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SPARSE CODING FOR EVENT TRACKING AND IMAGE RETRIEVAL

by

DUSTIN KEMPTON

Under the Direction of Rafal Angryk, PhD

ABSTRACT
Comparing regions of images is a fundamental task in both similarity based object

tracking as well as retrieval of images from image datasets, where an exemplar image

is used as the query. In this thesis, we focus on the task of creating a method of

comparison for images produced by NASA’s Solar Dynamic Observatory mission. This

mission has been in operation for several years and produces almost 700 Gigabytes

of data per day from the Atmospheric Imaging Assembly instrument alone. This has

created a massive repository of high-quality solar images to analyze and categorize.

To this end, we are concerned with the creation of image region descriptors that are

selective enough to differentiate between highly similar images yet compact enough to

be compared in an efficient manner, while also being indexable with current indexing

technology. We produce such descriptors by pooling sparse coding vectors produced

by spanning learned basis dictionaries. Various pooled vectors are used to describe

regions of images in event tracking, entire image descriptors for image comparison in

content based image retrieval, and as region descriptors to be used in a content based

image retrieval system on the SDO AIA image pipeline.
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1 INTRODUCTION

Comparing regions of images is a fundamental task in both similarity based object track-

ing and retrieval of images from image datasets by using an exemplar as the query,

commonly called Content Based Image Retrieval. The process of tracking multiple ob-

jects in video data can be described as a task of linking detections over time into the most

likely trajectories, based on a model of likelihood. The likelihood calculation generally

includes the prior probability of the presence of the target (object being tracked), and

how likely the detection is to be a false detection. Additionally, the likelihood calcula-

tion generally includes several methods of comparing similarity between the potential

detections in a particular path [1], including visual similarity. In Content Based Image

Retrieval, a task that is frequently performed is the k-nearest neighbor (kNN) search, in

which the database is queried for the k most similar records to any given query point.

Indexing the data is often used for efficient retrieval in such queries. However, most in-

dexing techniques degrade quickly as the number of dimensions increase [2], and even

state of the art high-dimensional indexing techniques perform no better than performing

a sequential scan beyond 256 dimensions [3].

The focus of this thesis is to create methods of comparing image regions from in-

struments on NASA’s Solar Dynamic Observatory (SDO) mission. We will focus on

one of the crucial remaining steps needed to create an image retrieval system for this

large, and growing, dataset. Specifically, we are concerned with the creation of image

region descriptors that are both selective enough to differentiate between highly similar

images, and compact enough to be indexed using current indexing techniques. As the

ground work for these region descriptors, we present our current contributions of utiliz-

ing sparse coding for creating descriptors for regions of images used in event tracking,

1



and for the creation of a selective entire-image descriptor used to compare entire images

for content based image retrieval. These use cases are steps towards our final goal of

building and analyzing region descriptors for a content based image retrieval system on

the SDO AIA image pipeline.

1.1 Motivation

In February 2010, NASA launched the Solar Dynamics Observatory, the first mission of

NASA’s Living with a Star program, which is a long term project dedicated to the study

of the Sun and its impacts on human life [4]. The SDO mission is an invaluable instru-

ment for researching solar activity which can produce damaging space weather. This

space weather activity can have drastic impacts on space and air travel, power grids,

GPS, and communications satellites [5]. For example, in March of 1989, geomagneti-

cally induced currents, produced when charged particles from a coronal mass ejection

impacted the earth’s atmosphere, caused power blackouts and direct costs of tens of

millions of dollars to the electric utility “Hydro-Qubec”, due to equipment damage and

lost sales [6]. If a similar event would have happened during the summer months, it is

estimated that it would likely have produced widespread blackouts in the northeastern

United States, causing an economic impact in the billions of dollars [6].

The SDO represents a new frontier in quantity and quality of solar data, with approxi-

mately 70,000 full disk, high-resolution (4096 by 4096 pixel) images of the Sun per day. In

total, the SDO produces about 1.5 TB per day, or about 0.55 PB of data per year, and has

already produced more data than all previous solar data archives combined [7, 8]. This

data is collected by three independent instruments on the satellite: the Extreme Ultravi-

olet Variable Experiment (EVE), which takes measurements of the spectral distribution

of extreme ultraviolet radiation propagating from the sun [9], the Helioseismic and Mag-

netic Imager (HMI), which captures the motion of the sun’s surface and measures the

surface magnetic field [10], and the Atmospheric Imaging Assembly (AIA), which cap-
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Figure 1.1: Visualization of the layers of the Sun through various SDO data and metadata. Cour-
tesy of NASA/SDO and the AIA, EVE, and HMI science teams.

tures full-disk images of the sun in ten separate electromagnetic wavelength bands across

the visual and ultra-violet spectra, each selected to highlight specific elements of known

solar activity [11]. An example of how these various wavelengths represent different

layers of the Sun is shown in Figure 1.1, which also includes extrapolated magnetic field

lines on the rightmost slice.

There have been previous explorations of creating content based image retrieval sys-

tems for this dataset, which focused on retrieval of similar entire images [12]. There were

later updates that started to explore region retrieval [13, 14]. However, the retrieval was

limited to only comparing labeled regions, and was implemented with lookup tables of

precomputed nearest neighbors. This approach did not lend itself to use on constantly

growing datasets, nor for the querying of regions that were outside of the labeled sub-

set. These previous works utilized 10 different texture-based image parameters that have

been calculated and stored for images at a 6 minute cadence. These parameters were cho-

sen because of their ability to be quickly calculated and their demonstrated usefulness

on images of similar structure, such as medical X-rays [15]. These image parameters are

3



Figure 1.2: Sequence of two tracked Coronal Holes over five reporting times.

utilized, instead of the original images, because the storage of the original image data

has rapidly become both computationally prohibitive and costly for on site processing.

This is due to the fact that the AIA instrument surpassed its 100 millionth image on Jan-

uary 19, 2015, marking an excess of a petabyte of data. Therefore, the use of these image

parameters, in lieu of the original images, saves on storage costs and allows for quicker

processing when making visual comparisons. Even so, as mentioned above, these pa-

rameters did not go far enough in creating methods and tools to thoroughly and easily

explore this stream, and therefore the potential for insight discovery from this data has

seen limited exploration.

The purpose of the work presented in this document is to develop an image descriptor

for the SDO’s AIA images, through the use of sparse coding. The descriptors will have

a constraint on their dimensionality so as to allow for indexing of the image descriptors

for both whole images and for sub-regions of images. Such descriptors are vital for

efficient searches in large collections of images, such as that produced by the SDO AIA

instrument.

1.1.1 Solar Event Tracking Application for Sparse Coding

While the primary application context for sparse coded regional image descriptors will

be for efficiently indexing image regions for comparison in content based image retrieval

(CBIR), they can also be applied to different domains. For example, tracking of solar

events is accomplished by providing a comparison mechanism to differentiate between
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object detections in later images and determine which is the most likely path of an object

in a previous image (See Figure 1.2). In [16], we presented a method based on sparse

coding that was capable of differentiating between different classes of the same type of

solar event when comparing SDO AIA images. The classes were constructed as 1) being

two sequential events from the same track, and 2) being one of the two sequential events

and a second event being from a different track. This construction was designed to show

the applicability of the sparse coding method to the solar event tracking problem.

This sparse coding method is an improvement over the tracking work we previously

produced in [17] and [18] for two reasons. The first is that it is more selective than

comparing histograms of image parameters, as was done in [17] and [18]. The second is

that the method of comparison we presented in [16] is an online method, requiring no

previous tracked information. Whereas, the method used in [17] and [18] is an offline

method, which needs previous tracking ground truth information to learn distributions

of histogram distances.

1.2 Challenges

The task of describing image regions for indexing and retrieval in a CBIR system is dif-

ficult, as it requires the characterization of images with efficiently comparable vectors.

In general, CBIR refers to feature recognition and image categorization using the im-

age data alone, and does not have supporting metadata such as descriptions, captions,

legends, etc. The creation of the feature vectors occur at the intersection between two

opposing goals of: (1) accurately describing an image with increasing numbers of fea-

tures to provide detailed information about the content of the image. (2) limiting the

number of features to allow for efficient comparison and indexing. In the first goal, we

wish to describe an image region accurately enough to be able to discern subtle differ-

ences between the millions of regions of interest in our dataset. However, increasing the
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number of visual features in a single feature vector severely reduces the performance

and effectiveness of the distance measure method [19].

1.3 Outline

The rest of this document is organized in the following manner. In Chapter 2, the back-

ground information on the input image parameter data, sparse coding, image retrieval,

and solar event tracking is presented. This will include the definitions for basis vec-

tor dictionaries, signal vectors, and other relevant information related to sparse coding,

image retrieval, and solar event tracking. Then, in Chapter 3, the foundational feature

selection methods used for selecting a subset of image parameters in solar event region

comparison is presented. The feature selection methods are then incorporated into the

tracking methods presented in Chapter 4, with the goal of the solar event tracking hav-

ing the ability to determine the most likely path a tracked solar event takes in later time

steps of an input image sequence.

After tracking is introduced as utilizing the sparse coding methods for region compar-

ison, we show how the feature selection methods are used in our work on describing

solar images for similarity search in Chapter 5. In describing solar images, we begin

with whole image comparison in Section 5.1, with the goal of comparing images of a

single wavelength. In Section 5.2, we focus on region comparison, which has the goal of

comparing similar regions without having the constraint of using a single wavelength,

similar to the goal in tracking. Then, in Chapter 6, we present several evaluations of

our methods, beginning with the evaluation of using these sparse coding methods in

tracking in Section 6.1. In Section 6.2, we present the evaluation of our whole image

comparison methods, followed by the evaluation of our region comparison method eval-

uations in Section 6.3. Finally, in Chapter 7, we conclude this thesis with a summary of

our findings, and discuss future work.
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2 BACKGROUND

This chapter is intended to present information about the input data we utilize as well

as to serve as an introduction to some of the data processing methods that are used

in this dissertation. It begins by providing some details about the input image data in

Section 2.1, which is a set of texture-based image parameters for SDO AIA images. Then,

in Section 2.2, the process of sparse coding that will be used throughout the remainder

of this dissertation is described. This includes the description of an extraction process,

in Section 2.2.1, which is applied on the image parameter data in areas of interest so that

they can be used as input in the process of dictionary learning. Then, in Section 2.2.2,

a brief discussion of the Lasso problem is given. This problem is central to both the

dictionary learning processes used to create a set of basis vectors, which is discussed

in Section 2.2.3, and the subsequent sparse coding of input signals over the learned

dictionary. Finally, this chapter is closed with brief introductions of two application areas

in which we utilize these sparse coding methods. The first is tracking solar events in

Section 2.3, and the second is the comparison of images for image retrieval in Section 2.4.

Though we introduce these two subjects in this chapter, they are covered in more detail

in later chapters.

2.1 Image Parameter Data

As was mentioned in Section 1.1, in preparing for a CBIR system on the images pro-

duced by the AIA instrument, [22–24] found that texture-based image parameters work

well for image comparison and were later shown to be useful in identifying similar re-

gions of AIA images in [13] and [20]. The parameters that were chosen are Entropy,

Mean, Standard Deviation,Fractal Dimension, 3rd Moment (skewness), 4th Moment (kur-
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Table 2.1: Image parameters produced by [22], where M stands for the number of pixels in an
image cell, and L is the maximum intensity value possible for images in the dataset.
zj is the intensity value of the jth pixel, and p(i) is the probability (or normalized fre-
quency) of intensity value i ∈ [0, 255] for the set of zj in the cell. The fractal dimension
is calculated on the box-counting method where N(ε) is the number of boxes of side
length ε required to cover the image cell.

Name Equation

Entropy −
L∑
i=0
p(i) · log2(p(i))

Mean (µ)
L∑
i=0
p(i) · i

Standard Deviation (σ)

√
1
M

M−1∑
j=0

(zj − µ)2

Fractal Dimension − limε→0(
logN(ε)
log(ε) )

Skewness (µ3)
1
σ3

M−1∑
j=0

(zj − µ)
3p(zj)

Kurtosis (µ4) 1
σ4

M−1∑
j=0

(zj − µ)
4p(zj)

Uniformity
M−1∑
j=0

p2(zj)

Relative Smoothness 1− 1
1+σ2

Tamura Contrast σ2

µ4
0.25

Tamura Directionality see [20, 21]

tosis), Uniformity, Relative Smoothness, Tamura Contrast, and Tamura Directionality.

The formulas for the selected parameters are listed in Table 2.1.

The dataset created by the previous list of parameters is created from images captured

by the SDO spacecraft, and are extracted from the AIA images at a six-minute cadence

for each wavelength. The original images are high resolution (4096× 4096 pixel), full-
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An SDO image in the original size(a)

A single cell

Tamura directionality heatmap of AIA image in (a)

Figure 2.1: An illustration that shows the size of the original images, one cell as a sample, and the
final result of calculating Tamura directionality over each and every cell. Every pixel
in the heatmap represents the directionality degree calculated for the corresponding
segment in the original image.

disk snapshots of the Sun, taken in ten extreme ultraviolet channels (the nine channels

that we utilize in this work are 94Å, 131Å, 171Å, 193Å, 211Å, 304Å, 335Å, 1600Å, and

1700Å) [11]. These original high resolution images are accessible upon request from the

Joint Science Operations Center1. Interested parties can also utilize a random access API

for smaller files that have been compressed into high resolution JP2 representations of

the original data at the Helioviewer repository2

The first step in calculating the image parameters involves extracting a 64 by 64 pixel

cell, as shown in Figure 2.1. This is repeated to create a total of 4096 non-overlapping

cells, as can be seen in Figure 2.2. Then, each of the 10 parameters is calculated using

only the pixel values within the respective cell that the value is going to represent. This

segmentation process was shown to be an effective approach in [22] and [25] and reduces

the full-resolution images to 10 sets of a 64 by 64 cell grid of parameter values for each

image coming from the SDO AIA instrument. In Figure 2.3, we show how these 10

1 http://jsoc.stanford.edu
2 https://api.helioviewer.org
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Figure 2.2: The segmentation of an original-sized sample AIA image, and the visualization of
Tamura directionality where every pixel represents the degree of directionality of the
corresponding cell in the original image.

sets of parameters stack to produce an image data cube for each image. A set of these

parameter values was calculated over a subset of the images captured by SDO and made

available by [26]. Later, this set was extended to encompass a larger date range in [27–29],

and finally made available online through an API3 by [30].

2.2 Sparse Coding

Sparse coding is a term used to identify a class of unsupervised methods that are used

for learning dictionaries of basis vectors in order to represent data efficiently. In these

methods, the input signals are decomposed into linear combinations of a few basis vec-

tors from the learned dictionaries. Sparse coding is unlike decompositions based on

principal component analysis in that the basis vectors need not be orthogonal, which

allows more flexibility to adapt the representation to the data. Also, the elements of the

3 http://api.isd.dmlab.cs.gsu.edu/
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Figure 2.3: 10 sets of image parameters stacked to produce a cube of image data for an image of
the 171Å filter waveband.

dictionary are not necessarily linearly independent and the set of basis vectors in the

dictionary are allowed to have more elements than the signal dimension [31].

One of the main sub-problems of sparse coding is that of sparse representation, where

it is desired to infer an unobserved high-dimensional state of the world from a limited

number of observations. In this inference problem, there is an underlying assumption

of simplicity, in that it is assumed that a signal vector x ∈ <m can be represented as the

linear combination of a small number of basis vectors. For example, it is hoped that not

all of the 30,000 or so genes in the human body are directly involved in the process that

leads to the development of cancer, or utilizing customer ratings on perhaps 50 to 100

movies would be sufficient to predict other preferred movies [32].

In the sparse representation sub-problem for sparse coding, the decomposition is over

a basis dictionary or codebook set with k entries D ∈ <m×k with some noise ε:

x = Dα+ ε (2.1)

In the decomposition, the coefficients of α for the given input vector x are assumed to

have only a few coefficient weights that deviate from zero in any significant way, or

are sparse. In other words, it is assumed that only a small subset of variables is truly

important in a specific context. To accomplish this sparsity constraint, an optimization

11



problem with `1 regularization is utilized that penalizes the coefficients of α for being

far from zero, since it is well known that this `1 regularization yields a sparse solution

for α. By utilizing this regularization problem, the linear model x ≈ Dα is transformed

to the quadratic program:

argmin
α∈<k

1

2
||x−Dα||22 + λ||α||1 (2.2)

where λ is a regularization parameter. The sparse coding problem in Equation 2.2 is

a constrained version of the ordinary least squares regression problem known as basis

pursuit [33], or the Lasso [34]. This `1 regularization problem is generally used because

it yields a sparse solution for α. We find the optimal values of the coefficients of α in

Equation 2.2 by using the Least Angle Regression (LARS) algorithm of [35]. By using

the Lasso, we search for the “best matching” projection of the multi-dimensional input

vector x onto our dictionary D, while keeping the solution sparse.

In the following subsections, we will give some background information about our

process of producing sparse coding vectors. We begin by discussing the process of

extracting a signal vector x from an area of interest in Section 2.2.1. The discussion of the

extraction process is followed up by an explanation of the Lasso problem in Section 2.2.2,

as it is used for dictionary learning and the final representation of the extracted signals

over the learned dictionary. Then, we discuss the process of learning the dictionary from

a set of input signal vectors in Section 2.2.3. Note that the set of input signal vectors

X is produced in different ways dependent upon the application area. However, for

the current discussion, we can ignore the exact content of the signal matrix and discuss

its construction with more detail in the appropriate sections dealing with the specific

application.
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2.2.1 Image Parameter Layer Extraction

The first step necessary in the construction of sparse coded vectors over a basis dictionary

is to extract a set of signal vectors from the source data. Though the exact construction of

the input matrix differs slightly from one application to the next, each follows the general

methods set forth in this section. As was mentioned in Section 2.1, the original images

from the SDO AIA instrument are 4096 by 4096 pixel images which are transformed to

10 sets of texture parameters in 64 by 64 pixel cells, listed in Table 2.1. For the current dis-

cussion, however, it is sufficient to say that a single signal vector x ∈ <m, is constructed

by utilizing a sliding window of size p by p. This is done by placing a sliding window

over a portion of the area of interest, and then copying the cell values within the win-

dow to a column vector, with each feature value inside the window concatenated onto

the end of the column vector produced by the previous extracted value. For example, us-

ing one wavelength of the available images and all 10 parameters from that wavelength,

a patch sized 4 by 4 cells would result in 16 cell values from the first parameter, followed

by 16 from the second, and so on until all 160 values have been copied into the signal

vector, denoted as x. For this example, the length of the signal x ∈ <m is calculated as

m = p× p× 10× (number of wavelengths used) or m = 4× 4× 10× 1 = 160.

In order to construct the next entry in the set of input signals, the extraction process

is repeated after sliding the patch by a predetermined number of cells within the area of

interest and extracting the next signal. The set of all signals extracted from the sliding

and extracting process is then denoted as X = {xi|i = 1 : n}, where n is the number

of patches that were extracted by the process. It is this set of extracted column vectors

that is used in the basis dictionary learning process. The learning of the basis dictionary

D ∈ <m×k, where k is the chosen number of basis vectors to learn, is described below in

Section 2.2.3.
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2.2.2 Lasso

Much of the work of learning dictionaries and using them to produce a sparse repre-

sentation vector relies on a linear model used for regression analysis called the least

absolute shrinkage and selection operator (Lasso). In a typical linear regression model,

it is assumed that there are N observations of an outcome (target and dependent) vari-

able xi, and k associated predictor (explanatory and independent) variables (or features)

di = (di1, . . . ,dik)T . The goal of the model is to predict the outcome from the predictors,

for both the actual data to find which predictors play an important role and for future

data to predict future outcomes [32]. With a linear regression model, the assumption is

that

xi = α0 +

k∑
j=1

xijαj + εi (2.3)

where α0 and α = (α1,α2, . . . ,αk) are unknown parameters and εi is an error term. The

popular least squares estimate method produces parameters by minimizing the least

squares objective function:

argmin
α0,α∈<k

N∑
i=1

(xi −α0 −

k∑
j=1

dijαij)
2 (2.4)

This typically leads to all of the parameter estimates being a non-zero value, which

makes the interpretation of the final model challenging when k is large. Additionally, if

k > N, the least-square estimates are not unique, leading to an infinite set of solutions

that make the objective function equal to zero, which leads to over-fitting the data [32].

In order to mitigate the over fitting and interpretability problem, a constraint is placed

on the least-square solution. In the Lasso or `1-regularized regression, the `1 norm of α is

limited to a user defined value, giving us the quadratic program problem in Equation 2.2.
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For the problems that are of concern in sparse representation over a learned dictionary,

the value of xi is in the signal vector x ∈ <m and di is a row of the dictionary D ∈ <m×k,

which we will learn. The predictors in D are considered to be standardized so that each

column is centered around zero ( 1m
∑m
i=1 dij = 0) and has unit variance ( 1m

∑m
i=1 d

2
ij = 1).

Also, the outcome values xi have been centered, meaning that ( 1m
∑m
i=1 xi = 0). This

is done so that the intercept term α0 in the optimization can be omitted. Once these

pre-conditions are met, we use the Least Angle Regression (LARS) method for solving

the Lasso with squared-error loss, also known as the homotopy approach.

