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ABSTRACT 

The fundamental vibrational modes of biological constituents in the tissues and the 

complex body fluids coincide with optical frequencies in the infrared region. Therefore, spatially 

resolved molecular compositions and interaction information within the biological materials can 

be extracted non-destructively using IR radiation without the use of labels or probes. However, the 

feasibility of this technique to elucidate constituent molecular compositions and interactions within 

the diagnostic mediums is not well explored. This study demonstrates an application of infrared 

(IR) spectroscopy of sera for monitoring inflammatory bowel diseases (IBD) and various cancers. 

Using samples from experimental mice and human patients, the power of IR spectroscopy in 

structural studies of proteins and other complex band contours are explored to find spectral 

signatures.  

Two experimental models of IBD; interleukin 10 knockouts (IL10-/-) and Dextran Sodium 

Sulfate (DSS) induced mouse shows diagnostic accuracy with 80-100% sensitivity and specificity 

values. Importantly, the findings of human IBD patients’ serum also show promising results 

resembling our proofs-of-concept investigations of mouse models. Maximum values of sensitivity 

and specificity are 100% and 86%, respectively, in human samples. Similarly, in cancer studies, 

the EL4 mouse model of non-Hodgkin lymphoma (NHL) and a B16 mouse model of the 

subcutaneous melanoma are used to extract a snapshot of tumor-associated alteration in the serum. 

The study of both cancer-bearing mouse models in wild types (WT) and their corresponding 

control types emphasizes the diagnostic potential of this approach as a screening technique for the 

NHL and melanoma skin cancer. The breast cancer (BC) -associated protein conformational 

alteration in the serum samples shows the sensitivity and the specificity of identifying spectral 

signatures were both 90%. All in all, IR spectroscopy of serum samples accompanied by spectral 



analysis technique shows some promising results for disease diagnostics. The brief outlook of the 

fundamentals of the infrared detection technique and their applicability for the development of 

portable spectroscopy is also provided.  
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1 INTRODUCTION  

Spectroscopic techniques are becoming popular exploratory tools to investigate the 

interaction between matter and electromagnetic radiations[1]. The popularity is due to the 

extraordinary sensitivity of spectroscopy to understand the molecular structures depending on 

bonding between the constituent atoms and their spatial arrangements. Based on the nature of the 

measurement process, radiative energy involved in the interaction and their applications, these 

techniques are classified into several types[2]. These include classification based on atomic or 

molecular probing, electronic or magnetic features, Gamma to terahertz radiation, absorption or 

emission of radiations, and many more. The selection of an individual spectroscopic technique 

depends on the purpose of the study. Among these several spectroscopic techniques, the infrared 

spectroscopy is applicable to investigate vibrational and the rotational motions of molecular bonds 

and the spatial arrangement of the constituent atoms[3]. The usefulness of infrared spectroscopy 

arises due to the unique spectral fingerprint of each molecule type. 

In this dissertation, infrared spectroscopy is utilized to investigate the structural and 

compositional features of constituents in serum samples and disease-associated alterations within 

them. Accompanied by data analysis techniques, Fourier transforms infrared (FTIR) spectroscopy 

of sera has been explored to find disease-associated alterations in the constituent’s 

biomolecules[3]. The FTIR uses interferometry to record information about the material and these 

interferograms are being decoded into recognizable spectra via Fourier transformations. The first 

part of the dissertation investigates the feasibility of the technique to understand inflammatory 

bowel diseases (IBD) associated alteration in the serum samples of experimental mice[4-11] and 

human patients. In experimental models, acute (Dextran Sodium Sulfate induced: DSS) and 

chronic (Interleukin 10 knockouts; IL10-/-) mice are tested. Arthritis (Collagen Antibody Induced 
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Arthritis: CAIA) and metabolic syndrome (Toll-Like Receptor 5 knockouts: TLR5) models are 

also tested as controls[4, 5]. The second part of the dissertation investigates its potential to 

discriminate cancer-associated changes in the serum samples[12, 13]. In the cancer study, an EL4 

mouse model of non-Hodgkin lymphoma (NHL) and a B16 mouse model of the subcutaneous 

melanoma are used[12]. The samples of Breast cancer (BC) patients were also used to investigate 

the feasibility of the technique[13]. An outlook on the ongoing study of the standardization of 

technique for the acquisition of spectral signatures applicable in the clinical domain and preparing 

unique database is also discussed.  

1.1 Fourier Transforms Infrared (FTIR) Spectroscopy 

The interaction of light with matter depends on the nature of the material, the wavelength 

of the incident light, and the intensity[14]. Within the infrared region of the electromagnetic 

spectrum, as light interacts with matter and the chemical bonds will stretch, contract and bend. It 

is because different bonds and functional groups of constituents have a range of quantized 

vibrations and bending modes. When these constituent molecules are irradiated with infrared 

photons matching the energy of those vibrational energy levels, molecules absorb the radiation 

and start to vibrate. As a result, the amplitude of the vibration (which depends on intensity) is 

increased, but it does not affect the frequency of those vibrations and remains the same[15]. 

Therefore, a chemical functional group tends to adsorb infrared photons/radiation in a specific 

wavelength region, regardless of the structure of the rest of the molecule. The analytical technique, 

which measures the vibration characteristics (i.e. Infrared intensity versus the wavelength or 

wavenumber of light) of chemical functional groups in the sample is called infrared 

spectroscopy[3].  
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FTIR spectrometer obtains infrared spectra by first collecting an interferogram of the 

sample that measures  IR frequencies simultaneously, and digitizes it followed by performing the 

Fourier transformation[16]. It takes advantage of how IR light changes the dipole moments of 

molecules at the specific vibrational energy (𝐸 = ℎ𝜐 = ℎ 𝑐 𝜆 = ℎ𝑐𝜐̅ ⁄ , where c is the velocity of 

light and h is Planck’s constant) corresponding to reduced mass (µ) and the bond spring constant 

(k)[17];  

  𝜐̅ = 
1

2𝜋
 √

𝑘

𝜇
                         …………. (1)  

 

 

Figure 1.1 (A) The schematic of FTIR spectroscopy. The infrared (IR) detector receives 

an interferogram, and our computer does the Fourier transformation to generate the absorbance 
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spectrum. It simultaneously collects data over a wide spectral range, reflecting how much light is 

absorbed by a sample at each wavelength. (B) Different sampling modes of FTIR spectroscopy, 

including transmission, transflection, and the attenuated total reflection (ATR). 

 

Figure 1.1 (A) shows the schematic of an FTIR spectrometer. The Michelson 

interferometer modulates the incoming optical radiation by changing the optical path difference 

between the two possible paths. Thus, formed interferograms are the coded representation of the 

target spectrum. Fourier transformation decodes the interferogram and provides the spectrum of 

the target radiation. In biochemical research, FTIR spectroscopy is a powerful analytical tool that 

can be used to provide insight into the composition, structure, and interaction of constituent 

molecules within biological solutions[18, 19]. Changes in the characteristics of biological fluids 

that often occur in disease can be detected in spectral data and have emerged as a robust tool used 

in clinical[20] and forensic[21] studies.  

An increasing number of studies have demonstrated the effectiveness and promising 

application of this technique in several applications in the broad field of biological sciences[22]. 

The frequencies and their biochemical assignments of prominent spectral bands are also 

identified[23]. Standard protocols for the measurement of diagnostic mediums using FTIR 

spectroscopy[24] and spectral analysis techniques are well established[25]. However, examining 

the differences between the FTIR spectra has proven to be challenging due to the complexity of 

the biological constituents, which have different vibrational modes[26, 27]. Therefore, in FTIR 

studies, sophisticated spectral analysis techniques are employed to overcome these inherent 

spectral interpretation challenges caused by highly overlapping absorbance peaks[26]. 
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A variety of choices are available for the sampling modes. The three major sampling modes 

of FTIR spectroscopy include transmission, transflection and the attenuated total reflectance 

(ATR). The spectra measured by FTIR are similar in each sampling mode, but subtle differences 

exist in the interaction between light-matter interaction. The Figure 1.1 (B) shows the schematic 

of light-matter interaction in each sampling mode; transmission, transflection, and ATR. In 

transmission and transflection sampling mode samples can be sectioned into a thin layer, allowing 

for accurate spectral data acquisition. For illustration, in transflection mode, the sample is placed 

on IR-reflecting surface and measurement are performed. In this mode, the IR/source light passes 

through the sample and will reflect back from the reflecting surface (substrate) through the 

sample[24]. In transmission mode, incident infrared beam passes through the sample (prepared in 

the form of pallet, mull films etc.) and the transmitted energy is measured to generate a spectrum. 

Similarly, in the ATR sampling mode IR beam is directed through an internal reflection element 

(IRE) of high refractive index[24].  

1.1.1  Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) 

Spectroscopy 

ATR-FTIR spectroscopy is an excellent analytical technique to understand the molecular 

composition of soft biological mediums and complex body fluids. It provides a complementary 

technique compared to other IR approaches [28, 29] for clinical diagnostics. Thus, it is an attractive 

technique for the rapid and reliable extraction of the molecular composition within the diagnostic 

medium[24]. Combined with appropriate data analysis, this technique has been applied in a few 

biological studies as reported in a review article[23]. In ATR-FTIR spectroscopy, light is totally 

reflected inside the prism of the high refractive index[28], and the reflected light from the sample 

(Goos-Hanchen effect)[30] creates an evanescent wave, penetrating the sample placed in contact 
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with crystal[31]. The energy of the evanescent wave first interacts with the sample medium, and 

the incident wave is entirely reflected in the system as shown in figure 1.2 (A). The output spectra 

represent a snapshot of molecular components within the sample medium. Herein, the penetration 

depth (Figure 1.2 (B)) of evanescent energy waves, 𝑑𝑝 =  𝜆/2𝜋(𝑛1
2𝑆𝑖𝑛2𝜃 − 𝑛2

2)
1

2⁄  depends on 

the wavelength of incident radiation (𝜆), the refractive index of the crystal (𝑛1), the angle of 

incidence (𝜃), and the refractive index of the sample (𝑛2). It is noted that the evanescent wave 

decays exponentially in relation to the distance from the interface[32], so the penetration depth is 

only a fraction of incident IR wavelength. The evanescent waves lose energy at frequencies 

identical to the sample’s absorption because soft biological materials[33], such as the serum, make 

intimate contact with the ATR element. 

 

 

Figure 1.2 Interaction of light with sample in ATR sampling mode of FTIR 

spectroscopy[11]. (A) Schematic diagram of the evanescent wave formed on the sample at the 

internal reflection element surface. (B) Interaction of infrared signal in the material of the 

medium. 
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1.2 ATR-FTIR Spectroscopy of Serum Samples for IBD Studies  

The two primary clinically identified IBDs; Ulcerative Colitis (UC) and Crohn’s disease 

(CD), are debilitating, with a chronically inflamed gastrointestinal (GI) tract[34]. It can limit an 

active lifestyle and lead towards the life-threatening complications[34], including secondary 

infections, organ degeneration, nutritional deficiencies, and even GI cancer[35]. The incidence and 

prevalence rates[36] of these diseases with unknown etiology have been increasing globally. 

According to The Crohn’s and Colitis Foundation of America, approximately 1.6 million 

Americans suffer from IBD, with 70,000 new cases being diagnosed every year [37].  

Rapid detection and preventative interventions of these diseases enable the early 

administration of therapeutic strategies when the treatment is most effective. Simultaneous 

monitoring of mucosal healing during the treatment is also critical for IBD. Furthermore, IBDs are 

chronic inflammatory disorders that affect the GI tract and are characterized by episodes of relapse 

and remission requiring continuous monitoring. Certainly, ground-breaking advances in the 

interruption of these diseases[38] have been achieved using human and animal models of intestinal 

inflammation. However, a reliable screening test to diagnose these illnesses by primary care 

physicians, and hence the early administration of the therapeutic strategies, is not yet available[39]. 

At present, the gold standard routine tests such as colonoscopy, sigmoidoscopy and small 

bowel follow-through are recommended for colorectal and GI diseases[40], including IBDs. The 

existing guidelines recommend that individuals, fifty to eighty years of age should get a 

colonoscopy done every five years as part of a routine checkup[41]. Nonetheless, these gold-

standard tests are expensive (requiring specialized instruments and qualified personnel and prior 

preparation), invasive, risky (such as colonic perforation, hemorrhaging, post-polypectomy 

electrocoagulation syndrome and infections), unpleasant for patients, and are not easily accessible 
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to the eligible population for disease screening. These factors have become significant hindrances 

to patient adherence to regular preventative IBD disease screening and monitoring. Studies further 

show that the onset of IBD typically occurs in the second and third decades of life[42], progressing 

into episodes of relapse and remission in the GI tract. Therefore, developing an affordable, 

sensitive, specific, user-friendly, robust and rapid, equipment-free and deliverable to the end-users 

(ASSURED) prescreening test before a colonoscopy is a critical need. 

Blood and it’s component-based biomarkers[43] have been previously studied, utilizing 

gene panels to predict and discriminate IBD disease activity[44]. The blood gene expression 

analysis offers the significant potential to expand the understanding of the underlying genes’ 

involvement[44], and can play a major role in the development of personalized medicine[45]. Data 

interpretation in gene expression analysis is not straightforward and requires several steps 

appropriate to the experimental protocols[43-45]; thus, gene expression analysis is not yet able to 

provide a low cost, quick and easier early screening test, keeping the traditional means of 

evaluations (such as a colonoscopy) as the gold standard. We explore the utility of FTIR 

spectroscopy of serum samples in ATR sampling mode[24], which could, in the future, allow 

physicians to diagnose and/or monitor IBDs in its early stage. This technique is simple but 

possesses the potential for radical change from standard practices as it will lead to the development 

of a preventive screening technique before the use of invasive, risky colonoscopy. 

The loss of energy in the decaying process will be at frequencies identical to the sample’s 

absorption for soft biological materials like body fluids[33]. Similarly, metabolic discharges into 

the body fluids (saliva, excreta, blood, and other tissue fluids) from the proximate diseased tissue 

change the constituent molecules, providing strong guidance for subsequent clinical 

assessment[33, 46]. Therefore, body fluids are considered as precious and ideal diagnostic 
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mediums of clinical biomarkers owing to the advantages of minimal invasiveness, low cost, and 

rapidity of sample collection and processing. ATR-FTIR spectroscopy of body fluids has garnered 

much attention in the scientific community, including from clinicians[47, 48]. Serum is the 

protein-rich blood component extracted after the removal of cells and clotting factors from the 

whole blood sample[49] and it is used in numerous diagnostic tests[50, 51]. Thus, present infrared 

spectral studies enriched with data analysis techniques on samples of human IBD patients and 

experimental mice[4-10]can pave the way for identifying diseases in the blood. 

1.2.1 Spectroscopy of Serum Samples from Experimental Mouse Models   

Mouse models have been a vital tool for research in GI Diseases. The understanding of 

intestinal inflammation in the IBD has been immeasurably advanced using several mouse models. 

The study presented in this dissertation also demonstrates the applicability of ATR-FTIR 

spectroscopy by analyzing biochemical changes in samples of IBD mice.  

First, detailed insight into the molecular structural changes in serum samples of the DSS 

induced colitis mice[5] is presented. The DSS mouse model provides us an inexpensive, simple, 

and reproducible model to study human IBD. In addition to serum from DSS mice, this dissertation 

reports the use of serum samples of IL10-/- deficient mice. Herein, mice with IL10-/- deficiency 

treated with and without anti-TNFα antibody therapy was used to understand the efficacy of the 

technique for drug signature monitoring[6]. IBD patients tend to have a low IL10-/- producer 

genotype (a regular cytokine that plays a major role in the homeostasis of the gut) more often than 

healthy controls[52, 53]. Therefore, genetically engineered IL10-/- deficient mice were most 

frequently used as experimental models for chronic IBD studies. Longitudinal analysis of serum 

samples of IL10-/- mice using two-dimensional differential gel electrophoresis (2D-DIGE) 

proteomic analysis has shown that the accumulation of various proteins was altered under 
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inflammatory conditions[54]. Importantly, a study has shown that this mouse model develops 

spontaneous chronic IBD and are showing a promise as a model for adequately recapitulate the 

full complexity of the human disease[54]. It has been found that, human IBD is a chronic intestinal 

inflammation disorder with an unknown etiology. The genetic and epigenetic factors also play an 

important role in the onset of disease and its progression[35]. Appropriateness of IL10-/- mouse 

model to analyze the multifactorial nature of this disease including genetic factors, immune 

aspects, and the role of the microbiota contributing to IBD is also reported[55]. Therefore, the 

spectral signatures presented in this dissertation are common to both DSS and IL10-/- mouse[4-

10]. The quantified information of Lipocalin 2 (Lcn-2) levels in feces of IL10-/- mice and 

Myeloperoxidase (MPO) activity of distal colon in DSS induced colitis to monitor disease 

progression are also used to evaluate disease level on each mouse[4, 5].  

This dissertation also covers the efficacy of the FTIR technique to monitor anti-tumor 

necrosis factor-alpha (anti-TNFα) antibody therapy in IL10-/- mouse[6]. IBD patients tend to have 

an increased level of tumor necrosis factor (TNF) in serum, stool, or mucosal biopsy 

specimens[56]. TNFα is a cell-signaling protein (cytokine) that plays a central role in 

inflammation. Therefore, TNFα became a key target for antibody treatment for inflammation[55]. 

It is found that the diversity of fecal microbiota in the IBD patients shifts towards the control 

individuals[57] after anti-TNF therapy. This treatment option leads to mucosal healing, reducing 

hospitalizations, and surgeries while improving patients' quality of life[58]. Experiments on IL10-

/- deficient mouse models[59] also demonstrates the same outcomes[60]. The cytokines in the stool 

samples show, the debilitating IBD conditions of IL10-/- deficient mice can be improved by anti-

TNFα antibody therapy[61]. 
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1.2.2  Spectroscopy of Serum Samples from Ulcerative Colitis (UC) Patients 

The animal models are not enough for preclinical human disease studies and for confirming 

the potential clinical applicability in humans. Therefore, as a follow-up step, we investigate a 

diagnostic application of IR spectroscopy coupled with data analysis techniques to understand 

ulcerative colitis-induced alterations in the molecular components of serum samples extracted 

from IBD human patients. Alterations reflected as fluctuations in vibrational modes and are used 

to identify suitable spectral signatures. The findings of this study resemble the proof-of-concept 

investigation with experimental (both DSS and IL10-/-) mouse models, providing preliminary 

evidence for a reliable diagnostic test for human ulcerative colitis. 

This study enriched with data analysis techniques on human sera that resemble mouse study 

can pave the way for identifying diseases in the blood while translating findings from an animal 

study to a human study. The perspective of the technique with its appropriateness and necessary 

improvements for the development of a new diagnostic regimen for IBDs using a serum is also 

provided. 

1.3 ATR-FTIR Spectroscopy of Serum Samples for Cancer Studies 

The FTIR spectroscopy combined with appropriate data handling frameworks has been 

widely applied in many oncological studies[23] such as studies using cancerous tissues from the 

cervix[62], the lung[63], the breast[64], the skin[65], the gastro-intestine[66], the prostate[67], the 

colon[68], the ovary[69], the urinary bladder[46]. These studies have reported that the molecular 

structural rearrangement associated with cancer development alters the vibrational mode of the 

molecular functional groups of the affected tissues as manifested in spectral signatures or 

signatures. Furthermore, the ATR-FTIR[70] spectroscopy represents a complementary approach 

for the clinical applications, compared to other IR approaches[29]. In this mode, high-quality 
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results with better spectral reproducibility compared to other modes can be obtained by the use of 

fluid samples[32]. It has been noted that metabolic discharges into the body fluids from the 

cancerous tissue change the constituent molecules, providing strong guidance for subsequent 

clinical assessment[33, 46].  

1.3.1 Spectroscopy of Serum Samples from Mouse models of Lymphoma and 

Melanoma 

The incidence rates of cutaneous melanoma[71], a deadly form of skin cancer, has been 

increasing in many regions and populations over the last few decades[72]. The increase has been 

of the order of 3-7% per year among fair-skinned populations[73]. At the same time, non-

Hodgkin’s lymphoma (NHL)[74], a solid tumorous condition of the immune system with a wide 

range of histological appearance and clinical features,  accounts 4.3% of all new cancer cases in 

the United States[75]. Although significant improvement has been made to stabilize the number 

of NHL cases and to increase its five-year survival rate, the existing diagnostic techniques, which 

include the histological examination using a biopsy, are time-consuming, invasive, costly, and are 

not accessible to the entire at-risk population. Developing a rapid and reliable prescreening 

strategy for melanoma and lymphoma is thus critical because of early diagnosis and treatment of 

these malignancies better improve[76, 77] the patient’s chances of survival.  

