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Abstract 

We use retail scanner data on purchases of high calorie food to study the link 

between recreational marijuana laws (RMLs) and consumption of high calorie 

food. To do this we exploit differences in the timing of introduction of marijuana 

laws among states and find that they are complements. Specifically, in counties 

located in RML states, monthly sales of high calorie food increased by 3.1 percent 

for ice cream, 4.1 for cookies, and 5.3 percent for chips. Results are robust to 

including placebo effective dates for RMLs in treated states as well as when using 

synthetic control methods as an alternative methodology. 

Keywords: Border Analysis, Difference-in-Difference, Junk Food, 

Recreational Marijuana Laws, Synthetic Control Method, U.S. Counties, 
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Introduction 

 In the United States, more than one third of the population is currently considered 

obese. No state has an obesity prevalence of less than 20 percent, ranging from around 20 

percent in California and Massachusetts to around 35 percent or higher in Mississippi and 

West Virginia. It has been widely reported that the South has the highest prevalence of 

obese individuals with almost 35 percent, and the West has the lowest with around 25 

percent.1 The American Medical Association and the National Institutes of Health 

currently describe obesity as a national health epidemic.2 Given the burden that obesity 

causes to the health system—currently estimated at around $200 billion per year—both 

researchers and policymakers have grown very concerned about the origins of this 

epidemic.  

 For instance, Blouin et al. (2009), Offer, Pecher, et al. (2010), Ritzer and Malone 

(2000) and Courtemanche and Carden (2011), among others, argue that a major factor in 

promoting poorer quality foods that lead to changes in tastes and obesity is the rapid 

growth of fast food chains and big retailers. Along these same lines, Courtemanche et al. 

(2016) provide some evidence that relates obesity rates to local economic conditions in the 

United States. They find that after controlling for demographic characteristics and state 

and year fixed effects, changes in several economic variables collectively explain 43 

percent of the rise in obesity and 59 percent of the rise in Class II/III obesity. Their 

analysis points to large effects among the heaviest individuals, with half the rise in the 

90th percentile of the body mass index explained by economic factors. 

                                                             
1 www.endocrineweb.com/conditions/obesity/obesity-america-growing-concern 
2 The standard definition of obesity is given by the body mass index (BMI), and it is calculated by dividing the weight by the 
square of the height of the individual. A BMI of 30 kg/m2 or more indicates that a person is obese. 
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 With the recent push to legalize recreational marijuana, there has been growing 

interest in understanding the direct and indirect effects of cannabis consumption and, in 

particular, any undesired impacts of recent marijuana laws.3 Recent research focuses on 

traffic fatalities (Anderson et al., 2013), workplace fatalities (Anderson et al., 2018), 

alcohol consumption (Baggio et al., 2019), increased sexual intercourse (e.g., Grossman et 

al., 2004), risky sex (e.g., George and Koob, 2010), fertility (Baggio et al., 2018) and 

several others. Interestingly, however, there is extremely limited research available on the 

potential role of marijuana consumption and food consumption. This, in spite of the fact 

that the most widespread urban myth among consumers is that marijuana consumption is 

associated with the so-called ‘munchies,’ namely an irresistible urge to consume large 

amounts of snacks or junk food, such as ice cream, cookies, candies, and the like, which 

may likely contribute to a further increase in obesity rates. In fact, while there is some 

neuroscience-based hypothesis that may help support this idea (e.g., Patel and Cone, 2015) 

there is no formal causal evidence that may help support any actual behavioral change. 

The existing evidence is mostly correlational and indirect (e.g., Sabia et al., 2017).  

