeabilized for 15-30 s with 0.002% saponin in intracellular buffer 

(125 mM KCl, 25 mM NaCl, 10 mM HEPES, 0.5 mM Na2ATP, 0.2 mM MgCl2, 200 μM 

CaCl2, 500 μM EGTA, pH 7.25).  The final amount of free Ca2+ was 100 nM.  Cells were 

then washed with KCl rinse buffer (140 mM KCl, 10 mM NaCl, 1 mM MgCl2, 20 mM 

HEPES, pH 7.25).  Ca2+ and EGTA solutions were prepared in KCl buffer at 0.3, 0.6, 2, 

5, 10, 20, 50, 100, and 200 mM Ca2+ and 1 mM EGTA.  The Ca2+ ionophore ionomycin 

was added to each solution at a final concentration of 10 µM.  The intensity plateaus 
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from each Ca2+ point and the EGTA addition (0 point) were averaged, normalized, and 

fitted using Equations 2.17 and 2.18.  The Fmax and Fmin values were obtained from the 

highest Ca2+ concentration (100 or 200 mM) and the lowest Ca2+ concentration (EGTA) 

and were put into the following calibration equation to determine the basal [Ca2+]ER/SR, 

[Ca2+] = Kd[(F − Fmin)/(Fmax − F)] 

where F is the basal fluorescence intensity at the start of the experiment, Fmin is the 

minimum fluorescence after depletion of Ca2+ and Fmax is the maximal fluorescence 

after the addition of Ca2+. 

  

Equation 2.24 
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3 STRUCTURAL BASIS FOR A HAND-LIKE SITE IN THE CA2+ SENSOR 

CATCHER WITH FAST KINETICS 

(This chapter has been published in Zhang, Y., Reddish, F., Tang, S., Zhuo, Y., Wang, 
Y. F., Yang, J. J., and Weber, I. T.,(2013), Acta Crystallographia D, D69, 2309-2319.)  
The second author performed the protein expression, purification, crystal screenings, 
crystallization, metal binding experiments using absorbance and fluorescence 
spectroscopy, and writing the results and discussion for the manuscript. 

 

3.1 Introduction 

The Ca2+ ion (Ca2+) acts as a ubiquitous signaling molecule in the regulation of 

numerous biological functions including heartbeat, muscle contraction, cell development 

and proliferation220,105. Ca2+ signals exhibit different amplitudes and durations as the 

ions flow between subcellular compartments. Ca2+ functions as a first messenger in the 

central nervous system and works as an extracellular ion source for postsynaptic ligand-

gated channels24. The endoplasmic reticulum (ER) functions as an intracellular Ca2+ 

store and the release of ER Ca2+ triggers a series of biological processes via binding to 

intracellular Ca2+-sensing proteins such as calmodulin (CaM) and troponin C (TnC)221. 

The Ca2+-signaling events are controlled by the basal ER/SR (sarcoplasmic reticulum) 

Ca2+ level, as well as the amplitude and the kinetics of Ca2+ release from the Ca2+ 

stores. Hence, determination of the concentration of free Ca2+ in the ER is of extensive 

interest and has stimulated the development of tractable intracellular Ca2+ sensors.   

Many efforts have been devoted to green fluorescent protein (GFP)-based Ca2+-

fluorescent indicators such as the cameleons177,206, pericams222, TN-XL205 and TN-

XXL223. Their detection is based on either fluorescence resonance energy transfer 

(FRET) between two different GFP variants or the pH-dependent change in ionization 
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state of the chromophore in circularly permutated GFP177,224,203,190. One common 

property of these sensors is that they involve the insertion of naturally occurring Ca2+-

sensing proteins such as CaM and its target binding peptide and are capable of sensing 

cytosolic Ca2+ responses in the nanomolar to micromolar range225,226,162. Several ER/SR 

sensors with lower metal-binding affinities have been developed by modifying the Ca2+-

binding loops or the peptide-interaction surface of CaM227,177,207,228,229. These sensors 

exhibit some limitations such as off-rates which are not fast enough to detect the Ca2+ 

release during action potentials. In addition, only ~50% of the skeletal muscle cells 

show a response to Ca2+ stimulation. For the FRET-pair involved sensors, their highly 

variable basal CFP (cyan fluorescent protein)/YFP (yellow fluorescent protein) ratio and 

poor signal-to-noise ratio also limit quantitative determination of Ca2+ concentration and 

Ca2+ release230,231. Therefore, there is a pressing need for new Ca2+ sensors targeted to 

cellular compartments with putative high Ca2+ concentration, as in the ER/SR, to 

overcome these limitations. In a previous attempt to meet this urgent need, our 

laboratory engineered a Ca2+ sensor, ‘G1’, by grafting an EF-hand motif into enhanced 

green fluorescent protein (EGFP)191. Unlike GFP, which can be excited at 395 and 475 

nm, EGFP contains two mutations F64L and S65T and has one absorption maximum at 

488 nm162,232. The F64L mutation is responsible for the improved folding efficiency at 

310 K, while S65T is a critical mutation for suppressing the 395 nm absorbance 

peak162,232,233. This G1 sensor has an apparent Kd of 0.8 mM and responds to Ca2+ with 

a ratiometric fluorescence change, but with a slow kinetic response. 

Recently, we reported a new strategy for creating Ca2+ indicators by introducing a 

Ca2+-binding site into EGFP via site-directed mutagenesis of selected residues in the 
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fluorescence-sensitive location180. The single EGFP based Ca2+ biosensor termed 

CatchER was generated by the substitutions S147E, S202D, Q204E, F223E and T225E 

in the designed Ca2+-binding site of EGFP (Fig. 3.1.1). CatchER provides multiple 

advantages for reliably monitoring Ca2+ signaling in high [Ca2+] environments. (i) It 

exhibits a unique Ca2+-induced change in optical properties. Ca2+ binding results in 

ratiometric changes in absorption, while fluorescence emission at 510 nm is increased 

when excited at either 398 or 490 nm (Fig. 3.2.3A); the  

 

Figure 3.1.1 Structure of CatchER 

Structure of CatchER (green cartoon) indicating the locations of the mutated residues 
(red sticks) S147E, S202D, Q204E, F223E and T225E; the chromophore CRO66 is 
shown in green sticks with CPK atom colors. 
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high signal-to-noise ratio for fluorescent change in response to Ca2+ as well as the 

avoidance of cooperativity associated with multiple binding sites allows accurate 

detection of Ca2+ both in vitro and in vivo. (ii) CatchER exhibits unprecedented 

dissociation kinetics, with an off-rate of >100 s-1 and a fast kinetic response to Ca2+ 

changes within milliseconds; recent work has also shown that CatchER is able to detect 

multiple Ca2+ spikes during muscle contraction and relaxation234. (iii) The Kd of CatchER 

(around 1 mM) allows the accurate calibration of SR Ca2+ signaling; CatchER is able to 

report considerable differences in SR/ER Ca2+ concentration between epithelial HeLa, 

kidney HEK293 and muscle C2C12 cells. (iv) No invasive methods are required for 

CatchER detection in living organelles compared with current Ca2+ dyes. Such 

cumulative advantages, especially the fast kinetic properties, allowed us to monitor SR 

luminal Ca2+ in flexor digitorum brevis (FDB) muscle fibers to understand the 

mechanism of diminished SR Ca2+ release in aging mice235,236. 

In this report, we describe the crystallographic analysis of CatchER to understand 

the structural basis for the Ca2+ induced fluorescent and absorption changes and fast 

response. Crystal structures were determined of CatchER in the absence of Ca2+ 

(CatchER(apo)), in the presence of Ca2+ (CatchER-Ca2+) and from crystals soaked with 

Gd3+ (CatchER-Gd3+). To overcome the challenges in visualizing Ca2+-binding sites in 

the proteins owing to the weak Ca2+-binding affinity and the high off-rate and the 

difficulty in distinguishing Ca2+ from water in the crystal structure, we used the heavier 

Gd3+ ions with similar metal-binding coordination properties to Ca2+ to identify the 

position of the metal ion. These X-ray crystal structures of CatchER and its complexes 
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may assist the future development of protein–ligand interaction-based biosensors for 

the detection of various physiological molecules. 

3.2 Results and discussion  

3.2.1 Expression and purification of CatchER 

Our GECI CatchER has been created to monitor Ca2+ transients in the ER/SR 

and measure Ca2+ concentration in said organelles through a novel mechanism where 

the binding of Ca2+ on the surface of the protein induces an increase in fluorescence 

intensity.  To visualize the possible structural rearrangement involved around the 

chromophore in CatchER, protein crystallography was employed.  In order to obtain 

diffraction quality crystals of CatchER, a large amount of the sensor needed to be 

expressed and then purified with high yield.  Figure 3.2.1A shows the optical density of 

the BL21 (DE3) cells during overexpression of CatchER from all three flasks using the 

method outlined in Chapter 2 section 2.4.  The region of the graph circled in purple 

indicates the point of IPTG addition to induce overexpression of the probe.  Figure 

3.2.1B shows the expression gel of the sensor with samples taken from all three flasks.  

SDS-PAGE gel analysis shows a clear increase in the amount of protein expressed 

after induction with IPTG.  
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Figure 3.2.1 Overexpression of CatchER in BL21 (DE3) cells. 

A) CatchER DNA was transformed into BL21 (DE3) cells and plated onto kanamycin 
resistant LB agar plates.  One colony was selected from the plate, after overnight 
growth, and placed into a 50 mL falcon tube containing 30 mL of LB medium with 18 µL 
of kanamycin and shook overnight at 37°C at 200 rpm.  The next day the inoculated 
was split between three 2.8 L flasks containing 1 L of autoclaved LB medium with 600 
µL of kanamycin added to each. The flasks were shaken in a 37°C incubator at 220 
rpm.  One milliliter samples were taken every hour to check the optical density of each 
flask.  Once the optical density reached 0.6, 200 µL of 1 M IPTG was added to the flask 
and the temperature was reduced to 25°C for proper expression of CatchER to occur.  
Samples were taken the next day to obtain the final optical density reading.  B) SDS-
PAGE gel of CatchER expression samples from each flask.  Lane 1 is the marker; lanes 
2 and 3 are before and after induction from flask 1; lanes 4 and 5 are before and after 
induction from flask 2; and lanes 6 and 7 are before and after induction from flask 3. 

 

 After overexpression of the sensor, the cell pellet was collected and sonicated in 

20-30 mL of extraction buffer to break the cells and release the protein.  After 

centrifugation of the cell lysate, the supernatant containing CatchER was purified using 

HisTag purification on a Ni2+-NTA column using an imidazole gradient outlined in 

Chapter 2 section 2.7.  The HisTag chromatogram and SDS-PAGE gel for CatchER are 

shown in Figure 3.2.2A.  SDS-PAGE analysis of the fractions collected from HisTag 

A         B 
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purification show the purity of CatchER compared to the cell pellet (lane 1) and the 

supernatant (lane 3).  Since the purified protein would be used for crystallization, gel 

filtration was employed as an additional purification step to ensure a quality protein 

sample that would produce diffraction quality crystals (Chapter 2 section 2.7).  Figure 

3.2.2B shows the pure protein peak, circled in red, on the gel filtration chromatogram 

and the SDS-PAGE gel showing the purity of the fractions collected. 

 

Figure 3.2.2 HisTag purification (A) and gel filtration (B) of CatchER. 

A) CatchER was purified using an FPLC system.  The supernatant containing CatchER 
was loaded onto a 5 mL HiTrap Ni2+-NTA chelating column where the 6X Histidine tag 
on the N-terminal of CatchER interacted with the Ni2+ on the column.  The protein began 
eluting at ~36% imidazole (150 mM).  Samples were collected for SDS-PAGE gel 
analysis of protein purity (inset).  Lane 1 is the cell pellet; lane 2 is the marker; lane 3 is 
the supernatant; and lanes 4-6 are fractions 17, 18, and 19.  The pure protein fractions 
were collected and concentrated down to 1-2 mL.  B) The concentrated protein was 
injected into a Superdex 75 gel filtration column using 10 mM Tris, pH 7.4, as the eluting 
buffer.  The flow rate was set at 0.5 mL/min.  The inset SDS-PAGE gel of the fractions 
collected from gel filtration show their purity.  

 

3.2.2 Metal binding properties of CatchER   

The absorption and fluorescence response of CatchER to Ca2+ and Gd3+ is 

shown in Figure 3.2.3A-F with the fluorescence monitored at 510 nm upon excitation at 

488 nm. The normalized response shows an excellent fit to the 1:1 binding equation. 

A         B 
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From these results, the Kd of CatchER for Gd3+ is 53.0 ± 4.0 and 177.0 ± 13.6 µM when 

excited at 395 and 488 nm, respectively. The Kd of CatchER for Ca2+ was determined to 

be 315.4 ± 40.0 and 227.0 ± 3.3 µM when excited at 395 and 488 nm, respectively. The 

addition of Ca2+ or Gd3+ greatly enhances the fluorescence emission of CatchER at 510 

nm when excited at 395 or 488 nm. The protocol used is found in Chapter 2 section 

2.14.   

Because the structure of the binding site was difficult to elucidate from the crystal 

structure of the Ca2+ load form of CatchER, alternative methods were used to improve 

the diffraction in that area.  Crystals of Ca2+ free CatchER were soaked in the mother 

liquor solution containing 2 mM of GdCl3.  Structural analysis of Gd3+-loaded CatchER 

revealed double occupancy for Gd3+ within the metal binding site.  To ensure 1:1 

binding of CatchER to Gd3+, the stoichiometric interactions of CatchER with Gd3+ was 

investigated and determined using the Job Plot method (Figure 3.2.3F) as outlined in 

Chapter 2 section 2.11.  Table 3.2.1 lists the calculated relative amounts of Gd3+ loaded 

CatchER from the plot in Figure 3.2.3F that were determined using Equation 2.5 in 

Chapter 2 section 2.11.  The largest amount of Gd3+ bound CatchER was obtained at 

equi-molar amounts of CatchER and Gd3+ (25 μM, highlighted in red).  Along with 

determining the stoichiometric interaction of CatchER with Gd3+, we determined the 

binding affinity of CatchER to Gd3+ found in Figure 3.2.3D.  The Gd3+ Kd of CatchER 

was calculated to be 53.0 ± 4.0 μM (395 nm) and 177.0 ± 13.6 μM (488 nm). 
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Figure 3.2.3 Absorbance spectra of CatchER and metal binding analysis via 
fluorescence spectroscopy 

A)  Absorbance response of CatchER to 5 mM Ca2+: 20 µM CatchER with 5 mM EGTA 
(dashed line) in 10 mM Tris pH 7.4 and the same CatchER sample with 5 mM Ca2+ 
added (solid line). Addition of Ca2+ produces more of the anionic chromophore (increase 
in the 488 nm absorbance peak) and less of the neutral chromophore (decrease in the 
395 nm absorbance peak). B) Absorbance response of CatchER to 200 µM Gd3+. A 20 
µM sample of CatchER was prepared in 20 mM PIPES pH 6.8. The dashed line 
represents the sample with 5 mM EGTA and the solid line is the same sample with 200 
µM Gd3+ added. C) and D) Fluorescence response of CatchER to Ca2+ and Gd3+ excited 
at 488 nm with emission at 510 nm with inset binding curves. The normalized 
fluorescence response for Ca2+ and Gd3+ was fitted with a 1:1 binding equation, 

A                                             B 

C                                             D 

E                                             F 
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producing Kd values of 227.0 ± 3.3 and 177.0 ± 13.6 µM for Ca2+ and Gd3+, respectively. 
E) Overlay of the absorbance spectrum of 20 µM CatchER with 5 mM EGTA (dashed 
line) and 20 mM EGFP (solid line) in 10 mM Tris pH 7.4. F) Binding stoichiometry of 
CatchER to Gd3+ via a Job plot. The relative amount of CatchER bound to Gd3+ was 
determined using fluorescence and absorbance intensity changes in the absence and 
presence of Gd3+. The concentrations of CatchER were 40, 35, 30, 25, 20, 15 and 10 
µM (the actual concentrations determined via the 280 nm absorbance peak were 38, 35, 
30, 24, 20, 15 and 10.5 µM). The total molar ratio was held constant at 50 mM. The plot 
represents fluorescence data of complex formation from 395 nm excitation.  Figure 
taken from Zhang, et al., Acta Cryst., 2013. 

 

Table 3.2.1 Relative amounts of CatchER-Gd3+ complex formation with 
corresponding ratios 

[CatchER] 
(μM) 

[Gd3+] 
(μM) 

[Gd-
CatchER] 
(µM) Abs 
493 nm 

[Gd-
CatchER] 
(µM) Fluo 
395 nm 

[Gd-
CatchER] 
(µM) Fluo 
488 nm 

[CatchER]/[Gd3+] 
Ratio 

40 10 11.1± 2.3 6.7 ± 4.4 6.5 ± 3.7 4.0 

35 15 18.0 ± 1.4 17.5 ± 1.2 16.4 ± 1.0 2.3 

30 20 23.0 ± 0.3 22.8 ± 1.0 20.5 ± 0.7 1.5 

25 25 30.8 ± 3.5 32.7 ± 0.5 20.0 ± 1.7 1.0 

20 30 15.7 ± 2.2 23.6 ± 0.0 14.4 ± 0.5 0.6 

15 35 10.4 ± 0.3 19.5 ± 0.8 11.4 ± 0.5 0.4 

10 40 7.2 ± 0.0 13.7 ± 0.6 7.8 ± 0.3 0.2 
*[Gd-CatchER] – concentration of complex formed when Gd3+ binds to CatchER. Abs 493 – absorbance 
wavelength used to calculate complex formation; Fluo 395 and 488 - fluorescence was monitored at 510 
nm and 395 nm and 488 nm were the excitation wavelengths used to calculate complex formation. Data 
was collected at room temperature. CatchER samples prepared in 20 mM PIPES pH 6.8 with 10 µM 
EGTA. Data for 1:1 binding is highlighted in red. Table taken from Zhang, et al., Acta Cryst., 2013. 

 

3.2.3 Crystallographic analysis of CatchER structures  

To find the best crystal growth conditions that would yield well-formed crystals for 

X-ray analysis and structure determination, a literature review for the crystal growth 

conditions of different fluorescent proteins and sensors was done and summarized in 

Table 3.2.2.  The protein concentration, protein buffer, crystallization method, 

temperature, precipitant concentration, salt concentration, crystal buffer concentration, 



88 

additives used, structure resolution, and length of time required for crystals to grow 

were charted for each of the proteins listed in Table 3.2.2.  Crystallization was perfomed 

as outlined in Chapter 2 section 2.9.  Crystal structures of CatchER in the apo form, 

Ca2+ form and Gd3+ loaded form were determined to identify and analyze the Ca2+ 

binding site in the designed sensor. The crystallographic data collection and refinement 

statistics are summarized in Table 3.2.3. and the data statistics versus resolution for 

each CatchER are listed in Table A.1 located in Appendix A. The crystal structures of 

CatchER(apo), CatchER-Ca2+, and CatchER-Gd3+ were refined to R factors of 19.6%, 

15.8% and 19.6% at resolutions of 1.55, 1.20 and 1.78 Å, respectively.  These three 

structures are in different space groups: CatchER(apo) structure is in space group C2, 

CatchER-Ca2+ in P212121 and CatchER-Gd3+ in C2221. Structure validation are 

performed and shown in the Ramachandran plots (Appendix A, Figure A.2A-C). Figure 

3.2.4A and B shows pictures of the Ca2+ free and Ca2+ loaded crystals. The p-

hydroxylbenzylideneimidazolidinone chromophore (CRO66) is clearly visible in the 

electron density for all structures, as shown in Figure 3.2.4C for CatchER-Ca2+. The 

three crystal structures have very similar backbone conformations, as demonstrated by 

the low r.m.s.d. values of 0.09–0.20 A ° for each pair of structures. Slightly more 

variation is seen relative to the EGFP structure (PDB entry 4eul), with r.m.s.d. values of 

0.39–0.41Å.   

Because of the high resolution of the diffraction data, the solvent was fitted with 

167 water molecules for CatchER(apo), 197 water molecules for CatchER-Ca2+ and 138 

water molecules for CatchER-Gd3+. One acetate molecule was refined with an 
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occupancy of 1.0 in CatchER(apo), two Ca2+ ions with relative occupancy of 0.5 each in 

CatchER-Ca2+ and two Gd3+ ions with relative occupancies of 0.7 and 0.3 in CatchER-  

Gd3+. These molecules were identified by the shape and peak height in the electron-

density maps, B factors and potential interactions with other molecules, as described in 

the next section.  The occupancies were calculated with SHELX for CatchER-Ca2+ and 

were estimated with REFMAC5 for the other structures. 

Alternative conformations were modeled for a total of 19, 23 and 13 residues in 

the CatchER(apo), CatchER-Ca2+ and CatchER-Gd3+ structures, respectively. The 

surface loop of residues 155–159 shows two alternative conformations with about 

0.5/0.5 relative occupancy in all three structures (Appendix A, Fig. A.3), while most 

other reported structures have a single conformation of these residues. This disordered 

loop is located on the opposite side of the protein to the designed metal-binding site. 

Notably, Glu222 consistently shows two alternate conformations in the CatchER-Ca2+ 

and CatchER-Gd3+ structures (Fig. 3.2.4D) and a single conformation in CatchER(apo). 