This study presents, ATR-FTIR spectroscopy of serum samples in an effort to assess 

biochemical changes induced by non-Hodgkin’s lymphoma and subcutaneous melanoma[12]. An 

EL4 mouse model of non-Hodgkin lymphoma and a B16 mouse model of subcutaneous melanoma 

are used to extract a snapshot of tumor-associated alteration in the serum. The study of both cancer-

bearing mouse models in wild types and their corresponding control types, emphasizes the 
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diagnostic potential of this approach as a screening technique for NHL and melanoma skin 

cancer[12].  

1.3.2 Spectroscopy of Serum Samples from Breast Cancer (BC) Patients 

BC is the most common invasive cancer among women worldwide[78]. The international 

agency for research on cancer (IARC) reports that BC comprises 22.9% of invasive cancers in 

women[78, 79]. At present, personal inspection and imaging remain the preferred methods for 

screening the asymptomatic women for BC. Nonetheless, the gold standard mammography entails 

high costs, is not available in all medical centers, and has a low sensitivity in young women and 

in the dense breast. Furthermore, BC typically produces less to no symptoms when the tumor is 

small and is easily treatable[80]. Established mammography screening, may miss up to 20% of 

underlying BCs [81]. It may also lead to a 30% rate of overdiagnosis and may increase unnecessary 

surgical procedures and patient anxiety[82]. These limitations have led to the investigation of 

blood associated protein markers[83] that can be used for BC screening before mammography. 

The feasibility of markers like CA15-3, HSP90A and PAI-1 for the early prognosis[84] is still 

unclear. It is thus critical to explore potential new markers that can help for early detection of BC. 

Our study focuses on evaluating the feasibility of FTIR spectral discrimination of serum from 

healthy controls and BC patients using protein conformational alteration in serum samples via 

spectral deconvolution[13].   

Moreover, the protein regulation[85], expression[86], and profiling[87] of tissues are 

commonly used as indicators for the diagnosis, treatment, and prognosis of various stages of 

BC[88]. FTIR spectrometry has also been successfully applied to commonly used diagnostic 

material, such as blood components[88-91], breast tissue[92, 93], hair[94, 95], and other biological 

samples[96], to discriminate BC samples[89-95]. Contrastingly, the applicability of the curve 
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fitting technique while discriminating IR spectra of control and BC sera samples have not been 

well understood[97]. Spectral fitting using characteristic Gaussian Function Energy Bands 

(GFEB), improves the resolution and ease the inherent IR spectral analysis difficulties involving 

highly overlapping absorbance peaks[25]. In fact, a key element appears to be missing; the details 

of GFEB that have attributed to the specific functional groups present in sera and their BC induced 

changes.  

Additionally, body fluids, including blood-components, are considered as precious and 

ideal diagnostic mediums of clinical biomarkers[98] owing to advantages of minimal invasiveness, 

low cost, and rapidity for sample collection and their processing. The assessment of BC associated 

changes in protein secondary structures of body fluids will thus be an emerging interest over the 

existing histopathological examination of the breast biopsy materials. Alterations in the 

biochemical composition of the serum could reflect changes of physiological states due to BC, 

enabling early disease diagnosis and treatment[99].  

1.4 Protein Conformational Studies using FTIR Spectroscopy 

X-ray crystallography and nuclear magnetic resonance (NMR) have been widely used to 

examine the structure of proteins and other biological macromolecules[100]. Despite the fact they 

have been successfully used in biochemical studies over the years when it comes to the high-

resolution analysis of protein structure and function, the use of these complementary spectroscopic 

methods is hindered by the need for sampling protocols[101] and sophisticated data analysis tools. 

The X-ray diffraction technique requires a well-ordered crystal[101], while the use of NMR 

spectroscopy is limited to small proteins[102]. Data analysis protocols for these techniques are 

also complex, complicating the interpretation of the results. These limitations have led to the 

development of alternative methods for determining protein structures.   
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FTIR spectroscopy is one alternative method that can be used for protein secondary 

structure analysis [4, 103, 104]. In previous reports, the FTIR spectroscopic investigation of 

protein secondary structures[105] in BC patient serum samples was validated by several other 

analytical techniques[106] such as X-ray, NMR[107] and Circular Dichroism spectra (CD)[108]. 

FTIR technique has also been tested with various sample types and conditions, including living 

cells[109], aqueous media[110], Hydrogen deuteration[111] in serum[112], dehydration[113], and 

heat-induced[114, 115] denaturation of serum. Additionally, spectral deconvolution[108] has been 

employed to diagnose or monitor various ailments, including prostate cancer[116], lymphoma, 

melanoma, Alzheimer’s disease[117], Parkinson’s disease[118], colitis, and scrapie[119]. 

Moreover, this method has been successfully used to study protein-protein interactions[120], the 

structure of calcium-binding proteins[121], and the understanding of the uses and misuses of 

techniques[122], their optimizations,[123] and instrumental improvisations[124]. Protein 

structure, as well as protein conformational changes[125], structural dynamics, and stability, have 

also been successfully determined using the second derivative curves[126]. All in all, FTIR 

spectroscopy has emerged as a powerful tool to study protein secondary structures and can be 

clinically useful in the early diagnosis of diseases.  

In the present proof-of-concept pilot study, we have used the FTIR spectral discrimination 

using curve fitting, to obtain the best fit that reflects protein conformational changes in serum 

samples of BC patients. The curve fitting technique is also elaborated on the complex spectral 

region of carbohydrates and nucleic acids, 1000-1140 cm-1 By deconvoluting these regions of 

experimental spectra with the corresponding GFEB of various biological components, the 

differentiating signatures of controls and cancerous spectra were determined. Other IR spectral 

markers such as peak positions of the absorbance curves and spectral signatures such as the ratio 
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of absorbance values in amide II to amide III bands are also considered for discrimination. 

Statistical analysis is further performed in these identifying spectral signatures to understand 

discriminating potential. Herein, the accepted scientific premise is that the BC associated genetic 

alteration in serum is reflected in the complex region of nucleic acids including deoxyribonucleic 

acids (DNA) and ribonucleic acids (RNA). Therefore, our discussion also includes the possible 

application of genetic and proteomic molecular mapping in serum samples via FTIR spectroscopy 

for early detection of BC. We have incorporated statistical measures, holistically evaluated the 

biochemical mapping of protein structures and circulating nucleic acid components by using IR 

spectral deconvolution. A unified fitting protocol for all the samples and a potential prototype 

applicable in clinical domain is also presented. These findings go beyond the earlier study[97] 

providing spectral signatures with higher sensitivities and specificity. Similarly, the 

implementation of optimized experimental and data analysis protocols, and quantification of the 

spectral signatures by scrutinizing molecular entities rather than relying entirely on wider spectral 

ranges, are the improvements over an earlier study[89]. 
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2 EXPERIMENT 

Sample handling and measurement methods were carried out in accordance with relevant 

guidelines and regulations. The sera were thawed upon purchase/obtain and stored at -80oC until 

analysis. Instrumentation, measurements and analysis follow the standard protocols[24, 25]. 

Herein, the selection of instruments, their measurement parameters, spectral 

measurement/analyzing protocols, animal model selection, and human patients’ samples are 

described in stepwise.  

2.1 FTIR Spectrometer 

All the IR spectral data were obtained with the use of a Bruker Vertex-70 FTIR 

spectrometer fitted a KBr beam splitter and Deuterated Tri-Glycine Sulfate (DTGS) detector. An 

MVP-Pro ATR accessory fitted with a diamond crystal configured to have a single reflection was 

used. Medium Blackman-Harris apodization function was employed with a resolution of 4 cm-1 

and a zero-filling factor of four to provide the best resolution ability (maximum signal-to-noise 

ratio). The aperture size is also set to 2.5 mm for the optimization of the detector response without 

saturation. A Parker-Ballston gas purging system was also used to maintain purified ambient air 

in the spectrometer. 

We have performed repeated measurements and extract information from several studies, 

including references [23-25, 32], while selecting these parameters. This selection allows us to 

reduce noise, and to analyze the spectral data without losing information during spectral 

deconvolution. Resolution of 2 cm-1 gives noisy derivative spectra and of 8 cm-1 resolution gives 

rise to missing secondary structure information (spectral signatures show a lower degree of 

variability), while using a diamond ATR crystal. Therefore, a resolution of 4 cm-1 with a zero-

filling factor of 4 to give a data spacing of 1 cm-1. Diamond has a smaller acceptance angle cone, 
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which allows having a good optical design to extract good spectra. Because of the strong robust, 

and chemically inert feature of the diamond, it is considered as the best ATR crystal for routine 

measurements of biological samples[127]. Thus, optimized values of measurement parameters are 

used in this experimental and equipment setup. 

2.2 Animal Growth and Sample Collection 

2.2.1 Dextran Sodium Sulfate (DSS) Mouse 

Three-week-old female C57BL/6 wild type (WT) mice were obtained from Jackson 

Laboratories (Bar Harbor, ME). Mice were group-housed under controlled temperature (25°C) and 

photoperiod (12:12-h light–dark cycle) and fed ad libitum. Animal experiments were approved by 

the Institutional Animal Care and Use Committee of Georgia State University (Atlanta, GA), and 

performed in accordance with the guide for the Care and Use of Laboratory Animals by U.S. Public 

Health Service. All procedures were approved under the IACUC protocol #A14010. 

C57BL/6 WT mice were administered DSS (MP Biomedicals, Solon, OH) at 3% in 

drinking water ad libitum for 7 days. Feces and blood were collected on day 0 (before DSS 

treatment) and day 7. Hemolysis-free serum was collected by centrifugation using serum separator 

tubes. Mice were sacrificed by CO2 euthanasia. 

2.2.2 Interleukin 10 Knockout (IL10-/-) Mouse  

The IL10-/- mouse model develops IBD in a time-dependent manner[59]. Similarly, the 

anti-TNFα treatment on IL10-/- mice show the therapeutic efficacy in resolving intestinal 

inflammation[60]. A study indicates that IBD development and their healing is independent of sex 

(male or female) in IL10-/- mouse[61]. Similarly, Anti-TNF drugs have proven highly effective 

for targeting and diminishing the downstream effects of TNFα activation. However, the precise 

mechanism is still unclear[128]. Studies have shown that a significant proportion of patients do 
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not respond to the treatment, or they lose the effect over time. Therefore, 30-40 % of CD patients 

and 25-30 % of UC patients still need surgery at some point during their life addition to the 

biological treatment[129, 130].   

In this study, eighteen, three weeks-old female (IL10-/-) knockouts mice, obtained from 

Jackson Laboratories (Bar Harbor, ME), were used. Nine mice were treated with anti-TNFα 

therapy, twice a week by intraperitoneal injection of anti-TNF antibody, starting from the 28th day 

of their birth, and rest (n=9) are treated with Phosphate buffered saline (PBS). Feces collected on 

day 28 (4 weeks) and day 98 (14 weeks), and Lipocalin-2 (Lcn-2) was measured to assess the 

intestinal inflammation in those mice[131]. Total RNA was also extracted from colon tissues for 

further analysis.  

Similarly, blood samples collected on day 28 and day 98 was centrifuged by using serum 

separator tubes for IR spectral measurements. Herein, samples collected from mice on day 28, 

before they develop colitis constitute the control or non-colitis (n=16). The samples extracted on 

days 98 of PBS injected mice are colitis (n=9). Similarly, the samples extracted on days 98 from 

anti- TNFα injected colitis- mice are treated (n=9). All studies were performed following the 

Institutional Animal Care and Use Committee at Georgia State University (Atlanta, GA), permit 

number: A14010. 

Herein, we have analyzed microRNAs (miRNAs) to analyze the efficacy of anti-TNF 

treatment. It is noted that miRNAs are promising biomarkers for IBD[132]. We examined the 

expression levels of pro-inflammatory cytokines in the colon, to understand the response of 

therapeutics. Herein, the colonic miRNA expression analysis is performed by the quantitative 

polymerase chain reaction (qPCR) by following the protocol as discussed[132].  
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2.2.3 Collagen Antibody-Induced Arthritis Mouse  

BALB/C WT mice received collagen antibody injections (200 µL) on day 0 by an 

intravenous (tail vein) injection. (On day 6, mice received lipopolysaccharide (200 µL) by 

intraperitoneal injection in order to boost the effect). Blood samples were collected from each 

mouse on pre-treatment (day 2) and on post-treatment (day 12) from the jugular vein. Hemolysis-

free serum was collected by centrifugation of the collected blood using serum separator tubes. 

2.2.4 Toll-Like Receptor Knockout (TLR5-/-) Mouse Model of Metabolic Syndrome 

TLR5-/-) mice were grown in our facility (Dr. Merlin’s lab at the Biology department). 

TLR5-/- spontaneously develop metabolic syndrome as previously described[133]. Age-matched 

wild type (WT) and TLR5-/- mice were fasted for 5-h and baseline blood glucose levels measured 

with a blood glucose meter (Roche) using blood collected from the tail vein.  

2.2.5 Human Sera of IBD Patients   

Serum samples of IBD human patients were provided by Dr. Emilie Vienna’s from Dr. 

Didier Merlin lab at the Institute for Biomedical Sciences, GSU, Atlanta, GA 30302, USA. These 

human sera were obtained from Equitech-Bio, Inc. (Kerrville, TX, USA). Information about IBD 

patients is provided below in Appendix A.4.  

2.2.6 B16 Melanoma or EL4 Lymphoblast Tumor Model 

C57BL/6J mice (6-8 weeks, 20-22 g, the Jackson Laboratory) were engrafted with B16 

melanoma or EL4 lymphoblast via subcutaneous (s. c.) route with 2 x 105 of each cell line.  B16 

and EL4 cells were obtained from the American Type Culture Collection (ATCC) and maintained 

in DMEM with 10% FBS prior to use. Mice were euthanized after 3 weeks of tumor inoculation 

when tumors were larger than 1000 mm3 in size (see figure 1, inset (i)). Serum samples from 

tumor-bearing mice and healthy mice were isolated and stored in -80oC until analysis. All 
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experiments using animals described in this study were approved (protocol number: A17015) by 

the Institutional Animal Care and Use Committee (IACUC) of Georgia State University, Atlanta, 

GA, and experiments were conducted according to the guideline of Office of Laboratory Animal 

Welfare (OLAW), Assurance number: D16-00527(A3914-01). 

2.2.7 Human Sera of Breast Cancer (BC) Patients 

Human sera from BC patients were obtained from the Breast Satellite Tissue Bank, 

Winship Cancer Institute, Emory University, Atlanta GA, USA. The Helsinki Declaration 

guidelines were followed for sample collection, and informed consent was obtained from all 

patients. Blood was collected without additives from patients after informed consent. The blood 

was then centrifuged at ~3200g for 10 minutes, and serum was pipetted and stored at -80oC until 

analysis. The control healthy individual sera were from the baseline collection of healthy women 

(age 41-58 years) participating in an independent intervention study under approval number 13317, 

Edith Cowan University, Perth, Australia. All participants provided informed consent. The sera 

were thawed, aliquoted in small volumes, and stored at -80oC until analysis. Information about the 

BC patients is provided below in appendix.   

In this study, the serum samples from healthy controls were provided by Dr. Marlena 

Catherine Kruger at the Department of Nutritional Science, School of Food and Advanced 

Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North 4442, 

New Zealand.  

2.3 Spectral Response Measurements 

The surface of ATR crystal was first cleaned with sterile phosphate-buffered saline and by 

ethanol. The cleanliness test was then conducted to ensure there are no signal peaks higher than 

the environmental noise level. Background measurement, showing the presence of any 
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environmental residue on the crystal surface or in the light path, was performed on a clean surface 

before each measurement. It allows us to get high-quality spectra using background corrections. 

Serum samples (1 µL) are deposited in order to fully cover the crystal surface and allowed to air 

dry (~10 minutes) at room temperature. An evanescent wave produced at the interface by the 

internal reflection of light interacts with the layer of the sample within the penetration depth[134] 

(see Appendix A.2 for detail). Each sample was scanned multiple times to get ten or more high-

quality (exactly overlapping) spectral data within the mid-infrared range 400 to 4000 cm-1 and 6 

reads of the 100 co-added scans for each sample (total of 600 scans) were averaged. Using OPUS 

6.5 software, all the spectra were min-max normalized by scaling the range 1800 to 900 cm-1. This 

range comprises a significant biochemical fingerprint of the biological material and the amides (I 

and II) bands[24]. Vector normalization[135] is another popular protocol where the average 

absorbance is subtracted from each data point, and the spectrum is divided by the square root of 

the sum of squares of absorbance. In general, the normalization protocol[24] can be chosen to best 

serve the purpose of comparison. In this study, min-max normalization to the amide I peak is 

employed as it emphasizes the deviation between the colitis and control sample spectra. Min-max 

normalized spectra were then sectioned within the range of 1800 to 900 cm-1 for further analysis. 

The vector normalization is also used while comparing the second derivatives spectra. 

2.4 Data Analysis 

2.4.1 Hierarchical Cluster Analysis (HCA) and Dendrogram Plot 

Our analysis includes the dendrogram of HCA, which is commonly employed to identify the 

similarities between the FTIR spectra by using the distances between frequencies and aggregation 

algorithms [63]. Using the “PAST (Paleontological STatistics[136]) 4 - the Past of the Future” 

software and the vector normalized second derivative curve of the absorbance spectra as input data 
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(variables), HCA is performed and the dendrogram is plotted. Dendrogram tree diagram 

performed, using Ward’s algorithm and Euclidian distance measurements, allow us to visualize 

the overall classification. 

2.4.2 Principal Component Analysis (PCA) 

PCA, a useful statistical analysis[137], is first performed to explain the holistic evaluation 

biomolecular content variations reflected in infrared absorbance data. Using the “PAST 

(PAleontological STatistics) 4 - the Past of the Future” software and the vector normalized second 

derivative curve of the absorbance spectra, as input data variables, we analyzed the variance-

covariance matrix with the pairwise exclusion of missing values to get the component plots. The 

scatter plot of PC1 and PC2 were used to visualize the clustering of groups together with different 

magnitudes and directions. The scree plot is also used to check the total variance presented by PC1 

and PC2 is significant. These findings from the PCA analysis led us to investigate spectral 

signatures useful in the clinical domain. 

2.4.3 Spectral Fitting (Deconvolution) for Protein Conformational Studies  

We perform quantitative analysis of the absorption band values at different spectral 

markers’ positions, which follows discrimination of secondary structures by deconvolution of the 

spectra in the amide I region. During the deconvolution process, the computed curve that best fit 

with the experimental spectrum is obtained from the superposition of Gaussian function energy 

bands (GFEB). The individual bands from deconvolution represent proteins’ secondary structures 

as discussed in the protocol papers, and similar studies in the field[108, 116-118, 120, 126] which 

were used to verify the applicability of this technique over complementary spectroscopic methods 

(X-ray crystallography, and nuclear magnetic resonance).  
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Figure 2.1 The process of spectral deconvolution[6]. (A) Second derivative spectra of 

amide I absorbance curve 1600-1700 cm-1.  (B) Gaussian function energy bands used to obtain a 

curve that fits the experimental absorption curve. (C) Second derivative spectra of nucleic acids 

and carbohydrates, complex band 1000-1140 cm-1. (D) Deconvolution of the complex band by 

estimating the number and position using the minima of the second derivative curve.  

 

The process of deconvolution includes sectioning of min-max normalized spectra followed 

by rubber-band correction with two baseline points, such that absorbance values at extreme ends 

of the selected region will be zero. These spectra were then fitted with GFEBs by approximating 

the position and the number of bands from the minima of second derivative spectra (Figure 2.1 

(A)) and also by the minimization of root mean square error via the Levenberg-Marquardt[138] 

algorithm. In the fitting process position, height, width, and hence integral varied such that the 

simulated curve best fits the experimental curve. Herein, the goodness of the fit is determined by 

the convergence of the root mean square error or the residual to a singular minimum value. Figure 
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2.1 (B) shows the spectral fitting within amide I. Using six bands with corresponding biological 

components; side chain, beta-sheet, alpha helix, disordered structure, and beta turns, we found that 

fitting solution is unique as determined by the second derivative. The minima (position and 

number) of the second derivatives of the spectral curves reflect the positions and the number of 

bands needed to fit the spectral curve. The minor variation of the positions of the six bands are all 

within the acceptable ranges for those biological components. Similarly, by choosing the number 

and positions of bands indicated, excellent root mean square (RMS) error values less than 0.0035 

were obtained.  It further allows us to overcome the challenges[139] of deconvolution process for 

quantitative analysis. Herein, by normalizing and sub-sectioning, the amide-I region of absorption 

spectra followed by baseline correction and spectral fitting, the effects of the bands describing 

individual biological components allow us for a more precise analysis of the spectra, thereby 

increasing confidence while comparing two states. 