The LARS approach is presented in Algorithm 2.1. It is related to the classic model-

selection method known as Forward Selection, also called “Forward Stepwise Regres-

sion” [35]. The algorithm starts with selecting predictor dj from the set of possible

predictors D, which has the largest absolute correlation with the response vector x. With

the predictor selected, the algorithm then performs a simple linear regression of x along

the direction of dj. Once this is completed, a residual vector that is orthogonal to dj is

remaining, which is called the response. The remaining predictors are then projected

orthogonally to dj and the selection process is repeated. This method leads to a set of

k predictors d1,d2, . . . ,dk after k steps, which are then used to construct a k-parameter

linear model [35].

As described so far, the Forward Selection process of LARS can be overly greedy in its

fitting. So, the LARS algorithm limits its step size along predictor dj. This is similar to

Forward Stagewise Selection in that Stagewise also limits the step size and proceeds by

taking thousands of tiny steps as it moves toward a final model [35]. However, unlike

Stagewise, the LARS algorithm does not do this by taking thousands of tiny steps and

recalculating the correlation after each step. LARS pre-computes the size of step it can

take in the direction of the predictor dj prior to another predictor di becoming as cor-

related to the residual. Then, like Stagewise, but unlike Forward Selection, it moves to

this point and instead of continuing along dj, it proceeds along an equiangular direction
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Algorithm 2.1 Least Angle Regression [35].

Input: x ∈ <m (standardized to have mean zero), D ∈ <m×k (standardized to have
means zero and unit `2 norm on each column)

Output: α ∈ <k (coefficient vector)
1: function LARS(x, D)
2: λ← (Regularization parameter value)
3: α← (Zero vector of k), µ← (Zero vector of m)
4: A (active set), Ac (inactive set)
5: DA (is a matrix with active set elements from D)
6: signOk← true, nVars← 0

7: while nVars < min(k,m) do
8: ĉ← DT (x− µ) . vector of current correlation for each element in D
9: {Ĉ, ĵ}← argmaxj∈Ac{abs(ĉ)} . most correlated vector of the inactive set

10: if signOk then
11: Update A, Ac so that A = A∪ {ĵ}
12: nVars+ = 1
13: end if
14: SA ← sign(ĉ(A)) . sign vector of correlation for active set elements
15: δ← 1√

STA(DTADA)−1SA

16: wA ← δ(DTADA)
−1SA . wA is a k−vector that is 0 outside of the active set

17: uA ← DAwA . vector equiangular to elements of A
18: a← DTuA . vector of angles between dj and uA
19: if nVars == min(k,m) then
20: γ← Ĉ

δ . step toward most correlated element
21: else

22: γ← argmin+
j∈AC

{
Ĉ−ĉj
δ−aj

, Ĉ+ĉjδ+aj

}
. find smallest positive step

23: end if
24: αtmp ← αA + γwA . updates coefficients corresponding to the elements of A
25: signOk← true

26: {γ̂, j}← argminj∈A
(
−αTA./wA

)
. min. of element-wise division on A

27: if γ̂ < γ then . step larger than allowed, need to update
28: γ← γ̂ . set new step size
29: αtmp ← αA + γwA . update αtmp for new step size
30: αtmp ← αtmp − {j} . remove offending coefficient
31: nVars− = 1 and signOk← false

32: end if
33: µ← µ+ γuA and α← αtmp
34: if ((mode == `1)&(`1(α) > λ))‖((mode == `2)&(`2(x− µ) < λ)) then
35: break
36: end if
37: end while
38: return α (coefficient vector)
39: end function
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between dj and di until the next predictor is as correlated as the first two. This process

is repeated until the desired k-parameter linear model is formed [35].

Many of the details of the LARS process presented in Algorithm 2.1 have been omitted

here for brevity, such as how the LARS process is modified to produce the Lasso by

requiring the sign of the coefficients in the coefficient vector α to stay the same in a given

step. Additional details on how to calculate the length of a step along a direction before

the next predictor becomes equally correlated with the residual, or how the equiangular

direction between two predictors dj and di is calculated, have also been omitted here.

We direct the interested reader to [35] for more information on these subjects.

Before moving on to the discussion of dictionary learning, it should be noted that

there are two different stopping criteria in Algorithm 2.1, which are used in different

circumstances. When mode == `1, the stopping criteria is based upon the `1 norm

of the coefficient vector; once the norm reaches a user defined threshold λ, or all of

the coefficients are used, the algorithm terminates. This is used once the dictionary is

learned and we wish to sparsely represent the input signal x as the linear combinations

of a few dictionary elements. The second stopping criteria is when mode == `2. In

this case, the algorithm terminates when the `2 norm of the residual falls below the λ

threshold, or all of the coefficients are in use. In other words, termination occurs when

the `2 error of the regression model has fallen below the user defined λ value. This is

used while learning the dictionary as we wish to have dictionaries that reproduce the

input signal x with the least possible error.

2.2.3 Dictionary Learning

The learning of a basis dictionary D ∈ <m×k, where k is the chosen number of basis

vectors to learn, is the next step in the process of constructing sparse coded vectors

for a set of input signals. The extraction process previously described in Section 2.2.1

creates the set of input column vectors of the signal matrix, X, which are used as input
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Algorithm 2.2 Online Dictionary Learning [31].

Input: p(x) (An algorithm to draw independent identically distributed (i.i.d.) samples
of vectors x ∈ <m from X)

Output: D ∈ <m×k (learned dictionary)
1: function DictLearn(p(x))
2: λ← (Regularization parameter value)
3: T ← (max number of iterations)
4: D0 ∈ <m×k ← (initialize by drawing from p(x))
5: A0 ∈ <k×k ← 0

6: B0 ∈ <m×k ← 0

7: for t = 1 to T do
8: xt ← i.i.d sample from p(x).
9:

αt , argmin
α∈<k

1

2
||xt −Dtα||

2
2 + λ||α||1

. Coding: using Least Angle Regression [35]
10: At ← At−1 +αtα

T
t

11: Bt ← Bt−1 + xtα
T
t

12: Dt ← DICTUPDATE(Dt−1,At,Bt) . Algo. 2.3
13: . So That:

αt , argmin
D∈C

1

t

t∑
i=1

(1
2
||xi −Dtαi||

2
2 + λ||αi||1

)
,

= argmin
D∈C

1

t
(Tr(DTDAt) − Tr(D

TBt))

(2.5)

14: end for
15: return DT (learned dictionary)
16: end function

to the dictionary learning process. Though the number of samples in X change with

the size of the area of interest and the step size when sliding the extraction window, the

dictionary learning process is conducted in the same way. This is to say that the size of

the dictionary is not dependent upon the sample size in X, though more samples tend to

produce better dictionaries capable of spanning the entire input set. Note that although

the dictionary size does not change with the number of samples, the dictionary size will

change with the length of the column vectors x ∈ X, which are dependent upon the size
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of the sliding window of size p by p and the number of parameters being concatenated.

As the m in signal vector x ∈ <m increases, so does the m in dictionary D ∈ <m×k, since

we will be using the linear combination of the elements of D to reconstruct the signal

vectors later.

For this work, we have chosen to utilize the dictionary learning algorithm of [31],

which is shown in Algorithm 2.2. In the classical problem of dictionary learning for

sparse representation of a finite set of signals X = [x1, . . . , xn] where x ∈ <m, the under-

lying objective is to optimize the empirical cost function:

fn(D) ,
1

n

n∑
i=1

`(xi,D) (2.6)

where D in <m×k is the dictionary. Each column of D represents a basis vector, where `

is some loss function that decreases to some arbitrarily small value when the dictionary

D represents the signal x in a sparse fashion, and with little error [31].

In this problem, the number of samples n is usually large, whereas the signal dimen-

sion m is relatively small. For example, m = 64 for an image patch sized 8 by 8 cells,

and n > 10, 000. It is also generally assumed that we have k � n (e.g., k = 200 for

n = 100, 000), and each signal only uses a few elements of D in its representation. Note

that in this setting, overcomplete dictionaries with k > n are also allowed.

The loss function `(x,D) is usually defined as the optimal value of the `1 sparse coding

problem:

`(x,D) , argmin
α∈<k

1

2
||x−Dα||22 + λ||α||1 (2.7)

where λ is a regularization parameter. This problem is also known as basis pursuit

or the least absolute shrinkage and selection operator (Lasso). It is well known that

`1 regularization yields a sparse solution for α, but there is not a direct analytical link

between the value of λ and the corresponding effective sparsity ‖α‖0. In order to prevent
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D from having arbitrarily large values (which, in turn, leads to arbitrary small values of

α), the columns of D (d1, . . . ,dk) are constrained to have an `2−norm less than or equal

to one [31]. The convex set of matrices that satisfy this constraint are labeled C and are

defined as:

C , {D ∈ <m×k s.t. ∀ j = 1, . . . ,k, dTj dj 6 1} (2.8)

In Algorithm 2.2, this is the set of matrices that dictionary D is required to be an ele-

ment of after each update (call to Algorithm 2.3). Note that this constraint also satisfies

a constraint in Algorithm 2.1, requiring that the columns of predictor variables (columns

of D) have a unit `2-norm. Though the problem of minimizing the empirical cost fn(D)

is not convex with respect to D, it can be rewritten as a joint optimization problem with

respect to the dictionary D and the coefficients A = [α1, . . . ,αn] in <k×n of the sparse

decompositions. This joint optimization problem is not jointly convex, but convex with

respect to each of the two variables D and A when the other one is fixed:

min
D∈C, A∈<k×n

n∑
i=1

(
1

2
‖X−DA‖22 + λ‖αi‖1) (2.9)

The optimization method that we use was developed in [31] and is in a class of online

algorithms based on stochastic approximations, processing one sample at a time making

a sequence of updates to D

Dt =
∏
C

[Dt−1 − δt5D `(xt,Dt−1)] (2.10)

where Dt is the estimate of the optimal dictionary at iteration t, δt is the gradient step,∏
C is the orthogonal projector onto C, and the vectors xt are independent identically

distributed (i.i.d) samples of the (unknown) distribution p(x) of the data.
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Algorithm 2.3 Dictionary Update [31].

Input: D = [d1, . . . ,dk] ∈ <m×k (input dictionary)
Input: A = [a1, . . . ,ak]<k×k

Input: B = [b1, . . . ,bk]<m×k

Output: D ∈ <m×k (updated dictionary)
1: function DictUpdate(D, A, B)
2: k← (Max iterations for update)
3: repeat
4: for j = 1 to k do . Update the jth column to optimize for Equation 2.5 in

Algo. 2.2
5: dj ← (jth column of D)
6:

uj ←
1

A[j, j]
(bj −Daj) + dj

dj ←
1

max(||uj||2, 1)
uj

(2.11)

7: end for
8: until convergence . until `2(D) stops changing by more than 1e−15

9: return D (updated dictionary)
10: end function

This algorithm operates on the premise that one is not interested in the minimiza-

tion of the empirical cost function fn(D) with a high degree of precision. Instead, it is

assumed that the minimization of the expected cost of the function is more desirable,

which is taken relative to the (unknown) probability distribution p(x). The expectation

is that one should not spend a lot of effort on the accurate minimization of the empirical

cost, since it is but an approximation of the expected. As such, “inaccurate” solutions

may provide similar, if not better, cost than one that attempts to gain a higher degree of

accuracy [31].

The dictionary learning process assumes that the training set is composed of i.i.d.

samples of a distribution p(x). However, as was mentioned by [31], it is often difficult

to obtain such i.i.d. samples, so the input dataset is obtained as a cycle on a random

permutation of the sample matrix X. So, each of the T iteration of the algorithm starts

by drawing an element xt from the random permutation of sample matrix X. Then, xt is
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used to compute αt of xt over the dictionaryDt−1, which was obtained from the previous

iteration. The dictionary Dt−1 is updated to be the new dictionary Dt in Algorithm 2.3

by minimizing over C, the function

f̂t(D) ,
1

t

t∑
i=1

(1
2
||xi −Dtαi||

2
2 + λ||αi||1

)
(2.12)

where the vectors αi for each i < t were computed during the previous steps of the

algorithm, and stored as updates to At−1 and Bt−1 in such a way that previous updates

have less influence than current updates.

Since each column of Dt−1 is updated independently, by solving Equation 2.5 with

respect to the jth column dj, and keeping the other columns of Dt−1 fixed under the

constraint dTj dj 6 1, the update is equivalent to an orthogonal projection of the vector

uj defined in Equation 2.11, onto the constraint set [31]. This guarantees the update

dictionary Dt is a member of the set C.

The exact number of basis vectors (k) that we have chosen to use varies by application

and experiment, and will be discussed more in the appropriate sections dealing with

each application area. However, when using multiple image parameters from multiple

wavebands of images, we generally choose k < m to create a smaller dictionary dimen-

sion than our input dimension, effectively performing dimensionality reduction of the

extracted, overlapping, p by p cell windows.

In Figure 2.4(b), we present an example of a learned dictionary from image patches ex-

tracted directly from the pixel values of a 171Å waveband image shown in Figure 2.4(a).

This dictionary is used to then recreate the original image from a set of sparse coding

vectors in Figure 2.4(d). Since the mean of the signal vector must be subtracted from

the input to the LARS algorithm, we also show the values that are added back to the

reconstructed patch in Figure 2.4(c). Though these figures were originally constructed

for functional verification, they also show how the dictionary learning process produces
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(a) Original 171Å Image (b) Learned Dictionary

(c) Patch Pixel Means (d) Recreated 171Å Image

Figure 2.4: An image from AIA 171Å(2.4(a)), with an example of the dictionary learned from it
(2.4(b)), and the reconstruction of that image (2.4(d)) from a set of sparse vectors and
the mean values subtracted from the input signals (2.4(c)).

a set of higher level concepts (line segments, light and dark areas, etc.) that are used

to describe a location on an image. It is by using these higher level concepts that we

will discern how similar regions of images and whole images are. We will also show

how they can do this better than simply using low level comparisons such as pixel level

information.
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Events
AR
CH
EF
FI
FL
SG
SS

2012-01-20 19:00:01  (AIA 0171)

Figure 2.5: An image from the SDO mission, with labeled solar phenomena coming from HEK
overlaid. Labels include (AR) Active Region, (CH) Coronal Hole, (EF) Emerging Flux,
(FI) Filament, (FL) Flare, (SG) Sigmoid, and (SS) Sunspot.

2.3 Tracking Solar Events

The task of tracking solar events was the first application area that we applied the dic-

tionary learning and sparse vector representation to. In this task, we needed to link

together the detections of various solar activity that came from work that was done

prior to the launch of the SDO mission. In this prior work, a multi-institutional team

called the Feature Finding Team (FFT) created a number of software modules to process

data coming from the SDO. These modules create reports of solar phenomena (events)

that are of great interest to the solar physics research community. As such, the metadata

they create is directly reported to the Heliophysics Event Knowledgebase (HEK) [36],

and is available to the general public through the online iSolSearch graphical interface4.

An example of both the image data produced by SDO’s Atmospheric Imaging Assem-

4 https://www.lmsal.com/isolsearch
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bly (AIA), as well as the metadata reported to HEK can be seen in Figure 2.5. Some of

the reported events, such as Active Regions (AR), can be seen in the wavelength being

displayed, while others, such as Sunspots (SS), are only visible in other wavelengths.

The vector data from the HEK, which we utilize for tracking, contains at minimum,

the following four fields for each detection report:

• Identifier: a unique identifier

• Time Stamp: the starting time

• Center Point: the center of the detection

• Minimum Bounding Rectangle: a set of four points that produces the minimum-sized

rectangle that encompasses the detected object.

Some event types also contain an additional field if the detection module produces the

information:

• Boundary Polygon: a set of points that constitutes the polygon representation of

the boundary of the detected object. Some event types do not report a polygon

representation, leaving this field null for those types of events.

If the Boundary Polygon field is not present, we copy the Minimum Bounding Rectangle

filed as a polygon so as to make processing simpler in our tracking algorithms. Finally,

in order to identify which detection belongs to which track, we also added the following

field:

• Next Detection Identifier: the unique identifier of the next detection of the same type

of solar event that is part of the same trajectory, if such a detection report exists.

This field is null if there is no next event detection in the trajectory.

These vector objects are in Helioprojective Cartesian (HPC) coordinate system, which

is converted to a pixel-based coordinate system in our algorithm so that the detections’

coordinates corresponded with the proper location on the raster data.
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In the initial work that we produced for tracking solar events in [17] and [18], a track-

ing algorithm was developed in order to produce various tracked solar events from input

detections reported to the HEK. The primary purpose of the output from this tracking

algorithm was to facilitate the spatiotemporal analysis of the data reported to the HEK

by the FFT modules. Spatiotemporal analyses, such as spatiotemporal co-occurrence pat-

tern mining [37], require not just a spatial representation of an object at a given time step,

but also the information about its evolution over time. Spatiotemporal co-occurrence

pattern mining utilizes this information to find evolving events that frequently occur in

proximity to one another. Similarly, spatiotemporal event sequence pattern mining [38]

utilizes the same input to find frequently occurring patterns of events leading to other

events.

One of the crucial components of such tracking algorithms is an appearance model

that is able to discriminate among different targets. However, when using a fixed model

based on the distribution of histogram distances between in-group and out-group re-

gions, as was done in [17, 18], global appearance information about each type of target

must be obtained before it can be utilized to discriminate between the same object at a

later time, and another tracked object in a similar location. This type of global learning

can only be accomplished when there is prior knowledge of tracked solar events. This

knowledge can be obtained by human labeling of event tracks, from tracked solar events

produced by another tracking algorithm, or, as was done in [17, 18], with the use of

heuristics to link small sets of detections into shorter tracks.

An improvement upon this fixed model can be achieved through the use of an online

sparse coding and dictionary learning model. In the online model, the appearance of

the object being tracked is learned by the dictionary learning process already described

in Section 2.2.3, and then possible matching candidates are compared to find the most

probable matching event report. With such an online model, the need for solar events to

be tracked for appearance model learning is eliminated, which makes it simpler to apply
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the tracking algorithm of [17, 18] to solar event types without this information. In [16],

we developed this online sparse coding dictionary learning model, and will discuss it in

detail in Chapter 4, along with additional information about how the appearance model

is used in the tracking process.

2.4 Image Retrieval on Solar Images

After the use of dictionary learning and sparse vector representation for tracking solar

activity, we pursued other uses for this form of image representation and comparison.

Namely, we investigated how to use these methods to create a system of content based

image retrieval (CBIR) on the SDO AIA images. In [39], a 64-bin histogram for each of the

10 parameters extracted from the image was utilized in an attempt to produce a CBIR

system. The examinations of several dissimilarity metrics in [39] found that the most

similar images were almost exclusively found to be from the preceding or succeeding

time step(s), and a few possible solutions for these phenomenon were explored. One

possible solution was to increase the time between samplings of the dataset. However,

as was noted by [39], this leads to some events in the data being completely missed,

as their lifespans are shorter than the sampling period. Eventually, the similarity of

temporal neighbors problem was left as an open issue to be addressed in future work,

and the dimensionality of the descriptors preventing indexing was never addressed.

Later, [29] revisited investigating a CBIR system, this time for region retrieval using

statistical descriptors by calculating a 7-statistic summary as the descriptor of each event

region on each image parameter. These statistics were: minimum, 1st quartile, median, 3rd

quartile, maximum, average, and standard deviation. The descriptor statistics were ranked

using an F-Statistic ranking method similar to what we will describe in Chapter 3, and

the top-N were chosen to represent the labeled regions. This provided a smaller, index-

able descriptor for the labeled regions; these results will be the benchmark to which we

compare our own results later in Chapter 6.
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During our work on tracking solar events, we implemented a method based on sparse

coding in order to differentiate between different classes of the same type of solar event

in SDO AIA images in [16]. In that work, it was shown that the use of sparse coding

was more selective than histograms of image parameters in the task of differentiating

between solar events of similar structure. This ability to differentiate between regions

of the same type of solar event in these images was the motivation for our preliminary

investigation into using a sparse coding method to describe whole solar SDO AIA images

for similarity search in [40]. Our methods of using sparse coding for image retrieval

focus on addressing the deficiencies of previous methods for comparing whole images

and regions of images as described above, such as the inability to index or only finding

temporal neighbors when querying for similar images. More details of both the whole

image and region comparison methods for SDO AIA image CBIR will be provided in

Chapter 5.
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3 FEATURE SELECTION

Before presenting the first use case of tracking solar events using the previously outlined

sparse coding methods, it will be useful to give a thorough account of how a subset of

the available image parameters is chosen for our applications where we are not utilizing

the entire feature space. In the tracking use case, the goal is to identify the most char-

acterizing features of the observed solar event data from the image parameter data, i.e.,

feature selection. It is well known that feature selection is a critical step used to select

a subset of the input for use in classification tasks, and there are two main advantages

to utilizing feature selection, which are: (1) the reduction of the number of dimensions

in the problem and therefore a reduction of the computational cost of classification; (2)

reducing noise in the input data and subsequently increasing classification accuracy.

The formal definition of feature selection can be described as follows: Given the input

data D as a set of N samples and M features X = {xi, i = 1, . . . ,M}, and the target

classification variable c, the problem of feature selection is that of finding from the M−

dimensional observation space, <M, a subspace of m features, <m, which “optimally”

characterize c, where m �M [41]. Less formally, our goal for solar event tracking is to

find a subset of image parameters from the set of 90 image parameters (9 wavebands of

images at each timestep × 10 parameters calculated for each image) that best highlights

the similarity of two consecutive reports of the same solar event and differentiate them

from reports of similar solar activity in the same period.

