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ABSTRACT 

Graphene has attracted enormous attention due to its unique characteristics. However, the 

LPCVD graphene grown on copper turns out to be polycrystalline because of the high nucleation 

density (ND) on the copper foil surface. In order to realize better quality LPCVD graphene, this 

ND needs to be significantly reduced. Based on the observations from our initial graphene growths 

on as-received copper, we figured that the uneven Cu surfaces with defects produce large NDs. At 

a large ND, the graphene flakes nucleated at different sites coalesced to produce polycrystalline 

graphene. Due to such issues, we have implemented an electropolishing technique to smoothen the 

native surface of the copper foil. We will discuss the successful implementation of the surface 

smoothening process to reduce nucleation site formation while limiting the surface defects (which 

leads to wrinkle formation). The annealing process was also helpful to flatten the surface during 

the growth process further. We have also observed that graphene grows across Cu grain boundaries 

and, in the process, produces an additional surface area for graphene growth. That later causes to 

form wrinkles, which affect graphene properties negatively. 

In the next project, the effect of multi-step copper surface oxidization, base pressure 

vacuum in the middle of the process, and integration of Cu enclosures on suppressing the ND will 

be discussed. The technique is based on the self-cleaning characteristics of copper oxides and the 

metal evaporation in a high vacuum at high temperatures. The ND has reduced to ~5 

nucleations/𝑐𝑚2 on average (an improvement compared to the previously reported minimum 

value, ten nucleations/𝑐𝑚2 which was obtained using copper enclosures), and the graphene/copper 

surface has become smoother. The self-aligned graphene island geometry and shape of the flakes 

have reflected the symmetry and the single crystallinity of graphene.  



The final project will discuss the growth of cm-scale graphene flakes on Cu and 3D-

multilayered graphene on 3D-Ni foams and used Ni's gettering carbon diffusion effect to make the 

Cu foil carbon-free. The Ni-foam/Cu enclosure was oxidized in situ to assist with the self-cleaning 

process of metal oxides. The ND has been reduced to ~0.57 nucleation/𝑐𝑚2 and obtained cm-scale 

graphene flakes. 
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gauge pair and analog pressure gauges (C). (b) The gas control panel. (c) The needle valve 

consists of a barrel-thimble micro-gauge. It was crucial to fine-tune the 𝐶𝐻4 gas flow. 78 

Figure 5.3 A schematic illustration of the LPCVD system. Four gas inlets feed 𝑂2, 𝑁2, 

𝐻2(10%)/𝐴𝑟(90%), 𝐶𝐻4 into the CVD tube furnace chamber at different stages of the 

LPCVD process. The inner diameter of the quartz tube was around 3cm, and the sample 

was placed in the middle of the heating element (isothermal zone) to ensure a uniform 

temperature along with the Cu pocket. Moreover, the enclosure was positioned carefully 

inside the quartz tube by considering the enclosure geometry and gas-phase dynamics to 

achieve a uniform reactant concentration and temperature. It helps to control the near-

surface conditions so that the deposition becomes more homogenous and controllable. The 

maximum growth temperature of the reactor was 10600𝐶 and achieved a base pressure 

value of ~30 mTorr. .......................................................................................................... 79 

Figure 5.4 A graphical representation of the temperature (left-axis), pressure (right-axis), and the 

overall growth profile of the LPCVD process. The temperature (black curve) was ramped 

up to 9000𝐶 from 300𝐶 and then gradually brought to 10600𝐶, as shown on the left axis. 

The red curve and the right axis represent how the pressure values changed during the 

entire growth process. This growth profile consists of seven stages, including two 

annealing and growth steps. In addition to the pre-oxidization step, the enclosure was 

oxidized twice during the LPCVD process by providing a controlled flow of 𝑂2 before 

each growth cycle. It increases the concentration of oxygen atoms which helps to reduce 

graphene nucleation. At the end of the growth, the temperature set value was immediately 

adjusted to 300𝐶 and let the system cool down slowly while keeping the gas flow rates 
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unchanged. The presence of oxygen atoms and the stability of  𝐶𝑢2𝑂 below 10000𝐶, 

discourage further growth of graphene during the cooling cycle. .................................... 80 

Figure 5.5 (a) An image of the OLYMPUS BH2-MJL Optical Microscope (OM) and this 

microscope can magnify images up to X100. The raw image is captured by a digital 

microscope camera (DM) that feeds it into an image viewer software. (b) A picture of the 

dry transfer system contains an optical microscope, a digital microscope camera, a 

micromanipulator, a glass slide holder, a heating element, a Si chip holder, and a vacuum 

pump. The Gold/𝑆𝑖𝑂2/Si chip holder was heated to 45 ± 50𝐶 to favor the van der Waals 

force between graphene and gold/𝑆𝑖𝑂2/Si chip as well as to weaken relatively strong 

adhesion forces between graphene and PDMS. The OM/DM system was used to capture 

the live image, and then adjustments were made to coincide the graphene sample and the 

contact pattern. The micromanipulator was used to move the graphene/PDMS/glass slide 

vertically and horizontally so that the graphene flake and the gold contact pattern touch 

each other. ......................................................................................................................... 82 

Figure 5.6 Optical images of individual graphene flakes on PDMS at X50 magnification (a & b) 

flakes with diagonal lengths around 45 ± 5 𝜇𝑚 (c & d) relatively larger graphene flakes 

with diagonal lengths over 75 𝜇𝑚. All of those flakes were clean, and the black dots were 

air bubbles trapped between glass and PDMS that do not affect the graphene transfer. These 

films were air-dried and free of water. The existing wet and dry transfer methods introduce 

polymer residue and impurities such as ions and water, affecting graphene quality 

negatively. More importantly, when using the PMMA wet transfer method, some water 

molecules were trapped between graphene and 𝑆𝑖𝑂2/𝑆𝑖 chip. That considered one of the 

significant drawbacks of wet transfer methods. However, in this method, the possibility of 
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having such impurities and residue is very minimum. All flakes have a square shape, and 

green dashed lines mark the edges of graphene flakes. .................................................... 83 

Figure 5.7 A schematic illustration of the hybrid transfer of graphene (2-D materials) onto a 

specific location on a flat and smooth substrate (here, a 𝑆𝑖/𝑆𝑖𝑂2 chip with a golden contact 

pattern). It is crucial to pick a graphene flake that fits between the + signs of the gold 

contact pattern to prevent short-circuiting the device. First, the Cu/Graphene sample was 

cleaned with a quick blow of 𝑁2 gas to remove any dust particles on the surface. Then a 

dust-free PDMS piece and the Graphene/Cu foil were firmly pressed such that no air 

bubbles (blisters) were left between the surfaces. It was let to float on a 𝐹𝑒𝐶𝑙3  solution to 

etch away the metallic copper. The PDMS/graphene stack was left to float on deionized 

water to dissolve the remaining 𝐹𝑒𝐶𝑙3 without making any disturbances so that water will 

not leak between two layers. Then it was placed on a glass slide (by forming a 

glass/PDMS/graphene stack) to dry and removed the excess PDMS. After that, it was 

placed on a micromanipulator such that the graphene side faces down. A cylindrical Cu 

block was used as the stage to hold the Si chip with a gold contact pattern, and the graphene 

flake was transferred onto it by using the micromanipulator. A heating element was used 

to heat (45 ± 50𝐶) the Si chip to favor an easy transfer. This novel hybrid transfer method 

combines wet and dry transfer techniques. It was developed by taking advantage of weak 

van der Waals forces and relatively strong adhesion forces between graphene/PDMS 

interface............................................................................................................................. 85 

Figure 5.8 Optical microscopy images of the graphene flakes during different stages of the hybrid 

transfer process. (a) This is the same graphene flake shown in Figure 5.7. Here, the flake 

is on a PDMS piece/glass slide, and the pinkish purple color of the background came from 
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the 𝑆𝑖𝑂2/𝑆𝑖 chip underneath. The surface has a minimal amount of residues which is 

negligible. Despite the low contrast between transparent graphene and PDMS, the flake is 

still visible that is enclosed by a dashed line (green). (b) The chip with a gold contact 

pattern, graphene flake, PDMS, and glass slide are touched together during the transfer of 

graphene flake from PDMS to Si chip. The bluish color without any bubbles confirms a 

good contact between the chip and the flake. (c) The graphene/gold/𝑆𝑖𝑂2/𝑆𝑖 chip after the 

successful transfer of graphene without any residue taken after the PDMS liftoff. ......... 86 

Figure 5.9 A schematic representation of the graphene growth mechanism inside and outside the 

Cu enclosure during the growth cycle-I. (a) Side view of the copper enclosure that is made 

of ~25 µm thick pre-oxidized Cu foil. The main gas flow includes 𝑁2 and 𝐻2/𝐴𝑟. The 

tightly folded edges are welded together during the heating phase due to the high 

temperature (10600𝐶) closer to the meting point of Cu. It seals the interior of the pocket 

from the outside and forms a static equilibrium inside the pocket. (b) The evaporation and 

diffusion mechanisms of carbon atoms in bulk and on the surface of copper foil before the 

oxidation step-I. The inner oxide layer is decomposed and formed a thin 𝐶𝑢2𝑂 layer. (c) 

The oxidation step-I of copper and oxygen diffusion into the copper foil. (d) The oxygen 

evaporation on the outer layer and the oxide formation of a relatively oxygen-rich pocket 

interior. (e) Growth cycle-I. The mass transport, gas diffusion, surface adsorption, 

dehydrogenation/decomposition, surface migration & nucleation, growth of graphene 

islands, bulk diffusion of carbon into the Cu foil, and oxygen diffusion from the interior to 

the exterior. (f) Monolayer flakes are formed inside the pocket and prevent the formation 

of bi-layers by acting as a diffusion barrier for carbon. The mechanism of bi-layer graphene 
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formation on the exterior of the enclosure results from free radical deposition on the 

existing graphene flakes from the exterior gas environment. ........................................... 90 

Figure 5.10 A schematic representation of the full vacuum phase and oxidation phase-II before the 

growth cycle-II. (a) The full vacuum step. After shutting down the gas supplies, the system 

pressure starts to drop rapidly, and the rate of surface evaporation on the exterior is 

increased. It causes to decrease in the carbon atom percentage on the outer surface of the 

Cu foil. The interior is in static equilibrium, which encourages the diffusion of carbon and 

oxygen towards the exterior. It removes the additional nucleation sites and carbon on the 

inside surface and helps to suppress the nucleation density as a result. (b) Oxidation phase-

II. At the end of the vacuum step, the carbon-free Cu surfaces oxidized by following the 

same steps as previous. This step is similar to part (c) of Figure 5.9 despite the graphene 

layers formed during the growth cycle-I. After this, the growth process is identical to the 

growth cycle-I (see Figure 5.9c-f). ................................................................................... 93 

Figure 5.11 The optical microscopy images of graphene flakes grown on Cu. This figure includes 

images that were taken from two samples. Figure 5.12a-b shows another sample grown 

under the same conditions. All samples showed similar characteristics. The first sample 

was scanned under different magnifications to study the surface conditions of graphene 

and Cu. (a-c) OM images of sample 1, taken under different magnifications (a) ×5 (b) ×10 

(c) ×50 (d-f) OM images of sample 2, taken under ×5 magnification at different locations 

on the interior surface. All sample surfaces were clean of residue and smooth, which was 

uncommon under different growth methods. More importantly, all samples have a very low 

nucleation density. The chartreuse & blue lines shows the alignment between flakes, and 
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it will be discussed in Figure 5.12. Such features prove the higher quality of the graphene 

samples. ............................................................................................................................. 95 

Figure 5.12 (a & b) Optical microscopy images of graphene flakes and the surrounding area of 

sample 3. The images were taken under ×5 magnification and had a cleaner surface with a 

highly suppressed nucleation density. (c & d) Surface scans of two adjacent locations on 

sample 1 (see Figure 5.11a-c). These were also taken under ×5 magnification as Figure 

5.11a. Both (c) and (d) show smooth surfaces and low nucleation densities, as shown in 

Figure 5.11a-c. Additionally, the flakes grown under this method are square-shaped and 

followed a vertical and horizontal alignment. It also follows this alignment when 

combining flakes and then creates a big square-shaped graphene flake. The chartreuse & 

blue lines show such alignments, representing the high crystallinity of the foil, which 

consists of Cu (100). ......................................................................................................... 96 

Figure 6.1 The images of  Ni-foam and graphene/Cu samples at different stages of the growth 

process. (a) The oxidized Ni foam enclosure (Ni/Cu/Ni sandwich) just before the growth. 

(b) The 3D graphene/Ni-foam and the graphene/Cu strip after the growth. (c) The flatten 

graphene/Ni-foam. This by-product is reusable for another graphene growth cycle. More 

importantly, this 3D graphene on Ni-foam can be used as a 3-D high-performance 

electrode. ......................................................................................................................... 102 

Figure 6.2 A graphical representation of the temperature (left-axis), pressure (right-axis), and the 

overall growth profile of the LPCVD process. The temperature (black curve) was ramped 

up to 8500𝐶 from 300𝐶 and then gradually brought to 10000𝐶, as shown on the left axis. 

The red curve and the right axis represent how the pressure values changed during the 

entire growth process. The enclosure was oxidized (pre-oxidization) during the LPCVD 
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process by providing a controlled flow of 𝑂2 before the growth cycle for 15 min. At the 

end of the growth, the temperature set value was immediately adjusted to 300𝐶 and let the 

system cool down slowly while keeping the gas flow rates unchanged. ........................ 103 

Figure 6.3 A schematic illustration of the LPCVD system. Four gas inlets feed 𝑂2, 𝑁2, 

𝐻2(10%)/𝐴𝑟(90%), 𝐶𝐻4 into the CVD tube furnace chamber at different stages of the 

LPCVD process. The inner diameter of the quartz tube was around 3cm. The Ni-foam 

enclosure was placed in the middle of the heating element (isothermal zone) to ensure a 

uniform temperature along the enclosure. Moreover, the enclosure was positioned carefully 

inside the quartz tube by considering the enclosure geometry and gas-phase dynamics to 

achieve a uniform reactant concentration and temperature. The maximum growth 

temperature of the reactor was 10000𝐶 and achieved a base pressure value of ~33 mTorr.

......................................................................................................................................... 104 

Figure 6.4 The Cu/graphene foil after post-oxidation (optical visual enhancement). (a) The foil 

contains a cm-scale graphene flake on the right. Red arrows mark the sides which touched 

the nickel pocket edges. Side D is the main point of interest. The small graphene regions 

given by B-F can be avoided by preventing those sides from touching the enclosure edges. 

The blue arrow represents the possible growth directions of the hexagonal graphene flake. 

(b) The inset of (a) with a measuring scale. The diameter of the flake is larger than 1.3 cm.

......................................................................................................................................... 107 

Figure 6.5 A schematic representation of the 3D-graphene growth mechanism on nickel foam and 

single-crystalline graphene growth on the Cu strip. (a) Phase-I: Self-cleaning process and 

the initial stage of graphene growth. Here, the green and brown colors are used to represent 

the nickel and copper oxides, respectively. The carbon atoms are given by black dots.    (b) 
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Phase-II: Carbon saturation process. Here the yellow color represents the carbon-free Cu 

strip. (c) Phase-III: 3-D and 2-D graphene growth process. The thick blue arrows on each 

side represent the 3-D graphene growth direction on Ni-foam. The thin blue lines represent 

the saturated carbon flow direction on nickel foam edges and the graphene flake growth 

direction on the Cu strip. ................................................................................................. 109 
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1 INTRODUCTION  

 

1.1 Dissertation Overview 

This dissertation consists of six chapters. Chapter 1: The introduction contains three 

sections: the dissertation overview, background, and motivation. In the background section, I will 

briefly discuss the origin of carbon, the discovery of carbon allotropes, the hybridization of 

Carbon, and the importance of 2D materials.  

Chapter 2 includes the theory and properties of graphene. I will discuss the crystal structure 

of monolayer graphene, the derivation of wave function using the tight-binding model, and 

effective mass approximation. In addition, I will derive the wave function of two-layer graphene 

and discuss the peculiar tunneling effect of graphene.  

Chapter 3 introduces graphene synthesis methods and the quality of graphene produced by 

those methods. Such methods include the chemical & mechanical exfoliation of graphite, and the 

epitaxial growth, including chemical vapor deposition (CVD). The CVD section, which is 3.3.2, 

includes vital information about the CVD graphene growth on Cu and Ni catalysts. It will be 

helpful to understand clearly the concepts given in chapters 4, 5, and 6.  

Chapter 4 is an expanded version of an article, which was published in MRS Advances, a 

peer-reviewed journal in 2019 [1] based on my research work. It is focused on the role of surface 

morphology on nucleation density limitation during the LPCVD growth. Moreover, I will discuss 

the factors influencing graphene wrinkle formation. 

In chapter 5, my research work on the effect of multi-step Cu surface oxidization on the 

growth of single-crystal graphene by LPCVD will be discussed. Here, I have used the “self-

cleaning’ properties of copper oxides, forming a static equilibrium inside the enclosure, and the 



2 

partial surface evaporation in a vacuum at high temperature to develop the growth method. The 

initial findings of this research project were presented at the APS March Meeting in 2019. [2] 

Moreover, I have introduced a wet-dry-transfer technique to transfer residue and a wrinkle-free 

transfer method. The initial observations were submitted to the APS March Meeting (virtual) in 

2020 (the Bulletin of the American Physical Society). [3] 

Chapter 6 presents a study of high crystalline cm-scale CVD graphene growth on copper 

using a Ni-foam enclosure and has obtained cm-scale graphene flakes. Furthermore, this method 

also produces 3D-graphene-Ni-foam as a byproduct, and that considers a high efficient 3D 

electrode in the battery and supercapacitor industry.  

My primary purpose in this research is to develop high-quality single-crystalline graphene 

(SLG) growth methods as a materials grower. Hence, chapters 4, 5, and 6 are interconnected. In 

other words, some of the methods discussed in chapter 4 are also used to develop the growth 

methods discussed in chapters 5 and 6. Also, some of the methods/findings introduced in chapter 

5 have been used to develop the methods discussed in Chapter 6. More importantly, instead of 

repeating some of the sample preparation methods and descriptions, I have given proper cross-

references to chapters 4 and 5 while writing chapters 5 and 6. Furthermore, each chapter (4, 5, and 

6) includes a separate conclusion section that summarizes the findings of the corresponding 

chapter. 
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1.2 Background 

1.2.1 The Grand Origin 

The widely accepted scientific description of the universe is the idea of an evolving 

hierarchical cosmos expanding from the initial hot big bang for more than 13.7 billion years. The 

formation of all the atoms in the universe was made possible after this grand moment, and very 

shortly after the Big Bang, during the period of so-called cosmic inflation, the universe, which was 

filled with highly homogeneous energy, began to increase its volume exponentially, thus reducing 

its energy density.  

 

Figure 1.1 Illustrates the phase transitions that the quark-gluon plasma underwent in the 

early universe, which produces hadrons. These hadrons are the building blocks of all matter in 

the universe, made of up and down quarks. [4]  

 

The universe's temperature decreased many times during this time, and very fast-moving 

solid particles were formed simultaneously. After the end of inflation, the acceleration of the 

universe's growth slowed down, but its expansion never ended. Then quarks, leptons, and gluons 

formed a very dense plasma (as shown in Figure 1.1), which prevented chemical bonds. Due to 
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the gradual expansion and cooling of the universe, quarks and gluons bound to hadrons, [5] and a 

few minutes after the Big Bang, the universe was filled with 75% hydrogen and 25% helium. The 

universe expanded for about 100 million years and atoms, then clustered under gravity to form 

objects similar to today's stars but were much larger and made entirely of hydrogen and helium. 

[6] Nuclear fusion of hydrogen in the stars also formed helium, the concentration of which 

decreased towards the center of the stars. The high temperature and pressure inside the stars have 

allowed nuclear fusion to continue, thus creating new elements, including carbon, as shown in 

Figure 1.2, which is currently the fourth most abundant element in the universe after hydrogen, 

helium and oxygen. 

 

Figure 1.2 The triple-alpha process (Helium fusion), [7] a series of nuclear fusion 

reactions that create carbon (12C) from three alpha particles (helium-4 or 4He).  

 

1.2.2 The Story of Carbon 

1.2.2.1 Discovery and allotropes of carbon 

Carbon is a non-metallic and non-magnetic material that is widely distributed by nature, so 

that it is one of the most basic elements of all organic compounds and thus essential for the origin 

of life on Earth. This fact is strongly related to how carbon combines with other chemical elements 

to form complex molecules. We can see this versatility by comparing it with other chemical 

elements: while oxygen can bond to only two atoms and hydrogen with only one, carbon has the 

possibility of forming up to four bonds with other elements. This fact allows carbon to form a wide 
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variety of complex molecules of different sizes and shapes. Another possibility that the carbon 

element offers is combining with itself differently through different types of chemical bonds. This 

ability to make different chemical bonds and generate complex structures is associated with the 

different forms of hybridization that the carbon atom can take on.  

Materials consisting only of carbon atoms can exist in different structural forms with very 

different physical properties. Diamond, graphite, and amorphous carbon in the form of charcoal 

have been known for thousands of years, but by the end of the 18th century, it was clear that they 

were different forms of the same substance. In 1772, an experiment was carried out by the French 

chemist A. Lavoisier, in which the same amount of precisely weighed diamond and charcoal was 

placed in closed vessels. These samples were then melted by concentrated sunlight. It was 

observed that in both cases, the same amount of carbon dioxide was produced in the absence of 

water vapor, from which A. Lavoisier concluded that they were materials of the same substance. 

A similar experiment in 1779 by C. W. Scheele and in 1886 by C. L. Berthollet proved that 

the combustion of graphite also produces carbon dioxide. However, during this process, a small 

amount of iron was formed simultaneously, [8] considered a necessary part of the graphite 

structure. The name Carbo (brand C) was introduced for the form of carbon formed during the 

combustion of graphite, which from the Latin translation means charcoal. In 1789, in his treatise 

on the “Elements of chemistry,” [9] A. Lavoisier included carbon as an element and is thus 

considered its discoverer. It was not until 1855 that B. Brodie proved that graphite was only an 

iron-free carbon material by burning graphite. One hundred years later, in 1955, the conversion of 

graphite to diamond (as shown in Figure 1.3) was achieved at high temperatures and pressures. 
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Figure 1.3 The first reproducible and verifiable synthetic diamonds. [10] (a) 1 mm 

diamond photographed with a phonograph needle. (b) 0.2-0.5 mm octahedral diamonds. 

