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ABSTRACT 

 

Developing and Disseminating the Children’s  

Environmental Health Index with Web GIS 

 

By 

 

Allegra E. Yeley 

 

August 10, 2021 

 

A common adage in the field of children’s environmental health is “children are not small 

adults”. Children’s behavior, physiology, and dependency can increase their risk of and 

vulnerability to environmental exposures. Screening and web mapping tools like EPA’s EJSCREEN 

and California’s CalEnviroScreen highlight populated areas where residents may be at an 

increased risk of poor environmental health outcomes or environmental injustices. These tools 

provide valuable insight for policy makers, public health professionals, and the public. However, 

there are currently no screening tools that focus on spatial disparities in children’s 

environmental health at the local level.  

This project sought to address that gap by developing the Children’s Environmental Health 

Index (CEHI), based on the framework of the World Health Organization’s Urban Health Index. 

The CEHI is meant to be adapted to specific community concerns, and indicator selection is 

determined by significance to children’s health as well as data availability.  

This project applied the CEHI at the census tract-level in Allegheny County, Pennsylvania. 

Because the county is heavily industrialized, environmental health concerns focused on air 

quality and point-source pollution. Geospatial data was sourced from the U.S. Census Bureau, 

Environmental Protection Agency, PA Department of Environmental Protection, PA Department 

of Transportation, and Allegheny County. As expected, analysis was shaped and sometimes 

limited by data availability and computing resources.  

The CEHI web app was designed to be user-friendly and accessible to all audiences. It includes 

map layers for the CEHI, each indicator, and relevant data such as schools, day cares, and parks. 

Users can interact with the layers and retrieve areal statistics. The web app serves as a template 

for organizations who wish to develop their own CEHI. Future applications of the CEHI should 

explore daytime exposures using school districts, as well as examine maternal and infant health 

outcomes from the perspective of access and environmental exposure. 
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INTRODUCTION 

Public health is, by its very nature, spatial. Infectious diseases spread based on how people 

interact with and move through their environments. Chronic diseases can arise based on where 

we live and work. Health behaviors may be driven by community composition. Physical risks 

cannot exist without space. In short, our health is shaped by our environment.  

 

Children’s Environmental Health 

A common adage in the field of children’s environmental health is “children are not small 

adults”1-4. Of the populations vulnerable to adverse health effects of environmental exposure, 

children are most at risk for several reasons. First, they drink more water, eat more food, and 

breathe more air per pound of body weight than adults. Second, they have a greater body 

surface area to weight ratio than adults. Third, they exhibit unique behaviors that increase their 

risk of exposure to ground-level toxicants. Fourth, various organ systems continue to develop in 

the postnatal period. Finally, they have a longer lifespan in which to develop latent disease5,6. In 

essence, their behavior increases the rate of environmental exposures, while their physiology 

increases their vulnerability to environmental exposures7. 

Physiology 

Children’s physiology primes them for increased risk of environmental exposure. Their higher 

surface area to weight ratio means that they lose body heat more quickly than adults, which is 

countered with a faster metabolic rate7. A high metabolism results in a greater need for oxygen, 

water, and food per pound of body weight. These factors expose children to larger quantities of 

contaminants found in breast milk, food, water, and air8. Children’s larger surface area to weight 

ratio also results in more skin area per kg for increased dermal exposure and absorption7,8.  

Birth does not mark the end of critical development and growth. The systems that help the body 

metabolize and excrete xenobiotics are not fully mature at birth. If toxic insult occurs within that 

period, the substance may have a longer half-life or more potent effects5. For example, 

cytochrome P450 2E1 (CYP2E1), which is responsible for metabolizing benzene, chlorinated 

solvents, and other xenobiotics, does not reach full functionality until age 6-12 months7. As a 

result, infants are especially vulnerable to substances metabolized by CYP2E14. Toxicokinetic and 

toxicodynamic disparities between adults and children are most pronounced in the first two 

years of life. Increased growth rates continue through puberty into mid-adolescence9. 

Organ systems function differently throughout the developmental period. Vulnerability to toxic 

insult also fluctuates7. The most consistently vulnerable organ systems in children are the lungs 

and the nervous system. They are unable to repair harm inflicted by toxicants, so environmental 

insults may lead to permanent damage6. In the brain, cell migration, synapse formation, 

dendritic trimming, and myelination continue throughout childhood and into early adulthood2. 

Disrupting these processes in the developing brain can have serious impacts on intellectual and 

neurobehavioral outcomes7. 
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The immature nervous system is much more sensitive to toxicants than that of a mature adult8. 

The classic example of this sensitivity is lead (Pb) exposure. The toxic effects of Pb affect all age 

groups, but lead exposure is especially detrimental to children, whose nervous systems are still 

developing10. There is no safe level of lead for children, but the CDC has currently set the 

definition of an elevated blood lead level (BLL) at 5 µg/dL or above11. Nonetheless, adverse 

health effects have been observed at <5 µg/dL10. Studies indicate that children have a high rate 

of gastrointestinal absorption of water-soluble lead (30-50%) when compared to adults (3-

10%)10; some forms of lead used in house paint are water-soluble. Once a child absorbs lead, 

approximately 75% is stored in the bones; the rest is stored in soft tissue and blood. Blood lead 

levels serve as an indicator of recent lead exposure (several months), while bone lead levels 

reflect chronic exposure10. Excretion is slow, which is why Pb can build up to dangerous levels 

and cause permanent harm. Elevated BLLs in children are associated with brain damage, lower 

IQ scores, poor academic performance, decrements in memory and executive function, attention 

deficit disorder (ADHD), mood disorders, behavioral misconduct, peripheral neuropathy, anemia, 

immunological disruption, decrements in auditory and motor functions, stunted growth, and 

delayed puberty10,12. Adults experience adverse effects of lead exposure as well, but symptoms 

often manifest in the cardiovascular and reproductive systems. There is also evidence suggestive 

of a relationship between elevated BLLs in adults and neurologic symptoms12. 

Like the nervous system, the lungs are not fully formed at birth and are susceptible to 

environmental exposures. Over the 18-20 years it takes them to mature, the lungs will grow 

hundreds of millions of alveoli, the small air sacs that line the lungs and enable gas exchange13. 

The lung epithelium is not fully developed in young children; its greater permeability increases 

risk of fine particles passing from the lungs into the blood. Children breathe 50% more air per 

unit of body weight than adults14. A toxicant at a dose that does not affect an adult lung cell 

may cause adverse effects in immature differentiating lung cells8.  

Children breathe 50% more air per unit of body weight than adults14. When this increased air 

intake is considered with the lungs’ high cellular growth rate and increased epithelial 

permeability, it is easy to understand why so many environmental toxicants result in respiratory 

conditions. Asthma affects approximately 6.2 million children in the U.S. and is the reason for 14 

million missed school days per year15. It is also the leading cause of pediatric hospitalization in 

the U.S.16. There are genetic factors behind childhood asthma, but there is a large body of 

evidence suggesting that air pollution has a causal role in pathogenesis17-19. 

There is growing interest in the relationship between exposure to air pollution and neurological 

effects in children. The body of research is not conclusive, but overall findings suggest a positive 

association between air pollution and neurological impacts20-26. A case-control study conducted 

in southwestern Pennsylvania found that the odds ratio of autism spectrum disorder (ASD) 

diagnosis per 2.84 μg/m3 increase in average exposure to PM2.5 was 1.51 (p=0.046)20. 

Mutagenic carcinogens are especially potent during childhood; a year of exposure for a child 

can have more serious consequences than a year of exposure for an adult9. This is reflected in 

the EPA’s Age-Dependent Potency Adjustments Factors (ADAF), which are used in exposure 

assessment for mutagenic carcinogens with no chemical-specific data on early life exposure5. 
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Before the ADAFs were introduced in 2008, cancer risk was calculated without adjustments to 

the cancer slope factor27.  Children under age 16 are split into nine age groups with differing 

exposure periods. Children under 2 years have an ADAF of 10x, and children 2 to <16 years have 

an ADAF of 3x. In the 1 to <2 years age group, one year of exposure has an ADAF of 10x; in the 

2 to <3 years age group, one year of exposure has an ADAF of 3x. The ADAF is incorporated into 

the calculation of Lifetime Cancer Risk5.  

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐶𝑎𝑛𝑐𝑒𝑟 𝑅𝑖𝑠𝑘

=  Σ(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 × (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ÷ 70 𝑦𝑒𝑎𝑟𝑠) × 𝑃𝑜𝑡𝑒𝑛𝑐𝑦 × 𝐴𝐷𝐴𝐹),  summed across all age groups 

 

Behavior 

Young children experience the world much differently from older children and adults. They 

explore with all five senses. Hand-to-mouth behavior, mouthing, insufficient handwashing, and 

playing close to the ground increase their risk of exposure to toxicants in soil, on surfaces, and 

vapors or gases that are heavier than air6,7. Hand-to-mouth and mouthing behaviors coincide 

with the ages when children are less mobile, short in stature, and prone to playing on the floor 

or ground. There is a correlation between children’s blood lead levels and ingestion of lead-

contaminated dust through these oral behaviors7. Carpets, a common surface for children to 

play on, harbor indoor dust and outdoor dirt5. These behaviors are not extraordinary – they are 

simply part of the developmental process. Less common, but not unusual, is the regular, 

intentional consumption of nonfood items – pica. A common form is soil-pica, classified by soil 

intake of 1,000-5,000 mg/day27. This behavior can significantly increase the risk of exposure to 

pesticides, heavy metals, and other contaminants. It is most common in children under age six27. 

Childcare facilities, schools, and after-school programs provide school-age children with 

opportunities for new environmental exposures. They spend a larger proportion of their time 

outside, increasing their potential exposure to air pollutants like particulate matter and ozone. 

Outdoor physical activity such as recess or sports increases both their breathing rate and their 

risk of exposure-related health effects7. Children who are still in the oral exploration stage may 

ingest chemicals they would not be exposed to at home. The interior of childcare and education 

facilities can have high levels of dangerous contaminants in the air, on surfaces, and as dust, 

including brominated flame retardants, asbestos, mold, lead, radon, and volatile organic 

compounds (VOCs) like formaldehyde28,29.  

Social Environment 

Children’s environmental exposures and vulnerabilities are influenced by their social 

environment. For the purpose of this project, the social environment is defined by dependency, 

socioeconomic status, and demographics.  

Childhood is characterized by dependency – especially a limited ability to control the 

environment6. Infants and toddlers rely on their caregivers for everything, including their 

microenvironment. If a six-month-old is placed on the floor to play, they cannot move 

themselves or ask to be moved; they must stay there until their caregiver picks them up. Most 
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young children can move independently throughout their home and school environments, but 

still depend on adults for sustenance, education, protection from hazards, medical access, and 

shelter. As noted above, children have little control over their exposures at childcare and 

education facilities. Public school students generally cannot choose what school they attend. 

Older children often have more autonomy (and may choose their own dangerous environmental 

exposures), but generally continue to rely on adult caregivers until they reach legal adulthood at 

age 18. A significant source of harmful exposure in the home environment is secondhand 

smoke, discussed in detail later16. 

Low income and minority race and ethnicity are associated with lower socioeconomic status 

(SES), which determines where people live, how they work, and their physical and mental 

wellbeing. Unfortunately, people of color have long carried the outsized burden of low SES in 

the U.S. Structural racism, epitomized by Jim Crow laws and federally sanctioned discriminatory 

mortgage lending practices (“redlining”) in the 1930s, has perpetuated cycles of poverty and 

disinvestment in minority communities30. Of the racial and ethnic groups tracked by the U.S. 

Census Bureau, non-Hispanic Whites have had the lowest poverty rates since data collection 

began in the early 1970s31. 