Similarly, the complex region[140] of carbohydrates and nucleic acids 1140-1000 cm-1 is 

deconvoluted with six GFEB, describing individual biological components is as shown in figure 

2.1 (D).  The number and positions of GFEBs are again approximated by using the minima of 

second derivatives (figure 2.1 (C)). The sum of the integral areas covered by six bands was further 

statistically analyzed.  

2.4.4 Statistical Analysis  

Quantified values of these identifying spectral signatures are statistically analyzed to see 

the colitis-associated alteration in the blood serum, and their stabilization after biological therapy. 

Our statistical analysis mainly includes finding the sensitivity and specificity of the signatures for 

their discrimination. Sensitivity and Specificity of a diagnostic test are often used to describe the 

diagnostic accuracy/performance of the analysis in biomedical research[141]. The discriminating 
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potential of a diagnostic regimen can be quantified by the Youden index and the area under the 

receiver operating characteristic (ROC) curves [142]. The ROC curve is plotted to find the area 

under curve (AUC). The optimal cutoff value calculated based on the Youden index for each 

spectral marker is used to select the positivity/negativity of the disease and to estimate the 

sensitivity and specificity. 

  



27 

3 RESULTS 

The result section systematically explains the identifying spectral signatures in mouse 

models and human patients in a stepwise pattern. The quantitative information reflected in 

identifying spectral signatures; are further analyzed by using statistical analysis techniques.  

3.1 Identifying Infrared Spectral Signatures of IBD in Serum 

The serum sample extracted from the experimental models of IBD: IL10-/- and DSS mouse 

shows diagnostic accuracy with 80-100% sensitivity and specificity values. Importantly, the 

findings of human IBD patients’ study also resemble these proofs-of-concept investigations using 

mouse serum. Maximum values of sensitivity and specificity are 100% and 86%, respectively, in 

human samples. 

3.1.1 Spectral Signatures in Serum of DSS Mouse 

The encouraging results of the earlier studies using DSS mouse[4, 5] have motivated us 

further elaboration by monitoring the temporal variation of molecular composition in the serum 

along with the colitis aggravation[11]. We examined samples at days 0, 3, and 7 of the chemical 

feeding. Six mice (S1, S2, S3, S4, S5, and S6) were fed 3% DSS dissolved in drinking water. The 

serum samples were tested for the disease progression using the spectral response analysis. After 

analyzing the absorbance spectra within spectral range 1000-1140 cm-1, we learned the 

concentration of carbohydrates such as glucose and mannoses was elevated due to colitis as judged 

in previous studies[4, 5]. These studies have shown that the elevation of the spectral band 

representing the Mannose presence in the carbohydrate region. Similarly, increased presence of β-

pleated sheet protein secondary structures and decreased the presence of α-helical structures in the 

Amide I region (1600-1700 cm-1) is also evaluated.  
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Figure 3.1 (A) shows the average (n=6) of max-min normalized spectra of mice sera 

extracted from three different time periods before (days 0, 3, and 7 of chemical feedings) the DSS 

mouse model, with a Biomolecular assignment at different wavenumber regions. Our study is 

primarily focused on testing the temporal variation in serum components along with the colitis 

progression by analyzing identified unique spectral signatures of colitis (shaded regions in figure 

3.1). The second derivative curve of the absorbance spectra is shown in figure 3.1(B). Visual 

inspection of each type of spectrum shows the alteration of disease Biomarkers due to colitis. This 

variation can be seen on day 7 of DSS feeding, but not on day 3.  

 

 

Figure 3.1 (A) Averaged (n=6) ATR-FTIR spectra of serum samples derived from DSS 

mice on day 0, day 3, and day 7 of the chemical feeding. The variation in infrared absorbance on 

day 7 is higher in the complex region of carbohydrates and nucleic acids compared to on day 3. 
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(B) Second derivative curves of the absorbance spectra. Second derivative spectra show the 

variation on day 7 in the amide I region. Herein, shaded regions show two major regions of 

interest[11]. 

  

 

Figure 3.2 Longitudinal analysis of serum samples of DSS induced colitis mice[11]. (A) 

Normalized absorbance values in the range 1000-1140 cm-1 showing changes in spectral 

signatures representing carbohydrates and nucleic acids are significant at day 7, but not at day 3. 

(B) The integral ratio of Gaussian function energy bands representing α-helix and β-sheet 

secondary structures of proteins in serum samples extracted from six mice (S1, S2, S3, S4, S5 and 

S6). The secondary structure analysis also shows the significant changes only at Day 7.  
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 Figure 3. 2 (A) shows the normalized absorbance spectra covering the complex region of 

carbohydrates and nucleic acids (1000-1140 cm-1). IR absorbance values of this region are more 

on day 7, where mice develop fully colitis. In the normalized data, absorbance values of the 

spectral position, 1076 cm-1 representing mannose, for the control (day 0) are between 0.44-0.47 

a.u., colitis (day 7) are 0.49-0.53 a.u. that the values for the intermediate (day 3) stage lies within 

the range of control. Similarly, the ratio of the integral areas taken by GFEBs representing α-helical 

and β-pleated sheet protein secondary structures for each individual mouse is shown in figure 3.2 

(B). The integral ratio of α-helix and β-sheet protein structures also show a clear difference in the 

spectral data representing day 0 with those representing day 7 of chemical administration, while 

there is no significant difference in day 3 data. In these two regions of interests (first: Glucose, 

Fructose, Mannose, and Endocyclic C-O-C vibration and second: α-helical protein secondary 

structure of amide I and β-pleated sheet structures) show alteration with higher statistical 

significance (student’s t-test, two-tailed unequal variance p-value < 0.05).  

3.1.2 Spectral Signatures in Serum of IL10-/- Mouse 

This study is the follow up for an earlier study from our lab[5]. Addition to earlier studies, 

we have increased the number of mice (samples) and therapeutic effect of anti-TNFα is also 

evaluated[6].  

Discrimination of Absorbance Values:   To monitor the therapeutic response of colitis, 

we examine the chemical composition of serum samples derived from normal (n=16), IL10-/- 

induced colitis (n=9) and with anti-TNFα therapy IL10-/- mice (n=9). Figure 3.3 (A) shows 

average representations of the normalized absorption spectra of serum samples derived from each 

mice type. Herein, we have monitored previously identified IR spectral signatures for colitis in 

diseased species with anti-TNFα antibody therapy, which displays exciting results. The alteration 
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in the IR absorption values (at identifying spectral signatures) due to colitis in IL10-/- mice come 

close to control mice in the anti-TNFα treatment treated cases.  

 

 

Figure 3.3 Normalized absorbance curve and p-value calculation results[6]. (A) Averaged 

ATR-FTIR spectra of serum samples, derived from control (Non-Colitis, n=16), treated with anti-

TNFα antibody (Treated, n=9) and colitis untreated (Colitis, n=9) mice. These spectra show 

proper anti-TNFα therapy ameliorate the colitis condition. Inset shows magnification within 1200-

1000 cm-1 and 1660-1625 cm-1, which clearly shows how the absorbance curve of anti-TNFα 

treatment comes close to the control levels. (B) P-value calculation of colitis and treated 

conditions with control types. The p-value is less than 0.05 at various spectral bands while 

comparing non-colitis and colitis, but it is always greater than 0.05 while comparing non-colitis 

and treated. The region highlighted by the pink box is the region with p ≤ 0.05.  
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The student t-test p-values on absorption spectra representing normal, colitis, and antibody-

treated colitis mice are as given in Figure 3.3 (B). It shows how absorption values vary with control 

Vs treated and the control Vs colitis within the entire wavelength region 900-1800 cm 1. 

Throughout the whole wavelength region, the differentiating signatures better than 95% (or higher) 

are highlighted by the shadowed area. These spectral regions with biomolecular assignments and 

bond vibrations having a significantly better than 0.05 are assigned as C=O of lipids (1766-1780 

cm-1), amide I of proteins (1670-1710 cm-1), amide I and amide II of proteins (1548-1649 cm-1), 

CH3/CH2 bending (1317-1383 cm-1) and asymmetric PO2 stretching of phosphate lipids 1208-1244 

cm-1, and the mixed region of carbohydrates, and nucleic acids in 900-1159 cm-1. Due to the 

complexity of biological systems, biomolecular and bonding vibration assignments are tentative 

and are based on numerous studies as shown in table 3.1. The colitis associated changes in all these 

spectral bands come to the level of control in anti-TNFα antibody therapy mouse serum. 

 

Table 3.1 Discriminatory Infrared spectral bands of UC, with biomolecular assignments 

and their bond vibrations[6]. 

Band (cm-1) Assignment and vibrations  

900-1158 Carbohydrates[143, 144] (Glucose, Mannose, Fructose) and nucleic acids 

(Deoxyribose/Ribose DNA, RNA)[145]: C-O, C-C stretch, C-H bends, 

Endocyclic C-O-C vibration and, νs(PO2−)[146] 

1208-1244 Amide III, νas(PO2−)[147] 

1317-1382 Collagen: CH2 wagging, the vibration of α, and β anamor[148].  

1420-1430 Polysaccharides, νs (COO-), 𝛅(CH2) 

1480-1580 Amide II of proteins: (α-helical, β-pleated sheet, unordered conformation 

structures), δ(N-H), ν(C-N)[25]. 

1600-1700 Amide I of proteins: (α-helical, β-pleated sheet, β-turns, random coils, and side-

chain, β (anti-‖+turn) structures), ν(C=O), ν(C-N), CNN[25]. 

1720-1750 Lipids C=O stretching [149] 
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Identified spectral signatures: In this study, identified spectra signatures are: (a) 

absorption values at wavenumber 1033 cm-1 (I1033), primarily due to glucose presence; (b) 

absorption values at wavenumber 1076 cm-1 (I1076), representing the mannose as well as 

phosphate[23] presence; (c) the ratio of absorbance at wavenumber 1121 cm-1, associated with 

RNA presence, to its value at 1020 cm-1, associated with DNA presence (I1121/I1020); (d) the ratio 

of absorbance at wavenumber 1629 cm-1, indicating the protein presence, to 1737 cm-1 signaling 

the presence of lipids (I1629/I1737); (e) the ratio of Gaussian function energy bands representing α 

helix and β sheet protein secondary structures as obtained from the deconvolution of amide I 

region; and (f) the sum of the integral area of GFEBs used to fit the experimental curve within the 

complex band of carbohydrates, and nucleic acids 1000-1140 cm-1.  

Earlier, various serological markers were analyzed for IBD diagnosis[43] and 

discrimination of IBD types[150]. These studies have reported abnormalities in lipids, amino acids, 

and energy metabolisms in the serum samples of IBD patients[151]. Associations between fatty 

acids and inflammatory cytokines or the protein abundance and the epigenetic alteration in the 

samples of IBD patients have been also established[152].  

Similarly, proteomic analysis in serum samples of IL10-/- mice shows alterations of 

various proteins[54] under inflammatory conditions. The protein secondary structure alterations 

could be due to a melded manifestation of these protein variations. As such, variations in these 

reported serological markers are most likely the primary reason for the IBD induced changes in 

absorption frequencies of functional groups of proteins, carbohydrates, nucleic acids, and lipids.  
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Figure 3.4 Representation of identifying spectral signatures[6]. (A) Ensemble average 

representative of absorbance at wavenumber position 1033 cm-1. (B) Ensemble average 

representative of absorbance at wavenumber position 1076 cm-1. (C) The ratio of absorption 

values at wavenumber 1121 cm-1 to 1020 cm-1. (D) The ratio of absorbance at wavenumber 1629 

cm-1 to 1737 cm-1. (E) The integral values of Gaussian function energy bands representing the α 

helical structure of protein secondary structure. (F) The integral values of Gaussian function 

energy bands representing the β pleated sheet structure of protein secondary structure. (G) The 

integral ratio of α-helix and β-sheet protein secondary structures. It shows the increased level of 

β sheet structures and a decrease in α helix structures due to colitis and their resettlement in anti- 

TNF α therapy mice. (H) The sum of the integral area of GFEBs used to fit the experimental curve 

in the complex band 1000-1140 cm-1.   

The representation of ensemble averages for identifying five spectral signatures, I1033, I1076, 

I1121/I1020, I1629/I1737, integral ratio (α/β), and the sum of the area of GFEBs used to fit 1000-1140 

cm-1 are shown in Figure 3.4. Absorption values representing the glucose peak position at 1033 

cm-1 is shown in figure 3.4 (A), and this value at the mannose peak position 1076 cm-1 is shown in 
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figure 3.4 (B). The average ratio of the RNA peak to DNA peak (I1121/I1020) is as indicated in figure 

3.4 (C), and the average ratio of the peak representing protein to lipid peak is shown in figure 3.4 

(D). Figure 3.4 (E) and figure 3.4 (F) shows the integral values of the α-helix and β-sheet protein 

secondary structures, respectively. Similarly, the average integral ratio of α-helix to the β-sheet 

structure is shown in figure 3.4 (G). The sum of integral values of Gaussian bands used to fit the 

experimental curve within 1000-1140 cm-1 are shown in figure 3.4 (H). These absorption and ratio 

values are also tabulated in Table 3.2.  

Although, the precise mechanism of anti-TNFα treatment in IL10-/- mice that helps to 

regain altered biomolecules into the control level is still unknown[128]. Specifically, proteomic 

marker (α/β) could be due to either due to anti-TNF alpha or due to the downstream expression of 

other proteins. However, our experimental demonstration verifies the efficacy of IR spectroscopy 

to monitor the signature of anti-TNFα therapy for inflammatory bowel diseases. Since the focus 

of this work is to identify the IR signatures, regaining of altered spectral signatures of IBD close 

to the control level in anti-TNFα treatment is an important finding.  

 

Table 3.2 Quantified values of identifying spectral signatures: I1033, I1076, I1121/I1020, 

I1629/I1737, integral ratio (α/β), and the sum of the integral area of GFEBs used to fit the 

experimental complex band 1000-1140 cm-1[6]. Tabulated p-values represent a comparison 

between control and colitis. 

Features Glucose 

(1033 cm-1) 

Mannose 

(1076cm-1) 

RNA/DNA 

(1121/1020) 

Protein/Lipid 

(1629/1737) 

Integral  

Ratio (α/β) 

Integral sum 

Complex  

Control 0.36 ± 0.01 0.42± 0.01 1.29±0.02 31.54±0.69 4.34±0.09 13.04±0.16 

Colitis 0.41 ± 0.01 0.46± 0.01 1.19±0.01 33.85±0.69 4.40±0.06 14.17±0.12 

Treated 0.36 ± 0.01 0.42± 0.01 1.29±0.02 32.98±0.73 3.49±0.14 13.0±0.18 

P-value 1.3E-03 2.9E-03 4E-04 0.04 1.9E-05 2.1E-05 
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Statistical Analysis: The heterogeneity between each study type is further tested by using 

quantitative analysis that involves the calculation of Youden’s index, the area under the receiver 

operating characteristic (ROC) curves, sensitivity, specificity, and the calculated p-value [142]. 

Statistical measures[141] of these discrimination techniques also reveal the feasibility of the 

studied monitoring regimen in the clinical domain. The ROC curves are plotted to find the area 

under the curve (AUC); for each of these features, the threshold values were used to estimate the 

sensitivity and specificity. Then, the Youden index, (the maximum of sensitivity + specificity – 

1), was used to find the optimal cutoff values among the threshold values. Herein, figure 3.5 (A) 

shows the confirmation of the effect of anti-TNFα therapy in studying mouse groups evaluated by 

analyzing expression levels of TNFα in the total RNAs extracted from colons. ROC plots for the 

(α/β) signature are shown in figure 3.5 (B).  

 

 

Figure 3.5 (A) The expression levels of TNFα in the Total RNAs extracted from colons. 

The level of TNFα is quantified by qPCR and it confirms the effect of anti-TNFα therapy. (B) ROC 

curve for the data obtained from the ratio of the integral area of energy bands representing α-

helix and β-sheet protein secondary structures. AUC is 0.95 while comparing colitis and non-
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colitis, but its value is 0.46 while comparing non-colitis and the treated. High diagnostic accuracy 

(with AUC = 0.95) can be seen for colitis, but poor diagnostic accuracy (with AUC =0.46) for the 

treated[6].  

 

The maximum sensitivity and specificity of this particular signature were found to be 100% 

and 81%, respectively. Sensitivity and specificity are major concerns in such studies and analysis 

led to the identification of statistically significant differences in IR spectral markers between non-

colitis, IL10-/- induced colitis, and with anti-TNFα treated mice experiments. Sensitivity, 

specificity, and AUC values are calculated for all the identifying spectral signatures as shown in 

table 3.3. Statistically, significant differences can be seen between non-colitis and colitis 

conditions for identifying signatures. However, while comparing control and the treated 

conditions, approximately 50% (0.5) AUC values can be obtained, showing there is not statistically 

difference between control and treated groups.   

 

Table 3. 3 Sensitivity, specificity and AUC value calculations of identifying spectral 

signatures of UC in IL10-/- mouse[6]. 

Specifications 

 Signatures 

Glucose 

(1033 cm-1) 

Mannose 

(1076 cm-1) 

RNA/DNA 

(1121/1020) 

Protein/Lipid 

(1629/1737) 

Integral 

Ratio (α/β) 

Integral sum 

complex band 

Sensitivity 89 89 100 90 100 100 

Specificity 88 88 75 56 81 75 

AUC (control 

& colitis) 
0.88 0.86 0.90 0.73 0.95 0.92 

AUC (control 

and treated) 
0.54 0.56 0.49 0.66 0.46 0.55 
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As seen in table 3.3, AUC values while comparing control and treated are 0.54, 0.56, 0.49, 

0.66, 0.46 and 0.55 for the spectral signatures: I1033, I1076, I1121/I1020, I1629/I1737, integral ratio (α/β), 

and the integral sum, respectively. Since the AUC values of colitis and non-colitis are higher (close 

to 90%) and that of non-colitis and treated is close to 50%, showing these spectral signatures can 

be applied to drug signature monitoring. Having shown the discriminating potential of the present 

diagnostic regimen; it is essential to study many samples producing acceptable sensitivity and 

specificity values. Discriminating temporal variation during disease progression or its suppression 

is also a critical follow-up step.  

The present study provides a detailed insight into the molecular structural changes in serum 

samples of the IL10-/- IBD mouse model. Infrared spectral signatures representing proteins, 

carbohydrates, nucleic acids, and lipids are identified as the potential signatures reflecting 

molecular changes. The success of the present technique in measuring the effect of anti-TNFα on 

the identified spectral signatures will provide an additional level of information about the treatment 

option of IBD patients and will increase the possibility of adapting this technique for disease status 

monitoring. Addressing the cost and hassle of colonoscopy that discourages people from being 

screened timely, doctors, particularly primary care physicians can make their patients more aware 

of IR spectroscopic analysis of blood serum. If the test shows an indication of diseases, 

colonoscopy can be performed. However, at its present form, the molecular mapping in serum 

samples as the IR signatures of the disease cannot replace gold standard colonoscopy tests but will 

provide additional information about the IBD patients before colonoscopy. Therefore, the 

feasibility of FTIR spectroscopy to extract a snapshot of cumulative molecular interactions within 

mouse serum samples for IBD study warrant a thorough investigation, as enabled by 

interdisciplinary collaborations between spectroscopists, biologists, and clinicians.  
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Using a statistically significant number of experimental mouse models with different stages 

of disease progression and healing can establish an association between identifying spectral 

signature changes with the disease stage. Mouse model study helps us to establish an association 

between spectral signatures of IBDs with histological findings of intestinal tissues. Understanding 

the association between identifying spectral signatures and the abolition or restoration of tissue 

functions in the intestinal tract is important because lymphocytes infiltrations and erosion of crypt 

can be seen in the diseased IL10-/- mice.  

Additionally, by building a logistic regression model for the spectral features and doing 

cross-validation, a correlation between the degree of variation in spectral signatures and the level 

of Lcn-2 in their stool or myeloperoxidase (MPO) activity of the distal colon can be established. 

Research into samples of mice with intermediate stages of the disease will provide more insights 

into the evolution of healing and add confidence to the analysis and the applicability of the 

technique for early diagnostics. However, the animal models are not enough for preclinical human 

disease studies and for confirming the potential clinical effects in humans. Therefore, a follow-up 

step would be to analyze a statistically significant number of human samples to examine covariate 

effects of demographic and clinicopathological variables like age, weight, ethnicity, diet, disease 

stage, and comorbidities on the spectral signatures.  