 

The properties of all materials change significantly as their thickness decreases. Therefore, 

a large amount of research focused on creating the thinnest possible layers. However, since 1935, 

theories have emerged [11-14] that any two-dimensional crystal cannot be thermodynamically 

stable because the thermal oscillations of its crystal lattice would be greater than the interatomic 

distances. This consensus initially surfaced due to the views summed up in the book named 

“Statistical Physics” by Landau and Lifshitz [12] under the sections that describe the stability of 

2D crystals. It was later defined as the Mermin-Wagner theorem [15] with the idea that the long-

ranged thermal displacement fluctuations are favored by the system for their entropy increase and 

are formed (in 2D crystals) with a bit of energy cost. What emphasizes that graphene crystals are 

unstable and should melt due to the displacement of carbon atoms into the 3rd dimension by 

exceeding the bond length between carbon atoms.  

Subsequent experiments have also shown that the melting point of thin films decreases 

significantly, and their thickness is rearranged at the thickness of several tens of layers of atoms. 

In thin graphite layers, the carbon atoms were to be rearranged into an island or the structure of 

amorphous carbon. In 1952, a new stable carbon structure was discovered, carbon nanotubes, [16] 
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in which carbon atoms are arranged in a planar structure of hexagons and rolled into a cylinder 

with a diameter of 1-100 nm, schematically shown in Figure 1.4h. Their properties, i.e., low 

weight, high strength, and conductivity, are suitable for producing light composite materials, 

fabrics, and single-electron transistors. Another modification of carbon is fullerenes, which were 

discovered in 1985. [17] In this case, the carbon atoms are arranged in pentagons and hexagons on 

the surface of an imaginary sphere or ellipsoid. 

 

Figure 1.4 Schematic representation of the Eight allotropes of carbon: (a) diamond, (b) 

graphite, (c) lonsdaleite, (d) C60 buckminsterfullerene, (e) C540 fullerite, (f) C70 fullerene, (g) 

amorphous carbon, and (h) single-walled carbon nanotube. (Image Source: Wikimedia Commons) 

 

The most stable and common fullerene is the C60 molecule (buckminsterfullerene) shown 

in Figure 1.4d, formed by a series of chemical structures with 44 to 90 carbon atoms, while those 

with 60 carbon atoms appearing in greater concentration. The first fullerene was discovered by 

bombarding laser beams on a graphite target at a temperature of 104 0C. [17] When fullerenes 
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enclose an atom or molecule, their properties are strongly affected. In general, however, they are 

very stable and resistant to external influences. At present, research in the field of fullerenes has 

focused mainly on their use in medicine. [18-20] For their discovery, R. Curl, H. Kroto, and R. 

Smalley received the 1996 Nobel Prize in Chemistry. 

1.2.2.2 Hybridization of Carbon 

It is known that this element is in column IV of the periodic table and has six electrons that 

can occupy the 1s, 2s, and 2p orbitals as shown in Figure 1.6 (ground-state electron configuration 

of carbon is 1s2 2s2 2p2), two of which are strongly linked to the nucleus (1s2) and are considered 

core electrons. The rest are considered valence electrons, generally responsible for forming 

chemical bonds according to the valence bond theory. [21]  

               

Figure 1.5 Schematic representation of the hybridizations for the carbon atom: (a) 

hybridization sp, (b) hybridization sp2, and (c) hybridization sp3. [22, 23] 

 

Figure 1.5 shows the three hybridizations that the carbon atom can take: sp, sp2, and sp3. 

The “sp” hybridization involves mixing an “s” orbital with a “p,” forming two new hybrid orbitals 

that are arranged at an angle of 1800 as shown in Figure 1.5a. When carbon is hybridized in the 
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sp2 form, an “s” orbital is combined with two other “p” orbitals, forming three orbitals oriented in 

the same geometric plane with an angle of 1200 to each other, as shown in Figure 1.5b. The third 

type of hybridization made by carbon is called sp3 (Figure 1.6 contains a complete description 

about carbon hybridization), the result of mixing an “s” orbital with three “p” orbitals, generating 

four sp3 hybrid orbitals. These hybrid orbitals are oriented in a tetragonal way and with an angle 

of 109.50 to each other, as shown in Figure 1.5c. [23] These three hybridizations are responsible 

for the different allotropic forms of carbon found in nature, as shown in Figure 1.4. The difference 

in properties between such forms is related to how the atoms are arranged. 

The most well-known allotropic forms of carbon are graphite, diamond, fullerene, 

nanotube, and graphene (Figure 1.4). Under normal conditions of pressure and temperature, carbon 

takes the form of graphite, whose crystalline structure can be understood as a stack of sheets in 

which each atom is joined to the other three in a network of hexagonal cells (Figure 1.4b). In this 

state, three electrons are found in hybrid sp2 orbitals and the fourth in a “p” orbital. Due to the 

delocalization of electrons along with the interaction between “p” orbitals, graphite considers an 

excellent electrical conductor. In addition, as the different layers of this material are united by 

relatively weak forces (Van der Waals interaction), the ability of one layer to slide over the other 

is observed, a property that makes graphite a good lubricant. [24] Under high pressures, the carbon 

takes the form of a diamond, where each atom is joined to four others in the directions of a regular 

tetrahedron through sp3 orbitals, as shown in Figure 1.4a. The diamond has the same face-centered 

cubic structure found in silicon and germanium and, due to the resistance of the carbon-carbon 

chemical bond, it is together with cubic boron nitride, the hardest substance known in nature. [25]  

Fullerene structures can be thought of as cages or regular polyhedra formed by the combination of 

carbon atoms arranged in pentagons and hexagons through sp2 hybridization (Figure 1.4d).  
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Figure 1.6 Carbon hybridization. (a) The ground state of carbon. The 1s electron clouds 

are not shown here since those are small and tightly linked to the nucleus, so they do not form 

bonds. Two paired spherical 2s electrons (orange sphere) are symbolized with up and down 

arrows [↑↓]. Additionally, it contains two unpaired 2px and 2py, p-orbital electrons aligned on the 

x-y axes. When an atom comes closer to a carbon atom, one of the 2s-orbital electrons gets pulled 

into a high-energy orbital which is 2pz, as shown in Figure 1.6b. (b) The excited state of carbon. 

The orange-dotted arrow represents the transition of an electron from 2s-orbital to 2pz high 

energy orbital. The orange sphere is still present because there is one electron in the 2s-orbital. 

(c) Hybridized state of carbon. Four electrons in the 2s, 2px, 2py, and 2pz blend together to form 

sp3 hybridized orbitals, which have the same shape as shown in Figure 1.6c (the left image). Since 

there are one “s” orbital and three “p” orbitals in the configuration, it is called sp3. [26] 

 

Graphene corresponds to a single sheet of graphite, and its structure is composed of sp2 hybridized 

carbon atoms connected and arranged in a two-dimensional lattice. Carbon nano-foams (Figure 

1.7) are currently considered the sixth allotropic form of carbon. They were discovered in 2004 by 

a team of physicists [27] from Greece, Australia, and Russia led by Andrei V. Rode. This allotrope 

consists of clusters of carbon interconnected at random with average diameters between 6 and 9 
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nanometers, arranged in a web-shaped structure. In addition to having the least density ever 

reported for a solid, it was observed that this new material could exhibit ferromagnetic and strong 

paramagnetic properties at room temperature. [27-29] 

 

Figure 1.7 A SEM image (taken at 12,000X magnification) of a carbon nano-foam 

produced by the Pulsed laser deposition (PLD) method. [30] 

 

1.2.3 Flatland: The Romance of Two Dimensions 

The turning point in two-dimensional crystals occurred in 2004 when it was possible to 

experimentally separate one layer of graphite with scotch tape and apply it to a silicon substrate. 

[31] Thus, a two-dimensional carbon crystal, graphene, was formed with unique physical 

properties, which became stable due to the slight undulation of its surface. The theoretical 

description of the band structure of graphene was created in 1947 by P. R. Wallace in his work 

focused on the properties of graphite, [32] which later became the basis for the description of the 

properties of carbon nanotubes and fullerenes. Although graphene was previously considered 

impossible, atomically thin fragments of reduced graphene oxide, considered graphene 

monolayers, were produced even before its popular discovery in 2004. [33] However, the 

exfoliation method failed to produce stable graphite layers less than 20 nm thick before 2004. [34] 
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The carbon atoms in the graphene layer are arranged in a regular structure of hexagons and bound 

by a strong covalent bond, which causes its high flexibility and strength. Since then, both 

experimental and theoretical research has been widely conducted on graphene due to its unique 

chemical and physical characteristics. Hence, promising a variety of applications in 

nanophotonics, [35-37] nano-electronics (such as high-frequency electronic devices, gas sensors, 

stretchable transparent electrodes, and flexible electrochemical capacitors), [38-44] 

optoelectronics as shown in Figure 1.8, [45, 46] water filtration and desalination. [47-50]  

 

Figure 1.8 Metal–graphene–metal (MGM) photodetector. Top left: 3-D schematic of the 

device. Bottom right: scanning electron micrograph of the same device. The device structure is 

similar to typical metal–semiconductor–metal (MSM) detectors, but they have replaced the 

semiconductor layer with an exfoliated bi-layer graphene, which acts as the device's active layer. 

(Scale bar, 5 mm). [51] 

 

For such device applications, desirable features of graphene include high optical 

transparency (97.7%), [52, 53], extraordinarily high carrier mobility (~200,000 cm2 V-1 s-1), [54] 

high surface area (2630 m2/g), [55] extremely high mechanical strength (~1 TPa), [56] quantum 

Hall effect (both integer quantum Hall effect-IQHE and fractional quantum Hall effect-FQHE), 

[57-59] ambipolar electric field effect [31, 41] and high mechanical strength. [60] Additionally, 
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the high mobility of the graphene charge carriers makes it possible to observe quantum phenomena 

even at room temperature. It is therefore clear that research into new graphene-based materials and 

their properties is an integral part of technology development and can very often lead to surprising 

results. In 2010, the Nobel Prize in Physics was awarded to Andre Geim and Kostya Novoselov 

“for groundbreaking experiments regarding the 2-D material graphene".  

The performance of current modern technologies depends mainly on the number of 

transistors located in a particular area and their quality. According to the so-called Moore's Law, 

this number doubles every 18 months while maintaining the same price. [61] Although various 

influences, such as power consumption, can be included in the definition, the main goal is to reduce 

the size of the transistors. However, this miniaturization is not possible indefinitely. At distances 

of a few nanometers, when a current is passed, the quantum effects prevent the proper functioning 

of the transistors. In the extreme case, the size of the transistor is limited by the size of the atom. 

Technological demands for the production of small transistors are very high because even minor 

inaccuracies in production or asymmetry of material have a significant influence on the behavior 

of manufactured devices in the case of the quantum world. If Moore's Law is to remain in force, 

then research into the properties of new materials in the field of nanotechnology is essential. 

Graphene is an ideal object for investigating these properties.  

1.3 Motivation 

The easiest way to obtain atomically thin monolayer and few-layer graphene is mechanical 

exfoliation using scotch tape, first demonstrated by A.K. Geim and K. Novoselov in 2004. [31] 

However, it produces layers with a maximum size of several tens of micrometers which is not 

suitable for large-scale device applications. Later, various fabrication methods were developed by 

scientists to produce graphene with specific properties for specific tasks. These includes 
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exfoliation: {mechanical cleavage/ wedge-based method, [62] graphite oxide reduction, [63, 64] 

shear exfoliation, [65] liquid-phase exfoliation, [66, 67] sonication-assisted solvent interface 

trapping, [68] electrochemical exfoliation [69]}, hydrothermal self-assembly, [70] Epitaxy: 

{metal-catalyzed (Ru, Ir, Ni, Co, Sn and Cu) chemical vapor deposition (CVD), [1, 44, 71-77] 

epitaxial growth on crystalline surfaces such as silicon carbide (SiC), [78-81] sodium ethoxide 

pyrolysis [82]}, nanotube slicing, [83, 84] the Langmuir-Blodgett method, [85-87] carbon dioxide 

reduction, [88] spin coating, [89] supersonic spray, [90] intercalation, [91-93] pulsed laser 

irradiation, [41, 94] microwave-assisted oxidation [95-98] and ion implantation. [99, 100] 

However, the widely used method in laboratories and the industry to mass-produce large-

area high-quality graphene is the Cu-catalyzed CVD method. In 2009, Xuesong Li et al. [74] first 

introduced the well-known Cu-catalyzed conversion of hydrocarbon precursors into large-area 

graphene films on Cu foils. This method is comparatively advantageous than other available 

methods because it can synthesize mono-layered, [74, 101-103] large area, [104-107] high 

crystalline [108-110], and high mobility [111-113] graphene films. Many efforts have been taken 

to improve this method recently, and it has been led to develop much controllable fabrication 

methods which allow scientists to control the domain shape and size, [109, 114] domain 

orientation, [115, 116] growth rate, [117] layer count (monolayer or bilayer), [109, 118] nucleation 

density, [1, 119, 120], etc.  

In order to synthesize high-efficiency devices, it is vital to maintain high crystalline quality 

in graphene films during the growth process. However, the CVD-grown graphene is generally 

polycrystalline with many grain boundaries. This disrupts the electron transport [121-123] of the 

material, and the biggest challenge is to control the early stages of graphene nucleation and 

ultimately to create a larger area of highly/ monocrystalline graphene. One possible solution is to 
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let nucleation sites form far away from each other and let the graphene grow under strictly 

controlled conditions. Hence, the main idea of this work is focused on improving the production 

of highly/mono-crystalline graphene layers by the method of low-pressure chemical vapor 

deposition (LPCVD).  
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2 GRAPHENE THEORY 

2.1 Physics of graphene 

In this section, the crystal structure of monolayer graphene is first described, and then the 

derivation of wave function using the tight-binding model and effective mass approximation. 

Furthermore, since this wave function is a solution of the Dirac equation, it gives rise to a 

remarkable conduction phenomenon called the Klein-tunneling effect. [124-127] In addition, the 

wave function of two-layer graphene has been derived from the same consideration, but it also 

shows a peculiar tunneling effect even if it is not a Dirac electron (Dirac-cone) with zero mass.  

2.1.1 Electronic state of monolayer graphene 

2.1.1.1 Crystal lattice and electronic energy dispersion relationship of single-layer graphene 

 

Figure 2.1 (a) Honeycomb structure of graphene in real space. The a1 & a2 vectors and 

two non-equivalent carbon atoms (A and B atoms), which are contained in a rhombus-shaped unit 

cell, define the Bravais network. (b) Graphene’s first Brillouin Zone (FBZ) (shaded area) in the 

reciprocal lattice formed from the two atom Bravais lattice. ℾ is the center of the FBZ, and the K 

and K’ are on the corners while M represents the middle point between K and K.’ The Dirac cones 

meet at the K and K' points. [128] 
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As shown in Figure 2.1a, graphene is composed of carbon atoms laid on a honeycomb 

lattice. A carbon atom has a total of four valence electrons, consisting of one 2s orbital and three 

2p orbitals (2px, 2py, and 2pz). Three of these orbitals, 2s, 2px, and 2py, constitute the sp2 hybridized 

orbitals (Figure 2.2a), each of which forms a bond with a neighboring carbon atom. 

 

Figure 2.2 (a) Bonding arrangement between two carbon atoms in graphene. The sp2 

hybridized orbitals form the σ-bonds, which are strong and contribute to the hexagonal shape of 

graphene, resulting in a super-strong material. This bond lies on the plane of sp2-orbitals. The pz 

electrons contribute to form weak and delocalized π-bonds, responsible for the conduction of 

graphene and other carbon allotropes. (b) honeycomb-like structure, the building block of all 

carbon allotropes which contains delocalized π-electrons. [129, 130] 

 

They are oriented such that the angles between each other in the plane are 1200, resulting 

in a honeycomb-like structure (hexagonal) which is the reason behind these materials’ incredible 
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strength. These orbitals, which contribute to the σ-bond, are strongly localized between 

energetically deep carbon atoms and do not appear in the vicinity of the Fermi energy. What 

appears in the vicinity of the Fermi energy is a π-bond, an electronic state created by the coupling 

of pz orbitals. Hence, σ-bonds cannot contribute to the electrical conductivity. The π-bonds have 

formed purely by overlapping pz orbitals on each carbon atom, as shown in Figure 2.2 since the 

2pz orbitals exist perpendicular to the sp2 plane and have different symmetries in space. This makes 

π-orbitals spatially delocalized and hence, contributing to the conduction of carbon allotropes. 

Contrarily, an undoped carbon material (diamond has no π-electrons, sp3-bonding, and has a large 

>5eV band gap) shows insulating properties in the absence of a partially filled π-orbital. [129]  

As shown in Figure 2.1a, the unit vectors of graphene have two geometrically inequivalent 

carbon atoms (one of which alone cannot make a Bravais lattice). [131] These atoms are called A 

(red) & B (green) atoms, and the triangular sub-lattices consisting of each atom are called A and 

B sub-lattices. The reason why graphene has different properties than other two-dimensional 

materials can be described as the inclusion of different atoms in the unit cell due to this hexagonal 

lattice. 

Let us define the fundamental/primitive lattice vectors in real space, as shown in Figure 

2.1a. [132] 

 
𝑎1 = 𝑎 (

√3

2
,
1

2
) ,  𝑎2 = 𝑎 (

√3

2
,− 
1

2
) 

(2.1) 

 

Where “a” is the length of the fundamental lattice vector, a = |a1| = |a2| = 1.42 x √3 = 2.46 Å and 

the distance between the carbon atoms is 𝑎𝐶−𝐶 = 1.42 Å. The unit cell is a rhombus made up of a1 

and a2.  
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The corresponding inverse (reciprocal) lattice vector is, [132, 133] 
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(2.2) 

 

The Brillouin zone (BZ) is similarly a rhombus formed by b1 and b2, but it is taken as a hexagon 

(Figure 2.1b) to consider the symmetry of the original crystal. The vertices of this Brillouin zone 

are called K and K’, and their wavenumbers are given by, 
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(2.3) 

 

Now, since the electronic state related to the π-bond is 2pz of A and B atoms, respectively, 

the electronic state in the crystal is the representation of these atoms. [132, 133] 

 

 Ψ(𝑘, 𝑟) =  𝑐𝐴Φ𝐴(𝑘, 𝑟) + 𝑐𝐵Φ𝐵(𝑘, 𝑟) (2.4) 

 

  Φ𝑖(𝑘, 𝑟) =  
1

√𝑁
 ∑ 𝑒𝑖𝑘.𝑅𝑖𝑁
𝑅𝑖

𝜑(𝑟 − 𝑅𝑖)  (2.5) 

 

where, φ(r) is the wave function of the 2pz orbital of a carbon atom, [134] 𝑅𝑖(𝑖 = 𝐴, 𝐵) is the 

position vector of the A and B atoms, and N is the number of unit cells (but since the A and B 

atoms are not connected by translational operator, they must be treated separately). [135] Φ(𝑘, 𝑟) 

is a Bloch orbit that satisfies Bloch's theorem. [136] Now, if |𝑅𝑖⟩ =  𝜑(𝑟 − 𝑅𝑖) is applied to A or 

B atom, it can be expressed as, 
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 |Ψ𝑖⟩ =  ∑𝑑𝑖
𝑅𝑖

(𝑅𝑖)|𝑅𝑖⟩ 
(2.6) 

 
𝑑𝑖(𝑅𝑖) =  

1

√𝑁
 𝑐𝑖𝑒

𝑖𝑘.𝑅𝑖 
(2.7) 

Where i = A, B.  

 

 

Multiply the Schrodinger equation by ⟨𝑅𝑖| from the left, 

 

 ∑𝑑𝑖
𝑅𝑖
′

(𝑅𝑖
′)⟨𝑅𝑖|𝐻|𝑅𝑖

′⟩ = 𝐸 ∑𝑑𝑖
𝑅𝑖
′

(𝑅𝑖
′)⟨𝑅𝑖|𝑅𝑖

′⟩ (2.8) 

 

Assume, ⟨𝑅𝑖|𝑅𝑖
′⟩ =  𝛿𝑅𝑖,𝑅𝑖

′ and there is no overlap integral between different atoms. [137] 

Furthermore, if the overlap integral (hopping integral) is 𝑡(𝑅𝑖, 𝑅𝑖
′) =  −⟨𝑅𝑖|𝐻|𝑅𝑖

′⟩, then, the 

relational expression of the tight binding model can be obtained. 

 

 −∑𝑡(𝑅𝑖, 𝑅𝑖
′)𝑑𝑖(𝑅𝑖

′) = 𝐸𝑑𝑖(𝑅𝑖)

𝑅𝑖

 
(2.9) 

 

This can be applied to both A and B atoms. Here, if we consider only the nearest hopping integral 

factor 𝛾0 (where 𝛾0  is an experimentally available parameter, 𝛾0~3𝑒𝑉), then 

 

 

−𝛾0∑𝑑𝐵(𝑹𝐴 + 𝝉𝑙) = 𝐸𝑑𝐵(𝑹𝐴),−𝛾0∑𝑑𝐴(𝑹𝐵 − 𝝉𝑙) = 𝐸𝑑𝐴(𝑹𝐵)

3

𝑙=1

3

𝑙=1

 

(2.10) 
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From equation (2.7), we can write, 

 

 

−𝛾0 (
0 𝑓(𝒌)

𝑓∗ (𝒌) 0
) (
𝑐𝐴
𝑐𝐵
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) , 𝑓(𝑘) =∑𝑒𝑖𝑘.𝜏𝑙

3

𝑙=1

 

(2.11) 

 

The energy eigenvalues are obtained by diagonalizing the matrix shown in the equation (2.11). 

 

 

𝐸(𝑘) = ±𝛾0|𝑓(𝑘)| = √1 + 4 cos
√3𝑘𝑥𝑎

2
cos

𝑘𝑦𝑎

2
+ 4𝑐𝑜𝑠2

𝑘𝑦𝑎

2
 

(2.12) 

 

This is plotted in wavenumber space (k-space), as shown in Figure 2.2a. It can be seen from Figure 

2.3b that the top and bottom bands touch each other symmetrically with E = 0 at points K and K' 

without any gap. This tangent point is called the Dirac point. Furthermore, since each carbon atom 

has an average of one π-electron, the lower band is wholly packed with electrons in the ground 

state, while the upper band is empty. Therefore, it can be seen that the Fermi energy is located 

precisely at the tangent point of this band (E = 0). 

Since the experimentally accessible energy region is about 1 eV near the Dirac point, the 

electronic properties of graphene are almost determined by the electronic structure around the K 

point. There are also two non-equivalent points (K and K' points) reflecting the two sub-lattices of 

graphene (these degrees of freedom are called valleys). Hereafter, let the valley index be 𝜉 = ±1 

(K point corresponds to 𝜉 = 1 and K' point corresponds to 𝜉 = −1) in order to distinguish these 

two differences. 
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Figure 2.3 (a) The π and π* bands linearly intersect at the edge of the Brillouin zone (K, 

K’ points in Figure 2.1b). [133] Fermi energy is located precisely at this intersection which is 

known as Dirac point where E=0. (b) Conical, linear dispersion (Dirac cone) near the K and K' 

points (Fermi level). [138] 

 

 Next, let us calculate the electronic state near K. This can be obtained by expanding 

equation (2.11) around the K point. First, if the momentum measured from the 𝐾𝜉  point is defined 

as 𝑝 = ℏ𝑘 − ℏ𝐾𝜉, it can be expanded to 
𝑝𝑎

ℏ⁄ ≪ 1 when 𝑓(𝑘) is given. 

