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ABSTRACT 

Photoionization studies of atomic subshells have long been important tools in 

understanding the properties of atomic, molecular, and condensed matter systems. Recently, the  

ratio of photoionization cross section of atomic subshells split by the spin-orbit interaction 

(branching ratio) is gaining more attention in the scientific community because of the achievement 

of experimental measurements, which were impossible a few years ago. In this theoretical study 

to investigate the relativistic behavior of the photoionization process and to identify the 

interchannel coupling effects, numerical calculations were performed on noble gases (Ne, Ar, Kr, 

Xe, and Rn) and Hg using the relativistic-random-phase approximation (RRPA) based on the Dirac 

equation, which includes relativistic interactions in an ab initio manner; it also includes significant 

aspects of electron-electron correlation in initial and final state wave functions of the 

photoionization process.  

At higher energies far away from the inner shell thresholds where the spin-orbit splitting 

is comparably insignificant, the branching ratio of spin-orbit (nl) doublets must go to the statistica l 

value (l+1)/l in the absence of relativistic effects. We found the alteration of branching ratios from 

its statistical value at higher energies which indicates the relativistic interaction on the radial wave 

functions. Also, it has been found that the mechanism of interchannel coupling of the final state 

wave functions significantly influences the branching ratios of outer-shell doublets in the vicinity 

of inner-shell thresholds. Furthermore, it was found spin-orbit interaction activated interchanne l 

coupling effects in Hg 3d, Rn 3d, and Rn 4d spin-orbit doublets. 

 

INDEX WORDS: Photoionization, Spin-Orbit Doublets, Branching Ratio, Interchannel 
coupling, Relativistic Interaction, RRPA 
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1 INTRODUCTION  

Atomic photoionization studies have garnered considerable interest recently because of 

their applications in a variety of technological fields and the advancement of experimenta l 

techniques such as synchrotron light sources and free electron lasers with increased brightness 

along with improvement in electron detection in the X-ray region. These studies allow us to study 

atomic dynamics in great detail, owing to the facts that the interaction between the incoming 

photon and the target electron is comparably weak, and the photon disappears after the 

photoionization process [1]. 

Introducing relativistic effects into quantum mechanics caused a revolution in atomic 

physics, allowing us to understand a number of new phenomena in atomic dynamics. Starting with 

the Dirac equation, which includes special relativity in an ab initio manner, there are many recent 

studies aimed at understanding how relativity affects the atomic structure and dynamics [2, 3]. An 

electron becomes relativistic when its kinetic energy or binding energy is a significant fraction of 

rest mass energy. In addition, atomic electron wave functions can contract or expand due to 

relativistic interactions [4].   

Although there are many studies aimed at understanding relativistic influence on the 

photoionization process at lower energies [5-7], there is a lack of thorough understanding of this 

effect at the higher energy ranges. Therefore, this study is aimed at the effects of relativis t ic 

interactions in the photoionization process of atoms in the higher energy regime.  Photoioniza t ion 

studies of spin-orbit doublets in atoms are of interest in that they spot-light relativistic interactions; 

in the absence of relativistic effects, the cross sections for a spin-orbit doublet should be just the 

ratio of their occupation numbers. The ratio of photoionization cross sections of atomic subshells 

split by the spin-orbit interaction is known as the branching ratio. Aside from spotlighting 



2 
 

relativistic effects, branching ratio data is experimentally more accurate than individual cross  

sections because many of the experimental uncertainties cancel out in the ratio. 

The branching ratios of spin-orbit doublets are strongly energy-dependent near threshold. 

This energy dependence occurs due to the kinetic energy difference of the photoelectrons from the 

spin-orbit doublet and the significant electron-electron correlations near thresholds [6]. At higher 

energies, far above the thresholds, where the energy splitting of the j = l ± 1 states is comparably 

insignificant, this kinetic energy effect is unimportant, and branching ratios of spin-orbit nl 

doublets must reach its statistical value of (l+1)/l in the absence of relativistic forces [6]. Therefore, 

the alteration of the branching ratio from its statistical value at higher energies indicates the 

existence of relativistic interactions on the radial wave functions. Decades ago, this was 

theoretically predicted [8] and recently been verified experimentally [8, 9]. From this earlier 

theoretical work [8], It was expected that the branching ratio continually decreases with the energy 

without reaching a limit due to the relativistic alteration of the initial state wave functions. To 

understand this effect both qualitatively and quantitatively, we investigate the behavior of the 

branching ratios of spin-orbit doublets over a broad energy range for the closed-shell atoms Ne, 

Ar, Ne Kr, Xe, Hg, and Rn, i.e., from Z=10 to Z=86. 

Also, in high-energy regions, just above the inner-shell thresholds, structures can be found 

in branching ratio data due to the influence of relativistic effect on the interchannel coupling of the 

final state wave functions [9, 10]. The other purpose of this study is to get a broad understanding 

of these effects as a function of energy, subshell angular momentum, and atomic number (Z). To 

accomplish this, spin-orbit doublets of the six elements listed above were studied over a wide range 

of energy.  
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Calculations have been performed to obtain cross sections and branching ratios of the listed 

elements using the Relativistic-Random-Phase Approximation (RRPA) which is based on the 

Dirac Equation and includes relativistic interactions on an ab initio basis [11, 12]. RRPA 

calculations contain significant aspects of electron-electron correlation in initial and final state 

wave functions of the photoionization process; the initial state two-particle two-hole correlations; 

and the final state in the form of interchannel coupling (configuration interaction in the continuum) 

[11, 12]. Furthermore, RRPA allows to perform the calculation with selected relativistic single-

photoionization channels omitted, and, therefore, specific aspect of interchannel coupling can be 

identified. RRPA has been applied at low energies, where correlation is significant and resulted in 

excellent agreement with experimental branching ratios [5]. Therefore, it is safe to assuming that 

it is at least as accurate at higher energies, where correlation is generally much less important, and 

this has already been demonstrated in several cases [9, 13].  However, strictly speaking, RRPA is 

applicable only for closed subshell systems. Therefore, all the noble gasses from Ne to Rn were 

used in this study which will help in the understanding of the atomic behavior of elements in the 

periodic table over a wide Z range. Moreover, this theoretical analysis is also focused on the 

transition metal Hg, anticipating to fill the lack of experimental photoionization studies of Hg 

because of the difficulty arising from the damage made on experimental setups by its evaporation. 

The next chapter of this dissertation will explain the theoretical aspects of photoioniza t ion 

and discuss RRPA calculations' details. Succeeding chapters will present results obtained through 

this analytical work and conclusions.   
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2 THEORY 

2.1 Photoionization 

The process of a photon of energy ħω being absorbed by an atom or molecule with the 

subsequent emission of an electron is known as photoionization [14, 15]. If the X(i) is the init ia l 

atomic system in state i and the residual positive ion X(j)+ is in the state j, then the single 

photoionization process can be expressed as,  

ℏ𝝎 + 𝑿(𝒊) ⟶ 𝑿(𝒋)+ + 𝒆−, (2.1) 

In most cases, X(i) and X(j)+ refer to their ground state, but they can also be excited states. The 

ejected electron is known as photoelectron, and if its kinetic energy is ɛ, then the fundamenta l 

relation of the photoionization process is, 

𝜺 = ℏ𝝎 − 𝑰𝒊𝒋 , (2.2) 

The threshold (minimum) energy needed to remove an electron from X(i), leaving X(j)+ is 

represented by Iij. If i and j represent ground states, Iij is the binding energy of the ejected electron 

[14].   

 

2.1.1 Photoionization Cross Section 

Since not all photons incident on an atomic system can ionize the system, the probability 

of ionization of an nl subshell due to an incident beam of photons is defined as the photoioniza t ion 

cross section [3]. The photoionization cross section, σnl can be expressed as the number of 

ionizations per unit time per atom, divided by the incident photon flux. To drive the general 

formula for the photoionization cross section, nonrelativistic Hamiltonian H [16] will be used for 

simplicity. The relativistic influence will be discussed later in section 2.2.3. Let us consider an 

atom or ion containing N electrons and a nucleus charge of Ze (In Gaussian units); 
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𝑯 = ∑ (−
ℏ𝟐

𝟐𝒎
𝛁𝒓𝝁

𝟐 −
𝒁𝒆𝟐

𝒓𝝁
) + ∑ 𝒆𝟐

𝒓𝝁𝜸
 𝑵

𝝁<𝜸+𝟏
𝑵
𝝁=𝟏 , (2.3) 

where m is the electron mass, 𝑟𝜇  is the relative coordinate of the µth electron with respect to the 

nucleus, and 𝑟𝜇𝛾 = |𝑟𝜇 − 𝑟𝛾|. The first two terms represent each electron's kinetic and potential 

energy under the attractive Coulomb interaction of the nucleus, and the last term describes the 

Coulomb repulsion between the electrons [16]. The semi-classical Hamiltonian H(t) for a system 

of charged particles under the influence of electromagnetic radiation field can be written as follows 

[16], 

𝑯(𝒕) =
𝟏

𝟐𝒎
∑ [𝒑𝝁 +

|𝒆|

𝒄
𝑨(𝒓𝝁 , 𝒕)]

𝟐

+ 𝚽𝑵
𝝁=𝟏 , 

(2.4) 

where A(rµ,t) is the vector potential for the radiation field, 𝑝𝜇 = −𝑖ℏ∇ is the momentum operator 

of the µth electron and Φ is the sum of the all interactions in the absence of radiation field, Φ =

− ∑ (
𝑍𝑒2

𝑟𝜇
) + ∑ 𝑒2

𝑟𝜇𝛾
 𝑁

𝜇<𝛾+1
𝑁
𝜇=1 . Combining equations (2.3) and (2.4) and using the Coulomb gauge 

(𝛁 ∙ 𝑨 = 0) where momentum and vector potential commute, it can be shown that the time-

dependent Hamiltonian for an atomic system under electromagnetic radiation is H + Hint(t), where 

interaction Hamiltonian Hint(t) is, 

𝑯𝒊𝒏𝒕(𝒕) =
|𝒆|

𝒎𝒄
∑ 𝑨(𝒓𝝁 , 𝒕) ∙ 𝒑𝝁

𝑵
𝝁=𝟏 +

𝒆𝟐

𝟐𝒎𝒄𝟐
∑ 𝑨𝟐(𝒓𝝁 , 𝒕)𝑵

𝝁=𝟏 , (2.5) 

and H is as defined in the equation 2.3. 