3.1.3 Spectral Signatures in Serum of Human Colitis Patients 

Discriminate Control and UC Sera Using Absorbance values: Figure. 3.6 (A) shows a 

typical min-max normalized[24] spectrum covering the fingerprint region for biomolecules 

comprised of various biological functional groups of lipids, proteins, nucleic acids, and 

carbohydrates. The spectral difference (UC-Control), as shown in the solid green line (▬) of 

Figure. 3.6 (B), is significantly higher than the difference obtained from the multiple 
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measurements of the same sample for both Control (▬ ▬) dashed and UC (••••) dotted lines, 

almost completely overlapping). Figure. 3.6(C) shows the p-values of the Student’s two-sample t-

test (with two-tailed unequal variance) for the absorbance representing 28 healthy volunteers 

(controls) and 18 UC patients. P-values less than the nominal significance level of 0.05 indicate 

the most discriminatory features of the spectrum. P-values less than 0.025 show the validity of all 

the features, except for regions of lipid (pink line ▬ ▬).  

The prominent, discriminatory regions include C=O/C-N stretching and N-H bends in 

amides, C=O in stretching lipids, RNA/DNA nucleotides and C-O vibrations of 

carbohydrates[153]. Because of the complexity of biological systems, biomolecular and bonding 

vibration assignments are tentative and are based on numerous studies[23, 25, 147, 154-156]. The 

spectral region, 1700-1750 cm-1, is primarily recognized by its C=O stretching band in lipids[23, 

147]. The amide I (1600-1700 cm-1) vibration is known to be sensitive to the secondary structure 

of proteins[25], which mainly arises due to C=O stretching vibration with minor contributions 

from out-of-phase C-H stretching vibrations, C-C-N deformation and N-H in-plane bends. Spectral 

band around 1578 cm-1 is due to C=N adenine[147] while the region 1136-1153 cm-1 is due to the 

ring vibration mode of C-O-C including C-O-H, C-O and C-C stretch[154]. The spectral band 900-

1091 cm-1 results from C-O, C-C stretch, C-H bend, deoxyribose/ribose DNA, RNA, is(PO2−) 

[154] of carbohydrates and nucleic acids.  
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Figure 3.6 Infrared absorption spectra of sera to discriminate control and UC conditions. 

(A) Ensemble average representative of min-max normalized absorbance spectra of 28 control 

serum samples (healthy volunteers) and 18 UC patients indicating biomolecular assignments. (B) 

The spectral response difference between UC and control. The average absorbance values of UC 

conditions are elevated at carbohydrate and nucleic acids regions and fluctuating up and down in 

the Amides region. The difference between repeat measurements of the same sample (Multiple 

Controls and Multiple UCs) shown by the (▬ ▬ the blue dashed and •••• the red dotted lines 

respectively) lines are negligible compared to the difference spectra between the average UC and 

average control (▬ green; UC-Control). (C) p-values of the Student’s t-test (with two-tailed 

unequal variance) for the absorbance representing healthy volunteers and UC patients. p-values 
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less than 0.05 are used to the highlight strongest discriminatory features of the spectrum. p-values 

less than 0.025 (horizontal ▬ ▬ pink-dotted line) show the validity of all the features except lipids. 

 

Studies have investigated various serological markers[43] for UC diagnosis and the 

discrimination between UC types with their clinical feasibility[150]. These studies have reported 

abnormalities in lipids, amino acids, and energy metabolisms in the serum samples of IBD 

patients[151]. Associations[152] between fatty acids and inflammatory cytokines or the protein 

abundance and the epigenetic alteration in the samples of UC patients have been established. As 

such, variations in these reported serological markers are most likely the primary reason for the 

UC induced changes in absorption frequencies of functional groups of lipids, proteins, nucleic 

acids and carbohydrates.  

Protein Secondary Structure Analysis Via Spectral Deconvolution: The amide I 

band[25], 1600-1700 cm-1, has been used for the analysis of protein secondary structures, 

especially to observe their alteration due to changes in health conditions. We have also 

implemented a spectral deconvolution technique within the amide I band to find the protein 

secondary structure alteration in sera due to UC. The spectral band 1600-1700 cm-1 is deconvoluted 

into six Gaussian band energy profiles representing the side chain (~1610 cm-1), β-sheet (~1630 

cm-1), random coil (~1645 cm-1), α-helix (~1652 cm-1), β-turn (~1682 cm-1), and β-sheet anti-

parallel (~1690 cm-1) structures. Herein, the minima of the second derivative spectra are used to 

find the position and the number of Gaussian function energy bands enough to fit the experimental 

absorption curve. The integral area covered by energy bands representing the α-helix and β-sheet 

is larger compared to other structures: side chain, antiparallel beta-sheet, disordered structure, and 
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beta turns.  In addition, the UC-associated alteration in the integral bands is also significantly larger 

in the α-helix and β-sheet structures, hence only these two structures will be analyzed.   

 

 

Figure 3.7 Plots of integral values of Gaussian function energy bands representing α-helix, 

β-sheet protein secondary structures in human sera. (A) Quantified integral values of α-helix 

components. (B) The integral values of β-sheet components. (C) Ensemble average representation 

of integral values of α-helix. P-values for the integral area of α-helix is 0.05 and for the mean 

position is 0.03. (D) Ensemble average representation of integral values of the β-sheet. P-values 

for the integral area of β-sheet is 9E-07 and mean position is 0.3. (E) Representation of integral 
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ratios between corresponding α-helix and β-sheet structures. Average values of control and UC 

cases for the integral ratio of α-helix to β-sheet (Integral (α/β)) shows a statistically significant 

difference with a p-value of 1E-04. (F) The ROC curve of the Integral (α/β) and the corresponding 

AUC. 

 

Figure. 3.7 shows a plot of the integral values of Gaussian energy bands representing the 

α-helix and β-sheet protein secondary structures. The integral values of the α-helix components 

are less for UC cases compared with controls (Figure. 3.7 (A)), while the integral values of the β-

sheet components are higher in UC cases compared with controls (Figure. 3.7 (B)). A significant 

difference between the integral ratios of the α-helix and β-sheet structures can be obtained between 

the control and UC groups in this study (Figure. 3.7 (C)). The mean wavenumber position, 1650.81 

± 0.07, of the energy band representing the α-helix structure has significantly moved towards the 

higher wavenumber position, 1651.05 ± 0.32 (with a p-value = 0.03), as shown in Table 3.5. 

Similarly, the integral area covered by the energy-band representing the β-sheet structures are 

different (p-value = 9E-07) between the control (19.05 ± 0.15) and UC (20.40 ± 0.17).  

Table 3.4 Quantified information about average integral values and average position of α-

helix and β-sheet secondary structure, energy bands in human serum samples. 

 

Identified Spectral Signatures: Identified spectral signatures in this study are I1033, I1076, 

I1121/I1020, I1629/I1737, and α/β secondary structure analysis. Histogram representation of ensemble 

Features Types Integral  

± std. error 

Significance 

(p-values) 

Wavenumber  

 ± std. error 

Significance  

(p-values) 

α-helix Control 42.74±0.25 No (> 0.05) 1650.81±0.07 Yes (< 9E-

07) UC 41.94±0.08 1651.05±0.32 

β-sheet Control 19.05±0.15 Yes (< 0.03) 1629.94±0.11 No (> 0.3) 

UC 20.40±0.17 1630.12±0.11 
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averages for four spectral signatures, I1033, I1076, I1121/I1020, and I1629/I1737, are shown in Figure. 3.8 

(A), 3.8 (B), 3.8 (C) and 3.8 (D), respectively.  

 

Figure 3.8 Histogram representation of identifying spectral signatures. (A) Ensemble 

average representative of absorbance of wavenumber position 1033 cm 1. (B) Ensemble average 

representative of absorbance of wavenumber position 1076 cm-1. (C) The ratio of absorbance 

values (I1121/I1020) at wavenumber 1121 cm-1 to 1020 cm-1. (D) The ratio of absorbances (I1629/I1737) 

at wavenumber 1629 cm-1 to 1737 cm-1.  

 

The altered pattern between UC and control groups can be seen by comparing the range of 

data points and their average values in the identified spectral signatures as tabulated with standard 

error in the unshaded region of table 3.6. The average absorbance value of the glucose peak for 
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control and UC is 0.274±0.004 and 0.303±0.007 and the average for the mannose peak (for control 

and UC) are 0.349±0.004 and 0.373±0.006, respectively. Similarly, the average ratio of the RNA 

peak to the DNA peak is 1.510±0.011 (control) and 1.362±0.015 (UC), the average ratio of the 

peak representing protein to lipid peak is 28.804±0.642 (control) and 33.373±1.519 (UC) and the 

average integral ratio of α-helix to β-sheet structure is 2.250±0.030 (control) and 2.061±0.033 

(UC). 

Sensitivity and Specificity: The discriminating potential of any diagnostic technique is 

further evaluated by sensitivity, specificity, ROC, AUC. Figure 3.7 (F) shows the ROC curve of 

the integral ratio (α/β) and the corresponding AUC. Similarly, for each feature (Table 3.6) optimal 

cutoff values, AUC values, sensitivity and specificity were calculated with the aid of ROC curves. 

Quantified information about these features for corresponding spectral signatures are shown in the 

shaded region in Table 3.6. The maximum values of sensitivity and specificity values of each 

feature describe the differences between the UC versus the control groups. 
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Table 3.5 Quantified information about identifying discriminatory bands. These include 

absorbance values at 1033 cm-1 and 1076 cm-1, the ratios of absorbance at 1121 cm-1 to 1020 cm-

1, 1629 cm-1 to 1737 cm-1. The integral ratios of Gaussian function energy bands representing α-

helix and β-sheet protein secondary structures are also discussed. Statistical measures of 

discriminatory infrared spectral signatures for UC using sera shown in the shadowed region of 

the table. The optimal cut-off and the corresponding sensitivity and specificity are calculated 

based on the Youden index. P-values are calculated based on the student’s t-test with a two-tailed 

unequal variance.   

Types I1033 I1076 I1121/I1020 I1629/I1737 Integral(α/β) 

Control Range 0.244- 

0.328 

0.325- 

0.405 

1.482- 

1.611 

21.124-

34.066 

1.973- 

2.547 

Average 

± std. error 

0.274± 

0.004 

0.349± 

0.004 

1.510± 

0.011 

28.804± 

0.642 

2.250± 

0.030 

UC Range 0.257- 

0.375 

0.329- 

0.416 

1.231- 

1.444 

22.261-

48.055 

1.896- 

2.469 

Average 

± std. error 

0.303± 

0.007 

0.373± 

0.006 

1.362± 

0.015 

33.373± 

1.519 

2.061± 

0.033 

Cut-off value 0.273289 0.351057 1.44565 32.8145 2.09855 

AUC 0.7817 0.7619 0.9444 0.7619 0.8313 

Sensitivity (%) 89 78 100 61 78 

Specificity (%) 68 68 86 93 82 

p-value 0.001 0.003 2E-10 0.003 0.0001 

 

 

3.2 Spectral Signatures of Lymphoma and Melanoma in Serum Samples of Mouse 

Models 

Discrimination of Absorbance Values:   Figure 3.9 (a) shows the average normalized 

ATR-FTIR spectrum of air-dried serum samples extracted from tumor-bearing mouse models of 

EL4 lymphoma (n=8) and B16 melanoma (n=8) in wild types and corresponding control types 

(n=15). Using the student’s t-test, p-values (two-tailed unequal variance), the most discriminatory 
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features of the spectrum within the spectral range 1800-900 cm-1, were extracted (figure 1(b)). 

Interestingly, the features observed for different groups enable the classification between control 

cases and malignant cases and between the two malignant cases of lymphoma and melanoma. 

Molecular assignments[33, 157-161] of five spectral bands showing discrimination of EL4 

lymphoma from their control types, with higher significance (i.e. p-values < 0.05) are presented in 

Table 1. These are the bands originating from (i) amide I of protein, (ii) amide II of protein (iii) C-

H deformation of CH3/CH2 groups, (iv) asymmetric phosphate I, and (v) Carbohydrates and nucleic 

acids. Similarly, two spectral bands showing the significant difference between B16 melanoma and 

their control types are also shown in the shaded regions of the table. Significant alteration in the 

amide I band, and the complex band of carbohydrate and the nucleic acids are observed for B16 

melanoma. The difference in the p-values observed between lymphoma and melanoma could be 

attributed to the difference in mechanism of each type of tumor development, while similarity could 

be attributed to common etiology[162].  
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Figure 3.9 The discriminatory region of infrared absorbance spectra. (a) Average 

normalized ATR-FTIR spectra of serum samples extracted from EL4-lymphoma (n=8), B16-

melanoma (n=8) mouse models in wild types and corresponding control types (n=15). The inset 

(i) shows B16-melanoma mouse with tumor size approximately 1000 mm3 (day 18). An increase in 

volume of the tumor from day 9 to day 18 of tumor inoculation in B16-melanoma mouse is as in 

inset (ii). Like the B16 mouse, the elevation of tumor size is also monitored in EL4-lymphoma. The 

serum sample is extracted for both types of mice when tumor size becomes bigger than 1000 mm3. 

(b) Student’s t-test (two-tailed unequal variance) p-values of absorbance. Discriminatory region 

for lymphoma with higher significance (p< 0.05) are amide I of protein, amide II of protein, C-H 

bends of CH3/CH2 groups in α- and β- anomers, asymmetric phosphate I, and carbohydrates with 

predominant contributions nucleic acids (DNA/RNA via PO2
- stretches). Discriminatory regions 

of melanoma are amide I and carbohydrates with predominant contributions of nucleic acids[12].  



50 

 

Table 3.6 Discriminatory infrared spectral bands of lymphoma and melanoma serum 

with biomolecular assignments[12]. 

Wavenumber region 

 (cm -1) 

Assignments (taken from references[33, 157-161]) 

i 1700-1600 Amide I of proteins: (α-helical, β-pleated sheet, β-turns, random 

coils and side-chain structures), ν(C=O), ν(C-N), CNN. 

ii 1480-1580 Amide II of proteins: (α-helical, β-pleated sheet, unordered 

conformation structures), δ(N-H), ν(C-N). 

iii 1325-1380 C-H deformation: due to CH3/CH2 bending (groups in α and β 

anomers) of lipids and proteins. 

iv 1190-1240 Asymmetric phosphate I: νas(PO2
-) of lipid phosphates. 

v 1000-1140 Carbohydrates and nucleic acids: C-O, C-C stretch, C-H bends, 

deoxyribose/ribose DNA, RNA, νs(PO2
-).  

 

Protein Secondary Structure Analysis by Deconvolution of Amide I Band:  In order to 

demonstrate alterations in structural components due to malignancy, integral values of α–helical 

and β–sheet structures and their ratios were statistically analyzed. Figure 3.10 (a) and 3.10 (b) 

show the cluster plots of the integrals of α–helical and β–sheet structures respectively for the 

control, B16 and EL4 mice. These figures clearly demonstrate a separation between the 

corresponding integral values for the control and tumorous groups for β–sheet and α–helix. 

Furthermore, the ratio of integral values α–helix to β–sheet (figure 3.10 (c)) is always less than the 

control values for both mouse models with greater than 99% significance.  
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Figure 3.10 Plots of the protein secondary structures (α-helix, β-sheet) and their ratio[12]. 

(a) Quantified integral (area covered) values of α-helix components are less for tumorous cases 

compared to control. (b) Integral values of β-sheet components are higher for tumorous cases 

compared to control (c) Bar graph representation of average integral ratios between α-helix and 

β-sheet for the control, B16 and EL4. Significant alteration in integral ratio (α-helix/β-sheet) is 

found between control and tumorigenic case.  

 

Amide I and II Absorbance Values:  Amide I and Amide II are the two major bands of 

the infrared spectrum for protein interrogation in biological materials[157, 158]. The intensity and 

position of these bands, determined by backbone conformation of the hydrogen bonding pattern 

change with malignancies[62, 163]. Amide I band position shifts towards the lower wavenumber 

due to malignancy. The average position of amide I representing control is at 1641 cm-1, B16 is 
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1640 cm-1 and that of EL4 is 1638 cm-1, but the position of amide II stays the same at 1538 cm-1 

for all three types. Altered position of amide I is statistically significant for EL4 (*p = 0.001) while 

that of B16 is not significant (*p =0.2). Similarly, the altered ratio between amide I and amide II 

absorbance values are significant (*p = 0.01) for EL4 lymphoma, but not (*p = 0.3) for B16 

melanoma in comparison to the control groups.  

Nucleic Acids and Carbohydrate Analysis: In the region 1140-1000 cm-1, there are 

plenty of overlapping vibrational modes of biological macromolecules[23] with the major 

contribution of nucleic acids and carbohydrates[24]. Bands approximately at 1121 cm-1 arise from 

RNA absorbance, whereas the band at 1020 cm-1 arises from DNA absorbance[145].  The spectral 

band near 1080 cm-1 is due to νs(PO2
-), and the band approximately at 1056 cm-1 corresponding to 

the νs(PO2
-) absorbance of phosphodiesters of nucleic acids and the O-H stretching coupled with 

C-O bending of C-OH groups of carbohydrates[164]. Similarly, absorbance near 1033 cm-1 and 

1076 cm-1 are due to the presence of glucose (C-O stretching carbohydrate, β-anomer) and 

mannose (C-O stretching carbohydrate α-anomer). Alteration in the concentration of two 

sequences of basic genetic materials- (a) RNA (which play an active role in protein synthesis) and 

(b) DNA (which is primarily involved in the storage, copying and transferring genetic 

information), has been already reported from the tissue analysis of NHL[145] and subcutaneous 

melanoma[165]. Due to the fluctuation in these biomolecules, there is a dissimilarity between 

malignant groups from their control types. In order to verify these dissimilarities, we have used 

Hierarchical Cluster Analysis (HCA) along with spectral deconvolution within this spectral range.  

Dendrogram of hierarchical cluster analysis: HCA is commonly employed to identify 

the similarities between the FTIR spectra by using the distances between spectra and aggregation 

algorithms[63]. The dendrogram of HCA is performed with ATR-FTIR spectra of control, B16, 
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and EL4 mice are shown in figure 3.11. Dendrogram tree diagram performed using spectral region 

of nucleic acids and carbohydrates, 1140-1000 cm-1, using Ward’s algorithm and squared 

Euclidian distance measurements, allow us to visualize of overall grouping structure, including the 

sub-groups. The distinct cluster for the control spectra which are grouped together, describing a 

high degree of similarity within the groups. Similarly, there is a distinct clustering in the cancer 

spectra showing the higher degree of heterogeneity between spectra of cancerous groups. 

 

 

Figure 3.11 Dendrogram of hierarchical cluster analysis[12]. The dendrogram tree 

diagram performed within spectral range 1140-1000 cm-1, by using Ward’s algorithm and squared 

Euclidian distance measurements. The spectra are correctly classified. Control spectra appear 

grouped together, which describes a high degree of similarity within the groups. Similarly, there 

is a distinct clustering in the cancer spectra in two subgroups showing the higher degree of 

heterogeneity between cancerous spectra.  
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Figure 3.12 The integral sum of Gaussian energy profiles used to fit experimental curves 

within 1000-1140 cm-1. (a) The sum of integral values of control groups cluster within the 

approximate range 12-14, B16 covers the range 15-17 and EL4 covers 15-18. (b) Bar graph 

representation of the average value of the integral sum which shows significant differences 

between control and tumorigenic case[12]. 

  

Furthermore, to quantify tumor-associated alteration within this complex spectral region 

of 1140-1000 cm-1, deconvolution of experimental spectra into Gaussian function band profiles is 

further employed. Six Gaussian function energy band profiles (figure 5(b)) are used to fit the 

spectra by approximating number and position using the minima of second derivatives (figure 

5(a)). The sum of the integral areas covered by six bands (integral values) is then statistically 

analyzed to evaluate the tumor-associated alteration in the serum. A calibration curve is obtained, 
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as shown in figure 3.12(a) between control and tumorous groups. A clear separation between 

control (12-14) and cases of tumorigenicity B16 (15-17) and EL4 (15-18) is found while adding 

integral values. The bar graph representation of these values with significance greater than 99% is 

shown in figure 3.12(b).  

 

Table 3.7 Quantified values of discriminatory features. Clear separation can be seen 

between control and cancerous cases (both B16 and EL4) while comparing integral values of α-

helix, β-sheet structure components, and their ratios. Similarly, the altered position of amide I 

peak, amide I/amide II ratio and absorbance values at 1212 and 1335 cm-1 show significant 

difference only between EL4 and control. 