Among the five designed mutations located on three neighboring β-strands, the side 

chain of Glu225 has two alternate conformations in CatchER(apo) and CatchER-Ca2+ 

that interact with the two alternative conformations of the Arg73 side chain. Owing to the 

surface location of the five mutated residues and the potential for radiation damage to 

the carboxylate side chains, Glu204, Glu223 and Glu225 showed relatively poor 

electron density in the different CatchER complexes.   
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Table 3.2.2 Summary of crystal growth conditions for select fluorescent proteins and Ca2+ sensors 

 EGFP153 BFP172  

aY66L 
237 

bGCaMP
2194 

DsRed 
238 

cdsFP4
83239 

mCherry
160 

mOrange 
160 

mStrawberry
160 

mPlum
240 

dDronpa 
241 

[Protein] 
mg/mL NA 

12 
mg/mL 

15 
mg/mL 

10-30 
mg/mL 15 mg/mL NA NA NA NA 

25 
mg/mL 23 mg/mL 

Protein buffer 

20 mM 
HEPES 
pH 7.5 

10 mM 
HEPES 

pH 7 

20 mM 
HEPES 
pH 7.9, 
300 mM 

NaCl 

100 mM 
NaCl, 25 

mM HEPES 
pH 7.4 

20 mM 
Tris pH 
7.4, 300 

mM NaCl, 
2 mM B-

mercaptoe
thanol 

50 mM 
HEPES 
pH 7.9, 
300 mM 
NaCl, 1 

mM 
EDTA 

50 mM 
HEPES pH 

7.9 

50 mM 
HEPES pH 

7.9 NA 

50 mM 
HEPES 
pH 7.9 

20 mM Tris-
HCl pH 7.5, 

120 mM 
NaCl 

Crystallization 
method 

hanging 
drop 

hanging 
drop 

hanging 
drop 

hanging 
drop 

hanging 
drop NA 

hanging 
drop hanging drop hanging drop 

hanging 
drop sitting drop 

Temperature 25° C 4° C 4° C 20° C NA 4° C NA NA NA NA 22°C 

[Precipitant] 
22-26% 

PEG 4000 

10-12% 
PEG 
3400 

15-20% 
PEG 
8000 

20 % PEG 
8000 

16% PEG 
1550 

16% 
PEG 
4000 

30%PEG 
4000 

28% PEG 
1550 NA 

30% 
PEG 
3400 

22% PEG 
3350 

[Salt] (mM) 
50 mM 
MgCl2 NA 

200 mM 
CaOAc 

1.6 M 
(NH4)2SO4 

1 mM CaCl2 NA 

300 mM 
NaCl, 

200 mM 
CaOAc 

100 mM 
NaOAc 

200 mM 
MgCl2 1.1 M Citrate 

200 mM 
NaCl 

140 mM Mg 
(NO3)2 

[Crystal 
buffer], pH 

50 mM 
HEPES 
pH 8-8.5 

100 mM 
NaOAc 
pH 4.5, 

4.6 

100 mM 
Cacodyl
ic acid 
pH 6.5 

100 mM 
HEPES pH 

7.5 

100 mM 
Tris pH 

7.4 

100 mM 
HEPES 
pH 7.9 

100 mM 
Tris pH 8.5 

100 mM Tris 
pH 8.2 

75 mM Glycine 
pH 10.5 

100 mM 
Tris pH 

8.5 NA 

Additive 

10 mM B-
mercaptoe

thanol NA NA NA 

1 μL B-
mercapto/

well NA NA NA NA NA NA 

Resolution NA 2.1 Å 1.5 Å 2.0 Å 2.0 Å 2.1 Å 1.36 Å 1.08 Å 1.6 Å 1.34 Å 1.8 Å 

Time 5 days 2-6 days 
3-5 

days NA 1-2 weeks NA overnight 1 week 1-2 months 1 week 2 days 

 
References provided for each protein. aVariant of GFP. bGFP and CaM-based Ca2+ probe. cCyan fluorescent protein from Discosoma striata. 
dReversibly switchable fluorescent protein isolated from the coral Pectiniidae. NA –data not available. 
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Table 3.2.3 Statistical analysis of CatchER crystal structures 

Complex Name CatchER (apo) CatchER-Ca2+ CatchER-Gd3+  

X-ray source APS_22ID APS_22ID APS_22BM 

Wavelength (Å) 0.8 0.8 1.0 

Temperature (K) 100 100 100 

Space group C2 P212121 C2221 

a (Å) 

b (Å) 

c (Å) 

 () 

61.16 

88.79 

118.54 

90.31 

54.24 

61.06 

67.40 

90.00 

61.06 

88.33 

118.17 

90.00 

Unique reflections 89,647 70,349 30,260 

Rmerge (%) overallǂ 9.6% (27.0%) 8.1% (39.2%) 8.5% (18.5%) 

<I/б> overallǂ 6.9 (4.2) 19.9 (6.1) 14.2 (8.7) 

Resolution range  (Å) 30.99 – 1.55 10 – 1.20 27.13 – 1.78 

Completeness (%) 
overalla 

98.6%  

(96.9%) 

99.2%  

(100%) 

98.3%  

(93.8%) 

Rwork 0.182 0.148 0.202 

Rfree  0.207 0.182 0.226 

No. of solvent atoms  

(total occupancies) 

340 (293.2) 288 (229) 141 (136.5) 

RMS deviation from 
ideality 

   

Bonds (Å) 0.008 0.014 0.012 

Angle distance  1.384a 0.031b (Å) 1.565a 

Average B-factors 
(Å2) 

   

Main chain atoms 20.11 16.19 20.40 

Side chain atoms 24.40 21.05 21.86 

Solvent 27.46 27.75 27.86 

Occupancy of metal  
ion 

- 0.5/0.5 0.7/0.3 

ǂValues in parentheses are for the highest resolution shell. Total occupancies are the sum of calculated 
occupancies of all the atoms or ions. aThe angle r.m.s.d. in REFMAC5.2 is indicated by angle in degrees. 
bThe angle r.m.s.d. in SHELX-97 is indicated by distance in Å. Table taken from Zhang, et al., Acta Cryst., 
2013. 

  



92 

 

 

 

 

 

 

 

Figure 3.2.4 CatchER crystals and structural analysis of the chromophore   

Crystals of Ca2+ free (A) and Ca2+ loaded CatchER (B).  Gadolinium loaded crystals of 
CatchER were obtained through soaking the crystals in the crystal growth solution 
containing 2 mM of GdCl3.  C) Electron density map of the chromophore from CatchER-
Ca2+. D) Electron density maps showing two conformations of Glu222 from CatchER-

A              B 

C            D 

E            
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Gd3+ and two water molecules. E) Electron density map showing residues Asp202–
Ala206 of CatchER (apo) and one water molecule with chromophore (CRO66). The 
dotted lines represent hydrogen-bond interactions. Taken from Zhang, et al., Acta 
Cryst., 2013. 

 

3.2.4 Identification of metal ions in the designed binding site of CatchER 

CatchER was designed with five mutated residues, S147E, S202D, Q204E, 

F223E and T225E, compared with EGFP. The mutations are located on three β-strands, 

pointing out of the protein β-barrel to form a penta-carboxylate ionic environment 

suitable for binding Ca2+ (Fig. 3.1.1). In CatchER(apo), one of the carboxyl O atoms of 

Glu147 forms close interactions with the carboxylate of Asp202, suggesting possible 

protonation of the carboxylates (Fig. 3.2.5A). Protonated carboxylates have been 

reported in other protein crystal structures242. The Glu147 and Asp202 carboxylates are 

further apart with no direct interaction in the CatchER structures with Ca2+ and Gd3+, 

and additional solvent peaks were observed in this region of the electron-density maps.  

The identification of Ca2+ in the designed binding site of CatchER was not trivial 

partly because of the fast off-rate related to its weak Ca2+-binding affinity. Crystals of 

CatchER were grown in high concentrations of 50 mM Ca2+ to ensure saturation of the 

CatchER molecules; however, the non-protein peaks in the electron-density maps near 

the mutated residues were indistinguishable from those assigned to water elsewhere 

(Fig. 3.2.5B). Therefore, the presence of Ca2+ was deduced from the interactions with 

nearby protein residues and water molecules. Two possible locations for Ca2+ were 

identified, mostly by the presence of shorter distances of 1.8–2.5 Å to interacting O 

atoms of Glu147 and water molecules and further interactions with Asp202 and other 

water molecules in the designed site (Fig. 3.2.5B; Table 3.2.4). These interatomic 



94 

distances are within the range observed in high resolution crystal structures of 

proteins243. The two locations were fitted with Ca2+ ions refined at partial occupancy  

 

Figure 3.2.5 The hydrogen bond interactions around the designed binding site in 
CatchER crystal structures 

(A-C) The protein is represented as yellow, light blue and cyan sticks in CatchER(apo), 
CatchER-Ca2+ and CatchERGd3+, respectively. Ca2+, Gd3+ and water molecules are 
represented as spheres. The numbers (0.5/0.5, 0.7/0.3) give the relative occupancy of 
the alternate positions of the Ca2+ and Gd3+ ions, respectively. The interatomic (non-H) 
distance range of 2.6–3.2 Å was used for hydrogen bonds (black dotted lines). Shorter 
distances in the range 2.0–2.4 Å (red dotted lines) suggest coordination to a metal ion. 
The coordinating waters are numbered as in Table 3.2.4. D) Superposition of CatchER-
Ca2+ and CatchER-Gd3+; the protein backbones are shown as gray cartoons and the 
chromophore (CRO66) is represented as green sticks. The five mutated residues and 
ions are shown in sticks and spheres in light blue for CatchER-Ca2+ and cyan for 

A                                                               B 

C                                                               D 
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CatchER-Gd3+. The cyan arrow points to the major site for Gd3+. Taken from Zhang, et 
al., Acta Cryst., 2013. 
 
 
 
Table 3.2.4 CatchER-metal interactions within the proposed coordination site 

A) Ca2+ 

 Distance (Å) 

CatchER atom B factor 
(Å2)/occupancy 

Ca2+(1) Ca2+(2) 

Glu147 OE2 30.76/1.0 1.9 2.1 

Asp202 OD1 18.84/1.0 3.0 3.2 

Asp202 OD2 27.29/1.0 2.6 2.8 

H2O1 35.36/1.0 3.1 --- 

H2O2 31.95/1.0 2.5 --- 

H2O3 25.38/1.0 1.8 --- 

H2O4 44.32/0.5 2.5 3.0 

H2O5 25.02/1.0 --- 2.1 

H2O6 42.44/1.0 --- 2.7 

 
B) Gd3+ 

 Distance (Å) 

CatchER atom B factor 
(Å2)/occupancy 

Gd3+(1) Gd3+(2) 

Glu147 OE2 30.51/1.0 2.2 --- 

Asp202 OD1 22.52/1.0 2.6 --- 

Asp202 OD2 30.51/1.0 2.5 --- 

Glu204 OE1 32.69/1.0 2.6 3.1 

Glu204 OE2 29.53/1.0 --- 3.1 

H2O1 33.89/1.0 2.1 --- 

H2O2 24.74/1.0 --- 2.3 

H2O3 33.62/1.0 --- 2.9 
Tables taken from Zhang, et al., Acta Cryst., 2013. 

(0.5/0.5). However, this deduction for Ca2+ cannot exclude the possible binding of Na+ 

or water molecules from the crystallization solution. No significant electron density was 

present in the apo structure at the positions assigned to Ca2+ near Glu147 and Asp202. 

In order to pinpoint the metal binding site more definitively, the structure of 

CatchER-Gd3+ was obtained from apo crystals soaked in high concentrations of GdCl3.  
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Ca2+ has 18 electrons orbiting the nucleus, while Gd3+ has 61 orbital electrons. 

Therefore, it is easier to locate Gd3+ with increased diffraction over Ca2+ since the X-ray 

atomic scattering factor increases with atomic number. The major 0.7 occupancy Gd3+ 

ion was identified unambiguously from the very high peak at 22б in the electron density 

indicative of a heavy-metal ion (Fig. 3.2.5C). This Gd3+ ion is located between the side 

chains of Glu147, Asp202 and Glu204, forming four ionic interactions with these three 

residues at distances of 2.2, 2.5, 2.6 and 2.6 Å and one with a nearby water molecule at 

2.1 Å (Fig. 3.2.5C and Table 3.2.4). The second Gd3+ ion with 0.3 occupancy was 

deduced from positive difference density observed in (Fo - Fc) maps when a water 

molecule or a partial occupancy Na+ ion was refined at this site. Overall, the Gd3+ ions 

coordinate with the side chains of residues Glu147, Asp202 and Glu204 of the designed 

Ca2+-binding site as well as the water molecules. 

Superposition of the CatchER-Ca2+ and CatchER-Gd3+ structures revealed that 

the major occupancy site for the Gd3+ ion is identical to one of the sites deduced for the 

Ca2+ ion (Fig. 3.2.5D). This Ca2+ ion coordinates with the side chains of Glu147 and 

Asp202 and three water molecules. No Gd3+ ion was visible at the other site, where the 

Ca2+ ion coordinates with the carboxylate side chains of Glu147 and Asp202 and four 

water molecules (Fig. 3.2.5B). It is possible that the presence of the high-occupancy 

Gd3+ ion at the adjacent site precludes binding to the inner site occupied by a Ca2+ ion 

in the CatchER-Ca2+ structure. 

 The extended binding site formed by the carboxylate side chains of the mutated 

residues Glu147, Asp202, Glu204, Glu223 and Glu225 traps metal ions at three 

possible positions, as shown by superposition of CatchER-Ca2+ and CatchER-Gd3+ (Fig. 
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3.2.5D). The metal ions mainly interact with side chains of Glu147, Asp202 and Glu204. 

No direct interactions of designed metal-ligand residues Glu223 and Glu225 with the 

metal ions are visible and their side chains are not well defined in the electron-density 

maps, possibly owing to radiation damage. Nevertheless, both Ca2+ and Gd3+ ions are 

well situated at the designed Ca2+-binding site in CatchER, which suggests that these 

X-ray structures provide snapshots of steps in the likely dynamic metal-binding process. 

3.2.5 Structural changes around the chromophore 

The chromophore interactions were compared in the CatchER structures, EGFP 

(PDB entry 4eul)170 and GFP (PDB entry 1emb)244. The chromophore is buried centrally 

in the protein molecule and is well protected from solvent. It can exist as neutral and 

anionic forms, which are responsible for the absorbance at 395 and 475 nm, 

respectively154 (Fig. 3.2.6). The spectroscopic characterization of CatchER and its 

response to Ca2+ shows two absorption maxima with a major peak at 398 nm and a 

smaller peak at 490 nm; it thus resembles GFP with two similar excitation wavelengths, 

 

Figure 3.2.6 Protonation states of the GFP chromophore with the corresponding 
absorbance wavelengths 

Taken from Zhang, et al., Acta Cryst., 2013. 
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unlike EGFP with one single excitation peak at 488 nm162 (Fig. 3.2.3E). Comparisons of 

the chromophore environment in the three CatchER structures and the currently solved 

EGFP and GFP structures have shed light on the relationship between the 

spectroscopic properties and the structures. The intricate hydrogen-bond networks 

around the chromophores of CatchER(apo), CatchER-Ca2+ or CatchER-Gd3+, EGFP170 

and GFP244 are shown in Figs. 3.2.7A-D. Most hydrogen-bond interactions are 

conserved in the vicinity of the carbonyl group of the imidazolidinone ring of the 

chromophore170,244,153. Two residues, Thr203 and Glu222, show a critical role in the 

chemical environment of the chromophore. Thr203 has been observed with two different 

conformations: in one the side chain of Thr203 can make direct contact with the tyrosyl 

group of the chromophore, while in the other the side chain of Thr203 rotates away from 

the tyrosyl group and the main chain moves towards the chromophore, resulting in the 

elimination of direct hydrogen-bond interactions but permitting a water-mediated 

interaction between the main-chain carbonyl group and the chromophore tyrosyl group. 

In addition, the side chain of Glu222 has shown two alternate conformations in some 

EGFP structures170, 245. 

In our structural analysis and comparisons, CatchER-Ca2+ and CatchER-Gd3+ 

have similar interactions around the chromophore, as shown schematically in Fig. 

3.2.7B, while CatchER(apo) has different interactions for Glu222 (Fig. 3.2.7A).  In all 

three of the CatchER structures Thr203 formed a water-mediated hydrogen bond with 

the chromophore tyrosyl via the second type of conformation mentioned above. The 

representative OMIT map of Asp202–Asp206 adjacent to CRO66 and the mediating 

water for a hydrogen bond in CatchER(apo) is shown in Fig. 3.2.4E. This type of  
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Figure 3.2.7 Scheme of the hydrogen bond interactions between the chromophore 
and surrounding residues and water molecules (W) in CatchER(apo) (A), 
CatchER-Ca2+ or Gd3+ (B), EGFP (C), and GFP (D). 

Hydrogen bonds are shown as dashed lines. The interatomic (non-H) distance range of 
2.6–3.2 A ° was used for hydrogen bonds. Taken from Zhang, et al., Acta Cryst., 2013. 

 

interaction between the carbonyl group of Thr203 and chromophore was also found in 

the GFP structure (PDB entry 1emb; Fig. 3.2.7D), even though it also has an alternate 

side-chain conformation with 0.15 occupancy which can form direct hydrogen bonding 

to the chromophore244. In contrast, in the EGFP structure (PDB entry 4eul) Thr203 only 

forms the first type of interaction (Fig. 3.2.7C).  Regarding the side chain of Glu222, the 

A                                                                    B 

C                                                                    D 
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conformational population differs in the three CatchER structures: only one 

conformation of Glu222 was observed in CatchER(apo) and its side chain is considered 

to be deprotonated and forms a hydrogen bond to Ser205 and another to the hydroxyl 

group of the chromophore (Fig. 3.2.7A); in CatchER-Ca2+ and CatchER-Gd3+ one 

additional alternative conformation of Glu222 was determined which lacks interactions 

with the chromophore; instead, it participates in interactions with a network of water 

molecules linking to Gln69 (Fig. 3.2.7B). Recent crystallographic study of EGFP has 

revealed two alternate conformations for Glu222 not only in the EGFP structure (PDB 

entry 4eul) used here for comparison but in another reported structure (PDB entry 

2y0g)245. In both published structures Glu222 shows similar interactions with the 

chromophore and the surrounding environment as in Fig. 3.2.7C, which is quite similar 

to the arrangement in CatchER-Ca2+ and CatchER-Gd3+. However, in the GFP structure 

(PDB entry 1emb), one conformation of Gly222 was defined that forms hydrogen-bond 

interactions as in CatchER(apo).  

 Previously, profound but opposite effects of residues Thr203 and Glu222 were 

reported from mutagenesis and analysis of crystal structures152,246,244. Introduction of a 

T203I mutation in GFP retains the 395 nm peak but eliminates the 475 nm peak, 

whereas GFP with an E222G mutation retains the 475 nm peak but lacks the 395 nm 

peak152,246. The crystal structures of GFP and EGFP revealed that the side chain of 

Thr203 can stabilize a negative charge on the chromophore (anionic form chromophore) 

as a hydrogen bond donor through a direct hydrogen bond to the chromophore tyrosyl 

residue, but the carboxylate of charged Glu222 can maintain the neutral form of the 

chromophore through electrostatic repulsion and the hydrogen-bonding network via 
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water and Ser205244. In the CatchER structures the conformation of Thr203 preferred 

the proposed protonated form of the chromophore. The hydrogen-bond network via 

water and Ser205 is achieved by one conformation of Glu222 in deprotonated or 

negatively charged states and helps to maintain the neutral form of the chromophore. In 

CatchER-Ca2+ and CatchER-Gd3+, even though the other conformation of Glu222 does 

not interact with the chromophore threonine as in EGFP232,245,170, this alternate 

conformation with almost half occupancy is proposed to be protonated and can no 

longer maintain the neutral form of the chromophore. Therefore, although there is only 

one conformation of Glu222 in CatchER(apo), we suggest that the chromophore of 

CatchER has a mixture of neutral and negatively charged states, as observed in wild-

type GFP, which has two conformations of Thr203244.  The ratio of neutral and 

negatively charged chromophore can differ in the CatchER structures based on their 

spectroscopic properties. In the absorbance spectra, addition of Ca2+ results in a 

concurrent increased intensity around 490 nm (increase in deprotonated chromophore) 

and a decreased absorption intensity around 398 nm (decrease in the protonated 

chromophore state), exhibiting an optical spectral feature that more closely resembles 

that of EGFP, as shown in Fig.3.2.3E. Tang and coworkers also reported that the 

presence of Ca2+ results in a decrease in the pKa value of the chromophore of 

CatchER180, suggesting that the chromophore in CatchER is more deprotonated upon 

Ca2+ binding. This change could be related to the observed equilibrium shift in 

conformational populations of Glu222 in CatchER: the increase of deprotonated 

chromophore on Ca2+ binding is likely to be owing to the stabilizing capability of Glu222 

as a hydrogen-bond donor with the hydrogen-bond acceptor of deprotonated Thr65 in 
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the chromophore (Fig. 3.2.7B). Such a stabilizing effect is manifested by the changes in 

the proton wire network between apo and Ca2+-loaded forms of CatchER and EGFP, as 

shown in Figs. 3.2.7A–C. Thus, binding of Ca2+ induces an equilibrium shift in 

conformational populations of the Glu222 side chain and its network of interactions 

through two water molecules to Gln69. Overall, the crystal structures of CatchER have 

reinforced support for the proposed excited-state photon-transfer pathway for the 

photoisomerization of GFP which was based on structural and spectroscopic 

studies247,244. A similar observation and proposed interpretation apply to Gd3+-induced 

change (Fig. 3.2.3B and Fig. 3.2.7B).  No significant difference was observed for Leu42, 

Thr43, Tyr143 and Thr153 in the structural comparison of CatchER(apo) with CatchER-

Ca2+, despite the chemical shift changes related to Ca2+ binding235 shown in dynamic 

NMR. The addition of Ca2+ leads to the gradual splitting of one resonance into two for 

Gln69, which is buried inside the protein180. In both CatchER-Ca2+ and CatchER-Gd3+, 

Gln69 forms a hydrogen-bond network through two water molecules with Glu222 and 

this network was also found in EGFP (PDB entry 4eul; Fig. 3.2.7B). However, this 

network was interrupted owing to a missing water molecule in CatchER(apo) (Fig. 

3.2.7A). Therefore, we propose here that the Ca2+-induced change in optical properties 

could also be associated with the Gln69 hydrogen-bond network. 

3.2.6 Relationship between mutations of the novel metal-binding site and optical 

properties 

CatchER was selected from a series of Ca2+ sensors designed by introducing 

different mutations around the desired Ca2+-binding site, designated D8, D9, D10, D11 

(CatchER) and D12235. These mutants all show an increase in the peak at 398 nm and 
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a decrease at 490 nm to different extents. D8 contains only two mutations, S202D and 

F223E, while the other variants have additional mutations, which indicated that the 

S202D and/or F223E mutations might play an important role in the conserved 

absorbance changes for the designed proteins. Based on the structural changes around 

the chromophore, Thr203 and Glu222 are two key residues that account for the altered 

chemical environment of the chromophore. The effects of these two residues might be 

modified by mutations of adjacent residues: S202D and F223E. However, the F223E 

mutation makes no direct interaction with Ca2+ in CatchER-Ca2+, although it forms a 

water-mediated hydrogen bond with one Gd3+ in the CatchER-Gd3+ structure. Instead, 

the S147E mutation appears to function as the anion for interacting with metal cations, 

while the S202D mutation is also involved in metal coordination based on our crystal 

structures. The main chain of residues 202–206 has shifted by 0.7–0.9 Å in association 

with the rotation of Thr203 in CatchER relative to EGFP, which leads to the ionization 

change of the chromophore (Fig. 3.2.8). 
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Figure 3.2.8 Comparison of EGFP and CatchER(apo) at the chromophore and 
nearby residues 

Residues 202–206 of EGFP and CatchER(apo) are shown as sticks in gray and yellow, 
respectively. Ser202/Asp202 and Gln204/Glu204 label mutated residues in 
EGFP/CatchER(apo). The main chain from residues 202–206 shifts with a maximum 
value of 0.8 Å as indicated by the arrow. Taken from Zhang, et al., Acta Cryst., 2013. 