Furthermore, we consider only the weak field case so that the A2 is negligible compared to 

the linear terms in A, and the process can be treated as a small perturbation. So, we end up only 

with the first term of the equation (2.5) as the Hint(t). Then the vector potential can be chosen as 

follows treating the incident radiation classically [17], 

𝑨(𝒓𝝁 , 𝒕) = (
𝟐𝝅𝒄𝟐ℏ

𝝎𝑽
)

𝟏/𝟐

𝝐̂𝒆𝒊(𝒌∙𝒓𝝁−𝝎𝒕), 
(2.6) 
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where V is the spatial volume, 𝜖̂ is the polarization direction, 𝑘 is the wave vector, and the 𝜔 is 

the angular frequency of the incident radiation. The exponential term can be expanded as follows, 

𝒆𝒊𝒌∙𝒓𝝁 ≈ 𝟏 + 𝒊𝜿 ∙ 𝒓𝝁 +
𝟏

𝟐!
(𝒊𝒌 ∙ 𝒓𝝁)

𝟐
+ ⋯ , (2.7) 

Then, using the electric dipole approximation [18], which is applicable for our purposes as 

explained in Appendix A, the above expansion replaced by unity. By applying this approximation 

in equation (2.6) and plugging it to equation (2.5) gives, 

𝑯𝒊𝒏𝒕(𝒕) =
|𝒆|

𝒎𝒄
(

𝟐𝝅𝒄𝟐ℏ

𝝎𝑽
)

𝟏/𝟐

∑ 𝝐̂ ∙ 𝒑𝝁 𝒆−𝒊𝝎𝒕𝑵
𝝁=𝟏 , 

(2.8) 

Then for further calculations, let us describe the atomic photoionization process in LS (orbital 

angular momentum L and spin angular momentum S) coupling, 

𝑿(𝑳, 𝑺,𝑴𝑳,𝑴𝒔 ,𝓹𝑿) +  𝜸(𝓹𝜸, 𝒍𝜸 , 𝒎𝜸) ⟶ 𝑿+(𝑳̅𝑺̅𝓹𝑿+)𝜺𝒍(𝑳′,𝑺′ , 𝑴𝑳′ ,𝑴𝑺′ ), (2.9) 

Here 𝛾 represents the photon, l is the orbital angular momentum of the photoelectron, and 𝓅 

denotes the parity. For the photoionization process, initial and final quantum numbers must satisfy 

the angular momentum and parity selection rules for the electric dipole transitions [1, 17, 19]. 

Then, the final state wave function 𝜓𝑓  satisfies the following asymptotic boundary condition so 

that the photoelectron is ionized into a specific transition channel α [17, 19].  

𝝍𝒇(𝒓𝟏𝑺𝟏 ,… , 𝒓𝑵𝑺𝑵)𝑟𝑁→∞ ⟶ 𝝋𝜶(𝒓𝟏𝑺𝟏,… , 𝒓𝑵𝑺𝑵) 𝟏

𝒊(𝟐𝝅𝒌𝜶)
𝟏
𝟐

 
𝟏

𝒓𝑵
𝒆𝒊∆𝜶 −

                                                       −∑ 𝝋𝜶′ (𝒓𝟏𝑺𝟏,… , 𝒓𝑵𝑺𝑵) 𝟏

𝒊(𝟐𝝅𝒌𝜶
′)

𝟏
𝟐

 
𝟏

𝒓𝑵
𝒆𝒊∆

𝜶′ 𝑺
𝜶′𝜶

†
𝜶′ , 

(2.10) 

∆𝜶= 𝒌𝜶𝒓𝑵 −
𝟏

𝟐
𝝅𝒍𝜶 +

𝟏

𝒌𝜶
𝒍𝒐𝒈𝟐𝒌𝜶𝒓𝑵 + 𝜽𝒍𝜶

, (2.11) 

where 𝑘𝛼 is the photoelectron momentum in channel α and 𝜃𝑙𝛼
 is the Coulomb phase shift. The 

negative part of equation (2.10) indicates the normalization of the incoming wave function in 

channel α with 𝑆
𝛼′𝛼

†
 being the Hermitian conjugate of the S-matrix of scattering theory [19]. In 
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addition, to represent a final state with a well-defined 𝑘𝛼 and spin states m1/2 for the photoelectron 

along with well define ionic states, an alternate final-state wave function  can be obtained and 

related to 𝜓𝑓  by uncoupling the ionic and electronic angular momenta and then projecting the 

photoelectron’s angular momentum states lα, mα in the direction of 𝑘̂𝛼 [17, 19]. i. e., 

𝝍𝜶𝒌𝜶
(𝒓𝟏𝑺𝟏 ,… , 𝒓𝑵𝑺𝑵) = ∑

𝒊𝒍𝜶 𝒆
−𝜽𝒍𝜶

𝒌𝜶

𝟏
𝟐

𝒀𝒍𝜶𝒎𝜶

∗ (𝒌𝜶) ∑ ⟨𝑳𝑴𝑳𝒍𝜶𝒎𝜶|𝑳𝑴𝑳⟩𝑳𝑴𝑳𝑺𝑴𝑺𝒍𝜶𝒎𝜶
×

                                               × ⟨𝑺𝑴𝑺

𝟏

𝟐
𝒎𝟏

𝟐

|𝑺𝑴𝑺⟩ 𝝍𝒇(𝒓𝟏𝑺𝟏,… , 𝒓𝑵𝑺𝑵), 

     

(2.12) 

where 𝑌𝑙𝛼𝑚𝛼

∗ (𝑘̂𝛼) indicates the spherical harmonics.  

Meanwhile, using the first-order perturbation theory, which means treating the radiative 

transitions for a single photon emitted or absorbed [16], transition rate is obtained as equation 

(2.13) [3, 17, 19]; the second-order perturbation theory result is smaller by a factor of 1/137 than 

the first-order result and can be neglected so that,  

𝒅𝑾𝒌𝜶
=

𝟐𝝅

ℏ
|⟨𝝍𝒊 |𝑯𝒊𝒏𝒕|𝝍𝜶𝒌𝜶

⟩|
𝟐
𝜹(𝑬𝒇 − 𝑬𝒊 − ℏ𝝎)𝒌𝜶

𝟐𝒅𝒌𝜶𝒅𝛀(𝒌𝜶), (2.13) 

where 𝜓𝑖 is the initial state wave function, 𝜓𝑓  is the final state wave function, and their energies 

are Ei and Ef correspondingly. dΩ is the differential solid angle, and the delta function expresses 

the energy conservation. Substituting Hint(0) from the equation (2.8), dividing the transition rate 

by incident photon current density c/V, and integrating over dkα, the differential photoioniza t ion 

cross section for channel α is, 

𝒅𝝈𝜶

𝒅𝛀
=

𝟒𝝅𝟐

𝝎𝒄
𝒌𝜶 (

𝒆𝟐

𝒎ℏ𝟐) |𝝐̂ ∙ ⟨𝝍𝒊 |∑ 𝒑𝝁
𝑵
𝝁=𝟏 |𝝍𝜶𝒌𝜶

⟩|
𝟐
. (2.14) 

Substituting 𝜓𝑓  from the equation (2.12) in the equation (2.14) and carrying out numerous 

summations over quantum numbers gives the relationship for the differential cross section [17, 

19].  
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𝒅𝝈𝜶

𝒅𝛀
=

𝝈𝜶

𝟒𝝅
[𝟏 + 𝜷𝑷𝟐(𝒄𝒐𝒔𝜽)], (2.15) 

where 𝛽 is the asymmetry parameter, which is discussed in detail in section 3.2, and 𝜃 is the angle 

between outgoing photoelectron and the polarization vector of the incident photons. The 

photoionization cross section 𝜎𝑖𝑗  of a system in initial state i, photoionized by a photon beam of 

energy ħω and going to final state f consisting with photoelectrons of energy ɛ and with the ion 

left in state j is [14, 19, 20],  

𝝈𝒊𝒋(𝜺) = (𝟒𝝅𝟐𝒂𝟎
𝟐𝜶/𝟑𝒈𝒊)(𝜺+ 𝑰𝒊𝒋)|𝑴𝒊𝒇|

𝟐
, (2.16) 

In equation (2.16), Rydberg units are used where a0 is the Bohr radius, and α(~1/137) is the fine 

structure constant so that 𝑎0 = ℏ2/𝑚𝑒2, 𝛼 = 𝑒2/ℏ𝑐, energy is measured in the units of 𝑒2/2𝑎0 

and wave number is in the units of 1/𝑎0. 𝐼𝑖𝑗 is the ionization energy so that 𝐼𝑖𝑗 + 𝜀 = 𝐸𝑓 − 𝐸𝑖 =

ħ𝜔 as in equation (2.2) and 𝑔𝑖 is the number of degenerate sublevels at the initial state energy. The 

dipole matrix element [14, 20] is given by, 

|𝑴𝒊𝒇| =
ℏ𝟐

𝒎𝟐(𝜺+𝑰𝒊𝒋 )
𝟐 |⟨𝝍𝒊| ∑ 𝒑𝝁

𝑵
𝝁=𝟏 |𝝍𝒇⟩|

𝟐
. (2.17) 