 

 
𝑓(𝑘) ≈ −

√3𝑎

2ℏ
(𝜉𝑝𝑥 − 𝑖𝑝𝑦) 

(2.13) 

 

Thus, we can write the effective Hamiltonian matrix as, 

 

 
𝐻 = (

𝜖𝐴 𝑣𝜋†

𝑣𝜋 𝜖𝐵
) 

(2.14) 



23 

where  𝜋 = 𝜉𝑝𝑥 + 𝑖𝑝𝑦 and 𝑣 = √3𝑎𝛾0/2ℏ.  𝑣 is the speed of an electron, which is 𝑣~1 × 106𝑚 𝑠⁄  

regardless of its momentum, and is about 1/300 times the speed of light. It can be seen that 

when 𝜖𝐴 = 𝜖𝐵 = 0, E becomes linear dispersion (Figure 2.3b), 

 

 𝐸 = ±𝑣|𝒑| (2.15) 

 

2.1.1.2 The wave function near K point 

 

Using the tight-binding model, the relationship between the amplitudes of A and B atoms 

(2.11) has been derived and further expanded near the K point to derive the effective Hamiltonian. 

However, since the positions 𝑹𝐴 and 𝑹𝐵 of each carbon atom is discontinuous 𝑐𝐴 and 𝑐𝐵 and D in 

equation (2.11) is not inherently continuous quantities. For this reason, it is necessary to evaluate 

the amplitude around the K point using the effective-mass approximation using an envelope 

electron wave function. [139, 140]  

However, this result shows that the envelope function can be defined as a continuous 

function by treating 𝒑 as a differential operator for the effective Hamiltonian near the K point 

shown in equation (2.11). That is, when 𝜖𝐴 = 𝜖𝐵 = 0, the wavefunction near the K point can be 

obtained by solving, 

 
𝑣 (

0 �̂�𝑥 − 𝑖�̂�𝑦
�̂�𝑥 + 𝑖�̂�𝑦 0

)(
𝐹𝐴
𝐾(𝒌)

𝐹𝐵
𝐾(𝒌)

) = 𝐸 (
𝐹𝐴
𝐾(𝒌)

𝐹𝐵
𝐾(𝒌)

) 
(2.16) 

 

Here, the wave functions of A and B atoms near the K point are replaced with 𝑭(𝒓)𝑲 = (𝐹𝐴
𝐾, 𝐹𝐵

𝐾).  
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This effective mass equation can be written as,  

 

 𝑣(𝜎𝑥�̂�𝑥 + 𝜎𝑦�̂�𝑦)𝑭
𝑲(𝒓) = 𝐸𝑭𝑲(𝒓) (2.17) 

 

using Pauli's spin matrix, 

 𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) (2.18) 

 

The electronic state around the K’ point can be obtained in the same way by making 𝑝𝑥 into −𝑝𝑥 

from Equation (2.13).  

 

 −𝑣(𝜎𝑥�̂�𝑥 + 𝜎𝑦�̂�𝑦)𝑭
𝑲′(𝒓) = 𝐸𝑭𝑲′(𝒓) (2.19) 

 

Here, it is confirmed that that the electrons of graphene are Dirac electrons, described by 

the Dirac equation. The Dirac equation incorporates relativistic effects into the Schrödinger 

equation because the Schrödinger equation only describes particles in the non-relativistic limit. 

Among those, the Weyl equation effectively describes the massless Dirac fermion with ½-spin in 

relativistic quantum mechanics, which is denoted by, 

 

 
𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐿 = 𝑐𝝈. 𝒑𝜓𝐿 , 𝑖ℏ

𝜕

𝜕𝑡
𝜓𝑅 = −𝑐𝝈. 𝒑𝜓𝑅 

(2.20) 
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when the four-component wave function is divided into two components as 𝜓 = (𝜓𝐿 , 𝜓𝑅). [141-

145] Here,  𝑐 corresponds to the speed of light, 𝜓𝐿 and 𝜓𝑅 correspond to the left-handed and right-

handed states. The energy of the Weyl equation is written as, 

 

 𝐸 = ±𝑐𝑝 (2.21) 

 

Comparing this with the electrons of single-layer graphene around the K point, we can see 

that the speed of light 𝑐 and the Fermi speed 𝑣 correspond and are expressed by the same equation. 

The components of the wave function, in this case, correspond to the spin, but in the case of 

graphene, they only represent the probability amplitudes of the two components, A and B, and not 

the true spin of the electron (this is called pseudo-spin). It can also be seen that the relationship 

between the K point and the K’ point corresponds to right- and left-handedness (this is called 

chirality). Thus, graphene electrons are electrons following the Dirac equation near the Fermi 

energy, so graphene has peculiar properties. The shape of the wave function will be determined 

explicitly in the following. The solution to equation (2.16) is obtained by assuming a plane wave 

𝑭(𝒓) ∝ 𝑒𝑥𝑝(𝑖𝒌. 𝒓) (the origin of the wave vector at this time is K).  

 

 
𝑭𝑲(𝒓) =

1

√2
(
1

𝑠𝑒𝑖𝜙𝑘
) 𝑒𝑖𝒌.𝒓 

(2.22) 

 

where 𝑠 = ±1 and 𝜙𝑘 = tan
−1 (

𝑘𝑦
𝑘𝑥
⁄ ). 
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Figure 2.4  The band structure of single-layer graphene, which is related to Figure 2.1 and 

Figure 2.3 (a) an illustration of six valleys of non-equivalent types of K and K’, known as Dirac 

cones. (b) Top view of the K and K’ points/valleys (Dirac cone), which represent the pseudo-spin 

up (𝜎+) and down (𝜎−) for electrons and holes. The pseudo-spin and the direction of motion are 

related to each other (c) Schematic of pseudo-spin at K and K’ points in the k-space. There are 

two configurations as follows, (i) indicates the orientation of the pseudo-spin 𝜎 in the conduction 

band (for 𝑠 > 0), which is 𝜎+(red) parallel to the wave vector (𝒌). (ii) Indicates the orientation 

of the pseudo-spin 𝜎 in the valence band (for 𝑠 < 0), which is 𝜎−(blue) anti-parallel to the wave 

vector (𝒌). [146-149] 

  

Using this wave function and equation (2.18), the expected value of the pseudo-spin is obtained 

as, 

 〈𝝈〉 = (〈𝜎𝑥〉, 〈𝜎𝑦〉) = 𝑠(cos𝜙𝑘 , sin 𝜙𝑘) (2.23) 
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Moreover, the direction of the pseudo-spin is parallel to the wave vector for the conduction band 

𝑠 > 0 and anti-parallel to the wave vector for the valence band 𝑠 < 0, as shown in Figure 2.4.   

 

2.1.2 Electronic state of bilayer graphene 

 

Here, the most stable stacking is considered, the AB layer of graphene. In this stacking, the 

hexagons are stacked out of alignment, and the crystal structure is such that the 𝐵1 atoms of the 

lower layer are located directly below the 𝐴2 atoms of the upper layer. The distance between the 

layers is 3.35 Å. The basic lattice vector is the same as in monolayer graphene, but there are four 

atoms in the unit cell since A and B atoms are present in the upper and lower layers, respectively. 

For bilayer graphene, as shown in Figure 2.5, there is one in-plane nearest-neighbor hopping 

parameter [150] which is denoted by 𝛾0 and three interlayer parameters 𝛾1, 𝛾3 and 𝛾4. As already 

mentioned, the 𝐵1 atom is located directly below the 𝐴2 atom, and these electron orbitals are more 

strongly linked than the interactions between other layers (called "dimer" atoms). [132, 133, 151] 

For this reason, 𝛾1 is the most important interaction between the layers. It is known that the value 

of 𝛾1 is one order of magnitude smaller than 𝛾0 (where, 𝛾0 = 3.033 𝑒𝑉) [128, 132, 133] in the 

plane, and experimentally, it is about 𝛾1~0.3 𝑒𝑉. [132, 133] On the other hand, since there are no 

atoms directly above or below the 𝐴1 and 𝐵2 atoms, they are relatively weakly connected (called 

"non-dimer" atoms). 
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Figure 2.5 AB Crystal structure of the bi-layer graphene. (a) top/plan view of the crystal 

structure. On the top layer, 𝐴2 and 𝐵2 atoms are represented by black and gray dots, respectively. 

On the bottom layer, 𝐴1 and 𝐵1 atoms are represented by white and black dots. Electron orbitals 

of 𝐴2 and 𝐵1 atoms are more strongly linked than the interactions between other layers (called 

"dimer" atoms) because the 𝐵1 atom is located directly below the 𝐴2 atom (represented by the top-

left black dot labeled as 𝐴2𝐵1 . Contrarily, Electron orbitals of 𝐴1 and 𝐵2 atoms are relatively 

weakly connected (called "non-dimer" atoms) because there are no atoms directly above or below 

𝐴1 and 𝐵2 atoms (represented by the top-right white and grey dots, which are labeled as 𝐴1 and 𝐵2 
within the diamond shaped shaded area). (b) side view of the crystal structure. 𝛾0 is the in-plane 

nearest-neighbor hopping parameter. Here, three interlayer parameters are represented as 𝛾1, 𝛾3 
and 𝛾4. The unit cell can be taken as the diamond shown in (a) and contains the upper 𝐵2 and 

lower 𝐴1 atoms. [132, 133, 138] 

 

As in monolayer graphene, the Hamiltonian matrix in the tight-binding model is represented for 

bilayer graphene. Here, the hopping energy is defined as follows. [132, 133, 138] 
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𝐻𝑏 =

(

 
 

𝜖𝐴1 −𝛾0𝑓(𝑘)

−𝛾0𝑓
∗(𝑘) 𝜖𝐵1

𝛾4𝑓(𝑘) −𝛾3𝑓
∗(𝑘)

𝛾1 𝛾4𝑓(𝑘)

𝛾4𝑓
∗(𝑘) 𝛾1

−𝛾3𝑓(𝑘) 𝛾4𝑓
∗(𝑘)

𝜖𝐴2 −𝛾0𝑓(𝑘)

−𝛾0𝑓
∗(𝑘) 𝜖𝐵2 )

 
 

 

(2.24) 

 

Where, 

 𝛾0 = −⟨𝜙𝐴1|ℋ|𝜙𝐵1⟩ = −⟨𝜙𝐴2|ℋ|𝜙𝐵2⟩ (2.25) 

 

 𝛾1 = ⟨𝜙𝐴2|ℋ|𝜙𝐵1⟩ (2.26) 

 

 𝛾3 = −⟨𝜙𝐴1|ℋ|𝜙𝐵2⟩ (2.27) 

 

 𝛾4 = ⟨𝜙𝐴1|ℋ|𝜙𝐴2⟩ = ⟨𝜙𝐵1|ℋ|𝜙𝐵2⟩ (2.28) 

 

The upper left and lower right 2 × 2 submatrices of 𝐻𝑏 in equation (2.24) are in the same layer 

and correspond to equation (2.11) and equation (2.14). Both 𝛾3 and 𝛾4 are hopping with respect to 

non-dimer atoms, with the difference that 𝛾3 is hopping between non-dimer atoms and 𝛾4 is 

hopping between dimer and non-dimer atoms. As shown in the Figure 2.6, the dispersion relation 

of bilayer graphene (AB stack) can be obtained by diagonalizing this Hamiltonian 𝐻𝑏. The 

parameters used in the calculation are 𝛾0 = 3.16 𝑒𝑉 ,  𝛾1 = 0.381 𝑒𝑉 ,  𝛾3 = 0.38 𝑒𝑉 ,  𝛾4 =

0.14 𝑒𝑉,  𝜖𝐵1 = 𝜖𝐴2 = 0.022 𝑒𝑉  and  𝜖𝐴1 = 𝜖𝐵2 = 0 𝑒𝑉. Also, as in the case of monolayer 

graphene, the effective Hamiltonian around the K point can be derived by expanding the equation 

(2.24) around the K point. [132, 133] Note that the, 𝑣3 = √3𝑎 𝛾3 2ℏ⁄  and 𝑣4 = √3𝑎 𝛾4 2ℏ⁄ . 
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Figure 2.6 Low-energy bands and the dispersion relation for graphene bi-layers (AB stack) 

arising from 2pz orbitals. It has been plotted in the reciprocal space along the 𝑘𝑥 direction.   

┌ is the center of the Brillouin zone (BZ)). The dispersion is no longer linear near the K point 

(around one of the inequivalent corners of the Brillouin zone (BZ)), and it turns out to be parabolic. 

In addition, at low energy, the parabolic band of the non-dimer atom near the Fermi surface is 

tangent at E= 0 (inset figure). Please note that the, 𝐾(+) and 𝐾(−) in the image represent K’ and 

K in the text  [132]. The plots of the dispersion relation were produced by diagonalizing the 

Hamiltonian 𝐻𝑏 (equation (2.24)). [152] 

 

 

𝐻𝑏 =

(

 
 

𝜖𝐴1 𝑣𝜋†

𝑣𝜋 𝜖𝐵1

−𝑣4𝜋
† 𝑣3𝜋

𝛾1 −𝑣4𝜋
†

−𝑣4𝜋 𝛾1
𝑣3𝜋

† −𝑣4𝜋
𝜖𝐴2 𝑣𝜋†

𝑣𝜋 𝜖𝐵2 )

 
 

 

(2.29) 

So far, an effective Hamiltonian around the K point for bi-layer graphene has been created 

by considering four atoms contained in the unit cell, but only the non-dimer atoms are related to 

the low energy near the Fermi surface. Therefore, if the non-dimer atoms are extracted from this 

Hamiltonian on the basis of the non-dimer atoms and only 𝛾1 is left as an interlayer interaction, 

then a low energy two-band effective Hamiltonian (𝐻0) for bilayer graphene can be made. [132, 
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133, 138] Since there are four atoms in the unit cell, it contains four bands. As shown in the inset 

of Figure 2.6, there is a total of four bands since the unit cell contains four atoms. Two of them are 

parabolic bands that touch at E=0, and the remaining two bands are in the open position 

about 𝐸~ ± 𝛾1. So, in the vicinity of the Fermi energy of |𝐸| ≪ 𝛾1, we can use the effective 

Hamiltonian without the orbit of dimer atom. First, the wave function can be divided into two 

parts: the non-dimer atom part 𝜃, which corresponds to the low energy, and the part 𝜒, which has 

the dimer atom as an element. 

 

 
𝜃 = (

𝜓𝐴1
𝜓𝐵2

)  , 𝜒 = (
𝜓𝐴2
𝜓𝐵1

)   
(2.30) 

 

The Schrodinger equation near the K point is expressed as, 

 

 
(
ℎ𝜃 𝑢

𝑢† ℎ𝜒
) (
𝜃
𝜒
) = 𝐸 (

𝜃
𝜒
) 

(2.31) 

 

By rearranging the equation (2.29). Here, [132, 133, 138] 

 

 
ℎ𝜃 = (

𝜖𝐴1 𝑣3𝜋

𝑣3𝜋
† 𝜖𝐵2

) , ℎ𝜒 = (
𝜖𝐴2 𝛾1
𝛾1 𝜖𝐵1

) ,

𝑢 = (
−𝑣4𝜋

† 𝑣𝜋†

𝑣𝜋 −𝑣4𝜋
) , 𝑢† = (

−𝑣4𝜋 𝑣𝜋†

𝑣𝜋 −𝑣4𝜋
†) 

(2.32) 
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By solving two linear equations which resulted from the equation (2.31), we can find 𝐻0. [132, 

138]) 

 

 
𝐻0 = −

1

2𝑚
(
0 (𝜋†)2

(𝜋)2 0
) 

(2.33) 

 

Here, the effective mass 𝑚 =
𝛾1

2𝑣2
 Furthermore, this solution has four eigenstates, a plane wave and 

an evanescent wave.  

 

Figure 2.7 (a) Bottom-left: Low-energy band structure near the K-point in bilayer 

graphene. The parabola, which represents the E with an effective mass m, is tangent at E=0. (b) 

Same bilayer graphene sample under the influence of an external electric field/bias voltage 𝑣𝑏 =
△. The band gap is opened by two times the applied field, △𝑔=  2 △ than the non-biased state, 

[153] when a perpendicular electrical displacement field is applied to bi-layer graphene, and this 

△𝑔is tunable. [154-156] 

 

 𝑭(𝒓) ∝ 𝑒±𝑖𝒌.𝒓 , 𝑒±𝒌.𝒓 (2.34) 
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However, the basis atoms are 𝐴1 and 𝐵2. The energy formula (as shown in Figure 2.7) for bilayer 

graphene can be written as follows (for single-layer graphene, it was E= ±𝑣|𝒑|), 

 

 
𝐸 = ±

1

2𝑚
|𝒑|2 

(2.35) 

 

Thus, the linear dispersion of monolayer graphene undergoes a significant change due to inter-

layer interactions. Another important feature of the two-layered graphene is that it can be easily 

gapped by adding a vertical/perpendicular external energy change/biasing (Figure 2.7a) to the 

surface of the bi-layer graphene diagonal term of the Hamiltonian (2.36). This can be achieved by 

making the two layers non-equivalent. If an electric field △ is applied perpendicular to the face of 

the bilayer graphene, then the Hamiltonian equation would be, 

 

 
𝐻0 = −

1

2𝑚
(
△ (𝜋†)2

(𝜋)2 −△
) 

(2.36) 

 

Then the energy equation (2.35) changes to equation (2.37) and opens a gap in size △𝑔=  2 △ as 

shown in Figure 2.7b. [153] 

 

𝐸 = ±√(
𝑝2

2𝑚
)

2

+△2 

(2.37) 
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3 GRAPHENE SYNTHESIS METHODS 

3.1 Overview 

 

Figure 3.1 Flow chart of available graphene fabrication techniques. [157] 

 

The growth of a 2D material consisting of a layer with atomic thickness is an extremely 

critical process to control that requires the search for growth methods (Figure 3.1) capable of 

preserving the structural characteristics and consequently the material's properties as the extension 

of the films produced increases. The experimental techniques for graphene synthesis can be 

grouped into two categories: (1) Top-down method (Figure 3.2b), where graphene is obtained from 

massive carbon-based materials such as graphite or graphite oxide. These methods are more 

suitable to industry because they allow a better quality, scalability, and reproducibility of the 

graphene grown. (2) Bottom-up method (Figure 3.2a) where graphene is grown on surfaces from 

carbon-containing precursor molecules, which decompose into carbon radicals and bind with the 

catalyst material of the decomposition reaction, which acts as a substrate or exploits the carbon 

directly present in the growth medium (Ni, Cu, Pt, Co, SiC, etc.). The techniques that we discussed 

in section 1.3, such as mechanical exfoliation and all chemical exfoliation techniques, including 

that of graphite oxide, nanotube slicing, etc. fall into the top-down category while the epitaxial 
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growth of graphene on silicon carbide crystals (SiC) and the CVD method fall into the bottom-up 

category (Figure 3.2). 

 

Figure 3.2 Schematic representation of (a) bottom-up and (b) top-down process of 

graphene synthesis. [158] 

 

3.2 Exfoliation of graphite 

3.2.1 Chemical exfoliation 

3.2.1.1 Water and surfactant solution-based 

The characteristics of a suitable solvent that can be used for the exfoliation of dispersed 

graphite powder are linked to its surface energy which must be compatible with that of graphene 

layers. [159] Since the surface energy of the water is higher than that of graphene layers, it is not 
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suitable for this method; even though water does not have a quite high boiling point and is not a 

source of toxicity for human beings, it is not a good candidate.  

 

 

Figure 3.3 The TEM images of high crystalline graphene flakes prepared by 

water/surfactant method. (a) a monolayer graphene flake with square-shaped debris on the left, 

which contains fewer defects compared to the other exfoliation methods. (b) a bilayer graphene 

flake. The scale bar is 500 nm. [160] 

 

A possible solution could be using aqueous solutions composed of surfactants, which 

lowers the surface tension of the water and makes possible the exfoliation of graphite layers. [160] 

The quality of the graphene crystals/layers is good, with little presence of defects or oxides, despite 

the low yield of single-layer graphene compared to the other solvent-based exfoliation methods. 

[66, 160-162] 

3.2.1.2 Intercalation to produce graphite intercalation compounds (GICs) 

 

 This type of exfoliation is performed by inserting atomic or molecular species, known as 

intercalants, at the interface between graphene layers, forming the so-called graphite intercalation 

compounds due to the interaction between graphene layers and surfactants, as shown in Figure 3.4 

and Figure 3.5 (bottom-right). [163, 164]  
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where C represents carbon atoms, the ions  𝑋𝑛+or  𝑋𝑛−represent the intercalants that are inserted 

between graphene layers. [163] These compounds are characterized by a stoichiometric ratio (n) 

which is carbon atoms to intercalant atoms, and a staging index (m<<1), which corresponds to the 

number of graphene layers between two layers of intercalant as shown in Figure 3.4 and equation 

(3.1). [164] The process is shown in equation 3.1, analogous to the mechanism of lithium-ion 

batteries. GICs can exhibits a wide range of intrinsic electronic, physical and chemical properties, 

depending on the type of interlayer and its index. [165-171]  

 

 

Figure 3.4 A step-by-step illustration of staging in GICs. Here, purple balls (Potassium) 

represent the intercalant layers, and gray hexagonal networks represent the graphene layers. 