Feature Spectral deconvolution Amide I and II Absorbance 

 Amide I 

1600-1700 cm-1 

Mixed 

region 

1000-1140 

Position 

amide I 

Ratio: 

abs 

Amide 

I/II 

νas 

(PO2
-) 

~1212 

cm-1 

C-H 

def. 

~1335 

cm-1  Integral values Ratio 

(α/β) 

Integral 

sum  α-helix β-sheet 

Control 40.6-

44.9 

16.3-

19.3 

2.2- 

2.7 

12.2-13.9 1640-

1645 

1.10-1.13 0.42-

0.44 

0.54-

0.59 

B16 38.9-

40.2 

19-20.2 1.9- 

2.1 

14.8-16.8 1638-

1644 

1.10-1.15 0.42-

0.45 

0.54-

0.59 

EL4 38.1-

39.9 

19.1-

21.1 

1.7- 

2.1 

14.8-17.1 1636-

1642 

1.12-1.15 0.43-

0.46 

0.58-

0.59 

 

 

3.3 Spectral Signatures of BC in Serum of Human Patients  

Using absorbance spectral data of serum samples (using n = 10 each BC and controls), we 

investigate the applicability of FTIR spectroscopy to discriminate between the control and cancer 

sera. ATR sample mode of FTIR spectroscopy is used, and the discrimination between the control 

and test groups were done using various data analysis techniques. The investigation involves 
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multivariate analysis, p-value calculation, quantification by spectral deconvolution and is followed 

by statistical analysis. 

 

 

Figure 3.13 PCA analysis of second derivatives curves of FTIR absorbance spectra[13]. 

(A) PCA scores plots (PC1 x PC2) with 95% confidence ellipse. The data related to control groups 

(• • black dots enclosed by a black shaded ellipse) and BC (▪ ▪ red dots surrounded by a red-shaded 

ellipse) are clustered together with different magnitudes and directions. (B) Scree plot of 

eigenvalues showing the percentage variance of components one and two is significant compared 

to others.  

 

Principal Component Analysis: (PCA), a useful statistical analysis[137], is first 

performed to explain the holistic evaluation of protein structural content variations reflected in 

amides (amide I and II region, 1480-1600 cm-1). Herein, each of the ten samples is measured twice 

(measurement replicates) to obtain 20 spectral data of BC and 20 of control. Using the “PAST 

(PAleontological STatistics) 4 - the Past of the Future” software and the vector normalized second 

derivative curve of the absorbance spectra within 1480-1600 cm-1, as input data variables, we 



57 

analyzed the variance-covariance matrix with the pairwise exclusion of missing values to get the 

component plots. The output of the component plot with 95% ellipses is showing (Figure 3.13 (A)) 

a clear separation between each studied group. The scatter plot of PC1 (variability 88%) and PC2 

(variability 6%) shows the data related to control and BC groups are clustered together with 

different magnitudes and directions. Figure 3.13 (B) is the scree plot showing the total variance 

presented by PC1 and PC2 are significant. These findings from the PCA analysis of amide bands 

have led us to investigate spectral signatures useful in the clinical domain.  

Discrimination of Average Absorbance: The average of normalized absorbance spectra 

for both control and BC sera that includes the fingerprint region of biological functional groups 

(lipids, proteins, nucleic acids, and carbohydrates) is shown in Figure 3.14(A). Solely by looking 

at the FTIR spectra, it is difficult to discriminate between the absorbance of the functional 

components of the two groups. However, the comparison of the absorbance spectra between the 

two groups using student’s t-test (with two-tailed unequal variance) revealed the discriminating 

potential at amide regions (1541-1656 cm-1) and the mixed regions of carbohydrates and nucleic 

acids (1018-1076 cm-1), as highlighted by the red ellipses in (p <0.05) Figure 3.14 (B). The 

prominent, discriminatory regions include C=O/C-N stretching, and N-H bends in amides, 

RNA/DNA nucleotides, and C-O vibrations of carbohydrates[153], as reported in previous 

studies[89]. Previous studies using principal component analysis-linear discriminant analysis 

(PCA-LDA) of FTIR spectra have shown that healthy and cancerous serum samples had different 

characteristics[89].  
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Figure 3.14 Identification of discriminatory bands. (A) Ensemble averages of normalized 

serum spectra derived from control, n = 10 and BC, n = 10. This wider range of spectra is 

presented to show the quality of the spectra, which overcomes the noise and atmospheric 

contamination while measuring them at resolution 4 cm-1. (B) Corresponding student t-test p-

values for the control and BC. (C) The second derivative absorbance spectra confined to the 

amide-I region, covering 1600-1700 cm-1. (D) Difference between the absorbance spectra of 

control and BC, indicating up- and down-regulation of proteins, carbohydrates, and nucleic acids 

in the serum of BC patients. Figure is taken from our own publication[13]. 

 

Molecular assignments of major spectral bands showing discrimination between control and 

BC, with higher significance (i.e., p-values < 0.05), are also presented in Table 3.8. These are the 

bands originating from amides of protein, carbohydrates, and nucleic acids. The amide vibrations 

are mainly arising from C=O stretching vibration, with minor contributions from out-of-phase C-

H stretching vibrations, C-C-N deformation, and N-H in-plane bend[25]. Similarly, the mixed 
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regions of carbohydrates and nucleic acids result from C-O/C-C stretching, C-H bends, and 

νs(PO2−)[154]. The second derivative spectra of these absorbance curves revealed that the 

absorbance at the minima positions at wavenumber 1629 cm-1 and 1652 cm-1 differ between 

healthy individuals and BC patients (Figure 3.14 (C)). Elevation of absorbance values at the energy 

band 1018-1076 cm-1 (Figure 3.14(D)) suggests differences in glycomic profiling[166] and 

circulating DNA[167] in the blood components. Circulating DNA and glycomic profiling has 

proven to be critical molecular markers[166, 167] in several tumor entities. 

 

Table 3.8 Discriminatory IR bands for BC serum samples from controls, and primary 

biomolecular assignments, giving rise to the main contributions for the absorbance. Amide 

regions and the complex region of carbohydrates and nucleic acids show the discriminating 

potential[13]. 

Wavenumber (cm-1) Biomolecular Assignments 

 1700-1600  Amide I: Sensitive to protein secondary structures of proteins, which     

arises mainly due to C=O stretching vibrations and by the C-N groups. 

 1580 -1480  Amide II: Sensitive for protein conformation, originates mainly from 

the in-plane N-H bending mode along with C-N and C-C stretching 

vibrations. 

 1140-1000  Carbohydrates: Sensitive to C-O, C-C stretch, C-H bends and  

Nucleic acids: Sensitive to deoxyribose/ribose DNA, RNA, νs(PO2
-). 

 

Discrimination of Protein Secondary Structures: Figure 3.15 (A), the average of the second 

derivative spectra at the amide I absorbance region is shown. The minima of the second derivatives 

of spectra allow us to approximate the positions and numbers of Gaussian function energy profiles 

required to fit the experimental curve. The amide I band of each spectrum was deconvoluted so 

that the baseline-corrected spectra were fitted with 6 GFEB profiles by estimating the number and 
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position of the minima of second derivatives, which was simulated (▪▪▪) to fit the experimental 

curve (—) as shown in Figure 3.15(B).  

 

Figure 3.15 Protein secondary structure analysis[13]. (A) Representative second 

derivatives of absorbance spectra at the amide-I absorbance region. (B) Deconvolution of the 

amide-I region: the baseline-corrected spectra fitted with 6 GBEF by approximating number and 

position of minima of second derivatives, which simulated fits (▪▪▪) to the experimental curve ( ̶ ). 

(C) Integral area of GBEF representing α helix and β sheet. (D) The ratio of α helix and β sheet 

energy bands, which proves an elevation of β sheet and drop off α helix structures due to 

malignancies. (E) The ratio of IR absorbance at amide II (I1556) to its value at amide III (I1295). (F) 

ROC curves for the ratio of the integral area of energy bands representing α-helix and β-sheet 

protein secondary structures and the respective absorbance at amide II and amide III. The 

maximum values of sensitivity and specificity are 90% and 90% for signature α/β, while these 

values are 100% and 80% for signature I1556/ I1295, respectively.  

 

In order to assess any alterations in structural components associated with malignancy, the 

integral values of α–helix and β–sheet structures and their ratios were analyzed. Due to the fact 
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that the intensity of the GFEB has a linear relationship with the concentration according to the 

Beer-Lambert law[168], the width of GFEB and full width half maximum (FWHM), is inversely 

related to the vibrational mode lifetime, which is a function of the ‘rigidity’ of the vibrating 

bond[103]. The interaction of the molecule with its immediate environment also affects the width 

of GFEB[169]. If a molecule transfers energy to its surroundings, the spectral peak has a broader 

line width and reduced intensity, even though the concentration of the molecule remains 

unchanged. In such cases, the integral area under the curve is a better indicator of the concentration 

than the intensity alone. Interestingly, we found that even though the levels of most structures did 

not differ between the samples from BC patients and healthy individuals, BC samples had an 

increase in β–sheet structures, while the levels of α-helix structures were decreased (Figure 3.15 

(C) and 3.15 (D)). Furthermore, the amide II region is used to report on protein unfolding based 

on the extent of hydrogen exchanged. Because of the lack of water interference amide III region 

is also considered as a promising region to analyze protein structures. Herein, we have also used a 

ratio of IR absorbance at the amide II (I1556) to its value at the amide III (I1295) for analysis of BC 

associated protein alteration. The dot plots of these amides ratios are shown in figure 3.15(E).  

ROC Curves and AUC Values: Sensitivity and specificity of a diagnostic test are often 

used to describe the diagnostic accuracy/performance of the analysis in biomedical research. The 

discriminating potential of a diagnostic regimen can be quantified by the AUC values of ROC 

curves [142]. The ROC curve is plotted to find the AUC, as in Figure 3.15(F). The optimal cutoff 

value calculated for each spectral signature is used to select the positivity/negativity of the disease 

and to estimate the sensitivity and specificity. Strong discrimination between diseased and control 

serum can be seen with 90% sensitivity and 90% specificity for signature α/β, and these values are 



62 

100% and 80% for I1556/ I1295, respectively. The results indicated that the spectral signatures in the 

specified bands have high diagnostic accuracy.  

 

 

Figure 3.16 Understanding protein secondary structures and physics of IR interaction. (A) 

Parallel β-pleated sheet structure of proteins. N-H groups in the backbone of one strand form 

hydrogen bonds with the C=O groups in the backbone of the adjacent strand to form a β-sheet. 

(B) Right-handed α-helix structures of proteins. The backbone N-H group donates a hydrogen 

bond to the backbone C=O group, contributing to the helical structure of the α-helix[13].  

 

As shown in Figure 3.16, the backbone N-H group donates a hydrogen bond to the 

backbone C=O group to form the helical structure of the α-helix (Figure 3.16 B). In contrast, the 

backbone N-H groups of one strand can form hydrogen bonds with the backbone C=O groups of 

the adjacent strands, resulting in β-sheet structures (Figure 3.16 A). Therefore, the cancer-

associated alterations in the integral ratio of α-helix and β-sheet protein secondary structures 

suggest that protein conformational alterations accompanying changes in their biological function 
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might be a key event during the development of cancer. Several studies have shown that proteins 

in serum change during BC[88-90, 170]. The alterations in the conformational compositions are 

presumably due to alteration in the concentration of cancer embryonic antigen (CEA) proteins[84]. 
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4 DISCUSSION 

In this section, the results, possible clinical applications, optimization of the technique for 

clinical applications are discussed. This includes several projects, that have been working on 

while preparing this dissertation.   

4.1 Discussion Based on DSS Study  

This study demonstrates the application of the IR spectroscopic technique for monitoring 

colitis progression on days 0, 3, and 7 of chemical administration on DSS mouse models of colitis. 

It also reveals as a preliminary step in anticipating the validity of the test for humans and the 

development of a portable prototype which can facilitate an ASSURED, IBD screening. 

Monitoring alteration in the unique spectral markers [such as the concentration of carbohydrates 

(glucose and mannose) and the alpha-helix to beta-sheet ratio of the protein secondary structure] 

reflected in the IR spectra of serum, for colitis during disease progression and suppression will 

allow us to understand the feasibility of the presented diagnostic regimens in the clinical domain.  

Also, the DSS mouse started to behave differently at day 3 of the chemical feeding, so the present 

study using samples on days 0, 3, and 7 of chemical administration, is the foundation for further 

research with an increased number of sample size. Further work is in progress to investigate dose-

dependent aggravation, and disease progression of intermediate stages at day five and its 

suppression after twelve days, after stopping the chemical feeding. Herein, the DSS mouse model 

eliminates few challenges of the human diseases studies and allows us to conduct disease research 

on the controlled environment, but there are several other challenging aspects to translate these 

findings into humanistic studies. The change in spectral signatures along with disease progression 

and suppression needs to be confirmed with the use of samples of human patients. Thus, in our 

future work, spectral signatures will be further confirmed by using serum samples from UC 
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patients. Once the unique spectral signatures are identified and confirmed, an ASSURED portable 

prototype can be developed in which measurements and data analysis techniques can be automated 

in the software, so that a technician will be able to perform the test from depositing the specimen 

onto the sample holder to the positive or negative results with a screen touch. This rapid, simple, 

cost-effective, and the minimally invasive technique would allow the assessment of disease status 

and personalized drug management in the future health care of IBD patients.  

4.2 Discussion Based on IL10-/- Study 

The application of ATR-FTIR spectroscopy to identify the treatment effect of anti-TNFα 

in IL-10-/- genotype IBD mouse model is demonstrated. By measuring spectra of serum samples 

of untreated, anti- TNFα treated and normal mice, we have compared the statistical significance 

difference between the groups and identify the discriminatory features. Identifying IR spectral 

signatures I1033, I1076, I1121/I1020, I1629/I1737, α-helix/β-sheet, and integral sum verify antibody 

therapy markedly ameliorated the disease as judged by earlier studies[58]. These data justify more 

initial findings and support the feasibility of this regimen for drug management during its 

treatment. The study of ATR-FTIR spectroscopy of serum samples thus needs to extend with a 

statistically significant number of experimental models and human participants.  

Importantly, the standardization of technique for the acquisition of spectral signatures 

applicable in the clinical domain is explored. The improved standardization of spectral signature 

acquisition is needed to assure the potential clinical application of the technique for IBD screening. 

The standardization includes reducing the unwanted experimental and data analysis specific 

variances. Herein, using a trial-and-error based approach and the clinically relevant data sets on 

ATR-FTIR spectroscopy of serum samples, most optimized parameters were used for data taking 
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and their analysis. Diagnostic performance parameters, such as sensitivity, specificity, and AUC 

under ROC curves prove the feasibility of the studied technique.   

All in all, the present study provides evidence that ATR-FTIR spectroscopy of serum 

samples accompanied by data analysis techniques could be a tool to evaluate anti-TNFα therapy 

in IBD. The study also provides a detailed insight into technical and instrumentation for its clinical 

applications. Understanding the drug signature efficacy by using IR spectroscopy of serum 

samples further strengthens the idea of the potential applicability of the technique. It is because; 

the access to this screening technique would increase the likelihood of compliance with screening 

recommendations for those who are otherwise reluctant to undergo the existing endoscopic tests.  

4.3 Discussion Based on Colitis Human Patients Study 

Early diagnosis and treatment of IBD is crucial because of its negative effects on one’s 

overall personal well-being. Nonetheless, as for earlier diagnosis of IBD, the gold standard 

colonoscopy diagnostic tests are not easily available and/or are not attractive for all eligible 

populations. These are expensive, invasive, risky, and uncomfortable for patients[171]. Limited 

studies have reported alternative approaches[43], which could make way for potential advances in 

the medical screening of IBD[44]. However, these studies are not yet able to provide a low cost, 

quick, and easy early screening test as an alternative to colonoscopies.  

The present, minimally invasive technique identifies spectral signatures as biomarkers 

associated with the development of disease and could become applicable for UC screening. This 

present technique will not replace traditional colonoscopy techniques but will provide an earlier 

indication of disease or an additional level of information about UC patients. Importantly, it can 

be regularly performed easily at a lower cost at the physician office during annual checkups to 

monitor the health of the patient with the possibility of an early indication of UC. Molecular 
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mapping in the form of IR signatures has the potential to become a routine screening regimen for 

the continuous assessment of patients. Further evaluation and resolution of UC can be performed 

afterward using established colonoscopy tests. 

We identified I1033, I1076, I1121/I1020, I1629/I1737, and integral α/β structures as spectral 

signatures for UC, and the corresponding differences between them were statistically analyzed. 

Note that experimental mouse model studies also showed that these peaks are unique to UC when 

compared with metabolic syndrome and arthritis. The ROC curve, sensitivity, specificity, and p-

value calculations further confirm the validation of our performance testing. All these spectral 

signatures’ AUC values range from 0.76 to 0.94. These values serve as important pieces of 

evidence to demonstrate the validity of the classifier. The sensitivity and specificity pair[141] and 

the p-values of the two-sample t-test also verify that the identified signatures are valid for 

diagnostic purposes. Using this quantified information of identified spectral signatures, the 

required number of controls and UC cases applicable in medical diagnostic trials[172] can also be 

calculated. The sample size estimation for high diagnostic accuracy is discussed in Appendix A.3 

in detail.  

Overall, these results of preliminary research using human samples resemble our earlier 

findings using experimental mouse models of disease and establish this technique as a proof of 

concept for further investigation using a larger sample size followed by clinical studies. Following 

the same protocol for the sample care, spectral measurements and data analysis, calibration curve 

applicable for initial diagnosis, differentiate IBD types, the monitoring of therapeutic response, the 

prediction of relapse and the ruling out of any flare-ups can be accomplished. Our study further 

paves the way for the development of new diagnostic regimens in the physician’s office for IBD 

screening as a preventive step. This simple, risk-free, and cost-effective technique with minimal 
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sample preparation and lack of discomfort will be attractive to most of the patient population in 

the routine screening for UC and other IBDs. This technique can be carried out by primary care 

physicians, as a simple & cost-effective preliminary indicator for UC so that the GI can perform 

the colonoscopies for the final verification. 

This novel proposed technique not only has the potential as an alternative for early 

diagnosis of IBDs but also for identifying the progression status of IBDs, specifically UC and CD. 

The future work includes the exploration of spectral signatures for CD differentiation between UC 

and CD.  It is because, patients undergoing an initial evaluation for IBD will often undergo a series 

of diagnostic tests, and a large amount of clinical information obtained may make a physician 

uncertain as to whether to label the patient as having CD or UC[37]. In many cases, similar drugs 

are used to treat UC and CD, but treatment is not equally efficient and responds differently. It is 

known that UC mostly presents with rectal inflammation and continuous lesions, while CD 

presents with discontinuous inflammatory lesions and frequently involves the ileocecal area. 

Studies further show, the location of inflammation (in UC colon is the only site that is affected and 

in the CD it affects anywhere along the digestive tract), the efficacy of drug treatment, aggravation 

to the other body parts[173] are also different. One can undergo a single surgery to treat UC, 

whereas CD may need multiple surgeries. It was reported that concentrations of some chemicals 

were different in UC and CD patients[174, 175], thus differentiating IR spectral markers are 

expected. 
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4.4 Potential Prototype for the Portable Device Development 

 

Figure 4.1 Structure of the software program showing 9 subroutines to perform each 

specific task[11]. Each of these specific programming tasks was individually carried out in our 

preliminary work in order to get the conclusion. In the portable device development, all those will 

be automated into one program which will be done at a single touch command.  

 

 Our study is also directed toward designing and developing a prototype of a 

portable tool for facilitating such measurements. As the first stage of the portable device 

development, we have studied the possible use of a commercially available portable FTIR 

(Brucker ALPHA & Perkin Elmer 2) with ATR setup. The communication with the commercial 

software from the FTIR manufacturer will be critical to develop a user-friendly prototype, so 

accompanying software can be developed to completely automate the process. 

Main 
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given range

Normalizing 
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calculation Generate 
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Figure 4.2 Flow chart for the programming to study protein secondary structures[11]. 

Only the α-helix and β-sheet ratio analysis is shown in the flow chart. Similarly, other biomarker 

analysis will also be in the program as needed to achieve the needed confidence limit.  
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Figure 4.3 Schematic of measurements and data analysis tool permanently integrated into 

the anticipated modified spectroscope. "Sample Scan" tab allows users to enter the patient ID, 

select the disease followed by pressing "Start Scan" to initiate the program[11]. 