 

2.1.2 Velocity and length forms of the dipole matrix element 

If we consider the nonrelativistic Hamiltonian of an atomic system, where 𝑝𝜇  and 𝑟𝜇  satisfy 

the commutation relations, [𝑥𝜇, 𝑝𝜇′
𝑦
] = 0, [𝑥𝜇, 𝑝𝜇′

𝑥
] = 𝑖ℏ𝛿𝜇𝜇′ , etc., then, 

[𝒓𝝁 ,𝑯] = 𝒊ℏ𝒑𝝁/𝒎 , (2.18) 

If we consider initial and final states of the photoionization process to be eigenstates of the exact 

Hamiltonian [14, 20] so that, 𝐻|𝜓𝑖⟩ = 𝐸𝑖|𝜓𝑖⟩ and 𝐻|𝜓𝑓 ⟩ = 𝐸𝑓|𝜓𝑓 ⟩ then from equation (2.18) we 

get, 



9 
 

⟨𝝍𝒊|[𝒓𝝁 ,𝑯]|𝝍𝒇⟩ =
𝒊ℏ

𝒎
⟨𝝍𝒊|𝒑𝝁|𝝍𝒇 ⟩ = (𝑬𝒇 − 𝑬𝒊)⟨𝝍𝒊 |𝒓𝝁|𝝍𝒇 ⟩ , (2.19) 

Therefore, alternative velocity and length forms of the dipole matrix can be written as equations 

(2.17) and (2.20), respectively, 

|𝑴𝒊𝒇| = |⟨𝝍𝒊| ∑ 𝒓𝝁
𝑵
𝝁=𝟏 |𝝍𝒇 ⟩|

𝟐
, (2.20) 

Exact wave functions are not available other than for the Hydrogen atom. Therefore, 

approximate wave functions are using for photoionization calculations of other atoms. Then the 

results from using length and velocity forms of the dipole matrix can differ considerably which 

means that one, and possibly, both are incorrect. Even though two forms give the same results, 

they can still be incorrect. Thus, equality of the outcomes from different forms of dipole matrix is 

necessary but not sufficient for the accuracy of the result. The acceleration form is another 

alternative form of the dipole matrix, and it is strongly dependent on the details of the wave 

function near the nucleus [14, 20]. But approximate wave functions are usually generated by the 

variational principle on the energy that is not very sensitive to wave function near the nucleus. 

Therefore, most of the time, only velocity and length forms are computed and compared. 

 

2.2 Wave Function Calculations   

2.2.1 Central field calculations 

The simplest wave functions used in photoionization calculations are based on the central-fie ld 

approximation, i.e., a Hamiltonian 𝐻𝑜 = ∑ [(
𝑝𝜇

2

2𝑚
) +  Φ(𝑟𝜇)]𝜇 , where the central potential Φ(𝑟𝜇) is 

a function of the scalar 𝑟𝜇  only. Then the wave functions are linear combinations of products of 

one-electron wave functions, and the radial parts of those functions are solutions of one-body 

Schrödinger equation [14]. In this method, if more than one electron changes quantum numbers, 
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the matrix element vanishes, and therefore multiple transitions are excluded. Also, after the 

transition, the remaining electrons rearrange (core relaxation), which is not included in this 

method. That is because the initial and final states are solutions of the Schrödinger equation in the 

same central potential, and thus orbitals not involved in direct transition will not change. 

Furthermore, in these calculations, velocity and length forms are necessarily equal, and therefore, 

they cannot be used to check the result, as discussed in section 2.1.2.  

If we consider hydrogenic potential in central-field approximation, the nuclear charge 

screening effect by other electrons will not work correctly for smaller rµ and larger rµ situations 

[14]. Therefore, we need boundary conditions like in Thomas-Fermi potential approximation, but 

it does not include shell effects [21]. The Hartree self-consistent- field method includes shell 

effects, but it does not contain exchange terms [22]. Since the exchange is nonlocal non-central 

interaction, it is impossible to have exchange terms with a central potential field. But, by forming 

a weighted mean of the exchange charges and considering them as a free electron gas, Slater 

introduced an average potential field that approximates the exchange effect [23]. This average 

potential, combined with the Hartree method, can be used to obtained central-field wave functions.   

 

2.2.2 Hartree-Fock (HF) calculations  

Wave functions as a linear combination of one-electrons functions can still be obtained 

while correctly maintaining exchange terms using the Hartree-Fock method [24]. According to 

this approach, congruent with Pauli exclusion principle and independent-particle approximation, 

the N-electron wave function 𝜓(𝑞1,𝑞2, … , 𝑞𝑁) can be written as an antisymmetric product of 

individual electron spin-orbitals (Slater determinant) as follows [16, 24]. 
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𝝍(𝒒𝟏 ,𝒒𝟐 ,… , 𝒒𝑵) =
𝟏

√𝑵!
 ||

𝒖𝜶(𝒒𝟏) 𝒖𝜷(𝒒𝟏) ⋯ ⋯ 𝒖𝝂(𝒒𝟏)

𝒖𝜶(𝒒𝟐) 𝒖𝜷(𝒒𝟐) ⋯ ⋯ 𝒖𝝂(𝒒𝟐)

⋮ ⋮ ⋮ ⋮ ⋮
𝒖𝜶(𝒒𝑵) 𝒖𝜷(𝒒𝑵) ⋯ ⋯ 𝒖𝝂(𝒒𝑵)

||,    (2.21) 

where α, β, …, ν represent the quantum numbers n, l, ml, and ms.  Then the Hartree-Fock is obtained 

using the variational method to get the optimum individual electron spin-orbitals. If we consider 

the Hamiltonian H in equation (2.3), and total energy is 𝐸[𝜓], then the ground state energy, 𝐸0 ≤

𝐸[𝜓] = ⟨𝜓|𝐻|𝜓⟩, and ⟨𝜓|𝜓⟩ = 1. Thus the total energy in atomic units is, 

𝑬[𝝍] = ∑  ⟨𝒖𝝀(𝒒𝒊) |−
𝟏

𝟐
𝛁𝒓𝒊

𝟐 −
𝒁

𝒓𝒊
|𝒖𝝀(𝒒𝒊)⟩+𝝀

𝟏

𝟐
∑ ∑ [𝑱𝝀𝝁 − 𝑲𝝀𝝁]𝝁𝝀 , (2.22) 

where, Jλµ and Kλµ represent the direct and exchange terms respectively and λ, µ = α, β, …, ν.  

𝑱𝝀𝝁 = ⟨𝒖𝝀(𝒒𝒊)𝒖𝝁(𝒒𝒊)|
𝟏

𝒓𝒊𝒋
|𝒖𝝀(𝒒𝒊)𝒖𝝁(𝒒𝒊)⟩, 

(2.23) 

𝑲𝝀𝝁 = ⟨𝒖𝝀(𝒒𝒊)𝒖𝝁(𝒒𝒊)|
𝟏

𝒓𝒊𝒋
| 𝒖𝝁(𝒒𝒊)𝒖𝝀(𝒒𝒊)⟩, 

(2.24) 

where 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|. For the variation of the spin-orbitals, 𝐸[𝜓] should remain stationary because 

𝜓 represents an orthonormal set owing to the condition that the value of a determinant remains 

unchanged by any non-singular linear transformation. To satisfy this condition, N2 Lagrange 

multipliers (ɛλµ) can be introduced, and then the variational equation reads [16], 

𝜹𝑬 − ∑ ∑ 𝜺𝝀𝝁𝜹⟨𝒖𝝁|𝒖𝝀 ⟩𝝁 = 𝟎𝝀 , (2.25) 

According to equation (2.25), 𝜀𝜆𝜇 = 𝜀𝜆𝜇
∗ , so that the Lagrange multipliers act like the elements of 

a Hermitian matrix. Using the unitary transformation, any Hermitian matrix can be diagonalized, 

and therefore Lagrange multipliers become a diagonal matrix with elements Eλδλμ.  

𝜹𝑬 − ∑ 𝑬𝝀𝜹⟨𝒖𝝀|𝒖𝝀 ⟩ = 𝟎𝝀 , (2.26) 

Now the Hartree-Fock equation can be obtained as a system of integrodifferential equations [16].  
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𝑬𝝀𝒖𝝀(𝒒𝒊) = [−
𝟏

𝟐
𝛁𝒓𝒊

𝟐 −
𝒁

𝒓𝒊
] 𝒖𝝀(𝒒𝒊) + [∑ ∫𝒖𝝁

∗ (𝒒𝒋)
𝟏

𝒓𝒊𝒋
𝒖𝝁(𝒒𝒋)𝒅  𝝁 ]𝒖𝝀(𝒒𝒊)−

                           − [∑ ∫𝒖𝝁
∗ (𝒒𝒋)

𝟏

𝒓𝒊𝒋
𝒖𝝀(𝒒𝒋)𝒅  𝝁 ]𝒖𝝁(𝒒𝒊), 

        

(2.27) 

In the Hartree-Fock equation each of the spin-orbitals are similar to Schrödinger eigenva lue 

equations. Iterations can be used to solve this system of integrodifferential equations. One first 

calculates the direct and exchange terms using approximate individual spin-orbitals. Then the 

Hartree-Fock equation is solved with direct and exchange terms, which in turn yields new spin-

orbitals. This procedure is repeated until the calculated direct and exchange terms are identical to 

the previous cycle's terms. Then the corresponding spin-orbitals indicate the final wave function.  