 

3.3 Conclusion 

 The binding of the metal ions Ca2+ and Gd3+ to the designed Ca2+ sensor 

CatchER has been investigated by spectroscopic methods and X-ray crystallography. 

Both the kinetic assays and the structures demonstrated the binding of the two types of 

metal ions to CatchER; however, there were unexpected differences. The crystal 

structures of CatchER in the apo form and in its complexes with Ca2+ and Gd3+ reveal 

snapshots of the dynamic binding of metal ions to the designed site comprising five 

carboxylate side chains. Both Ca2+ and Gd3+ ions were observed in two locations within 

the designed binding site. The high (millimolar) concentrations of Ca2+ and Gd3+ used to 
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obtain the crystal structures of their CatchER complexes resulted in two alternative 

binding sites for each metal ion with one central common binding site. In solution, 

however, these two metal ions bind CatchER with a 1:1 stoichiometry and micromolar 

affinity. These structures suggest that the ability of Ca2+ ions to jump between two 

possible binding sites may be partly responsible for the fast kinetics of metal-ion binding 

to CatchER. 
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4 BIOPHYSICAL CHARACTERIZATION OF CATCHER VARIANTS 

4.1 Introduction 

 As discussed in Chapter 1, calcium (Ca2+) is an activator of many cellular 

processes such as cell proliferation, fertilization, embryonic pattern formation, 

apoptosis, and muscle contraction5.  The activation of these biological events, occurring 

on different time scales, is due to the kinetic action of various receptors, channels, and 

CaBPs that shape each Ca2+ signaling event5.   The endoplasmic reticulum (ER) and 

the sarcoplasmic reticulum (SR), its counterpart in muscle cells, are the major 

intracellular Ca2+ storage organelles and act as Ca2+ sinks that help to amplify the Ca2+ 

signal21.  The ER/SR is an integral part in Ca2+ signaling with dual roles as a transmitter 

and receiver of signals84.  The ryanodine receptor and the inositol 1,4,5-triphosphate 

receptor (IP3R) are Ca2+ release receptors located on the membranes of the SR and 

ER, respectively, that are activated by Ca2+ 22.  Analyzing and quantifying the changes 

involved in Ca2+ stimulated events has been and remains a challenge.  Because the 

ER/SR is the major subcellular Ca2+ containing compartment with a central function in 

the propagation of the Ca2+ signal, much work has been focused on understanding 

ER/SR Ca2+ signaling84.  

The creation of synthetic Ca2+ dyes helped to advance the field and practice of 

Ca2+ imaging.  Although dyes, such as Mag-fura-2, have been widely used to measure 

compartmentalized Ca2+ in different cells,138,248,141 they have limitations such as uneven 

dye loading, photobleaching, and the inability to be targeted to specific organelles.  The 

discovery of GFP and the advancement of fluorescent protein-based Ca2+ probes has 

propelled the field of Ca2+ imaging forward162.  Some of the current genetically-encoded 
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Ca2+ probes are FRET pairs involving YFP, CFP, calmodulin and the M13 binding 

peptide177.  Others, such as GCaMP2, R-GECO, and troponin-based sensors are single 

fluorophore sensors involving Ca2+ binding proteins calmodulin and troponin c249,250,251.  

These chimera probes have been applied in various cell types thus far to monitor Ca2+ 

dynamics; however, these probes are faced with limited tuning of Kds and cooperativity 

among the multiple Ca2+ binding sites found in their Ca2+ binding domains130.  Single 

fluorophore sensors using EGFP have been designed with a Ca2+ binding site created 

from mutating residues on the surface of the beta barrel in a chromophore sensitive 

location or grafting in an EF-hand or EF-hand loop into a flexible region of EGFP180,191.   

Our highly touted sensor CatchER has a Kd of ~0.18 mM, a kon rate resembling the 

diffusion limit, and a koff of 700s-1 180.  Single fluorophore sensors, such as CatchER, 

have been designed by mutating residues on the surface of EGFP to create the Ca2+ 

binding site with better tuning ability to accommodate high Ca2+ concentration 

environments with fast kinetics making the probes suitable for monitoring the rapid Ca2+ 

transients that occur in processes like muscle contraction180,252.   

 Here we report the analysis of CatchER variants containing the N149E mutation 

in the binding site (Figure 4.1.1).  Our hypothesis is that the N149E mutation will 

strengthen the affinity for Ca2+ with the additional negative charge acting as an 

additional coordination ligand.  These variants, referred to as 149E, have a weaker 

affinity for Ca2+ compared to CatchER with a slightly lower quantum yield but higher 

extinction coefficient.  We also analyze the biophysical properties of CatchER variants 

containing the S175G, S30R, and Y39N mutations that improve the brightness of the 

probes at 37°C.  The purpose of the modifications is discussed in detail in Chapter 5.   
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Spectroscopic methods were used to elucidate the effect that the addition of these 

mutations had on the intrinsic properties of each variant.  Select variants were also 

transfected into mammalian cells to monitor Ca2+ release from the ER/SR. 

 

Figure 4.1.1 Location of N149 residue in the binding site of CatchER 

The designed metal binding site of CatchER contains five negatively charged residues 
located a chromophore sensitive region of EGFP.  Residue N149 was mutated to 
glutamate (E) to create a sensor with a different affinity for Ca2+. 

 

4.2  Results 

4.2.1 Expression and purification of CatchER variants 

The CatchER mutants were overexpressed and purified in preparation for 

biophysical studies to determine and quantify the effects of these mutations on their 

biophysical properties in response to Ca2+.  All of the sensor variants were expressed in 

BL21 (DE3) cells using the method outline in Chapter 2 section 2.4.  The growth curves 

and SDS-PAGE gels for expression are shown in Figure 4.2.1. for the 149E variants.  
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The expression data for the CatchER-T variants is located in Chapter 5, Figure 5.2.2.  

The bacteria containing each of the mutants grew well.  The SDS-PAGE gel confirms 

expression of each protein after induction with IPTG.   

 After expression, the cell pellets were collected and sonicated to yield a cell 

lysate containing the proteins of interest.  Centrifugation of the cell lysate yielded the 

supernatant containing the protein of interest.  The protein was separated and purified 

from the supernatant using affinity chromatography exploiting the strong association of 

the 6X Histidine tag, found on each protein, with Ni2+ immobilized on the 5 mL HiTrap 

chelating column.  Figures 4.2.2A-H shows the chromatograms and SDS-PAGE gels for 

the HisTag and gel filtration purification of 149E CatchER variants.  The protein was 

injected onto the column using Buffer A with a 5 mL/min flow rate.  The protein eluted 

from the column using Buffer B (Buffer A with 500 mM imidazole) at the same flow rate.  

After HisTag purification, the protein samples were concentrated to 2 mL and injected 

onto a Superdex 75 100 mL column at 1 mL/min with 10 mM Tris pH 7.4 (Figures 

4.2.2B, D, F, and H).  The SDS gel of 149E’ gel filtration was not run due to the low 

amount of protein obtained from the two purification steps. 
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Figure 4.2.1 Expression of 149E variants in BL21(DE3) cells 

The DNA for each of the plasmids in the pET28a bacterial expression vector was 
transformed into BL21 (DE3) cells.  One colony from each of the four plates was taken 
to inoculate 10 mL of LB media.  The pre-culture was added to 1 L of LB with 600 uL of 
kanamycin and allowed to grow in a shaker at 37°C until the O.D. reached 0.6 (A) when 
cells were induced with 200 µL of 1 M IPTG, reducing the temperature to 25°C.  The 
bacteria grew well for each of the four mutants. B) Expression samples taken before 
induction (BI) and after induction (AI) were used to run the SDS-PAGE gel confirming 
the proteins were expressed.  The marker is labeled as M. 

 

 

 

A                          

B                          
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Figure 4.2.2 Purification of 149E CatchER variants 

Representative purification data for 149E (A, HisTag; B, gel filtration), 149E S30R (C, 
HisTag; D, gel filtration), 149E Y39N (E, HisTag; F, gel filtration), and 149E’ (G, HisTag; 
H gel filtration). The supernatant obtained from the sonicated BL21 (DE3) cells was 
syringe filtered and loaded onto a 5 mL HiTrap chelating column containing immobilized 
Ni2+ using Buffer A at a 5 mL/min flow rate. The protein was eluted at the same rate 
using Buffer B containing 500 mM imidazole. The first peak in the chromatograms is the 

A                                                  B                          

C                                                 D                          

E                                                 F                          

G                                               H                         
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cell debris being washed away during loading. The peaks containing the sensor proteins 
are circled in red.  Inset SDS gel analysis shows clear protein bands for the sensors 
near the 26 kDa marker.  Purified CatchER-T variants were concentrated to 2 mL and 
loaded onto a Superdex 75 column using 10 mM Tris pH 7.4 at 1 mL/min.  The protein 
was eluted out in 2 mL fractions, all of which were not depicted in the SDS gel.  The 
resulting inset SDS-PAGE gels show pure protein.  (G and H) 149E’ does not have high 
expression, so the amount of protein shown in the chromatograms is low.  An SDS gel 
was not done for the gel filtration fractions of 149E’ due to the low yield. 

 

4.2.2  Metal binding of CatchER variants via fluorescence spectroscopy  

The first property that we need to know about our sensors is their affinity for Ca2+.  

The Kd of CatchER variants was determined using fluorescence spectroscopy, outlined 

in Chapter 2 section 2.14, at both excitation wavelengths, 395 and 488 nm, with 

emission monitored from 410-600 and 500-600 nm, respectively, using 10 μM of protein 

in triplicate with 10 µM EGTA added to the samples to get the basal fluorescence (0 mM 

Ca2+).  The absorbance spectrum of each protein was collected before and after titration 

with Ca2+.  The absorbance spectrum for all the variants analyzed shows a decrease in 

the 395 nm excitation peak and an increase of the 488 nm excitation peak with 

saturating levels of Ca2+ compared to without Ca2+ (Figure 4.2.3).  The inset binding 

curves fit a 1:1 binding equation (Equation 2.18) after the data was normalized using 

Equation 2.17.  The Ca2+ Kds, in the absence and presence of 150 mM KCl, of most of 

the variants and their dynamic ranges are listed in Table 4.2.1.  Fluorescence titration 

spectra for 149E and 149E S30R in the presence of 150 mM KCl are located in 

Appendix B, Figure B.1.  
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Table 4.2.1 Ca2+ Kds and dynamic ranges of 149E variants 

 No KCl 150 mM KCl 

 λex (nm) Kd (mM) Fmax/Fmin Kd (mM) Fmax/Fmin 

CatchER 395 0.3 ± 0.1 1.7 ± 0.1 1.8 ± 0.2 1.2 ± 0.1 

488 0.2 ± 0.1 1.6 ± 0.1 0.9 ± 0.2 1.1 ± 0.2 

149E 395 0.4 ± 0.1 1.3 ± 0.1 NR NR 

488 0.8 ± 0.1 1.5 ± 0.1 2.2 ± 0.4 ------- 

149E S30R 395 0.1 ± 0.0 1.4 ± 0.2 NR NR 

488 0.3 ± 0.1 2.0 ± 0.1 1.6 ± 0.2 1.5 ± 0.1 

149E Y39N 395 0.4 ± 0.1 1.4 ± 0.1 ------- ------- 

488 1.1 ± 0.1 1.6 ± 0.1 ------- ------- 

149E’ 395 1.2 ± 0.5 1.4 ± 0.1 ------- ------- 

488 2.8 ± 0.5 1.6 ± 0.1 ------- ------- 

* Data presented is mean ± stdev. Kd – dissociation constant, λex – excitation wavelength,  
Fmax/Fmin – dynamic range in response to Ca2+ calculated using the fluorescence at maximal  
saturation divided by the fluorescence with no Ca2+ present. Data collected at room  
temperature. Samples prepared in 10 mM Tris pH 7.4 with or without 150 mM KCl.  
Fluorescence slit widths were 0.25 mm for excitation and emission. Dashed lines indicate  
data not collected. NR – no response to Ca2+. 
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Figure 4.2.3 In vitro Kd of 149E (A-C), 149E Y39N (D-F), 149E S30R (G-I), and 149E’ 
(J-L) in 10 mM Tris pH 7.4 

(A, D, G, J) Absorbance spectra of 10 µM of the protein sample before titration with 5 
uM EGTA (dashed line) and after with a saturating amount of Ca2+ (solid line).  The 
population of the anionic chromophore, corresponding to the 488 nm peak, increases 
and the amount of neutral chromophore, corresponding to the 395 nm peak, decreases 
with increasing Ca2+.  (B and C). Fluorescence increase of 149E in response to 0, 0.05, 
0.15, 0.5, 2, 4, 6, and 8 mM Ca2+. (E and F) Fluorescence increase of 149E Y39N in 

A                                  B                                        C                  

D                                  E                                        F                  

G                                  H                                        I                  

J                                  K                                        L                 
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response to 0, 0.1, 0.3, 1, 3, 5, 10, 15, and 20 mM Ca2+. (H and I) Fluorescence 
increase of 149E S30R in response to 0, 0.1, 0.3, 1, 3, 5, 10, and 15 mM Ca2+. (K and 
L) Fluorescence increase of 149E’ in response to 0, 0.05, 0.15, 0.3, 0.5, 1, 4, 7, 11, 16, 
and 21 mM Ca2+.  All samples were excited at 395 nm and 488 nm with emission 
scanned from 410-600 nm for 395 nm excitation and from 500-600 nm for 488 nm 
excitation.  Slit widths for excitation and emission were 0.25 mm. Inset curves show the 
normalized fluorescence intensity data fit to a 1:1 binding equation to get the Kd. 

 

4.2.3 Optical properties of CatchER variants.   

The apo (Ca2+ free) and holo-form (Ca2+ bound) quantum yields (Φ) of CatchER, 

CatchER-T, 149E, 149E Y39N, and 149E S30R were determined using fluorescence 

data obtained from 488 nm excitation with emission at 510 nm and from absorbance 

values at 488 nm.  The detailed protocol is found in Chapter 2 section 2.12.  Table 4.2.2 

lists all optical property values for 149E, 149E Y39N, 149E S30R, CatchER, and 

CatchER-T.  The quantum yields were calculated using Equation 2.6.  The apo and 

holo-form quantum yield of 149E is 0.6 ± 0.1 and 0.5 ± 0.1, respectively.  The apo-form 

quantum yield of CatchER is 0.8 ± 0.1 and 0.6 ± 0.1 in the holo-form.  Figures 4.2.4C-D, 

4.2.5C-D, 4.2.6C-D, 4.2.7C-D, and 4.2.8C-D show the raw absorbance and 

fluorescence data for CatchER, CatchER-T, 149E, 149E Y39N, and 149E S30R used to 

calculate the quantum yield and extinction coefficient for each variant.  The addition of 

10 mM Ca2+ decreases the quantum yields for CatchER, 149E, 149E Y39N and 149E 

S30R (Table 4.2.2).  

The molar absorptivity, also known as the extinction coefficient (ℇ), tells how well 

a compound absorbs light at a given wavelength.  Brightness is a product of ℇ and Φ.  A 

detailed protocol is located in Chapter 2 section 2.12.  Both the extinction coefficient 

and brightness were calculated for the variants, using Equation 2.7, and are listed in 
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Table 4.2.2.  149E has extinction coefficients of 26.1 ± 0.1 mM-1cm-1 (apo) and 33.0 ± 

0.5 mM-1cm-1 (holo) at 488 nm.  The brightness of 149E is 18.0 ± 0.1 mM-1cm-1 (apo) 

and 22.5 ± 0.1 mM-1cm-1 (holo) at 488 nm. 

Table 4.2.2 Optical properties of CatchER variants 

 

 

 

 

 

 

 

Data presented is mean ± stdev. Samples prepared in 10 mM Tris pH 7.4. Experiments  
conducted at room temperature.  Excitation and emission slit widths were 0.1 mm and 0.6 mm, 
respectively. EGFP quantum yield of 0.6 was used as the reference in the calculation.  The 
44 mM-1cm-1 extinction coefficient at 447 nm absorbance peak for all FPs was used to 
calculate the extinction coefficient of the variants. 

Variant Quantum Yield Extinction Coefficient 

(mM
-1

cm
-1

) 

Brightness 

(mM
-1

cm
-1

) 

Apo Holo Apo Holo Apo Holo 

CatchER 
0.8 ± 0.1 0.6 ± 0.1 7.1 ± 0.1  15.0 ± 0.1  5.5 ± 0.1 8.5 ± 0.1 

149E 
0.6 ± 0.1 0.5 ± 0.1 25.4 ± 0.1 40.0 ± 0.1 15.0 ± 0.1 20.3 ± 0.2 

CatchER-T 
0.8 ± 0.1 0.8 ± 0.1 11.0 ± 0.1 14.1 ± 0.1 8.7 ± 0.1 11.8 ± 0.1 

149E Y39N 
0.6 ± 0.1 0.5 ± 0.1 22.7 ± 0.1 37.3 ± 0.2 13.3 ± 0.2 19.5 ± 0.3 

149E S30R 
0.7 ± 0.1 0.6 ± 0.1 17.6 ± 0.3 34.7 ± 0.1 12.0 ± 0.2 20.3 ± 0.2 
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Figure 4.2.4 Extinction coefficient (A and B) and Quantum yield (C and D) 
measurement of CatchER with and without 10 mM Ca2+. 

A and B) Linear scatter plot of the absorbance at 488 nm plotted against the 
absorbance at 447 nm of CatchER samples at different concentrations without Ca2+ 
containing 5 µM EGTA (A) and with Ca2+ (B). Inset curves are the raw absorbance data.  
C and D) Linear scatter plots of the fluorescence intensity at 510 nm from 488 nm 
excitation plotted against the absorbance at 488 nm of CatchER samples at different 
concentrations without Ca2+ (C) and with Ca2+ (D).  Fluorescence slit widths were 0.15 
mm and 0.60 mm for excitation and emission, respectively.  Experiments were done at 
room temperature with samples prepared in 10 mM Tris pH 7.4.  0.1 M NaOH was 
added to each sample after all fluorescence and absorbance spectra were collected to 
get the absorbance spectra of the denatured samples with the major absorbance peak 
occurring at 447 nm.  The absorbance data for the denatured samples was used to 
calculate the extinction coefficient. 

A                                                B 

C                                                D 
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Figure 4.2.5 Extinction coefficient (A and B) and Quantum yield (C and D) 
measurement of CatchER-T with and without 10 mM Ca2+. 

A and B) Linear scatter plot of the absorbance at 488 nm plotted against the 
absorbance at 447 nm of CatchER-T samples at different concentrations without Ca2+ 
containing 5 µM EGTA (A) and with Ca2+ (B). Inset curves are the raw absorbance data.  
C and D) Linear scatter plots of the fluorescence intensity at 510 nm from 488 nm 
excitation plotted against the absorbance at 488 nm of CatchER-T samples at different 
concentrations without Ca2+ (C) and with Ca2+ (D).  Fluorescence slit widths were 0.15 
mm and 0.60 mm for excitation and emission, respectively.  Experiments were done at 
room temperature with samples prepared in 10 mM Tris pH 7.4.  0.1 M NaOH was 
added to each sample after all fluorescence and absorbance spectra were collected to 
get the absorbance spectra of the denatured samples with the major absorbance peak 
occurring at 447 nm.  The absorbance data for the denatured samples was used to 
calculate the extinction coefficient.  

  

A                                         B 

C                                           D 
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Figure 4.2.6 Extinction coefficient (A and B) and Quantum yield (C and D) 
measurement of 149E with and without 10 mM Ca2+ 

A and B) Linear scatter plot of the absorbance at 488 nm plotted against the 
absorbance at 447 nm of 149E samples at different concentrations without Ca2+ 
containing 5 µM EGTA (A) and with Ca2+ (B). Inset curves are the raw absorbance data.  
C and D) Linear scatter plots of the fluorescence intensity at 510 nm from 488 nm 
excitation plotted against the absorbance at 488 nm of 149E samples at different 
concentrations without Ca2+ (C) and with Ca2+ (D).  Fluorescence slit widths were 0.15 
mm and 0.60 mm for excitation and emission, respectively.  Experiments were done at 
room temperature with samples prepared in 10 mM Tris pH 7.4.  0.1 M NaOH was 
added to each sample after all fluorescence and absorbance spectra were collected to 
get the absorbance spectra of the denatured samples with the major absorbance peak 
occurring at 447 nm.  The absorbance data for the denatured samples was used to 
calculate the extinction coefficient. 

 

  

A                                            B 

C                                            D 
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Figure 4.2.7 Extinction coefficient (A and B) and Quantum yield (C and D) 
measurement of 149E Y39N with and without 10 mM Ca2+ 

A and B) Linear scatter plot of the absorbance at 488 nm plotted against the 
absorbance at 447 nm of 149E Y39N samples at different concentrations without Ca2+ 
containing 5 µM EGTA (A) and with Ca2+ (B). Inset curves are the raw absorbance data.  
C and D) Linear scatter plots of the fluorescence intensity at 510 nm from 488 nm 
excitation plotted against the absorbance at 488 nm of 149E Y39N samples at different 
concentrations without Ca2+ (C) and with Ca2+ (D).  Fluorescence slit widths were 0.15 
mm and 0.60 mm for excitation and emission, respectively.  Experiments were done at 
room temperature with samples prepared in 10 mM Tris pH 7.4.  0.1 M NaOH was 
added to each sample after all fluorescence and absorbance spectra were collected to 
get the absorbance spectra of the denatured samples with the major absorbance peak 
occurring at 447 nm.  The absorbance data for the denatured samples was used to 
calculate the extinction coefficient. 