In general, there are two approaches to standalone feature selection: filters and wrap-

pers [42]. In the filter type of feature selection, features are selected based upon some

intrinsic characteristic of the feature that determines its power to discriminate between

the target classes. We have chosen the F-Statistic as the proxy measure for discrimination
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power of our features. We base this choice on the fact that it is fast to compute and was

found by [43] to still capture the usefulness of the features being evaluated. The filter

type of feature selection methods have an advantage of being relatively easy to compute

and the characteristics are uncorrelated to the learning methods that will be applied to

the data, which leads to better generalization. However, filter methods can sometimes

tend to select redundant features because they do not consider the relationships between

features. In the wrapper type of feature selection, the selection of features is “wrapped”

around some learning method, and the usefulness of features is directly evaluated by

the estimated accuracy of the learning method. This method, however, potentially en-

tails significant computational cost in the search for an optimal set of features.

In the following sections of this chapter, we present three different feature selection

methods that we evaluated for use in choosing a subset of the available image parame-

ters from our dataset. The work was presented in [44], and is used to justify our selection

method for tracking and image retrieval tasks. The first selection method, discussed in

Section 3.1, is a simple filter type that selects the Top-K features based upon some rank-

ing criteria. The second method, described in Section 3.2, is a hybrid filter and wrapper

method that first utilizes the ranking of features and then utilizes a learning method to

evaluate the addition of each ranked result. Finally, the third method, presented in Sec-

tion 3.3, is a more complex filter type that again utilizes the same ranking of features that

the first two do, but then also uses a measure of redundancy of the features to exclude

some of the ranked results. We then describe how we utilize these methods on our solar

events and provide experimental evaluations of each method in Section 3.4.

3.1 Top-K Rank

In this filter method of feature selection, we select the K top-ranked features, where the

ranking method looks to order the features by their relevance to the target class c. Here

we have chosen the F-Statistic between the features and the classification variable as the
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scoring method used for the ordering of features. In this, the F-Statistic of feature xi in

P classes denoted by c is as follows:

F(xi, c) =

P∑
j

nj(x̄ij − x̄i)
2/(P− 1)

σ2
(3.1)

where x̄i is the mean value of feature xi across all classes, x̄ij is the mean value of xi

within the jth class, nj is number of samples of xi within in the jth class, P is the number

of classes, and

σ = [

P∑
j

(nj − 1)σ
2
j ]/(n− P) (3.2)

is the pooled variance across all classes (where σj is the variance of xi within the jth

class) [42]. Using the value returned by the F-Statistic as the relevance of the tested

feature, we order the features by descending value and choose the Top-K.

3.2 Top-K Forward Selection

This method combines both the filter and wrapper methods of feature selection. The

steps of this method are as follows:

1. Rank features by F-Statistic as was done in Top-K method.

2. Evaluate classification accuracy of the top ranked feature.

3. Add next highest ranked feature to the subset and evaluate accuracy.

4. If accuracy increases, keep the feature in the subset; otherwise remove it.

5. If we reach the number of features we want, then stop, otherwise repeat starting

from step 3.
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This selective addition method evaluates the classification accuracy of the feature sub-

set by using a Naïve Bayes’ classifier as a simple learning method wrapper.

3.3 Top-K Redundancy-Limiting Forward Selection

This method is similar to the previous method in that feature subset X̄i is obtained by

adding the next highest ranked feature not already attempted, from the ranked list of all

features, to the feature subset X̄i−1; the resultant feature set X̄i is evaluated using some

selection criteria. However, instead of utilizing a learning method and evaluating if the

addition increases classification accuracy as the selection criteria, this method utilizes a

redundancy limiting condition. The redundancy value is calculated using the Pearson’s

correlation coefficient cor(xi, xj) as follows:

Ri =
1

(|X̄i| ∗ (|X̄i|+ 1))/2
∑
i,j

|cor(xi, xj)| (3.3)

Where |cor(i, j)| is the absolute value of the Pearson’s correlation coefficient between the

ith and jth feature. The feature added to subset X̄i, at each step, is kept if it does not

increase the redundancy (Ri) of the feature subset by some threshold amount, say 5%

over the redundancy Ri−1 of the previous set X̄i−1.

3.4 Feature Extraction and Feature Ranking

The definitions for the three feature selection methods above utilize a feature value xi by

making the assumption that this feature is a variable of constant length one. However, in

our implementation, each instance of an event report contains several cells of an image

parameter inside its boundary, which is not a consistent size from one detection to the

next. Thus, to compare two event reports and get a single feature value xi, we begin by

extracting a 20-bin histogram of the cells that fall within the bounding box of an event
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report. Then, this process is repeated for a second report for subsequent comparison

with the first report. Once the two histograms are created, we then compare them using

a common histogram comparison method and use the resultant value of the comparisons

as our feature value xi. The histogram comparison method that we use for this is the

histogram intersection, where intersection is defined as the sum of the minimum bin count

between the two histograms being compared or:

d(H1,H2) =
N∑
I

min(H1(I),H2(I)) (3.4)

Where Hk(I) is the value of the histogram bin at index I of N bins in histogram k. This

was chosen as an approximation of the amount of mutual information between the two

histograms and we found it to best generalize for ranking through testing four different

histogram comparison methods (Correlation, Chi-Squre, Intersection, and Bhattacharyya

distance). Note that this histogram construction and comparison is done on a per image

parameter and waveband basis, meaning that we construct a new variable x for each of

the 90 parameter/waveband combinations.

To produce a feature value for one class, the feature ranking process requires two

event detections. A histogram of parameter values is created for each detection, and then

feature value xi is produced by use of the histogram intersection. In order to produce

feature value xi for the Pth class, this process is repeated by keeping the first detection

and replacing the second with one from the Pth class and calculating the histogram

intersection of the new pair. This replacement is done until there is a value of xi for each

of the P classes, then a new first detection is chosen so that the feature value xi+1 can be

calculated. This continues until the desired number of samples are produced.

The way that detections are grouped into classes is different depending upon the ap-

plication, and the specifics unique to those applications are discussed in their respective

chapters. For the evaluation of various selection methods presented in this chapter, we
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utilize already tracked solar events of type Active Region (AR) and of type Coronal Hole

(CH). We have chosen to use the events reported for the two-year period of 1 January

2012 through 31 December 2013, and have split the tracks of events into the respective

months in which they occur. This creates 24 independent datasets for us to use.

The detection pairing described above begins by selecting only tracks from one month

that have more than one detection in their trajectory. Then, for each pair of detections

in the temporal sequence formed by these tracked events, a feature value xi is produced

using the detections within a single track as a comparison point belonging to class 1

(same object). With the first detection chosen, the feature value xi for class 2 (different

object) is produced by comparing it to another detection from the dataset that is known

to be from another tracked event trajectory. This process results in a balanced 50/50

split between the two classes. It is these sets that are used in the three feature ranking

processes described previously.

To ensure that our evaluation of feature ranking was not biased by the month that

we selected as the ranking data, we repeated the ranking of the features using several

different months. In repeating the ranking, we saw that the top 10 ranked features stayed

within the top 20 ranking and generally moved by only a few positions. We also saw

that the top-ranked feature for each event type generally stayed in the top 3 positions

across all the tested months.

3.4.1 Experimental Framework

In order to test the ranking methods we wish to evaluate, we use how well we can

classify between the two classes of same object and different object, as described in the

previous section, when using the top-ranked features of each method. The classification

performance is evaluated using the “Leave-One-Out Cross Validation” (LOOCV) method.

In order to perform the cross validation, we took the 24 months of data that we had

available and set one month aside for testing, while training on the remaining 23. In the
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Figure 3.1: 3.1(a) Active Regions, 3.1(b) Coronal Holes: F-Statistic values of all 90 features or-
dered by their F-Statistic value.

training process, we used a similar feature extraction method of comparing histograms

from the same trajectory and different trajectories as was used in the ranking process.

The major difference being that we use 23 months of training data to randomly select

the event report from the “different object” class in our evaluations, as opposed to the

use of only one month in ranking. In the task of classification, we consider an object to

be classified properly if the classifier gives the detection from the same tracked object a

higher probability of being in the class it belongs to than it does for a second detection

from a different tracked object. This choice is based on the fact that, in the tracking

algorithm of [18], the path a tracked object takes is affected more by this difference than

by whether the object from the same path is more strongly associated with the incorrect

class than it is with the correct one.

In our experimental evaluation, we utilized a different histogram distance measure

than was used for ranking. We chose to use the Bhattacharyya coefficient instead of

the histogram intersection to show that the wavelength and parameter pair features ob-

tained from the selection methods are effective features regardless of feature comparison

method. The Bhattacharyya coefficient is an approximate measure of the amount of over-

lap between two statistical samples which approximates the chi-square measure statistic
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for small distances. However, the Bhattacharyya coefficient does not have the drawback

of infinite values arising when comparing empty histograms as can happen with the

chi-squared statistic [45].

We compare the Top-K ranking selection method against the wrapper method of Top-K

Forward Selection and the redundancy limiting selection method of Top-K Redundancy

Limiting Forward Selection. The selected features are fed to a Naïve Bayes’ classifier and

tested against the testing month.

3.4.2 Results

We begin our discussion of results with Figure 3.1. In it, we can see how the F-Statistic

values for each of the features compares to the rest of the features in our dataset. As

can be seen from the charts, the top 10 to 20 features indicate a significant separation

of feature values between the two classes, while the latter features are not as cleanly

separated. This gives us a reason to suspect that we shall see our best improvements in

classification results with the inclusion of the first 10 to 20 features in our models, and

modest or even declining accuracy as we include more.

Next, in Table 3.1, we include the top 10 ranked features for each event type used

in this evaluation. In this table, it can be seen that the features of most importance,

as determined by F-Statistic ranking, are from wavelengths that are not used in the

detection of these solar phenomena. For instance, the wavelength that is used in the

detection of these phenomena [46] (193Å) does not show up in the ranking until the

10
th position in the list for Active Regions, and does not show up at all in the top-10

ranked features for Coronal Holes. This may indicate some heretofore unrecognized

information about these event types contained in wavelengths other than those used for

detection of these particular event types.

In Figures 3.2, 3.3, and 3.4 we display the progression of our three feature selection

methods when we do not limit the number of features they return. The feature numbers
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Table 3.1: Top 10 ranked wavelength/parameter pairs for Active Regions and Coronal Holes
using F-Statistic values.

Parameter # Active Regions Coronal Holes
Wave Param Wave Param

1 335Å Mean 1600Å Mean
2 1700Å Mean 1700Å Mean
3 1600Å Mean 1700Å Entropy
4 1700Å Entropy 1600Å Standard Deviation
5 211Å Mean 1600Å Entropy
6 304Å Mean 304Å Mean
7 94Å Mean 1700Å Skewness
8 335Å Entropy 1700Å Standard Deviation
9 171Å Mean 1600Å Skewness
10 193Å Mean 304Å Entropy

range from 1 to 90 and are ordered in their ranked order of descending F-Statistic value,

though not all features are selected in all methods. Whenever a feature is not selected by

a method the score from the previously selected feature is copied to the location in the

chart representing the non-selected feature.

We begin with Figure 3.2, which displays the sum of the average redundancy in each

class as calculated by Equation 3.3. We display the results for two event types, being

Active Regions in Subfigure 3.2(a) and Coronal Holes in Subfigure 3.2(b). As can be seen

from the charts, the Top-K selection method ramps up to a maximum around 20 features,

which indicates there is a bit of redundancy in the first 20 or so features. However,

after the first 20 or so features, the redundancy average begins to decline indicating

that the latter features are somewhat less redundant than the previously added features.

It can also be seen that the Accuracy Search method does not add all of the first 20

features since the redundant nature of them does not significantly increase the accuracy,

hence limiting the total amount of redundancy in the selected feature set. Similarly,

the Redundancy Limit method does as it is intended and limits the redundancy in the

selected feature set by only adding features that do not significantly increase the total

redundancy among the selected features. This would seem to indicate that using Top-K

37



0 10 20 30 40 50 60 70 80 90
Feature Number

0.0

0.2

0.4

0.6

0.8

1.0
C

o
rr

e
la

ti
o
n
 w

it
h
in

 C
la

ss
e
s

Average Redundancy within Classes: Active Region

Redundancy Limit
Accuracy Search
Top-K Rank

(a)

0 10 20 30 40 50 60 70 80 90
Feature Number

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n
 w

it
h
in

 C
la

ss
e
s

Average Redundancy within Classes: Coronal Hole

Redundancy Limit
Accuracy Search
Top-K Rank

(b)

Figure 3.2: Average Redundancy per feature selected within classes as measured by Equation 3.3.
Figure 3.2(a) shows the results for Active Regions, and Figure 3.2(b) shows the results
for Coronal Holes.

is too simplistic of a choice for feature selection and that the observed accuracy may be

lower than that seen by the other selection methods.

In Figure 3.3, we display the average relevancy of the selected features in the feature

set returned by the various selection methods. Again, we provide the results for two

different event types, with Active Regions in Subfigure 3.3(a) and Coronal Holes in

Subfigure 3.3(b). What is meant by average relevancy in these charts is the average of

the F-Statistic value, as calculated by Equation 3.1, for each selected feature. As can

be seen from the charts, the Accuracy Search method tends to stop adding features

after the first 20 or so, which then keeps the overall relevancy higher than the other

two methods. This makes intuitive sense, as it would be sensible to expect that the

most relevant features would also be those that produce the best classification results,

and simply adding more (but less relevant) features would reduce the accuracy of the

classification task. Conversely, in the Redundancy Limit method, the overall relevancy

is lower than the other two methods because, as we saw in Figure 3.2, this method does

not include all of the most highly ranked features due to the fact that there is a bit of
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Figure 3.3: Average Relevancy per feature selected, with relevancy measured as the F-Statistic
value of Equation 3.1. Figure 3.3(a) shows the results for Active Regions, and Fig-
ure 3.3(b) shows the results for Coronal Holes.

redundancy between these features of higher rank. Note how both the Top-K rank and

Accuracy Search seem to track fairly closely up to about 15 features in both event types,

which was not the case for the redundancy score. This would seem to indicate that both

the Top-K and Accuracy Search methods should see similar accuracy results when using

this number of features, even though the former includes more redundant information

in its feature set.

Now turning to Figure 3.4, we show the average classification accuracy for all three

methods, and again we include both Active Regions in Subfigure 3.4(a) and Coronal

Holes in Subfigure 3.4(a). In these figures, we see the classification accuracy rise quickly

in the first 10 features and then plateau after about 20 features. This is true for all three

selection methods, even though the Redundancy Limit and Accuracy Search methods

do not add every feature in the first 20. For instance, the Redundancy Limit method

only adds fewer than 10 of the first 40 features of Coronal Holes, as it is trying to keep

the added redundancy low. By doing so, it also limits the most relevant features and

therefore leads to a lower classification accuracy. As surmised from the relevancy results

displayed in Figure 3.3, both Top-K and Accuracy Search perform similarly for the first
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Figure 3.4: Mean classification accuracy percentage for month following selection month. Fig-
ure 3.4(a) shows the results for Active Regions, and Figure 3.4(b) shows the results
for Coronal Holes.

15 to 20 added features. However, in the Accuracy Search method on Active Regions,

only 10 of the first 20 features are added and then no other features are added from the

rest of the dataset as they do not increase the accuracy of classification. This too leads to

lower accuracy of classification when compared to the simpler Top-K selection method.

Due to the above observations, we chose to utilize 20 features as a limit for our next

set of charts showing the distribution of classification accuracy for the cross validation

on our 24 months of data. So, in Figure 3.5, we show the comparison of the cross valida-

tion classification accuracy for the three different feature selection methods. Again, we

include both the Active Region results in Subfigure 3.5(a) and Coronal Holes in Subfig-

ure 3.5(b). In addition, we have included the cross validation classification accuracy for

the bottom 20 ranked features to show how the selected features by each of the methods

compared to the lowest ranked features according to our ranking method. As can be

seen from the boxplots of Figure 3.5, the Top-K selection method performs as well or

better than the other two methods when comparing the classification accuracy by month.

In the Active Region plot, the mean of the accuracy distribution for the Top-K method is

higher than the other two methods, though the interquartile range is slightly more than
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Figure 3.5: Cross validation accuracy for all 24 months of data. TopK uses the top 20 features
selected with the Top-K method. BottomK uses the bottom 20 features selected with
Top-K method just ranked in reverse order. Search uses the search method to select
up to 20 features. Limit uses the limit method to select up to 20 features. Figure 3.5(a)
shows the results for Active Regions, and Figure 3.5(b) shows the results for Coronal
Holes.

that of the Redundancy Limit method. Similarly for the Coronal Hole plot, the mean is

higher on the Top-K method, though the interquartile range is slightly larger than that

of the Accuracy Search method.

The results of these experiments have shown us two things. First, a reasonable level

of accuracy in classifying two detections as being either the same tracked object or a

different tracked object can be achieved with a subset of the dimensionality reducing

image parameters. Second, for our dataset of image parameters, and for the task of

differentiating between similar regions of solar images, we can use the simpler Top-K

feature selection method and arrive at a suitable combination of image parameters from

various wavelengths by using a simple method of ranking on the F-Statistic value. The

observations that we found when evaluating the ranking position across several months,

coupled with the results seen in the classification task, lead us to the conclusion that

the simpler method of Top-K selection tends to generalize better than the other selection
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methods that we used in this research, and that the top 20 features should be sufficient

for tracking, which we will discus in the next chapter.
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4 SPATIO-TEMPORAL EVENT TRACKING

As has been mentioned previously, in order to facilitate the important needs of space

weather monitoring (which can have vital impacts on space and air travel, power grids,

GPS, and communication devices), many software modules developed by the Feature

Finding Team (FFT) work continuously on the massive SDO raster data, generating ob-

ject data with spatiotemporal characteristics. The object data with spatiotemporal char-

acteristics generated by FFT software modules is directly reported to the Heliophysics

Event Knowledge (HEK) base [36]. This spatiotemporal data is used to accurately cat-

alog, explore, track, and correlate solar events. To capture correlations between solar

events, it is essential to develop tracking techniques that are capable of handling multi-

ple solar event instance hypotheses concurrently.

In our previous work, we began development of a tracking algorithm in [17] and [18] to

facilitate the spatiotemporal analysis of the data reported to the HEK by the FFT modules.

Spatiotemporal analyses, such as spatiotemporal co-occurrence pattern mining, require

not just a spatial representation of an object at a given time step, but also the information

about its evolution over time. It utilizes this information to find evolving events that

frequently occur in proximity to one another. Similarly, spatiotemporal event sequence

Followed by a 
Solar FlareActive Regions 

and Sunspots
Active Regions 
and Sunspots

Figure 4.1: An instance of active region co-occurring with a sunspot followed by a solar flare,
which occurring between 2012-01-20T14:30:00 and 2012-01-21T02:30:00 [47].
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pattern mining utilizes the same input to find frequently occurring patterns of events

leading to other events [48].

An example of an application area for spatiotemporal event sequence or co-occurrence

pattern mining is in space weather prediction. In Figure 4.1, active regions are shown co-

occurring with sunspots, with one of the co-occurrences being followed by a solar flare.

Identifying such spatiotemporal event sequences may lead to improved understanding

of relationships between differing solar event types, and better modeling and forecasting

of important events such as coronal mass ejections and solar flares [38]. These and other

spatiotemporal mining algorithms that require spatiotemporal trajectories are discussed

in [49], as well as their possible applications to solar data mining.

Though some of the FFT modules produce tracking information, such as the SPoCA

module [46], the majority do not. Those that do are part of the detection module and are

not meant to be used as a separate general purpose tracker for other event types. There-

fore, our goal was to produce a general purpose tracking suite for use across multiple

solar event types. With such a general purpose tracking suite, we can produce the spa-

tiotemporal trajectories used in spatiotemporal frequent pattern mining on several event

types. This spatiotemporal trajectory production could also include new event types as

detection reports become available from new detection modules.

In the previous solar event tracking work of [17] and [18] the visual comparison of

event detections relied on learned global distributions of histogram similarity measures,

which requires previously tracked data in order to learn the expected distributions of

these values. This requirement can be met with some event types that have previously

tracked ground truths available, such as active regions and coronal holes. However,

there are several other event types where this information is not available, making the

use of these learned global distributions of histogram similarity untenable as a method

for visual comparison of these event types.
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To overcome these limitations, thereby allowing us to perform tracking on event types

that do not have previously tracked ground truths, a new appearance model that can

be learned online, with no previous knowledge of how the solar events evolve visually

over time, was developed in [16]. This online model was shown to perform as well as

the previously used offline learned model at the task of differentiating between detec-

tions in the same trajectory and detections belonging to different trajectories. Therefore,

in this work, we have updated the tracking algorithm to utilize this new appearance

model, so as to not require training on previously tracked objects. As stated previously,

this now makes our tracking algorithm applicable to event types that do not have the

previously tracked ground truth information available. We will describe this new model

in Section 4.2.2, but first we will provide context to our problem of tracking multiple

solar events by discussing the tracking problem that we are interested in solving. Then

we will show how the online sparse coding appearance model is used for determining

which detection is the most likely path taken by the tracked event being processed.