Poverty is one of the single greatest determinants of health. It dictates access to and the quality 

of resources and opportunities. It forces people to make difficult decisions between life 

essentials like rent, food, and medical care because they can’t afford everything they need. In 

the U.S., more children live in poverty than any other age group7. They are more likely to live in 

substandard housing and reside in areas close to industrial facilities and busy highways, 

increasing exposure to lead paint, mold, mildew, industrial releases, and air pollution7. Income is 

inversely related to parental smoking, making impoverished children most likely to be exposed 

to ETS32. Low-income children and their families may have difficulty accessing or affording 

regular medical care7. It may be especially challenging for low-income immigrant and migrant 

families to navigate the healthcare system. Data show that atopic disease and asthma frequently 

go undiagnosed—and therefore untreated—in urban populations of children7. 

Social programs help fill some socioeconomic gaps, but there are millions who do not qualify or 

do not know they qualify for aid. For example, the Special Supplemental Nutrition Program for 

Women, Infants, and Children (WIC) provides low-income pregnant, breastfeeding, and 

postpartum women, as well as infants and children up to age 5, with healthy food vouchers, 

nutrition education, screenings, and health services33. In 2018, the average monthly population 

eligible for WIC in the U.S. was 11.9 million. In that same year, the average monthly participation 

rate of the eligible population was only 56.9%33. Poor nutrition and dietary deficiencies can 

make children more vulnerable to adverse effects of toxic exposures; this relationship is well-

documented in toxic metals like lead, mercury, and cadmium10,34. 

The influence of race and ethnicity can be difficult to separate from that of poverty, as minorities 

have higher rates of poverty than non-Hispanic Whites31. However, there is evidence that race is 

independently associated with hazardous environmental exposures. Mikati, et al. (2018) analyzed 

the distribution of particulate matter (PM) point-sources against surrounding communities’ 

poverty and race characteristics. It found that the non-White population had a PM2.5 pollution 



13 

 

burden 1.28 times greater than the overall population; the non-Hispanic Black population 

carried a burden 1.54 times higher. The burden for people living in poverty was 1.35 times 

greater. The results suggest that race may be independently associated with pollution burden35. 

A spatiotemporal analysis of industrial air toxins and SES separated the population into groups 

by race/ethnicity (White, Black and Hispanic) and income (annual income above or below 

$50,000)30. Over the course of ten years, the two population groups with the highest levels of 

exposure were low-income Black and high-income Black, followed by low-income White and 

low-income Hispanic. Clearly, SES did not act as a protective factor for the high-income Black 

population30. 

 

GIS and Health Indexes 

Geographic Information Systems (GIS) are becoming increasingly powerful – and the outputs 

more accessible. The combination of premade data layers and drag-and-drop design has 

allowed people without a GIS background to assemble public-facing web mapping applications 

and data dashboards36. These web apps have become go-to sources of information during the 

COVID-19 pandemic, further highlighting the value of web mapping for public health37,38.  

GIS-based web apps go far beyond tracking infectious disease. One focus area has been 

environmental health. The U.S. Environmental Protection Agency (EPA) has developed several 

apps with a focus on human-environment interaction: EnviroAtlas, Cleanups in My Community, 

and EJSCREEN39. The latter was developed with the goal of providing stakeholders and the 

public with easily understandable, scientifically sound data to help identify communities that 

may have potential environmental justice issues. EJSCREEN calculates eleven different index 

scores at the census block group level. Each score consists of several demographic indicators as 

well as a single environmental indicator. Block groups are then percentile-ranked so they can be 

compared to each other. The EPA emphasizes that EJSCREEN is meant to be used for screening 

only, and is “not designed to be the basis for agency decision-making or determinations 

regarding the existence or absence of EJ concerns”40. This caveat restricts the ways in which 

EJSCREEN should be interpreted, but the app’s interface does not make that clear. If an average 

member of the public was using the app, they could easily assume that EJSCREEN is highlighting 

specific environmental justice areas41.  

CalEnviroScreen is produced by the California Environmental Protection Agency (Cal EPA) and 

focuses on state-level environmental health42. CalEnviroScreen aims to illustrate the impacts of 

environmental pollution on communities using environmental and demographic data, which are 

separated into percentile-ranked Pollution Burden (Exposures + Environmental Effects) and 

Population Characteristics (Socioeconomic Factors + Sensitive Populations). The index score for 

each section is available, or they can be combined to calculate the overall CalEnviroScreen Score. 

Like the U.S. EPA, Cal EPA developed CalEnviroScreen as part of their environmental justice 

efforts. However, Cal EPA’s documentation indicates a higher level of confidence in their index 

scores, stating that the tool is “considered useful in identifying places burdened by multiple 

sources of pollution with populations that may be especially vulnerable”42. This confidence may 
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stem from the smaller scale of a state-level analysis. California is one of the largest and most 

diverse states in the country, but it has the advantage of access to federal and state data. It can 

also focus on issues that are significant at a state, but not national, level. 

National-level health indices like EPA’s EJSCREEN and CDC’s Social Vulnerability Index (SVI), as 

well as state-level efforts exemplified by California’s CalEnviroScreen, are a valuable source of 

information for policymakers and citizens alike. The tradeoff is local specificity. Mining areas may 

have concerns about heavy metals, while agriculture-intensive communities may focus on levels 

of organophosphates. Furthermore, small-area analysis increases the likelihood of more 

targeted data; for example, there is no nationwide database of children’s blood lead levels at 

geographies smaller than counties, but it may be available through a county health department 

or municipality43.  

Jelks, et al. (2018) conducted a community-led mapping project that demonstrates the value of 

locally driven hazard mapping. Long-time residents of an urban watershed in Atlanta, GA were 

recruited to identify the most pressing environmental hazards in their neighborhoods. They 

discovered that not all of the hazards they identified were documented in publicly available 

datasets from the EPA. The residents then led teams of university researchers around the 

watershed to map the hazards44. While the EPA databases are an essential part of mapping 

environmental hazards, the Atlanta study showed that they are not comprehensive. Without the 

input of the locals, those environmental hazards would not be on record44.  

 

The Children’s Environmental Health Index 

The Urban Health Index (UHI) was developed as a flexible framework for analyzing and 

visualizing health indicators at various geographic levels45. Its original application was focused 

on intra-urban health disparities, but the methodology can be adapted for other analyses. The 

UHI standardizes indicator values and combines them with their geometric mean. The resulting 

index score falls on a 0 to 1 scale.  

The proposed Children’s Environmental Health Index (CEHI) aims to highlight areas where 

children may be at an increased risk of exposure to environmental hazards and their adverse 

health effects. The CEHI can incorporate demographic data to highlight areas that are home to 

children who are statistically more likely to be vulnerable to exposures than the average child. 

Common vulnerabilities include race, ethnicity, poverty status, and age46,47. Some indicators in 

the CEHI are nearly universal and apply to all areas, but organizations are encouraged to 

supplement them with locally relevant indicators.  
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METHODS 

CEHI Model 

The Children’s Environmental Health Index is predicated on the ways in which children exist in 

the world. Their physical environment, physiology, behavior, and social environment all 

determine their vulnerabilities and exposures (Figure 1). 

 

Figure 1: Children’s environmental health is shaped by their physical environment, social environment, and 

their physiology/behavior. 

The CEHI score is calculated using the UHI Excel workbook, which is populated with macros that 

calculate all scores and statistics with minimal user input. The workbook can be downloaded 

with the UHI Handbook45.  

 

Analysis Methods 

All spatial analysis was performed using the Environmental Systems Research Institute (Esri) 

software program ArcGIS Pro 2.8 (Redlands, CA). The coordinate system was Pennsylvania State 

Plane South with the North American Datum of 1983. Methodology descriptions use Esri 

nomenclature, but the methods can be adapted for use in other GIS. The CEHI web app was 

built with Esri ArcGIS Online (Redlands, CA).  

Geographic Scale and Unit 

While they may not present the most technically sound approach to spatial analysis, census 

block groups and census tracts have large stores of readily available data, give audiences a 

frame of reference, and are politically relevant. This is why existing social and health indices are 

built upon Census-defined geographies40,48. Census tracts were selected instead of block groups 

because there is a greater amount of readily available data at the tract level. 

Physical 

Environment

• Risks

Social
Environment

Physiology

/ Behavior

• Exposures
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Pre-Analysis Considerations  

There are several classic approaches to GIS analysis of point-source environmental exposure 

(Figure 2). The approach of choice depends on factors like data availability, technical resources, 

and intended audience. The most basic method is spatial coincidence, which overlays predefined 

geographic units (e.g., census tracts or counties) with the hazard(s) of interest and counts how 

many hazards fall within each unit49. The count or density of hazard points is then compared to 

the geographic unit’s demographics to identify associations between population characteristics 

and potential exposure. The second approach is distance-based analysis, in which buffers are 

generated around hazards; the populations that fall within the buffers are analyzed49. Finally, 

there is dispersion modeling, which uses advanced computer models to determine the shape 

and extent of a pollutant plume; the population that falls within the plume is the population of 

interest50. There are rare GIS analyses of individual sample data that use the respondent’s home 

address and can directly tie the individual’s demographics to a pollutant source51.  

 

Figure 2: Common GIS methods for analyzing vulnerability to environmental hazards: a) spatial coincidence 

of hazard with geographic unit of interest, b) distance-based buffers around hazards, c) dispersion modeling 

of plume release 

Of the approaches, the most robust are dispersion modeling and individual sampling49,51. They 

are also the most resource-intensive, especially for organizations that do not have access to 

specialists and equipment. Of the remaining options, distance-based buffering is stronger than 

spatial coincidence. Instead of aggregating the number of facilities that fall within a census tract, 

it is more prudent to consider proximity to the facilities (in full acknowledgement of the 

limitations of a circular buffer). Pollution does not respect political boundaries.  

Spatial coincidence relies on geographic units like census tracts – arbitrary constructs that are 

invisible in the real world. They may not reflect the boundaries of a real social community or 

may obscure the ways in which residents of an area move and interact in space. A major waste 

incinerator could be located 50 feet upwind from an adjoining tract; a simple spatial coincidence 

analysis would assign the incinerator to its host tract, completely ignoring the exposures of 

nearby residents in the downwind tract. Distance-based buffering avoids this selection bias by 

ignoring political boundaries and focusing on the population within a specified radius of the 

hazard. The primary limiting factor of buffers is that they assume a toxic release will disperse in a 

way that affects everyone in the buffer zone equally. In reality, toxic releases are subject to the 

same laws of nature as everything else. The chemicals themselves have different physical 
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properties and will behave differently. These factors affect who will be exposed and where they 

live. This is where dispersion (or plume) modeling comes in. Models like AERMOD and HAPEM 

are used in conjunction with chemical databases like ICIS to get an accurate portrait of an air 

toxic release, enabling local responders to identify communities at risk and develop detailed 

emergency response plans52,53. The dispersion method is still fallible, as the model’s accuracy 

depends on the quality of the input data52,53. Similar modeling approaches exist for liquid spills 

and groundwater intrusions54-56. 

Population exposure is the outcome of concern. 

But where is the population? Census tracts and 

block groups are developed based on population 

parameters, parcels, and natural boundary features 

like roads and rivers. They are not drawn with 

population distribution in mind. Figure 3 illustrates 

the difference between the geographic center of a 

census tract and its population-weighted center. 

The colored grid cells represent population density 

per 30m x 30m square, with red symbolizing the 

highest density and yellow the lowest. Weighting 

the calculation of geographic center by population 

density better reflects population distribution, and 

therefore exposure, within the tract. For example, 

the top half of our sample tract is covered by the 

Allegheny River. If we used the geographic center 

to create buffers for proximity analysis, it would not 

represent the population as accurately as the 

weighted center. 