 

 

A                                           B 

C                                           D 
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Figure 4.2.8 Extinction coefficient (A and B) and Quantum yield (C and D) 
measurement of 149E S30R with and without 10 mM Ca2+ 

A and B) Linear scatter plot of the absorbance at 488 nm plotted against the 
absorbance at 447 nm of 149E S30R samples at different concentrations without Ca2+ 
containing 5 µM EGTA (A) and with Ca2+ (B). Inset curves are the raw absorbance data.  
C and D) Linear scatter plots of the fluorescence intensity at 510 nm from 488 nm 
excitation plotted against the absorbance at 488 nm of 149E S30R samples at different 
concentrations without Ca2+ (C) and with Ca2+ (D).  Fluorescence slit widths were 0.15 
mm and 0.60 mm for excitation and emission, respectively.  Experiments were done at 
room temperature with samples prepared in 10 mM Tris pH 7.4.  0.1 M NaOH was 
added to each sample after all fluorescence and absorbance spectra were collected to 
get the absorbance spectra of the denatured samples with the major absorbance peak 
occurring at 447 nm.  The absorbance data for the denatured samples was used to 
calculate the extinction coefficient. 

A                                              B 

C                                              D 
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4.2.4 pKa of Ca2+ probes.   

The pKa of CatchER-T (Figure 4.2.5) and 149E (Figure 4.2.6) was measured via 

fluorescence in the presence and absence of 5 and 10 mM Ca2+ as outlined in Chapter 

2 section 2.13.  Each probe had its highest fluorescence at pH 8 or 9 with added Ca2+ 

and the lowest fluorescence intensity occurred at pH 1.1.  Table 4.2.3 lists the pKa 

values for 149E, CatchER-T, and CatchER obtained using Equation 2.16.  The 

CatchER pKa values are from published data180.  CatchER-T has a pKa of 7.3 ± 0.2 and 

7.8 ± 0.5 without Ca2+ excited at 395 and 488 nm respectively and 6.7 ± 0.1 and 6.8 ± 

0.3 with Ca2+ excited at 395 and 488 nm, respectively.  Of the sensors whose pKa was 

determined, 149E has the lowest pKa values of 6.4 ± 0.1 and 6.5 ± 0.1 without Ca2+ 

excited at 395 and 488 nm and 6.4 ± 0.3 and 6.4 ± 0.1 with Ca2+. 

Table 4.2.3 pKa of select CatchER variants 

Protein 149E CatchER-T CatchER180 

Excitation 
Wavelength 

395 nm 488 nm 395 nm 488 nm 395 nm 488 nm 

Apo 6.4 ± 0.1 6.5 ± 0.1 7.3 ± 0.2 7.8 ± 0.5 7.1 ± 0.1 7.6 ± 0.1 

Holo 6.4 ± 0.3 6.4 ± 0.1 6.7 ± 0.1 6.8 ± 0.3 6.9 ± 0.1 6.9 ± 0.1  

Data presented is mean ± stdev. Ten micromolar protein samples were prepared in different buffers from 
1-9 pH with overnight incubation at 4°C.  pH values were recorded before and after data collection.  
Samples were warmed to room temperature before experiment.  Reported values of CatchER are from 
the cited reference. 
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Figure 4.2.9 pKa of CatchER-T with and without 5 mM Ca2+ 

(A and B) 10 uM CatchER-T excited at 395 nm in apo and holo-form from pH 9.1 to pH 
1.0.  (C and D) Same protein samples excited at 488 nm and monitored from 500-600 
nm.  E and F) Fluorescence data of the apo (E) and holo (F) samples was normalized 
and fitted using the Henderson-Hasselbalch equation translated for K-graph.  The pKa 

A                                                    B                          

C                                                    D                         

E                                                     F                          
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of CatchER-T in apo-form was 7.3 ± 0.2 and 7.8 ± 0.5 at 395 and 488 nm excitation and 
the pKa in the holo-form was 6.7 ± 0.1 and 6.8 ± 0.3 at 395 and 488 nm excitation. 

 

 

Figure 4.2.10 pKa of 149E with and without 5 mM Ca2+ 

(A and B) 10 uM 149E excited at 395 nm in apo and holo-form from pH 8.4 to pH 1.1.  
(C and D) Same protein samples excited at 488 nm and monitored from 500-600 nm.  E 
and F) Fluorescence data was normalized and fitted using the Henderson-Hasselbalch 
equation translated for K-graph.  The pKa of 149E in apo-form was 6.4 ± 0.1 and 6.5 ± 

A                                          B                          

C                                           D                          

E                                          F                          
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0.1 excited at 396 and 488 nm, and the pKa of the holo-form was 6.4 ± 0.3 and 6.4 ± 
0.1 at 396 and 488 nm excitation. 

            

4.2.5 Kd determination via equilibrium dialysis/ICP-OES   

 Equilibrium dialysis is a commonly used method in the pharmaceutical industry 

for determining the affinity of a receptor for its ligand or a drug for its target253. As shown 

in Chapter 2 Figure 2.15.1, the technique involves placing samples in dialysis bags or 

chambers and allowing the sample to equilibrate against buffer, containing the ligand of 

interest, for a sufficient period of time.  The experiment was done as described in 

Chapter 2 section 2.15.  Kd values were calculated using Equation 2.19.  Twenty 

microliters of protein is placed into cellulose dialysis bags and allowed to equilibrate for 

48 h against 4 L of buffer plus a certain concentration of Ca2+.  α-lactalbumin and 

myoglobin were used as positive and negative controls, respectively.  EGFP was used 

as an additional negative control.  The absorbance spectra of the samples were taken 

before and after dialysis.  After 48 h, the samples were collected and analyzed using 

ICP-OES.  The ICP-OES spectrometer has the ability to detect metal concentrations as 

low as 0.1-100 ng/mL in various matrices254.  This instrument involves the use of an RF 

induced white plasma fueled by Argon (Ar) gas255.  Samples for analysis are converted 

to aerosol where the metals in solution collide with Ar gas particles forcing electrons into 

excited states causing the emission of a photon upon relaxation to ground state256.   

Results of the Ca2+ Kd of CatchER variants using this method are found in Figure 4.2.7.  

The data was compiled from different ICP-OES experiments.  Standard curves used to 

calculate Ca2+ concentrations from each Ca2+ emission wavelength are in Appendix B 
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Figure B.2.  Examples of [Ca2+] calculated from ICP-OES are located in Appendix B 

Tables B.1, B.2, and B.3. 

 

Figure 4.2.11 Ca2+ Kd determination of CatchER variants using equilibrium 
dialysis and ICP-OES 

A) Absorbance spectrum overlay of samples prepared for equilibrium dialysis.  Protein 
samples were prepared at ~20 µM.  B)  Representative ICP-OES standard curve 
obtained from prepared Ca2+ standard solutions.  Data was collected from the 396 nm 
emission wavelength of Ca2+.  C and D) Calculated Kd values of the CatchER variants 
tested from different equilibrium dialysis experiments in 10 mM Tris pH 7.4. 

 

A                                                             B 

C                                                              D 
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4.2.6 Stopped-flow analysis of CatchER variants 

 CatchER, whose in vitro and in situ data has been published, is able to detect 

Ca2+ changes in the cell because of its weak affinity (Kd = 180 µM) and its rapid koff of 

~700 s-1 180.  Because CatchER reacts quickly with Ca2+, a large percentage of its 

binding process is not seen during stopped-flow fluorescence analysis.  The Ca2+ 

binding site in CatchER has a -5 charge due to the concentration of Asp and Glu 

residues.  The electrostatic nature of Ca2+ binding to CatchER in addition to the 

negatively charged surface of EGFP is proposed to contribute to the fast binding and 

release kinetics we see in CatchER.  To probe the role of electrostatics in Ca2+ binding 

to CatchER and other variants, stopped-flow kinetics measurements were done at the 

physiological [KCl] of 150 mM as outlined in Chapter 2 section 2.16. Table 4.2.4 lists the 

koff values for 149E, CatchER, and CatchER-T with and without 150 mM KCl present in 

the buffer along with the stopped-flow and fluorescence Kds for each.  Values for koff 

were obtain using a single exponential fit for the stopped-flow data.  Figure 4.2.12 

shows the koff traces and inset kon traces for the previously mentioned variants in the 

absence and presence of 150 mM KCl.   
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Table 4.2.4 Stopped flow analysis of CatchER variants 

 k
off

 (s
-1

)a sf K
d
 (mM)b Fluo K

d 
(mM)c 

0 mM KCl 150 mM 
KCl 

0 mM 
KCl 

150 mM 
KCl 

0 mM KCl 150 mM 
KCl 

149E 124 ± 3 142 ± 2 0.1 ± 0.01 1.2 ± 0.2 0.2 ± 0.1 0.9 ± 0.2 

CatchER 68 ± 1 308 ± 7 0.3 ± 0.1 2.5 ± 0.8 0.3 ± 0.1 2.0 ± 0.4 

CatchER-
T 

137 ± 2 491 ± 11 0.2 ± 0.01 1.9 ± 0.1 0.4 ± 0.1 1.7 ± 0.1 

Data represents mean ± stdv.  Fluorescence data collected at room temperature with a 455 nm long pass 
filter with 395 nm excitation. aRate of dissociation of Ca2+ from the protein calculated using a single 
exponential decay fit of the sf data. bsf Kd is the dissociation constant calculated from the fluorescence 
stopped-flow traces with increasing Ca2+. cFluo Kd is the dissociation constant calculated from fluorometric 
titration. 
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Figure 4.2.12 Stopped-flow kinetics analysis of 149E (A and B), CatchER-T (C and 
D), and CatchER (E and F) in the absence and presence of 150 mM KCl 

koff fluorescence traces from 395 nm excitation with rapid mixing of 149E (A), CatchER-
T (C), and CatchER (E) at a final concentration of 20 µM saturated with 250-300 µM 
Ca2+ shot against EGTA. Inset curves are kon traces at increasing Ca2+ concentrations. 
Samples are in 10 mM Tris pH 7.4 without KCl. B, D, F) koff traces of each protein in 10 
mM Tris 150 mM KCl pH 7.4 with 1 mM Ca2+ added to each. Data was collected at room 
temperature.   

A                                                  B 

C                                                 D 

E                                                  F 
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4.2.7 Monitoring ER/SR Ca2+ release using CatchER variants 

 We examined the response of select CatchER variants to changes in [Ca2+]ER/SR 

in  mammalian cells.  Since CatchER contains the calreticulin signal peptide and the 

KDEL ER/SR retention sequence for ER/SR localization, all the variants made from 

CatchER are targeted to the ER/SR.  C2C12 myoblast cells were transfected with the 

variant DNA using Effectene outlined in Chapter 2 section 2.18.  The imaging 

experiments were carried out as detailed in Chapter 2 section 2.20.  Figure 4.2.13A 

shows the response of 149E Y39N to 200 µM 4-cmc in C2C12 myoblast cells.  The 

response was collected from five cells.  Although the intensity baseline before and after 

treatment was not stable, there is a clear decrease in the intensity with the addition of 4-

cmc, indicating the probe is sensing the decrease in SR Ca2+ in response to RyR 

channel activation by 4-cmc.  Figures 4.2.13B and C show the response of CatchER-T 

and CatchER-T S30R to Ca2+ in the presence of 10 µM ionomycin after 

permeabilization with 25 µM digitonin.  Data from one C2C12 myoblast cell was 

collected for each.   

In collaboration with Dr. Heping Cheng at Peking University in China, CatchER, 

CatchER-T’, and our mCherry-based probe R-CatchER were used to monitor Ca2+ 

release in neonatal rat ventricular myocytes.  Senor DNA was inserted into the 

adenovirus vector for easy transfection of ventricular myocytes.  Figure 4.2.14A and B 

show the expression of CatchER and CatchER-T’ in these cells.  R-CatchER expression 

is not pictured.  The sensors have good expression in this cell type. RyR2-mediated SR 

depletion was triggered using caffeine with simultaneous monitoring of cytosolic Ca2+ 
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with rhodamine 2 (Figure 4.2.14D-F).  The green Ca2+ dye Fluo 4 was paired with R-

CatchER to prevent spectral overlap and mixing of fluorescence signals.  Fluorescence 

intensity changes for CatchER, CatchER-T’, and R-CatchER, in response to caffeine 

depletion, are minimal compared to changes seen with the dyes.  CatchER had a 15% 

decrease in fluorescence intensity while CatchER-T’ had a 20% decrease in 

fluorescence.  R-CatchER experienced a 5% decrease in intensity.    
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Figure 4.2.13 Monitoring changes in SR Ca2+ in C2C12 myoblast cells using 149E 
Y39N (A), CatchER-T (B), and CatchER-T S30R (C) 

(A) Ca2+ release from the SR through activation of RyR1 with 200 µM 4-cmc in Ringer’s 
buffer containing 1.8 mM Ca2+.  Cells were imaged using a Leica DM6100B inverted 
microscope with a cooled EM-CCD camera.  Cells were viewed through a 40X oil 
immersion objective with and exposure time of 0.07 s and a gain of 175. The 
fluorophore was excited at 488 nm with emission monitored at 510. B and C) 
Permeablization of C2C12 myoblast cells with 25 µM digitonin expressing CatchER-T 
and CatchER-T S30R.  Cells were permeablized in intracellular buffer, pH 7.2, then 
washed with 1 mM EGTA containing 10 µM ionomycin in KCl buffer, pH 7.2.  10 or 50 
mM Ca2+ in KCl buffer containing 10 µM ionomycin was added to the cells to see the 
intensity increase. Red arrows refer to wash with KCl buffer containing 10 µM 
ionomycin. N refers to the number of cells. B) Digitonin was perfused through the 
chamber permeablizing all the cells on the slide.  Cell shown is from a different region of 
the slide after testing a cell that had no response. 

 

 

A                                                      B 

C                                                       
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Figure 4.2.14 Application of CatchER variants in neonatal rat ventricular 
myocytes 

A-C) The DNA for CatchER, CatchER-T’, and R-CatchER was inserted into an 
adenovirus vector.  Neonatal rat ventricular myocytes were transfected with the variant 
DNA for expression of the sensors (expression of R-CatchER not shown). D-F) 
Ventricular myocytes expressing CatchER (D), R-CatchER (E), and CatchER-T’ (F) 
were treated with caffeine triggering RyR2-mediated Ca2+ release from the SR.  
Changes in cytosolic Ca2+ were monitored using rhodamine 2 (Rhod2) and Fluo4 for R-
CatchER.  CatchER saw a 15% decrease in fluorescence intensity while CatchER-T’ 
saw a 20% decrease in fluorescence. R-CatchER had a 5% decrease in intensity. Data 
collected by Dr. Heping Cheng and colleagues in China. 

 

E                                                            F 
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4.3 Discussion 

 The current class of genetically encoded Ca2+ sensors available today rely on the 

incorporation of a native CaBP into a fluorescent protein fusion construct using one or 

two fluorescent proteins.  The CaBP acts as the Ca2+ binding site that transmits the 

binding energy to the fluorescent proteins converting the energy into a measureable 

fluorescence response.  These sensors have Kd values in the nanomolar range for Ca2+.  

The high affinity these sensors experience for Ca2+ cannot be altered easily due to the 

high cooperativity intrinsic to natural Ca2+ binding sites194,177,72.  For this reason, Ca2+ 

sensors are needed with tunable Kds to target the various spatio-temporal [Ca2+] 

changes that occur intracellularly.    

4.3.1 Metal binding of CatchER variants 

 Through analysis of the coordination chemistry and associated ligands in CaBPs, 

it is well understood that Ca2+ is coordinated in proteins with pentagonal bipyramidal 

geometry212. The binding site of CatchER was designed using this knowledge with site 

directed mutagenesis.  147E, 202D, 204E, 223E, and 225E are the acidic residues that 

create the binding site in CatchER.  The Ca2+ and Gd3+ bound crystal structures reveal 

that the dynamic nature of the metal ion in the binding site is responsible for the weak 

Kd and fast kinetics of the sensor181.  Creation of the binding site gives E222, which is 

important for charge stabilization of the chromophore245, two conformations in the Ca2+ 

loaded crystal structure.  As Ca2+ is added to CatchER, E222 rotates to stabilize the 

negative charge of the anionic chromophore being produced, noted by the increase in 

the 488 nm absorbance peak181.  Based on the spectral properties of 149E, this 

mutation increases the amount of the anionic chromophore present in the protein.  The 
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N149E mutation may influence the conformation of E222 which could be the reason for 

the absorbance spectrum changes seen that are similar to CatchER.  Incorporation of 

the N149E mutation to CatchER weakens the Ca2+ Kd.  The CatchER Ca2+ crystal 

structure shows that the primary chelating ligands are 147E, 202D, and 204E.  The 

decrease in the affinity may be attributed to disruption of the metal coordination 

geometry and charge repulsion from the added negative charge.   

 Although the S30R and Y39N mutations are far from the metal binding site, they 

impact the affinity of the variants for Ca2+.  These mutations improve the global stability 

and fold of the β-barrel169 which seems to have an indirect effect on the binding site.  

Compared to 149E, 149E S30R has a stronger affinity for Ca2+ and an increase in the 

dynamic range when excited at 488 nm (Table 4.2.1).  The 149E Y39N mutant has a 

weaker Ca2+ affinity than 149E and 149E S30R.  The double mutant, 149E’, has the 

lowest affinity for Ca2+ because of the overall effect the mutations have on the stability 

of the protein.  

 Because our sensors are targeted to the ER/SR it is important to know how 

physiological concentrations of salts, like KCl, will influence the affinity of the sensors for 

Ca2+.  In Table 4.2.1, it is clear that the addition of 150 mM KCl during Ca2+ titration 

weakens the affinity of the sensors for Ca2+.  In some cases, the Cl- ion quenched 

fluorescence from one excitation wavelength (Appendix B, Figure B.1).  At this salt 

concentration, the dynamic range of the sensors was reduced.  Cl- ions have been 

reported to quench the fluorescence of GFP proteins173.  When applied in situ, our 

probes will likely experience a reduced dynamic range from the other physiological ions 

in solution. 
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4.3.2 Optical properties of CatchER variants  

Table 4.2.2 lists all the optical property values calculated at the 488 nm excitation 

peak.  The optical properties of the variants were determined with 488 nm excitation 

because this excitation wavelength is used for cell imaging.  EGFP has a single 

excitation peak at 488 nm170, and it is the scaffold protein used for these variants.  

Because EGFP was used as the reference in these experiments, only the optical 

properties at 488 nm excitation could be calculated.  The quantum yield of CatchER-T 

does not change with Ca2+, so Ca2+ does not improve the efficiency of fluorescence.  

The quantum yield of 149E and CatchER, on the other hand, experiences a slight 

decrease with the addition of Ca2+. The calculated extinction coefficients of the variants 

were consistent with the observed absorbance spectrum changes with and without 

Ca2+.  Without Ca2+, the absorbance peak at 395 nm is large and the peak at 488 nm is 

small.  When Ca2+ is added, a ratiometric change is seen where the 395 peak 

decreases and the 488 peak increases.  The ratio change is small, but the increase is 

observed in the extinction coefficient values.  Compared to CatchER, 149E has a 3.7 

fold increase in its extinction coefficient in the apo form, which is the largest increase of 

all the mutants analyzed.  CatchER-T, containing the S175G mutation, also experiences 

an increase in its extinction coefficient in the apo form, 11.0 ± 0.1 mM-1cm-1 compared 

to 7.1 ± 0.1 mM-1cm-1 of CatchER.  Through analysis of the 149E variants, the S30R 

and Y39N mutations decrease the extinction coefficients in the apo form.  149E is the 

brighter variant with a brightness of 15.0 ± 0.1 mM-1cm-1.  Only the quantum yield of 

149E S30R has a slight increase over that of 149E, 0.7 ± 0.1 compared to 0.6 ± 0.1.  
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Comparing the optical properties of all the variants with Ca2+, metal binding increases 

the extinction coefficient and brightness, while slightly decreasing the quantum yield. 

4.3.3 pKa of Ca2+ probes.    

 GFP-based Ca2+ probes are inundated with pH sensitivity issues.  This problem 

is primarily caused by the alternate protonation states of the chromophore244.  Several 

Ca2+ probes utilizing GFP have been applied in mammalian cells to monitor Ca2+ 

changes in real-time193,196.  In the work presented, 149E is the most pH insensitive 

CatchER variant with pKa values around 6.5 for both apo and holo-form.  CatchER and 

CatchER-T have comparable pKa values above neutral pH.  Research has shown the 

pH of the ER remains neutral during stimulated Ca2+ release257.  This information 

supports the use of our probes for monitoring ER Ca2+ release with minimal pH effects.  

Because 149E is more resistant to pH changes, it could be applied to other organelles 

in the cell that contain Ca2+ but have a pH below neutral such as the Golgi or early 

endosomes258.  Through analysis of the different GFP proteins, several mutations were 

discovered that made the protein less sensitive to pH, such as the T203I 

mutation259,173,260.  This knowledge can be used to implement the necessary point 

mutations in our sensors to lower the pKa values further, ensuring the fluorescence of 

the probe will remain intact in lower pH environments. 

4.3.4 Equilibrium dialysis/ICP-OES of CatchER variants   

 Using the equilibrium dialysis method, we were able to confirm that our sensors 

are binding Ca2+.  The amount of Ca2+ found in the buffer samples for each experiment 

showed that the dialysis system did reach equilibrium and the amount of Ca2+ added to 

the buffer was similar to the amount found in the buffer after equilibration (Appendix B 
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Tables B.1, B.2, and B.3). The calculated equilibrium dialysis Kd values for D9, D10, 

CatchER, CatchER-T, and 149E are found in Figure 3.2.5.1D.  The Kd calculated for 

CatchER-T is 8.5 ± 2.2 µM which is much stronger than the 0.3 ± 0.1 mM Kd from the 

steady state fluorescence titration.  The Kd calculated for CatchER is 194.2 ± 67.0 µM 

which is similar to the published fluorescence Kd
180, but the standard deviation is high 

which suggests an error in the measurement.  In Appendix B Tables B.1, B.2, and B.3, 

the amount of Ca2+ found in the blank dialysis bags were consistently around 1-2 µM 

higher than the equilibrated buffer 2.  The difference between the blank and the 

equilibrated buffer is the Ca2+ that associates with the dialysis bag.  Cellulose has been 

shown to bind Ca2+ non-specifically261.  This finding may suggest that the background 

Ca2+ is 1-2 µM.  This error may be due to the purity of the protein or the intensity 

fluctuation among the different Ca2+ emission wavelengths monitored.  Binding of Ca2+ 

to the negative controls is occurring even though neither EGFP nor myoglobin have a 

Ca2+ binding site. 