 

2.2.3 Dirac-Fock (DF) calculations 

To introduce relativistic effect (including spin-dependent interactions) to the atomic 

structure, the Hartree-Fock method can be modified by replacing the Schrödinger equation with 

the Dirac equation. Dirac introduced a wave equation based on Schrödinger and Gordon-Klein 

wave equations consistent with Lorentz transformations [2]. To deal with the particle of spin ½, it 

required a two-component wave function for the two spin states. Also, it was found that spin ½ 

particles are associated with antiparticles, leading to a four-component wave function [16]. 

Therefore, the relativistic wave equation has positive and negative eigenvalues corresponding to 

particle and antiparticle states, as indicated in figure 2.1. 
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The Dirac-Coulomb Hamiltonian for N-electron atom in a central field of the nucleus of charge Z 

[25-27] (in atomic units) is, 

𝑯𝑫𝑪 = ∑ 𝑯𝑫(𝒓𝒊)
𝑵
𝒊 + 𝑼(𝒓𝒊) = ∑ (𝒄𝜶𝒊.𝒑𝒊

𝑵
𝒊 + 𝜷𝒊𝒄

𝟐 + 𝑽𝒏𝒖𝒄(𝒓𝒊))+ 𝝓(𝒓𝒊) , (2.28) 

where Vnuc is the nuclear potential, 𝜙 is a spherically symmetric potential that occurs due to the 

other remaining bound electrons, p is the momentum operator, c is the speed of light, and α and β 

are Dirac matrices constructed from 2×2 Pauli spin matrices (σ) [26] and 2×2 identity matrix (I) 

as follows, 

Figure 2.1 Schematic diagram of electron (a) nonrelativistic and (b) relativistic states in a 

mean atomic potential. 
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𝜶 = [
𝟎 𝝈
𝝈 𝟎

]      𝐚𝐧𝐝    𝜷 = [
𝑰 𝟎
𝟎 −𝑰

], (2.29) 

If 𝜓(𝑟) is the four-component Dirac spinors wave function, 

𝑯𝑫𝑪𝝍(𝒓) = (𝑬 + 𝒎𝒆𝒄
𝟐)𝝍(𝒓) , (2.30) 

where E is the total energy, not including the rest mass energy 𝑚𝑒𝑐
2, Then the solution for the 𝜓(𝑟) 

can be written as follows with the large Pκ(r) and small Qκ(r) radial components of one-electron 

wave functions [25, 26, 28, 29]. 

𝝍(𝒓) =
𝟏

𝒓
(
𝑷𝜿(𝒓) 𝝌𝜿,𝒎(𝜽,𝝋)

𝒊𝑸𝜿(𝒓) 𝝌−𝜿,𝒎(𝜽,𝝋)
), 

(2.31) 

Here κ and m represent the angular momentum quantum numbers, and θ and φ represent the 

angular coordinates of r. The spinors 𝝌±𝜿,𝒎 are Eigenfunctions of the total angular momentum j2, 

jz, and parity define as [25, 26], 

𝜿 = −(𝒋 +
𝟏

𝟐
) ;                    𝝌𝜿,𝒎 =

[
 
 
 
 [

𝒋+𝒎

𝟐𝒋
]
𝟏/𝟐

𝒀
𝒋−

𝟏

𝟐

𝒎−
𝟏

𝟐(𝜽,𝝋)

[
𝒋−𝒎

𝟐𝒋
]
𝟏/𝟐

𝒀
𝒋−

𝟏

𝟐

𝒎+
𝟏

𝟐(𝜽,𝝋)
]
 
 
 
 

, (2.32) 

𝜿 = +(𝒋 +
𝟏

𝟐
) ;                    𝝌𝜿,𝒎 =

[
 
 
 
 − [

𝒋+𝟏−𝒎

𝟐𝒋+𝟐
]
𝟏/𝟐

𝒀
𝒋+

𝟏

𝟐

𝒎−
𝟏

𝟐(𝜽,𝝋)

[
𝒋+𝟏+𝒎

𝟐𝒋+𝟐
]
𝟏/𝟐

𝒀
𝒋+

𝟏

𝟐

𝒎+
𝟏

𝟐(𝜽,𝝋)
]
 
 
 
 

, (2.33) 

Then as in section 2.2.2 Hartree-Fock method, the variational condition can be represented by 

equation (2.34) with the indices a and b referring to one-electron orbitals (naκa) and (nbκb) [29]. 

𝜹(𝑬 − ∑ 𝜹(𝜿𝒂 ,𝜿𝒂)𝝀𝒂𝒃⟨𝒂|𝒃⟩𝒂𝒃 ) = 𝟎 , (2.34) 

𝜆𝑎𝑏 indicates the introduced Lagrange multipliers to ensure the orthogonality of the orbitals with 

the same angular momentum quantum numbers. Then the radial Dirac Hamiltonian, 
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𝑯𝑫 = [
𝑽(𝒓)+ 𝒎𝒄𝟐 𝒄 [

𝒅

𝒅𝒓
−

𝜿

𝒓
]

𝒄 [
𝒅

𝒅𝒓
+

𝜿

𝒓
] 𝑽(𝒓) − 𝒎𝒄𝟐

] , (2.35) 

The resulting Dirac-Fock coupled first-order differential equations are [25, 26, 29, 30], 

(𝑽(𝒓)+ 𝒎𝒄𝟐)𝑷𝒂,𝜿(𝒓)+ 𝒄 (
𝒅

𝒅𝒓
−

𝜿

𝒓
)𝑸𝒂,𝜿(𝒓) = 𝜺𝒂𝑷𝒂,𝜿(𝒓)+ ∑ 𝜺𝒂𝒃𝑷𝜿(𝒓)𝒃≠𝒂  , (2.36) 

−𝒄 (
𝒅

𝒅𝒓
+

𝜿

𝒓
)𝑷𝒂,𝜿(𝒓)+ (𝑽(𝒓) − 𝒎𝒄𝟐)𝑸𝒂,𝜿(𝒓) = 𝜺𝒂𝑸𝒂,𝜿(𝒓) + ∑ 𝜺𝒂𝒃𝑸𝜿(𝒓)𝒃≠𝒂  , (2.37) 

where 𝑉(𝑟) = 𝑉𝑛𝑢𝑐(𝑟) + 𝜙(𝑟). The normalization condition for 𝜓(𝑟) leads that the total radial 

density is finite [25, 28], 

∫ 𝒑𝜿
𝟐(𝒓)

∞

𝟎
+ 𝑸𝜿

𝟐(𝒓) = 𝟏 . (2.38) 

The potential Vnuc depends on the finite size of the distribution of nuclear charges. Spherically 

symmetric nuclear charge distribution can be interpolated as follows [26, 29], 

𝑽𝒏𝒖𝒄(𝒓) = {
−

𝒁

𝑹
(

𝟑

𝟐
−

𝒓𝟐

𝟐𝑹𝟐) , 𝒇𝒐𝒓 𝒓 ≤ 𝑹𝒓𝒎𝒔

−
𝒁

𝒓
 ,                 𝒇𝒐𝒓  𝒓 > 𝑹𝒓𝒎𝒔  

    , 

(2.39) 

The 𝑹𝒓𝒎𝒔  is the root-mean-square radius of the nucleus 𝑅 = √
5

3
𝑹𝒓𝒎𝒔  .  

Moreover, modifications can be added for this standard model to fix the energy shifts 

occurring due to nuclear recoil, vacuum polarization, and other radiative corrections [25, 26]. The 

interaction between electrons that arises due to the exchange of transverse photons is called the 

Breit interaction [26, 31]. This interaction recounts the relativistic correction for the motion of 

electrons because of the magnetic and retardation effects. Breit operator is derived using the 

quantum electrodynamic perturbation theory [29, 31],  

𝑯𝒊𝒋
𝑩𝒓𝒆𝒊𝒕 = −

𝟏

𝒓𝒊𝒋
[𝜶𝒊 ∙ 𝜶𝒋 −

(𝜶𝒊∙ 𝒓𝒊𝒋)(𝜶𝒋 ∙ 𝒓𝒊𝒋 )

𝟐𝒓𝒊𝒋
𝟐 ], (2.40) 
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Where α indicates the Dirac matrices. The Breit operator is added to the Dirac-Coulomb 

Hamiltonian to make the Breit correction in the atomic structure calculations.  

 

2.3 Relativistic Random-Phase Approximation (RRPA) 

The many experimental and theoretical studies revealed that the electron correlations 

within and among subshells are crucial components of the atomic photoionization process [3, 32]. 

Electron correlation includes the many-body interactions among the electron of an atom in both 

initial (discrete) and final (continuum) states of photoionization [33]. Therefore, it was required to 

develop new methods without limiting the calculation to single-particle and single-channe l 

models, such as we discussed in section 2.2. Various methods are employed to fulfill this 

requirement, and among those, is the Relativistic Random-Phase approximation (RRPA) [11, 34]. 

RRPA is based on the Dirac equation, and therefore it is explicitly relativistic. RRPA includes the 

ground state correlations and interchannel couplings of the final state (configuration interaction in 

the continuum) while omitting self-interaction error present in Hartree calculations [34]. Also, in 

this method, all single excitation and ionization channels are included. However, there are some 

limitations, such as omitting satellite channels [14], and this method only applicable for closed-

shell atoms [33]. Despite these limitations, RRPA methodology generally agrees with the 

experimental data within the range of the experimental errors [12, 33]. 