Deciding that a geographic unit is the most easily accessible way to visualize and share 

information does not limit analysis to spatial coincidence. There are ways to translate proximity 

analysis and dispersion modeling into politically defined polygons. For example, NATA 2014 

makes its comprehensive data on HAPs and diesel PM available at the census tract level52. The 

RSEI toxicity-weighted concentration indicator can be converted from its original grid into 

census tracts using apportionment. While GIS-ready Census Bureau, NATA, and RSEI data are 

available nationwide, several indicators are site-specific and require geoprocessing before they 

can be input into the CEHI. 

In acknowledgment of the varying technical skills available to organizations interested in 

implementing the CEHI, proximity analysis in this study was kept relatively simple. Organizations 

with access to GIS specialists should consider employing more complex spatial analysis methods 

to reflect local conditions more accurately. For example, prevailing wind speed and direction, 

elevation, and slope play a significant role in dispersion57,58. Even without access to advanced 

models, it is possible to incorporate these factors in geoprocessing. A potential approach for 

getting a more accurate idea of affected populations is to use building footprints or zoning. In 

Figure 3: The geographic vs. population-

weighted center of a census tract, overlaid on 

dasymetric population density. 
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Figure 4, the left graphic shows a fan-shaped buffer based on prevailing wind direction. The 

right graphic is zoomed-in on that buffer and overlaid with building footprints symbolized by 

class. The blue buildings are Class R – residential. Footprints that are up-to-date and pass a 

quality control check can be suitable proxies for population exposure. 

 

Figure 4: An example of alternate approaches to modeling exposure area and exposed population. 

Ultimately, the methods used in this case study adhere to the concept of the “spherical cow”, a 

term used in the physics world to signify the utility of simplifying models59. 

Methodology: Proximity 

Proximity in the Allegheny County CEHI was calculated using an adapted version of the 

EJSCREEN methodology, outlined below40. The approach is a hybrid of spatial coincidence and 

distance-based buffering. Instead of buffering a facility, this method generates a buffer around 

the center of each census tract. Unlike EJSCREEN, this analysis uses population-weighted 

centroids instead of geographic centroids. A five-kilometer buffer extends beyond the borders 

of most census tracts. It strikes an acceptable balance of focusing on the census tract geography 

while also considering population and the potential far-reaching impacts of environmental 

exposures.  

f(dij) = 1 / dij 

 

This function calculates the inverse distance between a facility and the population-weighted 

center of a census tract, where i represents a particular facility; j represents a census tract; and dij 

is the distance, in kilometers, from tract j’s centroid to the given location of facility i. 

The general steps for the proximity analysis in ArcGIS Pro are as follows: 

1. Generate 5km buffers around population-weighted census tract centroids 

2. Run the Generate Near Table tool on the tract centroids, using the highlighted 

parameters below: 
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3. Small-area geographic data in the U.S. will likely be in a State Plane Coordinate System. 

This means that NEAR_DIST will be calculated in feet. In Near_Table, convert NEAR_DIST 

from feet to km: !NEAR_DIST! * 0.0003048 

4. In Near_Table, Add Field > Inv_Dist_km and calculate the inverse distance as per the EPA 

formula: Inv_Dist_km=1/!DIST_KM! 

5. Calculate Summary Statistics for the Near Table: Inv_Dist_km SUM, NEAR_DIST MEAN, 
NEAR_DIST MIN, NEAR_DIST MAX 

6. If the output summary table has the same number of records as total census tracts, 

proceed to the next step. If the summary table has fewer census tracts:  

In this situation, we want to make sure that tracts that don’t have a feature within 

5km have the inverse distance of the nearest feature, however far that may be. To do 

this:  

a. Generate a second Near Table with different parameters: clear out the search 

radius and check the “Find only closest feature” box. Give the table the same 

name as the original Near_Table but append “_ALL” to the end of the table name. 

b. Calculate the inverse distance for Near_Table_ALL 

c. Join both Summary_Near_Table and Near_Table_ALL to the centroids  

d. Export to a new feature class. Fill in the inverse distance for those that don’t have 

any features within 5km using the inverse distance calculated with 

Near_Table_ALL. 

7. Join the summary table to the centroids using OBJECTID and IN_FID 

8. Spatial Join the centroids to the census tracts 

The value that will go into the CEHI calculation is SUM_Inv_Dist_km; the unit is facilities within 

one kilometer – so a tract with a score of 3.5 means that there are 3.5 facilities within a kilometer 

of the average person living in that tract.  
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The Census Bureau produces population-weighted centroids with decennial census data, so the 

centroids used in this analysis represent the 2010 population centers. This is not ideal but is 

acceptable for a case study. Future CEHI projects will have access to the 2020 population-

weighted centers. 

Once the data has gone through the necessary processing in ArcGIS Pro, join each of the 

indicators to a blank census tract feature class and then export it to a table. This ensures each 

census tract has the correct data appended to it before the CEHI is calculated. 

Methodology: Census Data 

Tabular census data includes an ID field that enables direct joins between tables and feature 

classes, minimizing the amount of data preparation 

1. Retrieve data from https://data.census.gov/ 

2. Bring table into ArcGIS 

3. Join to census tract feature class using the tract ID 

4. Export to a new feature class 

5. Perform any simple calculations needed, e.g., the percent of houses built before 1960 

(int(!Built_1950_to_1959!) + int(!Built_1940_to_1949!) + 

int(!Built_1939_or_earlier!)) / int(!Total!))*100. If preferred, calculations can 

be done in Excel before importing the spreadsheet into ArcGIS.  

 

Calculating the CEHI 

Before calculating the CEHI, ensure that all indicators point in the same direction45. For example, 

if a high value for indicator A means worse environmental conditions, then high values for all 

other indicators must also signify worse conditions. It does not matter if high or low signifies a 

poor environment, as long as all indicators agree45. 

The first step of the CEHI calculation is indicator standardization. This adjusts for the disparate 

indicator metrics, which range from percentages to volumes. The indicator score (Is) is calculated 

by dividing the distance of the value from the minimum, divided by the range: 

𝐼𝑠 =
𝐼𝑖 − 𝑚𝑖𝑛 ∗ (𝐼)

max(𝐼) − min (𝐼)
 

where Ii is the value of the observation, max(I) is the maximum value for indicator I, and min*(I) 

is the minimum value of indicator I minus a small value to avoid zeros in the numerator60. Ten 

percent of the standard deviation is the default value that is subtracted45.  

Full details on the Urban Health Index, as well as a macro-enabled Excel workbook to facilitate 

calculations, are available from the WHO45. 

 

 

https://data.census.gov/
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CASE STUDY: ALLEGHENY COUNTY, PA 

Allegheny County is in southwestern Pennsylvania, where the Monongahela and Allegheny 

Rivers converge to form the Ohio River (Figure 5). The population is 1,221,744. The median 

income is $61,043 and the poverty rate is 11.6%. The population is predominantly White, at 

almost 80%. Only 3.8% of residents do not have health insurance61. 

The area is extraordinarily rich in natural resources, including timber, limestone, iron, coal, oil, 

and natural gas62. The county seat is the city of Pittsburgh, which began its journey towards 

becoming America’s industrial center during the U.S. Civil War. While iron dominated the mid-

19th century, steel became the driving force behind Pittsburgh and Allegheny County’s growth. 

Southwestern Pennsylvania is home to the Pittsburgh Coal Bed, rich in low-sulfur bituminous 

coal – ideal for producing coke, the preferred fuel for blast furnaces62. The proximity of raw fuel, 

a confluence of navigable waterways, and the growing demand for steel from the railroad 

industry poised the Pittsburgh region for success. New steel production technologies and the 

businessman Andrew Carnegie guaranteed it62. In 1901, the United States Steel Corporation was 

incorporated by a group of notable businessmen including Andrew Carnegie, Henry Clay Frick, 

J.P. Morgan, and Charles Schwab63. By 1910, Pittsburgh was producing over 60% of steel in the 

U.S. and workers were flocking to the area. Boom towns anchored by factories popped up along 

the banks of the Monongahela River Valley (commonly called the Mon Valley). Besides the 

growing population, the other sign of progress was the darkening skies. During this period, 

Allegheny County’s atmosphere was black with smoke from coke ovens, industrial facilities, and 

residences. On some days it was so dark that drivers needed to use their headlights to 

navigate64.  

In 1946, smoke reduced visibility in the downtown area one out of every four daylight hours65. 

After sustained public campaigns for cleaner air, the city of Pittsburgh enacted its first 

meaningful smoke control ordinance65. Two years later, an atmospheric inversion 20 miles south 

in Donora, PA engulfed residents in a thick smog. After five days, the smog dispersed. Twenty 

Figure 5: Allegheny County, PA 
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people were dead and approximately 6,000 had been sickened65. The Donora Smog of 1948 led 

to the first major epidemiological inquiry into an environmental health event in the U.S66. The 

United States Public Health Service (USPHS) conducted a wide-ranging study into the cause of 

the smog. They were not able to attribute the health impacts to a single toxic substance but 

noted that the community’s location in the Mon Valley primed it for inversions. This, in 

combination with emissions from the American Steel and Wire plant and the Donora Zinc 

Works, was a recipe for disaster. Death records from 1948 to 1957 indicate that mortality from 

cancer and cardiovascular disease significantly increased66. The tragedy is often considered the 

impetus for the federal Clean Air Act66. The Donora Smog was also evidence that city centers 

weren’t the only areas subject to serious air quality issues. As a result, officials in Allegheny 

County passed a county-wide smoke control ordinance in 194965.  

Air quality in the area visibly improved after the ordinances were passed in 1946 and 1949. Nine 

years after the second ordinance was passed, only one out of every 65 daylight hours was 

impacted by heavy air pollution65. A decline in steel and other heavy industries began in the 

1970s, and air quality continued to recover. Heavy industry and mining hold a place in the local 

economy, but the region is not as dependent on resource extraction and manufacturing as it 

once was. Education, health care, finance, and tech have become significant sectors in the 

economy64.  

Air quality is still at the forefront of environmental health advocacy in southwestern 

Pennsylvania. The Breathe Collaborative, based in Pittsburgh, is a consortium of over 50 

nonprofits, citizen groups, academics, and public health professionals whose work focuses on 

improving area air quality through science-based evidence and community outreach67. The high 

engagement in local environmental issues lends further support to the value of a county-level 

health index.  

 

Indicator Selection and Justification 

Indicators were selected based on extensive review of the literature, GIS data availability, and 

best practices of existing environmental health indices. Because this analysis is focused on a 

vulnerable population, indicator selection erred on the side of caution. It is more likely that 

exposures have been overestimated than underestimated. Final indicators are shown in Table 1. 

 

Table 1: Indicators for the Allegheny County CEHI 

Social Environment Indicators 

Population density of children (<18) 

Minority children (%) 

Children in poverty (%) 

Houses built before 1960 (%) 

Exposure Indicators PM2.5  
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Demographics 

How do you define a “child” when assessing environmental vulnerability? The legal definition is 

individuals under age 18. Literature on the health impacts of exposure is largely focused on 

preadolescent children. If you are consulting data from the U.S. Census Bureau and wish to focus 

on a smaller age range, you will find that age brackets are not standardized. For example, the 

youngest age group in the health insurance coverage data is “under 6 years”, while the youngest 

age group in the poverty data is “under 5 years”68. These discrepancies make it difficult to 

perform simple comparative analyses. For the case study presented here, a child is a person 

under age 18, which reflects the lack of agency that a vast majority of children have over where 

they live and attend school. As with indicator selection, organizations will have to define their 

population of interest. 