 Equilibrium dialysis and ultrafiltration are the two most commonly used methods 

in the pharmaceutical industry to study drug-protein binding.  Because of their simplicity, 

these two approaches can be applied to various organisms for in vitro or in vivo 

analysis.  Equilibrium dialysis, however, is referred to as the standard method for 

studying ligand binding.  The foundation of the equilibrium dialysis method is centered 

on forming a balance between a protein and a buffer, containing the ligand, which is 

separated by a membrane with an appropriate molecular weight cutoff262.  There are 

several limitations to the equilibrium dialysis method that can cause an error in the 

resulting calculated Kd.  Equilibration times over 12 h can increase the amount of 
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sample lost and degraded253.  Because of the oncotic pressure differences created 

across the membrane, sample volume can shift between 10-30%263,264.  Another issue 

that effects accurate measurements from equilibrium dialysis is the Donnan effect.  The 

Donnan effect arises when two liquid sections containing a mixture of permeable and 

impermeable charged ions are separated by a semi-permeable membrane. The effect 

emerges because of the unequal charge distribution of impermeable ions across the 

membrane265.  This distorted electrical gradient created across the membrane can alter 

the measurement.  The Donnan effect can be accounted for using various calculations 

and by increasing the ionic strength of the buffer if the binding event is not electrostatic 

in nature266.   

4.3.5 Stopped-flow analysis of CatchER variants   

 The binding kinetics of CaBPs has prominent influence on the shape and 

duration of the Ca2+ signal.  CaBPs such as parvalbumin and calretinin have fast on 

rates and slow off rates with Kd values around 100-200 nM68.  In order to understand 

how our sensors will associate with Ca2+ inside the cell, we must obtain specific kinetic 

parameters that directly relate to Ca2+ binding.  Intracellularly, a large [K+] helps 

maintain the resting voltage of the cell at ~70 v.  Along with K+, other monovalent ions 

such as Na+, divalent ions such as Mg2+, and small molecules such as ATP exist inside 

the cell. Fluorescence spectroscopy will be used to measure the binding affinity and 

metal selectivity of our sensors.  To confirm whether or not electrostatic interactions 

impact the fast release kinetics of CatchER, we used stopped-flow spectroscopy to 

determine the koff and Kd of CatchER in the absence and presence of 150 mM KCl 

along with the kinetics of 149E and CatchER-T located in Figure 4.2.12.  The koff for 
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CatchER in 0 M KCl was calculated to be ~67 s-1 (Figure 4.2.12E, Table 4.2.4) which is 

a 10 fold decrease from the reported value180.  However, the addition of KCl increased 

the koff of CatchER from 68.3 ± 1.2 s-1 to 308.5 ± 6.7 s-1, a ~4.5 fold increase in the off 

rate in the presence of 150 mM KCl (Table 4.2.4).  There is a possibility that the 

CatchER sample used to get the published data contained high amounts of salt since 

after HisTag purification, which elutes the bound protein of interest using an imidazole 

gradient, only dialysis was performed to remove the imidazole, not gel filtration.  All the 

protein samples used for the kinetics experiments completed for this dissertation were 

subjected to two steps of purification, HisTag and gel filtration chromatography, to 

ensure removal of all contaminants and salts.  The addition of 150 mM KCl reduced the 

fluorescence response range of the sensors to Ca2+.  The kinetics of 149E and 

CatchER-T are reported for the first time.  Determining the koff of 149E in the presence 

of KCl increases the value slightly from the value obtained without KCl (Figure 4.2.12A 

and B, Table 4.2.4).  On the other hand, 150 mM KCl increases the koff of CatchER-T by 

~3.6 fold compared to the koff with no KCl present (Figure 4.2.12C and D, Table 4.2.4).  

The stopped-flow Ca2+ Kds for each variant are similar to those calculated from the 

static fluorescence titrations.  The kobs values obtained from fitting the kon traces for 

each protein could not be fit to a straight line (data not shown) indicating the presence 

of an intermediate as was seen with Ca-G1191. 

4.3.6 Monitoring ER/SR Ca2+ release using CatchER variants 

 To test the response of some of the new variants in situ, we transfected them into 

C2C12 myoblast cells.  The cells containing CatchER-T and CatchER-T S30R were 

permeablized with digitonin then exposed to Ca2+ to see the response range of the 



141 

sensor (Figure 4.2.13).  CatchER-T and CatchER-T S30R do respond to Ca2+ but not 

enough cells were analyzed to confirm the response.  RyR-mediated SR Ca2+ release 

was triggered with 200 µM 4-cmc and monitored with 149E Y39N (Figure 4.2.13A).  

Data from five cells was collected.  A 6% decrease in SR Ca2+ content was seen.   

 In collaboration with Dr. Heping Cheng, CatchER, CatchER-T’, and our mCherry-

based probe R-CatchER were used to monitor Ca2+ release in neonatal rat ventricular 

myocytes.  RyR2-mediated SR depletion was triggered using caffeine with simultaneous 

monitoring of cytosolic Ca2+ with rhodamine 2 and Fluo 4 (Figure 4.2.14D-F). 

Fluorescence intensity changes for CatchER, CatchER-T’, and R-CatchER, in response 

to caffeine depletion, are minimal compared to changes seen with the dyes.  CatchER 

had a 15% decrease in fluorescence intensity while CatchER-T’ had a 20% decrease in 

fluorescence.  R-CatchER experienced a 5% decrease in intensity.  The small changes 

in Ca2+ release are due to the small dynamic range of the sensors.    

4.4 Conclusion  

 The biophysical properties of CatchER variants containing the N149E mutation 

and brightness mutations S175G, S30R, and Y39N have been reported using 

spectroscopic methods.  The N149E mutation, located in the metal binding site, 

decreased the affinity for Ca2+ of the resulting probe.  This data disproved our 

hypothesis.  Errors in the equilibrium dialysis measurement prevented accurate 

calculation of the Ca2+ Kd for the different variants analyzed.  149E variants had large 

increases in their extinction coefficients compared to CatchER with 149E having the 

most substantial increase.  Compared to CatchER, 149E has a 3.7 fold increase in its 

extinction coefficient in the apo form, which is the biggest increase of all the mutants 
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analyzed.  CatchER-T, containing the S175G mutation, also experiences an increase in 

its extinction coefficient in the apo form compared to CatchER.  Through analysis of the 

149E variants, the S30R and Y39N mutations decrease the extinction coefficients in the 

apo form.  Only the quantum yield of 149E S30R has a slight increase over that of 

149E.  Comparing the optical properties of all the variants with Ca2+, metal binding 

increases the extinction coefficient and brightness, while slightly decreasing the 

quantum yield.  Compared to CatchER, 149E has less pH dependence.  Kinetic 

analysis of 149E revealed slower kinetics compared to CatchER.  Select variants were 

also analyzed in situ in C2C12 myoblast cells and neonatal rat ventricular myocyte cells.  

Although the amplitude changes in situ were small, we have shown that our sensors 

can be targeted and expressed in the ER/SR of mammalian cells.  As a result of this 

work, a less pH sensitive CatchER variant was made with a weaker affinity for Ca2+ and 

increased absorption ability, providing another tool that can be used to monitor Ca2+ 

dynamics in the ER/SR in normal and disease states. 
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5 OPTIMIZATION OF CATCHER AND ITS TARGETED SUBCELLULAR 

APPLICATION 

5.1  Introduction 

Ca2+ (Ca2+) is an activator of a multitude of cellular processes necessary for the 

formation and survival of organisms5.  Initiation of these events is dependent on all the 

components of the Ca2+ signaling toolkit consisting of Ca2+ pumps, Ca2+ channels, 

receptors and Ca2+ binding proteins (CaBPs) that all respond on different timescales to 

create the varied Ca2+ transients that govern biological function21.  Inside the cell, Ca2+ 

is primarily stored in the endoplasmic reticulum (ER) or the sarcoplasmic reticulum 

(SR), its counterpart in muscle cells84,54.  The ER is the site of protein synthesis and 

folding inside the cell and is central to Ca2+ signaling. The task of converting the 

extracellular stimulus received into a coded intracellular Ca2+ signal, wave or oscillation, 

lies with the ER/SR and the non-uniform distribution of CaBPs, the sarco-endoplasmic 

reticulum Ca2+ ATPase uptake pump (SERCA), and inositol 1,4,5-triphosphate receptor 

(IP3R) and ryanodine receptor (RyR) Ca2+ release channels.  These modulators of the 

Ca2+ signal create spatially diverse compartments with different Ca2+ concentrations 

within the ER/SR lumen267.  The morphology of the ER appears as flattened sacs or as 

a tubule network in the cell.  Although the ER can rapidly remodel itself, it often 

maintains a fixed, complex arrangement that allows it to carry out various tasks in 

different areas of the cell.  In skeletal muscle cells, the SR has a highly specialized 

arrangement to deliver quickly the Ca2+ needed for muscle contraction in response to 

membrane depolarization268,84.   
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The SR forms an elongated meshwork around each myofibril inside the skeletal 

muscle cell.  T tubules are invaginations of the sarcolemma that extend into the 

myoplasm and surround each myofibril.  The T tubules allow rapid diffusion of the 

sarcolemma depolarization into the muscle fibers.  In the muscle fibers, T tubules are 

situated near the enlarged portions of the SR called the terminal cisternae (TC) in the 

cytoplasm54.  The portion of the TC membrane facing the T tubule is called the 

junctional SR membrane with the space in between termed the junctional zone.  

Localized in the junctional SR membrane is RyR isoform 1 (RyR1).   Protein modulators 

of RyR1 function include the luminal SR CaBP calsequestrin isoform 1 (CASQ1) and 

SR integral membrane proteins like junctin and triadin58.  It is here where the L-type 

voltage gated Ca2+ channels (VGCC), or dihydropyridine receptors (DHPR), organized 

in tetrads on the portion of the T tubule membrane facing the junctional SR membrane, 

open in response to membrane depolarization and mechanically activate Ca2+ release 

from the SR through its direct interaction with RyR1s88,102.  The immense amount of 

Ca2+ released from the SR in response to the action potential fuels excitation-

contraction (E-C) coupling94,269.  The large reservoir of Ca2+ required to generate 

contractile force repetitively from a train of action potentials is maintained by the low 

affinity, high capacity Ca2+ binding and release of CASQ195.  CASQ1 is localized in the 

lumen of the TC where it forms long polymers near the opening of RyR1 in a Ca2+ 

dependent manner96,97.  Polymerized CASQ1 can bind 40-50 mol of Ca2+/mol of CASQ1 

with a 103 M-1 affinity over a high Ca2+ concentration range of 0.01-1 M.  Its exceptional 

buffering function makes CASQ1 the sole mechanism for fast Ca2+ binding and release 
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from the SR.  CASQ polymers interact directly with the luminal opening of the RyR or 

through interactions with junctin and triadin96,98.  

 Since these indigenous junctional zone proteins are directly involved in 

generating contractile force in this highly specialized location of the cell, their 

dysfunction negatively affects intracellular and SR Ca2+ regulation causing various 

muscle pathologies116.  Malignant hyperthermia (MH) is a genetic skeletal muscle 

disease caused by mutations in the gene encoding RyR1111.  Clinical hallmarks of MH 

include rapid heart rate, high blood pressure, sustained muscle contractions, increased 

CO2 levels, trouble breathing, and a rapid and often fatal rise in core body 

temperature113.  Untimely diagnosis of MH leads to death.  The hypermetabolic state 

seen in MH patients is attributed to escalated Ca2+ release from the SR caused by 

defects in mutated RyR1 situated on the junctional SR membrane112,113.  Hundreds of 

mutations in the human RyR1 have been identified so far and causally linked to MH with 

research still ongoing.  The majority of these mutations are confined to three locales in 

RyR1:  C35-R614 in the N-Terminal, D2129-R2458 in the central region, and I3916-

G4942 in the carboxy terminal, but more recently mutations have been identified outside 

of these domains114.  MH mutations have also been identified in the human CACNL1A3 

gene coding the α1 subunit of the DHPR located on the sarcolemma115.  The DHPR and 

the RyR1 are in close contact with one another.  When skeletal muscle cells are 

depolarized, the DHPR converts the voltage change to a conformational change that 

triggers SR Ca2+ release through the RyR1 leading to muscle contraction in a process 

known as excitation-contraction coupling (E-C coupling)270.  In MH, mutations in RyR1 

and the DHPR cause a gain of function in E-C coupling112.  Mutations in RyR1, 
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however, are not found in all cases of MH which implies dysfunction in other associated 

proteins.  Deletion of the CASQ1 gene in mice prompts increases in sudden death from 

MH and environmental heat stroke (EHS) events in reaction to volatile anesthetics and 

heat exposure271,272.  Missense mutations D244G and M87T in CASQ1 significantly 

modify its Ca2+ dependent functions in SR Ca2+ release273.     

 

Figure 5.1.1 Design of a targeted CatchER probe to monitor local Ca2+ in the 
junctional SR lumen 

A) Representation of the organization of the junctional zone and the channels, 
receptors, pumps, and proteins involved in the E-C coupling process in skeletal muscle 
cells. Modified from Divet, et al., Journal of Muscle Research and Cell Motility, 2005. B) 
CatchER and CatchER-T’ is located at the C-terminal of JP45 in the pDsRed2-N3 
vector between the BamH1 (blue) and the Not1 (orange) restriction enzyme sites. 

 

As shown in Figure 5.1.1A, an additional protein in skeletal muscle called JP45 

was found associated with the junctional zone and plays a major role in E-C coupling.  

JP45 is a 45 kDa transmembrane protein found in the SR junctional face membrane.  

Francesco Zorzato and colleagues were the first to identify JP45 from TC fractions 

isolated from skeletal muscle tissue of New Zealand White rabbits. Through Western 

blot, immunoprecipitation, and immunoblotting experiments, JP45 was shown to be 

A                                                                   B 
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localized in the junctional SR membrane of fast and slow twitch skeletal muscle.  Its 

presence in the same fraction where other junctional proteins such as RyR and triadin 

were found eluded to the association of JP45 with these proteins and subsequently E-C 

coupling99.  Later, Ayuk Anderson et al. showed that JP45 interacts with the α1 subunit 

of the DHPR via its N-terminal cytosolic domain and with calsequestrin (CASQ1) via its 

C-terminal situated in the SR lumen, of which both are found in the junctional face 

membrane100.  Because the junctional zone and the associated proteins are needed to 

store and release large amounts of Ca2+ from the SR to facilitate E-C coupling and 

abnormalities in these proteins can result in neuromuscular diseases, it is important to 

have a probe that can monitor the rapid fluxes in Ca2+ in these subcellular 

microdomains, to dissect the molecular and physiological basis of neuromuscular 

diseases linked to abnormal E-C coupling.  Since the architecture and arrangement of 

proteins and receptors in this area of the SR are different compared to the rest of the 

organelle, changes in local Ca2+ near the junctional face SR membrane might be 

different in comparison to Ca2+ changes in the global SR lumen.  The questions to be 

answered are can we create a probe with good fluorescence at 37°C to monitor the fast 

changes in Ca2+ concentration that occur during E-C coupling? Can we use this new 

probe to see the difference in local and global Ca2+ signaling events?     

The goals of the research outlined here are to identify mutations that can be made 

to the GFP scaffold of CatchER to improve its fluorescence in situ at 37˚C and to use 

the optimized sensor to look at Ca2+ flux in the global and local environment of the SR in 

skeletal muscle cells.  Here, we report the improved version of our Ca2+ probe CatchER 

called CatchER-T’.  Although CatchER has fast kinetics with a koff of ~700 s-1, it does 
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not fluoresce when expressed at 37°C in mammalian cells180.  To improve its 

fluorescence at 37°C, we incorporated two key mutations from superfolder GFP that 

were deemed important for improving the folding and subsequent fluorescence at 37°C: 

S30R and Y39N.  S30R had the most profound effect on refolding kinetics and 

brightness after urea denaturation due to its involvement in the creation of a five residue 

ionic network that increases the overall stability of GFP because of the energetic 

advantage of organized ion pair networks.  Y39N introduces a new hydrogen bond in 

the β-turn it resides in, converting the turn into a more stable 310 helix169.  We 

hypothesize that incorporating these two mutations into CatchER would improve its 

fluorescence for mammalian cell imaging and not alter the Kd of the probe since these 

mutations are distant from the metal binding site.  We also hypothesize that the Ca2+ 

transient produced from local Ca2+ release near the luminal opening of the RyR1, 

monitored by our targeted construct CatchER-T’-JP45, would be strongly buffered by 

CASQ1 and would appear vastly different in comparison to the global decrease in Ca2+ 

that occurs when monitoring Ca2+ changes with CatchER-T’.      

5.2 Results 

5.2.1 Design of CatchER-T’ and CatchER-T’-JP45 

Although our highly touted sensor CatchER has fast binding kinetics and a Kd 

weak enough to accurately sense Ca2+ in the high Ca2+ environment of the ER/SR, it 

does not express well at ambient temperature which hinders in situ application in some 

cell lines180.  The S30R and Y39N mutations were made to CatchER based on a review 

of superfolder GFP.  In the study of superfolder GFP, the S30R and Y39N mutations 

were shown to have the largest effect on the brightness of the protein at 37°C by 



149 

improving folding and stabilization.  S30R had the most profound effect on refolding 

kinetics and brightness after urea denaturation due to its involvement in the formation of 

an intramolecular electrostatic network comprised of residues E32-R30-E17-R122-

E115.  This system produced by the S30R mutation improves the overall stability of the 

protein due to the energetic advantage of organized ion pair networks.  Y39N is located 

in one of two type 1 beta turns in superfolder GFP between strands 2 and 3. Making the 

Y39N mutation converts both turns into a 310 helix.  The additional H-bond alters the 

dihedral angles of the backbone making the turn tighter to boost helix formation169.  The 

S175G mutation was also introduced into the sensor to improve the thermostability274.  

Mutations were made using Pfu DNA polymerase using 5’-

AAGTTCAGCGTGCGCGGCGAGGGCGAG-3’ and 5’-

CTCGCCCTCGGCGCGCACGCTGAACTT-3’ for S30R, 5’-

GGCGATGCCACCAACGGCAAGCTG-3’ and 5’-

CAGCTTGCCGTTGGTGGCATCGCC-3’ for Y39N, and 5’-

GAGGACGGCGGCGTGCAGCT-3’ and 5’-AGCTGCACGCCGCCGTCCTC-3’ for 

S175G. 

JP45 was received in the pDsRed2-N3 vector.  DsRed was located at the C-

terminal of JP45 between the BamH1 and Not1 restriction enzyme sites.  The pDsRed2-

N3 vector was digested with BamH1 and Not1 to remove DsRed.  In the pcDNA3.1+ 

vector, CatchER is between the BamH1 and EcoR1 restriction enzyme sites.  There is 

an additional Not1 cleavage site after the EcoR1 site in the CatchER plasmid.  After 

treatment of both plasmids with BamH1 and Not1 restriction enzymes, the products 

were subjected to DNA agarose gel electrophoresis (Figure 5.2.1).  The JP45 vector 
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cleavage product and the excised CatchER fragment were extracted and purified from 

the DNA gel and ligated together using T4 DNA ligase.  The forward primer 5’-

GAGAAGCCAAGTAAAGGGGAGAAACTGAAG-3’ taken from the C-terminal DNA 

sequence at the end of JP45 was used to confirm the successful addition of CatchER in 

the JP45 vector.  To create CatchER-T’-JP45, PCR was done using the CatchER-JP45 

plasmid to make the S30R, Y39N, and S175G mutations.  The sequence was confirmed 

using the JP45 forward primer. 

 

 

Figure 5.2.1 Double digestion of CatchER pcDNA+3.1 vector and JP45 pDsRed2-
N3 vector using BamH1 and Not1 restriction enzymes. 

The pDsRed2-N3 vector containing JP45 and the CatchER pcDNA3.1+ vector were 
both subjected to restriction enzyme digest with BamH1 and Not1 enzymes.  Lane 1 is 
the DNA marker, lane 2 is the CatchER pcDNA3.1+ vector digest with the excised 
CatchER fragment circled in green, lane 3 is the CatchER plasmid treated with BamH1, 
lane 4 is the CatchER plasmid treated with Not1, lane 5 is the JP45 pDsRed2-N3 vector 
digest with the excised DsRed fragment circled in red and the cleaved vector circled in 
blue, lane 6 is the pDsRed2-N3 vector treated with BamH1, and lane 7 is the pDsRed2-
N3 vector treated with Not1. T4 DNA ligase was used to fuse the cut CatchER fragment 
from lane 2 and the cut JP45 vector from lane 5 to create CatchER-JP45. 
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5.2.2 Expression and purification of CatchER-T variants 

Our GECI CatchER was created to monitor Ca2+ transients in the ER/SR and 

measure Ca2+ concentration in said organelles through a novel mechanism where the 

binding of Ca2+ on the surface of the protein induces an increase in fluorescence 

intensity.  Because of the poor performance of CatchER at 37°C in mammalian cells, 

the probe was optimized to improve the fluorescence at 37°C resulting in the CatchER-

T series of variants.  To obtain large amounts of the probes for in vitro analysis, the 

sensors needed to be expressed and purified with high yield.  Figure 5.2.2A shows the 

optical density of the BL21 (DE3) cells during overexpression of CatchER-T variants 

from all four flasks.  Figure 5.2.2B shows the expression gel of the sensors.  SDS-

PAGE gel analysis shows a clear increase of protein expressed after induction with 

IPTG.   

 

Figure 5.2.2 Overexpression of CatchER-T’ and its variants in BL21(DE3) cells 

The DNA for each of the plasmids in the pET28a bacterial expression vector was 
transformed into BL21 (DE3) cells.  One colony from each of the four plates was taken 
to inoculate 10 mL of LB media.  The pre-culture was added to 1 L of LB with 600 uL of 
kanamycin and allowed to grow in a shaker at 37°C until the O.D. reached 0.6 (A) when 
cells were induced with 200 µL of 1 M IPTG, reducing the temperature to 25°C.  The 

A                                                         B 
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bacteria grew well for each of the four mutants. B) Expression samples taken before 
and after induction were used to run the SDS-PAGE gel confirming the proteins were 
expressed.  Lanes 1 and 2 are CatchER-T before and after induction, lane 3 is the 
protein marker, lanes 4 and 5 are CatchER-T Y39N before and after induction, lanes 6 
and 7 are CatchER-T S30R before and after induction, and lanes 8 and 9 are CatchER-
T’ before and after induction. 