[164] 

 

 𝐶 +𝑚𝑋 → 𝐶𝑋𝑚 (3.1) 
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The compounds of 𝐾𝐶24 Potassium graphite is well known for its use as one of the most potent 

reducing agents, a catalyst in polymerizations, a neutron monochromator, a carbon-based anode in 

potassium-ion batteries, and a coupling reagent for aryl halides to biphenyls. [172] Ca𝐶6 shows 

the highest critical temperature  𝑇𝑐 = 15.1 𝐾 at 8 GPa among the superconducting GICs. [173] 

Regarding the synthesis of graphene, it is interesting to note that these intercalants with a low 

staging index increase the interlayer distance of graphene, weakening the force that holds them 

together. This implies a lower energy demand to achieve graphene layers' dispersion in the 

"solution," which occurs even without ultra-sonication by only through mixing processes. [174-

178] However, this method, together with the methods discussed in section 353.2, does not prove 

to be a good candidate for applications for the electronic devices industry because it does not allow 

effective control of the size of the dispersion graphene sheets, which also have a high amount of 

structural defects. Their defective nature and structural characteristics do not allow them to be used 

in the manufacturing process of electronic devices but are very useful for applications such as 

conductive inks, coatings, composites, energy storage, biomedical applications, and transparent 

conductive layers. [159, 177, 179-181] 

 

3.2.1.3 Solvent assisted-exfoliation 

With this technique, a dispersion of graphene powder is prepared by chemical solvents 

such as N-methyl-2-pyrrolidinone (NMP), the most used at the moment. Here, the dispersion is 

subjected to ultra-sonication to promote the detachment of graphene layers, as shown in Figure 3.5 

(top-right). [66, 182-184] A grey liquid is formed after the ultra-sonication. It comprises a 

homogeneous phase and several macroscopic aggregates, which are then removed by low-rpm 

centrifugation. This giving rise to a dark and homogeneous dispersion. Those that have superficial 
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energy equal or close to that of the crystal are the solvents that have shown a better result in their 

application. That means the tension at the graphene/solvent interface is comparable to that present 

in the graphene/graphene interface. [36, 184, 185] 

 

 

Figure 3.5 Schematic illustration of the procedure known as “graphene liquid-phase 

exfoliation.” Here, the top-right shows the process involving an ultra-sonication and a solvent 

such as N-methyl-2-pyrrolidinone (NMP). The bottom-right represents the method that involves 

surfactants/intercalants, as discussed in the previous section. [184] 

 

That means it has two main consequences, the energy cost necessary to separate the graphene 

layers is minimal, and once the crystals are dispersed, the recombination process in the form of 

crystals is no longer the preferred one. So, the crystals in suspension tend to remain isolated, and 

the solution remains stable for a longer time. [36, 159, 162] However, due to their known toxicity 
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to humans, these solvents require special care when handled. This is one of the reasons why new, 

more environmentally friendly solvents, such as water, are in demand, as discussed in the previous 

section 3.2.1.1.  

 

3.2.1.4 Chemical exfoliation of graphite oxide 

Graphite oxide is considered as a set of graphene layers, whose carbon atoms are 

chemically bound to a certain number of oxygen atoms (intercalated oxygen), depending on the 

level of oxidation suffered by the graphite crystal, resulting as impurities in the sheet or as 

functional groups such as carbonyl (𝐶 = 𝑂), hydroxyl (−𝑂𝐻) and phenol. [186-191]  

 

Figure 3.6 Schematic of chemically converted reduced graphene oxide (rGO) preparation 

method by the exfoliation of graphite oxide. [192] 
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Graphene oxide (GO) is obtained by exfoliation of the graphite oxide, as shown in Figure 3.6 

(bottom-right), and there are many ways to prepare it. The most effective method is the method 

developed by William S. Hummers Jr. and Richard E. Offeman in 1958, [191] which requires the 

use of concentrated sulphuric acid (𝐻2𝑆𝑂4) and potassium permanganate (𝐾𝑀𝑛𝑂4). These 

reactions affect the network of 𝑠𝑝2 bonds of graphene sheets, through the introduction of 

functional groups in the basal plane. [193] The introduction of these impurities has mainly two 

effects (1) it considerably increases the distance between layers, and (2) it promotes the intrusion 

of water molecules into the compound as their introduction makes the compound hydrolytic. [193, 

194]  

Once graphene oxide is obtained, it tends to disperse into distilled water, organic solvents, 

or aqueous methanol solutions. In order to complete the detachment of the different sheets, the 

suspension solution is subjected to ultra-sonication processes. [192-194] Graphene oxide has a 

high resistivity, and therefore an insulator. [195, 196] To obtain a conductive material again, it is 

necessary to subject it to a reduction process to carry out the partial or total removal of the 

functional groups that increase resistivity. This way, reduced graphene oxide (rGO) is obtained, as 

shown in Figure 3.6 (bottom-left). [192] The process is carried out by chemical methods (using 

hydrazine monohydrate & hydrogen gas or strongly alkaline solutions), by thermal and 

electrochemical methods. [197-201] As an alternative to the reduction process, chemically 

modified graphene (CMG) can be produced through a chemical process with different functional 

groups, which improves some specific properties. In general, the yield of the graphene oxide 

production process is relatively high, and it comes closest to being industrially scalable. Its 

characteristics make it suitable for synthesizing enhanced graphene with the addition of other 

functional groups. The outputs are known as Chemically Modified Graphene-CMG or 
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Functionalized Graphene-FG and individual layers of pure graphene. The perspectives of these 

materials are mainly in the pharmacological and medical fields, such as bio-sensor construction, 

drug delivery systems, or tissue engineering. Nevertheless, they are not suitable for all applications 

that require a graphene quality as close to pure as possible. [202-205] 

 

3.2.2 Mechanical exfoliation of graphite 

3.2.2.1 The method which worth a Nobel price: Scotch-tape method 

This method corresponds to the simplest and most basic way to obtain graphene. As 

mentioned in section 1.2.3, it is the one which the two researchers, Konstantin Novoselov and 

Andre Geim, were able to isolate micrometric flakes of this material, in the laboratories of the 

University of Manchester, in 2004. [31, 36] The exfoliation technique consists of separating 

graphite into individual layers, which is discussed well later within this section. Graphite is easily 

"exfoliated" by its nature because the graphene layers that compose it are superimposed on each 

other and are held together by weak Van der Waals forces. This weak attractive force creates 

cohesive energy of only 2 𝑒𝑉/𝑛𝑚2 between the atomic planes that can be overcome with the 

application of a force of 300 𝑛𝑁/𝜇𝑚2, [206] parameters that allowed the execution of this method 

using only scotch tapes. Although it is better known as the “Scotch Tape Method," the mechanical 

exfoliation of graphite has already been explored in other ways for an extended period. Due to the 

failures that occurred by the chemical exfoliation method, the researchers chose to interact with 

the graphite mechanically by scraping and rubbing the material on surfaces to obtain progressively 

thinner graphite wafers. The technique, known as the micro-mechanical exfoliation, worked 

surprisingly well despite its rusticity.  
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Scientists were able to produce graphite thin films which have thicknesses of less than 100 

atomic planes. [207] The novel discovery of carbon nanotubes and fullerenes provided new 

inspiration to search for efficient separating graphite layers during the 1990s. In 1999, Rodney S 

Ruoff and collaborators [208-210] used the atomic force microscope (AFM) probe to exfoliate 

columns of highly oriented pyrolytic graphite (HOPG) which is a type of graphite synthesized in 

the laboratory. This could have been the Nobel Prize-winning discovery if they have used proper 

equipment and a correct angle of approach. According to Dr. Ruoff, they have used a scanning 

tunneling microscope (STM), an atomic force microscope (AFM), and a scanning electron 

microscope (SEM) for characterization, which did not allow them to prove or disprove that the 

flakes consist single layers. [210, 211] Dr. Philip Kim and collaborators at Columbia University 

followed a similar approach by creating a nano pencil/AFM probe by adding the columns of 

graphite to the probe and promoting its exfoliation by the contact of the probe with the substrate. 

Flakes with a thickness of about 5 nm, corresponding to approximately ten layers, were obtained. 

[210] Therefore, writing with a pencil could be considered as an immediate example of graphite 

exfoliation. As mentioned at the beginning of section 3.2.2.1, to isolate the graphene flakes, K. 

Novoselov and A. Geim used scotch tape applied to some fragments of HOPG in order to separate 

the crystalline grains. In the mechanical exfoliation process, HOPG is exfoliated in several steps, 

repeating the operation several times with scotch tape to make graphene layers as thin as possible 

as shown in Figure 3.7.  

According to Geim, to obtain samples of a thin sheet of graphene with the high crystallinity 

disclosed, it is necessary to work in a clean environment where the oxidized silicon substrates, 

scotch tapes, tweezers, and graphite flakes are kept clean. This method has been implemented and 

improved by many research groups, and now the method is well known. So, in the first step, the 
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surface impurities and any oxidized layers of the material are removed using scotch tape, and in 

the second step, the second strip of scotch tape was used to the mineral layers continue to be 

removed. Generally speaking, the graphite flakes should be deposited with tweezers on a piece of 

scotch tape which should be folded at 450 angle and only then pressed on the flake. 

 

 

Figure 3.7 Mechanical exfoliation of HOPG using scotch tape in order to make graphene 

flakes thinnest as possible. [212] 

 

Note that the tape should be pulled carefully in order to achieve a successful exfoliation of 

the graphite. A series of exfoliations (10-20 times) have been implemented by repeating the 

process until a thin layer of graphite is obtained, which would be invisible without the aid of an 

optical microscope and rigid support of silicon oxide of suitable thickness.  

It is possible to observe the individual graphene flakes despite their monoatomic thickness, 

under an optical microscope, as shown in Figure 3.7, within certain wavelengths of the incident 
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light and for certain thicknesses of silicon oxide. Geim and Novoselov were able to observe some 

graphene flakes under an optical microscope because they used 300 nm thick 𝑆𝑖𝑂2 substrates, a 

"magic" thickness for which the monoatomic sheets are capable of giving optical contrast. On this 

𝑆𝑖𝑂2/𝑆𝑖 support, in addition to graphene flakes, graphite and glue residues are also observed, then 

the sample is washed in a solution of acetone ((𝐶𝐻3)2𝐶𝑂) and then with isopropyl alcohol 

(𝐶𝐻3𝐶𝐻𝑂𝐻𝐶𝐻3). To remove any residual solvents used in the washing phase, the 𝑆𝑖𝑂2/𝑆𝑖 

substrate is heated and subsequent observations under an optical microscope allow a better 

estimate of the size of the graphene flakes. The graphene produced by this method has perfect 

crystallinity, which is responsible for its exceptional properties since it is derived from graphite 

and does not pass through any equipment or intrusive procedure. However, the flakes produced 

reach only 100 µm and are obtained in isolated pieces or mixed with multi-layered graphene, which 

does not allow their application on a large scale. Thus, the graphene synthesized by mechanical 

exfoliation is suitable only for basic research and for device demonstration. [31, 36]  

3.3 Epitaxial growth of graphene on substrates 

3.3.1 Graphene growth on Silicon Carbide (SiC) 

Silicon Carbide (SiC) is one of the most common materials used for "power electronics," 

known as high power semiconductor electronics. [213-216] Epitaxial thermal growth on silicon 

carbide (SiC) is one of the most praised highly crystalline graphene growth techniques. The term 

"epitaxy" is related to the Greek roots where the prefix epi means "upon" or "over," and taxis 

means "arrangement" or "order." [217] The process is called epitaxial growth, where an epitaxial 

monocrystalline film is deposited on a mono-crystal substrate. Two main epitaxial growth 

processes depend on the growth substrate, “homoepitaxial” and “heteroepitaxial” growth. If the 
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substrate and the film applied to it are the same material, the film is called the homo-epitaxial 

layer. When those are different, it is called the hetero-epitaxial layer. [157, 217]  

 
Figure 3.8 Illustrations of crucial stages of the few-layer and multi-layer graphene growth 

by thermal decomposition of SiC. (a) before (left) and after the growth of graphene on SiC and 

few-layer graphene (blue lines) and the buffer (blue dashed line) layers are visible. The 3D model 

on the right-hand side represents the structural model of double-layer graphene. (b) crystal 

structure of SiC and graphene on Silicon-terminated surface and Carbon-terminated surface. Red 

balls correspond to the silicon atoms, and the blue balls represent the carbon atoms. (c) 3D 

diagram of a graphene field-effect transistor (GFET). It has been fabricated using a gate insulator 

of  𝐴𝑙2𝑂3 and a Ti/Au gate electrode. [218] 

 

 

Forbeaux, Themlin, and Debever, in 1998, described the formation of graphite layers on 

the surface of the SiC wafer during the sublimation of Si atoms. [219] Berger et al. (2004) first 

reported the works on obtaining graphene in the thermal decomposition of the SiC substrate 

surface. They observed the formation of polycrystalline layers of graphene, oriented randomly. 

[220] Later, many works that describe the processes of controlling the number and orientation of 

formed graphene layers have been introduced. [221-225] When the SiC substrate is annealed at 
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high temperatures, such as from 12000𝐶 to 17000𝐶, in a high vacuum atmosphere, Si atoms 

selectively evaporate from the surface, and then the remaining C atoms form graphene layers. 

[226-229] The characteristics and morphological properties of epitaxial graphene depend on the 

edge/surface of the SiC plate on which it is grown (Figure 3.8b). Films growing on the C-face 

(Carbon-terminated surface) are several layers thick (bottom layer shown in Figure 3.8b), 

disoriented from each other, and look like separate scales. [218, 230-232] Additionally, films 

grown on the Si-face (Silicon-terminated surface) have a homogeneous appearance, and they often 

consist of single or double-layer graphene (top layer shown in Figure 3.8b). [233-237] The 

epitaxial growth of graphene on SiC is presented as a very promising method for large-scale 

production and application in electronics. Device applications based on SiC-graphene such as 

high-frequency electronics, bio-electronics, light-emitting devices, high-profile transistors, and 

solid-state radios have been developed (Figure 3.8c). [238-244] High-frequency transistors with a 

cut-off frequency of 100-280 GHz were also created, which is higher than in modern Si-transistors 

with the same shutter length. [42, 245] Moreover, graphene on SiC has been used to study the 

quantum Hall effect (QHE). [31, 246-251] The quality of graphene obtained in this way can be 

very high, with crystallite sizes reaching hundreds of micrometers. Nevertheless, the main 

disadvantages of this method are the high cost of SiC wafers (over $500 per 6-inch diameter 

wafers) and the use of high temperatures (above 1200°C), which are not directly compatible with 

silicon electronics technology. Therefore, this method is not suitable for industrial production. 
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3.3.2 Chemical vapor deposition (CVD) method 

(Please note that section 3.3.2 is based on the figures and ideas given in Miao et al. 2011 [252] 

from the book titled, “Physics and Applications of Graphene: Experiments,” authored by Sergey 

Mikhailov (2011) [253] and the book titled, “Handbook of chemical vapor deposition: principles, 

technology, and applications,” authored by Hugh O. Pierson (1999). [254] 

The mainly used method to synthesize large-area graphene on catalyst substrates is the 

Chemical Vapor Deposition (CVD) method. The ability to synthesize graphene thin films with 

good uniformity and that can be transferred to other substrates, combined with the relatively 

inexpensive, fast, and simplicity of the process, has made it the most promising method for large 

scale graphene production, as mentioned in Chapter 1. [225, 255-257] 

 

 

Figure 3.9 Schematic of a typical CVD system with a quartz tube furnace. Mass flow 

controllers (MFCs) regulate the gas flows and then feed into the quartz chamber known as the 

reactor. The reactor is heated using a heater/heating element, and the pressure control valve 

regulates the reactor pressure. The vacuum pump on the right-hand side uses to remove exhausted 

gases. [252-254] 

 

 

A schematic of a typical CVD system for graphene production is shown in Figure 3.9. The 

system can be divided into three main parts such as the inlet part (Figure 3.9-left), the reactor 
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(Figure 3.9-middle), and the outlet part (Figure 3.9-right). The inlet part is used to regulate the 

amount of gases entering the reactor using special valves controlled by a computer known as a 

Mass Flow Controller (MFC). Chemical reactions inside the reactor at high temperatures cause the 

desired material to settle on the substrate. High temperatures (up to 12000) in the reactor are very 

often achieved by a heating element. The outlet part is used to regulate the pressure in the reactor.  

 

Figure 3.10 Schematic of the precursor decomposition during the CVD growth of graphene 

at a catalytic surface and the boundary layer above the catalyst surface. (a) a step-by-step 

precursor decomposition process. (b) The boundary layer is thicker when the substrate is parallel 

to the direction of the flow. (c) The boundary layer is thinner than (b), and the substrate is tilted 

against the main flow direction. [252-254] 
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The ability to control and maintain the pressure in the reactor is crucial for the correct 

execution of the chemical reaction. One or more vacuum pumps are used to pump the gases such 

as 𝐴𝑟/𝐻2, 𝐶𝐻4, 𝑂2, 𝑁2, 𝑒𝑡𝑐. Pressure regulation is performed employing a special throttle valve. 

The experimental setup of a CVD furnace may not seem too complicated, but the CVD process 

can be pretty complicated and very sensitive to control parameters. In addition to the basic 

characteristics of the process, such as temperature, reactor pressure, gas flow, annealing, and 

deposition time, other influences must also be taken into account. Those are the gas purity, possible 

furnace leaks, reactor cross-section and volume, geometric arrangement, and many other 

parameters. As a result, even small changes in the arrangement can significantly affect the entire 

deposition, and it is therefore very complicated to optimize production processes in general.  

There are also problems with the limited flow of gases in the reactor in CVD processes, 

and diffusion also becomes dominant in various parts of the reactor, as shown in Figure 3.10a. 

Another problem is that chemical reactions involve many intermediate steps, and for some, the 

exact mechanism of the reaction is unknown. The diffusion of atoms from or to the surface of the 

substrate can also be complicated. Because, according to the fluid dynamics, the upper layer of the 

substrate is formed into a layer of an uneven thickness (Figure 3.10 b and c). The diffusion rate 

depends on the thickness of the surface layer, so it must be as flat as possible. Graphene deposition 

can be divided into two parts (1) the pyrolytic decomposition of the precursor (e.g. 𝐶𝐻4 ) to carbon 

and residual gas such as  𝐻2 (2) the formation of a graphene structure from carbon atoms. 

Decomposition of the precursor should take place only on the surface of the substrate. Because if 

the precursor decomposes in other parts of the reactor, a black carbon layer will form, which not 

only settles on the walls of the reactor but also degrades the graphene being prepared. Although 
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these black carbon layers are formed only from carbon, their amorphous structure prevents high-

quality graphene.  

In order to achieve a homogeneous decomposition of the precursor on the surface, various 

catalysts such as transition metals are used as substrates. The purpose of the catalyst is to speed up 

the reaction by reducing the activation energy and, thus, reducing the reactor temperature. Because 

temperatures higher than 25000𝐶 are required to form graphene/graphitic structures without a 

catalyst. The high activation energy also makes the reaction process very sensitive to temperature 

changes.  

3.3.2.1 Graphene growth on a nickel (Ni) 

 

Figure 3.11  A schematic of carbon segregation at Ni-catalyst surface and a representation 

of graphene growth on Ni (nickel) with different cooling rates (extremely fast, fast/medium, slow). 

[258] 

 

The quality of graphene is determined by the kinetics of the reactions, and it is, therefore, 

difficult to form high-quality graphene layers with a high activation energy of the reaction. Such 

high temperatures require a unique deposition system, substrate, and a large amount of energy, 
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making it economically not viable. As mentioned, catalysts used in the synthesis of graphene by 

the CVD method are mainly transition metals that carbon can diffuse. During the growth of 

graphene at elevated temperatures, carbon atoms deposited on the surface of the catalyst, such as 

nickel, then penetrate deep into the layers of the bulk catalyst (Figure 3.11-top).  

 

 

Figure 3.12 Illustrations of the graphene synthesis process on Ni. (a) Growth on a 

monocrystalline Ni (111) surface gives monolayer graphene. (b) Growth on a polycrystalline 

nickel surface that contains defects and grain boundaries. This gives multilayer and monolayer 

graphene. (c) Optical microscopy image of a graphene/monocrystalline-nickel which related to 

(a) and the inset shows a 3D diagram of monolayer graphene on Ni (111). (d) Optical microscopy 

image of a graphene/ polycrystalline-nickel, which corresponds to (b). The inset represents a 3D 

representation of monolayer and multilayer graphene on the polycrystalline-nickel surface. [259] 

 

Furthermore, the cooling rate is an important parameter that can affect the number of 

graphene layers, as shown in Figure 3.11-bottom. Because, at an improperly selected cooling rate, 

these atoms can return to the surface and thus grow on the opposite side, which is an undesirable 

result to have. So, with a very rapid cooling rate, the carbon atoms do not have enough time to 
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return to the surface and remain inside the nickel. Therefore, as shown in Figure 3.11-bottom-left, 

only a tiny part of the carbon atoms remains on the surface. At average cooling rates, quality 

graphene is formed (Figure 3.11-bottom-middle), while at slow cooling rates, the carbon atoms 

diffuse deep into the nickel, and almost nothing remains on the surface (Figure 3.11-bottom-right).  

The roughness, mainly because of the grain size and the grain boundary, is an important 

property of the catalyst influencing the quality of graphene. The deposited carbon atoms, or atoms 

diffusing from the bulk back to the surface, more favorably settle at places with higher surface 

energy, grain boundaries, and surface defects. These defects and grain boundaries have multiple 

binding sites at which carbon atoms can more easily settle. The resulting graphene layers are then 

unevenly distributed over the surface, such that the thicker layers around grain boundaries and 

thin/single-layers of graphene in other places, as shown in Figure 3.12. Therefore, annealing the 

catalyst is used before graphene growth to increase grain size and eliminate defects.  

 

3.3.2.2 CVD growth of Graphene on Copper (Cu) 

When nickel is used as a catalyst (via precipitation of carbon as shown in Figure 3.13a), 

problems arise at high temperatures with the diffusion of carbon atoms into the inner layers of 

nickel and the undesirable growth of graphene multilayers at an inappropriately chosen cooling 

rate. For this reason, a copper catalyst (via surface mediated growth, as shown in Figure 3.13b) is 

more suitable for the production of graphene, into which carbon atoms can hardly diffuse at all, 

even at a temperature of 10000𝐶. The graphene layer is formed on the surface directly during the 

decomposition of the hydrocarbon (e.g. 𝐶𝐻4). There is no undesired precipitation/diffusion of 

carbon from the bulk of copper during the cooling stage. Furthermore, graphene production on 

copper foil requires lower pressure and lower temperature than the use of nickel as a catalyst. Due 
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to those reasons, the production process is greatly simplified. At a given pressure and reaction 

temperature, it is not hard to determine the amount of precursor for forming one layer of graphene. 

 

Figure 3.13 Illustration of the significant differences and the growth kinetics during the 

graphene synthesis via (a) precipitation on nickel and (b) by surface-mediated growth on copper. 

[260] 

 

3.3.2.2.1 Step-by-step process of graphene synthesis 

 

Figure 3.14 Schematic diagram of the physicochemical stages of the CVD synthesis (1) 

precursor transport from the bulk gas region into the reactor (2) evaporation of reactant gases (3) 

reactant gases chemically reacts to form immediate reactants and also produces the gaseous by-

products (4) Diffusion of reactant gases from the bulk gas region to the catalyst surface through 

the boundary layer (5) Adsorption of the reactants on the deposition surface of the substrate (6) 

Surface diffusion of reactant gases to growth sites, where nucleation happens and formation of 

graphene islands at the surface (7) Desorption of volatile by-products from the deposition surface 

to the bulk gas region (8) Gaseous by-products move away from the reactor. [261] 
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Generally, there are few simple and critical steps of the chemical vapor deposition (CVD) 

of graphene, (1) Heating, (2) Annealing, (3) Growth, (4) Cooling, and (5) Reactor pressurization. 