RRPA starts with the Dirac-Fock equation (equation (2.28)) with the Dirac Hamiltonian 

(equation (2.35)), and then the DF potential 𝜙(𝑟) is given by [12],  

𝝓𝒖(𝒓) = ∑ 𝒆𝟐𝑵
𝒋=𝟏 ∫

𝒅𝟑𝒓′

|𝒓−𝒓′|
[(𝒖𝒋

†𝒖𝒋)
′
𝒖− (𝒖𝒋

†𝒖)
′
𝒖𝒋], 

(2.41) 

Where ui(r) represents the DF orbitals and natural units are used. If a time-dependent external field 

(𝜐+𝑒−𝑖𝜔𝑡+ 𝜐−𝑒𝑖𝜔𝑡) is applied, it causes a time-dependent perturbation,  
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𝒖𝒊(𝒓) → 𝒖𝒊(𝒓) + 𝒘𝒊+(𝒓)𝒆−𝒊𝝎𝒕 + 𝒘𝒊−(𝒓)𝒆𝒊𝝎𝒕, (2.42) 

where higher-order terms are neglected, and wi represents the perturbed orbitals. Generalization of 

equation (2.28) and expand it in powers of the external field taking only the first-order terms gives, 

(𝑯𝑫 + 𝝓 − 𝜺𝒊 ∓ 𝝎)𝒘𝒊± = (𝝊± − 𝑽±

(𝟏)
)𝒖𝒊 + ∑ 𝝀𝒊𝒋𝒖𝒋𝒋 , (2.43) 

Where the 𝝀𝒊𝒋 denote the Lagrange multipliers introduced in order to ensure orthogonality of 

perturbed orbitals, 𝜀𝑖 denotes the orbital energy eigenvalue and the 𝜙±

(1)
 are the first-order 

perturbations of 𝜙, including the electron-electron correlations [11, 12]. 

𝝓±

(𝟏)
𝒖𝒊 = ∑ 𝒆𝟐𝑵

𝒋=𝟏 ∫
𝒅𝟑𝒓′

|𝒓−𝒓′ |
[(𝒖𝒋

†
𝒘𝒋±)

′
𝒖𝒊 + (𝒘𝒋∓

†
𝒖𝒋)

′

𝒖𝒊 − (𝒘𝒋∓
†

𝒖𝒊)
′

𝒖𝒋−(𝒖𝒋
†
𝒖𝒊)

′
𝒘𝒋±], 

(2.44) 

The basic RRPA equation is obtained by omitting the driving term 𝜐± and isolating 𝜔 in equation 

(2.42) [11, 12]. Then the eigenvalues of 𝜔 gives an approximation to the excitation spectrum. wi+ 

represents the excited state, including the final state correlations, and wi- represents the ground 

state correlations [11, 12]. The orthogonality constraint for these eigenfunctions is, 

∫𝒅𝟑𝒓𝒘𝒊±
†

𝒖𝒋 = 𝟎, (2.45) 

Then the transition amplitude T from the ground state to excited state can be obtained in terms of 

the vector potential A and Dirac matrices α as, 

𝑻 = ∑ 𝒆 ∫𝒅𝟑𝒓(𝒘𝒊+
† 𝜶 ∙ 𝑨𝒖𝒊 + 𝒖𝒊

†𝜶 ∙ 𝑨𝒘𝒊−)𝑵
𝒊=𝟏 , (2.46) 

To construct the radial RRPA equation for an atomic excitation with angular momentum J and M, 

auxiliary functions 𝑦𝑘̅ 𝑚̅± can be introduced [11, 12]. These auxiliary functions project the excited 

state orbitals 𝑤𝑛𝑘𝑚±(𝑟) onto excitation channels (𝑛𝑘, 𝑘) with explicit angular momentum 𝑘𝑚̅, 

𝒘𝒏𝒌𝒎+ (𝒓) = ∑ (−𝟏)𝒋−𝒎⟨𝒋 − 𝒎𝒋̅𝒎̅|𝒋𝒋𝑱̅𝑴⟩ ×𝒌̅𝒎̅ 𝝅(𝒍, 𝒍̅, 𝑱 + 𝝀 − 𝟏)𝒚𝒌̅𝒎̅+(𝒓), (2.47) 

𝒘𝒏𝒌𝒎− (𝒓) = ∑ (−𝟏)𝒋−𝒎+𝑴⟨𝒋 − 𝒎𝒋𝒎̅̅|𝒋𝒋𝑱̅ − 𝑴⟩ ×𝒌̅𝒎̅ 𝝅(𝒍, 𝒍̅, 𝑱 + 𝝀 − 𝟏)𝒚𝒌̅𝒎̅−(𝒓), (2.48) 

where 𝜋 is a parity operator; for orbitals a and b, 
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𝝅 = {
𝟏      𝒊𝒇  𝒍𝒂 + 𝒍𝒃 + 𝒍  𝒊𝒔 𝒆𝒗𝒆𝒏

𝟎        𝒊𝒇  𝒍𝒂 + 𝒍𝒃 + 𝒍  𝒊𝒔 𝒐𝒅𝒅
.,, 

(2.49) 

The parity of the excited state JM is determined by λ parameter as; 

 λ = 1 → state with parity (-1)J  → electric 2J pole excitation. 

 λ = 0 → state with parity (-1)J+1  → magnetic 2J pole excitation. 

The auxiliary function can be written in terms of large and small radial components as in 

the DF wave function (equation (2.31)). For simplicity, let’s denote unperturbed orbitals (nk) by 

a,b,… and the perturbed orbital (nk →𝑘 ) by 𝑎, 𝑏, … 

𝒚𝒂̅±(𝒓) = (
𝑺𝒂̅±(𝒓)

𝑻𝒂̅±(𝒓)
), 

(2.50) 

Substituting equations (2.47) and (2.48) into RRPA equation, radial RRPA equation can be 

obtained for electric (𝜋 = (−1)𝐽) and magnetic (𝜋 = (−1)𝐽+1) cases as equation (2.51) and (2.52) 

correspondingly [11, 12].  

[𝑯𝒂̅ − (𝜺𝒂 ± 𝝎)]𝒚𝒂̅±(𝒓) = −𝑪𝑱(𝒂,𝒂)𝑽𝑱

(𝟏)(𝒓)𝑸𝒂(𝒓) +

                                                   +∑ [𝑨(𝒂,𝒃, 𝒂,𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂, 𝒃, 𝒓)𝒚𝒃̅±(𝒓)𝒃𝒃̅𝒍 +

                                                   +(−𝟏)𝒋𝒃−𝒋𝒃̅𝑨(𝒂,𝒃, 𝒂, 𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂, 𝒃∓,𝒓)𝑸𝒃(𝒓)+

                                                   +∑ 𝜹𝒌𝒃 𝒌̅𝒂
𝝀𝒂̅𝒃±𝑸𝒃(𝒓)𝒃 , 

(2.51) 

[𝑯𝒂̅ − (𝜺𝒂 ± 𝝎)]𝒚𝒂̅±(𝒓) = ∑ [𝑭𝒃𝒃̅𝒍 (−𝒂,−𝒃, 𝒂,𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂, 𝒃, 𝒓)𝒚𝒃̅±(𝒓)+

+                                               +(−𝟏)𝒋𝒃−𝒋𝒃̅𝑨(−𝒂,−𝒃, 𝒂,𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂, 𝒃∓,𝒓)𝑸𝒃(𝒓)] +

                                                   +∑ 𝜹𝒌𝒃 𝒌̅𝒂
𝝀𝒂̅𝒃±𝑸𝒃(𝒓)𝒃 , 

(2.52) 

Where 𝑌𝑙(𝑎, 𝑏, 𝑟) is the Hartree-screening function [35], and CJ and F are the angular momentum 

coefficients, 
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𝑪𝑱(𝒂,𝒃) = (−𝟏)𝒋𝒂+
𝟏

𝟐√(𝟐𝒋𝒂 + 𝟏)√(𝟐𝒋𝒃 + 𝟏)(
𝒋𝒂 𝒋𝒃 𝑱

−
𝟏

𝟐

𝟏

𝟐
𝟎
)𝝅(𝒍𝒂 , 𝒍𝒃 , 𝑱), 

(2.53) 

𝑭(𝒂,𝒃,𝒄,𝒅, 𝒍, 𝑱) = (−𝟏)𝒍+𝑱−𝒋𝒃−𝒋𝒄𝑪𝒍(𝒂,𝒃)𝑪𝒍(𝒄,𝒅)× {
𝒋𝒂 𝒋𝒃 𝒍
𝒋𝒅 𝒋𝒄 𝑱

}𝝅(𝒍𝒂 , 𝒍𝒄,𝑱)𝝅(𝒍𝒃, 𝒍𝒅,𝑱), (2.54) 

𝑽𝑱

(𝟏)
(𝒓) = ∑

𝑪𝑱(𝒃,𝒃̅)

(𝟐𝑱+𝟏)𝒃𝒃̅
𝒆𝟐

𝒓
[𝒀𝑱(𝒃,𝒃+, 𝒓) + 𝒀𝑱(𝒃,𝒃−, 𝒓)], (2.55) 

where the curly bracket indicates the 6-j symbol. 
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3 CALCULATION METHODOLOGY 

Calculations begin with obtaining ground state discrete wave functions and subshell 

threshold energies of atoms using the DF method. In this procedure, the iteration is continued by 

solving the equations (2.36) and (2.37) using the numerical Green’s function techniques [36]. Then 

those data were used as inputs for photoionization calculations which are based on the RRPA 

method. This procedure also uses numerical Green’s function techniques to solve equations (2.51) 

and (2.52) iteratively, starting with approximate single-channel solutions to the (N-1) case [12], 

where N is the number of electrons in the atom. Calculations have been performed to obtain 

asymmetry parameter, cross sections, and branching ratios of noble gasses (Ne, Ar, Kr, Xe, Rn) 

and Hg over a wide energy range using RRPA based on the Dirac Equation, which includes 

relativistic interactions on an ab initio basis as discussed in section 2.3. Also, RRPA calculat ions 

include significant aspects of electron-electron correlation in initial and final state wave functions 

of the photoionization process; the initial state two-particle two-hole correlations, and the final 

state in the form of inter-channel coupling (configuration interaction in the continuum).  