 

After overexpression of the new variants, the cell pellets were collected.  For 

protein purification, the selected pellet was sonicated in 20-30 mL of extraction buffer to 

break the cells and release the protein.  After centrifugation of the cell lysate, the 

supernatant containing the protein of interest was purified using HisTag purification on a 

Ni2+-NTA column using an imidazole gradient.  The HisTag chromatogram and SDS-

PAGE gel for CatchER-T’ is shown in Figure 5.2.3A.  SDS-PAGE analysis of the 

fractions collected from HisTag purification show the purity of CatchER-T’ compared to 

the cell pellet (CP) and the supernatant (SP).  Gel filtration was employed as an 

additional purification step to ensure a quality protein sample.  Figure 5.2.3B shows the 

pure protein peak, circled in red, on the gel filtration chromatogram, and the inset SDS-

PAGE gel shows the purity of the fractions collected.  CatchER-T, CatchER-T S30R, 

and CatchER-T Y39N were also purified with results located in Figure 5.2.4.   
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Figure 5.2.3 HisTag purification and gel filtration of CatchER-T’ 

A) The supernatant obtained from the sonicated BL21 (DE3) cells was syringe filtered 
and loaded onto a 5 mL HiTrap chelating column containing immobilized Ni2+ using 
Buffer A at a 5 mL/min flow rate. The protein was eluted at the same rate using Buffer B 
containing 500 mM imidazole. The first peak in the chromatograms is the cell debris 
being washed away during loading. The peaks containing the sensor proteins are 
circled in red.  SDS gel analysis shows clear protein bands for the sensors near the 26 
kDa marker.  B) Purified CatchER-T’ was concentrated to 2 mL and loaded onto a 
Superdex 75 column using 10 mM Tris pH 7.4 at 1 mL/min.  The protein was eluted out 
in 2 mL fractions.  The resulting SDS-PAGE gel shows a high concentration of pure 
protein.  Protein peak in the gel filtration chromatogram is circled in red. 

 

 

A                                                                    B 
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Figure 5.2.4 HisTag purification and gel filtration of CatchER-T variants 

Representative purification data for CatchER-T (A, HisTag; B, gel filtration), CatchER-T 
S30R (C, HisTag; D, gel filtration), and CatchER-T Y39N (E, HisTag; F, gel filtration). 
The supernatant obtained from the sonicated BL21 (DE3) cells was syringe filtered and 
loaded onto a 5 mL HiTrap chelating column containing immobilized Ni2+ using Buffer A 
at a 5 mL/min flow rate. The protein was eluted at the same rate using Buffer B 
containing 500 mM imidazole. The first peak in the chromatograms is the cell debris 
being washed away during loading. The peaks containing the sensor proteins are 
circled in red.  Inset SDS gel analysis shows clear protein bands for the sensors near 

A                                                                           B 

C                                                                     D 

E                                                                   F 
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the 26 kDa marker.  B) Purified CatchER-T variants were concentrated to 2 mL and 
loaded onto a Superdex 75 column using 10 mM Tris pH 7.4 at 1 mL/min.  The protein 
was eluted out in 2 mL or 8 mL fractions.  The resulting inset SDS-PAGE gels show a 
high concentration of pure protein.  

 

 The S175G mutation is known to improve the folding at 37°C for GFP proteins, 

reducing their thermosensitivity274.  The S30R and Y39N mutations were incorporated in 

succession into CatchER to improve the fluorescence of the sensor for 37°C expression 

in mammalian cells (Figure 5.2.5A).  To see if the mutations did improve the 

thermostability and brightness of the sensor at 37°C, each variant, including CatchER, 

was expressed in C2C12 myoblast cells at 37°C.  C2C12 cells were seeded and 

transfected on glass microscope slides in 6 cm dishes.  The slides were mounted and 

viewed under a fluorescence microscope.  Images were taken from 8 fields of view on 

each slide.  The intensity of the cells from each area was quantified using Image J and 

plotted with error using K-graph.  The bar graph of the intensity measurement for each 

variant expressed in C2C12 myoblast cells is located in Figure 5.2.5B.  Of the variants 

created, CatchER-T’ containing all three mutations, was the brightest at 37°C 

expression compared to CatchER.  Because CatchER-T’ was the brightest variant, 

subsequent cell imaging studies were done using this variant.      
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Figure 5.2.5 Brightness of CatchER-T variants expressed in C2C12 myoblast cells 
at 37°C 

A) Position of brightness mutations S175G, S30R and Y39N in relation to the Ca2+ 
binding site in CatchER created in Pymol.  B) DNA from CatchER and CatchER-T 
variants was transfected into C2C12 myoblast cells for 24 h, using a 1:4 DNA:Effectene 
ratio, at 37°C.  Variants were expressed in C2C12 myoblast cells at 37°C for 48 h and 
imaged using a Leica DM6100B inverted microscope with a cooled EM-CCD camera.  
Cells were viewed through a 40X oil immersion objective with and exposure time of 0.07 
s and a gain of 175. The fluorophore was excited at 488 nm with emission monitored at 
510.fluorescence microscope with a 0.7 s exposure time and a gain of 175.  Images 
from eight fields of view were taken from each slide.  The intensity of the cells from each 
image was measured using ImageJ subtracting the background from each.  The error 
was calculated from all the cells analyzed for each variant where n equals the number 
of cells. 

 

5.2.3 In vitro and in situ Ca2+ Kd of CatchER-T’   

Fluorescence measurements of CatchER-T’ with increasing Ca2+ concentrations 

were done in order to obtain the affinity of the sensor for Ca2+ in vitro (Figure 5.2.6) as 

detailed in Chapter 2 section 2.14.  Triplicate samples of 10 µM CatchER-T’ were 

A                                                  B 
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prepared and titrated with 0.15, 0.3, 0.4, 0.5, 0.7, 1, 3, 5, 8, 10, and 15 mM Ca2+ with 10 

µM EGTA added to the samples to get the basal fluorescence (0 mM Ca2+).  The 

absorbance spectrum from one sample reveals the decrease in the 395 nm excitation 

peak and the increase of the 488 nm excitation peak with saturating levels of Ca2+ (solid 

line) compared to without Ca2+ (dashed line) observed in Figure 5.2.6A.  CatchER-T’ 

has an incremental increase in fluorescence intensity corresponding to the addition of 

Ca2+ when excited at both 395 nm and 488 nm with emission monitored at 510 nm for 

both.  The data was normalized using Equation 2.17.  The inset binding curves fit to a 

1:1 binding equation (Equation 2.18) with Kd values of 1.1 ± 0.1 mM and 1.3 ± 0.2 mM 

at 395 nm and 488 nm excitation, respectively (Figures 5.2.6B and C).  Figure 5.2.7 

shows the in vitro Ca2+ Kd data for CatchER (Figure 5.2.7A-C), CatchER-T (Figure 

5.2.7D-F), CatchER-T Y39N (Figure 5.2.7G-I), and CatchER-T S30R (Figure 5.2.7J-L).  

Fluorescence spectra for Ca2+ titrations done in the presence of 150 mM KCl are 

located in Appendix C Figure C.1. 
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Table 5.2.1 In vitro Ca2+ Kd data for CatchER-T variants  

 No KCl 150 mM KCl 

 λex (nm) Kd (mM) Fmax/Fmin Kd (mM) Fmax/Fmin 

CatchER 395 0.3 ± 0.1 1.7 ± 0.1 1.8 ± 0.2 1.2 ± 0.1 

488 0.2 ± 0.1 1.6 ± 0.1 0.9 ± 0.2 1.1 ± 0.2 

CatchER-T 395 0.4 ± 0.1 2.1 ± 0.1 NR NR 

488 0.3 ± 0.1 2.1 ± 0.1 1.7 ± 0.1 1.3 ± 0.1 

CatchER-T 
S30R 

395 0.8 ± 0.2 1.9 ± 0.1 2.4 ± 0.2 1.4 ± 0.1 

488 1.0 ± 0.2 1.5 ± 0.1 5.1 ± 1.2 1.1 ± 0.1 

CatchER-T 
Y39N 

395 1.7 ± 0.3 1.9 ± 0.1 3.4 ± 0.3 1.4 ± 0.1 

488 2.0 ± 0.6 1.5 ± 0.1 0.8 ± 0.1 1.2 ± 0.1 

CatchER-
T’ 

395 1.1 ± 0.1 1.8 ± 0.1 ------- ------- 

488 1.3 ± 0.2 1.6 ± 0.1 ------- ------- 

*Data represents mean ± stdev. Kd – dissociation constant, λex – excitation wavelength,  
Fmax/Fmin – dynamic range in response to Ca2+ calculated using the fluorescence at maximal  
saturation divided by the fluorescence with no Ca2+ present. Data collected at room  
temperature. Samples prepared in 10 mM Tris pH 7.4 with or without 150 mM KCl. 
Fluorescence slit widths were 0.25 mm for excitation and emission. Dashed lines indicate  
data not available. NR – no response. 
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Figure 5.2.6 In vitro Ca2+ Kd of CatchER-T’ via fluorescence spectroscopy 

A) Absorbance spectra of 10 µM CatchER-T’ sample before titration with 10 µM EGTA 
(dashed line) and after titrating up to 10 mM Ca2+ (solid line).  Red arrows indicate the 
increase and decrease in the 488 nm and 395 nm excitation peaks with the addition of 
Ca2+.  B and C) Fluorescence increase of CatchER-T’ in response to the stepwise 
addition of Ca2+ excited at 395 nm and 488 nm, respectively, and monitored at 510 nm.  
Slit widths for excitation and emission were 0.25 mm.  The fluorescence intensity was 
normalized and plotted against [Ca2+] to get the inset Kd curves for each excitation 
wavelength.  The average Kd from all three trials for each excitation wavelength were 
1.1 ± 0.1 mM and 1.3 ± 0.2 mM, respectively. 

 

 

 

A                                         B                                            C 
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Figure 5.2.7 In vitro Ca2+ Kd of CatchER (A-C), CatchER-T (D-F), CatchER-T Y39N 
(G-I), and CatchER-T S30R (J-L) via fluorescence spectroscopy 

(A, D, G, J) Absorbance spectra of 10 µM of the protein sample before titration with 5 
µM EGTA (dashed line) and after with a saturating amount of Ca2+ (solid line).  The 
population of the anionic chromophore, corresponding to the 488 nm peak, increases 
and the amount of neutral chromophore, corresponding to the 395 nm peak, decreases 
with increasing Ca2+.  (B and C). Fluorescence increase of CatchER in response to 0-7 
mM Ca2+. (E and F) Fluorescence increase of CatchER-T in response to 0-10 mM Ca2+. 
(H and I) Fluorescence increase of CatchER-T Y39N in response to 0-20 mM Ca2+. (K 

A                                 B                                   C 

D                                 E                                   F 

G                                 H                                   I 

J                                 K                                   L 
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and L) Fluorescence increase of CatchER-T S30R in response to 0-21 mM Ca2+.  All 
samples were excited at 395 nm and 488 nm with emission scanned from 410-600 nm 
for 395 nm excitation and from 500-600 nm for 488 nm excitation.  Slit widths for 
excitation and emission were 0.25 mm. Inset curves show the normalized fluorescence 
intensity data fit to the 1:1 binding equation to get the Kd. 

 

In order to understand how effective our sensor is for sensing ER/SR Ca2+ levels, 

we determined the Kd in situ in C2C12 and HEK293 cells.  Ions such as, Mg2+, Na+, K+, 

and small physiological molecules exist in the ER/SR concurrently with Ca2+ 275; 

therefore, the in situ Kd is more accurate than the in vitro Kd since it reflects its value in a 

physiological system.  The data was collected as outlined in Chapter 2 section 2.21.  

C2C12 myoblast cells were permeabilized with 0.005% saponin for ~15 s then washed 

with 1 mM EGTA in KCl buffer containing 10 µM ionomycin.  Ca2+ concentrations were 

added in a stepwise manner.  The data was normalized using Equation 2.17 and fitted 

using Equation 2.18.  The average Kd was 3.1 ± 1.4 mM for 7 cells (Figure 5.2.8A).  The 

same protocol was followed for HEK293 cells permeabilized with 0.002% saponin for 30 

s to get an average Kd of 3.2 ± 1.4 mM for 11 cells (Figure 5.2.8B). 
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Figure 5.2.8 In situ Ca2+ Kd of CatchER-T’ 

Measurement of the in situ Kd of CatchER-T’ in C2C12 myoblasts (A) and HEK293 cells 
(B).  Cells were imaged using a Leica DM6100B inverted microscope with a cooled EM-
CCD camera.  Cells were viewed through a 40X oil immersion objective with and 
exposure time of 0.07 s and a gain of 175. The fluorophore was excited at 488 nm with 
emission monitored at 510. Cells were permeabilized with 0.005% or 0.002% saponin in 
intracellular buffer for 15-30 s.  EGTA and Ca2+ solutions were prepared in KCl buffer.  n 
refers to the number of cells imaged.  Inset fluorescence images are representative of 
cells before and after treatment. A). 0.3, 0.6, 2, 5, 10, 20, 50, and 100 mM Ca2+ was 
added to permeabilized C2C12 myoblast cells in the presence of 10 µM ionomycin to 
get a Kd of 3.1 ± 1.4 mM.  B).  0.6, 2, 5, 10, 20, 50, 100, and 200 mM Ca2+ was added to 
permeabilized HEK293 cells in the presence of 10 µM ionomycin to get a Kd of 3.2 ± 1.4 
mM. 

 

5.2.4 Monitoring drug effects on receptor-mediated ER/SR Ca2+ signaling 

pathways with CatchER-T’ 

We examined the ability of CatchER-T’ to monitor changes in [Ca2+]ER/SR in  mouse 

skeletal muscle cells (C2C12 myoblasts), African green monkey kidney cells (Cos-7), 

and human embryonic kidney (HEK293) cells.  Figure 5.2.9 shows the response of 

CatchER-T’ in C2C12 myoblast cells to application of 2 µM thapsigargin (Figure 5.2.9A), 

10 mM caffeine (Figure 5.2.9B), 100 µM ATP with cytosolic Ca2+ monitored with Rhod-2 

A                                                            B 
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AM (Figure 5.2.9C), 200 µM 4-cmc (Figure 5.2.9D), 100 µM ATP (Figure 5.2.9E), and 

15 µM CPA (Figure 5.2.9F).  4-cmc addition produced a 30.0 ± 7.0% change in the 

fluorescence intensity of CatchER-T’ which directly correlates with a 30% decrease in 

[Ca2+]ER/SR (Table 5.2.2).  After treatment with caffeine (Figure 5.2.9B), 4-cmc (Figure 

5.2.9D), ATP (Figure 5.2.9E), and CPA (Figure 5.2.9F), fluorescence intensity returned 

to baseline by washing with 6 mL of Ringer’s buffer containing 1.8 mM Ca2+, indicating 

refilling of the SR through the SERCA pump.  Because thapsigargin is an irreversible 

inhibitor of the SERCA pump, no recovery occurred after washing with Ringer’s buffer 

(Figure 5.2.9A).  No SR refilling was seen in cells treated with 100 µM ATP loaded with 

rhodamine 2 after washing with Ringer’s buffer.  Cytosolic [Ca2+] does increase with 

ATP activation of the purinergic receptor (Figure 5.2.9C).   

In Cos-7 cells, 15 µM CPA produced a 26.0 ± 6.0% decrease in the fluorescence 

signal of CatchER-T’, and ATP produced a 13.0 ± 3.0% decrease in intensity (Figure 

5.2.10).  The basal fluorescence intensity returned to baseline when the cells were 

washed with 6 mL Ringer’s buffer after treatment.  We then looked at the response of 

CatchER-T’ in HEK293 cells (Figure 5.2.11).  SERCA pump inhibition with CPA 

produced a 21% decrease in fluorescence intensity (Figure 5.2.11C).    
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Table 5.2.2 Analysis of CatchER-T’ response to different drugs in different cell 
types 

 CatchER-T’ CatchER-
JP45 

C2C12 Cos-7 HEK293 C2C12 

4-
cmc 

CPA ATP thaps caffeine CPA ATP 4-
cmc 

CPA ATP caffeine 4-
cmc 

CPA 

Time 
to 

peak 
(s) 

97.1 
± 

31.5 

158.0 
± 

58.5 

182.5 
± 

17.7 

145.0 
± 

26.0 

116.5 ± 
22.8 

113.0 
± 2.7 

202.5 
± 

15.0 

118.2 
± 5.0 

148.7 
± 

12.3 

180.0 ± 
36.6 

344.0 ± 
43.3 

78.7 
± 8.5 

195.0 
± 7.1 

ΔF/F
0
 

(%) 

30.0 
± 7.0 

21.3 ± 
4.0 

13.0 ± 
2.5 

5.4 ± 
2.7 

6.2 ± 2.0 26.0 ± 
6.0 

13.0 ± 
3.0 

12.0 ± 
2.2 

21.0 ± 
3.0 

6.0 ± 3.0 7.3 ± 0.6 13.2 
± 7.6 

15.1 
± 2.8 

# of 
cells 

7 5 5 3 5 10 9 8 14 4 8 6 2 
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Figure 5.2.9 Monitoring changes in [Ca2+]ER/SR induced by receptor agonists and 
antagonists in C2C12 cells with CatchER-T’ 

A-F) Cells were transfected with a 1:4 DNA to Effectene ratio (2 µg of DNA and 8 µL of 
Effectene) for 24 h in 3 mL of DMEM mixed with 2 mL of OPTI MEM at 37°C.  Cells 
were imaged using a Leica DM6100B inverted microscope with a cooled EM-CCD 
camera.  Cells were viewed through a 40X oil immersion objective with and exposure 
time of 0.07 s and a gain of 175. The fluorophore was excited at 488 nm with emission 
monitored at 510.A frame was taken every 5 s. Experiments were done in Ringer’s 
buffer containing 10 mM glucose and 1.8 mM Ca2+.  n refers to the number of cells.  
Inset fluorescence images are representative of cells before treatment. A) Treatment 
with 2 µM thapsigargin in Ringer’s buffer with 1.8 mM Ca2+. B) Treatment with 10 mM 
caffeine. C) Treatment of cells with 100 µM ATP with cytosolic Ca2+ monitored with 
Rhodamine 2. D) Treatment with 200 µM 4-cmc. E) Treatment with 100 µM ATP. F) 
Treatment with 15 µM CPA. 

A                                                       B 
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Figure 5.2.10 Monitoring changes in [Ca2+]ER/SR induced by receptor agonists and 
antagonists in Cos-7 cells with CatchER-T’ 

Cells were transfected with a 1:4 DNA to Effectene ratio (2 µg of DNA and 8 µL of 
Effectene) for 4 h in 3 mL of DMEM mixed with 2 mL of OPTI MEM at 37˚C.  Cells were 
imaged using a Leica DM6100B inverted microscope with a cooled EM-CCD camera.  
Cells were viewed through a 40X oil immersion objective with and exposure time of 0.07 
s and a gain of 175. The fluorophore was excited at 488 nm with emission monitored at 
510.A frame was taken every 5 s.  Experiments were done in Ringer’s buffer containing 
10 mM glucose and 1.8 mM Ca2+.  n refers to the number of cells.  Inset fluorescence 
images are representative of cells before treatment.  A) Cells were treated with 15 µM of 
SERCA pump inhibitor CPA.  B). Cells were treated with 100 µM of purinergic receptor 
agonist ATP. 
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Figure 5.2.11 Monitoring changes in [Ca2+]ER/SR induced by receptor agonists and 
antagonists in HEK293 cells with CatchER-T’ 

Cells were imaged using a Leica DM6100B inverted microscope with a cooled EM-CCD 
camera.  Cells were viewed through a 40X oil immersion objective with and exposure 
time of 0.07 s and a gain of 175. The fluorophore was excited at 488 nm with emission 
monitored at 510.CatchER-T’ was viewed through a 40X oil immersion objective and 
excited at 488 nm using the Till polychrome V light source with the gain set at 175 and 
an exposure time of 0.07 s.  A frame was taken every 5 s.  Experiments were done in 
Ringer’s buffer containing 10 mM glucose and 1.8 mM Ca2+.  n refers to the number of 
cells.  Inset fluorescence images are representative of cells before treatment.  Cells 
were treated with A). 200 µM 4-cmc, B). 10 mM caffeine, C). 15 µM CPA, and D). 100 
µM ATP. 
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5.2.5 Understanding local vs. global SR Ca2+ dynamics using JP45 targeted 

constructs 

Local changes in luminal SR Ca2+ near the opening of the RyR1 effect the process 

of contraction in muscle cells as opposed to global levels of SR Ca2+ because of the 

buffering role of CASQ196.  To visualize the difference in Ca2+ release events near the 

junctional SR membrane and in the longitudinal SR, the CatchER-T’ and CatchER-T’-

JP45 constructs were both expressed in these regions of FDB fibers by Dr. Francesco 

Zorzato and colleagues in Switzerland.  Table 5.2.3 lists the data comparing the 

amplitude changes, time to peak, half relaxation time, and Vmax for transients 

monitored with both constructs from nine cells.  Figure 5.2.12A-C show the expression 

patterns for both Ca2+ probes in FDB fibers.  Figure 5.2.12D shows the resulting Ca2+ 

transients from electrical stimulation with a 100 Hz pulse for 300 ms.  The peak 

amplitude change is much larger for CatchER-T’-JP45 compared to CatchER-T’.   
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Table 5.2.3 Analysis of electrical stimulation of Ca2+ release from the SR of FDB 
fibers with CatchER-T’ and CatchER-T’-JP45  

  

WT 
CatchER-T’ 

n. of fibers 9  

WT 
CatchER-T’-JP45 

n. of fibers 9  

Peak Amplitude (dF/F) -0.48 ± 0.20 -0.80 ± 0.16 *° 

Time to Peak (ms) -236.7 ± 76.3 -201.8 ± 70.6 

Half relaxation time (ms) -135.7 ± 62.5 -562.2 ± 471.8 * 

Vmax (dF/F)/s 1.61 ± 0.69 2.69 ± 0.54 *° 

*Values are mean ± sd Student’s unpaired t test P<0.05 
°Mann-Whitney Test P<0.05 
*Cells stimulated at 100 Hz with a 300 ms duration 
Data collect by Dr. Francesco Zorzato and colleagues. 