At the first step, the catalyst substrate and the reactor are heated at a constant rate under a controlled 

atmosphere to annealing the temperate. Next, regulate the annealing temperature and gas 

atmosphere in which the catalyst surface is reduced/smoothed and modified, as mentioned before. 

The morphology features of the substrate include surface roughness, crystalline orientation, and 

grain size of the metal catalyst. Additionally, metal evaporation should be avoided as much as 

possible, discussed in a later chapter. The growth step involves the injection of the carbon-

containing precursor such as  𝐶𝐻4 and growth of graphene on the Cu catalyst substrate (Figure 

3.14 contains the complete growth mechanism of graphene on Cu). Many parameters can change 

the output, such as a single layer or multilayer graphene. So, during the growth step, such 

parameters as pressure, the ratio of a gas mixture, annealing time, growth time, temperature, gas 

consumption, etc., can be changed.  

It is important to take into account that depending on the nature of the gas mixture, etching 

of graphene is possible not in the growth phase but in the subsequent stage during cooling (e.g., in 

higher 𝐻2 concentrations and absence of a carbon precursor, graphene can be etched at high 

temperatures during the initial cooling down steps. See the equation (3.10)). In the cooling phase, 

the reactor undergoes a cooling step in an environment similar to the annealing or growth phase 

(this environment could be varied under exceptional circumstances) until the reactor temperature 

drops below 2000𝐶 to prevent oxidation of the catalyst surface not coated with graphene and 

prevent oxygen-containing groups of directly coated graphene from functionalizing. As mentioned 

in the previous section, when using substrates with high solubility, the dynamics of the cooling 

stage are crucial for controlled growth. Finally, the reactor should be pressurized to atmospheric 
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pressure by filling inert gases or simply opening the pressure control valve, as shown in Figure 

3.9.   

 

3.3.2.3 Growth kinetics of graphene synthesis: a summary 

 

 
Figure 3.15 Schematic illustrations of all possible distribution of carbon isotopes. It is 

based on various growth procedures and kinetics discussed in this section (a) a layer of graphene 

formed on a catalyst surface by carbon isotopes mixed randomly. First, the precursors went 

through a dissolution step, and graphene was formed via surface segregation and precipitation. 

(b) Graphene formed with separated isotopes. It forms via two separate surface adsorption steps. 

(c) Combined growth by precipitation and surface adsorption. [262] 

 

 

Hydrocarbon precursors such as methane (𝐶𝐻4), acetylene (𝐶2𝐻2), ethylene (𝐶2𝐻4), etc. 

are usually used as a carbon source. Among them, the most widely used one is methane (𝐶𝐻4). 

Due to the strong 𝐶 − 𝐻 bonds (+415.5 𝑘𝐽𝑚𝑜𝑙−1) in the 𝐶𝐻4 molecule, [263] its thermal 

decomposition occurs at very high temperatures (more than 12000𝐶 as mentioned previously). In 
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order to reduce the decomposition temperature of 𝐶𝐻4, various transition metal catalysts such as 

Cu, Ni, Co, Fe, etc., are widely used. When CVD-synthesis of graphene is performed on metals at 

temperatures less than 9000𝐶, the catalytic effect is observed to a lesser extent. The growth 

kinetics mainly depends on the properties of the catalyst, particularly the solubility of carbon at 

high temperatures in the metal. [264-268] In the case of synthesis on copper substrates, carbon 

does not dissolve in the metal of the substrate; the main processes that determine the growth are 

the dissociation of gas molecules on the copper surface, including at the boundaries of already 

formed graphite-like structures, and surface diffusion of carbon into the formation region of 

graphene structures as shown in Figure 3.15.  

The following set of equations represents the chemical reactions at the transition metal 

surface that promotes graphene growth. The overall reaction process can be summarized into a 

decomposition of 𝐶𝐻4 in to carbon and 𝐻2Which leads to graphene growth at the Cu catalyst 

surface. [269] 

 𝐶𝐻4(𝑔) + 𝑆(𝐶𝑢) ⇌ 𝐶𝐻4(𝑎) (3.2) 

 

 𝐶𝐻4(𝑎) + 𝑆(𝐶𝑢) ⇌ 𝐶𝐻3(𝑎) + 𝐻(𝑎) (3.3) 

 

 𝐶𝐻3(𝑎) + 𝑆(𝐶𝑢) ⇌ 𝐶𝐻2(𝑎) + 𝐻(𝑎) (3.4) 

 

 𝐶𝐻2(𝑎) + 𝑆(𝐶𝑢) ⇌ 𝐶𝐻(𝑎) + 𝐻(𝑎) (3.5) 

 

 𝐶𝐻(𝑎) + 𝑆(𝐶𝑢) ⇌ 𝐶(𝑎) + 𝐻(𝑎) (3.6) 
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This can be summarized as follows, 

 

Dissociative adsorption of methane 

 𝐶𝐻4(𝑔) + 5𝑆(𝐶𝑢) ⇌ 𝐶(𝑎) + 4𝐻(𝑎) (3.7) 

 

Hydrogen Desorption 

 4𝐻(𝑎) ⇌ 2𝐻2(𝑔) + 4𝑆(𝐶𝑢) (3.8) 

 

Graphene Formation from adsorbed carbon 

 𝐶(𝑎) ⇌ 𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒(𝑎) (3.9) 

 

The reversible reaction of graphene formation by the 𝐶𝐻4 decomposition at the Cu surface. 

 𝐶𝐻4(𝑔) + 5𝑆(𝐶𝑢) ⇌ 𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒(𝑎) + 2𝐻2(𝑔) (3.10) 

 

Where (a) represents the atomic states such as 𝐶(𝑎) and 𝐻(𝑎) (those two are known as adsorbates). 

Moreover, (g) represents the gaseous states such as 𝐶𝐻4(𝑔) or 𝐻2(𝑔) and 𝑆(𝐶𝑢) represents Cu surface 

sites where the above reactions are possible. [269] 

Since the graphene growth process on a transition metal substrate is a heterogeneous 

catalytic chemical reaction, [270-272] the metal acts as a substrate and a catalyst. A carbon film 

grown on the surface of a metal substrate reduces its catalytic activity, which is known as catalyst 

poisoning. [271, 272] Hence, the formation of a graphene film should lead to a termination of the 

reaction. If the entire process is carried out on the surface (adsorption, decomposition, and 

diffusion of molecules), then a predominantly monolayer graphene should be formed (Figure 
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3.15). This effect is known as "self-limiting," which has been observed only on Cu under certain 

growth conditions. Note that in the case of Cu, single-layer graphene is not always formed, and 

multilayer graphene may also form. When a copper surface is completely covered with graphene, 

with the formation of small regions of multilayer graphene, an effect of a significant growth 

slowdown was observed by Xuesong Li et al. (2010) [114] and also by Wei Liu et al. (2011). [118] 

The change in the growth rate is that the growth of the first layer is caused by surface adsorption 

of carbon atoms from the gas phase on the copper surface and surface diffusion of atoms into the 

graphene film formation area. In contrast, the growth of the subsequent layers is possible only 

along the boundaries of the forming planes, which can be germinated by defects of the previous 

layer. The deposition process is far more complex at higher temperatures above 12000𝐶. In this 

case, the decomposition reaction starts to develop in the gas phase and must be considered along 

with the catalytic decomposition.  
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4 THE ROLE OF SURFACE MORPHOLOGY ON NUCLEATION DENSITY 

LIMITATION DURING THE CVD GROWTH OF GRAPHENE AND THE 

FACTORS INFLUENCING GRAPHENE WRINKLE FORMATION 

 

CVD graphene growth typically uses commercially available cold-rolled copper foils, including a 

rich topography with scratches, dents, pits, and peaks. Even after annealing the foil, the graphene 

grown on this topography tends to include and reflect these topographic features. Further, the 

transfer of such CVD graphene to a flat substrate using a polymer transfer method also introduces 

wrinkles. Here, we examine an electropolishing technique for reducing native foil defects, 

characterize the resulting foil surface, grow single-crystal graphene on the electro-polished foil, 

and examine the quality of the graphene for such defects. 

4.1 Introduction 

Since the first preparation of tiny flakes of exfoliated graphene from graphite, this 2-D 

material has attracted enormous attention due to its unique electrical, chemical, and physical 

characteristics, promising various applications in nano-photonics nano-electronics, and 

optoelectronics. [35, 38, 54, 56, 220, 244, 273-281] For such applications, the desirable features 

of graphene include high mechanical strength, chemical stability, high optical transparency, and 

gate-controllable electrical transport characteristics. [244, 276, 277, 281] It turns out that large-

area graphene can be fabricated by chemical vapor deposition (CVD) techniques on thin metallic 

catalyst surfaces like copper (Cu) or nickel (Ni). Thus, the CVD process has become an attractive 

means for producing large-area graphene due to its simplicity and relatively low cost. [74, 104, 

282] However, one of the significant drawbacks of CVD graphene is grain boundaries, defects, 
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and wrinkles in the polycrystalline graphene, which adversely affects electrical transport and 

structural properties.  

CVD graphene grown on copper turns out to be polycrystalline because of the high 

nucleation density on the copper foil surface, which is typically ∼106 sites/cm2. [109] In order to 

realize better quality LPCVD graphene, this nucleation density needs to be reduced to ∼1-2 

sites/cm2 so that single crystals can grow to a much larger cm-scale size before coalescing with 

neighboring graphene flakes. Previous studies have demonstrated that substrate pre-treatments 

[109, 283-285] and control of the gaseous precursors [114, 286-289] can be used to limit the 

nucleation density to a great extent. These studies also have demonstrated that the presence of 

oxygen on the surface of the metal catalyst is a crucial ingredient for synthesizing large-scale 

mono-layer single-crystal graphene. [109, 119, 286, 287, 290-293] For example, heating and the 

Cu foil at 800 mbar under Ar environment and then annealing in an Ar/O2 environment (800 mbar, 

1050 0C, ~100 ppm O2) gives a 16 sites/cm2. [294]. Another group has yielded ~2 sites/cm2 for a 

shorter period while claiming that the increase of CH4 flow rate from 7 to 75 sccm would 

significantly rise in nucleation density up to 770 sites/cm2. [295] It would, however, be desirable 

to reduce the nucleation density further, perhaps to <10 sites/cm2. 

Hence, we examine and report on the possibility of limiting the surface defects by 

electropolishing the Cu foil while utilizing Cu enclosures to limit the nucleation density and reduce 

growth rates. [286, 292] Using such a strategy, single-crystal graphene was grown on 

electropolished, oxidized copper foil. The Cu foil and the resulting graphene were studied for 

structural changes induced by foil preparation and the growth process using scanning electron 

microscopy, atomic force microscopy, and optical microscopy. The results of such a study are 

reported below. 
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4.2 Experimental Methods 

4.2.1 Electropolishing and graphene growth 

These studies were carried out on industrial-grade 25 µm-thick Cu foils, cut to a rectangular 

shape with 7 cm x 5 cm dimensions. Initially, oxidized Cu foils showed an uneven color due to a 

pre-existing thin oil/grease layer on the Cu foil produced by the cold-roll-press method. Thus, the 

Cu foils were pre-cleaned in a 10% Acetic acid (CH3COOH) solution for 1 min. (See Figure 4.1). 

After further cleaning of the Cu foil with Acetone, Methanol, and Deionized water, the foils were 

electro-polished using an electrolyte containing Phosphoric Acid (H3PO4), Ethanol (CH3CH2OH), 

iso-propanol (CH3CHOHCH3), Urea (CO(NH2)2), and a small amount of liquid Soap (RCOO-

Na+). Here, the soap serves to ease the removal of the electrolyte residue from the surface after the 

electropolishing. 

 

 

Figure 4.1 A cm x 5 cm, 25 µm thick industrial Cu foil is dipped in a 10% Acetic Acid 

solution (CH3COOH) for 1 min, rinsed with distilled water, dried with a flow of 𝑁2, and oxidized 

by heating up to 350 0𝐶 in open-air for 40 min. The foil is folded into Cu-Enclosure, with side A 

closed and B, C pressed. 

 

In the electropolishing phase, a rapid etching procedure at the maximum current value was 

applied for 20 seconds to remove the surface layer of the foil. Then, a prolonged and steady etching 

process at a low current was utilized for 90 seconds to realize a smooth surface. After the 

electropolishing, the foil was rinsed with Acetone, Methanol and then with deionized water up to 

5 times. Then, the foil was dried with Nitrogen and was placed on a hot plate, and oxidized (the 
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average thickness of the oxide was ~68 nm) for 40 min at 350 0C in the open air. Since we wanted 

to cover the metal surface entirely with oxides to limit nucleation, we have used a longer oxidation 

time. (Because we have noticed the metal surface was not fully covered with CuO when using a 

shorter heating time of less than 40 min). Choudhary et al. (2018) have reported that the formation 

of Cu2O when using temperatures below 330 0C instead of CuO. After passing 330 0C, the CuO 

amount starts to increase, and with a longer annealing time (heated at 350 0C for 3 hrs.), they have 

been able to achieve CuO entirely. [296] Having a high concentration of CuO is beneficial than 

Cu2O since the Cu: O ratio for CuO (1:1) is higher than Cu2O (1:0.5). Lee et al. (2016) have 

reported a result similar to the above group. Additionally, they have discussed the increase of 

penetration depth of O into Cu at 300 0C with increasing oxidization times up to 4 hrs. [297]  

The electropolished- and oxidized- foil were used to create an enclosure by completely 

folding side A and tightly pressing sides B and C (see Figure 4.1). Here, the Cu enclosure creates 

a stable environment, limiting the Cu and Oxygen atom evaporation during the annealing and 

growth process. The inner surface of the foil enclosure, which is the area of interest, was 

characterized by microscopy, as reported below. It has been reported that the effect of oxidized Cu 

enclosures to obtain large single crystals using a cold-wall CVD reactor [298], but here we describe 

a method that can be applied to a commonly used quartz CVD system with a furnace. Also, the 

previous technique has a size limitation with a CVD chamber of 4 inches, but in this work, we 

present a method that can be applied to many available CVD systems without a size limitation. 

With our method, we have obtained a nucleation density (ND) of <10 sites/cm2, while the previous 

work was achieving an ND of 7000 sites/cm2. The folded copper foil enclosure was also used for 

CVD growth. In this case, the folded copper foil was placed inside the quartz tube of the CVD 
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system, and the tube was evacuated to a base pressure of 22 mTorr. Argon gas was fed into the 

quartz tube at a rate of 50 sccm, see Figure 4.2, as the foil was heated to 1000 0C. 

 

 

Figure 4.2 a) A schematic of the CVD tube furnace growth system. b) The graphene growth 

curve. The system base pressure was 22 mTorr, and the total pressure during growth was ~1 Torr. 

 

The foil was then annealed at 1000 0C for one hour. It has been reported that Cu foils were 

subjected to a pre-annealing procedure providing better conditions for graphene growth. [299] In 

the next step, a 20 sccm flow of H2/Ar was introduced into the growth chamber, and after two 

minutes, a five sccm flow of CH4 was introduced into the system to commence graphene growth. 

After one hour, the growth phase was stopped, leaving the system cool down while keeping the 

mentioned flow rates unchanged. 
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4.2.2 Sample preparation and characterization 

The CVD-grown graphene was transferred to SiO2/p-Si (p-type doped Si) by using a 

modified wet-transfer process. A drop of PMMA (Poly (methyl methacrylate)/ PMMA 495 A4) 

was placed on the copper foil surface for 20 seconds before spinning. Then the PMMA was spin-

coated onto the foil using a low rpm (1500 rpm) to obtain a slightly thicker PMMA layer. Next, 

the spin-coated sample was baked for 10 min at 1000C. In the following step, the backside of the 

spin-coated sample was etched in an oxygen plasma to remove the backside graphene. The 

resulting PMMA/Graphene/Cu foil was immersed in a 1M FeCl3 solution to etch out the Cu, 

leaving behind the graphene on the PMMA. The graphene/PMMA samples were rinsed a few 

times with deionized water to wash out the remaining FeCl3 and left to float on a 10% HCl solution 

to remove excess metallic and other impurities. Then the graphene/PMMA in 10% HCL solution 

was placed on a pre-heated hot plate at 80 0C to accelerate the cleaning process. Then the samples 

were rinsed with deionized water ten times before transferring on to SiO2/p-Si, where they were 

left to air-dry for 24 hrs., and then inside a pre-heated oven at 100 0C for 30 min. In the next step, 

the PMMA/Graphene film was rinsed in Acetone and then cleaned with Methanol and deionized 

water. The resulting graphene samples were dried with dry nitrogen gas. The surface-structural 

analysis of the Cu foils, Graphene/Cu samples, and Graphene/SiO2/p-Si was performed using an 

OLYMPUS BH2-MJL Optical Microscope a Park XE7–AFM, and a Hitachi S-3000N SEM. The 

surface roughness data were also collected during the AFM scans; these data served to compare 

the electropolished and unpolished Cu foils. 

4.3 Results & Discussion 

Our primary aim was to synthesize single/few-layer highly crystalline graphene by LPCVD 

using a Cu foil as the catalyst substrate. To achieve this goal, it became necessary to minimize the 
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nucleation site density. As previous works have suggested, the cold-rolling striations and other 

surface defects on the substrate act as nucleation sites [298, 300], which results in more defects in 

the graphene film. The AFM scan in Figure 4.3a of a copper foil shows defects like cold-rolling 

striations, peaks, valleys, or pits, similar to mentioned defects. As they have suggested, surface 

morphology features can play a role, but only when much Carbon is in play (usually for higher 

pressure CVD) and, most importantly, when no O2 is involved during the ramping and annealing. 

Suppose we anneal under 𝐻2 a bare Cu substrate. In that case, the thermal energy will allow the 

Carbon contamination/intrinsic species to diffuse and gather around Cu features that decrease the 

energy barrier for nucleation. In this current approach, there should not be much Carbon remains 

after the long duration annealing of oxidized Cu under an Ar environment. However, in this current 

method, the effect has been dramatically reduced, as mentioned above. Moreover, from Figure 

4.3f & Figure 4.4 (a & f), we can notice some nucleation in the middle of the domains, which are 

feature-free but have no nucleation at grain boundaries even though there are particles around, 

respectively. Besides, these defects add surface area for graphene growth. This feature can be seen 

in Figure 4.3(b-d), which shows that the additional defects create an extra surface area, and the 

graphene layers that were grown on them survive even after the transfer process. However, Cu 

grain boundary groves/ step bunching is impossible to avoid. Their contribution to the excess of 

the surface area is much more significant than the small features mentioned above. Figure 4.3 (b, 

c) shows the copper foil after graphene growth, while Figure 4.3 (d & g) shows the images of the 

Graphene/SiO2/p-Si after the etching of the underlying copper foil and the wet transfer. When the 

resulting graphene is transferred to a flat surface, the extra graphene creates wrinkles, as in Figure 

4.3h. 
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Figure 4.3 (a) An AFM image of an as-received industrial Cu foil. Here, the square and 

the circle indicate a valley & a pit, respectively, and the parallel dashed lines indicate cold-rolling 

striations (also for a-g). (b, c) An optical microscope (OM) image of as-received industrial Cu foil 

after graphene growth. Here, the white dashed curves (also for b, c & f) mark grain boundaries 

while the rectangles (also for b-d, f & g) cover the valleys which survived through the growth 

process. (d) OM image of Graphene/SiO2/p-Si (with graphene is grown on received industrial-

Cu) after the wet transfer process. (e) AFM image of an electropolished Cu foil. (f) Optical 

microscope image of graphene on electropolished copper. Notice the star-shaped graphene 

crystallites. (g) Optical microscope image of Graphene/SiO2/p-Si, where the graphene was grown 

on electropolished copper. Compare with Figure 4.3d. (h) An illustration of how wrinkles are 

formed due to an extra graphene area. 
 

Thus, we have implemented a modified electropolishing technique, see Experimental 

Methods, to reduce the native defects observed on the surface of copper foil. Then we have 

examined the resulting surface by AFM to characterize the result. Typically, electropolishing 

reduced cold-rolling striations. This feature can be observed in Figure 4.3e, which shows an AFM 

topography scan of an electropolished copper foil. Here, the cold-rolling striations run parallel to 
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the dashed lines included in the figure, and these edges appear much reduced compared to what 

was seen in the unpolished foil. Attempt to grow single-crystal graphene on such electropolished 

copper, using the enclosure geometry, leads to a reduced nucleation density, see Figure 4.3f. 

We also observed fewer grain boundaries (dashed curves in Figure 4.3f) on the 

electropolished Cu-surface than on the non-electropolished Cu foils (Figure 4.3b & c). 

Furthermore, we can see the cold-rolling striations (dashed lines in Figure 4.3d & g) and valley-

like structures (look inside the rectangle in Figure 4.3d & g) can survive through the wet transfer 

process and appear on the surface of Graphene/SiO2/p-Si. These deformations and extra-surface 

areas help to create wrinkles, as illustrated in Fig. 3g. It has also been reported that the black points 

are shown in Figure 4.3b & c could be hydrogen embrittlement features that form due to the fast 

reduction of CuO. [294] This can be avoided by introducing an intermediate step between the 

annealing step (in a non-reducing atmosphere like Ar) and the growth step (which uses much 

hydrogen). To estimate the effectiveness of electropolishing, we have compared roughness data 

obtained by Atomic Force Microscopy for the unpolished and polished Cu substrates. [301] We 

have measured the root-mean-square, 𝑅𝑞, and the arithmetic mean deviation for this comparison, 

𝑅𝑎. 