 

Fully automating the spectral measurements and analysis presented above is the second 

step to check the feasibility of the proposed portable device. Minimization of the instrumentation 

by integrating it with a simple touchscreen (e.g. Windows tablet) will make it a user-friendly 

desktop unit. Spectral measurements and data analysis procedures will be automated into a single 
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step so that a technician can deposit the sample onto the sample holder and start the measurement 

with a simple click to get the result and if needed the biochemical information.  

The software program will include 9 subroutines as shown in Figure 4.1 and each will do 

a specific task in the data extraction or analyzing stage. Reading a spectral data file from the FTIR, 

extract data for a suitable biomarker range depending on the user-selected disease, normalizing 

and baseline correction of spectral data subroutines will have simple loops, condition check, and 

basics mathematical calculations. The second derivative will be calculated by using divided 

difference formulas for discrete data. After finding the number of minimums and their positions, 

the program will assign parameters for Gaussian oscillators. The curve fitting subroutine will 

iteratively vary the Gaussian curve parameters to minimize the RMS error between the 

experimental absorption curve and the corresponding summation of the Gaussian curves. The 

Levenberg Marquardt algorithm will be used in this subroutine. The standard numerical integration 

technique will be used to find the area under each Gaussian oscillator.  

As an example, the flow chart for protein secondary structure analysis is shown in figure 

4.2. Other biomarkers already identified and new ones to be identified in the process can also be 

included in the program. For debugging and troubleshooting reasons, it is important to be able to 

see the output at each stage in addition to the outcome. Also, this allows anyone interested to see 

the important data at each stage of the process and to try other changes. 
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Figure 4.4 Anticipated portable device with the touch screen showing "Test Report". The 

test report can be printed as a hard copy or save the patient record in the hospital database[11]. 

  

A schematic of this anticipated portable prototype for the colitis screening by using ATR-

FTIR spectroscopy is shown in figure 4.3, where the microprocessor (I) controls all the functions 

in the instrument, and the software (spectral measurement and data analysis) will run on a 

microprocessor (II). The software package developed can be installed on the Windows tablet PC 

attached to the portable FTIR. Herein, the "Sample Scan" tab allows users to enter the patient ID, 

select the disease, followed by the user pressing "Start Scan" to initiate the program. Pressing 

"Start Scan" after depositing a sample on the holder can automatically perform the full data 

analysis and will display a laboratory test report as seen in figure 4.4.  
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4.5 Discussion Based on Lymphoma and Melanoma Study 

The results of the present study shown remarkable differences between the ATR-FTIR 

spectra of serum samples representing tumor-bearing mouse models of melanoma (n=8) and NHL 

(n=8) from their control (n=15) types. The differentiating signatures between spectra are obtained 

by observing (i) p-values comparison, (ii) the spectral position, and ratio analysis of amide peaks 

(iii) the fit of the experimental spectra and (iv) the employment of multivariate analysis (HCA). 

This difference between control and tumorous cases is evident through the gradual changes in the 

intensities of the absorption of mainly proteins, carbohydrates and nucleic acids in the serum. It is 

noted that serological tests show the alterations of certain proteins, peptides, and nucleic acids 

(DNA, mRNA) for patients with melanoma[176] and lymphoma[177]. Manifestations of these 

alterations in biomolecules (serological markers) are most likely due to the tumor-induced 

alterations directing towards identifying the spectral signatures. 

Herein, this is an experimental demonstration of the rapid and reliable spectroscopic 

techniques for the discrimination of B16 melanoma and EL4 lymphoma mice from their control 

types. B16 murine tumor model remains indispensable for metastasis and therapeutic studies of 

human melanoma skin cancer[178].  Similarly, development of EL4 murine tumor model 

considered a huge benefit to the human NHL research cancer. This work is thus expected to lay a 

foundation for further research which could lead to the development of diagnostic techniques for 

future health care of cancer patients of melanoma and lymphoma using body fluid samples that 

can be collected with relatively low risks. It is thus critical to extend the present study to human 

patients for the assessment of disease status and personalized drug management. Furthermore, the 

study of temporal variation in spectral marker signatures is important for tumor grading, sub-

typing, and assessing heterogeneity. Further work is in progress (i) to investigate temporal 
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variation in serum components along with the progression of the disease by increasing sample size, 

(ii) identify the alteration in spectral signatures using human patients, and (ii) to integrate data 

analyzing software into the narrow multiband detector. After setting a calibration curve of unique 

spectral signatures for NHL or subcutaneous melanoma, bulky instrumentation will be avoided 

using specific multiband IR detectors capable of simultaneous detection in the expected narrow 

bands. Recent advances in IR technology allow the operation of multiband detectors at room 

temperature[179]. Complex statistical analysis of identifying spectral signatures of NHL or 

melanoma can also be integrated into the clinical tool as a software application into the computer 

program. In terms of clinical application, we can anticipate that the potential technology can be 

further developed into a personalized diagnostic tool in which patient-to-patient and within a 

patient over time (due to health conditions or other factors) differences in molecular signatures 

would allow the assessment of disease status and personalized drug management. To be used as a 

patient to the patient screening test, a normal range of spectral signatures unique to the particular 

disease should be set by using a statistically significant set of normal serum samples. These average 

normal values can be incorporated into the program which can identify the deviations of the test 

sample from the average values. Technological advancement of ATR-FTIR spectroscopy of serum 

sample to discriminate normal and tumorous conditions will thus support to increase compliance 

rate eligible population for tumor screening and to make physician decision for advanced 

histological examination using biopsy.  

4.6 Discussion Based on BC Study 

Protein analysis is considered as a promising technique for understanding the progression 

of cancers. Similarly, FTIR spectral analysis is one of the accepted paradigms for the holistic 

evaluation of protein structural content at the molecular level in biological samples. Several studies 
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have introduced the applicability of FTIR spectroscopy in serum samples accompanied by spectral 

analysis techniques for BC discrimination. Reports[89, 97] show the potential application of FTIR 

spectroscopy for protein analysis in serum samples from the BC patients. However, cancer 

initiation, progression, and response to therapy depend on an array of complex interactions 

between constituent biomolecules (proteins, lipids, nucleic acids, and carbohydrates) and not only 

at the level of the single (biomarker or target) molecule. Therefore, the feasibility of FTIR 

spectroscopy to extract a snapshot of cumulative molecular interactions within serum samples 

warrant a thorough investigation, as enabled by interdisciplinary collaboration between 

spectroscopists, biologists, and clinicians. It is noted that the evaluation of serological biomarkers 

(CA15-3, HSP90A, and PAI-1) do not show consistent differences between BC cases and controls 

that can lead up to diagnosis [84]. Our data show alterations in biochemical, and structural, 

information of the constituent components of the sample medium. Such, holistic evaluation of 

biochemical details with the use of IR spectroscopy can thus have an immense potential for BC 

discrimination analysis in the clinical domain. 

Deconvolution of spectral range 1140-1000 cm-1: To analyze the snapshot of alterations 

reflected in our FTIR spectral data, the complex region[140] of carbohydrates and nucleic acids, 

1140-1000 cm-1, was deconvoluted. The BC-associated alterations in the DNA and RNA are 

reflected in this region. The circulating DNA and protein markers are generally evaluated to track 

the biomolecular events of cancerous patients[180]. Herein, this spectral range is deconvoluted 

with six GFEB (Figure 4.5 (A)) by approximating numbers and positions using the minima of 

second derivatives. The sum of integral areas covered by six bands (integral values) of control, 

samples range from 11.4 to 13.2, while these values in BC samples are from 13 to 14.8. This 

quantified information was further statistically analyzed (Figure 4.5(B)), and the result shows a 
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clear separation between control and BC. Similarly, figure 4.5 (C) shows the histogram of the 

average values of absorbance at wavenumber 1020 cm-1. Absorbance at this energy band is found 

to be due to the presence of circulating DNA.  

 

Figure 4.5 (A) Deconvolution of the complex band of carbohydrates and nucleic acids 

1000-1140 cm-1. The number and position of six bands used to fit the experimental curve were 

determined by using the minima of secondary curves as in amide I case. (B) Bar graph 

representation of the average value of the integral sum which shows a significant difference 

between control and BC case. (C) Bar graph of average absorbances at wavenumber position 

1020 cm-1, which is mainly due to the presence of DNA. It also shows a significant difference 

between control and BC cases[13]. 
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Potential prototype for clinical application: Moreover, a prototype for our presented 

diagnostic regimen for clinical use can be developed. Spectral measurements and data analysis 

procedures will be automated into a single step so that a technician can deposit the sample onto 

the sample holder and start to measure with a simple click to get the result and, if needed, the 

biochemical information easily as shown in Figure 4.6. ATR-FTIR spectroscopy (that is reliable 

for body-fluids analysis) integrated with two micro-controllers, where micro-controller A controls 

all the functions in the FTIR, while the controller B controls software for data analysis. The 

software program will include several subroutines as reading spectral data from the FTIR; extract 

data for suitable spectral signatures in the measured range; normalizing and baseline correction of 

spectral data subroutines will have simple loops, condition checks, and basics mathematical 

calculations.  

 

 

Figure 4.6 Schematic of ATR-FTIR spectrometer integrated with two micro-controllers 

(micro-processors) A and B. The controller A extracts the information about the signal-sample 

interaction, while controller B stores the spectral analyzing software application in the clinical 

domain[13]. 



79 

 

The second derivative will be calculated by using divided difference formulas for discrete 

data. After finding various minimums and their positions, the program will assign parameters for 

Gaussian energy bands and select settings for bands to minimize RMS error (Levenberg Marquardt 

algorithm) between experimental data and fitted curves. The standard numerical integration 

technique will be used to find the area under Gaussian bands and the ratio. Additionally, combining 

all identified multiple spectral signatures into a single diagnostic index using them as the 

discriminating signature marker, a portable device integrated with the user-friendly desktop unit 

(can automatically perform the full data analysis and will display laboratory test report) can be 

prepared.  

All in all, FTIR spectroscopy of serum samples could be a promising technique for an 

ASSURED regimen for evaluation of BC associated molecular level of alteration in constituent 

protein structures. Our study holds value as available techniques such as mammograms, MRI, and 

ultrasonography have their limits and may not be 100% accurate[81, 181-183]. Among them, MRI 

achieves a high sensitivity of 70%–100% in the initial screening (prevalence), compared at 40% 

or less for mammography in patients with high risk to develop BC[182, 183], but the specificity 

of MRI is hampered by its difficulty while distinguishing the overlapping features of benign and 

malignant lesions, leading to higher false-positive rates[181]. Ultrasonography also fails to detect 

micro-calcifications and has poor specificity. Therefore, the present diagnostic regimen of BC 

having the potential to promote timely onward referral of patients for further testing and detection 

of recurrent disease, “enabling serial sample and testing with less cost, resource and radiation 

exposure” could be beneficial for several patients.  
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5 CONCLUSION 

The findings presented in this dissertation confirm the potential application of FTIR 

spectroscopy of serum samples, accompanied by data analysis techniques, promise for use as a 

clinical tool to differentiate IBD and cancer patients from healthy individuals. Importantly, it is 

evident through the use of experimental mouse models and human patients. However, the utility 

of this technique as a clinical tool requires further investigation and validations. Therefore, 

prospective studies evaluating specificity, sensitivity and accuracy of the technique on a large and 

carefully case-defined population is warranted. Accurate and objective classification, staging and 

grading for cancer management as opposed to the present gold standard, histopathological 

diagnosis, to guide treatments and predict patient prognosis is crucial to accelerate point-of-care 

decisions and potentially revolutionize cancer diagnostics in personalized medicine by using FTR 

spectroscopy.  

In the IBD study, the experimental models: IL10-/- and DSS shows diagnostic accuracy 

with 80-100% sensitivity and specificity values. In human serum samples, our study shows 

sensitivity and specificity values are 100% and 86%, respectively. Similarly, in cancer studies, 

mouse models of NHL and subcutaneous melanoma, emphasizes the diagnostic potential of this 

approach as a screening technique. Similarly, the BC-associated protein conformational alteration 

in the serum samples shows the sensitivity and the specificity of identifying spectral signatures 

were both 90%. Various spectral signatures were analyzed as shown in Table 5.1. These include 

(a) absorption values at wavenumber 1033 cm-1, (b) absorption values at wavenumber 1076 cm-1; 

(c) the ratio of absorbance at wavenumber 1121 cm-1, to its value at 1020 cm-1, (d) the ratio of 

absorbance at wavenumber 1629 cm-1, to 1737 cm-1. (e) the ratio of GFEB representing α helix 

and β sheet protein secondary structures as obtained from the deconvolution of amide I region, (f) 
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the sum of the integral area of GFEBs used to fit the experimental curve within the complex band 

of carbohydrates, and nucleic acids 1000-1140 cm-1 (g) absorbance at wavenumber 1212 cm-1, and 

the absorbance at wavenumber 1335 cm-1.  

 

Table 5.1 Summary of identifying spectral signatures. 

 

 

 

 

 

 

 

 

 

Studied types Discrimination from the controls 

 I1033 I1076 

I1121/ 

I1021 

I1629/ 

I1737 α/β 

Integral 

sum 

Amide 

I/II 

Amide 

II/III 

 

I1212 

 

I1335 

DSS Colitis Yes Yes Yes Yes Yes …. ….. …. ….. ….. 

IL10-/-  

Colitis Yes Yes Yes Yes Yes Yes … …. …. …. 

Treated No No No No No No …. …. …. …. 

Control No No No No No No ….. …. …. …. 

Human Control No No No No No …. …. ….. …. …. 

Human UC Yes Yes Yes Yes Yes …. …. ….. …. …. 

Lymphoma …. …. ….. …. Yes Yes Yes ….. Yes Yes 

Melanoma …. …. ….. ….. Yes Yes No ….. No No 

Control mice …. …. …. …. No No No …. No No 

BC Yes Yes … …. Yes Yes …. Yes …. …. 

Human Control No No …. … No No …. No …. …. 
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APPENDICES  

Appendix A 

In this appendix, additional information on sample, study protocol and the discussion on 

feasibility of technique in clinical domain is provided.   

Appendix A.1 Understanding the Clinical Feasibility of Technique for Disease 

Screening 

ATR-FTIR spectroscopy has proven to be an excellent alternative for observing the bio-

molecular composition of body-fluids and their variations due to a myriad of pathologies[28]. 

Various studies have demonstrated the potential application of this technique in the forensic 

sciences for the routine confirmatory screening of biological evidence[48]. Consequently, several 

challenging aspects of the clinical applications of this technique have also been reported[184, 185]; 

thus, it is critical to have an in-depth understanding of these obstacles while developing a new 

diagnostic regimen.  

One of the most prevalent issues in the clinical application[185] of this technique is the 

variation in the localized drying of the serum sample[184]. To address this, we have 

experimentally demonstrated the effect of the “Air Drying of Serum Samples” as in Figure A1. 

Major clinical feasibility parameters such as “Measurement to measurement” and “User to user 

reproducibility” during the spectral measurements are further tested and outlined in Figure A2. 

These studies show that the effect of localized drying phenomena of the sample on the ATR crystal 

surface is negligible compared to disease-associated changes as reported elsewhere. Note that the 

disease-associated alteration in the spectral data can be further optimized through the use of 

spectral classification techniques[186].  
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Furthermore, the user-friendly instrumentation, integrated with intelligent software 

packages for presenting the diagnostic regimen, is necessary for the acceptance of the technique 

as a possible technological development. A schematic of our instrumentation, accompanied with 

our standard spectral analysis process of chain functionality, data records, averages, 

normalizations, deconvolutions, and quantifications are briefly presented in our earlier study.  

Air drying of serum samples: The drying phenomena of liquid droplets deposited on a 

solid surface depends on various, complex physical mechanisms, including fluid dynamics, 

properties of the liquid and contact surface, and heat transfer[184]. In the ATR sampling mode, 

the drying of serum samples results in complicated patterns[185]. We have tested the drying 

phenomena of the serum sample and their overall impact while comparing the composition within 

the control and colitis samples as shown in Figure. A1. The serum sample deposited on the surface 

was allowed to air dry at room temperature. Images (A-H) in Figure. A1 show the serum sample 

throughout the drying process continues.  

Figure. A1 (A) is the image after 4 minutes of its deposition, and the following images (B-

H) are at additional two-minute intervals. Figure. A1(I) shows the spectral data and their variation 

with the sample crystallization: Spectra 1 represents the first spectra measured after 4 minutes of 

sample deposition, 2 indicates the second spectra and 3 denote the third spectra. After 10 minutes 

of sampling and 5 spectral scans, the absorption curve displays promising overlap. The inset I(i) 

is the magnified view of the spectral range 3225-3350 cm-1, which is mainly comprised of water 

content and proteins. Similarly, inset I(ii) is the magnified view of spectral range 1610-1670 cm-1, 

a fraction of amide I region. The red dotted spectra show measurements before the sample has 

stabilized, while solid blue lines are these spectra after the sample becomes stable. These spectral 
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data and images clearly depict that the sample becomes stable on the crystal surface after 

approximately 10 minutes. 

 

 

Figure A1 (A-H) Microscopic images of one microliter serum sample during different 

stages of drying at room temperature. Pictures (A) to (H) indicate the image of the serum in 2-

minute intervals starting with (A) 4 minutes after its deposition and (H) 18 minutes after 

deposition. (I) FTIR spectra showing variation in absorbance during the air-drying of the serum 

samples. Spectra representing 1 is the first spectra taken after 4 minutes of sample deposition, 2 

is second spectra (~ 5.2 minutes), 3 is third spectra (~ 6.4 minutes). Overlapping spectra (solid 
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blue ▬) indicate the stabilization of the sample. Inset I(i) and I(ii) show the magnified view of 

spectral range 3225-3350 cm-1 and 1610-1670 cm-1 to highlight spectral reproducibility nearly 

after 10 minutes of sample deposition.  

 

Measurement-to-measurement and user-to-user reproducibility: We have further tested the 

measurement-to-measurement and user-to-user reproducibility as an important clinical feasibility 

parameter. Three researchers took sampling and spectral measurements to test user-to-user 

consistency. Likewise, the spectral measurements of twelve control and twelve diseased samples 

were taken to observe measurement-to-measurement reproducibility. Figure. A2(A) shows the p-

value calculations, using the student’s t-test (two-tailed, unequal variance) of the serum spectra, 

measured at two different times (the First and Second sets). Twelve measurements were taken 

using both the same sample and protocol.  These results did not indicate any statistically significant 

wavenumber position differences from different measurements. Additionally, three different 

researchers (1st, 2nd, and 3rd) took 12 individual measurements and found the P-values as seen in 

Figure. A2(B). Similarly, we no statistically significant differences between spectral 

measurements were found. These results suggest that the ATR-FTIR technique of serum 

sampling/measuring offers a viable measurement-to-measurement reproducibility with minimal 

user-to-user variations. In conclusion, these results suggest that, despite the complicated drying 

phenomena of the serum samples, the measurement-to-measurement or user-to-user variation is 

negligible compared to the difference between control and disease samples. Hence, the overall 

spectral measurements affirm the technique as it verifies the clear similarity among the same types 

of samples while discriminating between colitis and control samples.  



98 

 

Figure A2 (A) Spectral discrimination by student’s t-test (with two-tailed unequal 

variance) p-values of normalized absorbance using 12 measurements of the same sample at two 

different times. P-values >> 0.05 clearly show the similarity between these spectra verifying better 

measurement-to-measurement reproducibility of the technique. (B) P-values calculated for the 

absorbance data measured by three different researchers. Significantly, similar p-values (p⩾ 0.18 

>> 0.05) are found while comparing data from individual researchers, verifying the user-to-user 

consistency.  

 

Appendix A.2 Penetration depth of infrared light in the sera 

In ATR-FTIR spectroscopy[28], the light is totally reflected inside the prism of the higher 

refractive index with an evanescent wave from the reflected light penetrating into the serum 

sample[30]. The penetration depth of evanescent waves on the sample medium is given by the 
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equation, 𝑑𝑝 =  𝜆/2𝜋(µ1
2𝑆𝑖𝑛2𝜃 − µ2

2)
1

2⁄ , which depends on the wavelength of incident 

radiation (𝜆), the refractive index of crystal (µ1), the angle of incidence (𝜃), and the refractive 

index of the sample (µ2). The energy of the evanescent wave is absorbed by the sample and the 

reflected light is then coupled back into the system as shown in Figure. A3(A). The output spectra 

represent a snapshot of the molecular component within the sample medium.    

 

 

Figure A3 (A) Light-sample interaction and formation of evanescent wave in ATR 

sampling mode.  (B) Output spectra of 1𝛍l of serum samples using diamond and Silicon crystals.  