 In this research we study the impact of recreational marijuana laws (RMLs) in the 

United States on changes in high calorie food consumption by using micro data in the 

form of retail scanner data on monthly purchases of products in grocery, convenience, 

drug, or mass distribution stores in over two thousand U.S. counties over the period 2006–

16. We find that marijuana consumption measured by the introduction of recreational laws 

causally impacts the consumption of junk food and likely leads to a further increase in 

obesity rates in the population, which may be cause for further alarm to policymakers.  
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 In order to conduct our research, we rely on differences in the timing of the 

legalization of recreational marijuana across states. We also compare retail food purchases 

for the subsample of contiguous counties across RML and non-RML shared borders only. 

In addition, we test the robustness of our findings by applying placebo tests and, in 

particular, applying a synthetic control method, that appears to confirm our findings. Our 

paper is organized as follows. The next section describes the data and our empirical 

methodology. The third section provides robustness checks. Finally, in the last section we 

provide a brief summary and conclusions. 

Empirical Analysis 

Data 

 Our identification strategy is based on the availability of data on purchases of 

groceries observed in the Nielsen Retail Scanner database in medical marijuana law 

(MML) and non-MML states before and after RMLs became effective. The database 

contains purchases of products in all categories from convenience, drug, or mass 

distribution stores across the United States over the period between 2006–16. The key 

outcome variables are retail purchases for three categories of high calorie foods namely, 

ice cream, cookies, and chips, which come from the Nielsen Retail Scanner database in 

RML states and non-RML states before and after RMLs became effective. The data offer 

coverage for 52 designated market areas located in the 48 contiguous U.S. states, which 

allows us to accurately measure the extensive margin of junk food consumed as sales do 

                                                             
3 In fact, with Canada and Uruguay already having legalized recreational marijuana consumption and with several states in the 
U.S. having done so, it is rather important to understand not only the direct impact of cannabis use, but also any unintended 
behavioral spillover effects (Baggio et al., 2018). 
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not suffer from the underreporting issues, which is typical of self-reported data. Overall, 

we have sales data for more than two thousand U.S. counties. 

 We assign treatment based on when RML became effective. We use a 

dichotomous variable that takes a value equal to one for each month from the effective 

date of the legalization, and a value of zero otherwise. RML states are defined as treated 

states. The control states also include the states that legalized medical marijuana before 

2006, our first year of data, and those that did not have policy change by the end of 2016.4 

In addition, we also control for states that decriminalized or legalized medical marijuana 

within our sample period. Information on approved and effective dates of medical 

marijuana laws come from previous literature (for a summary, see Baggio et al., 2018), as 

well as annual state-level data on beer and cigarette tax rates to control for other policy 

changes during the study period that may be correlated with RMLs (and MMLs) 

implementation.5  

 We control for a set of time-varying covariates that may potentially influence food 

consumption and may be correlated with RMLs. Specifically, we include annual county-

level variables to capture variation in county economic conditions over time such as the 

unemployment rate and median household income. We also add a set of demographic 

characteristics for the county, including total population, percentage of male and Hispanic 

population, and the share of population by age groups. Information on economic 

characteristics comes from Local Area Unemployment Statistics and Small Area Income 

and Poverty Estimates. Information on demographic variables was gathered from the 

                                                             
4 Dates of enactment and implementation of RMLs (and MMLs) come from the Marijuana Policy Project www.mpp.org 

Treatment is assigned according to enactment dates: Alaska, February 2015; California, November 2016; Colorado, December 
2012; District of Columbia, February 2015; Oregon, July 2015; Washington, December 2012. 
5 State cigarette and beer tax information is based on several sources: American Petroleum Institute, state revenue departments, 
Distilled Spirits Council of the U.S., Commerce Clearing House, and Tax Foundation. 

http://www.mpp.org/
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Census Bureau.6 Summary statistics for economic and demographic variables are 

presented in Table 1. 