4.1 Tracking Multiple Objects in Video Data

The process of tracking multiple objects in video data, which is a difficult and only

partially solved problem in computer vision, generally uses a process called multiple

hypothesis tracking (MHT) to find an approximate solution. The tracking problem is

generally broken into two independent steps that address separate issues of the overall

goal of being able to track multiple interacting objects in video [50]. The first of these

steps is the detection of targets in each frame of the video data, and is independent of

any knowledge of time. In this work, it is assumed that the FFT software modules have

accomplished this task and have reported the results to the HEK. The second step would

then be to link detections over time into the most likely trajectories, based on some

model of likelihood. This process is generally called the data association problem, as the
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problem being solved is to associate one detection with its next detected appearance at

a later time, and is what MHT is designed to solve.

In order to link detections into trajectories, MHT evaluates many alternative track

formation hypotheses, which require a probabilistic expression of the data association

problem. This probabilistic expression generally includes the prior probability of the

presence of the target (object being tracked), how likely the detection is to be a false

detection, and several different aspects of similarity between the potential detections in

a particular path [1]. In our previous works of [17] and [18], this likelihood function

incorporated similarity of trajectory movement and appearance, among other factors,

with the goal of associating sensor reports into related groups that represent the paths

of solar activity tracked as it crosses the observable solar disk.

4.1.1 Probabilistic Expression of Tracked Solar Activity

The input to the MHT algorithm is a set of detection reports O = {oi, i ∈ {1, . . . ,n}} from

the HEK, for one specific event type, where each of the detection reports oi ∈ O is a set

of attributes that uniquely describes a solar event in a particular location at a particular

time. These attributes are

oi =



xi : spatial position

si : spatial outline (either minimum bounding rectangle or polygon outline)

ai : physical appearance

ti : time stamp

where xi is the center of the bounding region of the detection, and si is the spatial outline

of the detection. The physical appearance ai is used to represent the appearance of the

object using the image parameters from Table 2.1, which were derived from AIA images.

Finally, ti is the time stamp of the start time of the object detection so that the proper

image parameters can be queried from the dataset.
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Then, in MHT, an individual hypothesis of the path taken by a single object is de-

fined as an ordered list of object detections, Ti = {oi1 ,oi2 , . . . ,oin} where oij ∈ O. This

hypothesis is called a trajectory or track hypothesis and ij of the individual observations

oij represents the jth observation in hypothesis i. A global association hypothesis is

then defined as a set of single trajectory hypotheses, τ = {Ti}, given the current set of

observations O = {oi} [51].

The data association problem, to which MHT is the solution, is represented as having

the objective of maximizing the posterior probability of the global association hypothesis

τ, given the current set of detectionsO. In doing so, it is showing that we wish to find the

global association hypothesis τ that has the highest posterior probability from the set of

all possible global association hypotheses τ∗ = {τi}. The maximization problem is shown

in Equation 4.1 and is called a maximum a posteriori (MAP) probability estimation prob-

lem. In this problem, we must assume that the likelihood probabilities are conditionally

independent given the hypothesis τ, meaning that the knowledge about the truth of

hypothesis τ does not change the belief in the likelihood of seeing observation oi.

τ∗ = argmax
τ

P(τ|O)

= argmax
τ

P(O|τ)P(τ)

= argmax
τ

∏
i

P(oi|τ)P(τ)

(4.1)

In order to meet this conditional independence requirement, the likelihood function

of observation on oi, denoted as P(oi|τ), was formulated in [18] so that it does not rely

on knowledge of the truth of the global association hypothesis τ, and thus τ does not

change the belief in the likelihood of seeing observation oi. In this context, P(oi|τ) is

trying to model how likely an individual detection report oi is to be a false detection.

This means that the detection algorithm of the FFT reported an observed object when
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there was not one. Here, we make the assumption that a true target will generally persist

across some number of detection report times.

To satisfy the conditional independence requirement, P(oi|τ) is calculated as a Poisson

probability of seeing the change in the number of detections from the previous frame

to the current one, given the average change seen in the previous n frames. This is

calculated as f(∆; λ) = Pr(X = ∆) = λ∆e−λ

∆! , where ∆ is the absolute change in the

number of detections from the previous frame to the frame of oi, and λ is the expected

change, which is derived from the previous n frames. In order to simplify computation

we want to avoid the calculation of P(∆ = 0; λ = 0). So, we chose to add one to all

∆ and λ to account for these zero conditions. To correct the range of the likelihood of

observation P(oi|τ) for this zero condition fix, we then feed the value of f(∆; λ) into a

logistic function l(x) = 1

1+e−k(x−x0)
. As can be seen from the above formulas, each of

these formulas is not affected by the knowledge of the truth of hypothesis τ, thereby

matching the conditionally independent requirement for P(oi|τ).

It should be noted that the optimization of Equation 4.1 is difficult due to the combina-

torial growth in size of the set of association hypotheses in τ as the number of detection

reporting times increases. In order to slow the growth of association hypotheses in τ, it

is assumed that one observation oi can belong to one and only one trajectory, or more

formally defined as Ti ∩ Tj = ∅, ∀i 6= j. Similarly, to simplify the calculation of P(τ),

we assume that the motion of each object is independent so that Equation 4.1 can be

rewritten as:

τ∗ = argmax
τ

∏
oi∈O

P(oi|τ)
∏
Ti∈τ

P(Ti)

Where Ti ∩ Tj = ∅,∀i 6= j

(4.2)

Note that the prior of all trajectories in the global hypothesis τ has been broken down

to the product of the priors of each trajectory
∏
Ti∈τ

P(Ti). In the product, the prior probabil-
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ity P(Ti) of trajectory hypothesis Ti is modeled as a Markov chain of the n observations

[o0, . . . ,on] ∈ Ti. The chain includes an initialization probability Pentr(o0) at the detec-

tion of its initial time step, a termination probability Pexit(on) at the detection of its final

time step n, and the transition probabilities Plink(oi+1|oi) between each detection in the

interval between initial and final time steps:

P(Ti) = P([o0,o1, . . . ,on])

= Pentr(o0)Plink(o1|o0)Plink(o2|o1) . . . Plink(on|on−1)Pexit(on)

(4.3)

A further discussion of the components of the Markov chain, and how they are used in

finding the solution to the relaxed MAP probability estimation problem of Equation 4.2,

will be presented in the next section.

4.2 Assigning Likelihood to Trajectory Hypotheses

In the previous section, the problem of multiple hypothesis tracking (MHT) was intro-

duced as a maximum a posteriori (MAP) estimation problem of data association. In

doing so, the data association problem defined the likelihood of each global hypothesis

τ as the product of the prior probabilities of several trajectories
∏
Tk∈τ

P(Tk). In the product,

the prior probability P(Ti) of trajectory hypothesis Ti was modeled as a Markov chain

of the n observations [o0, . . . ,on] ∈ Ti. The chain included an initialization probability

Pentr(o0) at the detection of its initial time step, a termination probability Pexit(on) at the

detection of its final time step n, and the transition probabilities Plink(oi+1|oi) between

each detection:

P(Ti) = P([o0,o1, . . . ,on])

= Pentr(o0)Plink(o1|o0)Plink(o2|o1) . . . Plink(on|on−1)Pexit(on)

(4.3 revisited)
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In this section, we provide more details on the components of the Markov chain that

represents the prior probability of a particular trajectory P(Tk). We start with the initial-

ization probability Pentr, as the cost of a hypothesis starting at a given track fragment,

and the termination probability Pexit as the cost of a hypothesis ending at a specific

track fragment. Then, we will discuss each of the components of the transition probabil-

ity Plink(oi+1|oi) for each track fragment in the hypothesis.

Here, we must note that this transition probability is formulated differently depending

upon which step in our tracking algorithm is being performed. There are two variants

of this formulation:

Plink,variant1(oi+1|oi) = P(aj|ai)P(∆t|oi) (4.4a)

Plink,variant2(oi+1|oi) = P(aj|ai)P(∆t|oi)P(vj|vi) (4.4b)

Our tracking algorithm attempts to find an optimal global hypothesis τ by performing

several iterations of finding the solution to a smaller subproblem. The first iteration of

this subproblem uses the first variant in Equation 4.4a, since all trajectory hypotheses are

constructed from a single observation in this iteration. In subsequent iterations however,

we use the second variant in Equation 4.4b, as there should now be multiple observations

linked together in each trajectory hypothesis, which allows for movement comparison.

In these variants, P(aj|ai) is the appearance model, P(∆t|oi) the frame skip model, and

P(vj|vi) is the motion similarity model.

The following subsections will discuss each component of Equation 4.4. Section 4.2.1

will cover the initialization probability, Pentr, and termination probability, Pexit, in terms

of one model. Then we will discuss the Appearance model P(aj|ai) in Section 4.2.2, the

Frame Skip Model P(∆t|oi) in Section 4.2.3, and finally the Motion model P(vj|vi) in

Section 4.2.4.
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(a) AR Starting (b) AR Ending (c) CH Starting (d) CH Ending

Figure 4.2: Heat maps of event tracks’ start and end locations, where the brighter colors indicate
a higher percentage of starts/ends in that region. Where 4.2(a) shows where active
regions tend to begin and 4.2(b) shows where active regions tend to end. Similarly,
4.2(c) shows where coronol holes tend to begin and 4.2(d) shows where coronal holes
tend to end. The enter/exit model uses similar data to compute Pentr and Pexit.

4.2.1 Enter and Exit Probabilities

In the previous work done in [52], it was assumed that tracks can only start and end

at the edges of the viewing area, with the exception of the starting and ending frames.

This, however, does not hold true with the solar events in this work, since they may

emerge or terminate as part of a natural, potentially chaotic process in many locations,

with varying degrees of probability. We include Figure 4.2 as a visual aid to show where

our tracking results have found tracks of two different types of solar activity and where

they tend to start and end.

Since an event can start or end at almost any point of the solar surface in the viewing

area, the enter and exit probabilities must be determined based upon the location and

size of the event detections of interest. Note that the heat maps in Figs. 4.2(a) through

4.2(d) only show the location of trajectories starting and ending for a sample of our data

(January 2012 and December 2014), but a similar pair of enter/exit maps was produced

with many activity types all together and are used in this calculation. The maps used

for enter/exit likelihood calculation were initially produced using the results from the

track fragment forming algorithm that we use in feature selection for tracking (Algo-

rithm 4.2), which will be discussed in Section 4.3.1. However, as results of the entire
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tracking algorithm became available, we refined the maps with the output from the full

implementation of our tracking work.

In order to calculate the likelihood of a trajectory starting or ending at any given pixel

location, we use the following calculations. For Pentr, we let G be the global maximum

probability on our enter probability map. Then let L be the local minimum probability on

our enter probability map, or the pixel with the lowest probability inside the detection of

interest. The calculation is the same for Pexit; the enter probability map is just substituted

with the exit map. However, due to the fact that our heat map utilizes discrete pixels

taken from a finite set of detections, there are areas in the constructed heat maps that

contain a zero value when the probability of detection in those areas is greater than zero.

In the cases that a detection’s pixel intersects one of these areas, the average of all pixels

in the detection of interest is assigned to L instead of the local minimum. The calculation

of the enter Pentr(oi) probability is the ratio of L and G:

Pentr(oi) =
L

G
(4.5)

Pexit(oi) is calculated the same way using the exit heat map. Note, that when calcu-

lating Pentr(oi) of track fragment oi, the first detection of the track fragment is used.

Conversely, when calculating Pexit(oi) of track fragment oi, the last detection in the track

fragment is used. In either case, the probability of entering or exiting is always less than

or equal to one.

4.2.2 Appearance Model

In the previous work done in [18], the appearance model P(aj|ai) relied on learned global

distributions of histogram similarity measures, which required previously tracked data

in order to learn the expected distributions of these values. In [16], we developed an on-

line sparse coding appearance model to eliminate this known ground truth requirement.
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The use of sparse model representation as an instrument of single object visual tracking

has seen promising results in the tracking research community [53–55]. It has also been

used as a method for whole image classification and object recognition in regions of im-

ages, with [56,57] being just a few examples. There has even been work in identification

of anatomical structures in medical imaging [58, 59], using fuzzy images produced via

an x-ray, which are similar to the raw AIA images from the SDO mission.

Recall from Section 2.2, that when using sparse models, it is assumed that a signal

vector x ∈ <m can be represented as the linear combination of a small number of basis

vectors. The representation uses basis vectors that come from a basis dictionary or code-

book set with k entries D ∈ <m×k. Since the representation is generally not perfect, it is

also assumed that some noise ε will need to be included as well:

x = Dα+ ε (2.1 revisited)

In this representation, vector α is assumed to have only a few significantly non-zero

coefficients. To accomplish this assumption, an optimization problem with `1 regular-

ization is utilized, since it is known that `1 regularization yields a sparse solution for α.

By utilizing this regularization problem, the linear model x ≈ Dα is transformed to the

quadratic program:

argmin
α∈<k

1

2
||x−Dα||22 + λ||α||1 (2.2 revisited)

where λ is a regularization parameter. The sparse coding problem in Equation 2.2 is

a constrained version of the ordinary least squares regression problem known as basis

pursuit [33], or the Lasso [34]. This `1 regularization problem is generally used because

it yields a sparse solution for α. In our implementation, the optimal values of the coeffi-

cients of α in Equation 2.2 are found using the Least Angle Regression (LARS) algorithm
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of [35]. By using the Lasso, we are looking for the “best matching” projection of the mul-

tidimensional input vector x onto our dictionary D, while keeping the solution sparse.

Constructing the Model

In this subsection, we discuss the various steps needed for our appearance model P(aj|ai).

For now, we assume that a set of image parameters has been chosen using the feature

selection method to be described in Section 4.3.1, and we will create a set of input vectors

for the appearance model using this set of chosen parameters. Recall from Section 2.2.1,

that we construct a signal vector x ∈ <m from a sliding window of size p by p cells

placed over a portion of the image being processed, where m is determined by the win-

dow size p and the number of image parameters we utilize. The image parameters from

the p by p window are sequentially concatenated into a column vector. For example,

using a window size of 4 by 4 cells (16 cell window), of 10 parameter values, over one

filter channel, we would concatenate all of the values in this range (cell by cell) to form

a vector of m = 160 values, which we denote as signal x.

This process is repeated by sliding the window by one cell and extracting the next

signal from the current window area that partially overlaps the previous position. When

using this sliding and extracting process, the set of all signals produced from the area of

interest is denoted as signal matrix X = {xi|i = 1 : n}, where n is the number of windows

that were extracted. The signal matrix is then later used to construct a sparse vector

matrix A, which is the sparse representation of X. Note that a matrix X is extracted for

the target trajectory, or the trajectory we want to find a match for in a later time step,

and each matching candidate trajectory also has a matrix X̂ extracted from it. The signal

matrix from our target detection must also first be used for dictionary learning, as the

resultant dictionary D ∈ <m×k is used for construction of the sparse vector matrix A for

both the target and candidate detections.
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As was stated in Section 2.2.3, we have chosen to utilize the dictionary learning al-

gorithm of [31], which can be found in Section 2.2.3 as Algorithm 2.2. The learned

basis dictionary D ∈ <m×k, where k is the chosen number of basis vectors to learn, is

a vital component of our appearance model. We learn a unique dictionary for each tar-

get trajectory being processed, where the target trajectory is the object that is projected

forward to search for a matching candidate in subsequent time steps. This is done by

first processing the bounding rectangle of the final detection in the trajectory, using the

aforementioned extraction process to retrieve the signal matrix X. Then, recall from Sec-

tion 2.2.3, that given our signal matrix X, the main objective of dictionary learning is to

optimize some cost function:

fn(D) ,
1

n

n∑
i=1

`(xi,D) (2.6 revisited)

where D ∈ <m×k is the dictionary. Also recall that each column of D represents a basis

vector, where ` is a loss function that decreases to some arbitrarily small value when the

dictionary D represents the signal x in a sparse fashion, and with little error [31].

It should be noted that the number of samples n is determined by the size of the last

detection in the target trajectory. Whereas, the signal dimension m is consistently set

to 320 (4 cell by 4 cell windows with 20 parameters), and k is also constant, though

determined by a user input when configuring the software. We have chosen k < m to

create a smaller dictionary dimension than our input dimension, effectively performing

dimensionality reduction of the extracted, overlapping, 4 by 4 cell windows.

Once a dictionary is learned for the target detection, a coding histogram is then cre-

ated using the coding histogram methods described below. For the vectors extracted

from candidate detections, they are passed directly to the coding histogram creation.

The results of the coding histogram creation and dictionary learning process are then

combined to produce a candidate likelihood value in Section 4.2.2.
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Coding Histogram

Recall that X = {xi|i = 1 : n} of our target trajectory was produced by the sliding

and extracting process, where n is the number of windows that were extracted, and

the dictionary D ∈ <m×k was learned from the extracted signals in X. Now, with the

dictionary D ∈ <m×k learned, we can create our sparse representations αi for each xi

in X of both our target trajectory and our candidate trajectories. In order to compare

these sparse representations, we utilize the sparse coding histograms used by [53, 60] to

represent the appearance distribution of the target and candidate models.

We begin by using the dictionary D ∈ <m×k, which is used to describe both the

target (original) trajectory for which we wish to find a matching trajectory at a later time,

and to describe the candidate (potential matching) trajectories. In the target model, we

assume that X is the set of extracted signals from the last detection in the target trajectory.

Whereas, in the candidate model, we assume that X̂ is the set of extracted signals from

the first detection in the candidate trajectory. We then define A ∈ <k×n as the set of n

sparse vectors α ∈ <k that satisfy the `1 regularization problem of Equation 2.2 for each

xi ∈ X. We then similarly define Â ∈ <k×n̂ as the set of n̂ sparse vectors α̂ ∈ <k that

satisfy Equation 2.2 for each x̂i ∈ X̂. Finally, we define an isotropic Gaussian function:

g(‖ci − µ‖2) =
1

σ
√
2π
e−

1
2 (
‖ci−µ‖

2

σ )2 (4.6)

where µ is considered the center of the area of interest, and ‖ci − µ‖2 is the square of

the vector norm of the distance of ci from the center of the area of interest. In the case

of the target model, the area of interest is the minimum bounding box containing the

last detection in the target trajectory, and is the minimum bounding box containing the

first detection in the candidate trajectory for the candidate model. This is used to assign

smaller weights to cells farther away from the center of the area of interest.
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The target model is then constructed as the weighted bin values of the histogram

constructed from A which are calculated as:

qj = C

n∑
i=1

g(‖ci − µ‖2)|αji| (4.7)

where C is a normalization constant to ensure
∑k
j=1 qj = 1, and αji is the jth coefficient

of the ith image patch. The candidate model histogram is similar to that of the target

model histogram, in that the same isotropic Gaussian function g(·) is used to assign

smaller weights to cell patches farther away from the center of the area of interest. The

difference is that we use Â as the set of n̂ sparse vectors and compute the weighted bin

values of the candidate histogram as:

p̂j = C

n̂∑
i=1

g(‖ ĉi − y
h
‖2)|α̂ji| (4.8)

where y is considered the center of the candidate area of interest, h is the scaling factor

showing how much the candidate area of interest needs to be scaled to match the original

target area of interest, and C is again the normalization constant used to ensure that∑k
j=1 p̂j = 1.

Candidate Likelihood Evaluation

Recall that the appearance model P(aj|ai) begins with our candidate trajectory having

appearance ai, and aims to determine the likelihood of said trajectory having appearance

aj at the time of the first detection in the candidate trajectory. With the target and

candidate models produced from the coding histograms described earlier, and the sparse

vector matrix Â ∈ <k×n̂ used to create the candidate model, we want to come up with

a final likelihood estimate for the appearance model. In doing so, we must evaluate the
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likelihood of the candidate detection being the same object that was used to train the

dictionary (i.e., the target).

We begin by estimating the probability of a candidate detection centered at a given

position being the target detection centered at that position in a later time. This is

calculated as the generative likelihood of all the patches within the candidate window

of interest:

P(y|D) = C

n̂∏
i=1

e
−g(‖ ĉi−yh ‖2)

ε2
i
σ2 (4.9)

where εi is the reconstruction error for the ith patch in the candidate area of interest, σ

is the standard deviation of all the reconstruction errors for all the patches in the said

area, and g(·) is still an isotropic Gaussian function as it was previously. Recall that each

signal vector x̂ of the candidate was approximated as x̂ ≈ Dα̂+ ε using Equation 2.2, so

the reconstruction is created as the product of the sparse vector representation α̂ and the

learned dictionary D. Furthermore, in the generative likelihood calculation, we assume

that y is the center of the candidate to be evaluated, while X̂ = x̂i, i = 1 . . . n̂ represents

the n̂ patches inside the candidate area of interest centered at y. As in [53], we ignore

the constant C by taking the log of the likelihood for Equation 4.12.

Given that we are assuming that dictionary D ∈ <m×k has been constructed from the

extracted signals X = {xi|i = 1 : n} from the target trajectory, it is reasonable to expect

that the local patches in the set of extracted signals X should have smaller reconstruction

errors than the areas outside of the original window and so too should the most likely

candidate. However, some regions that belong to the background can have a relatively

large generative probability, since their appearances fall within the subspace spanned

by the target dictionary basis. We include Figure 4.3 as an illustration showing these

phenomenon. Here we use a bounding box to depict the original detection area that

the dictionary was trained on (Figure 4.3(a)). Then, we plot the similarity values re-
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(a) (b)

1

0

Sim
ilarity

Figure 4.3: (a) The target appearance displays an active region in the 171Å filter channel. (b)
The confidence map displays the 0–1 normalized likelihood values returned from
the evaluation of the generative likelihood calculation in Equation 4.9 (described in
Section 4.2.2) for each position on the observed solar surface at the 171Å filter channel.
The brighter colors are seen as being more likely to be the area that was trained on
based strictly on the reconstruction error of the area within a window placed at that
point, when using the trained dictionary.

turned by the generative likelihood calculation for each position on the original image

in Figure 4.3(b). In this figure, it is clear that strictly relying on reconstruction error

is insufficient for discriminating between highly similar areas, as many areas can be

reconstructed with little error when using the learned dictionary.