Environmental injustice is the disproportionate exposure of low-income and/or minority 

communities to environmental hazards such as pollution, industrial facilities, and hazardous 

waste sites. Many communities experiencing environmental injustice do not receive the 

expected protections provided by law49. These unresolved exposures negatively impact people’s 

health and welfare and can promote poverty, poor health, and disenfranchisement. As discussed 

above, children are one of the highest-risk groups for environmental exposure and the resulting 

health effects. 

The role of race and ethnicity in environmental injustice is well-studied. A subset of research 

focuses on how minority children are affected. For example, data indicate that the majority of 

children diagnosed with lead poisoning are a racial or ethnic minority7. Minority children also 

have the highest risk of exposure and increased susceptibility to lead toxicity: poor nutrition 

status characterized by deficiencies in iron and calcium, living in older, poorly maintained 

homes, and residing in high-traffic inner city neighborhoods still contaminated by leaded 

gasoline particles49. In Orange County, FL, analysis of pollution sources, public schools, and the 

residential location of 151,000 students found that Black and Hispanic children were significantly 

more likely than White children to both live and go to school close to a pollution source. The 

study’s strength was that it mapped the location of each students’ home and could assign a race 

to that point; researchers are often limited to anonymized census block- or tract-level data46. A 

California study found that minority children were three times as likely to live in an area with 

Ozone 

Traffic density  

SO2 ❖  

RSEI Industrial Air Releases ❖ 

Environmental Risk Indicators 

NATA Cancer Risk  

Hazardous waste sites 

Mining-related sites ❖ 
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high traffic density than their White counterparts69. While proximity to a pollution source can’t 

be assumed to be the best indicator of exposure, it may act as an indicator of the perception of 

exposure and how that perception influences an area’s socioeconomic profile70. 

In Allegheny County, the relationship between poverty and race/ethnicity are painfully clear. Of 

the children living below the federal poverty level, 39.3% are Black, 21.3% are Hispanic or Latino, 

11% are Asian, and 8.2% are non-Hispanic White71. This inequality reflects national trends. In the 

United States, 31% of Black children, 23% of Hispanic or Latino children, 10% of Asian and 

Pacific Islander children, and 10% of non-Hispanic White children live in families with incomes 

below the federal poverty level72. The child poverty rate in Allegheny County is approximately 

15.3%. However, several municipalities in the county have child poverty rates greater than 50%71. 

This significant spatial variance warrants further investigation. 

While population statistics suggest a dependent relationship between income and 

race/ethnicity, the spatial relationship between the two factors and environmental health risk is 

still debated. When controlling for one or the other, some studies have found race to be the 

more significant variable, while others have found income to be the most significant35,49,51. 

Settling the argument in favor of one or the other is not important for the practical application 

of an environmental health index like the CEHI. What matters is that race, ethnicity, and income 

are all associated with increased risks of exposure to environmental hazards. For this reason, 

poverty and minority status have been separated into two separate indicators.  

Lead 

Lead (Pb), a toxic heavy metal, has been used in consumer products and industrial applications 

for centuries. It is in our air, water, food, soil, homes, and personal belongings. The most 

common route of exposure is ingestion, namely of contaminated soil, indoor dust, or piped 

drinking water. Once absorbed, lead bioaccumulates and excretes very slowly. The elimination 

half-life of Pb in the bones is 10-20 years. If an individual has very high lead levels, the health 

effects can persist for decades, if not permanently10. Furthermore, lead is a striking example of 

how differently children and adults can be affected by a toxic substance. 

Lead was a popular additive to indoor and outdoor house paint until the federal government 

prohibited its use in consumer settings in 1978. Of homes built before 1978, an estimated 24% 

built between 1960-1977, 69% built between 1940-1959, and 87% built before 1940 are likely to 

contain lead-based paint73. Even if the lead is under several coats of lead-free paint, lead dust 

can still be released by an act as simple as nailing something to the wall. Passive contamination 

is often due to cracking or flaking paint. Young children’s tendency to play at floor-level, 

combined with their hand-to-mouth behavior—which can include chewing or sucking on 

accessible painted surfaces like windowsills and door edges—makes them especially at risk of 

paint-based lead poisoning11. 

In the early twentieth century, lead was added to gasoline to improve engine performance. In 

the mid-1970s, the EPA introduced a phased-in reduction of the quantity of lead in gasoline and 

imposed restrictions on industrial emissions. It wasn’t until 1996 that the EPA banned the sale of 

leaded fuel for all on-road vehicles. Leaded fuel is still allowed in some aviation and off-road 
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vehicles74. The ban on leaded gasoline greatly reduced the amount of lead being emitted into 

the air, but once it enters the environment, lead does not disappear. It is most often found in 

soil – especially soil close to roads, houses with exterior leaded paint, and industrial sites11. 

Edge-of-road soil has lead levels an estimated 30–2,000 μg/g above background levels, 

especially in areas that have been heavily trafficked for decades. Samples collected outside of 

homes with exterior lead-based paint have had lead levels >10,000 μg/g. Elevated lead levels 

have also been found in the soil surrounding elementary schools10. The lead can either be 

resuspended as PM or ingested; ingestion is the most common exposure route for children. 

Today, the CDC considers lead-contaminated dust and lead-based house paint to be the most 

dangerous sources of lead exposure for children in the U.S11. However, certain places in the U.S. 

may be primarily concerned with other sources of exposure like drinking water. 

This analysis uses house age as an indicator for lead exposure because reliable nationwide data 

is available from the U.S. Census Bureau. Even if a child doesn’t live in a home with lead paint,  if 

they live in a community with a high proportion of older homes, there is a greater chance that 

they will be exposed to lead dust tracked indoors or in the soil outside. If a small area has access 

to more detailed data on soil concentrations, blood lead levels, lead service lines, or other 

suitable metrics, those may be more meaningful to the community of interest.  

Hazardous Sites 

The federal Resource Conservation and Recovery Act (RCRA) gives the EPA purview over the 

entire life cycle of hazardous and non-hazardous solid waste; state environmental agencies 

manage the program and report to EPA. According to the Pennsylvania Department of 

Environmental Protection (PADEP), hazardous waste is defined as solid waste which, “in sufficient 

quantities and concentrations, pose a threat to human life, human health or the environment 

when improperly stored, transported, treated or disposed”75. “Solid waste” can be solid, liquid, or 

a contained gas. Hazardous wastes have at least one of the four following characteristics: 

corrosivity, reactivity, ignitability, or toxicity. There are over 700 chemicals and over 100 

industrial and manufacturing wastes officially listed as hazardous. If an unlisted substance has 

one of the four characteristics listed above, it is treated as a hazardous waste76.  

There are hazardous waste generators, transporters, and storage/treatment/recycling/disposal 

facilities. Generators are classified by the quantity of hazardous waste they produce in a calendar 

month: a Very Small Quantity Generator (VSQG) produces ≤100kg of non-acute hazardous 

waste, a Small Quantity Generator (SQG) produces ≤1kg of acute hazardous waste or greater 

than 100 but less than 1,000kg of non-acute hazardous waste, and a Large Quantity Generator 

(LQG) produces more than 1,000kg of non-acute hazardous waste or has >1kg of acute 

hazardous waste onsite77. Transporters use roads, railways, and waterways to move the waste 

from generators to facilities where it will be recycled, stored, treated, or disposed. When 

possible, hazardous waste is recycled. Waste that cannot be recycled is sent to Treatment 

Storage and Disposal Facilities (TSDFs). TSDFs are used for temporary storage, final treatment, or 

permanent disposal of hazardous waste. The volume of waste and processes used at recycling 

facilities and TSDFs carry a high risk of hazardous waste spills or other contamination events. 

Improper storage and handling can pollute drinking water, soil, and air76. 
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The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), often 

called Superfund, is invoked when hazardous waste is grossly mismanaged and poses a threat to 

human and environmental health. Landfills, mines, and industrial facilities comprise the majority 

of Superfund sites78. Of the tens of thousands of Superfund sites across the country, 1,870 are 

on the National Priorities List. Of these, only 438 have been deleted (remediated). Three of the 

19 Superfund sites in Allegheny County are actively listed on the NPL79. 

Children cannot decide where they will live. They depend on their caregivers for life’s necessities, 

including shelter. Unfortunately, that shelter may be located close to a hazardous waste facility. 

The hazardous waste management/solvent recovery industry is one of the largest emitters of 

carcinogens and developmental and reproductive toxicants. Landfills and waste incinerators are 

significant sources of lead, mercury, PCBs, dioxins/furans, and other heavy metals80. Adults may 

not be aware that they live in an area that puts their child at risk of toxic exposures – or they 

may not have the resources to move away or pay for abatement measures6. The health impacts 

of living close to hazardous waste sites have been examined for decades. Studies of children 

residing near Love Canal, the first Superfund site in the country, found elevated rates of health 

problems ranging from seizures to stunted height in comparison to control populations81,82. 

Numerous studies have shown that children who live close to hazardous waste incinerators have 

measurable quantities of heavy metals in their hair, blood, and tissues83,84. Data from a cohort 

study in Greece indicated that residential proximity to a major landfill was associated with lower 

neurodevelopmental scores in children, attributed to heavy metal exposure. The same study 

found that incinerators increase exposures to plasticizers like BPA and phthalates83. Children 

residing near hazardous waste generators and TSDFs have also experienced high rates of 

respiratory illness, speech and hearing impairments, sleep disorders, diminished academic 

performance, and neurological disorders6,78,85,86.  

Mining 

The Allegheny County of today exists because of its rich bituminous coal deposits. Coal demand 

has slowed down, but mines and processing facilities still operate.  

Coal has been mined in Allegheny County for over 300 years63. The area is riddled with 

Abandoned Mine Lands (AMLs), areas where coal was mined before the passage of the federal 

Surface Mining Control and Reclamation Act of 1977 (SMCRA). Prior to 1977, coal operations did 

not have to take measures to prevent the environmental and health impacts of mining. 

Furthermore, reclamation was not a required part of a mine’s life cycle. Vast swaths of land and 

waterbodies have been affected by the lack of regulation. Water is polluted by heavy metal 

leaching and acid mine drainage from underground mines, surface mines, and refuse piles. 

Open mine shafts, subsidence events, and unstable highwalls can lead to physical injury or 

death. Underground coal mine fires and burning refuse piles release particulate matter and toxic 

gases87.  

The Abandoned Mine Lands Program was established to rectify the serious threats AMLs pose to 

public health and safety. In Pennsylvania, the AML Program is administered by the Bureau of 

Abandoned Mine Reclamation under the purview of the federal Office of Surface Mining. There 



27 

 

are over 15,000 yet-to-be reclaimed mine hazards in Pennsylvania88. Children playing in or near 

AMLs are at increased risk of physical injury and exposure to toxic chemicals via ingestion, 

inhalation, and dermal contact. 

Since the passage of the SMCRA in 1977, coal mining operations have been regulated with a 

focus on public health, safety, and environmental protection. These are referred to as “modern 

mines” in comparison to AMLs87. However, the advent of new technologies and a deeper 

understanding of the far-reaching effects of coal mining have led to changes in the rules and 

regulations over the past 40 years. For example, Pennsylvania has long been concerned with 

polluting postmining discharge, especially acid mine drainage (AMD). The state began requiring 

permit applicants to prove their operation would not result in hazardous postmining discharge 

in the mid-1970s. Seventeen percent of the coal mines permitted between 1977 and 1983 later 

developed AMD, while only 2% of coal mines issued permits between 1987 and 1996 resulted in 

AMD89. Furthermore, acid drainage and heavy metal leaching are not restricted to mines; coal 

storage, coal refuse piles, and sedimentation and impound basins for coal ash can also 

contaminate soil and water. Coal dust is another significant contaminant. The reduction in AMD 

between the 1970s and 1990s reflects improvements in water science. Nevertheless, post-1977 

mines also pose a threat to public and environmental health and should be included in the CEHI. 