Empirical Methodology 

 We employ a difference-in-difference (DID) design by estimating a reduced-form 

specification, conditioning on county and year-month fixed effects while exploiting the 

spatial discontinuity offered by state borders. In fact, in order to improve identification, 

we restrict our analysis to a sample consisting of all the contiguous county pairs sharing a 

state border where one of the counties belongs to a treated state (RML state) and the other 

to a control state (non-RML state). This approach has been shown to provide better 

identification than a traditional DID strategy in the context of marijuana laws (Baggio et 

al., 2019). The identification relies on cross time variation in counties in the legalization of 

recreational marijuana to identify the effect of RMLs on high calorie food sales. In other 

words, we compare change in RMLs over time to the change in sales across state 

boundaries. Conditional on observable characteristics and using individual fixed effects to 

eliminate the influence of unobservable county-specific characteristics, counties located in 

different states will be similar in unobservable characteristics, but different in the 

purchases of high calorie products given the timing in the enactment of marijuana laws.  

 Indeed, bordering counties provide a better control group than other control 

county in the United States because they can be expected to be relatively similar to 

adjacent treated counties (e.g., Dube et al., 2010). Starting from a full set of set of 2,191 

counties, which yields 322 distinct county-pairs, restricting the data for counties bordering 

                                                             
6 Specifically from the Census U.S. Intercensal County Population Data and Intercensal Estimates of the Resident Population 
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RML states, we are left with 88 county pairs. Formally, we estimate the following 

specification: 

(1) 𝑦𝑐𝑝𝑡 = 𝛼 + 𝛽𝑅𝑀𝐿𝑠𝑡 + 𝐗𝑐𝑡𝛄 + 𝜃𝑐+𝛿𝑡 + 𝜎𝑝𝑡 +  𝜂𝑐𝑝𝑡, 

where 𝑦𝑐𝑝𝑡 denotes the log of high calorie food sales for either ice cream, cookies, or 

chips for county-pair p. 𝑅𝑀𝐿𝑠𝑡is an indicator for whether in state s recreational marijuana 

law is effective in time period t. The term 𝜃𝑐 represents a county fixed effect, and 𝛿𝑡 

represents the time period, year-month fixed effect that is constant across counties. 𝐗𝑐𝑡 is 

a full vectors of county-level covariates. 𝜎𝑝𝑡 is either a state- or county-pair-specific time 

trend that controls for systematic trend differences between treated and control states/pairs 

(Dhar and Ross, 2012). This also controls for unobservable state-level factors evolving 

over time at a constant rate. The key coefficient of interest 𝛽 represents the estimated 

effect of the legalization of recreational marijuana on sales of junk food. The identification 

of 𝛽 relies on the assumption that trends in the outcome variable in counties in the control 

group are a reasonable counterfactual, i.e., sales trends in the states that did not implement 

RMLs would have been the same in the absence of the treatment.  

 The identification strategy for the DID approach is based on the assumption that 

trends in sales in counties located in RML and non-RML states are parallel in the period 

preceding the policy change and thus provide a valid counterfactual. While we control for 

state-specific trends we also test for the existence of pre-existing trend differences 

between treatment and control states as follows: 
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(2) 𝑦𝑐𝑝𝑡 = 𝛼 + ∑ 𝛽𝑖1(𝜏𝑐𝑡 = 𝑖)4
𝑖=−6 + 𝐗𝑐𝑡𝛄 + 𝜃𝑐+𝛿𝑡 + 𝜎𝑝𝑡 +  𝜂𝑐𝑝𝑡. 

where 𝜏𝑐𝑡 indicates the event month-year, which takes value equal to one when an 

observation is i semesters away from the semester the legalization of recreational 

marijuana became effective. We use semesters to reduce noise. The case (𝜏 = 0) denotes 

the semester of the policy change. For (𝜏 ≤ −1) RML states were untreated. The 

coefficients 𝛽𝑖s are estimated relative to semester preceding the policy change (𝜏 = −1), 

the omitted coefficient. Note that i equal to -6 or 4 denotes more than five semesters 

before or more than three after RMLs became effective, respectively. The event study is 

also useful to investigate dynamic responses to the treatment. For instance, the progressive 