The problem of having some regions that belong to the background producing a rela-

tively large generative probability can arise because of the introduction of a few contam-

inated bases. In some cases, these contaminated bases in the trained dictionary can be

introduced by input into the training process that is selected from areas outside the ac-

tual object of interest. Though undesirable, it is difficult to avoid due to the imprecision

of using the minimum bounding rectangle to encapsulate the object of interest and the

use of square windows to extract a signal vector. Another reason for background regions

producing large generative probabilities is that many regions on the solar surface have

significant visual similarities.
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This problem means that we cannot simply rely on how well we can recreate signals

from the candidate region using the learned dictionary for our likelihood estimation.

So, an additional step is added in order to obtain information about how similar the

distribution of parameter values are in both the target and candidate regions. We begin

by using the two coding histogram models described in Section 4.2.2, one that represents

the target trajectory, and another that represents the candidate trajectory. These two

coding histograms are then compared by using the Bhattacharyya metric to produce a

similarity value for the sparse coding histograms of the target (q) and candidate (p̂):

d(y) =
√
1− p(p̂,q) (4.10)

p(p̂,q) =
k∑
j=1

√
p̂jqj (4.11)

In [53], the target is located in the image by maximizing:

p̂(y|D) = p(p̂,q)L(y|D) (4.12)

where the L(y|D) component is the log of Equation 4.9 and measures the probability of

the candidate being generated from the target dictionary D, and the p(p̂,q) term is from

the Bhattacharyya metric d(y), which weights the probability value in proportion to how

well the distribution of the target model and the candidate model match.

Unlike [53], we only evaluate the set of already detected target candidates, and are

not using Equation 4.12 to search the entire image for a least negative value. Therefore,
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we modify the equation to produce values that we can interpret as the likelihood of the

target and candidate matching. To do this, we utilize the logistic function:

p̂(y|D) =
1

1+ exp−k×((p(p̂,q)L(y|D))−m0)
(4.13)

where k is the steepness variable and m0 is the expected midpoint of the possible values

from Equation 4.12. This provides the [0, 1] range that we require as an output from

the appearance model. Thus, the output of the appearance model would be P(aj|ai) =

p̂(y|D) where D is learned from ai, and the output shows the likelihood of aj being the

next detection of ai.

4.2.3 Frame Skip Model

The frame skip model P(∆t|oi), is used to account for detections that are not reported

in the dataset, but the tracked object still exists. This is a common issue as no object

detection algorithm can guarantee perfect identification in every image. This leads to

the need to allow for missed detections of an object and to continue tracking an object

across these gaps.

In the model, the ∆t is the gap between the last detection of the target trajectory and

the first detection of the candidate trajectory. It should be noted that each detection is

considered to have a period of time over which it is valid and another detection is not

expected to be reported to the dataset. For example, active regions have a reporting

cadence of roughly every 4 hours. Therefore, the first skipped frame would be after 8

hours, the second after 12, and so on. This period is different for each event type in the

dataset.

With this information in mind, we define the frame skip model as follows:

P(∆t|oi) =
∏
t∈F

(1− Pexit(oi)) (4.14)
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where F is the set of skipped frames in ∆t. As was previously stated, one time period

is allowed from the start of the last object detection report oi of the target trajectory,

and is considered the valid period of that detection. At the end of that valid period,

a search is conducted for spatiotemporally neighboring candidate trajectories that do

not have a skipped frame. A search is then conducted for candidate trajectories at the

time of the valid period plus one skipped time period or frame. The search is repeated

up to the maximum of n skipped frames, where n is dependent upon the limit set at

each iteration of the tracking algorithm. Note that the maximum number of skipped

frames n is increased at each iteration of the tracking algorithm, thereby giving priority

to candidates with fewer skipped frames.

4.2.4 Motion Model

In the second variant of the transition probability calculation, Equation 4.4b, there is

one more term P(vj|vi), which considers the motion similarity of the two compared

trajectories. This motion model, similar to [52], uses the normalized movement vectors

of the candidate track fragment oj and the target track fragment oi. Specifically, the

normalized mean of the frame-wise movement within the trajectories is calculated. The

means are labeled as vj for the candidate trajectory and vi for the target trajectory. The

model value is then calculated as:

P(vj|vi) = 1−
1

2
‖vj − vi‖ (4.15)

This comparison of the Euclidean norm of movement differences assumes that the mo-

tions of the detected objects are not changing direction abruptly, which is a fair assump-

tion for the solar events with which we are concerned. The result of this comparison

is the probability of the two trajectories being the same object based solely upon how

similar their movement is.
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Figure 4.4: Tracking algorithm flow diagram.

4.3 Using Iterative Refinement for the Global Hypothesis Solution

In previous sections, we described multiple hypothesis tracking (MHT) as having an

objective of maximizing the probability of a global association hypothesis τ. This prob-

lem was called a maximum a posteriori (MAP) probability estimation problem and was

formulated as:

τ∗ = argmax
τ

P(τ|O)

= argmax
τ

P(O|τ)P(τ)

= argmax
τ

∏
i

P(oi|τ)P(τ)

(4.1 revisited)
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Which was then simplified, through various independence assumptions, to be:

τ∗ = argmax
τ

∏
oi∈O

P(oi|τ)
∏
Ti∈τ

P(Ti)

Where Ti ∩ Tj = ∅,∀i 6= j

(4.2 revisited)

In this, the global hypothesis τ was broken down to the product of the priors of each

trajectory
∏
Ti∈τ

P(Ti). These prior probabilities P(Ti) of trajectory hypotheses Ti were each

modeled as a Markov chain of the n observations [o0, . . . ,on] ∈ Ti. These chains included

an initialization probability Pentr(o0) at the detection of its initial time step, a termination

probability Pexit(on) at the detection of its final time step n, and the transition probabil-

ities Plink(oi+1|oi) between each detection in the interval between initial and final time

steps:

P(Ti) = P([o0,o1, . . . ,on])

= Pentr(o0)Plink(o1|o0)Plink(o2|o1) . . . Plink(on|on−1)Pexit(on)

(4.3 revisited)

Then, the transition probability Plink(oi+1|oi) was shown to contain multiple components

and be formulated differently depending upon which step in our tracking algorithm is

being performed:

Plink,var1(oi+1|oi) =P(aj|ai)P(∆t|oi) (4.4a revisited)

Plink,var2(oi+1|oi) =P(aj|ai)P(∆t|oi)P(vj|vi) (4.4b revisited)

where P(aj|ai) was the appearance model, P(∆t|oi) was the frame skip model, and

P(vj|vi) was the motion similarity model.

In this section, we discuss how we approximate the solution to the global MAP esti-

mation problem through iteratively solving the MAP problem on a constrained subset

of the input needed for the global solution. In Algorithm 4.1, this is accomplished in the
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Algorithm 4.1 Iterative Tracking Algorithm

Input: O (The set of observation detections)
Input: maxSkip (The maximum allowed number of skipped frames between detections)
Output: tl (list of tracked object hypotheses)

1: function IterativeTracking(O, maxSkip)
2: tl← ∅ . An empty doubly linked list of track hypotheses
3: skip← 0 . The allowed frame skip in current iteration
4: feat← ∅ . Empty set of image features (parameters)
5: . Stage 1

6: tl← TrjEstGen(O) . Create a list of track hypotheses using Algo. 4.2
7: feat← FeatSelect(tl) . Get list of features for this event type using Algo. 4.3
8: tl← ∅ . Clear list of track hypotheses
9: ∀oi ∈ O : tl← Ti . Set each observation as a track hypothesis to process

10: . Stage 2

11: while skip < maxSkip do
12: tl← ASSOC(tl, feat, skip) . Link track hypotheses using Algo. 4.5
13: skip = skip+ 1 . Increase allowed skipped frames for linking
14: end while
15: return tl
16: end function

Iterative Tracking step or Stage 2, using the Trajectory Association Algorithm 4.5 repeat-

edly. The flow diagram of the overall tracking procedure of Algorithm 4.1 is depicted in

Figure 4.4. As can be seen in Algorithm 4.1, the tracking algorithm starts with the set

of observations of a particular event type, and then uses them in the FeatSelect Step of

Stage 1 to find the top-rated features from Table 2.1 in the various wavebands of the im-

age data. Then, the resultant set of top-rated features and the original set of detections

are passed into stage two, where the individual detections are linked into tracks over

several iterations of Iterative Tracking step in Stage 2, using the Trajectory Association

Algorithm 4.5 repeatedly. How many iterations of Algorithm 4.5 are used is dependent

upon the user defined setting of maxSkip.

Below, we break each stage into its own section. We discuss the Feature Selection of

Stage 1 in Section 4.3.1. This feature selection process uses the Top-K feature selection

method discussed in Chapter 3, as it was found to work as well as more complicated

methods and is a more efficient process than the others that were evaluated. Then,
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in Section 4.3.2, we begin to explain how the MAP problem is solved using multiple

iterations of Algorithm 4.5, which is further broken down into a data association process

solved in Section 4.3.3.

4.3.1 Tracking Stage 1: Feature Selection

As shown in Figure 4.4 and Algorithm 4.1 above, the first step in the tracking process

is to do feature selection on the image parameters. In this step, we wish to find a

set of relevant image parameters from various wavebands which will provide a good

basis of visual comparison for individual detections in the actual tracking portion of our

algorithm. Feature selection is a critical step that is used to select a subset of the input for

use in classification and is performed as a pre-processing step in our tracking algorithm.

The feature selection process executes on the image parameters from each waveband in

our image dataset. It ranks all the features by ordering them in descending value of their

calculated F-Statistic value. The top K are selected as the feature set to use for the solar

event type being processed.

It should be noted that the previous discussion on feature selection in Chapter 3 as-

sumed that tracks had already been formed with several reports in each track. This was

the case with the data used in the feature selection evaluations, but it can no longer be

assumed with the tracking algorithm, as the main motivation of tracking is to produce

these tracked objects and because the feature selection process is performed as a pre-

requisite of tracking. This means that we need to produce an initial approximation of

tracked events in order to complete the feature selection process. To create the approxi-

mation of tracked events, we utilize an heuristic method to estimate the tracked objects.

In this heuristic algorithm, track estimates are created by linking object detection reports

that are highly likely to belong to the same track.

The process of making a set of track estimates is done in Algorithm 4.2 where spa-

tiotemporal neighbors are searched for using differential rotation of the sun to project
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Algorithm 4.2 Trajectory Estimate Generation Algorithm

Input: O (set of observations)
Output: tl (list of tracked object hypotheses)

1: function TrjEstGen(O)
2: tl← An empty list of trajectory hypotheses (Ti)
3: (doubly linked lists)
4: for each detection oi ∈ O do in parallel
5: l1 ← Forward_ST_Neighbors of oi
6: l2 ← Back_ST_Neighbors of oi
7: if l1 count is 1 and l2 count 6 1 then
8: oj ← Forward_ST_Neighbor of oi
9: if oj previous is NULL then

10: oj.previous← oi
11: oi.next← oj
12: tl← Ti = oi ∪ oj
13: else
14: tl← Ti = oi
15: end if
16: else
17: tl← Ti = oi
18: end if
19: end for
20: Clear duplicate trajectory hypotheses from tl

21: return tl
22: end function

where to search. Each detection in the set of observations O is processed in parallel, and

only those that have a single spatiotemporal neighbor, both going forward and backward

in the time dimension, shall be linked together as a trajectory. By using only spatiotem-

poral neighbors, who only have the current detection as a spatiotemporal neighbor, we

can allow certain data dependency issues to be ignored; by doing so, this algorithm

can take significant advantage of parallel execution. For instance, due to the filtering

constraints to determine whether two detections shall be linked, no detection will be

selected as the next in the track by more than one previous detection.

This means that if two detection reports get added to different tracks by two different

threads of execution, these track fragments will be equivalent by the constraint that

only one spatiotemporal neighbor was available for each detection to be linked with.
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Therefore, any duplicate results produced by parallel execution can simply be pruned

and discarded at the conclusion of the grouping process. Once all observations oi ∈ O

are processed, the duplicate trajectories are pruned from the results and the result set

tl is returned. These results are then passed on to Algorithm 4.3 for the actual feature

selection process.

The feature selection process then finds the top-rated image parameters from the set

of parameters listed in Table 2.1 in the various wavebands of the image data. It does this

by utilizing the set of trajectory hypotheses tl from the trajectory estimate generation

algorithm to compare the histograms of image parameter values produced by detections

within the same trajectory hypothesis and those from different trajectory hypotheses. In

order to compare two event reports and get a feature value for a particular parameter, a

20-bin histogram of cell values within the bounding box of an event report is extracted.

This process is repeated for both reports being processed. These histograms are then

compared using a common histogram comparison method and the resultant value of

the comparison is used as the feature value.

The histogram comparison method in this case is the histogram intersection, and is de-

fined as the sum of the minimum bin count between the two histograms being compared

or:

d(H1,H2) =
N∑
I

min(H1(I),H2(I)) (4.17)

where Hk(I) is the value of the histogram bin at index I of N bins in histogram k. This

comparison method was chosen as an approximation of the amount of mutual infor-

mation between the two histograms and was found to most effectively generalize for

ranking after trying several different comparison methods in [44]. The feature selec-

tion algorithm (Algorithm 4.3) then uses the histogram intersection feature values and

calculates the ANOVA F-Statistic using the two populations.
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Algorithm 4.3 Feature Selection

Input: tl Set of trajectory hypotheses
Output: Plfl (list of parameters to use in tracking)

1: function FeatSelect(tl)
2: Pl← The list of all image parameters
3: fl← List of F-stat values ∀pi ∈ Pl
4: for all pi ∈ Pl do
5: dl← Empty list of distance pairs
6: for each track hypothesis ti ∈ tl do in parallel
7: if ti.length > 1 then
8: for all detection pairs di ∈ ti do
9: dl← pair of histogram distances for

10: (1) pair di
11: (2) first detection in di and
12: random detection not in ti
13: end for
14: end if
15: end for
16: fl← F-stat for pi
17: end forreturn Plfl . Top−K parameters from Pl ranked on F-stat in fl
18: end function

In order to create the two populations of feature values, we only utilize those trajecto-

ries that contain more than one detection. So, each temporally sequential pair in these

trajectories is used as a comparison point belonging to the class labeled as “same object.”

Then, the first detection of each of these pairs is taken and compared to another detection

from the data set that resides in another trajectory. These comparisons are considered as

being in the class labeled as “different object.” This process results in a balanced 50/50

split between the two classes. Once the two classes of measurements are complete for a

particular image parameter on a particular AIA channel, the F-Statistic is calculated and

the value is stored for use once all parameters are evaluated. This process repeats for all

90 AIA channel and image parameter pair combinations and then all of the features are

ranked by ordering them in descending value of their calculated F-Statistic value. The

Top−K (K = 20) are then returned as the feature set to use for the solar event type being

processed, which was deemed sufficient in Chapter 3. The track estimates are broken
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down after the feature selection algorithm is finished, and the original set of observations

is passed on to Stage 2 with the selected feature list from Algorithm 4.3.

4.3.2 Tracking Stage 2: Iterative Tracking

As can be seen in Figure 4.4, Stage 2 is given an input of the individual observation

reports and the feature set selected by Stage 1. The goal of this stage is to find the most

likely trajectories from the input set of observations, which is not a trivial task. In track-

ing single objects in the set of observations, object trajectories arise by simply connecting

the detections of the single object over time. The addition of multiple detections in any

given time step breaks this naïve approach and the likelihood of each path must then be

considered. In addition, failures in detection also become an issue, such as false positive

detections or detections that were missed.

To solve the additional complexity that is found in tracking multiple objects at once,

the problem becomes how to associate multiple detections into multiple trajectories

across time. The data association approach of multiple hypothesis tracking is used be-

cause it can be quite robust to these occasional failures in detection. For example, in

the case of a false positive, erroneous detections are often isolated in time and are there-

fore easily discarded. Similarly, recovery from failed detections can be incorporated to

produce an uninterrupted trajectory [50].

In order to recover from failed detections, our implementation allows “skipped frames”,

or time steps that erroneously do not have a detection report for a given trajectory. This

is accomplished by searching for spatiotemporal neighbors of the trajectory currently

being processed in a timestamp that is later than what would be expected for the next

observation in the same object trajectory. However, this increases the number of trajec-

tory hypotheses that need to be evaluated, as we then need to consider all the possible

trajectories in each of the intervening time steps.
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To illustrate this, let us assume that an object detection report oki (ki denotes the

ith frame and the kth object report in said frame) can be associated with any object

detection report in a subsequent frame oki+1 . Then, when searching m frames, with n

object reports per frame, the number of all possible track paths is bound by θ(nm). This

means that finding the optimal global trajectory hypothesis τ is an optimization problem

that grows in complexity at an exponential rate with the number of reporting frames [61].

To help mitigate this exponential growth problem, we adopt a similar approach to that

used in [52]. In this approach, there is a hierarchy of stages in the tracking algorithm

that iteratively grows track fragments as they are passed from one stage to the next. This

set of stages reduces the complexity of finding the global optimal trajectory by making

the assumption that detections should be linked to temporally closer detections before

more temporally distant solutions are even considered.

This assumption first limits the exponent m by creating trajectory fragments that have

no gaps or “skipped frames” in them. This is accomplished by only searching the next

frame for spatiotemporal neighbors. By doing this, the number of object detection re-

ports available for possible association in subsequent frames is limited as a result of

the independence assumption mentioned in Section 4.1. This assumption states that

detections can belong to one and only one trajectory. So, once a detection belongs to a

trajectory, it cannot be considered for association in a subsequent stage, and thus reduces

n for stages that allow m to grow.

In Figure 4.4, we have changed the naming slightly from [52] in that the processing

of results from previous solutions are simply called iterations of Stage 2. In the first

iteration of Stage 2, the input is all single detections, which are treated as trajectory frag-

ments of length one. After the first iteration of Stage 2, most of the trajectory fragments

are longer than a single detection. As such, this iteratively growing framework uses the

simpler transition probability Plink(oi+1|oi) = Plink,var1 from Equation 4.4 on the first

iteration where a majority of the object detection reports will be linked into larger trajec-
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tories. Then, the more complex transition probability Plink,var2 is used in later iterations

where most trajectories are of a length that previous motion can be used for comparison.

We utilize these two variants of the transition probability calculation for two reasons:

(1.) Because it is not possible to compare movement similarity when trajectory fragments

are length one in the first iteration. (2.) We do not want to exclude movement similarity

altogether, because greater ambiguity is present in the association hypotheses in later

iterations due to larger number of skipped frames allowed, and more information about

the similarity is helpful. It should be noted that the input observations to the transition

probability Plink(oi+1|oi) are trajectory fragments and are treated as individual observa-

tions in our notation.

In order to search for a possible next observation to link to, and to calculate the tran-

sition probability, a search area must first be created. However, as stated previously,

these trajectory fragments are only one detection in length in the first iteration of Stage 2.

So, the search area is created by using the differential rotation of the sun from [62] to

estimate how far a detection might move in the elapsed time before the next detection

report, and the bounding box of the detection is projected by that estimate. After the first

iteration of Stage 2, there are now trajectory fragments longer than a single detection. So,

it is now possible to use the previous motion of the trajectory fragments to predict where

the next trajectory fragment may be located. In the cases where trajectory fragments are

now sufficiently long enough, meaning there are more than two reports, the previous

motion is used to predict the next trajectory fragment location. Also, the subsequent

iterations of Stage 2 allow the search for candidate track fragments to occur more than

one time period in the future, which is an attempt to allow for missed detections.

Once the spatiotemporal neighbors are found for all of the trajectory fragments in

the current dataset, and the transition probabilities are calculated for those neighbors,

the most probable trajectory paths need to be found. This is called the data association

problem, and is solved as the maximization of the a posteriori probability. This association
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Figure 4.5: An example of the cost-flow network used to associate detections into longer track
fragments. This graph depicts a set of detections with three time steps and nine
observations, see Section 4.3.3 for a detailed description of the components of this
graph.

is done at each iteration of Stage 2, slowly building an approximation of the global

maximization of the a posteriori probability by using the resultant trajectories from the

previous iteration as the starting dataset for the next. In the next section, we describe

how this association process is accomplished through the use of a minimum cost-flow

problem on a directed acyclic graph.

4.3.3 Data Association Through Track Graphs

In the previous section, we discussed how the tracking framework shown in Figure 4.4

must solve the data association problem at each iteration. In this section, we begin our

discussion of the association problem and utilize graphs as a means to solve it. We

convert the association problem to a minimum cost-flow problem in a directed acyclic

graph. In doing so, we convert the MAP probability problem, presented in Equation 4.1,

to find the minimum cost flow through a graph. We call this graph the track fragment

graph, where the vertices are associated with trajectory fragments; the fragments may
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be individual detections of an object or multiple detections linked together in previous

steps to form a longer trajectory fragment.