Furthermore, RRPA allows to perform the calculation with some of the photoionization transition 

channels omitted, and therefore the specific aspect of inter-channel coupling can be identified. The 

omission of excitation of electrons in certain subshells was obtained using truncated RRPA 

equation, 

[𝑯𝒂̅

(𝑵−𝟏)
− (𝜺𝒂 + 𝝎)]𝒚𝒂

−(𝒓) = 𝑹𝒂̅ + 𝝀𝒂̅𝒃𝑸𝒃(𝒓), (3.1) 

In this chapter, all the symbols follow the same meanings defined in the RRPA theory section 2.3. 

The negative frequency orbitals (𝑤−(𝑟) and therefore 𝑦𝑎̅−(𝑟)) are neglected, and it is called 

Tamm-Dancoff approximation [37]. The coupling term 𝑅𝑎̅ for electric (𝜋 = (−1)𝐽 ) and magnetic 



21 
 

(𝜋 = (−1)𝐽+1) cases defined as equation (3.2) and (3.3) correspondingly [11]. The primes on the 

sums in these equations indicate the omission of corresponding a and b channels.  

𝑹𝒂̅ = −𝑪𝑱(𝒂,𝒂)∑
𝑪𝑱(𝒃,𝒃̅)

(𝟐𝑱+𝟏)

′
𝒃,𝒃̅

𝒆𝟐

𝒓
𝒀𝒍(𝒃, 𝒃, 𝒓)𝑸𝒂(𝒓) +

            +∑ 𝑨(𝒂,𝒃, 𝒂, 𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂,𝒃, 𝒓)𝒚𝒃̅(𝒓)′

𝒃,𝒃̅,𝒍 , 

(3.2) 

𝑹𝒂̅ = ∑ 𝑨(−𝒂,−𝒃, 𝒂,𝒃, 𝒍, 𝑱)
𝒆𝟐

𝒓
𝒀𝒍(𝒂, 𝒃, 𝒓)𝒚𝒃̅(𝒓)′

𝒃,𝒃̅,𝒍 , (3.3) 

In this project, all the DF and RRPA calculations were done numerically using Fortran 

codes. Nonrelativistic calculations were done using the same code by setting the limit of the speed 

of light c → ∞ [25]. For all the RRPA results, the dipole calculations (J =1) were performed as 

described in equations (2.47), (2.48), and (3.7). Moreover, both length and velocity forms of the 

RRPA dipole matrix elements (Appendix A) were calculated (as in equations (3.9) and (3.10) 

respectively) and checked for equality to ensure the validity as discussed in section 2.1.2.   

Just below the threshold of each subshell, there are auto-ionization resonance regions. 

Auto-ionization is a radiationless decay of an atom in an excited state above the ionization potential 

which undergoes a transition into the continuum [38]. we have not considered these resonance 

regions (from about 0.15 a.u. below each threshold to the threshold) because the spectator Auger 

process is not included in the RRPA method. A spectator Auger process is the where an inner-she ll 

electron is photoexcited into a Rydberg orbital, an excited state above the ionization potential, and 

remains as a spectator to core Auger transitions [39]. 

 

3.1 Photoionization cross section and branching ratio calculations 

In terms of the transition amplitude T in equation (2.46), differential photoionization cross 

section is given as [12], 
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𝒅𝝈

𝒅𝛀
=

𝜶𝑬𝒑

𝟐𝝅𝝎
|𝑻|𝟐, (3.4) 

Where 𝜎 is the photoionization cross section, dΩ is the differential solid angle, ω is the photon 

energy, and  E and p are the photoelectron energy and momentum, respectively. Then the 

differential cross section for a specific subshell nk can be found by, 

𝒅𝝈𝒏𝒌

𝒅𝛀
= ∑ 𝑨𝑳𝑷𝑳(𝒄𝒐𝒔𝜽)∞

𝑳=𝟎 , (3.5) 

where AL is a function of ω, and it depends bi-linearly on the reduced matrix element  

⟨𝑎 ‖𝑄𝐽
(𝜆)‖𝑎⟩

𝑅𝑅𝑃𝐴
 of the multipole moment operator 𝑄𝐽

(𝜆)
 [12]. The angle between the photon direction 

and the photoelectron momentum vectors is denoted by θ. Integrating the right-hand side of the 

equation (3.5) over outgoing electron directions [12] gives, 

𝝈𝒏𝒌(𝝎) =
𝟐𝝅𝟐𝜶

𝝎
∑

𝑱+𝟏

𝑱(𝟐𝑱+𝟏)𝑱𝑲̅𝝀
𝝎𝟐𝑱

[(𝟐𝑱−𝟏)!!]𝟐
× |⟨𝒂‖𝑸

𝑱
(𝝀)‖𝒂⟩

𝑹𝑹𝑷𝑨
|
𝟐

, 
(3.6) 

If we only consider electric dipole amplitudes with J = λ =1, the differential cross section 

is left only with two non-vanishing terms, 

𝒅𝝈𝒏𝒌

𝒅𝛀
=

𝝈𝒏𝒌 (𝝎)

𝟒𝝅
 [𝟏−

𝟏

𝟐
𝜷𝒏𝒌(𝝎)𝑷𝟐(𝒄𝒐𝒔𝜽)], (3.7) 

with, 

𝝈𝒏𝒌(𝝎) =
𝟒𝝅𝟐𝜶

𝟑
 𝝎(|𝑫𝒋→𝒋−𝟏|

𝟐
+ |𝑫𝒋→𝒋|

𝟐
+ |𝑫𝒋→𝒋+𝟏|

𝟐
), (3.8) 

where scattering amplitudes 𝐷𝑗→𝑗̅ = 𝑖 1−𝑙 ̅𝑒𝑖𝛿𝑘̅⟨𝑘‖𝑄
𝐽

(𝜆)‖𝑘⟩
𝑅𝑅𝑃𝐴

. 

In the low-frequency limit, 

Length gauge: 

⟨𝒃±‖𝑸𝟏
(𝟏)‖𝒃⟩ = 𝑪𝟏(𝒃, 𝒃̅)∫ 𝒅𝒓 𝒓[𝑺𝒃̅±𝑷𝒃+ 𝑻𝒃̅±𝑸𝒃

]
∞
𝟎 , (3.9) 
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Velocity gauge: 

⟨𝒃±‖𝑸𝟏
(𝟏)‖𝒃⟩ = ±𝑪𝟏(𝒃, 𝒃̅) 𝟏

𝝎
∫ 𝒅𝒓 [(𝒌𝒃 − 𝒌̅𝒃 + 𝟏)𝑺𝒃̅±𝑸𝒃+ (𝒌𝒃 − 𝒌̅𝒃 − 𝟏)𝑻

𝒃̅±
𝑷𝒃]

∞
𝟎 , (3.10) 

where S and T represent the large and small components of the perturbed orbitals (equation (2.50)) 

while P and Q represent the large and small components of the unperturbed orbitals (equation 

(2.31)) respectively. 

The ratio of photoionization cross sections of atomic subshells split by the spin-orbit 

interaction is known as the branching ratio. The spin-orbit interaction splits nl (𝑙 ≠ 0) subshells 

into 𝑗 = 𝑙 ± 1/2 states [40]. These subshells contain different energies. For example, if the outer 

np6 subshell of a noble gas atom is photoionized, then the residual np5 ion can be left in two distinct 

states 2p1/2 or 2p3/2. Therefore, depending on the residual ion, photoelectrons can have two different 

energies. By separating these subshells as individual photoionization transition channels in RRPA 

calculation, partial cross sections for spin-orbit doublets can be obtained. The ratios between these 

partial cross sections were calculated as the branching ratio of p, d, and f orbitals (2p3/2: 2p1/2, 2d5/2: 

2d3/2, 2f5/2: 2f7/2). 

 

3.2 Angular distribution asymmetry parameter calculations 

The angular distribution of photoelectrons relative to the direction of the incident photon 

or the photon polarization is used as a tool to study various aspects of the photoionization process 

[7]. When a photon absorbed by an atom at an energy low enough that the dipole approximation 

is valid, the angular relationship between the incident photon and the photoelectron is proportional 

to a linear combination of 1 and cos2θ [41] as represented in the equation (3.7). Then the angular 

distribution asymmetry parameter β can be calculated in terms of scattering amplitudes [11, 41, 

42] as, 
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𝜷𝒏𝒌
(𝝎) = [

𝟏

𝟐

(𝟐𝒋−𝟑)

𝟐𝒋
|𝑫𝒋→𝒋−𝟏 |

𝟐
− 𝟑

𝟐𝒋
(

𝟐𝒋−𝟏

𝟐(𝟐𝑱+𝟐)
)

𝟏
𝟐 (𝑫𝒋→𝒋−𝟏𝑫𝒋→𝒋

∗ + 𝒄. 𝒄. ) −
(𝟐𝒋−𝟏)(𝟐𝒋+𝟑)

(𝟐𝒋)(𝟐𝒋+𝟐)
|𝑫𝒋→𝒋|

𝟐
−

                 −𝟑

𝟐
(

(𝟐𝒋−𝟏)(𝟐𝒋+𝟑)

(𝟐𝒋)(𝟐𝒋+𝟐)
)

𝟏
𝟐
(𝑫𝒋→𝒋−𝟏𝑫𝒋→𝒋+𝟏

∗ + 𝒄. 𝒄.) + 𝟏

𝟐

(𝟐𝒋+𝟓)

(𝟐𝒋+𝟐)
|𝑫𝒋→𝒋+𝟏 |

𝟐
+

                 +
𝟑

(𝟐𝒋+𝟐)
(

(𝟐𝒋+𝟑)

𝟐(𝟐𝒋)
)

𝟏
𝟐
(𝑫𝒋→𝒋𝑫𝒋→𝒋+𝟏

∗ + 𝒄. 𝒄.)] (|𝑫𝒋→𝒋−𝟏 |
𝟐
+ |𝑫𝒋→𝒋|

𝟐
+ |𝑫𝒋→𝒋+𝟏 |

𝟐
)
−𝟏

, 

(3.11) 

Therefore, the energy dependence of β provides information about the relativistic and inter-channe l 

coupling effects of the photoionization process [7, 30, 41]. 
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4 RESULTS AND DISCUSSION 

This chapter presents the calculated results for branching ratios of nl spin-orbit doublet of 

noble gases and Hg. In the absence of relativistic effects (neglecting spin effects) i.e., in LS 

coupling, the asymptotic high-energy branching ratio should approach the statistical value of 

(l+1)/l [6]. This results from the multiplicity of the initial states of a spin-orbit doublet (2j+1 

degeneracy of the orbitals), along with the assumption that the radial wave functions, particular ly 

for the initial state, are the same for both members of the doublet [43].  