We found that the average Rq values for as-received and electro-polished Cu foils are 

131.738 nm and 79.759 nm, respectively, and the average Ra values are 107.535 nm and 57.616 

nm, respectively. Thus, the electropolished surface appears smoother than the unpolished surface, 

which means reducing the influence of surface defects and fewer nucleation sites, as is observable 

in Figure 4.3f. 
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Table 4.1 AFM - Roughness data for as-received (unpolished) and polished Cu foils taken 

at different regions. 
Area = 2500 
(50X50) µm2

 

Before Electropolishing After Electropolishing 

Scan # Rq (nm) Ra (nm) Rq (nm) Ra (nm) 

1 116.841 91.238 65.086 45.375 

2 132.157 108.261 77.660 54.619 

3 147.014 126.483 95.154 78.742 

4 135.418 113.564 84.861 64.032 

5 127.258 98.127 76.035 45.313 

Avg. 131.738 107.535 79.759 57.616 

 

In addition to the effect of surface smoothening, the reduction of the nucleation side density can 

also result from less surface contamination. It removes the first (or more) atomic layers during the 

electropolishing, thus strips out any contamination that would get turned into undesired Carbon 

species upon annealing. While conducting this work, we have observed some surface structures 

like grain boundaries (Figure 4.4a, d, e & f), ripples (Figure 4.4b & c), and cracks (Figure 4.4a, f, 

g & h) on graphene, which formed during the LPCVD process that can help to cause wrinkles in 

graphene after its transfer to a flat substrate. We have performed AFM, OM, and SEM scans on 

those surface areas to identify the factors that lead to the formation of defects and wrinkles in 

graphene. Figure 4.4a shows an SEM image that depicts how the graphene layers are affected by 

the Cu grain boundaries and the crack-like structure on the surface. The yellow arrows indicate the 

grain boundaries, and the square shows the cracks formed during the growth and cooling down 

process. 
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Figure 4.4 (a) An SEM image of a Cu grain boundary. The square shows fissures/cracks 

formed due to different thermal expansion coefficients. Arrows represent wrinkle formation due to 

Cu grain boundaries. (b-c) SEM images of Nano-scale wrinkles formed due to different thermal 

expansion coefficients of Cu and graphene. (d) An AFM image of a Cu grain boundary (before the 

graphene growth but after the annealing step) and valleys. (e) An AFM image of graphene (on Cu) 

wrinkle at a grain boundary. (f-g) OM images of graphene flakes (“f” represents a sample that 

used an electropolished Cu substrate & “g” for a non-electropolished Cu) with cracks and grain 

boundaries. Arrows show the cracks, and the rectangle shows the grain boundaries. (h) An AFM 

image of inset in Figure 4.4g.  The arrow shows a crack, and this has been scanned using the 

AFM. 

 

Figure 4.4(d & e) shows an AFM scan of a Cu grain boundary and a Graphene/Cu grain, 

respectively. This added surface area helps create nano/micro-scale wrinkles when transferring to 

a flat surface, as shown in Figure 4.3h. Figure 4.4(b & c) exhibit ripple-like structures, which are 

step edges formed by relaxation mechanisms of the bending energy of graphene. [302] If such 

wrinkled graphene is transferred onto a flat surface using a polymer transfer method, ripples will 

remain. Because ripple-valleys first contact the 𝑆𝑖𝑂2/𝑝 − 𝑆𝑖 surface and stick to the substrate due 

to the high adhesion between graphene and 𝑆𝑖𝑂2/𝑝 − 𝑆𝑖. It has also been reported that water 

drainage between graphene and the flat surface plays a crucial role in wrinkle formation. [303] We 

have also observed what looks like fissures or cracks formed due to thermal dilation of graphene 
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on Cu during the cooling down, which means that when the temperature is reduced under the 

minimum growth temperature for graphene, it is impossible to grow graphene further to eliminate 

those cracks. Such features have been observed in graphene grown on electropolished Cu (Figure 

4.4f) and non-electropolished Cu (Figure 4.4g & h). In addition to that, we have noticed 4-fold 

graphene flakes on Cu instead of the most common 6-fold flakes. Esteban et al. (2013), [304] have 

discussed the reason behind these different shapes in detail. The graphene nucleation, which forms 

on the Cu (100) surface, exhibits square/rectangular shapes, while the nucleation form on Cu (111) 

exhibits hexagonal shapes. 

4.4 Conclusion 

We have aimed to grow single-crystal graphene by LPCVD using oxidized Cu foil 

enclosures as the catalyst substrate. In the process, we have observed large nucleation densities 

and surface defects on the unpolished Cu surface. We figured that the uneven Cu surfaces with 

defects could produce large nucleation densities based on the experimental observations. The 

graphene grown inside those defects helps create wrinkles when such material is transferred to a 

flat substrate. Besides, at a large nucleation density, the graphene flakes nucleated at different sites 

coalesced to produce poly-crystalline graphene. Due to such issues, we have implemented an 

electropolishing technique to smoothen the native surface of the copper foil. 

Further, we have used oxidized Cu foil and enclosures produced from such foil to prevent 

Cu evaporation, reduce the nucleation density and the growth rate. The surface smoothening 

process has reduced the nucleation site formation while limiting the surface defects, which lead to 

wrinkle formation. The annealing process was also helpful to flatten the surface during the growth 

process further. Still, it has introduced Cu grains and associated boundaries, which are difficult to 

prevent due to the conditions related to the LPCVD method. We have also observed that graphene 
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grows across Cu grain boundaries and, in the process, produces an additional surface area for 

graphene growth, which later helps to create wrinkles. Cracks and ripple-like structures were also 

observed, which formed during the post-cooling down process due to different thermal expansion 

coefficients of graphene and Cu. We believe that the introduced electropolishing technique and 

the growth methods may be potentially helpful to synthesize better quality single-to-few layer 

graphene. 
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5 THE EFFECT OF MULTI-STEP CU SURFACE OXIDIZATION ON THE 

GROWTH OF SINGLE-CRYSTAL GRAPHENE BY LOW-PRESSURE CHEMICAL 

VAPOR DEPOSITION (LPCVD) 

5.1 Introduction 

Graphene is known as the ‘wonder material,’ a monolayer material that consists of 𝑠𝑝2-

hybridized carbon atoms fit in a 2D hexagonal (honeycomb) lattice. More importantly, single-

crystalline graphene has attracted vast attention due to its unique electrical, chemical, and physical 

characteristics, proving its potential as a suitable material for high-performance electronic device 

application, as discussed in chapter 4. Among various production methods of single-crystal 

graphene, the mechanical exfoliation of graphite layers is known as the best method to produce 

high-quality single crystals. However, the yield is minimal, and the cost for mass production is 

high; hence, that method is mainly limited to laboratory research and prototyping. The best way to 

produce low-cost and high-quality graphene is the LPCVD method. To use graphene in high-

performance electronic and optoelectronic applications, it should have a single crystal structure. 

The single crystalline structure of graphene is highly dependent on the crystalline structure of the 

underlying copper layer. However, the industrial-grade Cu foils are polycrystalline and consist of 

carbon impurities and surface defects, leading to high nucleation density (ND). Higher graphene 

nucleation lead to form polycrystalline graphene layers, and ND should also keep at a minimum 

level, as discussed in section 4.1. In order to produce Cu foils with a single crystalline structure, 

Cu surface modifications and annealing in an inert gas environment should be implemented during 

the growth process. As mentioned in chapter 4, Cu surface oxidization help to suppress the 

nucleation density, and it was necessary to study the effect of oxidization on graphene nucleation 

density and graphene monolayer formation. According to Losurdo et al. (2011) [305], the presence 
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of high 𝐻2 percentage increases the defects density and hence reducing the graphene quality. 

Because 𝐻2 participates in creating defects such as point defects contains hybridized 𝑠𝑝3 C-H 

bonds. So, it was necessary to reduce the 𝐻2 concentration without reducing the total pressure. 

Hence, a flow of 𝑁2 was added to act as an inert gas and 𝐶𝐻4 flow was reduced to keep a 

high 𝐻2: 𝐶𝐻4 ratio.  

Thus, we will discuss the effect of multi-step copper surface oxidization followed by a 

complete vacuum (base pressure) step on suppressing the nucleation density. The surface-modified 

copper enclosures were used to create an isolated environment inside the pocket to enable a 

controlled growth environment. The graphene/copper foil was oxidized for visual enhancement of 

graphene flakes. The foils and the surrounding area were characterized using optical microscopy. 

Then a hybrid-transfer technique was developed to transfer graphene flakes onto a pre-determined 

location without wrinkles, surface residues, or impurities. The mechanism related to graphene 

growth is also discussed.   

5.2 Experimental Methods 

The experimental method of growing single-crystal monolayer graphene is consists of few 

steps such as copper surface modification, enclosure preparation, gas feed control, annealing, 

graphene growth, as-received graphene/Cu foil characterization just after the post-oxidation, 

graphene transfer, and the hybrid transfer of microscale 2-D materials (graphene), etc. All of these 

steps are discussed in detail under this section. 

5.2.1 Copper surface modification and enclosure preparation 

We have implemented a novel LPCVD method to grow single-crystal graphene 

monolayers on surface-modified ~25 µm-thick industrial-grade Cu foils and then study nucleation-

density suppression by multi-step copper surface oxidization. The foils were cut into rectangular 
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shapes with dimensions of 7 cm x 5 cm. Initially, the foil surfaces showed an uneven color due to 

a pre-existing thin oil/grease layer on the Cu foil produced by the cold-roll-press method. Thus, 

the Cu foils were pre-cleaned in a 10% Acetic acid (CH3COOH) solution for 1 min. After further 

cleaning the Cu foils with Acetone, Methanol, and Deionized water (2 min sonication time per 

step), they were air-dried with N2. Then, it was placed on a hot plate and oxidized (pre-oxidation) 

for 40 min at 350 ± 5 𝐶0 in the open air. An extended oxidization time was used since it was 

necessary to cover the copper surface with metal oxides uniformly. In the previous study, we 

discovered that the metal surface was not mainly covered by cupric oxide (CuO) when using an 

annealing duration of less than 40 min. After a careful study, the initial annealing temperature was 

determined, increasing the O (oxygen) ratio (Cu:O) of the metal oxides. A detailed explanation 

has been given in our previous work [1], and the same annealing time and temperature were used 

in the current study.  

As mentioned, this pre-oxidation was performed to form a CuO layer which acts as a self-

cleaning substrate and as a slow oxygen donor (as a result of CuO and residual 𝐶𝑢2𝑂 

decomposition) during the temperature ramping up step. [306] It is reported that the thermal 

decomposition of CuO occurs in two stages: Initially, CuO decomposes to 𝐶𝑢2𝑂 and oxygen 

around 350 𝐶0 under a vacuum. Despite the stability of 𝐶𝑢2𝑂 up to 1230 𝐶0 at atmospheric 

pressure, which is higher than the melting point of metallic copper, 𝐶𝑢2𝑂 will decompose into O 

and Cu at high temperatures (below the melting point of Cu, but ≥ 1000 𝐶0) and low oxygen 

partial pressures. [306-309]  

Then an enclosure is created by folding the Cu/oxide foil in half along the long side and 

then tightly crimping and folding the remaining edges. The inner spacing between two Cu foil 

layers was around 3 mm, and the inside was fully sealed from the outside due to tight crimping 
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and folding of three sides. It causes to cut off the external gas flow from directly entering the 

internal gas environment and will help form an internal static gas equilibrium during high 

temperatures, limiting the Cu evaporation. This step was adopted from our previous study, and it 

contains more details about the use of Cu enclosures. [1] In addition, it will act as a barrier between 

external and internal gas environments resulting in a decreased gas exchange rate with the external 

gas feed. It causes to have a low carbon presence during the growth process, further limiting the 

nucleation density. 

5.2.2 Gas feed control, annealing, and graphene growth 

After that, the enclosure was loaded into the CVD tube furnace (see Figure 5.1a). This 

LPCVD system (see Figure 5.2a) consists of a quartz tube with an inner diameter of ~3 cm, a 

heating element that can heat up till 12000𝐶, a vacuum pump that can provide a base pressure 

(BP) value of around 30 mTorr and four gas inlets (see Figure 5.2b) that feed 𝑂2, 𝑁2, 𝐻2(10%)/

𝐴𝑟(90%), 𝐶𝐻4 (we have modified this gas inlet by adding a special needle valve which consists 

of a barrel-thimble micro-gauge as shown in Figure 5.2c. It was necessary to go below the 

minimum flow rate of the flow controller) into the chamber at different stages of the LPCVD 

process (See Figure 5.3). The sample was carefully placed in the middle section of the heating 

element to ensure a uniform temperature gradient across the pocket. Then the chamber was 

vacuumed and achieved a BP value of ~30 mTorr. After that, the system was pressurized to ~400 

mTorr by feeding 𝑁2 and 𝐻2/𝐴𝑟 (80 sccm). Once the total pressure (TP) stabilized, the core 

temperature was ramped up to 9000𝐶 and then gradually increased to the growth temperature 

of 10600𝐶.  

During this period, the TP value kept at nearly constant by slightly adjusting only the 𝑁2 

gas flow. After reaching the 10600𝐶, the annealing step-I/in-situ oxygen passivation-I was 
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initiated while feeding a 𝑂2 flow as shown in Figure 5.4 for 15 minutes (min). It increased the 

system pressure by ~10 mTorr (TP = 410 mTorr), and the temperature was constant during the 

time. At the end of this process, graphene growth (step I) was begun by turning off the 𝑂2 flow 

while feeding a 𝐶𝐻4 flow at a rate of 10 sccm for 15 min (TP value increased to ~415 mTorr as 

shown in Figure 5.4).  

 

At the end of the growth cycle-I, the system pressure was reduced and kept at ~30 mTorr 

(BP) for ~20 min by turning off all needle valves (the gas valves are illustrated as X in Figure 5.3). 

That removes most of the existing gases, by-products of initial graphene growth such as 𝐶𝐻𝑥 

compounds, carbon residue, Cu vapor, etc. It will also act as a self-cleaning step that enables a 

cleaner Cu surface with less residue and carbon atoms, ensuring limited graphene nucleation sites. 

Later, the TP was brought to ~400 mTorr by feeding 𝑁2 and 𝐻2/𝐴𝑟 (80 sccm) and then initiated 

the annealing step-II/in-situ oxygen passivation-II by feeding a 𝑂2 flow as previous for 15 min. 

That increased the TP value by ~10 mTorr, and then the TP value kept constant at ~410 mTorr. 

The graphene growth step-II was started just after turning off the 𝑂2 flow, by feeding a 𝐶𝐻4 flow 

similar to the previous graphene growth step. 

(a) (b) 

Figure 5.1 The LPCVD furnace. (a) The exterior of the furnace with the 

temperature controller and the thermocouple. (b) The inside of the furnace during the 

slow cooling phase. 
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Figure 5.2 The modified LPCVD system. (a) The setup consists of four gas feeds 

controlled and monitored by two flow meters, few needle valves, and the LPCVD PC. The 

LPCVD system receives data from four digital multimeters (B), and the flow meters are 

controlled by a four-channel MKS digital readout (A). Here, 𝑉1, 𝑉2, 𝑉3, and 𝑉4 indicate four 

vacuum pumps. The pressure values are monitored by a multimeter-digital thermocouple 

vacuum gauge pair and analog pressure gauges (C). (b) The gas control panel. (c) The needle 

valve consists of a barrel-thimble micro-gauge. It was crucial to fine-tune the 𝐶𝐻4 gas flow. 
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 The temperature and pressure values were approximately identical to the growth step-I, as 

shown in Figure 5.4. The growth mechanism and gas-phase dynamics will be discussed in detail 

in the upcoming paragraphs in section 5.3 under Figure 5.9 and Figure 5.10. At the end of the 

growth, the temperature set value was immediately adjusted to the initial temperature (300C) and 

then let the system cool down slowly (see Figure 5.1b). Due to the immense difference between 

lab temperature and the core temperature, the system was rapidly cooled down until ~9000𝐶. So 

it further reduces the potential of more graphene growth and discourages the formation of new 

nucleation sites due to the stability of thin 𝐶𝑢2𝑂 layer below 10000𝐶 (see the explanations given 

in Figure 5.9 and Figure 5.10 for more information). [306]  

 

 

 

 

Figure 5.3 A schematic illustration of the LPCVD system. Four gas inlets 

feed 𝑂2, 𝑁2, 𝐻2(10%)/𝐴𝑟(90%), 𝐶𝐻4 into the CVD tube furnace chamber at different 

stages of the LPCVD process. The inner diameter of the quartz tube was around 3cm, 

and the sample was placed in the middle of the heating element (isothermal zone) to 

ensure a uniform temperature along with the Cu pocket. Moreover, the enclosure was 

positioned carefully inside the quartz tube by considering the enclosure geometry and 

gas-phase dynamics to achieve a uniform reactant concentration and temperature. It 

helps to control the near-surface conditions so that the deposition becomes more 

homogenous and controllable. The maximum growth temperature of the reactor was 

10600𝐶 and achieved a base pressure value of ~30 mTorr. 
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5.2.3 Characterization and Graphene Transfer 

The graphene/copper enclosure was cut open from three sides and made flat without 

touching the middle. This precaution is necessary to prevent scratches, dents, and wrinkles on the 

graphene/Cu surface. The foil was loaded inside of a pre-heated oven to oxidize the foil at  ~1100𝐶 

for five min-per-side for optical visualization of individual graphene flakes (see Figure 5.11 and 

Figure 5.4 A graphical representation of the temperature (left-axis), pressure (right-axis), 

and the overall growth profile of the LPCVD process. The temperature (black curve) was ramped 

up to 9000𝐶 from 300𝐶 and then gradually brought to 10600𝐶, as shown on the left axis. The red 

curve and the right axis represent how the pressure values changed during the entire growth 

process. This growth profile consists of seven stages, including two annealing and growth steps. 

In addition to the pre-oxidization step, the enclosure was oxidized twice during the LPCVD process 

by providing a controlled flow of 𝑂2 before each growth cycle. It increases the concentration of 

oxygen atoms which helps to reduce graphene nucleation. At the end of the growth, the 

temperature set value was immediately adjusted to 300𝐶 and let the system cool down slowly while 

keeping the gas flow rates unchanged. The presence of oxygen atoms and the stability of  𝐶𝑢2𝑂 

below 10000𝐶, discourage further growth of graphene during the cooling cycle. 
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Figure 5.12). After that, graphene flakes were visible to the naked eye due to their size (flake 

diameters/diagonal were between 50 − 800 𝜇𝑚), wide spacing between flakes, and the color 

contrast between copper oxide and graphene flakes. Then the Cu foil was placed under the 

OLYMPUS BH2-MJL optical microscope (OM) (see Figure 5.5a) and used x10 and x50 

magnifications to analyze the foil further. The spacing between (edges) source (S) and drain (D) 

of the gold contact pattern was about  50 ± 5 𝜇𝑚 (see Figure 5.7). Hence, to prevent short-

circuiting the device, it was essential to choose graphene flakes with diameters/diagonals between 

45 and 75 μm. Despite that requirement, the hybrid transfer technique discussed in the forthcoming 

paragraphs can transfer graphene flakes with diameters/diagonals over 75 μm. However, the 

photolithography and oxygen plasma etching methods should be applied to etch excess graphene 

when transferring larger flakes. The dimensions of the graphene flakes were measured using the 

ToupView software.  

 

5.2.3.1 Hybrid Transfer of Microscale 2-D Materials onto a Predetermined Location (Gold 

Contact Pattern) 

After selecting an area that contains a suitable flake, it was cut off from the rest of the foil. 

Any particle introduced during the post LPCVD process (this will not affect the inner surface 

characterizations) or dust particles deposited on the graphene/Cu surface during the post-

oxidization step inside the oven should be carefully removed. The presence of such particles 

dramatically reduces the adhesion forces between PDMS and graphene, and hence the transfer will 

not be successful. Herein, the Cu/graphene piece was cleaned with a quick blow of 𝑁2 gas.  

 

 



82 

 

Then a dust-free PDMS piece and the Cu/graphene piece were firmly pressed such that no 

air bubbles (blisters) were left between the layers. These blisters can also weaken the adhesion, 

and it is necessary to prevent those as much as possible. In addition, we noticed some graphene 

regions on the backside of the copper foil, and it was required to remove them to prevent defects. 

(b) (a) 

Figure 5.5 (a) An image of the OLYMPUS BH2-MJL Optical Microscope (OM) and 

this microscope can magnify images up to X100. The raw image is captured by a digital 

microscope camera (DM) that feeds it into an image viewer software. (b) A picture of the dry 

transfer system contains an optical microscope, a digital microscope camera, a 

micromanipulator, a glass slide holder, a heating element, a Si chip holder, and a vacuum 

pump. The Gold/𝑆𝑖𝑂2/Si chip holder was heated to 45 ± 50𝐶 to favor the van der Waals force 

between graphene and gold/𝑆𝑖𝑂2/Si chip as well as to weaken relatively strong adhesion 

forces between graphene and PDMS. The OM/DM system was used to capture the live image, 

and then adjustments were made to coincide the graphene sample and the contact pattern. 

The micromanipulator was used to move the graphene/PDMS/glass slide vertically and 

horizontally so that the graphene flake and the gold contact pattern touch each other. 
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Hence, the backside was cleaned using an oxygen-plasma machine for ~180 s at 140 mTorr. 

Then the PDMS/graphene/Cu stack was let to float on a 𝐹𝑒𝐶𝑙3  solution to etch away the metallic 

copper (see Figure 5.7). At the end of the etching process, a tweezer was used to pick the 

PDMS/graphene stack carefully and left it to float on deionized water (such that the graphene side 

facedown) to dissolve remaining 𝐹𝑒𝐶𝑙3 without making any disturbances (so that water will not 

Figure 5.6 Optical images of individual graphene flakes on PDMS at X50 

magnification (a & b) flakes with diagonal lengths around 45 ± 5 𝜇𝑚 (c & d) relatively 

larger graphene flakes with diagonal lengths over 75 𝜇𝑚. All of those flakes were clean, and 

the black dots were air bubbles trapped between glass and PDMS that do not affect the 

graphene transfer. These films were air-dried and free of water. The existing wet and dry 

transfer methods introduce polymer residue and impurities such as ions and water, affecting 

graphene quality negatively. More importantly, when using the PMMA wet transfer method, 

some water molecules were trapped between graphene and 𝑆𝑖𝑂2/𝑆𝑖 chip. That considered 

one of the significant drawbacks of wet transfer methods. However, in this method, the 

possibility of having such impurities and residue is very minimum. All flakes have a square 

shape, and green dashed lines mark the edges of graphene flakes. 

(a) (b) 

(d) (c) 

© Sajith Withanage 

© Sajith Withanage 

© Sajith Withanage 

© Sajith Withanage 
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leak between two layers). Then it was put on a glass slide (by forming a glass/PDMS/graphene 

stack) to air-dry and removed the excess PDMS using a scalpel blade.  

However, before placing it on the dry transfer system (Figure 5.5b), the stack was examined 

using the OM to identify the areas where flakes are located and to assess the quality of each 

graphene flake, as shown in Figure 5.6. We tried the ×5 and ×10 magnifications first, but it was 

impossible to identify flakes due to the low contrast between graphene and PDMS. To solve this, 

we suggest using different colors as the lighting source or different angles. The only magnification 

that gave us a visible flake was ×50 and above due to the suitable contrast between the two layers. 