   

Specifically, for serum samples, penetration of around 2 𝛍m can be achieved using 

diamond crystals and with an angle of incidence equals to 45 degrees. Fig. S3(B) shows two output 

spectra of 1 𝛍l of the same serum sample using two different ATR crystals, Diamond and Silicon. 

These changes are due to the difference in the refractive indices of the materials of the two crystals. 

Spectra obtained with the use of the diamond crystal in the mid-infrared region is best for clinical 

application when compared with Silicon. 
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Appendix A.3 Sample Size Estimation for Diagnostic Accuracy in Human IBD Samples 

Using 18 UC and 28 Control human samples, the sensitivity and specificity values are 78% 

and 82% for identifying spectral signature, ratio (α-helix/β-sheet). These indicate that the spectral 

band ratio (α-helix/β-sheet) has high diagnostic accuracy in detecting colitis and is thus a good 

signature while developing screening tool of colitis. We have compared different sample sizes by 

using the power analysis and simulation study that is common in medical diagnostic trials[172]. At 

a significance level α= 0.05 and power levels (1-β) = 0.90, the required sample size is 70 each 

from control and disease groups (see table A1 as extracted from[172] and the initial values based 

on asymptotic theory[187]) to achieve the continuous-scale spectral signatures to  have specificity 

82% and sensitivity 90%. These 70 diseased samples can be divided into 18 initial stages, 18 

aggravated stages, 17 treatment phases and 17 healing phases. In the table, false positive fraction 

(FPF) and true positive fraction (TPF) are used to find number of samples size.  

 

Table A1 Estimated human sample sizes for continuous test using ROC (FPF0) as the basis 

for inference with α = 0.05 and β = 0.10. Simulation studies were based on the binormal ROC 

curve with slope parameter 1 and the initial values based on asymptotic theory. 

FPF0, 

FPF0 

TPF1 

.70 .80 .90 

0.10,0.60 49 20 1 

0.20, 0.70  44 0 

 

 

Appendix A.4 Quantified Values at Spectral Signatures of UC Patients 

Table A2 Quantified values of spectral signatures of UC patients. Shaded region of the 

table highlights the data extracted from male patients and unshaded are from female. Variability 
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of these signatures (I1033, I1076, I1121/I1020, I1629/I1737 and α/β) does not show age, gender, height, 

weight, smoking and alcohol consumptions dependence in the uniform pattern, so a concluding 

remark cannot be made. 

Gender Age  Height 

(inch) 

Weight BMI Smoke Alcohol I1033 I1076 I1121/ 

I1020 

I1629/ 

I1737 

α/β 

Male 34 72 254 34.4 N Y 0.2746 0.3518 1.4189 29.1055 1.9261 

Male 41 72 240 32.5 N Y 0.3252 0.3908 1.3069 37.5426 2.0303 

Male 49 71 185 25.8 Y Y 0.2741 0.3472 1.4072 32.7251 2.2569 

Male 55 70 224 32.1 N Y 0.3263 0.4058 1.3965 34.7197 1.9682 

Male 63 69 166 24.5 N N 0.2985 0.3715 1.3650 36.6690 2.0693 

Male 71 68 189 28.7 Y Y 0.2746 0.3537 1.4459 22.2489 2.4699 

Female 21 65 136 22.6 Y N 0.3583 0.4158 1.2559 33.7787 1.9947 

Female 27 66 185 29.9 Y Y 0.2769 0.3422 1.3803 36.8969 2.1782 

Female 46 66 145 23.4 Y Y 0.2856 0.3599 1.4062 29.5883 2.0761 

Female 47 64 155 26.6 Y Y 0.3103 0.3809 1.3763 33.0132 1.9962 

Female 55 66 135 21.8 N Y 0.2574 0.3288 1.4442 34.8734 2.0969 

Female 59 64 170 30.1 Y Y 0.3212 0.3953 1.3565 49.4526 1.9258 

Female 60 66 205 33.1 Y Y 0.2825 0.3603 1.4154 21.6636 2.0273 

Female 63 67 187 31.1 N N 0.2646 0.3409 1.4372 27.4452 1.8955 

Female 65 65 163 27.1 N Y 0.3276 0.3944 1.3203 46.3393 2.1512 

Female 65 62 256 46.8 N Y 0.2896 0.3639 1.3665 31.1652 1.9071 

Female 82 66 200 32.3 N Y 0.3225 0.3974 1.2887 30.2302 2.0975 

Female 91 66 130 21 Y N 0.3753 0.4161 1.1647 34.8415 2.0337 

 

 

The quantified values of identifying spectral signatures; I1033, I1076, I1121/I1020, I1629/I1737 and 

α/β of UC patients are shown in Table A2. These data do not depend on the age, gender, height, 

weight, smoking and alcohol consumptions of UC patients. However, while comparing with the 

corresponding values with control samples tabulated (Table A3), statistically significance 

difference can be seen, as discussed in the manuscript. These results show the identifying 

signatures are due to UC.  

Table A3 Quantified values of control samples at spectral marker signatures. Shaded 

region of the table highlights the data extracted from male and unshaded are from female controls. 
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Variability of these signatures (I1033, I1076, I1121/I1020, I1629/I1737 and α/β) does not show age and 

gender dependence. 

Gender Age (year) I1033 I1076 I1121/I1020 I1629/I1737 α/β 

Male 34 0.2439 0.3309 1.8472 32.5201 2.2639 

Male 36 0.2724 0.3490 1.5322 20.6883 2.3639 

Male 41 0.2986 0.3699 1.4209 31.1015 2.1678 

Male 46 0.2516 0.3299 1.5741 28.0227 2.0996 

Male 49 0.2687 0.3574 1.6699 24.1412 2.5469 

Male 55 0.2698 0.3425 1.4936 30.7681 2.3792 

Male 63 0.2994 0.3704 1.4425 31.7300 2.2136 

Male 66 0.2567 0.3271 1.5818 31.9618 2.0859 

Male 66 0.3056 0.3897 1.4194 24.839 2.4585 

Male 68 0.2553 0.3282 1.5749 35.4579 2.1917 

Male 71 0.2612 0.3346 1.4868 30.8804 1.9729 

Female 21 0.3140 0.3897 1.3609 31.5131 2.2088 

Female 27 0.2634 0.3419 1.4890 23.4095 2.1454 

Female 35 0.2459 0.3314 1.5689 20.2486 2.4533 

Female 46 0.2699 0.3459 1.5567 32.7598 2.2022 

Female 47 0.2544 0.3302 1.4495 25.5301 2.1306 

Female 49 0.2592 0.3249 1.5289 33.3139 2.0304 

Female 53 0.2719 0.3613 1.6523 28.2439 2.4533 

Female 53 0.2587 0.3249 1.5686 29.2131 1.9885 

Female 54 0.2637 0.3283 1.5082 30.2426 2.0919 

Female 55 0.2814 0.3503 1.5092 32.0153 2.2074 

Female 56 0.3256 0.3883 1.2883 26.2872 2.2108 

Female 57 0.2645 0.3363 1.5441 24.9430 2.2771 

Female 58 0.2693 0.3432 1.4839 27.8657 2.4098 

Female 58 0.2757 0.3474 1.4383 34.5593 2.3635 

Female 59 0.2615 0.3389 1.4205 27.5615 2.3013 

Female 60 0.3000 0.3776 1.4245 28.6436 2.2799 

Female 60 0.3279 0.4052 1.5026 30.0617 2.5008 
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Appendix B 

In this appendix additional information about the cancer study are presented.  

Appendix B.1 Information for BC Patients 

Table A4 Information about the BC patients: Biopsy results such as Invasive lobular 

carcinoma (ILC), Invasive ductal carcinoma (IDC), Ductal Carcinoma In-Situ (DCIS) confirmed 

the BC diagnoses. The tumor grading assessment was performed based on the national cancer 

institute (NCI) guidelines. Grade-2 denotes the intermediate grade or moderately differentiated 

tumor, whereas grade-3 denotes a high grade or poorly differentiated tumor. 

ID 1 2 3 4 5 6 7 8 9 10 

Age 

years 

41.95 56.55 65.36 46.98 50.39 37.86 58.24 30.97 65.97 63.75 

BMI 40.09 28.63 33.43 38.52 54.8 N/A 21.14 33.59 25.96 22.78 

Menstrua

l Status 

Pre-

menopau

sal 

Post-

menop

ausal 

Post-

menop

ausal 

N/A N/A Pre-

menop

ausal 

Unkn

own 

Pre-

menop

ausal 

Post-

menop

ausal 

N/A 

BC 

Discovery 

Screening Screeni

ng 

Accide

ntal 

Accid

ental 

Screen

ing 

Accide

ntal 

Self-

exam 

Self-

exam 

Self-

exam 

Pain 

History No Yes No No No No Yes No No Yes 

Tumor 

Size 

.9 x .9 x 

1.1cm 

1 x 

.8cm 

1.99x1.

82x1.14

cm 

5.3x3.

9 cm 

2.5 cm 6.6 x 

3.9 x 

4.2 cm 

5 cm 2.4 x 

2.1 cm 

5.0 cm 7.0 x 

5.3 x 

3.7 cm 

Laterality 

Biopsy 

Right Right Left Right Right Left Left Right Left Left 

Biopsy 

Results 

ILC IDC IDC IDC IDC IDC IDC IDC IDC IDC 

Malignant 

Grade 

2 3 3 3 3 3 3 3 2 3 

Lymph 

Nodes 

Yes Yes Yes No Yes No No Yes No No 

Type of 

Surgery 

Mastecto

my 

Mastect

omy 

SLNB 

Mastect

omy 

Partial 

Maste

ctomy 

(lump

ectom

y) 

SLNB 

Maste

ctomy 

ALND 

Mastect

omy 

SLNB 

Maste

ctomy 

SLNB 

Partial 

Mastect

omy 

(lumpe

ctomy) 

SLNB 

Partial 

Mastect

omy 

(lumpe

ctomy) 

SLNB 

Mastec

tomy 

SLNB 
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Table A4. shows the BC patients’ clinical information. The age of BC patients ranges from 

30 years to 65 years and the age of control volunteers lies within this interval (41 to 58 years). The 

median age for BC patients and control volunteers remains similar; 53 years for BC and 52 years 

for controls. All BC patients were triple-negative (the hormone receptor subtype; estrange receptor 

(ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2/neu) 

status was negative).  
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Appendix C 

This appendix provides the details of the study protocol.  

Appendix C.1 Research Protocol 

Sample handling, measurement, data analysis was carried out in accordance with 

(university research) relevant guidelines and regulations. These regulations and the 

appropriateness of all the selected parameters are step wise discussed as the laboratory protocols 

while performing ATR-FTIR spectroscopy of serum samples for disease diagnostics. The 

corresponding original files are in the subfolder of L-drive (L:\HemendraThesisMaterial\ ATR-

FTIR study of serum samples). 

Spectrometer and parameter setting 

1) Spectrometer: The Bruker Vertex-70 FTIR spectrometer, with a KBr beam splitter 

and Deuterated Tri-Glycine Sulfate (DTGS) detector, was used[3]. Here, the optimization of the 

application requires the selection of various components such as: source (Hg light), optics, 

electronics, beam splitter, and detector. The beam splitter transmits half of the radiation striking it 

and reflects the other half and KBr is the most widely used material for the IR beam splitters with 

coverage of 4000 – 400 cm-1 mid-IR spectral region. DTGS detector is a sensitive room-

temperature detector for mid-IR measurements. It uses temperature-sensitive ferroelectric crystals 

of deuterated triglycine sulfate. The working principle of DTGS detector involves, as the 

temperature and hence polarizability of the crystal’s changes (due to the absorption of IR radiation) 

a charge is generated which is detected by two parallel electrodes. The deuterated form of the 

crystals is used because they have a higher Curie point.  

2) ATR accessory:  The MVP-Pro ATR accessory fitted with a diamond crystal (1 

mm x 1.5 mm) configured to have a single reflection is used to provide high levels of output. 
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Diamond has a smaller acceptance angle cone, which allows having a good optical design to extract 

good spectra. Because of the strong, robust, and chemically inert feature of diamond, it is 

considered as the best ATR crystal for routine measurements on biological samples[127]. 

Germanium ATR crystal allows higher spatial resolutions (at high magnification) because of its 

higher refractive index (µ = 4), but the use of high-magnification mode lowers the signal to noise 

ratio (SNR). Therefore, the germanium ATR crystal has not yet been used for the study of 

biological mediums[188]. Silicon ATR crystals are also not favored due to lattice vibrations within 

a biologically relevant region obscuring information below 1500 cm-1 wavenumber[189]. 

Conventional ATR crystals such as ZnS are not considered suitable for analyzing kidney excretes 

of patients with acid-base imbalance[190].  

3) Apodization: It is an optical filtering technique and is widely used in recent 

cameras as well. As in the cameras, we can set apodization in our spectroscope. Please be sure that 

the application which helps us blur background and highlight only the object to be imaged (person 

who will be in photo) is apodization. It removes the airy disks caused by diffraction around the 

intensity peak and improves the focus. Herein, appodization is used to smooth the discontinuities 

at the end of recorded time. Medium Blackman-Harris 3-Term apodization function is employed 

to reduce noise without compromising resolution.  

4) Resolution and zero-filling factor: It is the ability to separate two spectral lines 

that are very close in wavelength and it determines the maximum number of spectral peaks that 

our spectrometer can resolve. FTIR spectrometer provides different options to change resolution, 

and the change in resolution sets the change in travel distance of moving mirror. In the present 

study, A resolution of 4 cm-1 and a zero-filling factor of 4 to provide the best resolution ability 

(maximum signal-to-noise ratio). The 4 cm-1 resolution in the spectral data of range 400-4000 cm-



107 

1 means the system would be able to be resolving a maximum of 900 (4000-400=3600/4) individual 

wavenumbers across the spectrum. By doing so, we can get the protein secondary structure 

information and other spectral signatures appropriately. With a resolution of 8 cm-1, it is found that 

this is not appropriate for secondary structural study, as second derivative spectra do not reflect 

the accurate position of disordered protein structures. By reviewing earlier studies, performing 

multiple studies, and acknowledging reviewers’ recommendations we have used resolution of 4 

cm-1 and a zero-filling factor of 4, so that the spacing between each data point is 1 cm-1. We have 

performed repeated measurements and extract information from several studies, including 

references [23-25, 32], while selecting these parameters. This selection allows us to reduce noise, 

and to analyze the spectral data without losing information during spectral deconvolution. 

Resolution of 2 cm-1 gives noisy derivative spectra and of 8 cm-1 resolution gives rise to missing 

secondary structure information (spectral signatures show a lower degree of variability), while 

using diamond ATR crystal configured to have a single reflection of incident IR radiation. 

Therefore, a resolution of 4 cm-1 with a zero-filling factor of 4 to give a data spacing of 1 cm-1 is 

used.  

5) Zero-filling factor: The zero-filling factor decreases the spacing between the data 

points as obtained from the resolution. Simply saying it increases the array-size of the spectral 

data. The zero-filling factor should follow (2n, n = 1, 2, 3,...).  

6) Aperture size: Aperture size is set to 2.5 mm for the detector response without 

saturation. Detector saturation needs to be avoided, otherwise it will lead to “starvation”, causing 

it to generate constant signals.  

7) Gas purging system: A Parker-Ballston gas purging system was also used to 

maintain purified ambient air in the spectrometer.  
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Sample Management 

1) While handling the biological samples in the laboratory, adherence to the university 

guidelines will be absolutely required (Research Information - Georgia State Ahead (gsu.edu)). 

The exact date/time to pick the sample from the collaborator or suppliers (companies) should be 

scheduled earlier. The samples are stored in the freezer (at NSC room, Room Number 231) at a 

temperature -80oC upon received. 

2) The availability of instruments, storage, and others is also checked before 

scheduling meetings with collaborators or before buying samples or performing the measurements. 

Necessary information was collected about the samples ahead so that we can set the measurement 

parameters accordingly and continue measurement immediately. 

3) Samples were received in the labeled transparent storage containers kept 

systematically in a paper box, plastic, or dried ice containers depending on the nature of the sample. 

The storage condition is also checked with a colleague or with company representatives who had 

collected these samples, before the measurement. 

4) Currently, the freezer at room 232 NSC (Dr. Hasting’s lab) is used to store samples. 

Container tubes that are put in one column of paper or plastic box with the proper identification in 

the top rack of the refrigerator (Marked/labeled paper box with the name).  These samples were 

stored properly (labeled/ marked) so that it could be safe while using the refrigerator by other 

research groups as well.  

5) On the day of the measurements, sample storage container tubes with the sample 

were kept above the ice for thawing. (Use white LIFOAM Boxes and you can get ice in the 2nd 

floor of the Natural Science Center (NSC) (on the corridor back of Pete’s office, shop manager) 

and 3rd (Undergraduate biology lab) floors of the same building. Since we are doing label-free 

https://ahead.gsu.edu/research/
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analysis, so environmental conditions for all the measurements should be the same (i.e. all samples 

should be dipped in ice immediately taking out from the freezer, before measurement). Multiple 

freezing and unfreezing alter the protein structures, so it is highly recommended to finish all 

measurements in one sitting).  

6) Other issues like the use of cooling gases, (such as He & N2), leaving the sample in 

air, crowded environment of the lab is also taken care of as they are not appropriate for our study.   

Personal Security and Waste Management 

We are analyzing biological (Hazardous) samples, so extreme care is taken while handling 

these samples and while managing related waste products including used gloves, cleaning wipes, 

Pipette tips, glass needles.  

1) Gloves (sometimes masks and lab coats also) were used while handling samples, 

Broken parts, and wastes such as plastic pipette tips, used gloves, glass pipette, Berkshire paper, 

and others. Considering gloves could be the vectors for infection related to these diseases: colitis 

and carcinogenesis, these should not be used when touching anything other than the samples (while 

leaving the room and touching the door handle, mobile phones, computer, water bottle, etc.). 

2) All the used gloves, glass pieces, serum tubes, and wipe-papers are properly 

managed in the appropriate container with biohazard red plastic bags which is kept in our lab 

(Optoelectronics laboratory, 146/148 NSC, GSU). 

3) These waste items were collected in appropriate cardboard boxes as recommended 

by university guideline and are safely discarded.  

 

Spectral Response Measurements 
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The spectral response measurements involve several steps as summarized in the video 

movie (https://www.youtube.com/watch?v=vn1EQ8liI4g) Also I college link ?// 

1) Cleaning: The surface of ATR crystal was first cleaned with sterile phosphate-

buffered saline (SALINE) followed by ETHANOL. For the longevity of diamond crystal, we are 

using Berkshire paper instead of other tissue papers. Wipe saline and ethanol by Berkshire papers 

in an x pattern. Wipe only once in each direction so that other dust molecules attached to the crystal 

surface will be absorbed.  

Note: Change pipette needles fixed with rubber suction for every new experiment (sample) 

to avoid contamination, and gently press the rubber vacuum suction (pump) to pump SALINE and 

ETHANOL. Otherwise, it will come up to rubber surface from the pipette tip and increases the 

chance of contamination.  

2) The cleanliness test was then conducted to ensure there are no signal peaks 

(indicating serum residue or other contaminant signatures) higher than the environmental noise 

level. (Just click on the cleanliness test option). Make sure the light signal path includes the ATR 

crystal.  

3) The Background: Before any experimental measurement, background spectra 

were measured. The background spectrum allows us to get the true values of absorption peaks due 

to molecules present in the sample. Background shows the presence of any environmental residue 

on the crystal surface or in the light path. The spectrum was performed on a clean and empty 

surface before each measurement. It allows us to get high-quality spectra using background 

corrections.  

4) Background Measurement: Open OPUS, by double clicking it. A small window 

will open and use User ID: UPLab1 and Password: OPUS to open.   

https://www.youtube.com/watch?v=vn1EQ8liI4g
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Again, follow the video if there is any confusion during any step of the measurements.  

https://www.youtube.com/watch?v=vn1EQ8liI4g  Also I college  

Press Measure and then repeated measurement. Select, Advanced and choose the path 

where you want to save the date. Remove tick mark on the ATR spectra box of data blocks, for 

background measurement. Fix other parameters like wave number, scan and go back to the Basic 

tab. You will see a repeated sample single channel (lower one). After pressing the repeated 

sample single channel, you will see the IR spectra. Whenever the graphs of spectra start to overlap 

stop the measurement by pressing Abort (right click the green line on the bottom of windows). 

5) Sample measurement: Load the desired amount of sample (I found 1µl is enough 

to cover the ATR crystal) over the crystal plate by using Gilson micropipette carefully. In every 

measurement, sample should have a similar droplet dimension. Also, take care of other 

environmental factors like temperature, pressure, amount of light and other settings (all the 

background conditions) should be similar for every measurement).  