In the track graph, a hypothesis of an object’s movement is a path in the graph, and

a global association hypothesis is a set of consistent trajectories. In order to maintain

consistency, no two trajectories in the global association hypothesis can share a single

object detection report oi. Edges/links that connect two vertices are created if and only

if the nodes have the possibility of representing the same object trajectory at differing

timestamps. To be considered as a possible representation of the same object trajectory,

the start time of the successor trajectory fragment must be later than the end time of the

predecessor trajectory fragment.

As was mentioned in Section 4.3.2, if it is assumed that any object detection report

oki (ki denotes the ith frame and the kth object report in said frame) can be associated

with any object detection report in a subsequent frame oki+1 , then for m frames with n

object reports per frame, the number of all possible trajectory paths is θ(nm). This means

that the optimal hypothesis is found by solving an optimization problem, which grows

exponentially in size with the number of frames [61], and explicitly storing each of these

track paths will also grow exponentially. So, we take two approaches to help mitigate

this growth in storage requirements. The first of which was discussed in Section 4.3.2,

where we iteratively lengthen the allowed skipped frames as trajectories get longer and

trajectory fragments get fewer. The second is the graphical formulation of the trajectory

association problem in which hypotheses are implicitly represented as paths through the

graph, instead of having to store each path explicitly.

The graphical formulation approach to mitigating storage growth will still have the

exponential rate of growth in the number of trajectory hypotheses as dictated by the

data when the number of potential matches increases. However, it accomplishes this

with increasing the number of nodes and edges in the graph at a linear rate with respect

to the number of trajectories represented in the data. It is because of this linear rate
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Algorithm 4.4 Track Graph Construction

Input: tl (is a list of track hypotheses)
Output: G (graph constructed from tl)

1: function Construct(tl)
2: G← graph with source S and sink T
3: for each track hypothesis Ti ∈ tl do
4: G← vertices ui, vi
5: G← edge (ui, vi) weight Ci . Equation 4.18d
6: G← edge (S,ui) weight Cen,i . Equation 4.18a
7: G← edge (vi, T) weight Cex,i . Equation 4.18b
8: end for
9: return G

10: end function

of growth that the graphical representation was chosen for our work over an explicit

construction of every possible trajectory hypothesis.

Track Fragment Graph

In Figure 4.5 we show a depiction of the track fragment graph G. In it, the track frag-

ment graph G is initialized with a source vertex S and a sink vertex T . This is the first

step shown in Algorithm 4.4 and is not dependent upon the data. Then, given the set of

trajectory fragments O, labeled as track list tl in Algorithm 4.4, we initialize the graph

with two vertices ui and vi for each oi ∈ O, or for each track hypothesis. As each pair

of vertices ui and vi is added, an edge (ui, vi) is inserted between each of the ui and vi

pairs that were inserted for each of the oi ∈ O. Then an edge from the source vertex S

is inserted into the graph to every vertex ui, and for each of the vertices vi there will be

an edge going to the terminating vertex T . Finally, for those trajectory fragments deter-

mined to be spatiotemporal neighbors in Algorithm 4.5 by the search criteria described

in Section 4.3.2, an edge is added from the initial trajectory fragment oi to each of the

candidates oj. The edges are created from vertex vi of searching trajectory fragment oi to

vertex uj of neighboring candidate trajectory fragment oj. The example track fragment

graph in in Figure 4.5 has nine such trajectory fragments being represented.
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Algorithm 4.5 Trajectory Association

Input: tl (Set of trajectory hypotheses)
Input: feat (List of image parameters to use)
Input: skip (Current allowable skipped frames)
Output: tl (Updated list of track hypotheses)

1: function Assoc(tl, feat, skip)
2: G← Conscruct(tl) . Algo. 4.4
3:
4: for each track hypothesis ti ∈ tl do in parallel
5: l1 ← Forward_ST_Neighbors of ti
6: allowing for skip number of skipped frames
7:
8: for all tj ∈ l1 do
9: if skip < 1 then

10: G← edge ei,j from ti to tj
11: ei,j ← weight from Plink,variant1
12: else
13: G← edge ei,j from ti to tj
14: ei,j ← weight from Plink,variant2
15: end if
16: end for
17: end for
18:
19: Link track hypotheses Ti ∈ tl
20: using results from Solve(G) . Algo. 4.6
21:
22: Remove duplicate track hypotheses Ti ∈ tl
23: return tl
24: end function

Next, we turn our attention to the weights of the edges we just defined. The weights, or

costs of traversing an edge in the graph, are calculated with the use of the Markov chain

parameters that were discussed previously in Section 4.2; the initialization probability
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Pentr(oi), the termination probability Pexit(oi), and the transition probability Plink(oj|oi):

Cen,i =− log Pentr(oi) (4.18a)

Cex,i =− log Pexit(oi) (4.18b)

Ci,j =− log Plink(oj|oi) (4.18c)

Ci =log
1−βi
βi

(4.18d)

In these calculations, we get the cost of a trajectory starting at a given trajectory fragment

Cen,i in Equation 4.18a, the cost of a trajectory ending at a given trajectory fragment Cex,i

in Equation 4.18b, and the cost of two trajectory fragments being joined into one larger

trajectory fragment Ci,j in Equation 4.18c. The final cost in Equation 4.18d contains β,

which is used to model the cases of an observation being a true detection or a false

detection βi = 1− f(∆; λ), where f(∆; λ) was discussed in Section 4.1.1 as the Poisson

probability of seeing the change in detections from one frame to the next.

Association by Solving the Track Fragment Graph

In Algorithm 4.5, after the track fragment graph G is constructed, the data association

problem can be solved as a minimum cost-flow problem in G. In order to show how

the track graph is used to solve the data association problem, we begin by defining the
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following 0− 1 indicator variables that are used to indicate hypothesis membership for

a particular trajectory, as was done in [51, 61, 63]:

fen,i =


1 ∃τk ∈ τ, τk starts from oi

0 otherwise

(4.19a)

fex,i =


1 ∃τk ∈ τ, τk ends at oi

0 otherwise

(4.19b)

fi,j =


1 ∃τk ∈ τ,oj immediately follows oi in τk

0 otherwise

(4.19c)

fi =


1 ∃τk ∈ τ,oi ∈ τk

0 otherwise

(4.19d)

Here, as previously mentioned, oi is considered a trajectory fragment, with potentially

many object detection reports. Each of the the indicator variables is one when oi is in

trajectory hypothesis τk of the global hypothesis τ, and zero otherwise. The various

indicators are as follows:

• fen,i is the flow into the vertex ui from the source vertex, which means the be-

ginning of the trajectory hypothesis is at trajectory fragment oi referenced by this

vertex

• fex,i is the flow out of the vertex vi to the termination vertex, which indicates the

end of the trajectory hypothesis is at trajectory fragment oi referenced by this vertex

• fi,j is the flow from vertex vi, representing trajectory fragment oi, to vertex uj,

representing trajectory fragment oj, which means that the two trajectories oi and

oj belong to the same trajectory hypothesis
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• fi indicates the referenced trajectory fragment oi, represented by vertices ui and vi,

belonging to the hypothesis of interest τk

Recall that there is a constraint that trajectory hypotheses are non-overlapping. So, in

order for the global trajectory hypothesis set τ to be consistent, the following constraint

must be met:

fen,i +
∑
j

fj,i = fi = fex,i +
∑
j

fi,j (4.20)

This simply states that the flow into a vertex of the graph is the same as the flow out of

that same vertex, which is the same as the flow between any two vertices in the graph

that correspond to the same trajectory hypothesis τk. By satisfying the constraints set

forth in Equation 4.20, the flow through any given path in the graph is limited to one,

which means that no trajectory or part of a trajectory can participate in more than one

trajectory hypothesis.

Now that the indicator variables and the constraint using those variables have been

defined, we can move on to converting the MAP probability into a minimization of the

cost of sending a flow through the network of graph G. To convert the maximization
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problem indicated in Equation 4.1 into the minimum-cost flow variant, the negative log

of the posterior is taken as follows:

τ∗ = argmin
τ

∑
i

−log P(oi|τ) +
∑
τk∈τ

−log P(τk)

= argmin
τ

∑
i

(−log (βi)fi − log (1−βi)(1− fi))

+
∑
τk∈τ

(Cen,k0fen,k0

+
∑
j

(Ckj,kj+1fkj,kj+1) +Cex,knfex,kn)

= argmin
τ

∑
i

(Cen,ifen,i) +
∑

ij(Ci,jfi,j)

+
∑
i

(Cex,ifex,i) +
∑
i

(Cifi)

(4.21)

The final iteration of Equation 4.21 is subject to the flow constraints set out in Equa-

tion 4.20, and the cost of flow through the vertices is given by the functions defined in

Equations 4.18a-4.18d.

Note that the construction of the observation weight in Equation 4.18d gives a negative

cost to edges associated with trajectory fragments that have an observation likelihood

value greater than 0.50. This negative cost allows the optimal cost of traversing the

edges in G to become negative by sending flow through these negative-cost edges. The

negative weighting produced by Equation 4.18d is needed because of the simple fact

that if all the edge costs in G were positive, the minimum-cost flow would be the trivial

empty zero-cost flow [51], and would result in no linking of smaller track hypotheses

into larger track hypotheses.

The flow through the edges in G are that of the indicator variable in Equations 4.19a-

4.19d, where the flow is 1 when the track hypothesis traverses the edge, and will be 0

otherwise. For each new flow through the graph, a new association hypothesis is formed.

Recall that edges were created from searching target trajectory fragment oi to neighbor-
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Algorithm 4.6 Track Graph Minimum-Cost Flow Solve

Input: G(tl) a graph constructed from list tl of trajectory hypotheses Ti
Output: tl1 (list of hypothesis paths that decrease the cost of flow through G(tl))

1: function Solve(G(tl))
2: τi is a hypothesis path in G(tl)
3: while ∃ τi ∈ G(tl) with negative cost do
4: Find minimum-cost path τi from S to T
5: not already used.
6: if Cost τi is negative then
7: tl1 ← τi
8: τi ← flow in G(tl) as 1 (used)
9: else

10: Break
11: end if
12: end while
13: return tl1
14: end function

ing candidate trajectory fragment oj, and the cost of traversing one of these edges would

be the cost of associating these two trajectory fragments into a new trajectory fragment

that encompasses both. In [63], it was shown that the cost of the optimal solution in

this directed acyclic graph is convex and can be solved by solving K+ 1 shortest-path

problems, where K is the optimal number of trajectory hypotheses.

Each iteration increases the flow through the graph by 1 and decreases the cost of flow

by the cost of hypothesis path τi. For a graph with an optimal number of trajectory frag-

ment association hypotheses of K, the algorithm terminates after K+ 1 iterations, having

found a minimum cost flow where any further flow from S to T would only serve to in-

crease the cost of flow through the network [63]. The algorithm for this process of finding

the optimal K trajectory association hypotheses is presented as Algorithm 4.6. Once the

algorithm terminates, the trajectory fragments that are part of the same hypothesis path

through the graph are linked by taking the last detection in target trajectory fragment oi

and linking it to the first detection in candidate trajectory fragment oj.

This process produces duplicate results in the same fashion as those returned from the

track estimate creation heuristic in the feature selection process described in Section 4.3.1,
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where there are two trajectory fragment pointers pointing to the same linked list. As

was described in Section 4.3.1, the duplicate pointers are pruned to only include one

per linked list. The result set after pruning is returned as the set of current trajectory

fragments, which are either passed onto the next iteration or returned as the final results

dependent upon the iterative stopping criteria.
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5 IMAGE DESCRIPTORS FOR SDO AIA IMAGES

Recall from Section 2.4, that in order to aid the exploration of the massive image archive

produced by the SDO mission, a provisional Content-Based Image Retrieval (CBIR) sys-

tem was developed for retrieval of similar whole images within the dateset [64]. While

preparing for the CBIR system, [22–24] found that texture-based image parameters work

well for image comparison in this domain. In [39], the most similar images were found

to be from the preceding and succeeding time steps, and a few possible solutions for

this phenomena were explored. One possible solution was to increase the time between

samplings of the dataset. However, as was noted by [39], this leads to some events in

the data being completely missed, as their lifespan is shorter than the sampling period.

Ultimately, the similarity of temporal neighbors problem was left as an open issue to be

addressed in future work.

Later, in our work on tracking solar events in [16], we presented a method based on

sparse coding that was capable of differentiating between different classes of the same so-

lar event type. In that work, we showed that the use of sparse coding was more selective

than histograms of image parameters in this same solar event type differentiation task.

Given its capability to differentiate between regions of such similar visual characteristics

in AIA images, we postulated that sparse coding should also be capable of differenti-

ating between similar whole images as well. The use of sparse model representation

is a popular method for whole image classification and object recognition in regions of

images, with [56,65] being just a few examples. There has been work in identification of

anatomical structures in medical images [58, 59], which utilizes fuzzy images produced

in the X-ray wavelength and that have similar characteristics to our raw AIA images

from the SDO mission. In [65], sparse coding was used to extract salient properties of
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appearance descriptors from images of differing types. These properties have also been

pooled at multiple spatial scales and local features have been computed from each sub-

region [56, 65, 66]. However, to our knowledge, the use of sparse coding has never been

applied to AIA images.

5.1 Whole Image Vector Descriptor

Our first investigations in using sparse coding as a means of producing image descrip-

tors began with creating sparse image descriptors for whole SDO AIA image retrieval

in [40]. In the whole image descriptor work, we introduce an image descriptor that re-

duces the dimensionality of the SDO AIA images even more than previously produced

parameters of [23] listed in Table 2.1. In doing so, the reduced dimensionality descriptors

can have indexing techniques applied to them in order to speed up retrieval.

In the production of a descriptor for an image, we begin by extracting a signal vector

that is representative of a specific location in an image. This extraction process is similar

to the one described previously in Section 2.2.1 in that the signal vector x ∈ <m is from

a sliding window of size p by p cells placed over a portion of the region of interest being

processed. Just like the previous extraction process, this is done by concatenating the

values from each cell onto the vector produced by those values in the previous cell. For

example, using a window size of 4 by 4 cells, the 16 cells of 10 parameter values over one

wavelength, would be concatenated together to form a vector of m = 160 values, which

we denote as signal x. However, in the case of producing a descriptor for an image of a

particular wavelength, the entire image is our region of interest, and the cell values from

all 10 image parameters within this window are placed into the column vector.

In order to use the extracted signal vectors, we must first learn a dictionary to use

as a learned set of basis vectors D ∈ <m×k, where k is the chosen number of basis vec-

tors to learn. Just like tracking, we utilize the dictionary learning algorithm presented

in Section 2.2.3, but unlike tracking, we only learn a unique dictionary for each of the
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9 wavelengths utilized from our dataset. The learned dictionary for a particular wave-

length is then used as the dictionary for the corresponding wavelength of images in

order to create our descriptor for a given image. Each of these dictionaries is learned

using many sample images taken from the dataset. Each one of the sample images has

the extraction process applied to it, and all of the resultant signal vectors are placed into

a large signal vector matrix, which we denote as X. Again, this is done independently

for each of the 9 wavelengths we utilize.

So, as was described in Section 2.2.3, given our signal matrix X, constructed from the

sample images, the main objective of dictionary learning is to optimize a cost function

fn(D) ,
1

n

n∑
i=1

`(xi,D) (2.6 revisited)

where D in <m×k is the dictionary. Each column of D represents a basis vector, where

` is a loss function that decreases to some arbitrarily small value when the dictionary D

represents the signal x in a sparse fashion, and with little error [31]. It should be noted

that the number of samples n is determined by the number of images we choose to use

for dictionary learning. Whereas, the signal dimension m is consistently set to 640 (8

by 8 cell matrix with 10 parameters), and k is also constant at 256 so that k � n. We

have chosen k < m to create a smaller dictionary dimension than our input dimension,

effectively performing dimensionality reduction on each of the extracted, overlapping, 8

by 8 cell windows.

After the dictionary D is learned, the next step is to extract a set of signal vectors xi ∈

<m for an image and produce the signal matrix X for the image being processed. Then,

each of the signal vectors xi, constructed from the sliding window extraction process,

need to be represented as a sparse vector αi. In this approximation, it is assumed that
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each signal vector xi ∈ <m can be represented as a linear combination of a small number

of the basis vectors in our dictionary with k entries D ∈ <m×k and a noise factor ε:

xi = Dαi + ε (2.1 revisited)

As was described in Section 2.2.2, the optimal values of the coefficients of αi in Equa-

tion 2.1 are found using the Least Angle Regression algorithm of [35] for the `1−regularlized

Lasso problem in Equation 2.7. Recall that, by using the Lasso, we search for the “best

matching” projection of the multidimensional input vector xi onto our dictionary D,

while keeping the solution sparse.

At this point, each of the signal vectors xi ∈ X are represented as a weighted sum

of the elements in D, by the sparse vectors αi ∈ A where A ∈ <k×n. This resultant

matrix of vectors is then used to compute an image feature vector similar to that done

in [56] and [65]. The feature vector is created by computing z for each image, using a

pre-chosen pooling function z = F(A) where F is defined on each row of A.

5.1.1 Max Pooling

Specifically, we use a spatial pooling technique similar to that used in [65], which was

originally proposed in [66]. In the pooling method, each of the rows of A correspond to

the responses of all the signal vectors xi ∈ X, to a specific item (column) in the dictionary

D. We chose to use the max pooling function for F on the absolute value of the sparse

codes in each row of A

zi = max{|αi,1|, |αi,2|, . . . , |αi,n|} (5.1)

where each zj is the j-th element of z, and each αi,j is the coefficient in the i-th row and

j-th column of the sparse feature matrix A.
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Our choice of max pooling does have some biological reasoning, in that, the output

response of the max pooling method would be dominated by the best match of any part

of the input stimulus to the dictionary elements. This mechanism is similar to when

multiple stimuli are in the receptive field of a neuron and its response is dominated by

the stimulus that, when presented in isolation, produces the higher response rate [67].

5.2 Image Region Vector Descriptor

After our first use of sparse coding for whole AIA image retrieval in [40], and our use of

sparse coding for region comparison for tracking in [16], our next step is to produce a

method for region comparison for retrieval. In doing so, we still wish to have the same

constraints as were outlined for whole AIA image retrieval, specifically that we want a

descriptor that is small enough to index, i.e., less than 150 dimensions.

Just as done before with whole image descriptors for retrieval and for region descrip-

tors for tracking, we begin by extracting a signal vector that is representative of a specific

location in an image. This extraction process is similar to the one described previously

in Sections 2.2.1 and 5.1, in that the signal vector x ∈ <m is from a sliding window of

size p by p cells placed over a portion of the region of interest being processed. Unlike in

Section 5.1 though, for our region descriptors, we are again considering regions of inter-

est that are part of the image and not the entire image. Also unlike Section 5.1, instead

of extraction only the 10 image parameters of a single wavelength, we are utilizing all 90

available parameters (10 parameters × 9 wavelengths). In doing so, each signal vector

x ∈ <m, produced by the extraction process, shall be 360 dimension with a p = 4 sized

window.

In order to use the extracted signal vectors, we must first learn a dictionary to use as a

learned set of basis vectors D ∈ <m×k, where k is the chosen number of basis vectors to

learn. We utilize the dictionary learning algorithm presented in Section 2.2.3, but unlike

either of the two previous applications, we learn a global dictionary from the input set
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of 360 dimensional signal vectors x ∈ <m that were extracted from all wavelengths and

all the image parameters. The global dictionary is learned from sample signal vectors

produced from applying the extraction process to a number of sample regions of interest.

The resultant signal vectors were placed into a large signal vector matrix, which we label

as X.

So, again, as was described in Section 2.2.3, given our signal matrix X, constructed

from the sample images, the main objective of dictionary learning is to optimize some

cost function

fn(D) ,
1

n

n∑
i=1

`(xi,D) (2.6 revisited)

where D in <m×k is the dictionary. Each column of D represents a basis vector, where `

is some loss function that decreases to some arbitrarily small value when the dictionary

D represents the signal x in a sparse fashion, and with little error [31]. The number of

samples n is determined by the number of regions of interest we choose to learn from

along with their size. The signal dimension m is consistent, though it set to 360 (4 by 4

cell matrix with 90 parameters) in our region descriptor process. Finally, the number of

dictionary elements k is constant for a given set of experiments, but we did investigate

a number of values for k to find what setting works for our application. The actual

value of k will be discussed more in Section 6.3, but all values are well below the 150

dimensions we set forth as a limit in the opening of this section.