Air Quality 

Air pollution has both acute and chronic health effects that affect people across the 

demographic spectrum. There is a vast body of 

research concerned with children’s respiratory 

health. In the past century, advances in 

technology and scientific understanding have 

vastly improved air quality in many regions of 

the United States. By the middle of the 20th 

century, most large U.S. cities were commonly 

engulfed in smog; in some cases, the air quality 

was so poor that it led to illness and fatalities90. 

It became increasingly apparent that air 

pollution was harming human and 

environmental health, which in turn led to lost 

worker productivity, reduced agricultural yields, 

and additional economic impacts. In response to 

these events and pressure from the burgeoning environmental movement, the U.S. Congress 

and passed the Clean Air Act (CAA) and established the Environmental Protection Agency (EPA) 

in 197. Further revisions were made in 1977 and 199090. Under the CAA, the EPA established 

primary and secondary national ambient air quality standards (NAAQS) for “criteria air 

pollutants” (CAPs), designated as such because they are widespread and pose a threat to health 

and the environment91. As seen in Figure 6, there are six criteria air pollutants: particulate matter 

(PM2.5 and PM10), ground-level ozone (O3), lead (Pb), carbon monoxide (CO), nitrogen dioxide 

(NO2), and sulfur dioxide (SO2)
91. Primary standards aim to protect human health, while 

CAPs
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Figure 6: EPA Criteria Air Pollutants 
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secondary standards are set to protect public welfare from adverse side effects of CAPs such as 

property damage and loss of crops and livestock. Major sources of anthropogenic CAPs include 

on- and off-road transportation, industrial facilities, power plants, and machinery92.  

PM2.5  

Particulate matter is the term for small, suspended particles of solids and liquids in the 

atmosphere. The particles consist of organic materials, chemicals, acids, metals, and liquid 

droplets. Primary PM is the immediate result of an emission process, like smoke from a fire. 

Secondary PM can form when emitted gases like SO2, NOx, and VOCs condense into 

particulates93. There are natural and anthropogenic sources of PM, and the composition of the 

PM depends upon its source(s). Particles smaller than 2.5µm are called PM2.5. The most common 

sources of PM2.5 are combustion of fossil fuels (vehicles, industrial facilities, power plants, etc.) 

and other high-heat processes (smelting, coking, etc.). They can stay suspended in the 

atmosphere for days to weeks and travel 10 to 100 km. PM2.5 can be removed from the 

atmosphere via diffusion to surfaces, dry deposition, and rain94. These particles are fine enough 

to enter the alveoli in the lungs and, in some instances, can enter the bloodstream and cause 

systemic health effects93.  

Short-term exposure to PM2.5 has a variety of health effects: respiratory (exacerbation of asthma, 

chronic obstructive pulmonary disease (COPD), and combined respiratory diseases); 

cardiovascular (ED visits and hospital admissions for heart failure and ischemic heart disease, 

cardiovascular-related mortality); and nonaccidental mortality. There is less robust evidence 

suggesting potential causality between short-term exposure and effects on the metabolic, 

nervous, and reproductive systems94. 

Evidence indicates that long-term PM2.5 exposure has wide-ranging adverse effects: respiratory 

(decreased lung development, asthma development and prevalence in children); cardiovascular 

(cardiovascular mortality); nervous system (cognitive decline, dementia, changes in brain 

morphology); cancer (lung); and nonaccidental mortality. Further studies provide insufficient but 

suggestive evidence indicating potential causality between long-term PM2.5 exposure and 

impacts on the metabolic and reproductive systems94. 

The EPA’s 2019 Integrated Science Assessment (ISA) for Particulate Matter concludes there is 

adequate evidence “children are at increased risk for PM2.5-related health effects” compared to 

the general population. This is especially supported by numerous studies indicating associations 

between long-term PM2.5 exposure and decreased lung function growth, reduced lung function, 

and increased incidence of asthma development in children94. 

Ozone 

Ozone (O3) can be categorized into two types based on its location in the atmosphere. 

Stratospheric ozone occurs in the upper atmosphere and is responsible for protecting us from 

solar radiation; this is often referred to as the “ozone layer”95. Tropospheric, or ground-level 

ozone, is the type of concern. It is a secondary pollutant that forms in the air when sunlight 

reacts with nitrogen oxides (NOx) and VOCs96. The majority of NOx and VOC emissions in urban 

environments and industrial areas come from passenger vehicles, trucks, industrial facilities, and 
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power plants. Unfortunately, ozone-forming chemicals can travel long distances and impact 

areas many miles downwind of emitters. Because ozone formation requires sunlight, day-to-day 

levels are typically lowest in the morning; seasonal levels are typically highest in the summer. In 

Pennsylvania, “ozone season” is April 1 through September 30, peaking from June to August95.  

The health effects of ground-level ozone exposure are well-documented. Short-term exposure 

to O3 is associated with cough, wheezing, chest pain, inflammation, and reduced lung function. 

Exacerbation of asthma, bronchitis, and emphysema have been observed at ambient 

concentrations of ground-level ozone. Chronic exposure can lead to lung damage and may be a 

causal factor in the development of asthma in children92.  

Ambient levels of ozone have been associated with increased asthma symptoms, visits to the 

emergency department, and hospital admissions97-101. More pronounced effects have been 

observed in younger age groups (0-6 years; 1-4 and 5-12 years), but there is debate regarding 

the validity of asthma diagnoses in children younger than 4-5 years of age97,101. Age stratification 

aside, there is ample evidence supporting a causal relationship between ozone exposure and 

exacerbation of asthma and respiratory symptoms in children.  

Sulfur Dioxide 

Sulfur dioxide (SO2) is a gas that is mostly emitted by high-heat industrial processes and 

electricity generation via coal or sulfur-containing oil102. It is also naturally emitted by fires and 

volcanoes. Because it is the most common sulfur oxide in the atmosphere and has the most 

evidence of human health effects, SO2 is used as the indicator species to set the NAAQS for all 

SOx. Sulfur dioxide is a primary and secondary pollutant. Its primary form is the result of 

combustion, while the secondary form is atmospheric oxidation of sulfides103. The resulting 

sulfates are a component of PM2.5
104.  

Exposure to SO2 causes respiratory effects. The relationship is especially apparent with short-

term exposure, with many studies showing a positive association between short-term SO2 

exposures and asthma-driven ED visits and hospital admissions. The association is strongest in 

people with asthma, children, and older adults. Observable symptoms include wheezing, 

shortness of breath, and chest tightness92. A number of these studies controlled for co-pollutant 

confounding and saw little difference in the association. Evidence supporting a relationship 

between long-term SO2 exposure and respiratory effects is not as strong as that for short-term 

exposure, but results are suggestive of a causal relationship. Several studies indicate long-term 

exposure may lead to asthma development in children, but they did not control for co-pollutant 

confounding. Besides respiratory health, there is evidence suggestive of a causal relationship 

between short-term SO2 exposure and nonaccidental mortality. Further study is required to 

clarify the relationship103. 

The EPA’s 2017 Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria concludes 

that evidence is “suggestive of increased risk in children compared to adults”. The determination 

is based upon evidence from SO2 studies and toxicological data. Study results trend in support 

of increased risk, but there are enough studies finding the null hypothesis that the EPA cannot 
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definitively state that children are at increased risk of effects from SO2 exposure compared to 

adults103. 

Air Toxics 

In 1990, amendments to the Clean Air Act required the EPA to expand its oversight to almost 

190 chemicals classified as “hazardous air pollutants” (HAPs), also called air toxics. This list 

comprises chemicals known or suspected to have adverse effects on human health, carcinogenic 

or otherwise. They can be directly inhaled, but also enter our drinking water, soil, and food chain 

through deposition. Ultimately, the population can be exposed to HAPs via inhalation, ingestion, 

and dermal absorption. Examples of HAPs include benzene, mercury, and polychlorinated 

biphenyls (PCBs)90. In addition to establishing the general list of HAPs, the amended Clean Air 

Act directed the EPA to identify urban air toxics105. Unlike CAPs, HAPs do not have standards for 

ambient air concentration; they are required to meet industry-specific performance levels and 

maximum achievable control technology (MACT)106. 

Air toxics will be considered in several ways for the Allegheny County CEHI. First, the EPA’s Risk-

Screening Environmental Indicators (RSEI) will provide estimates of the air concentration of all 

industrial emissions listed on the Toxics Release Inventory (TRI). The TRI is an EPA database of 

facilities that handle at least one of over 700 chemicals that have been deemed toxic to human 

and environmental health. To qualify for TRI, a facility must meet three criteria: be federally 

owned/operated or in a TRI-reportable industry sector; have at least 10 full-time or equivalent 

employees; and handle a TRI-listed chemical in quantities above a specific threshold. TRI keeps 

annual facility-level records of the amounts of chemicals released on-site into the environment 

as well as quantities transferred off-site107. The RSEI consider the quantity of TRI chemical 

released, environmental modeling, chemical toxicity, exposure route and extent, and the 

affected population. The goal of the RSEI is to analyze the potential human health impact of 

chronic exposure to chemical releases from TRI-regulated industrial facilities. 

The second metric for air toxics is cancer risk from EPA’s 2014 National Air Toxics Assessment 

(NATA), which models the health effects of exposure to HAPs and diesel PM. The data originates 

as point stationary sources, nonpoint sources, mobile sources, and fires from the National 

Emissions Inventory (NEI), with supplementation from the TRI and other data sources as needed. 

It then goes through dispersion and complex exposure modeling. The latter uses the population 

at the census tract level, splitting it into six age groups: 0–1, 2–4, 5–15, 16–17, 18–64, and ≥65 

years of age. The focus on the young population indicates that age is an important variable in 

the exposure model52. As children have a longer latency period in which to develop cancer, the 

spatial variation in cancer risk is a valuable input for the CEHI. 

Traffic-Related Air Pollution 

Wherever there are motor vehicles, there is traffic-related air pollution (TRAP). Fossil fuel 

combustion in engines emits pollutants like NOx, ultrafine particles (UFP; PM with a diameter 

<0.1μm), CO, CO2, polycyclic aromatic hydrocarbons (PAHs), benzene, formaldehyde, and 

metals. Many primary pollutants are converted into secondary pollutants by photochemical 

reactions in the atmosphere. The composition of the emissions depends on the vehicle type, 

age, fuel, fluids, and maintenance status108. For example, a heavy-duty diesel truck and a 
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gasoline-powered sedan will emit many of the same pollutants, but in different proportions. 

Diesel fuel produces more PM, while gasoline produces more VOCs like benzene109. Asthma, 

wheeze, cardiopulmonary diseases, low birth weight, and some cancers have been associated 

with increased exposure to traffic pollution108.   

Concern about the health effects of TRAP on children has inspired numerous studies. One of the 

largest is the longitudinal Children’s Health Study at the University of Southern California (CHS), 

which has recruited thousands of schoolchildren living in southern California since 1992. The 

goal of the CHS was to learn about the relationship between ambient air pollution in 

communities and its effect on children’s respiratory health. Researchers recorded clinical 

respiratory data and levels of O3, NO2, PM10, PM2.5, and acid vapor. A 2017 review of TRAP and 

lung function in children found that early-life and pre-adolescent TRAP exposure negatively 

affected lung function. They were not able to identify conclusive evidence of health effects in 

subsets of the population, including gender, sensitization, and asthma status110.  A large-scale 

study of where children lived, traffic density, SES, and race in California found that low-income 

minority children were more likely to live in traffic-dense block groups than their White or 

higher-income counterparts69. 