Note: Serum samples (1 µL) are deposited in order to fully cover the crystal surface (I tried 

with 2 µL and 0.5 µL samples and found 1 µL is the best option). 

After loading the sample, click the Advanced button and tick the ATR spectrum, select 

the path, you could change the name from the background you used previously to a new name 

clearly indicating sample identification information. Click on Background you will see an 

arbitrary previous file already selected. Clear (delete) this old background and select the last 

background you took (i.e. the curve just before pressing the abort button). After choosing the 

background, double click load background. Return to the basic button and start scanning by 

pressing the Repeated sample single channel, you will get the IR spectra. Stop your measurement 

https://www.youtube.com/watch?v=vn1EQ8liI4g
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by pressing the Abort button, if you find spectra starts to repeat itself and you have more than 

eight overlapping spectra.   

6) Averaging: Take the average of 6 spectra (Referring: Bayesian statistics), which 

were repeated (i.e. Exactly overlapped) after the serum dries measuring. Each sample was scanned 

multiple times to get ten or higher-quality (exactly overlapping) spectral data within the mid-

infrared range 400 to 4000 cm-1 and 6 reads of the 100 co-added scans for each sample (total of 

600 scans) were averaged. 

7) Number of Scans: Generally, the trend is for the number of scans to go as 2n (n = 

2, 3,4,5…), but we are taking 100 scans for each spectral data. Thus, in each spectrum that are 

selected for the final analysis represents (6x100) 600 scans.  There is not any scientific reason for 

this selection of 100 scans, but my recommendation is use scan 64 instead of 100. (Our experience 

is by choosing 32 scans, will result into noisy spectra, and using 128 scans will take time, so my 

recommendation is to use 64 scans). Depending on the laboratory conditions, these numbers may 

be different. It is thus strongly recommended to check whether everything is ok before going to 

actual measurements.  

8) Spectra saving: If you think you got the best spectra that can represent your 

sample, go to file, save as, mode Data Point Table (.dpt), File name and path, Open them in Excel 

you will get the a set of data, so select columns (A and B), go to Data, text to the column, next, 

comma, next, finish.  

9) Normalization: Normalization is a crucial process while analyzing IR spectral data 

of the present study, as they were recorded under different sample loading, which is influenced by 

fluid dynamics of sample, and drying of sample conditions. Spectral data of the serum samples 

could have different intensity levels. Normalization takes care of variation in IR bands of serum 
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as the spectra were recorded under the same experimental parameters. Herein, Min-max 

normalization of absorbance spectra and the vector normalization of second derivatives spectra 

were performed. Using OPUS 6.5 software, all the spectra were min-max normalized by scaling 

the range 1800 to 900 cm-1. This range is chooses as it comprises a significant biochemical 

fingerprint of the biological material and the amides (I and II) bands[24].   

Vector normalization[135] is another popular protocol. We are using min-max 

normalization in absorbance spectra and vector normalization in second derivative spectra. In the 

following points, I have explained the basic concept of these normalization and mathematical 

formulation, so that one can use desired mathematical programming knowledge while normalizing 

these data.  

10) Min-max normalization: Assuming absorbance values (before normalization) are 

X = x1,x2,x3,x4,…. xn. Find the maximum of them and say Xmax and minimum as Xmin. Min-

Max normalized values are now;  

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
   i = 1, 2, 3, …., N.  

The min-max normalized data using this formula is compared as in figure A4 (A) with 

normalized data using OPUS, which guarantees our formula can be used while using other 

programming languages.  

11) Vector normalization: Assuming absorbance values (before normalization) are X 

= x1,x2,x3,x4,…. xn.  

First, find the square of each variable as (x1)2, (x2)2, (x3)2,…. (xn)2. After finding the 

square of variables find the sum of them as; S = (x1)2 + (x2)2 + (x3)2 +…. + (xn)2. Again, find the 

square root of S, which is also called norm of variable of X. Now vector normalized data are now; 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖

√𝑆
   i = 1, 2, 3, …., N.  
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The vector normalized data using this formula is compared as in figure A4 (B) with 

normalized data using OPUS, which guarantees our formula can be used while using other 

programming languages.  

 

Figure A4 Verifications of mathematical formula for normalization. (A) Min-max 

normalization of absorption spectra. (B) Vector normalization of second derivative curves of the 

spectra. Spectra obtained from the formula overlaps with the corresponding spectra, as obtained 

from the OPUS software. It verifies, these formulas can be used while writing code in another 

programming language.  

12) Smoothing: The second derivatives of Infrared spectra need smoothing.   

The number of data in the absorption curve and the second derivatives curves are equal, so 

by smoothing the number of data points will be same.  Let's say you have data Y = 

(a,b,c,d,e,f,g,h……..z) (i.e. total set of data =26). Now you want to have a smoothed set of data Y’ 

= (a’, b’, c’, d’, …… z’). Here, a’ = (a), b’ = (a+b+c)/3, c’ = (a+b+c+d+e)/5, d’ = 

(a+b+c+d+e+f+g)/7, e’ = (a+b+c+d+e+f+g+h+i)/9, f’ = (b+c+d+e+f+g+h+i+j)/9, ………… q’ = 

(m+n+o+p+q+r+s+t+u)/9, r’ = (n+o+p+q+r+s+t+u+v)/9, …………, v’ = 

(r+s+t+u+v+w+x+y+z)/9, w’ = (t+u+v+w+x+y+z)/7…….. y’ = (x+y+z)/3, z’ =z.  We have nearly 
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3500 sets of data and those crucial for our study lie in the middle, so no need to worry about these 

numbers in the extreme.   

It is noted that we have to smooth only second derivative spectra. In OPUS software, while 

doing second derivatives, there are 9-point smoothing, 12-point smoothing, …. options. We cannot 

get second derivative spectra without smoothing in this software (Note: there is no option available 

to get second derivative spectra without smoothing). Herein, nine-point smoothing is used while 

taking the second derivative spectra. For clarification, a smoothed and unsmoothed spectral data 

using the vector normalized second derivative spectra is shown in figure A5. It is strongly 

recommended to use data before cutting 900-1800 cm-1, as end points are affected during 

smoothing. We can use Adjacent averaging, as explained above or Savitzky-Golay smoothing 

function. The programming languages like Python are using Savitzky-Golay smoothing.  

Look at the left side of the window and change the color of 2-3 last spectra so that you can 

see the difference clearly. If you think you got the best spectra that can represent your sample, go 

to file, save as, mode Data Point Table (.dpt), File name and path, open them in Excel you will get 

the sticking set of data, so select columns (A and B), go to Data, text to the column, next, comma, 

next, finish. The screen shot of each step is in the PPT of the folder.  
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Figure A5 Spectral data before and after smoothing.  

Data Analysis 

The details of spectral analysis techniques are explained in the appropriate section of this 

dissertation.   

1) First, the spectral data of the control and diseased samples within 400-4000 cm-1 

wavenumber range. This mid-IR range includes bio fingerprint region (900-1500 cm-1) and amide 

peaks (1500-1700 cm-1).  

2) Take the average of the final 6 spectra which are overlapped with each other (The 

sample size of at least 6 is needed for meaning full statistical analysis).  

P-value calculation of min-max normalized absorbance: The spectral data of two groups 

(let’s say control and diseased) were first compared using student t-test p-values. In this study we 

are using EXCEL to calculate the p-values and find the p-values at all the wavenumber positions.  

3) Take the second derivatives with 9 point smoothing and do the vector normalize 

them to get the idea of minima and maxima of the data (that will be useful while fitting), for 
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Dendrogram tree diagram plot[63] and PCA[137]. Now vector normalized[135] the second 

derivatives curves.   

4) Hierarchical Cluster Analysis (HCA) and Dendrogram Plot: Our analysis includes 

the dendrogram of HCA, which is commonly employed to identify the similarities between the 

FTIR spectra by using the distances between frequencies and aggregation algorithms[63]. Using 

the “PAST (Paleontological Statistics) 4 - the Past of the Future” software and the vector 

normalized second derivative curve of the absorbance spectra, as input data (variables), HCA is 

performed and the dendrogram is plotted. Dendrogram tree diagram performed, using Ward’s 

algorithm and Euclidian distance measurements, allow us to visualize the overall classification. 

Origin and MATLAB programming were also used for cluster analysis; however, use of PAST-4 

is easy and has necessary inbuilt functions.   

 

Figure A6 Dendrogram tree diagram performed, by using Ward’s algorithm and Euclidian 

distance measurements of vector normalized second derivatives curves within spectral range 

1600-1700 cm-1. (A) A wide difference can be seen between spectra belonging to control and colitis 

mouse, compared to the degree of the dissimilarity between controls and treated while considering 

three groups constraints (1 for control: c1 to c9, 2 for treated: t1 to t9, and 3 colitis: d1 to d9). (B) 

Stratigraphic constraints of three groups showing colitis group has larger heterogeneity form 
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control and treated groups. While there is a similarity between control and treated groups in this 

classification.  

Dendrogram tree diagram performed, using Ward’s algorithm and Euclidian distance 

measurements, allow us to visualize the overall classification as shown in figure A6. In both 

analyses, spectral data from an equal number of mice were used (herein, we have randomly picked 

9 controls). However, the degree of heterogeneity is less for treated groups from control compared 

with colitis while using group constraints as in figure 6A (A). Similarly, only colitis group shows 

strong degree of heterogeneity compared to control and treated groups in stratigraphic constraints. 

Herein, HCA analysis allows us to understand the preliminary idea about the potential application 

of the measurement techniques to segregate the groups.  

5) PCA: PCA[137], a useful statistical analysis[137], is first performed to explain the 

holistic evaluation biomolecular content variations reflected in infrared absorbance data. Using the 

PAST 4 software vector normalized second derivative curve of the absorbance spectra, as input 

data variables, the variance-covariance matrix with the pairwise exclusion of missing values were 

analyzed to get the component plots. This can also be done easily by using Origin and SPSS 

software, but PAST-4 is easier one. The scatter plot of PC1 and PC2 were used to visualize the 

clustering of groups together with different magnitudes and directions. The scree plot is also used 

to check the total variance presented by PC1 and PC2 is significant. These findings from the PCA 

analysis led us to investigate spectral signatures useful in the clinical domain. 

6) Spectral Deconvolution (fitting):  

Watch the video first (https://www.youtube.com/watch?v=zGHP2GBBdnE) and look into 

section 2.4.3, figure 2.1 for details.  

https://www.youtube.com/watch?v=zGHP2GBBdnE
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We perform quantitative analysis of the absorption band values at different spectral 

markers’ positions, which follows discrimination of secondary structures by deconvolution of the 

spectra in the amide I region. During the deconvolution process, the computed curve that best fit 

with the experimental spectrum is obtained from the superposition of Gaussian function energy 

bands (GFEB). The individual bands from deconvolution represent proteins’ secondary structures 

as discussed in the protocol papers, and similar studies in the field[108, 116-118, 120, 126] which 

were used to verify the applicability of this technique over complementary spectroscopic methods 

(X-ray crystallography, and nuclear magnetic resonance).  

The process of deconvolution includes sectioning of min-max normalized spectra followed 

by rubber-band correction with two baseline points, such that absorbance values at extreme ends 

of the selected region will be zero as in figure A6. These spectra were then fitted with GFEBs by 

approximating the position and the number of bands from the minima of second derivative spectra 

and also by the minimization of root mean square error via the Levenberg-Marquardt[138] 

algorithm.  

 

Figure A7 The process of rubber band baseline correction. The sectioned region 1600-

1700 cm-1 is baseline corrected using baseline correction, such that the absorbance at the two 

extreme ends is 0.  
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7) Statistical Analysis: First, student’s t-test is performed in EXCEL to calculate the 

p-value. P-value less than 0.05 (5% in Gaussian distribution) is considered as statistically 

significant in the null hypothesis. It is noted that Bonferroni correction[191] (new p-value, which 

is defined as the ratio of original p-value divided by the number of tests) is also performed to adjust 

type I error[191] (that has higher chances for a false positive; example includes analysis is showing 

differences in similar population due to problematic measurement or analyzing techniques) when 

conducting multiple analysis. It is noted that, using this new p-value, researchers calculate 

statistical power of the study.  

Sensitivity, specificity the receiver operating characteristic (ROC) curves: Quantified 

values of these identifying spectral signatures are statistically analyzed to see the disease-

associated alteration in the sample, and their stabilization after biological therapy. Our statistical 

analysis mainly includes finding the sensitivity and specificity of the signatures for their 

discrimination. Sensitivity and Specificity of a diagnostic test are often used to describe the 

diagnostic accuracy/performance of the analysis in biomedical research[141]. The discriminating 

potential of a diagnostic regimen can be quantified by the Youden index and the area under the 

receiver operating characteristic (ROC) curves [142]. The ROC curve is plotted to find the area 

under curve (AUC). The optimal cutoff value calculated based on the Youden index for each 

spectral marker is used to select the positivity/negativity of the disease and to estimate the 

sensitivity and specificity. Youden Index summarizes the displaying discriminatory accuracy of a 

diagnostic test in ROC curve while distinguishing two populations. It measures the effectiveness 

of test and enables for selection of optimal cut-off value[192].  
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Appendix D 

In this appendix, information about the second derivative spectra is discussed.  

Appendix D.1 Second Derivatives Spectra and Their Importance 

In IR spectroscopy, molecules absorb light at resonance frequencies that are the 

characteristic of molecular structure. Where, the energy of vibration depends on molecular shape 

(potential energy), mass of atoms and the associated vibronic coupling (bonding)[3]. Therefore, 

the observed profile is a convolution of the line profiles of each individual mechanism of 

component constituents. The overall contribution of these individual vibrations is reflected in 

infrared absorbance spectra. Essentially, absorption spectrum is the analysis of the IR light 

interacting with molecules and is visualized in the graph of light absorption on the vertical axis vs 

wavenumber (or wavelength) in horizontal axis.  
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Figure A8 Derivative spectra and their importance for spectral analysis. (A) Gaussian 

function distribution. (B) First derivative spectra and (C) Second derivative spectra. The minima 

position of second derivative spectra exactly represents the maxima of Gaussian Distribution.   

 

The line profiles, which have the shapes of Gaussian, Lorentzian and Voigt functions, 

represent the vibration of individual components and depends on the line position, maximum 

height and half-width. Therefore, curve fitting with these line shapes is sometime preformed either 

for interpolation, or to find the contribution of individual components. The Gaussian distribution 

(function) is used to explain the importance of second derivatives as in figure A7 (A). The first 

and second derivatives of the Gaussian curve are shown figure A7 (B) and figure A7 (C), 

respectively. The minima of second derivative curves exactly represents the maxima of Gaussian 

curve, so minima of second derivatives are used to approximate the number and position of 

GFEB’s used to fit the spectra in our study. These second derivatives data also offer a practical 

and more specific method than routinely used absorption spectrum analysis to obtain the 

composition of proteins and nucleic acids. Therefore, second derivative curves are also used in 

PCA analysis and the dendrogram plots.  
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Appendix E 

In this appendix, selection of the number of GFEBs (oscillators) for fitting the experimental 

absorbance curves is discussed. Second derivative spectra fitting reflecting the position of protein 

secondary structures is also discussed.  

Appendix E.1 Number of GFEBs (oscillators) 

In IR spectroscopy, the spectra were fitted in general with GFEBs by approximating the 

position and the number of bands from the minima of second derivative spectra and by the 

minimization of root mean square error. ATR-FTIR spectra taken at resolution 8 cm-1, of air-dried 

serum sample at room temperature clearly depicts four valley positions [figure A9(A)] in the 

second derivative spectra showing significant presence of side chain, α-helix, β-sheet and β (anti-

//+turn) structures. Random coil is an integral unit of a protein structures their contribution is 

significant in denatured proteins[193] analysis. However, the sera samples used in our study do 

not have denatured proteins, and our spectra were showing its impact on the infrared absorption is 

negligible compared to other four identified components. It is noted that the denaturation of 

proteins occurs at high temperatures or chemical interactions[193]. In order to be consistent, our 

analysis also includes an additional Gaussian band nearly at 1641 cm-1 reflecting random coil 

structures in protein secondary structures. Figure A9(B) and figure A9(C) shows the experimental 

curve fitting using GFEBs without (n=4) and with (n=5) the inclusion of random coil structures. 

This additional band does not alter the sensitivity or specificity of the identified distinguishing 

markers. Once the band at 1641 cm-1 is included, there is a slight variation in spectral signatures 

(specially, alpha helix/beta sheet) but the pattern of colitis in contrast to non-colitis remains the 

same as discussed, where absorbance spectra were measured at 8cm-1 resolution[4, 5].  
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Figure A9 (A) Second derivative of ATR-FTIR absorbance of control sera at resolution 8 

cm-1, showing the deconvolved amide I region. (B) The individual secondary structure components 

were modeled using GFEB whose positions were determined from the second derivative of the 

absorbance to obtain simulated fits to the experimental curves. (C) Secondary structures were 

modeled using GFEB with the inclusion of random coil components approximately at wavenumber 

position 1641 cm-1 [4]. 

Importantly, with a resolution of 2 cm-1 gives noisy derivative spectra and of 8 cm-1 

resolution gives rise to missing secondary structure information (spectral signatures show a lower 

degree of variability), while using diamond ATR crystal configured to have a single reflection of 
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incident IR radiation. By understanding of the positives and negatives of the techniques[122], and 

their optimizations protocols[123], we found that a resolution of 4 cm-1 allows us to overcome the 

challenges[139] of deconvolution process for quantitative analysis. At this resolution, two 

individual band positions for β-sheet (anti-//) and β-turn are reflected in the second derivative 

spectra. It further allows us to reduce the interspacing distance between bands. Increased spacing 

between individual bands is considered as one of the challenging aspect of fitting technique[139]. 

Figure A10 (A) shows the second derivative spectra of absorbance spectra of air-dried serum 

sample at resolution 4 cm-1. The minima/valley positions in the second derivative spectra showing 

significant presence of side chain, α-helix, β-sheet, β-sheet (anti-//) and β-turn structures.  

 

Figure A10 (A) Second derivative of ATR-FTIR absorbance of control sera at resolution 

4 cm-1, showing amide I, region fitting. (B) The individual secondary structure components were 
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modeled using GFEB whose positions were determined from the second derivative of the 

absorbance to obtain simulated fits to the experimental curves. (C) Secondary structures were 

modeled using GFEB with the inclusion of random coil components. 

Experimental absorbance spectra taken at 4 cm-1 resolution were now fitted with (figure 

A10 (C)) and without (figure A10 (B)) random coil structures. The integral ratio of α-helix and β-

sheet protein secondary structures with and without inclusion of random coil structure is analyzed 

using BC data presented on section 3.3 (Figures 3.13 to figure 3.15 above). Figure A11 (A) and 

figure A11 (B) are showing the ratio of the α-helix and β-sheet structures with and without 

including random coils in the fitting. Both figures show the level of β sheet structure increase and 

α helix decrease due to BC.  

 

Figure A11 The integral ratio of α-helix and β-sheet protein secondary structures using 

five and six bands on experimental curves at resolution 4 cm-1. (A) Ratio of integral values while 

fitting experimental curve without random coils structures. (B) Ratio of integral values while 

fitting experimental curves with including random coils structures.  
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Appendix E.2 Estimation of Bands’ Position Using Second Derivatives Spectra Fitting 

The second derivatives of absorbance spectra were also used to extract protein secondary 

structural information reflected in infrared spectral data[194]. The local minima position of the 

second derivative curves of the absorbance spectra provides the position of GFEB bands while 

analyzing absorbance data. Figure A12 shows the techniques for the estimation of the band's 

position using the second derivative fitting. Figure A12 (A) shows the second derivative spectra 

of the experimental absorbance spectrum. The values of the second derivative spectra were 

subtracted from 1 (Figure A12 (B)) at each wavenumber position and were rubber band corrected 

(Figure A12 (C)). Thus obtained rubber band corrected spectra are then fitted with Gussiand bands 

as shown in figure A12 (D). These second derivative spectral fitting offers a practical method to 

obtain supporting information about the chemical composition within the sample. However, the 

second derivative spectra may not provide all the biochemical components, like random coil 

structures; in the considered range as discussed above (figure A9-figure A11). It could be due to 

various reasons such as negligible presence of such protein structures or negligible contribution of 

the constituents for bonding vibrations.    
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Figure A12 Second derivative curve fitting technique. (A) Second derivative spectra. (B) 

Values of second derivative spectra subtracted from one at each wavenumber position. (C) Rubber 

band correction of the curve obtained from one minus second derivative. (D) GFEBs fitting to 

estimate the position of the bands.    
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