rollout of the law itself, e.g., a delayed establishment of dispensaries, may generate 

different effects over time. In addition, since there are multiple observations for counties 

sharing borders with more than one other county, we cluster standard errors for both 

regressions at the county-pair level. This also allows for within state serial correlation in 

the error terms while assuming independence across pairs because unobserved factors 

within county pairs may be correlated over time (Bertrand et al., 2004). Regressions were 

weighted using county-year population.7 

Results 

 We find a substitution effect between recreational use of marijuana for each 

category of high calorie food considered. In particular, we find that legalizing recreational 

marijuana leads to an increase in sales of junk food as monthly sales in RML states 

increase by 5 percent for ice cream, 6 percent for cookies, and 6.6 percent for chips, 

respectively. Interestingly, even in the most taxing case, namely when including state- and 

                                                             
7 Unweighted regressions yielded similar results. 
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pair-specific time trends, we still find that our overall results hold. In particular, while we 

find a slight reduction in the magnitude of the effect and a slight decrease the precision of 

the estimate, our estimates indicate that sales of cookies increase by 4.1 percent and sales 

chips increase by 5.3 percent. We also find that sales of ice cream increase by 3.1 percent, 

although this last estimate is statistically insignificant at conventional level. Results are 

shown in Table 2. 

 Figure 1 shows no pre-existing trend differences in junk food sales as estimated 

𝛽𝑖s are, both in magnitude and statistically, not different from zero in the years before 

RML implementation. The event study captures differences in the short-term and long-

term effects, which we expect to exist due to time variation in the implementation of the 

policy as well as the availability and access to recreational marijuana. The increase in 

sales starts at the time the legislation becomes effective. The effect slightly decreases in 

the semesters thereafter for ice cream and chips, but not for cookies. The evidence 

provided by the event studies provides validity to the identification strategy based on 

discontinuity at the state border. 

Robustness 

 We examine the sensitivity of our results and preferred specification using a 

placebo regression for a falsification and Synthetic Control Method. First, we check that 

the effects we find are not spurious by estimating the regression, equation (1), using 

placebo RMLs dates. Specifically, we test for the potential impact of placebo dates for 

RMLs in the treated states. For each RML state, we draw randomly 1,000 dates in the time 

period that goes from June 2006 to the month before the actual effective RML date using a 

uniform distribution. The data observed for treated states from the actual effective date 
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until the end of the sample period are dropped from the sample. The treatment indicator is 

defined according to the placebo dates. That is, it takes value equal to one starting from 

the placebo date for state s, zero otherwise. Then, we estimate the same specification as 

for equation (1) for each of the 1,000 placebo dates. This gives us a distribution of the 

treatment effects for the placebo treatment. Table 3 shows estimates for the date placebo 

test. As expected, across junk food categories, we find no effects of the placebo treatment, 

which provides support that the main results are not spurious correlations, but rather 

treatment effects. Indeed, the estimated effects are close to zero and are statistically 

insignificant at any conventional level.  

 Second, following Abadie et al. (2010), Cavallo et al. (2013), and Galiani and 

Quistorff (2017), we employ a synthetic control method (SCM) that can be used to relax 

the common trend assumption and still provide a valid counterfactual to the treated units. 

Specifically, it creates a control group by choosing weights for states that have not 

legalized marijuana in order to create a counterfactual state that can resemble both the 

trends of treated units experiencing a discrete change in RML. We restrict our sample to 

aggregate sales for a balanced panel of states with at least 18 months before/after RMLs 

were implemented and for states for all months within the observed period, 2006–16.8 We 

use the dependent variable, log of total population, share of population below 19 years old, 

and the share or high school dropouts for each year in the pre-treatment period. In Figures 

2-4, left columns, we show trends in junk food sales and estimated effects by categories 

for the three legalizing states: Colorado, Oregon, and Washington. We confirm the more 