After the dictionary D is learned, the next step is to extract a set of signal vectors xi ∈

<m for an image and produce the signal matrix X for the image being processed. Then,

each of the signal vectors xi, constructed from the sliding window extraction process,

need to be represented as a sparse vector αi. In this approximation, it is assumed that
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each signal vector xi ∈ <m can be represented as a linear combination of a small number

of the basis vectors in our dictionary with k entries D ∈ <m×k and a noise factor ε:

xi = Dαi + ε (2.1 revisited)

Again, just as was done before, and described in Section 2.2.2, the optimal values of

the coefficients of αi are found using the Least Angle Regression algorithm of [35] for the

`1− regularlized Lasso problem in Equation 2.7. At this point, each of the signal vectors

xi ∈ X are represented as a weighted sum of the elements in D, by the sparse vectors

αi ∈ A where A ∈ <k×n. This resultant matrix of vectors is then used to compute the

region feature vector similar to that done for tracking in [16]. Just as was done for the

whole image descriptors, the region feature vector is created by computing z for each

image, using a pre-chosen pooling function z = F(A) where F is defined on each row of

A. The function F is described in the following subsection.

5.2.1 Histogram of Sparse Codes

As mentioned in Section 5.2, a matrix of sparse vectors A was constructed for a region

of an image, however, we want a single vector to describe the entire region. In [16], we

were able to do this using a histogram of the sparse weights. However, this histogram

was of the absolute value of the weights, and didn’t treat a positive weight any different

than a negative. In our descriptors for region retrieval, we found that this should also

be taken into account. So, our function F shall now do so for region descriptors and is

described as Algorithm 5.1. In Algorithm 5.1, as was done for tracking and [16], the final

step is to scale the histogram vector to have unit length. It is this normalized histogram

vector that is used for our region descriptor z in our experiments described in Chapter 6.
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Algorithm 5.1 Calculates a Sparse Histogram from A

Input: A The set of observations
Output: hist (histogram of normalized coefficient weights)

1: function CalcSparseHisto(A)
2: hist← Array of length 2 ∗ k
3: for i from 1 to k do
4: for j from 1 to n do
5: αij ← Aij . Value of A at Row i Column j
6: if αij < 0 then
7: hist2∗i ← hist2∗i + |αij|

8: else
9: histi ← histi +αij

10: end if
11: end for
12: end for
13: hist← hist

‖hist‖ . Scale to unit length
14: return hist
15: end function

5.3 Choosing the Norm for Image Comparison

With the assumption that an image descriptor z has been created, we need to determine a

method of comparison for the descriptors, so that we can find the images in our dataset

that are similar to one another. In content-based retrieval systems, use the distance

between the user query input and each element in the dataset to retrieve the most similar

[68]. However, in high-dimensional space, all pairwise distances can be very similar. This

problem, often referred to as the curse of dimensionality, also affects the original image

parameter data in our dataset, as was found in [39], where a large number of temporal

neighbors all have very similar distances from each other.

In both [68] and [69], this phenomenon was discussed in the context of using Minkowski

norms (also called Lp norms). These norms are a family of metrics that are parameterized

by their exponent 1 6 p 6∞ : For a xj = [xj1, . . . , xjd] ∈ <d

||xj||p =
(∑

i

|xji|
p
) 1
p

(5.2)
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Figure 5.1: Summed temporal distance (in minutes) for first nearest neighbor over 1K queries,
5.1(a) for image parameters, and 5.1(b) for whole image sparse descriptors.

In addition, the fractional norms were also discussed, where 0 < p < 1, and it was

concluded that the “optimal” value of p is highly application dependent. Given this fact,

to determine the p−norm that is most suitable for the given application, it was proposed

that using a statistical measure of relevance for each p−norm considered would be an

elegant solution to choosing the proper norm. So, as done in [68], we tested several

p−norms, using a relevance feedback strategy to pick the the most applicable for our

data.

In our relevance feedback strategy, we consider the most similar image in the dataset

to be, on average, the immediate temporal neighbor of a query image. So, for each of the

distance measures, we start by randomly choosing 1,000 query images from the month

of January 2012, and scan the entire month to find the one image that is the most similar

to the query. Using the result, we then calculate how many minutes away the returned

most similar image is from its query image, and sum the distance in time over the 1,000

trials.

In Figure 5.1(a), the results of this feedback strategy, on the pooled image descriptors,

is displayed for for 131Å wavelength images. It can be seen that the p = 1
8 fractional

norm seems to provide the most relevant results according to our assumptions, as it is
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the closest to the minimum value achievable for this test. In Figure 5.1(b), this test is

repeated using the original image parameter space so that we can compare our results

to that of [39]. These results are similar to what was found by [39], in that we see very

little difference between the fractional norms and the p = 1 (Manhattan distance) norm.

This information, coupled with the general requirement of indexing techniques that a

distance function must satisfy the triangle inequality property, leads us to choose the

fractional norm with p = 1 as the default distance measure for the rest our work.
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6 EXPERIMENTAL EVALUATIONS

In this chapter, we will discuss the experiments that were conducted on the various use

cases presented in Chapters 4 and 5. We begin with discussing the evaluation of our

tracking use case from Chapter 4 in Section 6.1. Then we present our evaluations of

our whole image and region descriptors from Chapter 5, starting with the whole image

descriptors in Section 6.2 and conclude with region descriptors in Section 6.3.

6.1 Tracking Evaluation

In this section, we evaluate our algorithm on solar data retrieved from [27] and [70]. As

in [17] and [18], we will be utilizing active region and coronal hole detections for evalua-

tion. Unlike most other solar phenomena reported to the HEK, these event types contain

tracking data from the original Spatial Possibilistic Clustering Algorithm (SPoCA) detec-

tion module [46]. We have also curated a dataset of human labels for the ground truth

information on two months of these active region and coronal hole reports, so as to have

a basis of comparison for our method against the original labels.

We will begin by describing the human labeling process in Section 6.1.1 as well as

how we utilized the produced data to create a ground truth. We then provide a brief

description of the evaluation metrics we use for comparing the human-labeled dataset to

our results and the SPoCA module results to the human-labeled dataset in Section 6.1.2.

Then, in Section 6.1.3, we discuss the tuning of weighting constants that are used to

emphasize various components of the trajectory hypothesis when calculating the edge

weights in the track graph G. Finally, in Section 6.1.4, we provide the comparison of our

algorithm and the SPoCA module results to the human-labeled dataset.
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6.1.1 Crowd Sourced Human Labels

For our crowd sourcing of human labels, we utilized non-expert human labelers to de-

termine the sequence of detections representing a tracked object. To accomplish this,

we presented the labelers with an original detection, chosen at random, from either our

active region or coronal hole dataset. In an effort to reduce any bias that could be in-

troduced from not specifically accounting for changing behavior of solar events as the

solar cycle progresses, we used detections from two distinct months, January 2012 or

December 2014. These months were chosen because they were the most distant months

within our current image parameter dataset (2012/01/01 00:00:00–2014/12/31 23:59:59

UTC). Given their temporal distance, these time frames would be more likely to exhibit

independent behavior of the tracked objects due to their differing points in the solar

cycle.

With the original detection presented to the labeler, we then present all of the spa-

tiotemporal neighbors in the next n timesteps as potential matches for being the next

detection in the sequence. The labeler can choose to see a video sequence of what this

will look like prior to making their choice. The labelers are allowed to choose a sequence

of up to three detections at a time to label as being consecutive steps in a trajectory of a

tracked object.

Since we are using non-expert human labelers, we opt to not rely on one person’s

opinion on what the next step of the sequence should be. Instead, we use the majority

voting strategy, which counts each labeler’s decision as one vote. In Figure 6.1, we show

that every original detection in our two-month dataset has at least three votes. There are

approximately 8,600 votes on 1,561 coronal hole detections, and 14,100 votes on 2,647

active region detections. The median number of votes on any particular detection is five

in both cases.

Then, in Figure 6.2(a), we show the percentage of labels going to each of the choices

presented to the labelers as possible next steps in the sequence. For example, if there
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Figure 6.1: Histogram showing the distribution of how many times each detection in our dataset
was used as the initial detection in a vote for a sequence.
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Figure 6.2: Plots showing the percentage of the user labels that point to the same successor for a
given detection. (a) Distribution of the percentage of labels for all successors pointed
to by a given predecessor. (b) Distribution of the percentage of labels for the most
chosen successor for each detection.
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are two choices of detections for the next step in a sequence, and every labeler chose the

same detection, this would mean that 100% of the labels go to the same choice. In the

figure, we can see that this 100% agreement of which detection is next in the sequence

happens for about 70% of the coronal holes and 60% of the active regions.

However, since Figure 6.2(a) includes all choices made by the labelers, it is difficult

to see how much of the dataset has a plurality of votes going to one choice and how

much has an absolute majority going to one choice. So, to make this easier to discern, in

Figure 6.2(b) we show only the majority votes in our dataset. In other words, for each

detection in the dataset that has a successor, we show the percentage of votes that went

to the successor with the most votes. In it, we again see this 70% and 60% range of our

dataset with a high confidence in the user decisions.

We also see in Figure 6.2(b) that almost every set of user decisions gives us greater

than an absolute majority of user votes going to the same next detection. Though having

any part of the dataset below a 100% agreement of votes is not ideal, we believe that 66%

is an acceptable level of ambiguity, as this guarantees that at least 2 of 3 votes have been

for the same next detection in the sequence.

6.1.2 Evaluation Metrics

The metrics used to evaluate the accuracy of the tracking algorithm are listed in Table 6.1.

The definition of Mostly Tracked (MT) is from [71], which is when the ground truth

trajectory is covered by one output trajectory from the tracking algorithm for greater

than 80% of its length. Note that we assume a trajectory is mostly tracked when 80%

of the total frames are covered by the ground truth trajectory, regardless of identity

switches.

The definition of (Identity) Switches is when a tracked object from the tracking output is

following the path of a particular tracked object in the ground truth and it then switches

to another. As an example, if the output indicates that a person wearing a green shirt
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Table 6.1: Definitions of Tracking Evaluation Metrics; MOTA, MT, and Switches are from [71]
and [72].

Name Definition
MOTA Multiple Object Tracking Accuracy: 1− Etot Where Etot is the ratio of the

sum of all errors (misses, false positive, mismatches) and the total number
of objects in each frame. Larger is better. Range [0%, 100%]

MT% Mostly Tracked: Percentage of the ground truth trajectories that are cov-
ered by one track output for more than 80% of its length. Larger is better.
Range [0%, 100%]

Switches Identity Switches: The average number of times the tracking output of one
tracked object switches from one ground truth track to another. Smaller
is better. Range [0,n] where n is the number of detections in the dataset.
Though the theoretical upper limit is n, a more practical upper limit would
be the number of tracks that occur over the lifetime of the ground truth
track.

Track
Count

The total number of tracks in the results of the tracking algorithm being
applied.

Avg.
Length

The average number of detections associated into one track in the results
of the tracking algorithm being applied.

Max
Length

The largest number of detections associated into one track in the results of
the tracking algorithm being applied.

and walking along from one frame to the next is the identity of the track, and then at

some frame it switches over to the person wearing a red shirt that was walking beside

them, this would be considered an identity switch of the tracking output. Then, if the

tracking output switched back to the person in the green shirt, this would be registered

as another identity switch. The Identity Switch metric is simply the average number of

times this occurs over all ground truth trajectories in our data.

The definition of the metric Multiple Object Tracking Accuracy (MOTA) from [72] pro-

vides another description for the accuracy of the tracking algorithm. The MOTA metric

sums all the errors at each time step (misses, false positives, mismatched trajectory la-

bels) and then computes the ratio of errors to the total number of objects over all time

steps. This process gives the total error rate Etot, and 1 − Etot is the resulting MOTA

metric value.
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6.1.3 Weighting Constants

As described in Section 4.3.3, we build the track graph G by utilizing Equation 4.18a-

4.18d to provide weights to the edges. However, we found that weighting some of the

edges more heavily than others produces better results than a naïve approach of simply

using the raw weights from each of the equations. To that end, we conducted a search

for an improved weighting scheme by allowing a weighting constant to vary on each of

the equations and compare the results of tracking to our human-labeled ground truth to

find the best results.

We conducted this search by having a single constant for Equations 4.18a and 4.18b

called the Enter/Exit Multiplier Constant, a constant for Equation 4.18c called the Transition

Multiplier Constant, and a constant for Equation 4.18d called the Observation Multiplier

Constant. We started each of these multipliers at 5 and searched the three dimensions

allowing Enter/Exit to vary up to 45, Observation up to 205, and Transition up to 195.

The best results we found were around Enter/Exit = 5, Observation = 65, and Transition

= 175.

6.1.4 Tracking Performance

As was mentioned in Section 6.1.1, our human-labeled data utilized active region and

coronal hole detection from two months, January 2012 and December 2014. We use the

results from the human labeling as the ground truth with which to compare our tracking

results. We also compare the SPoCA module results to the same set of human-labeled

data. The results of the comparison of both our tracking and the SPoCA tracking are

listed in Table 6.2. In it, we see that our tracking algorithm outperforms the SPoCA

module for active regions. However, we also see that our tracking module does slightly

worse than the SPoCA module for coronal holes.
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Table 6.2: Results when comparing SPoCA and our tracking method to human-labeled ground
truth tracks. Results are shown for both unlimited solar radius (R�), and limited to
within 80% of the R�. The evaluation metrics that show improvement when limiting
the area in which tracking is done are in bold.

Tracking Results using Human-Labeled Ground Truth
Data MOTA MT% Switches Track

Count
Avg.
Length

Max
Length

AR
SPoCA 100% R� 0.902 0.662 0.681 485 5.45 73

80% R� 0.876 0.643 0.736 323 4.18 44

Track 100% R� 0.923 0.675 0.541 399 6.63 75

80% R� 0.925 0.736 0.445 221 6.11 44

CH
SPoCA 100% R� 0.976 0.889 0.156 130 12.01 108

80% R� 0.986 0.842 0.193 58 13.88 46

Track 100% R� 0.969 0.877 0.197 220 7.1 108

80% R� 0.991 0.895 0.123 49 16.43 46

To see why our tracking module was not performing as well as the SPoCA module on

coronal holes, we looked at the cases where our tracking algorithm disagrees with the

human labels for both active regions and coronal holes in Figure 6.3. Here we see that

many of our mislabeling happens at the limbs of the solar disk, mostly in the greater

than 80% of solar radius (R�) area between the inner and outer circles. According to [8],

some of the reporting modules limit detection to only a percentage of the solar disk, so

we also investigated limiting our tracking to only being applied to a limited portion of

the solar disk.

We tested various limits from 100% of the solar radius (R�) down to 60% of the R�

by excluding those detections that have their center outside of these limits. We plot the

three main metrics for the tracking runs with the various limit values, where MOTA

is in Figure 6.4(a), Mostly Tracked is in 6.4(b), and Identity Switches are in 6.4(c). We

included the results for the 80% R� limit tracking in Table 6.2. The 80% limit was chosen

because, as seen in Figure 6.3, most of the coronal hole mislabeling happens outside of

this area. It was also chosen because it is the midpoint of our evaluations from 60% to

100% of R�.
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Figure 6.3: Plot showing the location where a detection is labeled as linking to a different detec-
tion by the tracking algorithm than what human labels did. The plot includes both
active regions (AR) and coronal holes (CH). There are also histograms along both the
Latitude and Longitude axes which show how many detections were different at a
particular location. The two concentric circles are 100% R� (outer) and 80% R� (in-
ner). Each box in the plot marks the center of the detection that has the mislabeled
next detection.

In Table 6.2, we can see that the spatial limiting does improve the results of our track-

ing algorithm on both coronal holes and active regions. If we look at the results for

coronal holes specifically, we see that the improvements are more significant for our

tracking algorithm than they were for the SPoCA module. The improvements for the

results of our tracking were so improved, relative to SPoCA, that we now see that our

method outperforms the SPoCA results on our human-labeled dataset.

6.2 Whole Image Query Results and Analysis

In this section, we will discuss several different ways that we investigate the results ob-

tained when using our max pooled vector image descriptors, as well as a comparison

with the original image parameter space. We begin by providing a more detailed discus-
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Figure 6.4: (a) Displays MOTA for tracking when it is limited to a percent of R�. (b) Displays the
percentage of Mostly Tracked (MT%) ground truth tracks when tracking is limited to
a percent of R�. (c) Displays the number of Identity Switches per track when tracking
is limited to percent a of R�.

sion of the results of the 1,000 random queries used for the distance measure selection

process in Section 6.2.1. We then discuss the visual similarity of images in Section 6.2.2,

the distribution of the most and least similar images in our data in Section 6.2.3, and

provide an example of a query with its result in 6.2.4.

6.2.1 Nearest Neighbor Distributions

In Section 5.3, we presented the query results of the first nearest neighbor as a way for

us to find the most relevant similarity (distance) measure. We then provided the sum

of the temporal distance from the query in Figures 5.1(a) and 5.1(b) as our results and

concluded that the p = 1
8 fractional distance measure was the apparent best choice for

our pooled vector descriptors. Similarly, we observed that the p = 1 distance measure

was the apparent best choice when using the original image parameters alone.

In Figures 6.5(a) and 6.5(b) we look at each of the distance measures and the two dif-

ferent cases of either our pooled vector descriptors in Figure 6.5(a) or the original image

parameters in Figure 6.5(b). In these two figures, we show distribution of distances for

the 1,000 random queries described in Section 5.3. The distance displayed is that of the

number of images, or six-minute steps; the result image is from the query.
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Figure 6.5: Plots showing the distribution of how temporally distant the first nearest neighbor is
for every image in our dataset. 6.5(a) shows the results for pooled vectors, and 6.5(b)
shows the results for image parameters.

In Figure 6.5(a), it can be seen that the highest percentage of results is very temporally

near the query image for every distance measure. This result is expected given the fact

that the data is essentially a video of an object that, on average, has smooth transitions

from one frame to the next. However, the Sun does have periods when visual character-

istics rapidly change; thus, the most similar images may not be the immediate temporal

neighbor. Given this fact, it is not surprising to see that somewhere in the range of

20-25% of our results are not the immediate neighbor for our assumed best measure

(p = 1
8 ).

In Figure 6.5(b), however, we see that nearly every query result is the immediate

temporal neighbor. Though this might seem to be a desirable result at first, as mentioned

in [39], the problem with using a very high-dimensional vector of image parameters

simply concatenated together, is that every image begins to look similar to every other

image. Also, as mentioned in the previous paragraph, the sun has periods of rapid

change in visual characteristics, and this method may be missing many of these changes,

especially if they are not a dramatic departure from the previous image.

These observations lead us to reason that our proposed pooled vector descriptor is

behaving in a manner that would be expected, given the data we are working with. It is
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Figure 6.6: Similarity plots for 131Å where p was determined from Figure 5.1(a) and 5.1(b). Here
6.6(a) is constructed from pooled vectors using p = 1

8 , 6.6(b) is constructed with a
single image parameter (mean) using p = 1, and 6.6(c) uses all image parameters and
p = 1 on the distance measure.

returning the immediate temporal neighbor as the most similar on a large percentage of

queries, but it does not fall victim to the problem of seeing only the immediate temporal

neighbors as the most similar, as is seen when using the naïve descriptor of the combined

image parameters.

6.2.2 Visual Similarity

Next, we look at a subset of the images in our dataset, and plot how similar each image

is to every other image in the subset. We take the images in the 131Å wavelength over

the date range of January 20, 2012 to January 23, 2012, as was done in [39]. The plots are

symmetric, meaning the line down the diagonal is the comparison of each image to itself,

and moving off the diagonal is comparing the image at the diagonal to either its earlier

temporal neighbor (left/up) or its later temporal neighbor (right/down). The plots are

seen in Figure 6.6, and the colors range from black being the most similar, according to

the distance measure used, to white being the most dissimilar.

As can be seen in Figure 6.6(a), our pooled vector shows the immediate temporal

neighbor as being the most similar for a large percentage of images, as would be ex-

pected from our previous results and the fact that the dataset is of a video sequence
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Figure 6.7: Distribution of nearest neighbor queried using the pooled vector method (Sparse
1NN) as a ratio of the distance of the nearest neighbor using the parameters. Also,
the most distant neighbor using parameters (Param 1DN) as a ratio of the distance of
the nearest neighbor using parameters to show the contrast.

of a smoothly changing process. In Figure 6.6(b), we display the results from just one

image parameter, and as seen in [39], there is a large number of temporal neighbors that

look very similar, which is only compounded in 6.6(c) when we add the other 9 image

parameters.

It should also be noted that, although our pooled vector method departs rather quickly

from seeing the temporal neighbors as similar, it does still have a large enough dynamic

range in its comparisons to pick up the rapid changes in image composition. For exam-

ple, as was noted in [39], the lower right corner of each of the plots shows a small set

of images that are very dissimilar to every other image in the subset. This is due to the

occurrence of a large (X-class) solar flare at that time, which any comparison method

should be able to recognize as having a substantially different look than its immediate

temporal neighbor. This is yet another piece of evidence that leads us to reason that our

method is working correctly.
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6.2.3 Distribution of Distances

In Figure 6.7, we examine how the distance of the most and least similar images are

distributed. We construct this figure by using the 1,000 random queries described earlier.

To do so, we begin by finding the first nearest neighboring image when using our pooled

vector descriptor. Then, we find both the nearest and most distant images from the query

image using the original image parameter space. After obtaining the neighbor results,

we compute the distance of all three of the images (from the query image) in the original

image parameter space.

Using the distances in the original parameter space for the three query results de-

scribed above, we compute the ratio of the distance for the nearest neighbor found using

the pooled vector descriptor to that of the nearest neighbor found using the original

parameter space, and label it as “Sparse 1NN” in Figure 6.7. Similarly, we compute the

ratio of the distance for the most distant neighbor found using the original parameter

space to the nearest neighbor found using the original parameter space, and label it as

“Param 1DN” in Figure 6.7. Note that both ratios use the same denominator, the distance

of nearest neighbor found using the original parameter space, as we want to show how

our descriptors compare to the parameter space results. If we saw an overlap between

what our method says is a similar image and what the ground truth says is a distant

image, then it could be argued that that our results are incorrect. However, the fact that

there are two distinct distributions in this plot is yet another indication that our pooled

vector descriptor indeed produces valid results.