There is ample evidence that roadway proximity is strongly associated with exposure to traffic 

emissions. Variations in fleet composition, wind conditions, geography, local weather, time of 

day, and noise barriers all influence TRAP measurements. The WHO’s Health Effects Institute 

Panel determined that the area 300–500m from a highway or arterial road had the highest 

concentration of TRAP108. Karner, et al. conducted a meta-analysis of over 40 near-roadway air 

pollution studies and calculated how high above the background concentrations individual 

TRAPs were at the edge of the road, and the approximate distance from the road at which 

TRAPs reached average background concentrations111. A selection of their results is provided in 

Table 2. 

Table 2: Excerpted summary of background normalized data. Karner, et al., 2010 

Pollutant Approximate multiplier above 

background concentration at 

edge-of-road 

Approximate distance 

required to reach background 

concentration (m) 

Benzene 2.1 280 

NO 3.3 565 

NO2  2.9 380 

NOx 1.8 570 

PM10  1.3 176 

 

Proximity to or density of traffic is a popular metric for determining population exposure to 

TRAP and its principal components. Based on the WHO and Karner studies, the buffer distance 

used to measure traffic density for the CEHI was set at 500 meters. 
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Air Pollution in Allegheny County 

Due to children’s susceptibility and the area’s industrial past and present, the Allegheny County 

CEHI is heavily focused upon air pollution. The Allegheny County Health Department (ACHD) Air 

Quality Program focuses on the following pollutants: ozone, particulate matter, carbon 

monoxide, lead, nitrogen dioxide, sulfur dioxide, hydrogen sulfide (H2S), benzo(a)pyrene (B(a)P), 

and over 30 HAPs. ACHD maintains 13 air monitoring sites around the county, four of which are 

located at public schools. Discussions of poor air quality readings often refer to measurements 

from Liberty, which consistently has high measurements of PM2.5, PM10, SO2, and benzene. It is 

located at South Allegheny High School, approximately 3 km downwind of the U.S. Steel (USS) 

Clairton Coke Works71. 

As of June 2021, the EPA Green Book notes that Allegheny County, in whole or in part, is in 

nonattainment of several criteria air pollutant standards. Details are provided in Table 3. 

Table 3: Allegheny County NAAQS Nonattainment, 2021112 

Pollutant NAAQS Location 

PM2.5 (1997) 15.0 µg/m3 (annual mean, averaged over 3 years) Liberty-Clairton, PA 

PM2.5 (2006) 15.0 µg/m3 (annual mean, averaged over 3 years) Liberty-Clairton, PA 

PM2.5 (2012) 12.0 μg/m3 (annual mean, averaged over 3 years) County-wide 

SO2 (2010) 75 ppb (99th percentile of 1-hour daily maximum 

concentrations, averaged over 3 years) 

Allegheny, PA 

8-Hour O3 (2008) 70 ppb (annual fourth-highest daily max 8-hour 

concentration, averaged over 3 years) 

Pittsburgh-Beaver Valley, PA 

 

A recent study examined the prevalence and control of asthma among 5- to 17-year-olds 

(n=1,202) who lived near sources of air pollution in Allegheny County, PA. The sources included 

steel works, coke works, a coal-fired power plant, and a major interstate junction. Pollutants 

examined included NOx, PM2.5, and individual components of PM2.5 (black carbon, potassium, 

sulfur, chromium, iron, silicon, and zinc). Over 70% of children were exposed to PM2.5 levels 

above the WHO-determined threshold of 10 ug/m3; the overall rate in the U.S. is 3.1%. PM2.5, 

NOx, sulfur, and zinc were significantly associated with the odds of asthma diagnosis. PM2.5, 

black carbon, and silicon were significantly associated with uncontrolled asthma. Within the 

study population, the prevalence of asthma was 22.5% and the rate of uncontrolled asthma was 

59.3%. Prevalence was higher in African American students as well as students with public health 

insurance, which was used as a proxy for socioeconomic status15. 
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APPLICATION 

Indicator Profiles 

❖ = Specific for Allegheny County 

CHILD POPULATION DENSITY 

Indicator Children (age 0-17) per square mile, by census tract 

Data Source U.S. Census Bureau 2015-2019 American Community Survey 5-Year Estimates, 

Table B01001 “Sex By Age” 

Method The only preparation required for this layer was calculating Pop_U18/SQ_MI. 

 

Population Density, People Under Age 18 
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POVERTY STATUS 

Indicator The percent of children under age 18 who live below the federal poverty level 

Data Source U.S. Census Bureau 2015-2019 American Community Survey 5-Year Estimates, 

Table S1701 “Poverty Status In The Past 12 Months” 

Poverty status is determined for the entire population except for 

institutionalized people, people in military group quarters, people in college 

dormitories, and unrelated individuals under 15 years old (foster children).  

Method This data required no pre-CEHI manipulation. 

 

Percent of Children Living Below the Federal Poverty Level (%) 
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MINORITY STATUS 

Indicator Percent of children (population under age 18) who are not categorized 

as “White Alone” 

Data Source U.S. Census Bureau 2015-2019 American Community Survey 5-Year 

Estimates, Table B01001A “Sex By Age (White Alone)”  

Method Data preparation entailed calculating the proportion of non-Hispanic 

White children and subtracting the value from 1 to produce the 

minority population proportion. 

 

Children in Ethnic or Racial Minority Groups (%) 
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LEAD-BASED PAINT 

In Allegheny County, 61.5% of homes were built before 1960. As of 2018, the ACHD requires a 

blood lead level test for infants aged 9-12 months, and a second test at 24 months. The county 

provides free screening to under- or uninsured children. In 2019, 1.8% of children tested in 

Allegheny County had blood lead levels (BLLs) above 5µg/dL113. 

Indicator Percent of homes built before 1960 

Data Source U.S. Census Bureau’s American Community Survey 2015-2019 Five-Year 

Estimates, Table DP04 “Selected Housing Characteristics” 

Method Data preparation entailed calculating the % of homes built before 1960. 

   

Percent of Houses Built Before 1960 
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PM2.5  

The American Lung Association’s annual “State of the Air” report examines levels of ozone, 

short-term PM2.5, and long-term PM2.5 over a three-year period for counties and metro areas, 

and then issues report cards for each. Allegheny County received a failing grade for all three 

metrics, and the Pittsburgh-New Castle-Weirton metro area was ranked 9th out of 199 metro 

areas in the nation for worst annual PM2.5. The recorded levels of O3 and PM2.5 in the region have 

improved, but the risk of exposure is still higher than most places in the U.S114. 

Indicator Annual Average PM2.5 concentration in micrograms per cubic meter 

(μg/m3) 

NAAQS 12.0 μg/m3 (annual mean, averaged over 3 years) 

Data Source U.S. EPA EJSCREEN 2020; PM2.5 concentrations are based on monitoring 

and modeling estimates from 2017115. 

Method The PM2.5 data required no pre-CEHI manipulation. 
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Annual Average PM2.5 Concentration (μg/m3), 2017 

 

 

OZONE 

Indicator  The May–September average of daily-maximum 8-hour-average ozone 

concentrations, in parts per billion (ppb).  

NAAQS 0.070 ppm (annual fourth-highest daily max 8-hour concentration 

averaged over 3 years) 

Data Source U.S. EPA EJSCREEN 2020; O3 concentrations are based on monitoring 

and modeling estimates from 2017115. 

Method The Ozone data required no pre-CEHI manipulation. 
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8-hour Average Concentrations of Ozone (ppb), 2017 

 

 

TOXIC AIR RELEASES ❖ 

Indicator Toxicity-weighted concentration* of all TRI air releases, µg/m3, 2017-

2019  

*Concentration of chemical multiplied by its inhalation toxicity weight 

(reference concentration (RfC) or inhalation unit risk (IUR)), summed over 

all chemicals impacting each 810mx810m cell. 

Data Source U.S. EPA’s Risk-Screening Environmental Indicators for 2017-2019 

Aggregated Geographic Microdata 
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Method RSEI results are derived from TRI-reporting industrial point-sources. Air 

releases are classified as “stack” (point-source) or “fugitive” (areal). 

Chemical concentrations in the air are modeled up to 49km away from 

each facility. They are modeled using a steady-state Gaussian plume 

model that estimates chemical concentrations downwind of the source. 

When available, the model incorporates facility-specific details like stack 

height, diameter, and exit-gas velocity. Meteorologic data is a key 

component of the model53.  

The RSEI geographic microdata (RSEI-GM) enables mapping of TRI air 

releases, including concentrations, toxicity-weighted concentrations, 

and RSEI Scores. The data is stored in an 810m x 810m grid that covers 

the U.S.  

The RSEI-GM were translated from grids to census tracts in ArcGIS Pro 

using polygon apportionment. Once the grid has been converted to 

census tracts, the most viable metric is the TWC (µg/m3) of all TRI 

chemicals in the air. The toxicity-weighted concentration (TWC) reflects 

the industrial air toxics burden in an area, irrespective of population. 

While population size and density are important, they are accounted for 

in other indicators.  

The most notable limitation for Allegheny County is that the model 

assumes flat terrain53. As previously discussed, the area’s geography 

contributes to the severity of its air pollution. 
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Toxicity-Weighted Concentration of TRI Emissions (μg/m3) 

 

 

 

SULFUR DIOXIDE ❖ 

Indicator Tons of SO2 emitted within a 5-mile radius of a tract’s population 

center, 2017 

NAAQS 75 ppb (99th percentile of 1-hour daily maximum concentrations, 

averaged over 3 years) 

Data Source Point-source facilities from the 2017 National Emissions Inventory (NEI), 

U.S. EPA Office of Air Quality Planning and Standards (OAQPS). The NEI 

is assembled from several data sources, with priority given to 
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state/local/tribal emissions data. Gaps are filled in by EPA data sources 

like the Toxic Release Inventory. 

Method Five-kilometer buffers were generated around the population-weighted 

centroid of each census tract. The buffer distance was selected based 

on observations of point-source SO2 dispersion and concentrations103. 

All point-sources that fell within a buffer were summarized, yielding the 

total tons of SO2 emitted within a 5-mile radius of the population 

center of the tract. 

   

SO2 Emissions (TPY) within 5km by Census Tract, 2017 
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TRAFFIC-RELATED AIR POLLUTION 

Indicator Census tract traffic density: vehicle miles traveled per day per 

square mile (VMT/day/mi2) 

Data Source Pennsylvania Department of Transportation (PennDOT) 

Method Results from Karner, et al. and the WHO provided justification for a 

500-meter buffer around census tracts to account for the edge-of-road 

dispersion of TRAP108,111. 

Traffic density was calculated using methods discussed by Liu, et al.116:  

Traffic Density (TD) =∑(L×AADT)/AB  

Where L is the summed length of roads within the tract, AADT is the 

summed annual average daily traffic for those roads, and AB is the area 

of the buffered tract. TD is expressed as vehicle miles traveled per day 

per square mile (VMT/day/mi2). 

Traffic density within the buffered census tract was selected as the 

traffic-related metric because it is straightforward and easy to calculate. 

It does not consider population or its distribution.  
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Traffic Density by Census Tract (VMT/day/mi2) 

 

 

NATA CANCER RISK 

Indicator Lifetime cancer risk on an “in a million” basis due to outdoor air toxics 

Data Source U.S. EPA’s 2014 National Air Toxics Assessment (NATA)  

Method The NATA data required no pre-CEHI manipulation. 