                                                             
8 We create a synthetic control after excluding all states changing medical and recreational marijuana laws from the donor pool. 
California is excluded because in this case there are no more than 18 months of data. Alaska is excluded because sales data are 
available only for contiguous U.S. states. The total number of states in the donor pool is 31. 
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general findings above that recreational marijuana consumption appears to increase sales 

of high calorie food. In Figures 2 to 4, right columns, the black line shows the estimated 

effect for legalizing states, calculated as the difference between the actual sales and the 

synthetic control predictions for the treated state. The light blue lines denote the estimated 

effects associated with each placebo states, i.e., every other state in the donor pool. 

Comparing the actual to placebo effect is useful to assess the significance of the SCM 

estimates. As the figures indicate, the estimated effect for the treated state is large relative 

to the distribution of the effects for the donor state. This suggests that the SCM results are 

not likely to be driven entirely by chance and confirms that high calorie food and 

marijuana are complements. 

Conclusion 

 In this research we apply a difference-in-difference approach by exploiting 

differences in the timing of the legalization of recreational marijuana across the United 

States and compare junk food retail sales at the county level for those counties located 

across borders in states that legalized and those did not legalize recreational use, before 

and after the change in RMLs. We find that in counties located in RML states, monthly 

sales of high calorie food increased by 3.1 percent for ice cream, 4.1 for cookies, and 5.3 

percent for chips. Results are robust to including placebo effective dates for RMLs in 

treated states as well as when using synthetic control methods as an alternative 

methodology. Whereas our research appears to be the first that causally links cannabis 

consumption to junk food consumption, our findings may be particularly relevant from a 

policymaking perspective, at a time when more states are considering legalizing marijuana 
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consumption while battling an obesity epidemic and when different countries have already 

fully legalized or are considering legalizing consumption.  
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Table 1 – Descriptive Statistics for Bordering Counties 

 Mean SD 

Medical marijuana laws (MML) 0.105 0.306 

Recreational marijuana laws (RML) 0.073 0.260 

Marijuana decriminalized 0.28 0.45 

Unemployment rate 8.024 3.714 

Median income (thousands) 61.632 15.810 

Total population (thousands) 1,119.004 830.630 

% Male 0.50 0.01 

% Hispanic 0.161 0.165 

% Black 0.136 0.172 

% Asian 0.069 0.042 

% Population 0-19 years old 0.274 0.038 

% Population 20-39 years old 0.24 0.04 

% Population 40-64 years old 0.317 0.026 

% High school dropouts 0.116 0.029 

% High school 0.255 0.040 

% Some college 0.295 0.054 

% Bachelor 0.334 0.090 

Ice cream sales ($ thousands) 721.287 547.280 

Cookies sales ($ thousands) 761.920 587.194 

Chips sales ($ thousands) 1,217.678 957.963 

Notes: Calculated for US counties (2006–16) and weighted by total population by county-year. All the monetary 

data are in 2016 dollars.  
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Table 2 – Border Analysis, Overall Effects of RMLs on Junk Food Sales 

 (1) (2) (3) 

Cookies    

RML = 1 0.0581*** 0.0303*** 0.0402** 

 (0.0200) (0.0113) (0.0184) 

Number of observations 21,794 21,794 21,794 

R-squared (within) 0.6823 0.7236 0.7173 

Mean 12.981   

Chips    

    

RML = 1 0.0640*** 0.0524*** 0.0518*** 

 (0.0202) (0.0121) (0.0187) 

Number of observations 21,808 21,808 21,808 

R-squared (within) 0.7080 0.7540 0.7454 

Mean 13.482   

Ice-cream    

RML = 1 0.0491** 0.0285** 0.0306 

 (0.0215) (0.0131) (0.0228) 