6.2.4 Query Example

Finally, in Figure 6.8, we present a query example from our dataset. In this figure,

we searched the month of January 2012 for the query image with the most temporally

distant nearest neighbor, when using our pooled vector descriptor. The query image
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Figure 6.8: Results of searching January 2012 for the image with the most temporally distant
first nearest neighbor. 6.8(a) query image, 6.8(b) result image, 6.8(c) result flipped on
vertical axis to show a more similar perspective.

is 6.8(a) from January 31, 2012 at 21:00:36, and its result is 6.8(b) on January 1, 2012 at

16:18:11. We flipped the image along the vertical axis in 6.8(c) to show a more similar

perspective, as the pooling method produces a descriptor vector that is invariant to

where in the image similarities occur and is simply looking for the images that have the

most similar overlapping windows that cover 1
8 of the image at a time.

6.3 Image Region Query Results and Analysis

In this section, we present the results of several different methods of evaluating our

sparse vector region descriptors. In these evaluations we start with the same region

of interest dataset that was produced for [29], and provide a comparison between the

methods used in that work and our sparse vector methods. Below, we first provide

a description of the evaluation dataset, which also includes a brief description of the

previous representation methodology for the regions within the dataset. Finally, we

provide our comparison of results for the two competing methods.
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6.3.1 Region Labeling

As was previously mention in Section 2.3, a multi-institutional team called the Feature

Finding Team (FFT) created a number of software modules to process data coming from

the SDO. These modules create reports of solar phenomena (events) that are of great

interest to the solar physics research community. As such, the metadata they create is

directly reported to the Heliophysics Event Knowledgebase (HEK) [36]. In Figure 2.5,

we provided a visualization of what these events look like when overlaid on an image

from the SDO.

Similar to tracking, we utilize these reported events as identifiers for spatiotemporal

regions of interest for study. Our dataset for evaluation started in [29], where two event

types, Active Region (AR) and Coronal Hole (CH), were retrieved from the HEK for the

year of 2012 and were utilized as the input dataset. This equated to 13, 518 AR events and

10, 780 CH events, with both event types having a reporting cadence of approximately

four hours. In an effort to produce a balanced dataset, we compiled a list of all unique

AR reports, and then each one was processed to find at least one CH event within ±60

minutes. If no CH event was found to be in that search window for the selected AR

event, then the AR report was discarded so that it can be guaranteed that there would

be both event types for each timestep.

After the aforementioned filtering steps were completed, we then created a third ar-

tificial event type that was labeled as Quiet Sun (QS), which represented areas of the

solar disk where neither AR nor CH events exist. To create these artificial events, the

bounding box of each AR event in the filtered set was placed randomly within the solar

disk, taking care to not overlap other AR or CH events at that report time. By using

AR events as templates, we were attempting to replicate the natural distribution of event

sizes and frequencies when creating the same number of QS events (13, 518 QS objects).

It is the combination of these three event types, Active Region (AR), Coronal Hole (CH),
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and Quiet Sun (QS), that was used as a dataset for the work in [29]. This dataset is also

the initial dataset we use for our comparisons here.

In addition to the dataset produced in [29], we utilize a second, more difficult, dataset

in our evaluations of our sparse vector region descriptors. In this second dataset, we

begin with the data produced by [29] and add two more solar event types to the dataset.

These data types are Sun Spots (SS) and Sigmoids (SG). Both of these data types are

pulled from the same HEK repository that the initial dataset was obtained from. These

two data types are also from the 2012 calendar year, so as to overlap with the dataset

produced previously. This produces 7, 805 SG events and 3, 417 SS events over the data

period.

Statistical Region Description

In order to produce a descriptor for the ROIs produced by the aforementioned solar

events, [29] first starts with the bounding box of the solar events. Then, utilizing the

image parameter dataset that was described in Section 2.1, the image parameter cells

from within the bounding box of a specific solar event are processed to create a 7-statistic

summary for each parameter over all the cells within the bounding box. The statistics

are ordered as: minimum, 1st quartile, median, 3rd quartile, maximum, average, and

standard deviation, which we notate as the vector: {q0,q1,q2,q3,q4,avg, std}. This then

gives each solar event a 630-dimensional vector (9× 10× 7) as its representation.

Recognizing the need to perform some dimensionality reduction, [29] then utilized

the Top-K feature ranking method, previously described in Section 3.1, to rank and

select the top features from the 630-dimensional vector space. In this use, the different

classes of solar events were used for the F-Statistic calculation, and each one of the

statistic values were evaluated as individual features. In the experiments below, when

using the statistical descriptor vectors for comparison, we utilize the Top-K features from

this ranking method. Our ranking was performed using the average F-Statistic from 10
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repetitions of a randomized undersampling of the solar events from each class over the

first three months of 2012. The undersampling was applied because the number of solar

events are not perfectly balanced.

6.3.2 Classification

In these evaluations, all classifications are performed using a Naïve Bayes classifier; as

was found in [29], this classifier works as well as more sophisticated models such as

SVM for our classification task. We begin our evaluation of our sparse vector region

descriptors by utilizing them in a classification task and comparing them to the results

produced by the previous methods of [29]. In the classification task, we first split the

event types into the months in which they occur and take 2
3 of the months (8 months)

and place them in the training set. The remaining 1
3 of the months (4 months) are placed

in the testing set. Since the sets of events within each of these training and testing sets

are not equal, we perform a random undersampling of the larger numbered events to

get a balanced set of event types. This undersampling process is also performed on the

testing set to have a balanced number of test cases for each of the classes.

Once the balanced sets of training and testing events are produced, the model is then

trained using the training set, and then testing is performed using the testing set. This

process of picking 2
3 of the months for training and 1

3 of the months for testing, followed

by the random undersampling in each set, is repeated for each combination of 8 months

training and 4 months testing available in our dataset or
(
12
4

)
= 495 combinations of

different testing months. The results that we present are the mean values seen from

these
(
12
4

)
combinations of the training and testing processes. This process is the same

regardless of the region descriptor vector type we are processing.

In the following subsections, we present the results and comparisons between our

sparse vector region descriptor and the results produced by the previous statistic vector

methods of [29]. We begin with the first dataset of 3 classes; Active Region (AR), Coronal
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Figure 6.9: Plots showing the classification results on three classes using the statistical description
methods of [29]. 6.9(a) shows how the events in AR class were classified. 6.9(b) shows
how the events in the CH class were classified. 6.9(c) shows how the events in the QS
class were classified.

Hole (CH), and Quite Sun (QS). Then we present the results of the more difficult 5-class

dataset that contains the additional event types of Sigmoid (SG) and Sun Spot (SS).

3-Class Dataset

As stated above, we begin with the original dataset produced by [29] that contains the

three event types Active Region (AR), Coronal Hole (CH), and Quiet Sun (QS). In order

to produce a fair comparison between the statistic feature method from [29] and our

sparse vector method, we evaluated several sizes of input statistic feature vector to our

classification task and chose the best performing results to discuss here. In our evalua-

tion of these different sized statistic feature vectors, we found that a vector of the top-12

rated statistic features worked the best.

The pie charts in Figure 6.9 show the average classification breakdown of the statistical

feature method from [29]. From the figures, we can see that the statistic features do a

relatively decent job at describing the AR and CH classes in such a way that the classifier
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can differentiate between the two. In 6.9(a), we see that the AR class has a relatively

decent average accuracy of about 89%, with a majority of the misclassifications going to

the QS class. Then, in 6.9(b), we see that the CH class has an average accuracy of about

78.6%, again with a majority of the misclassifications going to the QS class. In both of

these two subfigures, we see very few AR being classified as CH (1.3%) or CH being

classified as AR (3.8%), which should be the case as these two event types are so visually

dissimilar, as ARs are seen as bright spots in some wavelengths and CHs are relatively

dark in some wavelengths.

However, in 6.9(c), we see that the statistical method has some difficulties correctly

classifying the QS objects, the the extent that they are incorrectly classified as CH ob-

jects more often than they are correctly classified as QS objects, at 45.2% CH vs. QS

39.2%. This drags on the overall classification accuracy and brings the statistical feature

method’s overall classification accuracy rate to 71.1%. This difficulty probably arises due

to the fact that the CH and QS event types are not as drastically dissimilar as the AR

and CH event types are. This leads to the the conclusion that the statistical method will

have even more difficulty when more classes that are more closely related are added in

the 5-class dataset.

AS was done for the statistical features, we evaluated several settings for our sparse

vector region descriptors and utilized the best results, which are shown in Figure 6.10.

The settings that were chosen are that of a dictionary with 40 elements in it and an

input vector composed of all 90 image parameters. With these settings, the sparse vector

method sees an 80.2% overall classificaton accuracy rate, a 9.1% improvement over the

statistical feature method.

Similar to the results seen when using the statistical features, Figure 6.10 shows that

the sparse features describe the AR-class objects in a manner such that the classifier can

produce even better results than before. As seen in 6.10(a), the AR class has a 93.1%

correct classification average, and a majority of the misclassifications were seen as QS
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Figure 6.10: Plots showing the classification results on three classes using the our sparse coding
region descriptor method. 6.10(a) shows how the events in AR class were classified.
6.10(b) shows how the events in the CH class were classified. 6.10(c) shows how the
events in the QS class were classified.

objects. In 6.10(b), we see that the sparse vector method leads to a slightly lower correct

classification average for CH objects at 69.7%, which is a decline of 8.9%. Though it did

decline, the increase in incorrect labels mostly went to QS event type, which is more

acceptable than had it gone to the AR type as they are less similar.

Where we see the greatest divergence from the statistical feature method is on the QS

events in 6.10(c). Here we see that the sparse vector method produces a 77.4% average

classification accuracy, which is a 38.2% improvement over the statistical method for this

class of events. This improvement leads us to postulate that the sparse vector method

will be more adept at differentiating between the more similar event types when we

introduce the SG and SS event types in the next section. This shall be important since

the SG and SS event types tend to co-occur with the AR event types making their visual

similarity quite pronounced in some wavelengths.
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Figure 6.11: Plots showing classification results on five classes using the statistical description
methods of [29]. 6.11(a) shows how the events in AR class were classified. 6.11(b)
shows how the events in the CH class were classified. 6.11(c) shows how the events
in the QS class were classified. 6.11(d) shows how the events in the SS class were
classified. 6.11(e) shows how the events in the SG class were classified.

5-Class Dataset

After seeing the results from the 3-class dataset, we concluded that it would be best

if we investigated a more difficult dataset. So, as stated in Section 6.3.1, we added

two additional data types to our original dataset produced in [29]. This 5-class dataset

contains the three event types Active Region (AR), Coronal Hole (CH), and Quiet Sun

(QS) from before and the additional two event types of Sun Spot (SS), and Sigmoid (SG).

We then reproduced the experiments from the 3-class dataset and present them here.

Just as was done with the 3-class dataset, we evaluated several sizes of input statistical

feature vectors as input to classification task and chose the best performing results to

discuss here. In our evaluation of these different sized statistical feature vectors, we

found that a vector of the top-199 rated statistical features worked the best.
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Like with the 3-class dataset, we produced Figure 6.11 showing the average classifica-

tion breakdown of the statistical feature method. From the figures, we can see that the

statistical features still do quite well at differentiating between AR and CH events, with

few of either one being classified as the other. They also do quite well with providing

a reasonable descriptor for the QS objects, giving an average classification accuracy of

77.1%. This was unexpected judging from the results found in the 3-class dataset, and

could be because of the more numerous features included in the models used here. In ad-

dition, we see that the statistical features do remarkably well with one of the event types

added for this dataset, with SS achieving an average of 74.8% classification accuracy.

However, the statistical features are beginning to have difficulties describing the AR

in such a way that it can be differentiated from the two new event types SS and SG,

which is what we were expecting, as the SS and SG event types co-occur with the AR

event type. Yet another issue that can be seen in the figure is that the CH classes are

now being classified as a QS object more often than the correct event type, though not as

often as any of the new event types. One final issue with the statistical feature method

is that the SG event type is classified as one of three incorrect classes more than it is

identified correctly at only 17.1% of the time. We can see that the classes AR, SS, and

QS, are picked more often than the correct SG label. In all, these mixed results lead to

an overall average of 49.9% classification accuracy for the 5-class dataset.

Next, like was done for the statistical features, we evaluated several settings for our

sparse vector region descriptors and utilized the best results in Figure 6.12. The settings

that were chosen are that of a dictionary with 32 elements in it, and an input vector

composed of all 90 image parameters. With these settings, the sparse vector method

sees a 56.4% overall classificaton accuracy rate, a 6.5% improvement over the statistical

feature method.

In the figure, we can see that the AR, CH, and SG classes see improvements over the

statistical feature method, with CH seeing the most marked improvement. In 6.12(b),

114



AR 51.3%

CH

3.2%

QS

3.9%

SS

21.5%

SG

20.1%

(a) AR

AR

1.5%

CH

79.8%

QS

17.1%

SS

0.8%

SG

0.8%

(b) CH

AR

6.1%

CH

29.2%

QS

58.2%

SS

2.2%

SG

4.3%

(c) QS

AR

24.4%

CH 2.2%

QS
0.9%

SS

63.2%

SG

9.2%

(d) SS

AR

27.8%

CH

4.2%

QS

11.7%

SS

27.8%

SG

28.5%

(e) SG

AR
CH
QS
SS
SG

Figure 6.12: Plots showing the classification results on five classes using the our sparse coding
region descriptor method. 6.12(a) shows how the events in AR class were classified.
6.12(b) shows how the events in the CH class were classified. 6.12(c) shows how the
events in the QS class were classified. 6.12(d) shows how the events in the SS class
were classified. 6.12(e) shows how the events in the SG class were classified.

the CH events go from being more likely to be classified as a QS event than a CH event,

to being more likely to be classified a CH event than all others combined. We also see

AR improving to be more likely to be classified as an AR event than all others combined

in 6.12(a). Though we do see some drop in average classification accuracy on QS and SS

event types, the fact that all five event types are now more likely to be classified as the

correct event type than any one other event type bodes well for the possibility of using

k-nearest neighbors (KNN) as a classification method, even though our focus on KNN

in the next section is not for the classification task.

6.3.3 Retrieval

Lastly, as was done in [29], we look at k-nearest neighbor (KNN) retrieval results on

the sparse vector descriptors to assess CBIR capabilities and specifically Region-based
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Querying (RBQ) performance. As was done in [29], in order to obtain this set of results,

we select 100 random data instances and retrieve the nearest N neighbors using the Eu-

clidean distance on our sparse vector descriptors. The dimension of the vector depends

on the dataset we utilize. We use the aggregate of the 100 random instance queries for

the results to calculate the mean and display the results for a single instance of N in

the KNN query. Just as was done for the classification task, we utilize both our 3-class

dataset from [29], and the augmented dataset with 5 classes.

Unlike the classification evaluations performed above, the RBQ retrieval process uses

the entire unbalanced dataset, which provides an evaluation that is closer to what would

be seen in a real-world application. As was noted in [29], in both our 3-class and 5-class

datasets, there are many more events per class than our largest query, so we do not

need to be concerned with a query exhausting the dataset. For example, the smallest

collection of any one event type is the SS event type, which has 3, 417 instances for

a query of K = 200 to find. Below we discuss the results seen for each of these two

datasets.

3-Class Dataset

We begin our KNN evaluation with the 3-class dataset that covers the calendar year

of 2012, and contains the AR, CH, and QS classes. In Figure 6.13 we preset the average

percentage of neighbor class membership obtained from the 100 randomly selected query

instances. The graphs in this figure show the results as we vary the number of neighbors

returned for each set of 100 queries from K = 10 to K = 200 in increments of 10 neighbors.

From Figure 6.13(a), we can ascertain that the AR class is clearly distinguishable from

the CH and QS classes, as over 80% of the returned neighbors are of the AR class, even

for queries of K = 200. In Figure 6.13(b), we find similar results with the CH class,

though to a lesser extent than with the AR class. In it, we see that the CH class has

between 70% and 80% of the returned neighbors of the same class as the query event. In
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Figure 6.13: Plots showing the percentage of neighbors of each class type for KNN queries on the
3-class dataset using the our sparse coding region descriptor method. 6.13(a) shows
the neighbors for the AR class. 6.13(b) shows the neighbors for the CH class. 6.13(c)
shows the neighbors for the QS class.

Figure 6.13(c), we see the QS class again being the more difficult class to find definable

characteristics in, as the percentage of neighbors being returned from the queries hovers

around the 60% line. Though it would be desirable for QS event type results to be nearer

the percentage averages seen for the AR or CH event types, the observed results are not

entirely unexpected given the random process used to create the QS events.

5-Class Dataset

Next we move onto evaluating the KNN retrieval using the sparse vector descriptors

on our augmented 5-class dataset, which includes the two additional event types of

SG and SS. As was done for the 3-class dataset, we present the average percentage of

neighbor class membership obtained from the 100 randomly selected query instances in

Figure 6.14. Again, the graphs in this figure show the results as we vary the number of
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Figure 6.14: Plots showing the percentage of neighbors of each class type for KNN queries on
5-class dataset using the our sparse coding region descriptor method. 6.14(a) shows
the neighbors for the AR class. 6.14(b) shows the neighbors for the CH class. 6.14(c)
shows the neighbors for the QS class. 6.14(d) shows the neighbors for the SS class.
6.14(e) shows the neighbors for the SG class.
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neighbors returned for each set of 100 queries from K = 10 to K = 200 in increments of

10 neighbors.

In Figure 6.14(a), we can see that, for the AR class, introducing the two new classes to

the dataset has reduced the percentage of returned neighbors that are the correct class

by around 10% from the results seen with the 3-class dataset. It is not entirely surprising

that we see some additional responses coming from the SG and SS classes, as they co-

occur with the AR class and therefore will have highly similar visual characteristics.

Also not surprisingly, we do not see much of a shift in the results of the CH class in

Figure 6.14(b), as the additional SG and SS classes should not have overlapping visual

characteristics with CH events and therefore should not be very similar to them. In

Figure 6.14(c), we see a similar reduction to that which was seen in the AR class, with a

majority of the increased incorrect events being from the SG class. This is probably due

to the significant spatial overlap between the SG events and AR events.

At first glance, the results in both Figure 6.14(e) and Figure 6.14(d) look somewhat

problematic, with both returning the AR class as the closest neighbor more often than

events of the same event type. However, given that they both co-occur with the AR class,

and that there are so many more AR events than either the SG or SS event type, it is not

such a surprising result to see. When we couple this with the fact that the event type

second most likely to be returned in these cases is the same as the query event type, we

can conclude that the sparse vector descriptor is working relatively well.

Additionally, for the two problem event types of SG and SS, we can point out that

event types that the query event do not have much visual similarity with, like the CH

event type, do not show up in the returned neighbor set with great frequency. For

example, in 6.14(d), it is difficult to even discern the CH response frequency as it rarely

leaves the zero axis. Similarly, in 6.14(e), the CH event type is the least likely of all the

event types to be returned. The combinations of all these factors, gives us confidence in

the results returned by this method.
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7 CONCLUSION

This dissertation has presented our examination of utilizing sparse coding to construct

a variety of methods for comparing both whole SDO AIA images and regions thereof.

We have presented numerous results showing the effectiveness of these methods for

tracking various solar events, as well as for producing efficiently comparable vectors

for use in content-based image retrieval. In using these methods for tracking, we were

able to improve upon our previous tracking work so that the model of appearances

was trained online and can be applied to solar event types that do not have previously

compiled tracking information. Then, in whole SDO AIA image and regions of image

comparisons, we were able to improve the selectivity of KNN retrieval results, while also

utilizing a distance function that is a metric and therefore applicable for indexing.

7.1 Future Work

We plan to extend our research on using sparse vector descriptors for whole and regions

of images querying by working towards an online system that continuously integrates

new images as they become available. A key component to being able to achieve the

integration of a continuously updated dataset will be the use of an indexing schema that

can be updated without having to recalculate the distance between every image in the

dataset. To accomplish this, we plan to utilize the iDistance index investigated in [73]

and [74] as the indexing structure that will accommodate our needs.

Furthermore, given the fact that there is a large, and growing, amount of video data

available from the SDO mission, and that solar phenomena are not static single-frame

occurrences, these approaches of single similar image retrieval are of limited use to solar

physics researchers. In order to be more useful tool, a retrieval system should allow
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a researcher to retrieve a sequence of images that are similar to a query sequence of

images that depict phenomena of interest. Once a system of single image retrieval is

produced, it is our intent to make the first steps towards producing a retrieval system

that would be capable of this sequence retrieval task. To do this, we must first develop a

summarization technique to quickly and concisely represent sequences of images.

Summaries exist in many different types; there are summaries of collections of docu-

ments [75], summaries of video [76,77], and navigation summaries of robotic motion [78],

just to name a few. These are useful things in that they can briefly and concisely present

the data that is being summarized in a significantly smaller footprint than the original.

We intend to start our investigation of producing video summaries by following the work

of [77], in that we will extract a global feature from each image, perform a hierarchical

clustering on these feature vectors, and finally, reduce redundancy through filtering by

the resultant cluster centers. Our approach will differ somewhat from [77] in that our

global feature set for an image shall not based on the HSV histogram of an image, but

shall use sparse coding and a pooling pyramid, such as multi-scale max pooling, as is

described in [65] and [66] to represent each image.
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