Details on the modeling used to determine NATA values can be found 

in the 2014 NATA Technical Documentation52. 
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Lifetime Cancer Risk (in a million) due to Air Toxics, 2014 

 

 

HAZARDOUS WASTE 

Indicator Number of hazardous waste sources within 1 km of the average tract 

resident 

Data Source PA Department of Environmental Protection: Captive Hazardous Waste 

Operation (SUB_FACI_2 <> 'HAZARDOUS GENERATOR CAPTIVE') 

U.S. EPA: Superfund sites, RCRA LQG, RCRA TSD, Leaking USTs 

Method This employed the general Proximity methods outlined earlier. 
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Number of Hazardous Waste Sources within 

 1 km of the Average Tract Resident 

 

 

 

ABANDONED MINE LANDS ❖ 

Indicator Number of AMLs within 1 km of the average tract resident 

Data Source PA Department of Environmental Protection, Abandoned Mine Lands 

polygons 

Method This employed the general Proximity methods outlined earlier. 
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Number of Abandoned Mine Lands within 1 km  

of the Average Tract Resident 

 

 

COAL MINING OPERATIONS ❖ 

Indicator Number of coal mining operations within 1 km of the average tract 
resident 

Data Source PA Department of Environmental Protection, Coal Mining Operations 

points 

Method This employed the general Proximity methods outlined earlier. 
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Number of Coal Mining Operations within 1 km  

of the Average Tract Resident 
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The Allegheny County CEHI 

Of the 402 census tracts in Allegheny County, 394 had the population data needed to calculate 

CEHI scores with all 13 indicators. A summary of CEHI statistics is provided in Table 4. 

Table 4: Summary of CEHI scores and disparities 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 0.079 
Selected Proportion (Extreme 

Areas) 
0.200 

Standard Deviation 0.035 10th percentile 0.036 

Minimum 0.017 90th percentile 0.127 

10th Percentile 0.036 
Mean CEHI for bottom 

extreme group 
0.030 

Median 0.077 
Mean CEHI for top extreme 

group 
0.148 

90th percentile 0.127 
 

Maximum 0.217 

 

In Figure 7, blue areas are the least adversely affected by the CEHI indicators. Red areas bear the 

highest burden. 
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Figure 7: The Allegheny County CEHI 
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Figure 8 plots census 

tract CEHI ranks against 

values. The health 

disparities ratio is 4.896, 

indicating a high 

disparity between the 

top 10% (blue) and 

bottom 10% (red) of 

census tracts. The 

Disparity Slope, which is 

the slope of the middle 

80% of the data, reflects 

the heterogeneity of the 

grouping. The Disparity 

Slope in Allegheny 

County is 0.081. The 

Health Disparities 

Difference is 0.118. 

Variations on the CEHI 

After the full 13-indicator CEHI was calculated, several variations were explored. The variations 

and their indicators are shown in Table 5. 

 

Table 5: CEHI Variations and Indicators 

 
Full 

CEHI 

No Social 

Vulnerability 

No 

Population 

No Local 

Variables 

Local 

Variables 

Only 

Local 

Variables 

+ SV 

Hazardous Waste X X X X    

Coal Mining X X X   X X 

AMLs X X X   X X 

SO2 Emissions X X X   X X 

Minority Children X     X   X 

Child Pop. Density X X   X  X X 

Pre-1960 Homes X X   X     

Children in 

Poverty 
X     X   X  

Traffic Density X X X X     

Figure 8: Distribution of CEHI for 394 census tracts in Allegheny County. 
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RSEI Industrial 

Emissions 
X X X  X  X  

Mean PM2.5 X X X X    

Mean Ozone X X X X    

Air Toxics Cancer 

Risk 
X X X  X   

 

 

CEHI: Without Social Vulnerability Indicators 

The second calculation of the CEHI omitted minority status and poverty status for a total of 11 

indicators. Child population density and homes built before 1960 were included, so the number 

of census tracts was still limited to 394. A summary of CEHI statistics without social vulnerability 

indicators is provided in Table 6. A map of the results is shown in Figure 9. 

Table 6: Summary of CEHI scores and disparities without social vulnerability indicators 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 0.072 
Selected Proportion (Extreme 

Areas) 
0.200 

Standard Deviation 0.027 10th percentile 0.038 

Minimum 0.017 90th percentile 0.112 

10th Percentile 0.038 
Mean CEHI for bottom extreme 

group 
0.030 

Median 0.072 
Mean CEHI for top extreme 

group 
0.125 

90th percentile 0.112 
 

Maximum 0.181 

 

The Health Disparities Ratio decreased to 4.195. The Health Disparities Difference was 0.095, and 

the slope was 0.057. 
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Figure 9: The Allegheny County CEHI without social vulnerability indicators 

 

CEHI: Without Population Indicators 

The third calculation omitted the population indicators sourced from the Census Bureau: 

minority status, poverty status, and child population density, for a total of 10 indicators. The 

percent of houses built before 1960 was changed from <null> to zero in the eight tracts with no 

population so it could be included. This expanded the analysis to all 402 census tracts. A 

summary of CEHI statistics without population indicators is provided in Table 7. A map of the 

results is shown in Figure 10. 

Table 7: Summary of CEHI scores and disparities without population indicators 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 0.066 
Selected Proportion (Extreme 

Areas) 
0.200 
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Standard Deviation 0.026 10th percentile 0.035 

Minimum 0.017 90th percentile 0.106 

10th Percentile 0.035 
Mean CEHI for bottom extreme 

group 
0.028 

Median 0.064 
Mean CEHI for top extreme 

group 
0.121 

90th percentile 0.106 
 

Maximum 0.166 

 

The Health Disparities Ratio decreased to 4.245. The Health Disparities Difference was 0.092, and 

the slope was 0.057. 

 

 

Figure 10: The Allegheny County CEHI without population indicators 
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CEHI: Without Local Indicators 

The fourth calculation omitted the indicators chosen to reflect Allegheny County: coal mine 

proximity, AML proximity, SO2 emissions, and RSEI industrial emissions. 394 of 402 tracts were 

included. A summary of CEHI statistics without local indicators is provided in Table 8. A map of 

the results is shown in Figure 11. 

Table 8: Summary of CEHI scores and disparities without local indicators 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 0.167 
Selected Proportion (Extreme 

Areas) 
0.200 

Standard Deviation 0.082 10th percentile 0.065 

Minimum 0.022 90th percentile 0.283 

10th Percentile 0.065 
Mean CEHI for bottom extreme 

group 
0.049 

Median 0.156 
Mean CEHI for top extreme 

group 
0.319 

90th percentile 0.283 
 

Maximum 0.435 

 

The Health Disparities Ratio increased to 6.56. The Health Disparities Difference was 0.270, and 

the slope was 0.205. 
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Figure 11: The Allegheny County CEHI without local indicators 

 

CEHI: Local Indicators Only 

The fifth calculation only included the child population density as well as the indicators chosen 

to reflect Allegheny County: coal mine proximity, AML proximity, SO2 emissions, and RSEI 

industrial emissions. Omitting the more general indicators will highlight areas that are uniquely 

impacted by local environmental health concerns. 394 of 402 tracts were included. A summary 

of CEHI statistics with local indicators only is provided in Table 9. A map of the results is shown 

in Figure 12. 

Table 9: Summary of CEHI scores and disparities with local indicators only 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 
0.028 

Selected Proportion (Extreme 

Areas) 0.200 
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Standard Deviation 0.020 10th percentile 0.011 

Minimum 0.005 90th percentile 0.062 

10th Percentile 
0.011 

Mean CEHI for bottom extreme 

group 0.009 

Median 
0.021 

Mean CEHI for top extreme 

group 0.076 

90th percentile 0.062 
 

Maximum 0.133 

 

The Health Disparities Ratio increased to 8.233. The Health Disparities Difference was 0.067, and 

the slope was 0.034. 

 

 

Figure 12: The Allegheny County CEHI with local indicators only 
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CEHI: Local Indicators and Social Vulnerability 

The sixth variation included the local indicators, child population density, minority children, and 

children in poverty for a total of seven indicators. 394 of 402 tracts were included. A summary of 

CEHI statistics without local indicators and social vulnerability is provided in Table 10. A map of 

the results is shown in Figure 13. 

Table 10: Summary of CEHI scores and disparities with local and social vulnerability indicators 

CEHI Summary Statistics  CEHI Disparities and Inequalities 

Mean 
0.045 

Selected Proportion (Extreme 

Areas) 0.200 

Standard Deviation 0.031 10th percentile 0.016 

Minimum 0.005 90th percentile 0.089 

10th Percentile 
0.016 

Mean CEHI for bottom extreme 

group 0.011 

Median 
0.037 

Mean CEHI for top extreme 

group 0.118 

90th percentile 0.089 
 

Maximum 0.205 

 

The Health Disparities Ratio increased to 10.331. The Health Disparities Difference was 0.107, 

and the slope was 0.056. 
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Figure 13: The Allegheny County CEHI with local and social vulnerability indicators 

 

Web App Development 

The CEHI is meant to be shared. Advances in online mapping software have made it easier than 

ever to translate findings to browser-based GIS web applications. The industry leader is Esri, 

which produces ArcGIS Online (AGOL). The AGOL web platform is integrated with their desktop 

applications ArcMap and ArcGIS Pro. This integration allows users to upload maps and layers to 

AGOL from their desktop, as well as access their web layers and thousands of others, many of 

which are released by reputable, verifiable sources36.  

A drawback of ArcMap and ArcGIS Pro is the considerable cost, computing power, and 

specialization required to use them to their full extent. Reduced-cost licenses are available for 

nonprofit organizations, small governments, and schools117-119. Free ArcGIS Online accounts are 

available to those who wish to create web applications using premade layers or GIS data from 



60 

 

open-source software like QGIS. Free accounts do not have the full capabilities of the paid 

version, but users can still upload data, access verified premade layers, and create basic web 

applications. 

The Allegheny County CEHI web app contains the layers outlined in Table 11. Ideally, the CEHI 

would be presented as a package containing links to a web map containing nationally available 

web layers that can be used in the app, imported into ArcGIS Pro, and downloaded as shapefiles 

for those using non-Esri software. To reduce barriers to app creation, a template of the app 

would also be available. Users will only have to add their own customizations. 

 

Table 11: Layers included in CEHI web application. Those in blue could be provided as out-of-the-box layers 

that are available nationwide. 

CEHI Index NEI emitters, symbolized by SO2 

A layer for each indicator EPA NAAQS nonattainment areas 

Layers with basic demographics PADEP hazardous waste sites 

Roads with annual average daily traffic (AADT) Leaking underground storage tanks  

Schools & daycares Mines 

School districts AMLs 

Parks Superfund sites 

Airports EPA Facility Registry Service (updated weekly) 

Railroads Air Quality Index (updated daily) 

Public transit Impaired waterways 

 

The CEHI web app is a source of information – not opinion. Data should be presented clearly, 

without bias or commentary. The language should be easy to understand. Pop-ups within the 

map should be well-formatted and any graphs should be simple to interpret. An “About” button 

or splash page can provide the user with basic information on how to navigate the app, as well 

as link to the organization’s website and/or a user guide. These steps take time and effort, but 

they are essential to the web app’s success. Figure 14 illustrates these concepts. 
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Figure 14: Basic user interface of the CEHI web app 

Interactivity goes beyond clicking on features to see attribute information. Users can query the 

data and gain deeper perspective of local relationships. For example, a resident of the area can 

search their home address and find out if there are any Superfund sites within 3 miles of their 

house.  

The app was designed with considerations of user experience, 
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RESULTS 

Observations 

The six variations of the Allegheny County CEHI illustrate the ways in which the various 

indicators influence the outcome. Spatial autocorrelation was assessed with Global Moran’s I. All 

six CEHIs had statistically significant clustering (p=0.000); the weakest clustering was observed in 

CEHI D (no local indicators), while the strongest clustering was observed in CEHI C (no 

population indicators).  