 

 

 



170 

 

Figure 5.2.12 Monitoring the global vs. local changes in SR Ca2+ in electrically 
stimulated WT FDB fibers with CatchER-T’ and CatchER-T’-JP45 

 (A and B) Wild-type FDB fibers were electroporated with CatchER-T’-JP45 and 
CatchER-T’ constructs. Images were taken with a Nikon A1 confocal microscope and 
reveal different expression patterns for the targeted and un-targeted probe.  C) Intensity 
change from CatchER-T’ and CatchER-T’-JP45 fibers plotted against fiber length.  
Arrows correspond to arrows in A.  A clear distinction is seen in the localization of 
CatchER-T’-JP45 and CatchER-T’.  CatchER-T’-JP45 displays a double-row which 
results from pairs of T tubule-TC junctions flanking the Z lines (shallow deep) of 
mammalian skeletal muscle fibers. The double-row patterns are separated by deep 
valley which correspond to the M line localized in correspondence of the longitudinal 
SR. The distribution pattern of CatchER-T’ is different from that of CatchER-T’-JP45. 
The superimposition of the intensity profile between different electroporated fibers 
indicates that CatchER-T’ is localized in the longitudinal SR, i.e., in correspondence of 
deep valley which separates the double-row pattern of CatchER-T’-JP45. D) Ca2+ 
transients in FDB fibers were recorded upon stimulation with a 100 Hz electrical pulse 

A                                                             B 
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for 300 ms.  Black trace is fluorescence intensity monitored with CatchER-T’ expressed 
in the longitudinal SR and the red trace is CatchER-T’-JP45 located near the opening of 
RyR1 in the SR lumen.  Large changes in peak amplitude were seen with targeted 
CatchER-T’-JP45 compared to those detected with CatchER-T’. 

 

5.3 Discussion 

5.3.1 Design of CatchER-T’ and CatchER-T’-JP45 

 Although our Ca2+ probe CatchER has been extensively used in the Ca2+ imaging 

field and has good properties, it expresses poorly at 37°C.  With this work, we 

successfully improved the fluorescence of CatchER at 37°C resulting in our new variant 

CatchER-T’.  The loss of muscle strength has been directly linked to decreasing 

amounts of available Ca2+ released by the SR.  In studies of JP45/CASQ1 double 

knockout mice, Cav1.1 activity was increased restoring Ca2+ and subsequently muscle 

strength277.  To further understand the Ca2+ dynamics involved in E-C coupling at the 

junctional face membrane of skeletal muscle cells, we attempted to fuse our Ca2+ 

sensor CatchER to JP45 (Figure 5.2.1) in collaboration with Dr. Fransesco Zorzato and 

colleagues.  We successfully designed the CatchER-JP45 construct and later 

incorporated the S175G, S30R, and Y39N mutations into the construct to create 

CatchER-T’-JP45 to monitor the local Ca2+ dynamics near the mouth of RyR1 in rat 

skeletal muscle FDB fibers. 

5.3.2 Expression and purification of CatchER-T variants 

 The CatchER-T mutants were successfully expressed in BL21 (DE3) cells 

(Figure 5.2.2).  SDS-PAGE gel analysis of the samples obtained from HisTag and gel 

filtration purification reveal sharp bands near the 26 kDa marker, representing pure 
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protein (Figures 5.2.3 and 5.2.4).  A major band is seen between the 26 and 68 kDa 

marker and a smaller band is seen at 26 kDa.  These bands may correspond to the 

dimer and monomer form of the sensors.  GFP forms a weak dimer at the A206 

interface, often appearing in crystal structures as a dimer162.  The successful expression 

and purification of the bacterially expressed variants confirm that the three brightness 

mutations do not prevent proper folding of the protein. 

5.3.3 In vitro and in situ Kd of CatchER-T’ 

 The Kd of CatchER-T’ obtained from both excitation wavelengths is similar to one 

another (1.1 and 1.3 mM, Table 5.2.1) suggesting that the three mutations made to 

create CatchER-T’ made the populations of the two chromophore states similar.  The in 

vitro Ca2+ Kd of CatchER is 0.3 ± 0.1 mM at 395 nm excitation and 0.2 ± 0.1 mM at 488 

nm excitation.  The Ca2+ Kd of CatchER-T’ is ~3.6 fold weaker than CatchER (Table 

5.2.1).  CatchER has a higher population of the neutral chromophore which causes the 

Kd value at 395 nm to be high.  Because our sensors are targeted to the ER/SR it is 

important to know how physiological concentrations of salts, like KCl, will influence the 

affinity of the sensors for Ca2+.  It is clear that the addition of 150 mM KCl during Ca2+ 

titration weakens the affinity of the sensors for Ca2+ (Table 5.2.1).  In some cases, the 

Cl- ion quenched fluorescence from one excitation wavelength (Appendix C, Figure 

C.1).  At this salt concentration, the dynamic range of the sensors was reduced.  Cl- 

ions have been reported to quench the fluorescence of GFP proteins173.   

 CatchER-T’ has a seven times weaker Kd than CatchER in vitro and three times 

weaker Kd in situ.  The in vitro and in situ Kds for CatchER-T’ differ.  Inconsistencies 
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between in vitro and in situ Kds are common among Ca2+ probes due to the molecular 

composition of intracellular fluid275.  

5.3.4 Monitoring drug effects on ER/SR receptor mediated pathways with 

CatchER-T’ 

 Our improved ER-targeted Ca2+ probe CatchER-T’ has significantly improved 

fluorescence at 37°C expression compared to the older probe CatchER.  This is 

advantageous for mammalian cell application as cells grow healthier at 37°C.  Several 

genetically-encoded Ca2+ probes have been created to monitor changes in ER/SR Ca2+.  

The Cameleon probe D1ER, containing an altered version of calmodulin (CaM), was 

applied in breast cancer cells and showed that the antiapoptotic protein Bcl-2 decreases 

ER Ca2+ levels207.   Recently, red genetically-encoded indicators for optical imaging 

(GECOs) were created by Robert Campbell and colleagues.  The low affinity sensor 

LAR-GECO1 was used to monitor thapsigargin inhibition of ER refilling in HeLa, 

HEK293, and U2-OS cells co-transfected with CatchER200.  In 2014, new low affinity, 

GECO-type indicators were created based on cfGCaMP2.  This new variant termed 

Ca2+-measuring organelle-Entrapped Protein IndicAtor 1 in the ER (CEPIA1er) was able 

to monitor ER Ca2+ dynamics in HeLa cells with thapsigargin and histamine 

treatment201.  Our findings show that our optimized probe CatchER-T’ can monitor 

receptor-mediated ER/SR Ca2+ transients in C2C12 myoblasts, HEK293 cells, and Cos-

7 cells after applying different stimulating or inhibiting agents to the cells.  The amplitude 

changes are indicative of ER/SR localization but must be confirmed further with 

confocal imaging.     
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5.3.5 Understanding the local and global changes in SR Ca2+ dynamics using 

JP45 targeted constructs 

 Here we investigated the difference in local Ca2+ transients generated near the 

luminal opening of RyR1 and the global Ca2+ transients generated in the longitudinal SR 

using CatchER-T’ under fast electrical stimulation performed in collaboration with Dr. 

Fransesco Zorzato and colleagues.  The SR in muscle cells is distinctly designed to 

distribute large amounts of Ca2+ into the cytosol, in response to electrical stimulation, for 

muscle contraction269,92.  The SR TC functions as the Ca2+ release unit of the SR as this 

is where the junctional SR membrane and t tubule membrane face one another allowing 

the interaction of the DHPR with RyR1 causing Ca2+ release270.  Concentrated in the 

longitudinal SR are SERCA pumps that are tasked with refilling the SR with Ca2+ 92.  

Large amounts of the high capacity Ca2+ buffer protein CASQ1 exist as polymers near 

the luminal side of the junctional SR membrane where it interacts with JP45, RyR1, 

Junctin and triadin96.  CASQ is reported to influence Ca2+ release during E-C coupling98.  

Figure 5.2.12A-C show the expression pattern of targeted and un-targeted CatchER-T’.  

A clear distinction is seen in the localization of CatchER-T’-JP45 and CatchER-T’.  

CatchER-T’-JP45 displays a double-row which results from pairs of T tubule-TC 

junctions flanking the Z lines (shallow deep) of mammalian skeletal muscle fibers. The 

double-row patterns are separated by deep valley which correspond to the M line 

localized in correspondence of the longitudinal SR. The distribution pattern of CatchER-

T’ is different from that of CatchER-T’-JP45. The superimposition of the intensity profile 

between different electroporated fibers indicates that CatchER-T’ is localized in the 

longitudinal SR, i.e., in correspondence of deep valley which separates the double-row 
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pattern of CatchER-T’-JP45.  Figure 5.2.12D shows the difference in the shape of the 

Ca2+ transients imaged with CatchER-T’ and CatchER-T’-JP45.  It is clear that electrical 

stimulation causes less SR Ca2+ release from the longitudinal SR detected with globally 

expressed CatchER-T’ compared to the large amplitude decrease detected by the 

targeted construct.  These findings suggest that a large local pool of Ca2+ exists around 

the luminal opening of RyR1 that is buffered by CASQ that differs from the global Ca2+ 

dynamics.                

5.4 Conclusion 

In this work, we exhibited our ability to improve the utility of CatchER for 

mammalian cell application by creating the CatchER-T series of variants.  Of the new 

variants, CatchER-T’ was the brightest at 37°C expression in C2C12 myoblast cells.  

Treatment of CatchER-T’ transfected C2C12, Cos-7, and HEK293 cells with ER/SR 

receptor agonists and antagonists demonstrate the ability of our sensor to monitor Ca2+ 

changes in different ER/SR receptor-mediated pathways.  In collaboration with Dr. 

Francesco Zorzato, we created the CatchER-T’-JP45 construct to compare the local 

versus global changes in luminal SR Ca2+.  Fusing CatchER-T’ to the SR membrane 

protein JP45 allowed us to detect local changes in Ca2+ near the mouth of the RyR in 

FDB fibers.  Our targeted construct proved that Ca2+ levels near the opening of the RyR 

are highly buffered, producing different Ca2+ transients compared to the probe 

expressed globally in the SR.  Many skeletal muscle diseases are associated with 

mutations in junctional zone receptors and proteins.  Our findings highlight the potential 

use of CatchER-T’ as a diagnostic tool for deeper study and exploration of Ca2+ 

handling in normal and diseased skeletal muscle.     
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6  MONITORING MAGNESIUM SIGNALING IN T LYMPHOCYTES USING 

CATCHER VARIANTS 

6.1 Introduction 

The magnesium (Mg2+) ion is found in high abundance in the human body.  In 

healthy individuals, serum levels of Mg2+ are between 0.7-1.05 mM with tight regulation 

by absorption and excretion through the intestines and kidneys.  Mg2+ in serum only 

accounts for 1% of the 24 g of total Mg2+ found in the body with the majority of it 

residing in muscle, bone, and other tissues75.  Intracellularly, Mg2+ has an almost 

negligible electrochemical gradient unlike that of its counter ion Ca2+ (Ca2+), leaving its 

speculated role as a second messenger unclear77,78.  Intracellular levels of Mg2+ are 

maintained between 0.5-1.2 mM with levels at ~1 mM in the ER/SR and the high milli-

molar range in the mitochondrion.  Cytosolic Mg2+ only represents 5-10% of cellular 

Mg2+ 77.  Levels of free cytosolic Mg2+ are maintained through different membrane 

transporters such as TRPM779, MRS280, and MagT181.  The importance of MagT1 will 

be discussed later in this section.  Mg2+ flows into the cell by diffusion.  Extrusion of this 

ion occurs against an electrochemical gradient that is commonly coupled to Na+ 

exchange, where two Na+ ions are exchanged for one Mg2+ ion.  In addition to its 

structural role in nucleic acids and its role as a cofactor and activator in many enzymatic 

reactions, Mg2+ also binds to ATP to stabilize its charge.  Implicated in its function in 

ATP, the level of free cytosolic Mg2+ is affected by the rate of energy production 

occurring in the mitochondrion, where increases in ATP production lower [Mg2+]i82.   

Along with its function in energy metabolism, Mg2+ also plays an important role in bone 

formation and the proper function of the heart, brain, and skeletal muscle75.  
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Hypomagnesemia, a clinical state in which serum Mg2+ levels fall below 0.5 mM, effects 

physiological processes involving Mg2+ adversely83.   The pathological results of 

improper Mg2+ regulation include coronary artery disease, neurological disorders, 

asthma, vascular calcification, and muscle cramps, to name a few75.    

Mg2+ also plays a vital role in the immune response278.  Many channels and 

receptors on the membranes of lymphocyte cells control cytosolic Mg2+ concentrations 

that modulate the function of these cells279,278.  Of great importance is the MagT1 

receptor found on the plasma membrane of T lymphocytes.  MagT1 is a unique, 

ubiquitously expressed transporter with no sequence similarity to other well-studied 

transporters.  MagT1 is selective for Mg2+ with no activation from other divalent ions.  

Knocking down MagT1 in yeast drastically reduced cytosolic Mg2+ levels81,280.  The 

second messenger function of Mg2+ was clarified by studying MagT1 mutations in T 

lymphocytes.  X-linked mutations in the MagT1 receptor of human T cells cause 

distinctive decreases in cytosolic Mg2+, low CD4+ T cell numbers, and lingering Epstein-

Barr virus infections.  A deficiency or loss of function of MagT1 prevents the regular 

influx of Mg2+ in these cells with T-cell antigen receptor (TCR) stimulation, preventing 

Mg2+ activation of phospholipase C-ɣ1 that indirectly triggers IP3-mediated Ca2+ 

release278,281.  Dysfunction in the MagT1 transporter was also shown to cause impaired 

expression of the natural killer activating receptor, NKG2D, in CD8+ and killer T cells, 

preventing proper immune response to the Epstein-Barr virus282.  Because of the vital 

role Mg2+ has in immune function, it is important to research further its ability to act as a 

second messenger in the immune response. 
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Even though Mg2+ is copious and important in physiology, visualizing Mg2+ 

movement in cells remains a challenge.  Mg2+ probes are scarce, impeding the 

advancement of Mg2+ signaling research283.  Methods for intracellular Mg2+ detection 

include the use of NMR284 and microelectrodes285, where the former technique is 

indirect, and the latter method is direct but harmful to cells.  Synthetic dyes have also 

been used to study intracellular Mg2+ but suffer from selectivity issues since they bind 

Ca2+ as well139,286,283.  Although several genetically-encoded Ca2+ probes exist for the 

study of Ca2+ signaling177,203,200, MagFRET-1 is the only protein-based Mg2+ probe 

designed thus far287.   MagFRET-1 was created using a portion of human centrin 3 

(HsCen3) that binds Mg2+, attaching the fluorescent proteins Cerulean and Citrine to the 

ends.  When Mg2+ binds to HsCen3, the protein takes on a condensed conformation 

allowing FRET to occur.  MagFRET-1 has a Mg2+ Kd of 148 µM and a Ca2+ Kd of 10 µM.  

However, MagFRET-1 can only detected changes in cytosolic [Mg2+] in permeablized 

cells, not intact cells287.  

Here we report the in vitro Mg2+ binding affinity and application of cytosolic 

versions of CatchER variants to studying Mg2+ flux in Jurkat cells.  Wild type and MagT1 

knockout JurKat cells were studied via flow cytometry using CatchER and CatchER-T’ 

by our collaborator Dr. Michael Lenardo at the NIH.  Results show that CatchER 

variants can detect changes in cytosolic Mg2+ without interference from cytosolic Ca2+.  

CatchERs can be a useful tool in future studies of Mg2+-linked immunodeficiencies.              
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6.2 Results 

6.2.1 Creation of cytosol-targeted CatchER variants 

 Since CatchER contains the calreticulin signal peptide and the KDEL ER/SR 

retention sequence for ER/SR localization, all the variants made from CatchER are 

targeted to the ER/SR.  To remove the ER/SR localization sequences for cytosol 

targeting, primers were designed to remove the calreticulin signal peptide and the KDEL 

sequence through PCR.  The calreticulin signal deletion primer for the forward direction 

was 5’- AGCTCGGATCCGGGCCCTCTAGAATGGTGAGCAAGGGC-3’ and the reverse 

primer was 5’- GCCCGGATCCGAGCTCGGTACCAAGCTTAAGTTAAACGCTAG-3’.  

The deletion primers for the KDEL sequence were 5’- 

GCTGTACAAGTAAGAATTCTGCAGATATCCAGCACAGTGGCG-3’ for the forward 

and 5’-GCAGAATTCTTACTTGTACAGCTCGTCCATGCCGAGAGTG-3’ for the reverse.  

The PCR protocol was used for complimentary primer pairs with non-overlapping ends 

as outlined in Chapter 2 section 2.1.  The resulting products were sent for sequencing 

and confirmed using the T7 promoter. 

6.2.2 In vitro Mg2+ Kd of select CatchER variants via fluorescence spectroscopy 

To determine the Mg2+ Kd of select CatchER variants for their use in measuring 

cytosolic Mg2+ levels, fluorescence titrations were done via fluorescence spectroscopy.  

The resulting Mg2+ affinities are listed in Table 6.2.1.  Protein samples were prepared, in 

triplicate, in 10 mM Tris pH 7.4 with 5 µM of EGTA.  A large increase in amplitude was 

seen in the absorbance and fluorescence spectra of CatchER in response to Mg2+ 

addition (Figure 6.2.1A-C) with calculated Mg2+ Kds of 0.5 ± 0.1 mM and 0.7 ± 0.1 mM at 

395 nm and 488 nm excitation, respectively.  CatchER excited at 488 nm exhibited a 
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two-fold dynamic range over the basal intensity.  Our improved CatchER variant, 

CatchER-T’ (Figure 6.2.1D-F), had no fluorescence response with 395 nm excitation.  

The Mg2+ Kd at 488 nm excitation was 1.8 ± 0.4 mM.  Like CatchER, saturating levels of 

Mg2+ had a profound effect on the absorbance spectrum of 149E S30R (Figure 6.2.1G-

I), but like CatchER-T’ there was no fluorescence response with increased addition of 

Mg2+ at 395 nm excitation.  The resulting Kd for 149E S30R was 0.8 ± 0.1 mM.  

 

Table 6.2.1 In vitro Mg2+ Kds and dynamic range of select CatchER variants 

 

 

 

 

 

*Data represents mean ± stdev. Kd – dissociation constant, λex – excitation wavelength,  
Fmax/Fmin – dynamic range in response to Mg2+ calculated using the fluorescence at maximal  
saturation divided by the fluorescence with no Mg2+ present. Data collected at room  
temperature. Samples prepared in 10 mM Tris pH 7.4.Fluorescence slit widths were 0.25 mm for 
excitation and emission. NR – no response. 

 

 λex (nm) Kd (mM) Fmax/Fmin 

CatchER 395 0.5 ± 0.1 1.7 ± 0.1 

488 0.7 ± 0.1 2.4 ± 0.1 

CatchER-T’ 395 NR NR 

488 1.8 ± 0.4 1.6 ± 0.1 

149E S30R 395 NR NR 

488 0.8 ± 0.1 1.9 ± 0.1 



181 

 

Figure 6.2.1 In vitro Mg2+ Kd of select CatchER variants 

(A, D, and G) Absorbance spectrums of CatchER, CatchER-T’, and 149E S30R in the 
absence (solid line) and presence (dotted line) of saturating levels of Mg2+.  Like Ca2+, 
magnesium has the same effect on the absorbance spectrum of CatchER variants 
causing an increase in the 488 nm peak (increase in anionic chromophore) and a 
decrease in the 395 nm peak (decrease in neutral chromophore).  The fluorescence of 
CatchER at 395 nm (B) and 488 nm (C) excitation increases with increasing Mg2+ 
concentrations reaching saturation at 20 mM Mg2+.  Inset binding curves were obtained 
by fitting the normalized data with a 1:1 binding equation resulting in Kds of 0.5 ± 0.1 
and 0.7 ± 0.1 mM. CatchER-T’ (E) and 149E S30R (H) had no response to Mg2+ 
addition at 395 nm excitation.  The Mg2+ Kd for CatchER-T’ (F) and 149E S30R (I) were 
calculated to be 1.8 ± 0.4 mM and 0.8 ± 0.1 mM, respectively at 488 nm excitation. 

 

A                                            B                                               C 

D                                            E                                               F 

G                                            H                                               I 
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6.2.3 Using CatchER variants to monitor Mg2+ flux in Jurkat cells with and 

without the MagT1 receptor 

Magnesium plays an important role in the immune response278.  Decreases in 

cytosolic Mg2+ due to deficiency in the MagT1 receptor of T lymphocytes has been 

linked to immune disorders in humans and promotes Mg2+ as a second messenger 

molecule in immune system function281.  Jurkat cells, human leukaemic T cells that are 

consistently used by immunologists as a model system for the study of T cell receptor 

signaling288, were employed to study the effect of MagT1 deletion on the Mg2+ transient.  

Wild type Jurkat cells and MagT1 knockout Jurkat cells were first transfected with 

CatchER and incubated in media supplemented with increasing concentrations of Mg2+. 

The fluorescence response of CatchER to changes in cytosolic Mg2+ concentration was 

monitored using flow cytometry using FITC settings (Figure 6.2.2A and B).  In a similar 

experiment, WT and MagT1 KO Jurkat cells were transfected with CatchER and 

CatchER-T’.  All cells were co-transfected with mCherry as the fluorescent marker.  

Cells only expressing mCherry were used as the control.  The results are found in 

Figure 6.2.3A-C.       
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Figure 6.2.2 CatchER measurement of cytosolic Mg2+ in WT and MagT1 KO Jurkat 
cells using flow cytometry 

WT and MagT1 KO Jurkat cells were transiently transfected with CatchER.  The cell 
culture media was supplemented with 0.05, 0.145, 0.43, and >5 mM Mg2+ for 48 h.  
After Mg2+ supplementation, the cells were labeled with FITC and flow cytometry was 
used to analyze the fluorescence response of CatchER to changes in Mg2+ flux (A).  
Cells with no CatchER DNA were used as a control. The flow cytometry data was 
further processed as %FITC (B).  Data collected by Dr. Michael Lenardo and 
colleagues.     