𝝈𝒋=𝒍+𝟏/𝟐

𝝈𝒋=𝒍−𝟏/𝟐
= 

𝒏𝒍+𝟏/𝟐

𝒏𝒍−𝟏/𝟐
=

𝒍+𝟏
𝟐𝒍+𝟏⁄

𝒍
𝟐𝒍+𝟏⁄

=
𝒍+𝟏

𝒍
. 

(4.1) 

It was shown that near-threshold regions with electron-electron correlation and the kinetic 

energy difference of photoelectron emitted from spin-orbit doublet are significant; the branching 

ratio is non-statistical [6]. But at higher energies, away from inner-shell thresholds, where the 

magnitude of the spin-orbit splitting is relatively insignificant, the deviation from the statistica l 

value would demonstrate a relativistic (j-dependence) of the j = l ± 1/2 initial state wave functions 

[40]. This can be explained by noting that, due to relativistic interactions, the electrons in spin-

orbit doublets have different radial wave functions [8, 9, 43-45]. However, there are only a few 

studies regarding this matter in high-energy branching ratio regions. Moreover, just above the 

thresholds significant structures have been found in the branching ratio data due to the interchanne l 

coupling effects. In this section, both these phenomena were thoroughly investigated over a broad 

energy range for all the higher subshells of six different closed-shell atoms with Z from 10 to 86. 

Since the length and velocity dipole matrix element calculated are essentially the same, only the 

velocity calculations are included in all the plots.  
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4.1 Neon (Ne) 

We start with Ne, the element with the lowest atomic number that has been studied. For 

the Ne calculations, all the single-excitation relativistic dipole photoionization channels of 1s, 2s, 

and 2p were coupled (Appendix B). Table 4-1 shows the relativistically and nonrelativistica l ly 

calculated threshold values of each subshell. For low Z elements like Ne, relativistic and 

nonrelativistic thresholds do not deviate much from each other. The nonrelativistic values for 2p 

spin-orbit doublets are the same due to the omission of spin effects. 

Table 4-1 Calculated subshell thresholds of Ne in atomic energy units 

      Subshell Threshold (Relativistic) Threshold (NonRelativistic) 

1s                32.817          32.772 

2s                  1.936            1.930 

        2p(1/2)                  0.853            0.850 

        2p(3/2)                  0.848            0.850 

 

 

Figure 4.1  Branching ratio of Ne 2p (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ) calculated with  fully coupled (red-

dots), and without coupling of 1s and 2s channels (blue-squares). The vertical dashed lines 
indicate the thresholds. 
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Figure 4.1 shows the 2p branching ratio (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ )  of Ne in the whole energy 

range studied. From figure 4.1, it can be clearly seen that the Ne 2p branching ratio depends on 

incident photon energy, which shows the effects of the relativistic modification of the 2p wave 

functions. Both fully coupled and 1s and 2s uncoupled branching ratios continuously decrease 

away from its statistical value of 2 (equation 4.1) with the increasing energy. The deviation of the 

coupled results from the uncoupled indicates that the interchannel coupling is affected by the 

relativistic interactions as well. Moreover, this result reinforces the earlier conclusion that 

interchannel coupling affects most subshells of most atoms at most energies and collapsing the 

independent particle approximation [46, 47]. Even though this deviation is not huge, it agrees with 

the previous prediction that the branching ratio never approaches its statistical value at higher 

energies due to the relativistic effects [8, 33, 45, 48]. To clearly identify this behavior and compare 

it with the behavior of high Z elements, the branching ratio of Ne 2p above the 1s threshold is 

shown in figure 4.2.  

  

Figure 4.2 High energy behavior of calculated Ne 2p branching ratio 

(
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ). 
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The Ne result can be explained using the behavior of the dipole matrix element. The matrix 

element is generated at smaller and smaller r, closer to the nucleus, with increasing energy. From 

a physical standpoint, this occurs due to the constraints of the combination of energy and 

momentum conservation in the photoionization process. At higher energies, most of the 

momentum of the photon must be absorbed by the nucleus, where most of the atomic mass is 

concentrated. Therefore, photoabsorption is much more likely to occur near the nucleus. 

Parenthetically, that is why a free electron cannot absorb a photon because, in such a situation, 

momentum cannot be conserved. From a mathematical viewpoint, this happens because, at higher 

energies, the continuum wave function becomes more oscillatory. Therefore, matrix element 

beyond the first node of the wave function cancels out. Moreover, with increasing energy, the first 

node of the wave function gets closer and closer to the nucleus.  

At larger r (further away from the nucleus), both nlj spin-orbit states (in this case, both 

2p(1/2) and 2p(3/2)) behave similarly, thus creating virtually identical wave functions. But smaller 

r (closer to the nucleus), nlj bound states behave differently determined by j according to the Dirac 

equation [49]. Because of the spin-orbit effect, the l+1/2 wave function is slightly repelled from 

the nucleus while the l−1/2 wave function is drawn closer to the nucleus. In fact, it turns out that 

the ratio of the radial charge densities of states corresponding to l−1/2 divided by l+1/2 increases 

as r decreases and diverges as 1/r2 as r → 0. Thus for smaller r, the wave function of l−1/2 

enhanced relative to its counterpart l+1/2, thereby increasing the l−1/2 dipole matrix element. This 

difference is caused to the decreases in branching ratio from its statistical value at higher energies 

where matrix elements are dominated by smaller r. 

According to figure 4.1, the branching ratio calculated with no interchannel coupling from 

ns channels slightly deviates from the fully coupled result, demonstrate that the interchanne l 
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coupling has a small effect over a vast energy range. Moreover, there is a small kink in figure 4.1 

around the 1s threshold, and it is shown in greater detail in figure 4.3. 

 

 

 

As in figure 4.3, the interchannel coupling is seen to have a small effect in the vicinity of 

the 1s threshold. The plot representing the calculations without coupling of 1s channels quite 

smooth through this region manifests that the structure around 1s threshold is due to the 

interchannel coupling. Tailing up in the fully coupled curve just below the threshold indicates the 

beginning of the 2p → ns, nd resonances. Data in the resonance region was not included because 

of the omission of spectator Auger effect of RRPA calculations, as discussed in chapter 3. Just 

above the 1s threshold, there is a slight rise in the fully coupled curve, thereby indicating the 

Figure 4.3 Branching ratio of Ne 2p (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ) calculated with  fully coupled (red-

dots), and without coupling to 1s channels (blue-squares). The vertical dashed line indicates 

the 1s threshold. 
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interchannel coupling affects the 2p(3/2) and the 2p(1/2) ionization probabilities differently, i.e., 

the interchannel coupling is affected by relativistic interactions. Even though the 1s cross section 

is much larger than the 2p cross sections, this effect is very small. This is because the interchanne l 

coupling matrix element is relatively small here due to the fact that the overlap of 2p and 1s wave 

functions is quite small in this region. It is interesting to note that even at so low a Z as 10, 

relativistic effects are evident. 

 

4.2 Argon (Ar) 

Going up in Z, Ar was studied with all the single-excitation relativistic dipole 

photoionization channels of 1s, 2s, 2p, 3s, and 3p coupled. Table 4-2 shows the relativistically and 

nonrelativistically calculated subshell threshold values of Ar. 

Table 4-2 Calculated subshell thresholds of Ar in atomic energy units 

         Subshell          Threshold (Relativistic)    Threshold (NonRelativistic) 

   1s          119.127         118.610 

   2s            12.412           12.322 

2p(1/2)              9.632             9.571 

2p(3/2)              9.547             9.571 

   3s              1.287             1.277 

 

For Ar, still, Z(=18) is relatively low, and therefore relativistic and nonrelativis t ic 

thresholds do not deviate much from each other. However, it can be clearly seen that with the 

increasing atomic number, the deviation increases because of the enhancement of the relativis t ic 

effect with Z. Moreover, outer subshells experiencing lower deviation due to the shielding of the 

nucleus by inner subshells. Essentially, the nonrelativistic values for 2p spin-orbit doublets are the 

same due to the absence of spin effects. 
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Figure 4.4 Branching ratio of Ar 2p (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ) (upper panel) and 3p 

(
𝜎3𝑝(3/2)

𝜎3𝑝(1/2)⁄ ) (lower panel) calculated with  fully coupled (red-dots), and with coupling 

only among 2p and 3p channels respectively (blue-squares). The vertical dashed lines indicate 

the thresholds. 
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Figure 4.4 shows the 2p and 3p branching ratios of Ar in the whole energy range studied.  

Even though the 2p and 3p branching ratios differ from each other at low energies, they are 

remarkably similar at higher energies, indicating that the init ial state principal quantum number is 

not important for their high-energy behavior. To clearly show this behavior, the branching ratio of 

Ar 2p and 3p above the 1s threshold are shown together in figure 4.5. This can be explained by 

considering that the high-energy dipole matrix elements are generated closer to the nucleus 

(smaller r). Since in this region, effect of the nuclear potential is quite large, binding energies are 

essentially irrelevant. Furthermore, in this region of space, the wave functions of different init ia l 

states of the same l are the same, except for an overall normalization factor [50-52]. This 

normalization factor cancels out when the cross section ratio is calculating, thus causing the high-

energy branching ratios for states of the same l to be the same, exactly as the Ar results indicate. 