A visualization of the six CEHIs (Figure 15) shows clear differences. The most striking difference 

is seen between CEHI D and CEHI E – no local indicators versus only local indicators. The only 

indicator they have in common is child population density. CEHI E is limited to the indicators 

chosen specifically for Allegheny County (coal mine proximity, AML proximity, industrial air 

emissions, and SO2 emissions). CEHI D contains the indicators that could be applied to most 

communities – all except the four in CEHI E. A side-by-side comparison of D and E suggests that 

the downtown Pittsburgh area is not heavily impacted by the environmental hazards specific to 

Allegheny County. Conversely, the areas most affected by local environmental exposures are 

outside the city center and extend to the periphery of the county. Taken separately, neither D 

nor E adequately capture the full spectrum of the environmental health threats that local 

children face. 



63 

 

The area that consistently displays the highest index score – and therefore the worst 

environmental health conditions for children – is southeast of Pittsburgh in the Mon Valley. 

Nineteen of the twenty census tracts at the bottom of the CEHI rankings are in that area. A 2019 

investigation by the Pittsburgh Post-Gazette found seven municipalities in Allegheny County 

where half of children live in poverty120. North Braddock, Rankin, Duquesne, McKeesport, and 

Clairton are directly on the Monongahela River; Mount Oliver and Wilmerding are less than 2 

miles away. Six of the seven contain census tracts in the bottom 10% of CEHI scores. Four of the 

top ten TRI emitters in the county are located in these communities: U.S. Steel Clairton Coke 

Works, Thermal Transfer Corp., Holtec Manufacturing, and U.S. Steel Edgar Thomson Plant. 

Clairton Coke Works is the largest coke manufacturing facility in the U.S121. The facility is one of 

the most consistent violators of emissions standards in the county: between 2009 and 2016, U.S. 

Steel paid over $3.9 million to the ACHD as penalties for emissions violations122. ACHD issued a 

further $3.5 million in fines between 2018 and Q1 2020123. Between February 2020 and March 

2021, the ACHD recorded 32 exceedances of the county air quality standard for H2S at the 

Clairton Coke Works124. The Clairton area is the only portion of the county that is in 

nonattainment for SO2 NAAQS112. U.S. Steel’s Edgar Thomson Plant, Clairton Coke Works, and 

Irvin Plant are all located in the Mon Valley. 

 

Figure 15: Six versions of the CEHI and their Moran’s Index scores (range -1.0 to +1.0): A. Full (I= 0.653), B. Without social 

vulnerability (I= 0.697), C. Without population (I= 0.706), D. Without local indicators (I= 0.603), E. With local indicators only 

(I=0.676), F. Local and social vulnerability indicators (I= 0.621) 



64 

 

The Anselin Local Moran’s I 

cluster-outlier analysis in 

Figure 16 visualizes the 

statistical significance 

(p=0.005) of this trend using 

the 13 original indicators. 

High-High clusters are high 

values surrounded by other 

high values, while Low-Low 

clusters are low values 

surrounded by other low 

values. High-Low and Low-

High classifications are applied 

to census tracts that are spatial 

outliers. The large High-High 

cluster in the Mon Valley and 

surrounding areas indicates 

that children in the region may 

be at a statistically significant 

disadvantage concerning 

environmental health 

exposures compared to children in other parts of the county. The area should be prioritized for 

public health surveillance and interventions. 

Figure 16: Anselin Local Moran's I Cluster-Outlier Analysis for the full 

CEHI 
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DISCUSSION 

Adapting the CEHI for Other Small Areas  

The Allegheny County case study showed us that local indicators are key to building an 

environmental health index that accurately reflects environmental disparities in a community. If 

the CEHI had limited the indicators to those that could be applied on a more universal scale, the 

result would have missed the significant exposures from Allegheny County’s local industries.    

Only at small-scale geographies can we adapt an index score to a specific community’s 

concerns. Every community is different, and every local iteration of the CEHI should reflect that. 

While the local indicators in Allegheny County were focused on industrial byproducts, an 

agricultural community may wish to focus on pesticide drift and drinking water contamination 

from livestock. One must also recognize that hazards come in different forms. For example, the 

public health crisis in Flint, Michigan was the result of lead leaching into drinking water125. 

Meanwhile, soil is the source of lead exposures at the USS Lead smelter Superfund site in East 

Chicago, Indiana126. These two communities may choose different indicators of lead exposure to 

best reflect the most dominant exposure routes and environmental media in their area. When 

considering the population, indicator selection should reflect the people most at risk in the area. 

While the Allegheny County CEHI defined poverty as living below the federal poverty line, 

another project may benefit from a different cutoff point. Furthermore, a community with 

significant exposures to developmental toxicants like lead may wish to concentrate on a smaller 

age group than all children under age 18. CEHIs in Flint and East Chicago would likely consider 

focusing on children under age six.  

The groups most likely to implement the CEHI are those with ties to the community of interest 

and enough resources to put it into action. These include county or municipal governments, 

universities, and large community organizations. 

The anticipated audience for the CEHI includes members of local government, businesses, 

residents, and community organizations. The audience depends on the intended use of the 

CEHI. It could be limited to a restricted tool used by public health professionals, environmental 

scientists, and private stakeholders to identify areas that require further investigation. It may be 

leveraged as a public communication tool to keep the community informed. In an ideal 

situation, it would be used for both. 

 

Strengths & Limitations 

The Allegheny County CEHI illustrates the value of small-scale indices that incorporate local 

factors. As opposed to more generalized environmental health indices that cover large 

geographic areas and focus on the entire population, the CEHI targets a specific vulnerable 

population – children. The CEHI is also customizable; only at small-scale geographies can we 

adapt an index score to a specific community’s concerns. An additional benefit is that the 

analysis behind the indicators can be as simple or as complex as the developers wish. There are 
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numerous out-of-the-box layers that do not require any manipulation. The cost of software is 

not a barrier. It is possible to calculate the CEHI using a proprietary software like ArcGIS, or use a 

free open-source program like QGIS.  

The CEHI is not without limitations:  

• Indicator selection is partially determined by data availability. 

• Software may have a steep learning curve. 

• All geographic data should not be assumed accurate. Point locations and important 

attributes should be verified through a QA process. 

• Hazardous facilities often report to multiple state and federal programs. Overlap 

between GIS data layers is likely and could lead to exaggerated density of facilities.  

• Conversely, a single program inventory may not contain all relevant facilities. For 

example, the TRI does not contain all facilities that produce, use, store, or dispose of 

hazardous substances107. 

• Data is from different years, ranging from 2014 to 2021. All demographic indicators had 

a common source to ensure consistent population measures. This cannot be guaranteed 

for other data. 

• Correlations among indicators were not assessed. 

• Indicators were selected without community input. 

These limitations should be addressed in a full-scale implementation of the CEHI. 

 

Conclusions and Future Uses 

As evidenced by the Allegheny County case study, constructing an environmental health index 

focused on children’s health can yield compelling results that reflect the ways in which social 

environments, environmental exposures, and physiological vulnerabilities interact. As opposed 

to more generalized environmental health indices that cover large geographic areas and focus 

on the entire population, the CEHI is tailored to one of our most vulnerable populations: 

children.  

The indicator selection process should be driven by public health professionals, subject matter 

experts, and diverse stakeholders who live or work in the local area. The lead organization 

should meet with and gather insight from the community at the outset. Academic institutions 

with relevant research may be willing to share data or lessons learned. Schools and parents may 

consent to data collection15. If the Allegheny County Health Department piloted the CEHI, they 

would be able to consult with large non-governmental organizations like the Breathe 

Collaborative as well as advocacy groups and local universities.  

The CEHI does not have to be limited to census-defined geographies or the entire child 

population. An alternative analysis would use school districts instead of census tracts or block 

groups. Children both live and go to school in their district, so district-level analysis can provide 

a more complete portrait of a child’s exposome. For example, exposure to high levels of vehicle 

emissions could be assessed using the proximity of schools and daycares to major roads. School 
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administrators can use the School District CEHI to expand their understanding of their student 

body and provide programs and services accordingly. This approach to the CEHI would only be 

viable in areas with high population density and numerous municipalities; otherwise, a school 

district may be an entire county. 

Prenatal exposures are a significant subset of children’s environmental health2. In order to identify 

areas of increased exposure to reproductive and developmental toxicants, as well as other 

determinants of infant health, an adapted CEHI could focus on teratogenic exposures, low birth 

weights, maternal and infant mortality, and access to obstetric care. In this instance, the base 

population for the CEHI would be women within a predetermined reproductive age range.  

The Children’s Environmental Health Index is defined by two things: place and population. It is 

designed to reflect the ways in which local environmental exposures impact the local child 

population. It is flexible enough to accommodate a wide variety of environmental concerns and, 

in turn, a wide variety of communities. A comprehensive user guide, data package, and web app 

template will reduce the barriers to deployment. To build a diverse set of examples and gather 

additional evidence, future CEHI pilot projects should explore communities whose predominant 

sources of exposure differ from those observed in Allegheny County. 
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Appendix A. Additional Indicators of Interest 

What follows are brief outlines of additional indicators that were considered but not used in the 

Allegheny County CEHI. 

Additional Indicators 

Elevation 

Areal topography and elevation can significantly influence the concentration and persistence of 

air pollution53. As noted earlier, Allegheny County’s Mon Valley has experienced inversions that 

lasted for days and exposed the population to dangerous levels of pollutants. 

Endocrine-Disrupting Chemicals 

There is increasing concern around exposure to hormone-disrupting chemicals like 

polychlorinated biphenyls (PCBs), dioxins, and dichloro-diphenyl-trichloroethane (DDT), which 

have been linked to issues with reproduction, immune function, neurodevelopment, and growth7. 

Greenspace  

Low-income children have less access to green space than their higher-income counterparts. The 

play areas that are available to them are consistently rated as more hazardous than those in 

higher-income neighborhoods32. The health benefits of urban green spaces are well-documented. 

Urban residents with access to public green spaces have better physical and mental health 

outcomes127. These benefits are due in part to factors including reduced air pollution and noise, 

increased opportunities for physical activity, higher rates of social interaction, and the soothing 

effects of being in an aesthetically pleasing environment128. 

Exposure to Environmental Tobacco Smoke 

A child’s inability to control their environment is the source of one of the most significant threats 

to their health: environmental tobacco smoke (ETS), often referred to as secondhand smoke. Many 

places in the U.S. have banned smoking in public places, making the home the greatest source of 

ETS16. Nonsmokers living with smokers are exposed to enough ETS to have measurable levels of 

cotinine, a biomarker of ETS exposure, in their bodily fluids. There is a significant association 

between pediatric asthma development and parental smoking19. Children who already have 

asthma will experience exacerbated symptoms. In addition to respiratory effects, secondhand 

smoke is a risk factor for sudden infant death syndrome and is classified as a carcinogen16. 

There is no federal-level data on parental smoking for small-area geographies or secondhand 

smoke. Allegheny County has a census-tract level dataset of adult smoking rates, but it was 

developed from a model that did not use any data collected specifically for Allegheny County. 

Diesel Particulate Matter 

Diesel engine exhaust consists of gases and particles. The particulate matter is primarily composed 

of organic carbon materials, polycyclic aromatic hydrocarbons (PAHs), and trace metals. The 

gaseous portion contains CO2, CO, NOx, Sox, benzene, formaldehyde, acrolein, and hydrocarbons 

(including PAHs). Diesel emissions are approximately 200 times above the EPA’s one-in-a-million 

cancer risk threshold. The International Agency for Research on Cancer (IARC) has classified diesel 
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engine exhaust as carcinogenic for humans: it is a cause of lung cancer and is positively associated 

with bladder cancer 93. 
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