Number of observations 20,625 20,625 20,625 

R-squared (within) 0.6949 0.7305 0.7128 

Mean 12.948   

Covariates YES YES YES 

State-specific trends NO YES NO 

Pair-specific trends NO NO YES 

Notes: *** p<0.01, ** p<0.05, * p<0.1. The outcome variable is the log of junk food sales (ice cream, cookies, and 

chips). Controls include share of Black, Asian, Hispanic, and other races, share of population for the 0–19, 40–64, 
and over 65 age group, unemployment rate and median household income, share of high school dropouts, share of 

population with high school degree, and share of population with some college, as well as indicators for 

decriminalized or legalized use of medical marijuana. Regressions also include county and year-month fixed effects 

and are weighted by population in county-year. Standard errors are clustered by county pair (100 clusters). 
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Table 3 – Robustness Test: Placebo Dates 

 Cookies Chips Ice Cream 

    

RML=1 -0.0197 -0.0160 -0.0081 

 (0.0118) (0.0114) (0.0111) 

    

Placebo coefficient > 0 126 150 350 

Placebo coefficient > 0 and significant at 5% level 10 8 45 

Placebo coefficient > 0 and significant at 10% level 18 12 78 

Number of observations 11,381 11,381 9,446 
Notes: The outcome variable is the log of junk food sales (ice cream, cookies, and chips). Controls include share of 

Black, Asian, Hispanic, and other races, share of population for the 0–19, 40–64, and over 65 age group, 

unemployment rate and median household income, share of high school dropouts, share of population with high 

school degree, and share of population with some college, as well as indicators for decriminalized or legalized use of 

medical marijuana. Regressions also include county and year-month fixed effects, pair-specific trends and are 

weighted by population in county-year. Standard errors are clustered by county pairs (100 clusters). 
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Figure 1 – Event Study Analysis for Log Sales of Junk Food in Bordering Counties 

(i) Ice Cream 

 
 

(ii) Cookies 

 

(iii) Chips 

 
Notes: *** p<0.01, ** p<0.05, * p<0.1. Estimates obtained from regressions controlling for covariates, state-by-

month, county and year-month fixed effects, and pair-specific time trends. Regressions are weighted by population 

in county-year. Standard errors are clustered by county pair (100 clusters). 
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Figure 2 – Synthetic Control Method: Log Sales of Junk Food for Colorado State and Its 

Synthetic Control (left), Estimated Effects for Colorado and Placebo States (right) 

  

  

  
Notes: Graph obtained from Synthetic Control Analysis for Colorado State after excluding all states changing 

medical and recreational marijuana laws in 2006–16 from the donor pool. To fit the SCM we use the dependent 

variable, log of total population, share of population below 19 years old, and the share or high school dropouts for 
each year in the pre-treatment period. California is excluded because for them there are not more than 18 months of 

data. Alaska is excluded because of lack of sales data.   
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Figure 3 – Synthetic Control Method: Log Sales of Junk Food for Oregon State and Its 

Synthetic Control (left), Estimated Effects for Oregon and Placebo States (right) 

  

  

  
Notes: Graph obtained from Synthetic Control Analysis for Oregon State after excluding all states changing medical 

and recreational marijuana laws in 2006–16 from the donor pool. To fit the SCM we use the dependent variable, log 

of total population, share of population below 19 years old, and the share or high school dropouts for each year in 

the pre-treatment period. California is excluded because for them there are not more than 18 months of data. Alaska 

is excluded because of lack of sales data. 
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Figure 4 – Synthetic Control Method: Log Sales of Junk Food for Washington State and Its 

Synthetic Control (left), Estimated Effects for Washington and Placebo States (right) 

  

  

  
Notes: Graph obtained from Synthetic Control Analysis for Washington State after excluding all states 

medical and recreational marijuana laws in 2006–16 from the donor pool. To fit the SCM we use the 

dependent variable, log of total population, share of population below 19 years old, and the share or high 

school dropouts for each year in the pre-treatment period. California is excluded because for them there are 

not more than 18 months of data. Alaska is excluded because of lack of sales data 
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