Here, Figure 5.6a & b shows flakes with diagonal lengths of 45 ± 5 𝜇𝑚, and Figure 5.6c & d show 

relatively larger graphene flakes with diagonal measurements over 75 𝜇𝑚. Notably, all of those 

flakes and PDMS surfaces were free of any residue or contaminants. The black dots were air 

bubbles trapped between glass and PDMS, so it will not affect the graphene transfer. These films 

were air-dried in ambient laboratory air for longer hours and free of water. The existing wet and 

dry transfer methods introduce polymer residue such as PMMA, PPC, PVA, etc., and impurities 

such as ions and water molecules, affecting graphene quality negatively [310] due to the 

sensitiveness of graphene for the scattering caused by charged impurities. [311] Particularly, when 

using the PMMA wet transfer method, some water molecules were trapped between graphene and 

𝑆𝑖𝑂2/𝑆𝑖 chip. The effects of trapped 𝐻2𝑂 between graphene and 𝑆𝑖𝑂2/𝑆𝑖 interface has been 

reported elsewhere. [312, 313] Hence, this considers as one of the significant drawbacks of wet 

transfer methods. However, in the hybrid transfer method, the possibility of having such impurities 

and residue is very minimum. Typically, this stack is transparent, and it is challenging to locate 

graphene flakes under the optical microscope of the dry transfer system due to the low contrast 

between PDMS and graphene. 
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Figure 5.7 A schematic illustration of the hybrid transfer of graphene (2-D materials) 

onto a specific location on a flat and smooth substrate (here, a 𝑆𝑖/𝑆𝑖𝑂2 chip with a golden 

contact pattern). It is crucial to pick a graphene flake that fits between the + signs of the gold 

contact pattern to prevent short-circuiting the device. First, the Cu/Graphene sample was 

cleaned with a quick blow of 𝑁2 gas to remove any dust particles on the surface. Then a dust-

free PDMS piece and the Graphene/Cu foil were firmly pressed such that no air bubbles 

(blisters) were left between the surfaces. It was let to float on a 𝐹𝑒𝐶𝑙3  solution to etch away the 

metallic copper. The PDMS/graphene stack was left to float on deionized water to dissolve the 

remaining 𝐹𝑒𝐶𝑙3 without making any disturbances so that water will not leak between two 

layers. Then it was placed on a glass slide (by forming a glass/PDMS/graphene stack) to dry 

and removed the excess PDMS. After that, it was placed on a micromanipulator such that the 

graphene side faces down. A cylindrical Cu block was used as the stage to hold the Si chip with 

a gold contact pattern, and the graphene flake was transferred onto it by using the 

micromanipulator. A heating element was used to heat (45 ± 50𝐶) the Si chip to favor an easy 

transfer. This novel hybrid transfer method combines wet and dry transfer techniques. It was 

developed by taking advantage of weak van der Waals forces and relatively strong adhesion 

forces between graphene/PDMS interface. 
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Thus, once we picked a suitable flake, the surrounding area of the flake was carefully 

studied to identify some unique features on the surface so that we can use them to locate the 

graphene flake during the transfer step. Meanwhile, the cylindrical Cu stage of the dry transfer 

system was heated to 45 ± 50C using a heating element (see Figure 5.7).  

 

 

(a) (b) (D) 

(S) 

(c) 

Figure 5.8 Optical microscopy images of the graphene flakes during different stages of the 

hybrid transfer process. (a) This is the same graphene flake shown in Figure 5.7. Here, the flake is 

on a PDMS piece/glass slide, and the pinkish purple color of the background came from the 𝑆𝑖𝑂2/𝑆𝑖 
chip underneath. The surface has a minimal amount of residues which is negligible. Despite the 

low contrast between transparent graphene and PDMS, the flake is still visible that is enclosed by 

a dashed line (green). (b) The chip with a gold contact pattern, graphene flake, PDMS, and glass 

slide are touched together during the transfer of graphene flake from PDMS to Si chip. The bluish 

color without any bubbles confirms a good contact between the chip and the flake. (c) The 

graphene/gold/𝑆𝑖𝑂2/𝑆𝑖 chip after the successful transfer of graphene without any residue taken 

after the PDMS liftoff. 
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Also, a clean 𝑆𝑖𝑂2/𝑆𝑖 chip with a gold contact pattern (see the right side of Figure 5.7) was 

placed in the oxygen-plasma chamber and treated for ~120 s at 140 mTorr. Then the chip was 

fixed on the Cu block using a vacuum and left to heat up till ~45 ± 50C. After that, the 

graphene/PDMS/glass sandwich was placed on a micromanipulator such that the graphene side 

faces down (gold contact pattern faces up and graphene flake faces down). The key steps of the 

micromanipulator-assisted transfer method are as follows. Firstly, the flipped flake was located by 

looking at the live video feed of the stack and using the mentioned surface features (see Figure 

5.8a). Secondly, the gold contact pattern was brought to the middle of the screen, and the stack 

was brought closer to the chip using the vertical micromanipulator (z-axis). Thirdly, the flake was 

positioned such that the gold pattern coincides with the middle of the flake using the horizontal 

micromanipulators (x- & y-axis). Thirdly, by using the z-axis manipulator knob, the graphene flake 

was moved downward until it firmly touches the gold/𝑆𝑖𝑂2/𝑆𝑖 surface (see Figure 5.8b) and left 

there for ~10 min to heat the PDMS/graphene interface to the same temperature as the Si-chip. 

Fourth, the PDMS/glass slide was lifted off such that the graphene flake is left on the gold contact 

pattern, as shown in the bottom right corner of Figure 5.7 and Figure 5.8c. Finally, the chip was 

carefully picked and stored in a dust-free environment. This transfer method combines wet and 

dry transfer techniques. It was developed by taking advantage of the weak van der Waals forces 

and relatively strong adhesion forces between graphene/PDMS interface. The initial studies of this 

work were presented and published in 2020. [3]  

5.3 Results and Discussion 

It has been shown that the effect of multi-step oxygen annealing of clean industrial-grade 

copper foil enclosures followed by a full-vacuum on nucleation density suppression. Additionally, 

we introduced 𝑁2 as the main inert gas (additional to Ar) for the LPCVD growth of single-layer 



88 

graphene flakes. Here, 𝐻2 act as a reduction gas and 𝐶𝐻4 as the carbonaceous gas. According to 

Losurdo et al. (2011), the presence of high 𝐻2 percentage increases the defects density and hence 

reducing the graphene quality. Because 𝐻2 participates in creating defects such as point defects 

contains hybridized 𝑠𝑝3 C-H bonds. [305] To solve this issue, a lower flow rate of 𝐻2/𝐴𝑟 could 

be used but it causes to decrease the total pressure (TP) of the system. We have noticed that the 

very low total pressures reduce the growth rate of graphene flakes and increase the nucleation 

density. A similar result supporting our observation has already been reported elsewhere [314], 

and it was crucial to find a way to keep the TP value over 350 mTorr.  

Nitrogen is the most abundant gas in the Earth’s atmosphere (78%), and due to its chemical 

structure, it has similar properties to a noble gas. However, the widely used inert gas in the CVD 

growth of graphene is Ar (0.9%) but 𝑁2 is 88 times more abundant compared to Ar. So, producing 

a pound of Ar requires 88 times more energy than the energy needs to make the same amount 

of 𝑁2. Also, the production and distribution of Ar increased the carbon footprint, and Ar is more 

expensive than nitrogen. But, liquid 𝑁2 is readily available in almost every laboratory and has 

various uses in many areas, such as cryogenic experiments. Moreno-Bárcenas et al. (2018) has 

reported the use of 𝑁2 as an inert gas with a combination of 𝐶2𝐻2 (carbonaceous gas) and 𝑁2 

(reduction gas) to grow graphene on Cu foils using the CVD method. [315] Xue et al. (2019) has 

grown graphene on liquid copper (10830 − 14000𝐶) using the APCVD technique with a gas 

mixture of 𝐶𝐻4, 𝐻2 and either Ar or 𝑁2 as the carrier gas. [316] Moreover, no nitrogen doping has 

been reported in either publication since those studies have not involved in steps that ionize 𝑁2 or 

free of highly reactive radicals. However, Komissarov et al. (2017) has observed N-doping during 

the APCVD process and produced twisted graphene on copper. They have used n-decane 

(𝐶𝐻3(𝐶𝐻2)8𝐶𝐻3), 𝐻2 and 𝑁2 as a carbonaceous gas, a reduction gas, and a carrier gas, 
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respectively. n-Decane is an n-alkane, and it forms highly reactive chains of radicals during the 

high-temperature thermal decomposition. That stimulates various reactions that promote nitrogen-

doping. [317] In this current study, we have used 𝐶𝐻4, 𝐻2/𝐴𝑟, 𝑂2 (for oxidation of Cu) and 𝑁2 

(inert/carrier gas) to grow graphene flakes with the LPCVD method at 10600𝐶 (below the melting 

point of Cu).  

The graphene growth was initiated, as discussed in section 5.2.2. Once the copper enclosure 

was inserted into the quartz chamber, the system was vacuumed such that the base pressure reaches 

~30 mTorr. Then a flow of 𝑁2 and 𝐻2/𝐴𝑟 was introduced into the chamber so that the total pressure 

increased to ~400 mTorr. The LPCVD growth mechanism until the end of the growth cycle-I is 

represented in Figure 5.9, and the process until the growth cycle-II is illustrated in Figure 5.10. 

Figure 5.9a represents the side view of the copper enclosure made of ~25 µm thick pre-oxidized 

Cu foil. At this stage, the gaseous system consists of nitrogen, argon, and hydrogen. The light 

brown blocks represent the Cu foils containing a small percentage of carbon atoms on the surface 

and inside the foil and are indicated by gray-colored dots. 

To increase the surface oxygen percentage, we have pre-annealed/oxidized the copper foil 

in open-air on a hot plate, and it has formed a thick oxide layer on each side of the foil, which is 

represented by dark brown color. The thick black arrows on the top and bottom, pointing to the 

right-hand direction, indicate the gas flow direction (towards the vacuum pump). The tightly folded 

edges are welded together during the heating phase due to the high temperature (10600C) that is 

closer to the meting point of Cu. It seals the interior of the pocket from the outside and later forms 

a static equilibrium inside the pocket. Those welded pocket edges are represented by thick black 

lines on the left and right of Figure 5.9a. The mechanism for top and bottom copper foils are pretty 

similar, and only the top section was used starting from Figure 5.9b.  
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Figure 5.9 A schematic representation of the graphene growth mechanism inside and outside 

the Cu enclosure during the growth cycle-I. (a) Side view of the copper enclosure that is made of 

~25 µm thick pre-oxidized Cu foil. The main gas flow includes 𝑁2 and 𝐻2/𝐴𝑟. The tightly folded 

edges are welded together during the heating phase due to the high temperature (10600𝐶) closer to 

the meting point of Cu. It seals the interior of the pocket from the outside and forms a static 

equilibrium inside the pocket. (b) The evaporation and diffusion mechanisms of carbon atoms in bulk 

and on the surface of copper foil before the oxidation step-I. The inner oxide layer is decomposed 

and formed a thin 𝐶𝑢2𝑂 layer. (c) The oxidation step-I of copper and oxygen diffusion into the copper 

foil. (d) The oxygen evaporation on the outer layer and the oxide formation of a relatively oxygen-

rich pocket interior. (e) Growth cycle-I. The mass transport, gas diffusion, surface adsorption, 

dehydrogenation/decomposition, surface migration & nucleation, growth of graphene islands, bulk 

diffusion of carbon into the Cu foil, and oxygen diffusion from the interior to the exterior. (f) 

Monolayer flakes are formed inside the pocket and prevent the formation of bi-layers by acting as a 

diffusion barrier for carbon. The mechanism of bi-layer graphene formation on the exterior of the 

enclosure results from free radical deposition on the existing graphene flakes from the exterior gas 

environment. 
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The pocket's exterior is exposed to a highly reducing gas environment, and hence the 

surface evaporation rates increases. So, at high temperatures, the outer oxide layer (mainly 𝐶𝑢𝑂) 

decomposes to 𝐶𝑢2𝑂 and then to oxygen atoms (green dots). Then evaporates from the metal 

surface, as shown in Figure 5.9b. Also, some of them combine with hydrogen atoms before being 

moved out from the reactor. The self-cleaning mechanism [306] triggered by the presence of 

oxygen atoms removes the carbon atoms on the outer layer of the Cu foil, and the high evaporation 

conditions evaporate Cu atoms on the exterior. It exposes some of the carbon atoms trapped inside 

the copper foil and encourages more carbon atoms to evaporate with the help of oxygen atoms. 

That creates a cleaner outer surface with a minimal carbon percentage. Simultaneously, the inner 

surface oxides of the enclosure start to decompose, and also the carbon and Cu atoms. However, 

the inside environment is sealed from the outside, and it causes Cu atoms to form a static 

equilibrium. Also, the carbon evaporation and oxygen decomposition rates decrease, creating 

oxygen and carbon-rich inner surface relative to the exterior surface. These excess oxygen atoms 

form a slowly decomposing thin 𝐶𝑢2𝑂 layer (see section 5.2.1). Also, some of the oxygen atoms 

together with carbon atoms start to diffuse from the interior to the exterior through the copper grain 

boundaries and surface defects such as cold-rolling striations and valleys or pits. Then the carbon 

atoms evaporate from the exterior surface (oxygen-assisted self-cleaning), and the carbon 

percentage of the foil enclosure reduces to a fraction. Additionally, this high temperature, which 

is closer to the melting point, rearranges the Cu surface and creates a smoother texture. 

Furthermore, the defects and carbon-free copper surface reduce the chance that these sites act as 

early nucleation sites.  

Then the in situ oxidation phase-I is initiated by introducing a flow of 𝑂2 as shown in 

Figure 5.9c. That forms a thick layer of 𝐶𝑢𝑂 on the copper surface and creates an oxygen-rich 



92 

exterior. Then oxygen atoms diffuse from the exterior to the interior through surface defects and 

grain boundaries. Those oxygen atoms increase the metal oxide thickness by forming more oxides. 

At the end of the oxidation phase-I, the external oxygen supply is turned off. Some oxygen atoms 

evaporate into the gaseous environment inside the pocket during the decomposition of metal oxides 

(see Figure 5.9d). However, the inner surface oxides which formed during the oxidation phase-I 

partially decomposed into a thin 𝐶𝑢2𝑂 layer and oxygen atoms. This saturates the inner surface 

with oxygen and starts to decompose at a slow rate. On the other hand, the exterior environment 

stimulates high oxide decomposition (into a thin layer of 𝐶𝑢2𝑂 and oxygen atoms) and copper 

evaporation rates. This increased Cu evaporation rate prevents 𝐶𝑢2𝑂 from covering the entire outer 

surface. So it exposes some regions of the Cu foil exterior to carbon precursor, which is 𝐶𝐻4 as 

shown in Figure 5.9e. The mechanism and equations related to the growth kinetics of graphene on 

transition metal substrate have already been discussed in section 3.3.2.3. The initial graphene 

growth starts on the carbon-rich outer surface. And then, some of the carbon atoms diffuse into the 

Cu foil via grain boundaries and defects, as shown in Figure 5.9e. The inner surface contains a 

high concentration of oxygen atoms compared to the outer shell, which forms a large area of oxide 

(𝐶𝑢2𝑂) layer. That highly limits the exposure of possible nucleation sites to carbon atoms and 

actively cleans the formed nucleation with the help of oxygen atoms. However the 𝐶𝑢2𝑂 layer 

slowly decomposes to oxygen atoms, and some of it diffuses to the exterior surface. That forms 

some patches on the interior oxide layer and triggers limited graphene nucleation. The graphene 

flake covers the area which free of 𝐶𝑢2𝑂 and it further grows when the oxide layer decays further. 

More importantly, these graphene monolayers act as a diffusion barrier to carbon atoms, and it 

prevents the growth of graphene bi-layers on the interior. [318]  
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But the exterior environment is rich with free radicals such as carbon and 𝐶𝑥𝐻𝑦. It 

encourages graphene bi-layer growth on top of the previously grown graphene layers, as shown in 

Figure 5.9f. At the end of the growth cycle-I, the system vacuumed thoroughly (~30 mTorr) by 

shutting down all gas supplies. The purpose of this step was to remove unwanted leftovers that 

were produced during the growth cycle. The mechanism that undergoes during the vacuum step 

and the second oxidation phase is illustrated in Figure 5.10. As a consequence of the high 

temperature and zero external oxygen flow, the residual 𝐶𝑢2𝑂 layer starts to decompose, as shown 

in Figure 5.10a. It exposes the Cu surface and begins to evaporate Cu atoms and carbon atoms due 

to the favorable conditions inside the reactor. These remaining atoms and particles, such as residual 

carbon atoms, active radicals that are lightly attached to the Cu surface, oxygen, and Cu atoms, are 

Figure 5.10 A schematic representation of the full vacuum phase and oxidation phase-II 

before the growth cycle-II. (a) The full vacuum step. After shutting down the gas supplies, the system 

pressure starts to drop rapidly, and the rate of surface evaporation on the exterior is increased. It 

causes to decrease in the carbon atom percentage on the outer surface of the Cu foil. The interior is 

in static equilibrium, which encourages the diffusion of carbon and oxygen towards the exterior. It 

removes the additional nucleation sites and carbon on the inside surface and helps to suppress the 

nucleation density as a result. (b) Oxidation phase-II. At the end of the vacuum step, the carbon-free 

Cu surfaces oxidized by following the same steps as previous. This step is similar to part (c) of Figure 

5.9 despite the graphene layers formed during the growth cycle-I. After this, the growth process is 

identical to the growth cycle-I (see Figure 5.9c-f). 
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removed from the reactor by the vacuum pump. Meanwhile the inner 𝐶𝑢2𝑂 layer slowly 

decomposes and releases oxygen atoms into the system. This inner layer is oxygen-rich compared 

to the exterior surface, and oxygen atoms on the interior surface diffuse towards the outer shell. 

Also, the free carbon atoms on the inner surface diffuse towards the exterior and are then cleaned 

out with the help of oxygen atoms on the outer surface, as explained in the previous section (see 

Figure 5.9b & Figure 5.10a). This mechanism helps to etch out small graphene nucleation on the 

inner surface. So it further suppresses the nucleation density on the inner surface and prepares the 

outer surface for the next growth cycle by making the surface free of carbon atoms. The oxidation 

phase-II is initiated at the end of the vacuum period, as shown in Figure 5.10b. The mechanism 

related to this step is similar to oxidation phase-I (see Figure 5.9c), and the only noticeable 

difference is that the surface contains some graphene coverage. The diffused oxygen atoms 

contribute to the inner 𝐶𝑢2𝑂 layer by increasing the oxide thickness. The mechanism after this 

step is identical to the explanations given in Figure 5.9d-f.  

The optical microscopy images of oxidized (see section 6.2.3) graphene/Cu foils were 

taken immediately after the post oxidation, which was performed to enhance the graphene flakes 

visually. All images are shown in Figure 5.11 and Figure 5.12 taken by scanning the interior 

surface under different magnification values such as ×5, ×10, and ×50. Because of the larger sizes 

of most flakes, the ×5 were used to capture complete flakes for most scans. Moreover, single 

graphene flakes with dimensions closer to 1 millimeter were visible to the naked eye. In this 

chapter, we have included images that belong to three samples. The first two samples were 

included in Figure 5.11, and the third was included in Figure 5.12. All three samples were grown 

under the same parameters, which were discussed in the previous sections. Interestingly, all 

samples show similar characteristics and have a low nucleation density (avg. ~5 nucleations/𝑐𝑚2)  
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Figure 5.11 The optical microscopy images of graphene flakes grown on Cu. This figure 

includes images that were taken from two samples. Figure 5.12a-b shows another sample grown 

under the same conditions. All samples showed similar characteristics. The first sample was 

scanned under different magnifications to study the surface conditions of graphene and Cu. (a-

c) OM images of sample 1, taken under different magnifications (a) ×5 (b) ×10 (c) ×50 (d-f) 

OM images of sample 2, taken under ×5 magnification at different locations on the interior 

surface. All sample surfaces were clean of residue and smooth, which was uncommon under 

different growth methods. More importantly, all samples have a very low nucleation density. The 

chartreuse & blue lines shows the alignment between flakes, and it will be discussed in Figure 

5.12. Such features prove the higher quality of the graphene samples. 

(a) (b) 

(c) (d) 

(e) (f) 
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-compared to the previously reported minimum value, ten nucleations/𝑐𝑚2 which was obtained 

using copper enclosures. [318] Three images (Figure 5.11a-c) were added to discuss the surface 

quality and nucleation sites captured under magnifications of ×5, ×10, and ×50. All three surfaces 

are free of micro/nanoscale graphene islands and carbon or metal residue, as shown in Figure 

Figure 5.12 (a & b) Optical microscopy images of graphene flakes and the surrounding 

area of sample 3. The images were taken under ×5 magnification and had a cleaner surface with 

a highly suppressed nucleation density. (c & d) Surface scans of two adjacent locations on sample 

1 (see Figure 5.11a-c). These were also taken under ×5 magnification as Figure 5.11a. Both (c) 

and (d) show smooth surfaces and low nucleation densities, as shown in Figure 5.11a-c. 

Additionally, the flakes grown under this method are square-shaped and followed a vertical and 

horizontal alignment. It also follows this alignment when combining flakes and then creates a big 

square-shaped graphene flake. The chartreuse & blue lines show such alignments, representing 

the high crystallinity of the foil, which consists of Cu (100). 

(a) (b) 

(c) (d) 
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5.11a-c. Here, achieving such clean surfaces with such a low ND was possible due to the self-

cleaning mechanism explained in the paragraphs belongs to Figure 5.9 and Figure 5.10.  

Another attractive characteristic of these graphene samples is the square shape of the 

flakes. We have observed this unique shape in all graphene samples grown with these growth 

parameters. Jacobberger and Arnold (2013) have reported that the square-shaped graphene 

morphology is influenced by the crystallographic orientation of Cu (100). [319] So, the graphene 

flake orientation, dendrite growth directions, and flake morphology are heavily based on the Cu 

lattice underneath. Hence, the observed square shapes, which resulted by Cu (100), emphasize the 

symmetry of the Cu lattice underneath the graphene flakes. The flakes of all sizes have this unique 

shape, and when combining, they create larger squares by giving evidence for their fractal nature. 