 

 

 

A 

B 
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Figure 6.2.3 Monitoring cytosolic Mg2+ in Jurkat cells using CatchER and 
CatchER-T’ 

Jurkat cells were co-transfected with mCherry and CatchER or CatchER-T’ and 
analyzed using flow cytometry.  Cells transfected with only mCherry were used as the 
control (A) while data was collected for cells expressing mCherry+CatchER (B) and 
mCherry+CatchER-T’ (C). Data collected by Dr. Michael Lenardo and colleagues. 

 

6.3 Discussion 

6.3.1 In vitro Mg2+ Kd of CatchER variants 

Fluorescence titrations of CatchER, CatchER-T’, and E-CatchER2 revealed that 

our weak affinity Ca2+ sensors also bind magnesium with high micromolar to low milli-

molar dissociation constants (Table 6.2.1).  The concentration of free Ca2+ in the cytosol 

A 

B                                             C 
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of most cells is between 0.1-1 µM5, whereas the concentration of free magnesium is 

~1000 fold greater at 0.5-1.2 mM75.  Since cytosolic levels of Mg2+ are higher than that 

for Ca2+, Ca2+ is not expected to interfere with the cytosolic application of our CatchER 

variants in the study of cytosolic Mg2+ transients.  Mg2+ binding is an issue in CaBPs 

because of its high intracellular concentration and the similarities between the two 

ions289.  The Ca2+ ion has an ionic radius of 0.99 Å and Mg2+ has an ionic radius of 0.65 

Å.  The metal coordination chemistry of Ca2+ in proteins is pentagonal bipyramidal with 

oxygen as the primary atom for its 6-8 coordinating ligands212.  Mg2+ has octahedral 

coordination geometry in its inner shell with six coordinating ligands coming from strong 

interactions with water molecules290.  Because magnesium binds water so tightly in its 

inner sphere, a large energy barrier exists for the release of a water molecule.  Removal 

of an inner sphere water molecule from Mg2+ has an energetic cost of 20-80 kcal/mol, 

with the energy increasing when fewer water molecules are present76.  Due to the large 

hydration energy, magnesium coordinates with proteins and other biological compounds 

through its outer sphere, pointing to the typical weak Kds for proteins that bind 

magnesium291,292,76.  In the case of our CatchER variants, the Kds for Mg2+ are weak as 

expected. 

6.3.2 Monitoring Mg2+ transients in Jurkat cells using CatchER variants 

By applying the cytosolic versions of CatchER and CatchER-T’ in WT and MagT1 

KO Jurkat cells, we were able to see changes in cytosolic Mg2+.  After supplementing 

the cell culture media with different concentrations of Mg2+, the cytosolic Mg2+ level 

decreases in MagT1 KO cells compared to WT cells (Figure 6.2.2B).  MagT1 is found in 

great abundance in lymphocytes and selectively transports Mg2+ into the cytosol from 
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the extracellular environment279.  The decrease in the CatchER fluorescence from flow 

cytometry analysis confirms impairment of the Mg2+ signal in MagT1 deficient cells.   

6.4 Conclusion 

In conclusion, Mg2+ is a significant ion that plays a pivotal role in the immune 

response.  We have shown that our GECIs bind Mg2+ in vitro with Kd values appropriate 

for measuring changes in cytosolic Mg2+.  Cytosol-targeted CatchER variants can be 

expressed in human T lymphocytes to monitor variations in cytosolic free Mg2+.  

Although the changes seen in flow cytometry were small, the preliminary results 

suggest that our probes can monitor fluctuations in cytosolic Mg2+ without interference 

from Ca2+.  This work and future research will help to unveil further the function of Mg2+ 

as a second messenger in biological processes and its compromised role in 

immunodeficiencies.  
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7 SIGNIFICANCE 

 The discovery of GFP and GFP-like proteins has revolutionized the field of Ca2+ 

imaging.  The new protein-based Ca2+ indicators that have been developed 

incorporating GFP to translate the Ca2+ binding event into a measurable fluorescence 

response are easily targeted to organelles of interest through genetic manipulation.  

Because of the various probes available with different emission wavelengths, it is 

possible to monitor Ca2+ signaling events in various cellular compartments 

simultaneously.  A limitation of widely used GECIs, like GCaMP and others, is their 

strong affinity for Ca2+ and their slow Ca2+ release kinetics due to their use of a native 

CaBP as the binding moiety.  These limitations prevent the accurate measure of fast 

Ca2+ regulated events like E-C coupling in cardiac and skeletal muscle and the precise 

measurement of basal Ca2+ in high concentration organelles like the ER/SR.  The ideal 

Ca2+ probe would use a single FP, as the scaffold, with a Ca2+ binding site designed on 

the surface via site-directed mutagenesis.  It would have good selectivity for Ca2+, an 

appropriate affinity, and proper binding and release kinetics to monitor Ca2+ dynamics in 

a particular subcellular location.  The ideal Ca2+ probe would also have a substantial 

fluorescence change in response to Ca2+ with good fluorescence at 37°C for 

mammalian cell application.  Inherent challenges exist in designing the aforementioned 

Ca2+ probe.  The Ca2+ binding coordination geometry has to be created de novo.  Once 

Ca2+ binds to the design site, the binding event must produce the appropriate change in 

the chromophore environment which will not perturb the overall folding but induce a 

fluorescence intensity change.  
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 With much research, our lab created a design strategy for developing genetically-

encoded Ca2+ probes using a single GFP.  Over the years, our lab has analyzed the 

canonical binding geometry in E-F hand and non E-F hand CaBPs. We have used this 

information to create Ca2+ binding sites, through grafting or site-directed mutagenesis, 

on the surface of scaffold proteins like CD2 and parvalbumin.  With this knowledge, we 

designed the EGFP-based Ca2+ probe CatchER with ER/SR targeting.  CatchER has 

fast kinetics and a weak affinity for Ca2+, making it suitable to measure fast Ca2+ 

transients associated with muscle contraction.  However, CatchER has reduced 

fluorescence at 37°C.  To better understand the structural changes in CatchER that are 

responsible for the fast kinetics, weak affinity, and absorbance spectrum changes, the 

Ca2+-free, Ca2+-bound, and gadolinium-bound crystal structures were determined at 

1.66, 1.20, and 1.78 Å resolution.  Both Ca2+ and gadolinium were found in the 

designed binding site with double occupancies of 0.5/0.5 and 0.7/0.3 for Ca2+ and Gd3+ 

respectively, even though CatchER binds both metals with 1:1 stoichiometry.  Both ions 

have an overlapping occupancy site where the metals are primarily chelated by E147, 

D202, and E204.  From these results, it was concluded that the multiple occupancies in 

the binding site for each metal make the binding event a dynamic process, directly 

causing the fast kinetics and weak affinity of CatchER.  In all three CatchER structures, 

T203 has a flipped conformation resulting in a water-mediated bond between its main 

chain carbonyl group and the tyrosyl of the chromophore which is the same 

conformation found in wt-GFP providing the reason for the two excitation peaks in 

CatchER.  E222 was shown to have alternate conformations in the crystal structures.  

The H-bond network formed by E222 through two water molecules to Q69, in the Ca2+ 
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and Gd3+ CatchER structures, are interrupted in the Ca2+ free structure.  E222 

stabilizes the negative charge of the anionic chromophore through H-bonding with T65 

creating more of the anionic chromophore with the addition of Ca2+.  Obtaining the 

crystal structures of CatchER is significant for the development of future Ca2+ probes 

with fast kinetics. 

 Next, mutagenesis was employed to see if mutations could be introduced into 

CatchER to create variants with different Kds, quantum yields, and extinction 

coefficients.  The N149E mutation was incorporated into CatchER, creating the 149E 

mutant having six negatively charged residues in its binding site. Analysis of the 

absorbance spectrum of 149E showed that the mutation increased the 488 nm 

absorbance peak, increasing the amount of anionic chromophore present.  

Fluorescence titrations of 149E with Ca2+ confirmed the Ca2+ induced fluorescence 

change and revealed a weaker Ca2+ Kd for 149E compared to CatchER.  Errors in the 

equilibrium dialysis measurement prevented accurate calculation of the Ca2+ Kd for the 

different variants analyzed.  Compared to CatchER, 149E has a 3.7 fold increase in its 

extinction coefficient in the apo form, which is the largest increase of all the mutants 

analyzed.  CatchER-T, containing the S175G mutation, also experiences an increase in 

its extinction coefficient in the apo form, 11.0 ± 0.1 mM-1cm-1 compared to 7.1 ± 0.1 mM-

1cm-1 of CatchER.  Through analysis of the 149E variants, the S30R and Y39N 

mutations decrease the extinction coefficients in the apo form.  Only the quantum yield 

of 149E S30R has a slight increase over that of 149E, 0.7 ± 0.1 compared to 0.6 ± 0.1.  

Comparing the optical properties of all the variants with Ca2+, metal binding increases 

the extinction coefficient and brightness, while slightly decreasing the quantum yield.  
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Compared to CatchER, 149E has less pH dependence.  Kinetic analysis of 149E 

revealed slower kinetics compared to CatchER.  As a result of this work, a less pH 

sensitive CatchER variant was made with a weaker affinity for Ca2+ and increased 

absorption ability, providing another tool that can be used to monitor Ca2+ dynamics in 

the ER/SR. 

 Although CatchER has been used in many different mammalian cell lines to 

monitor Ca2+ release dynamics in the ER/SR, its fluorescence is reduced at 37°C.  

CatchER only fluoresces when expressed at 30°C which is not the ideal temperature for 

mammalian cell growth.  To improve the brightness of CatchER for mammalian cell 

application, we incorporated two key mutations from superfolder GFP that were deemed 

essential for improving the folding and subsequent fluorescence at 37°C: S30R and 

Y39N.  We also made the S175G mutation that enhances thermostability of GFP at 

37°C.  With this work, we successfully improved the fluorescence of CatchER at 37°C 

resulting in the CatchER-T series of mutants with CatchER-T’ having the largest 

improvement in fluorescence at 37°C.  To further understand the Ca2+ dynamics 

involved in E-C coupling at the junctional face membrane of skeletal muscle cells, we 

attempted to fuse our Ca2+ sensor CatchER to JP45 in collaboration with Dr. Fransesco 

Zorzato and colleagues.  We successfully designed the CatchER-JP45 construct and 

later incorporated the S175G, S30R, and Y39N mutations into the construct to create 

CatchER-T’-JP45 to monitor the local Ca2+ dynamics near the luminal opening of RyR1 

in rat skeletal muscle FDB fibers.   By applying the targeted CatchER-T’-JP45 construct 

in these muscle fibers, we were able to visualize the large pool of Ca2+ that exists, near 

the opening of the RyR1 in the SR lumen, to fuel the E-C coupling process necessary 
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for muscle function.  Our probe can be used to monitor the Ca2+ flux in this region of 

muscle cells in neuromuscular diseases associated with dysfunctional proteins in this 

region of muscle cells. 

 The function of T lymphocytes is modified by cytosolic Mg2+ which is maintained 

at 1 mM.  The influx of Mg2+ in these cells is primarily controlled by the MagT1 receptor.  

Mutations in the MagT1 receptor of human T cells cause decreases in cytosolic [Mg2+] 

leading to lingering Epstein-Barr virus infections.  Because the intracellular signaling 

role of Mg2+ has been unclear, little has been done to develop probes to monitor Mg2+ 

flux.  Since Ca2+ and Mg2+ share similar metal coordination geometries, proteins that 

bind Ca2+ also bind Mg2+.  To probe the role of Mg2+ in the immune response, cytosolic 

versions of our ER/SR targeted probes were created and transfected into wild-type and 

MagT1 knockout Jurkat cells.  We have shown that our GECIs bind Mg2+ in vitro with Kd 

values appropriate for measuring changes in cytosolic Mg2+.  Although the changes 

seen in flow cytometry were small, the preliminary results suggest that our weak affinity 

probes can monitor fluctuations in cytosolic Mg2+ without interference from Ca2+ since 

the cytosolic Ca2+ level is in the nanomolar range. This work and future research will 

help to unveil further the function of Mg2+ as a second messenger in biological 

processes and its compromised role in immunodeficiencies.   

 This work solidifies that our optimized Ca2+ probes can be applied in different cell 

types to monitor receptor-mediated ER/SR Ca2+ release and changes in cytosolic Mg2+.  

We have also proved that our probes can be targeted to specific locations within the 

ER/SR to show the vastly different Ca2+ transients that exist compared to global Ca2+ 
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changes.  Our findings will continue to push the fields of Ca2+ imaging and probe design 

forward to provide future tools for diagnosing Ca2+-related diseases.  
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APPENDIX 

 

Appendix A Crystal structure of CatchER supplemental data 

 

Figure A.1 Fluorescence response of CatchER to Gd3+ and Ca2+ excited at 395 nm 
(A and C) and fitted normalized intensity (B and D). 

CatchER experiences a large fluorescence increase when titrated with Gd3+ and with 
Ca2+. The normalized fluorescence was fitted with the 1:1 binding equation to give Kd 
values of 53.0 ± 4.0 µM for Gd3+ and 315.4 ± 40.0 µM for Ca2+. Taken from Zhang, et 
al., Acta Cryst., 2013. 
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Table A.1 Data statistics vs. resolution 

CatchER(apo) 

Resolution Å       

Lower 

limit 

Upper 

limit 

Average 

I 

Average 

error 

Norm. 

stat 

Linear 

Chi**2 

Square  

R-fac 

R-fac 

50.00 3.34 5526.4 721.1 193.4 0.927 0.074 0.084 

3.34 2.65 2331.2 342.5 61.5 0.987 0.092 0.098 

2.65 2.32 1051.1 160.5 30.8 1.102 0.108 0.113 

2.32 2.10 710.5 114.6 26.3 1.147 0.125 0.128 

2.10 1.95 484.3 93.9 23.2 0.910 0.135 0.134 

1.95 1.84 282.1 46.5 16.4 1.202 0.153 0.147 

1.84 1.75 160.0 27.1 11.4 1.163 0.174 0.159 

1.75 1.67 108.8 22.2 11.4 0.989 0.201 0.171 

1.67 1.61 80.0 17.5 10.9 1.020 0.233 0.194 

1.61 1.55 59.0 14.1 10.9 1.135 0.270 0.220 

All reflections 1071.7 155.1 39.4 1.059 0.096 0.090 

Table taken from Zhang, et al., Acta Cryst., 2013. 
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CatchER-Ca2+ 

Resolution Å       

Lower 

limit 

Upper 

limit 

Average 

I 

Average 

error 

Norm. 

stat 

Linear 

Chi**2 

Square  

R-fac 

R-fac 

50.00 2.59 15117.6 803.1 245.3 0.901 0.060 0.071 

2.59 2.05 4838.3 172.0 34.5 1.098 0.074 0.084 

2.05 1.79 2084.5 106.1 23.6 0.955 0.098 0.110 

1.79 1.63 811.5 39.3 11.3 1.094 0.128 0.147 

1.63 1.51 448.4 23.4 9.4 1.124 0.157 0.175 

1.51 1.42 262.5 16.1 8.6 1.122 0.210 0.224 

1.42 1.35 163.4 12.6 8.5 1.077 0.281 0.295 

1.35 1.29 120.5 11.3 8.8 1.108 0.317 0.331 

1.29 1.24 87.4 10.7 9.2 1.063 0.351 0.370 

1.24 1.20 64.1 10.5 9.5 1.013 0.392 0.408 

All reflections 2389.8 119.8 36.6 1.061 0.081 0.076 

Table taken from Zhang, et al., Acta Cryst., 2013. 
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CatchER-Gd3+ 

Resolution Å       

Lower 

limit 

Upper 

limit 

Average 

I 

Average 

error 

Norm. 

stat 

Linear 

Chi**2 

Square  

R-fac 

R-fac 

50.00 3.83 2142.8 130.3 21.5 0.951 0.065 0.071 

3.83 3.04 1484.5 109.5 15.9 0.980 0.086 0.088 

3.04 2.66 611.6 47.1 8.3 0.951 0.091 0.094 

2.66 2.42 379.2 29.5 6.3 0.912 0.093 0.092 

2.42 2.24 283.8 22.6 5.9 0.930 0.102 0.101 

2.24 2.11 217.9 16.8 5.3 1.048 0.115 0.107 

2.11 2.00 171.4 13.7 5.0 0.973 0.118 0.108 

2.00 1.92 122.6 10.2 4.7 0.989 0.131 0.114 

1.92 1.84 78.8 7.1 4.4 1.004 0.162 0.149 

1.84 1.78 52.8 6.1 4.7 1.008 0.185 0.156 

All reflections 572.3 40.4 8.4 0.974 0.085 0.079 

Table taken from Zhang, et al., Acta Cryst., 2013. 

 



213 

 

Figure A.2 Structure validation by Ramachandran plots for the three CatchER 
structures, as performed by Coot 0.5.2.   

The residues analyzed in all three structures are within the allowed region. Taken from 
Zhang, et al., Acta Cryst., 2013. 
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Figure A.3 Flexible loop region comprising residues 155-159. 

CatchER-Gd3+ is shown in a cyan cartoon representation with the mutated residues of 
the designed Ca2+ binding site in red sticks. The alternative conformations of residues 
155-159 are indicated in cyan and orange. (B) Fo-Fc omit map (in green) for the two 
conformations of residues 155-159 contoured at 2.0σ. In EGFP (PDB code: 4EUL) and 
GFP structure (PDB code: 2WUR), only the conformation in orange was observed. 
Table taken from Zhang, et al., Acta Cryst., 2013. 
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Appendix B Biophysical characterization of CatchER variants supplemental data 

 

Figure B.1 In vitro Ca2+ Kd of 149E (A-C) and 149E S30R (D-F) in 10 mM Tris 150 
mM KCl pH 7.4 

(A and D) Absorbance spectrums of 149E (A) and 149E S30R (B) in the absence (solid 
line) and presence (dotted line) of saturating levels of Ca2+.  Ca2+ causes an increase in 
the 488 nm peak (increase in anionic chromophore) and a decrease in the 395 nm peak 
(decrease in neutral chromophore) in the presence of KCl.  No fluorescence change 
occurs when excited at 395 nm (B and E).  Inset binding curves were obtained by fitting 
the normalized data with a 1:1 binding equation. 
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Table B.1 Calculated amounts of Ca2+ in each dialysis bag from equilibrium 
dialysis experiment with 15 µM Ca2+ obtained from ICP-OES 

 

 

 

 

 

 

 

 

 

 

Table B.2 Calculated amounts of Ca2+ in each dialysis bag from equilibrium 
dialysis experiment with 20 µM Ca2+ obtained from ICP-OES 

 

 

 

 

 

 

 

 

ʎ (nm) [Ca2+] (µM) 

T = 1 buffer T = 2 buffer blank α-lactalbumin 149E EGFP Myoglobin 

396.847 14.607 15.850 17.217 29.773 23.385 27.606 17.381 

317.933 14.627 15.741 16.949 28.090 22.399 26.226 17.171 

219.779 15.890 16.350 18.196 30.218 23.848 26.800 18.675 

370.602 14.536 15.590 16.843 27.782 22.052 25.883 16.783 

643.907 14.963 16.199 17.221 29.396 23.053 27.084 17.578 

373.69 14.701 15.750 17.040 27.825 22.251 26.047 17.655 

Average 14.887 15.914 17.244 28.848 22.831 26.608 17.540 

Stdev 0.513 0.296 0.490 1.076 0.710 0.670 0.638 

 [Ca2+] (μM) 

λ (nm) 396.847 317.933 219.779 370.602 643.907 220.861 373.690 Avg Stdev 

Buffer 1 17.990 18.195 18.122 17.995 17.941 19.234 18.104 18.226 0.453 

Buffer 2 22.617 22.346 24.015 21.911 22.371 22.541 22.081 22.554 0.689 

α-lactalbumin 33.931 34.495 35.682 34.012 34.916 36.739 34.032 34.829 1.049 

CatchER-T 32.425 32.858 35.255 32.439 33.712 34.293 32.433 33.345 1.112 

EGFP 26.197 24.984 26.265 24.570 26.022 25.794 24.906 25.534 0.696 

Myoglobin 24.995 24.052 25.085 23.492 24.767 24.934 24.339 24.523 0.590 

Blank 24.094 23.205 24.064 22.944 23.606 23.498 23.121 23.505 0.451 
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 Table B.3 Calculated amounts of Ca2+ in each dialysis bag from equilibrium 
dialysis experiment with 20 µM Ca2+ obtained from ICP-OES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ʎ (nm) [Ca2+] (µM) 

T = 1 buffer T = 2 buffer blank α-lactalbumin CatchER EGFP 

396.847 19.017 20.198 20.681 35.549 32.239 22.300 

317.933 18.679 19.897 22.720 35.553 31.464 21.459 

219.779 18.726 21.651 25.087 36.715 33.714 23.133 

370.602 18.589 19.660 22.065 35.360 31.634 21.700 

643.907 18.850 20.101 21.618 36.683 33.285 22.176 

220.861 19.464 20.831 23.193 37.470 32.500 22.881 

373.69 18.840 20.013 22.226 35.450 31.675 21.802 

Average 18.881 20.336 22.513 36.112 32.359 22.207 

Stdev 0.292 0.684 1.389 0.833 0.868 0.619 
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Figure B.2 ICP-OES standard curves for Ca2+ emission wavelengths 

A                                                   B 

C                                                   D 

E                                                   F 

A                                                    B 
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Appendix C Optimization of CatchER and its targeted subcellular 

application supplemental data 

 

Figure C.1 In vitro Ca2+ Kd of CatchER variants in 10 mM Tris 150 mM KCl pH 7.4 

(A, D, G, J) Absorbance spectra of 10 µM of the protein sample before titration with 5 
µM EGTA (dashed line) and after with a saturating amount of Ca2+ (solid line).  The 
absorbance peaks have no response to increasing Ca2+.  CatchER (A-C), CatchER-T 

A                                 B                                C 

D                                E                                F 

G                                 H                                 I 

J                                    K                                  L 
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(D-F), CatchER-T Y39N (G-I), and CatchER-T S30R (J-L) have reduced responses to 
Ca2+ in 150 mM KCl. All samples were excited at 395 nm and 488 nm with emission 
scanned from 410-600 nm for 395 nm excitation and from 500-600 nm for 488 nm 
excitation.  Slit widths for excitation and emission were 0.25 mm. Inset curves show the 
normalized fluorescence intensity data fit to the 1:1 binding equation to get the Kd. 
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