Moreover, all flakes show a vertical and horizontal alignment between multiple graphene flakes, 

as shown by blue & chartreuse-colored lines, respectively in Figure 5.11 and Figure 5.12. It 

confirms that the dendrites follow a growth direction <100>, concerning the Cu lattice on the 

bottom. Since we observed these characteristics everywhere on each sample, as shown in Figure 

5.11 and Figure 5.12, we can conclude that these Cu samples (graphene/Cu) are highly symmetric 

and have a uniform crystalline structure. Hence, graphene flakes grown by this method have a 

single crystal nature which is grown by following the underlying Cu lattice. Additionally, the 

flakes have smoother and planar edges, as shown in Figure 5.11 and Figure 5.12, which is resulted 

from the high 𝐻2: 𝐶𝐻4 ratio. [319] The initial studies of this work were presented and published in 

2019. [2] 
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5.4 Conclusion 

In this work, we have studied two areas. Firstly, we focused on the effect of multi-step copper 

surface oxidation followed by a complete vacuum stage (during the LPCVD growth of single 

graphene crystals on surface-modified copper enclosures) on suppressing the nucleation density 

(ND). The impact of such surface modification was explored in our previous works. Secondly, we 

have developed a hybrid transfer technique to transfer grown graphene flakes without wrinkles 

and residue or impurities. The graphene growth consisted of two growth cycles, and the focus was 

given to the self-cleaning mechanism during the pre- and post- oxidation and the complete vacuum 

phase. We found that the tightly folded edges weld together after the temperature ramp, creating 

an isolated environment inside the pocket. It formed a static equilibrium inside the enclosure, and 

that was helpful to suppress the ND and obtain monolayers. The pre- and in situ oxidization were 

helpful to achieve carbon-free (fractional carbon percentage) copper foil surfaces that further 

reduces the nucleation density due to the “self-cleaning” nature of oxygen. The complete vacuum 

phase also contributed to the surface cleaning mechanism triggered by the surface atom 

evaporation under high temperatures and high vacuum. The clean copper surfaces reduce the 

number of impurities which can act as nucleation sites. So, cleaner catalyst surfaces lower the ND 

further. These multi-step oxygen annealing and vacuum phases have restructured the Cu lattice to 

create Cu (100) and enhanced the symmetry. Additionally, the surfaces have become smoother 

than the previous studies and hence contributed to the ND limitation. The 𝐶𝑢𝑂 initially dissociate 

into a 𝐶𝑢2𝑂 layer. We have observed four critical roles associated with cuprous oxide, which later 

contribute to the ND suppression: acting as a slow oxygen releasing agent, helping to clean and 

restructure the Cu foil, form a static equilibrium inside the pocket, and act as a carbon diffusion 

barrier at the inner copper surface. The graphene flakes that grew on the interior surface act as a 
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carbon diffusion barrier, preventing any double-layer formation. On the other hand, the exterior 

environment contains free radicals, and those can be deposited on existing graphene layers, 

forming a bi-layer. The graphene flakes were square-shaped and aligned in directions 

perpendicular to each other, reflecting the copper lattice/Cu (100) symmetry underneath the 

graphene layers. Such characteristics were observed in every sample. So, that confirms the 

usefulness of this method to obtain a single-crystal copper orientation Cu (100). Based on that and 

the symmetric properties, the graphene flakes can be recognized as highly symmetric and single-

crystal. The ND was heavily suppressed (avg. ~5 nucleations/𝑐𝑚2) by this process and also free 

of small graphene islands. The graphene flakes and the Cu/copper-oxide layers show a smoother 

texture, reflecting the higher quality of graphene samples. The graphene flakes have smoother and 

planar edges, and that was resulted by the high 𝐻2/𝐶𝐻4 ratio. When considering the transfer 

method, it has proven to be highly effective in high-quality graphene transfer applications without 

surface residues, impurities, and wrinkles. That helps to enhance and preserve the electrical 

characteristics of single-crystal graphene. More importantly, this method makes the graphene 

transfer much convenient and faster than previous methods. Unlike dry transfer methods involving 

exfoliated graphene, wet transfer methods are highly random and arduous to perform when 

transferring graphene flakes onto a specific location such as a gold contact pattern. That led to a 

waste of resources and time. Even the transferred flakes have low quality so that the devices have 

weak performance. However, in this method, we have avoided those disadvantages by combining 

wet and dry transfer methods. We believe that the introduced graphene growth method may be 

potentially helpful to synthesize better quality single crystalline and monolayer graphene. 
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6 High crystalline cm-scale CVD graphene flakes grown on copper using a Ni-foam 

enclosure (Ni/Cu/Ni sandwich) 

6.1 Introduction 

As discussed in previous chapters, having a minimal nucleation density (ND) is the key to 

synthesize better-quality single-crystalline graphene layers on large areas. In previous methods, 

we were able to suppress the ND values lower than ten. However, a further reduction of NDs 

would be beneficial to improve the graphene quality. Also, a shorter and simpler growth technique 

would be more helpful in some situations instead of a long-duration growth process. Moreover, 

we developed a keen interest in high-performance battery and supercapacitor research due to the 

high demand for better power storage. One of the primary materials used in battery and 

supercapacitor making is 3-D graphene nickel foams. This fantastic material can be used as a high-

efficiency 3-D electrode due to its unique properties such as rapid electron and ion transport, large 

electroactive surface area, and excellent structural stability. [320-322] These 3-D graphene layers 

on nickel foam were grown by the CVD method and wanted to start battery/capacitor research by 

growing 3-D graphene as a start. However, we wanted to combine 3-D graphene growth with our 

main requirement of growing single-crystalline graphene on Cu to minimize the cost and save 

time. Hence, we decided to use the gettering carbon diffusion effect of Ni (nickel foam) to capture 

carbon from copper foils.  

Irfan et al. (2017) [323] have used multiple support substrates on the bottom, such as 

quartz/Ni plate/Ni-foam, to grow graphene using the CVD technique in an Ar environment. 

However, the only purpose of the Ni-foam-support in their work was to act as a getter substrate 

that cutting off the bottom carbon supply. However, it does not prevent bi-layer formation due to 

the potential of direct deposit of active radicals on existing graphene layers and has a 
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considerable/high nucleation density. Gao et al. (2019) [324] have followed a similar approach to 

grow graphene as Irfan et al. (2017). In Gao’s method, they have used a vertical-type CVD furnace 

and put a piece of nickel foam above the Cu foil. Both methods are different from the method we 

introduce in this study except for the gettering carbon diffusion concept. Here, we introduce a new 

3-D and 2-D graphene synthesizing method, which reduces the ND to less than one nucleation/𝑐𝑚2 

(which is around 0.57).  

 

6.2 Experimental Methods 

6.2.1 Cu foil and Ni-foam surface modification and nickel enclosure preparation 

(Nickel/Cu/Nickel sandwich) 

We have used ~25 µm-thick industrial-grade Cu foils from the same sample as discussed 

in sections 4.2.1 and 5.2.1. The foils were cut into rectangular-shaped strips with dimensions of 7 

cm×1.5 cm. The strip surfaces were cleaned and then oxidized by following the exact steps as 

mentioned in section 4.2.1. The reasons behind this oxidization step are similar to the explanation 

given in section 4.2.1. A piece of battery-grade nickel foam was (dimensions: 9 cm×7 cm) oxidized 

(pre-oxidation) on the hotplate in the open air for 40 minutes at 350 ± 5 𝐶0. This oxidation was 

performed due to two reasons: (1) to create an uniform oxide layer (NiO/𝑁𝑖2𝑂3) on growth 

substrate as much as possible (because some regions of the nickel foam already contain natural 

nickel oxides, and it was necessary to cover the foam with oxides completely) (2) to help with the 

self-cleaning process of nickel foam/Cu enclosure. It will be discussed in section 6.3. After the 

pre-oxidation step, the nickel foam was bent at the middle along the long side (similar to Figure 

6.1b) and inserted the Cu strip in between (resembling a Ni/Cu/Ni sandwich). Then the nickel foam 

enclosure was completed by crimping the free edges and folding them tightly (see Figure 6.1a).  



102 

 

(a) 

(b) 

(c) 

Figure 6.1 The images of  Ni-foam and graphene/Cu samples at 

different stages of the growth process. (a) The oxidized Ni foam enclosure 

(Ni/Cu/Ni sandwich) just before the growth. (b) The 3D graphene/Ni-foam 

and the graphene/Cu strip after the growth. (c) The flatten graphene/Ni-foam. 

This by-product is reusable for another graphene growth cycle. More 

importantly, this 3D graphene on Ni-foam can be used as a 3-D high-

performance electrode. 



103 

6.2.2 2-D & 3-D graphene growth on Cu foil strip and Ni-foam enclosure 

 

 

 

The nickel foam enclosure was loaded into the LPCVD tube furnace (see Figure 6.3), and 

the primary function of this reactor was discussed in section 5.2.2. In this work, the base pressure 

value was ~33 mTorr. The sample was carefully placed in the middle section of the heating element 

(similar to section 5.2.2). It helps to control the near-surface gas flow dynamics so that the 

deposition becomes more homogenous and controllable. Then the chamber was vacuumed and 

Figure 6.2 A graphical representation of the temperature (left-axis), pressure (right-

axis), and the overall growth profile of the LPCVD process. The temperature (black curve) was 

ramped up to 8500𝐶 from 300𝐶 and then gradually brought to 10000𝐶, as shown on the left 

axis. The red curve and the right axis represent how the pressure values changed during the 

entire growth process. The enclosure was oxidized (pre-oxidization) during the LPCVD process 

by providing a controlled flow of 𝑂2 before the growth cycle for 15 min. At the end of the growth, 

the temperature set value was immediately adjusted to 300𝐶 and let the system cool down slowly 

while keeping the gas flow rates unchanged. 
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brought to a BP value of ~33 mTorr. After that, the system was pressurized to ~400 mTorr by 

feeding 𝑁2 as shown in Figure 6.2. Once the total pressure (TP) stabilized, the core temperature 

was ramped up to 8500𝐶 and then gradually increased to the growth temperature of 10000𝐶. After 

reaching the 10000𝐶, the enclosure was oxidized by feeding a 𝑂2 flow for 15 minutes. It increased 

the system pressure by ~8 mTorr (TP = 408 mTorr), and the temperature was constant during the 

time. At the end of this process, a 𝐻2/𝐴𝑟 flow was introduced while turning off the 𝑂2 flow. After 

2 mins, the graphene growth was initiated by feeding a 𝐶𝐻4 flow for 30 min (TP value increased 

to ~500 mTorr as shown in Figure 6.2). At the end of the growth, the temperature set value was 

immediately adjusted to the initial temperature (300C) and then let the system cool down slowly.  

 

 

 

 

 

Figure 6.3 A schematic illustration of the LPCVD system. Four gas inlets 

feed 𝑂2, 𝑁2, 𝐻2(10%)/𝐴𝑟(90%), 𝐶𝐻4 into the CVD tube furnace chamber at 

different stages of the LPCVD process. The inner diameter of the quartz tube was 

around 3cm. The Ni-foam enclosure was placed in the middle of the heating element 

(isothermal zone) to ensure a uniform temperature along the enclosure. Moreover, 

the enclosure was positioned carefully inside the quartz tube by considering the 

enclosure geometry and gas-phase dynamics to achieve a uniform reactant 

concentration and temperature. The maximum growth temperature of the reactor 

was 10000𝐶 and achieved a base pressure value of ~33 mTorr. 
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6.2.3 Characterization 

After removing the nickel foam enclosure from the reactor, it was placed on a clean surface, 

and the edges were unfolded (see Figure 6.1b). The 3-D graphene/nickel foam was made flat using 

dust-free Si slides (see Figure 6.1c). The graphene/copper foil was loaded inside of a pre-heated 

oven to oxidize the surface at  ~1100𝐶 for 5 min-per-side. It was performed to enhance the optical 

visualization of individual graphene flakes (see Figure 6.4). After that, graphene regions were 

visible to the naked eye due to the color contrast between copper oxide and graphene flakes. Then 

the flat Cu strip was placed on a glass slide, and the images were taken using an iPhone 8+ camera 

under ambient light conditions. Because the field of view of the OLYMPUS BH2-MJL optical 

microscope was not enough to capture large graphene layers.  

6.3 Results and Discussion 

This study was based on two processes: (1) Oxygen-assisted self-cleaning of Cu foil 

(discussed in chapter 5) and nickel foam (as shown in equations (6.1) to (6.7)). So, the aim was to 

grow large graphene flakes by limiting the carbon percentage in Cu foil and removing them using 

the self-cleaning effect and gettering carbon diffusion (hence, suppressing the nucleation density 

and preventing random nucleation on the Cu surface). Our previous study proved that a very low 

nucleation density (avg. ~5 nucleations/𝑐𝑚2) could be achieved by implementing multi-step 

oxygen passivation of Cu enclosure followed by a complete vacuum step during the growth. Here, 

we were able to achieve cm-scale graphene flakes with ~1 nucleations/𝑐𝑚2.  

 𝑂2(𝑔) + 2(∗) →  2𝑂(𝑎𝑑𝑠) (6.1) 

 𝐶(𝑎𝑑𝑠) + 𝑂(𝑎𝑑𝑠) → 𝐶𝑂(𝑎𝑑𝑠) (6.2) 

 𝐶𝑂𝑎𝑑𝑠 + 𝑂(𝑎𝑑𝑠) → 𝐶𝑂2(𝑔) + 2(∗) (6.3) 
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 2𝐶𝑂𝑎𝑑𝑠 → 𝐶𝑂2(𝑔) + 𝐶(𝑎𝑑𝑠) (6.4) 

 𝐶𝑂(𝑔) + (∗) → 𝐶𝑂(𝑎𝑑𝑠) (6.5) 

   

 𝑁𝑖𝑂(𝑠) + 𝐶𝐻4(𝑔) → 𝑁𝑖(𝑠) + 𝐶𝑂(𝑎𝑑𝑠) + 2𝐻2(𝑔) (6.6) 

 𝑁𝑖2𝑂3(𝑠) + 3𝐶𝑂(𝑎𝑑𝑠) → 2𝑁𝑖(𝑠) + 3𝐶𝑂2(𝑔) (6.7) 

 

The growth mechanism and the concept behind this growth process are as follows. The 

pre-oxidization in open-air creates 𝐶𝑢𝑂/𝐶𝑢2𝑂 on Cu strip and 𝑁𝑖2𝑂3/𝑁𝑖𝑂 on nickel foam as 

shown in equation (6.1). Here (*) stands for a free site on the metal surface, (g) for a gas, (ads) for 

an adsorbed atom, or a molecule (s) for a solid. [325] Then a Ni-foam/Cu/Ni-foam enclosure was 

created by putting the Cu strip inside and then tightly crimping and folding the free edges. The Ni-

foam has characteristics closer to a Ni mesh. So the tightly crimped and folded edges formed an 

isolated environment in the interior of the enclosure. Then, during the temperature ramp-up, these 

oxides were dissociated into Ni(s), Cu(s) and 𝑂(𝑎𝑑𝑠). Meanwhile, the adsorbed carbon atoms 𝐶(𝑎𝑑𝑠) 

in Cu strip start to combine with adsorbed oxygen 𝑂(𝑎𝑑𝑠). That creates adsorbed carbon monoxide 

𝐶𝑂(𝑎𝑑𝑠) on Cu (see equation (6.2)) and some of the adsorbed carbon monoxide releases as 𝐶𝑂(𝑔). 

Also, 𝐶𝑂(𝑎𝑑𝑠) combine with 𝑂(𝑎𝑑𝑠) to form 𝐶𝑂2(𝑔) (see equation (6.3)) and moved away from the 

Cu foil as shown in Figure 6.5a. That makes the Cu strip free of carbon, as shown in Figure 6.5b, 

and suppresses the nucleation density by a significant factor, as discussed in chapter 5. Here, the 

nickel oxides and foam act as a catalyst to oxidize 𝐶𝑂 and as a gettering substrate for carbon atoms. 

When 𝐶𝑂(𝑔) that released from the Cu surface reaches the Ni-foam, the 𝐶𝑂(𝑔) start to adsorb and 

becomes adsorbed carbon monoxide 𝐶𝑂(𝑎𝑑𝑠) at the nickel foam surface (see equation (6.5)).  
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Figure 6.4 The Cu/graphene foil after post-oxidation (optical visual 

enhancement). (a) The foil contains a cm-scale graphene flake on the right. Red 

arrows mark the sides which touched the nickel pocket edges. Side D is the main 

point of interest. The small graphene regions given by B-F can be avoided by 

preventing those sides from touching the enclosure edges. The blue arrow 

represents the possible growth directions of the hexagonal graphene flake. (b) 

The inset of (a) with a measuring scale. The diameter of the flake is larger than 

1.3 cm. 

(a) 

(b) 
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Then the in situ oxidation process starts at 10000𝐶 and the nickel foam start to oxidize by 

following equation (6.1). That creates more 𝑂(𝑎𝑑𝑠) and start to combine with adsorbed carbon 

monoxide 𝐶𝑂(𝑎𝑑𝑠) (see equation (6.3)) to release more carbon-containing molecules as 𝐶𝑂2(𝑔). 

Moreover, 𝑁𝑖2𝑂3(𝑠) also react with 𝐶𝑂(𝑎𝑑𝑠) and releases 𝐶𝑂2(𝑔) as shown in equation (6.7). So, 

at the end of the in situ oxidation, the enclosure carbon percentage becomes low. When the oxygen 

supply was turned off, the nickel oxides start to dissociate slowly and release adsorbed oxygen by 

following the same principle as described in the above paragraph.  

When the methane gas 𝐶𝐻4(𝑔) was introduced to the system, the 𝑁𝑖𝑂(𝑠) start to react with 

𝐶𝐻4(𝑔) and produces 𝐶𝑂(𝑎𝑑𝑠), Ni and 𝐻2(𝑔). That increases the 𝐶𝑂(𝑎𝑑𝑠) percentage and lowers 

the nickel oxide percentage. Then the rest of the nickel oxides contribute to the catalysis process. 

As given in equation (6.4), the adsorbed carbon monoxide 𝐶𝑂(𝑎𝑑𝑠) start to release from the nickel 

foam as 𝐶𝑂2(𝑔) (see Figure 6.5a & b) and forms 𝐶(𝑎𝑑𝑠). These 𝐶(𝑎𝑑𝑠) can not turn into 𝐶𝑂(𝑎𝑑𝑠) 

anymore due to lack of 𝑂(𝑎𝑑𝑠). Hence, 𝐶(𝑎𝑑𝑠) start to accumulate in the nickel foam as illustrated 

in Figure 6.5b. Subsequently, the 3-D graphene growth starts, and the nickel foam becomes carbon 

saturated. Once the foam becomes carbon saturated, the sharp edge defects on either side A or B 

(short) attached to the folded nickel foam act as a nucleation site (see Figure 6.5c). Then the carbon 

saturated shorter Ni-foam edges start to contribute carbon to grow the single flake bigger. More 

importantly, graphene nucleation is impossible in the middle areas of the Cu strip due to the carbon 

gettering characteristic of the Ni-foam. Hence the graphene flake, which started at the edge, grows 

more prominently, as shown in Figure 6.4, and eventually covers a large portion of the Cu strip.  
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Figure 6.5 A schematic representation of the 3D-graphene growth mechanism on nickel 

foam and single-crystalline graphene growth on the Cu strip. (a) Phase-I: Self-cleaning process 

and the initial stage of graphene growth. Here, the green and brown colors are used to 

represent the nickel and copper oxides, respectively. The carbon atoms are given by black dots.    

(b) Phase-II: Carbon saturation process. Here the yellow color represents the carbon-free Cu 

strip. (c) Phase-III: 3-D and 2-D graphene growth process. The thick blue arrows on each side 

represent the 3-D graphene growth direction on Ni-foam. The thin blue lines represent the 

saturated carbon flow direction on nickel foam edges and the graphene flake growth direction 

on the Cu strip. 
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Also, this graphene growth is different from previous growth mechanisms. Here, graphene 

growth is only possible by the surface migration of adsorbed carbon atoms from nickel foam 

enclosure edges. Previously, the exterior of the Cu enclosure had an environment for bi-layer 

graphene (BLG) growth due to active radicals near the Cu surface. Also, in ideal situations, BLG 

growth is utterly impossible due to the self-limited growth mechanism. [326] After growing fully 

on the catalytic surface, there is no space left to decompose 𝐶𝐻4 into carbon or active 

radicals 𝐶𝑥𝐻𝑦. So the graphene growth eventually stops and it prevents bi-layer graphene growth. 

This effect is known as the self-limited growth mechanism, and we have observed a similar effect 

during the internal graphene growth process in chapter 5. However, the presence of a high number 

of nucleation sites nullifies this behavior. In the current situation, we have a nucleation density 

that is lower than 1 nucleation/𝑐𝑚2 (0.57 to be more precise). Thus, these growth conditions do 

not lead to BLG growth. 

Here we have obtained a hexagonal graphene flake with a diameter larger than 1.3 cm and 

achieved an ND value as low as ~1 nucleations/𝑐𝑚2 (0.57). Such a low nucleation density allows 

this Cu strip to cover with high crystalline single-layer graphene. In this work, the purpose of using 

nickel foam can be summarized as follows. It acts as an enclosure to create a more controlled 

environment for graphene growth and an oxygen provider during graphene growth. It also supports 

the oxygen-assisted copper surface cleaning before the graphene growth and captures carbon 

before the growth. Moreover, it serves as a controlled carbon feeder during graphene growth and 

acts as a catalyst during the CVD process.  

The flakes A, B, C, and E, which are formed on long edges of the strip (see Figure 6.4a), 

can be prevented by widening the enclosure's short edges (A and B sides in Figure 6.5c). That will 

further enhance the quality of the graphene/Cu strip. Such strips are currently in high demand in 
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areas that make high-performance batteries and supercapacitors additional to their use in high-

performance electronics. Moreover, the 3-D graphene Ni-foam (the byproduct) has a high value in 

nanomaterials markets due to high demand because it uses as a 3-D high-performance electrode 

for supercapacitors and batteries due to its unique characteristics such as rapid electron and ion 

transport, large electroactive surface area, and excellent structural stability. [320-322] 

 

6.4 Conclusion 

The main focus of this study was to grow large monolayer graphene flakes by suppressing 

the nucleation density and preventing random nucleation on the Cu surface. Hence, we performed 

a study to limit the ND by removing carbon atoms from the Cu surface using a getter substrate 

such as nickel foam. In order to remove the adsorbed carbon atoms from Cu foil and Ni-foam, the 

oxygen-assisted self-cleaning method was used. In this method, we were able to achieve an ND 

value (less than one nucleation/𝑐𝑚2), which is lower than the previous study (avg. ~5 

nucleations/𝑐𝑚2). More importantly, we were able to grow a graphene flake with a diameter of 

over 1.3 cm. No nucleations were found in the middle of the Cu strip. We suggest that the flakes 

grown on long edges can prevent by increasing the enclosure width so that the long edges will not 

touch the enclosure edges. We conclude that the graphene multilayers are impossible to grow in 

this method due to the growth conditions. The flake that starts to grow from a shorter edge can 

grow along the strip by preserving the single crystal properties. This method will be advantageous 

to grow single-crystalline graphene/Cu stripes that can be used in high-performance electronics or 

as a battery material. The other advantage is the usefulness of 3D-graphene Nickel foam, which is 

the byproduct of this method. Currently, 3D-graphene Nickel foams have a high demand due to 
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their use as a 3-D high-performance electrode for supercapacitors and batteries. Thus, we conclude 

that the method discussed in this work can produce high-quality graphene and is cost-effective. 
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