Figure 4.5 Comparison of Ar branching ratios 2p (Brown-upward triangles) and 3p (pink-

downward triangles) above the 1s threshold. 
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As in Ne, Ar branching ratios also fall off with increasing energy, but they fall off much 

faster. It can be seen by comparing figure 4.5 with figure 4.2. For example, at the photon energy 

of 800 a. u., Ne np branching ratio is 1.95 while the Ar ratios are about 1.90, thereby indicat ing 

that the relativistic effect grows with the nuclear charge. This is expected; as discussed earlier, 

high-energy dipole matrix elements are generated quite closer to the nucleus. Experiment results 

for the Ar 2p branching ratio range from 100 a. u. to 150 a. u. photon energies demonstrated a 

good agreement with the RRPA results, both with absolute values and the decrease of the 

branching ratio with energy, as demonstrated in figure 4.6 [9]. 

 

The difference between the fully coupled curves and the curves with coupling only among 

np channels (intrashell coupling) is much more significant for the Ar than in Ne (figure 4.4). Also, 

it is pervasive over a larger energy range in Ar than in Ne. This indicates that with the increasing 

Figure 4.6 Photoionization branching ratio for Ar 2p. The left scale is theory (red). The right 

scale is experimental intensity (black) and experiment corrected using theoretical angular 
distribution parameters, β (blue). The blue solid line is a linear fit to the five blue hollow dots. 
The theoretical data are shifted by 35.3 eV to lower energies in order to match the theoretical 

and experimental Ar 1s ionization energies [7]. 
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number of electrons, the influence on the np branching ratios by other electronic channels is 

increasing.  

Figure 4.7 shows the Ar 2p and 3p branching ratios in the vicinity of the 1s threshold. 

Similar to the Ne, interchannel coupling effects are exhibited here, but they are about a factor of 

two smaller than in the Ne case. The 1s orbital in Ar is much more compact so that there is almost 

no overlap with the higher orbitals. Thus the interchannel coupling matrix element is relative ly 

small in this region, and this causes the decrease in the manifestation of interchannel coupling in 

Ar curves compared to Ne around 1s threshold.  

 

In the vicinity of the Ar 2s threshold (figure 4.8), the interchannel coupling effect on the 

branching ratio is small due to two factors; the 2s cross section is smaller than the 2p cross sections, 

and the 2s threshold is very close to the 2p thresholds. Results are somewhat different for the 3p 

branching ratio because the 2s threshold is well above the 3p thresholds. Thus, while the 2p and 

Figure 4.7 Branching ratios of Ar 2p (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ) (right panel) and 3p 

(
𝜎3𝑝(3/2)

𝜎3𝑝(1/2)⁄ ) (left panel) calculated with  fully coupled (red-dots), and without coupling 

to 1s channels (blue-squares). The vertical dashed line indicates the 1s threshold. 
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3p branching ratios are similar at higher energies, they behave differently in the vicinity of the 2s 

threshold owing to the difference of threshold energies. 

 

 

 

Figure 4.8 Branching ratios of Ar 2p (
𝜎2𝑝(3/2)

𝜎2𝑝(1/2)⁄ ) (right panel) and 3p 

(
𝜎3𝑝(3/2)

𝜎3𝑝(1/2)⁄ ) (left panel) calculated with  fully coupled (red-dots), and without coupling 

to 2s channels (blue-squares). The vertical dashed line indicates the 2s threshold. 

Figure 4.9 Branching ratio of Ar at low energies calculated with  fully coupled (red-
dots), and with coupling only among 3p channels (blue-squares). The vertical dashed 

lines indicate the thresholds. 
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Figure 4.9 shows a close-up of the Ar 3p branching ratio at the lower energies. It shows 

the strong coupling effects of the 3p photoionization channels with the 2p channels in the vicinity 

of 2p thresholds. The notable variation of 3p ratios indicates significant interchannel coupling 

among np channels, and this coupling is strongly affected by relativistic interaction, i. e. strongly 

j dependent. The near-threshold behavior of Ar was discussed earlier [5, 53], and present 

calculations are in good agreement with them. There are no significant experimental data to be 

found for the Ar 3p branching ratio, probably due to the small splitting (0.177 eV) between 3p(3/2) 

and 3p(1/2) doublets.  

 

4.3 Krypton (Kr) 

Kr calculations include a total of 29 relativistic channels for all the subshells, 1s, 2s, 2p, 

3s, 3p, 3d, 4s, and 4p. Table 4-3 shows the relativistically and nonrelativistically calculated 

subshell threshold values of Kr. 

Table 4-3 Calculated subshell thresholds of Kr in atomic energy units 

Subshell Threshold (Relativistic) Threshold (NonRelativistic) 

                1s         529.685          520.159 

                2s           72.080            69.902 

2p(1/2)           64.875            63.010 

2p(3/2)           62.879            63.010 

    3s           11.224            10.849 

3p(1/2)             8.620              8.332 

3p(3/2)             8.313              8.332 

3d(3/2)             3.778              3.825 

3d(5/2)             3.727              3.825 

    4s             1.188              1.153 

 

Since Kr, atomic number (Z =36), is much heavier than the previous two elements 

discussed, relativistic and nonrelativistic thresholds deviate considerably from each other. With 

increasing atomic number, the deviation increases because of the enhancement of the relativis t ic 
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effect. For Kr, as in the previous cases, outer subshells experience smaller deviation between 

relativistic and nonrelativistic data due to the shielding of the nucleus by inner subshells. The 

nonrelativistic values for each member of the np and 3d spin-orbit doublets are the same due to 

the absence of spin-orbit effects. All three elements show that for a specific atom, the spin-orbit 

splitting decreases with increasing n and l, while also the splitting increases with Z.  

 

Figure 4.10 shows the overall view of all the Kr branching ratios calculated using RRPA. 

At the highest energy shown of 640 a. u., the np branching ratios are about 1.8, demonstrating that 

Figure 4.10 Branching ratio of Ar 2p, 3p, 4p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), and 3d (
𝜎3𝑑(5/2)

𝜎3𝑑 (3/2)⁄ ) 

calculated with  fully coupled (red-dots), and with only intrashell coupling (blue-squares). 
The vertical dashed lines indicate the thresholds. 
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the Kr np branching ratios continue the same trend seen in both Ne and Ar, as that the asymptotic 

branching ratio decreases with the nuclear charge owing to the increased relativistic effects 

associated with higher Z. Similarly, all the elements show the trend that difference between the 

fully coupled and intrashell coupled branching ratios increase with the Z. This is evidently due to 

the interchannel coupling with a larger number of photoionization channels. 

 

Figure 4.11 shows a close-up of high-energy behavior of all the branching ratios of Kr. As 

seen and explained for Ar, the np branching ratios are almost independent of the principal quantum 

number n of the initial np states. The 3d branching ratio is 1.42 at the highest energy of 640 a. u., 

while its statistical value is 1.5, and it falls off to this value much more slowly than in the np case. 

This demonstrates that for 3d, the relativistic effect on the wave function is less significant than 

the np case. This occurs due to the d-state centrifugal barrier, which keeps the 3d wave function 

further away from the nucleus than np wave functions. Therefore, matrix elements of 3d are 

generated further away from the nucleus where the difference between 3d(3/2) and 3d(5/2) wave 

Figure 4.11 Comparison of Kr branching ratios np (2p –brown, 3p –pink, and 4p –orange) 
(left panel), and 3d (right panel) at high-energy region. The vertical dashed line indicates the 

1s threshold. 
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functions is small. As a result, both the slope of the branching ratio with energy and the deviation 

from its statistical value are considerably smaller than in the np case.  

 

Figure 4.12 shows the Kr branching ratios in the vicinity of the 1s threshold. Like in the 

case of Ar, interchannel coupling with the 1s channels causes only minimal changes for reasons as 

discussed in connection with Ar. The changes in the np and 3d ratios are of about the same size, 

so there does not appear to be an interchannel coupling angular momentum effect here.  

 

Figure 4.12 Branching ratios of Kr 2p, 3p, 4p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), and 3d 

(
𝜎3𝑑(5/2)

𝜎3𝑑 (3/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling to 1s 

channels (blue-squares). The vertical dashed line indicates the 1s threshold. 
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Figure 4.13 presents the Kr branching ratios in the neighborhood of the 2s threshold. Here 

the branching ratios are rather different from the 1s vicinity, and all of them increasing as a function 

of energy even without coupling to the 2s channels. This seems at odds with the relativistic effect 

that causes the ratios to decrease with increasing energy. Since earlier works [9, 10] reveal that the 

interchannel coupling can affect cross sections and therefore branching ratios over a broad range, 

this phenomenology perhaps results from coupling with other channels.  

 

Figure 4.13 Branching ratios of Kr 2p, 3p, 4p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), and 3d 

(
𝜎3𝑑(5/2)

𝜎3𝑑 (3/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling to 2s 

channels (blue-squares). The vertical dashed line indicates the 2s threshold. 
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The branching ratios of Kr in the vicinity of 2p thresholds are shown in figure 4.14. Here 

2p thresholds are sufficiently split to accommodate significant interchannel coupling activities in 

this region. All the Kr branching ratios, np, and 3d show a similar pattern around 2p thresholds 

implying that the interchannel coupling effect in this region is independent of the angular 

momentum.  Furthermore, Figure 4.14 includes truncated calculations without coupling all the 2p 

channels and without coupling either one of the spin split channels 2p(1/2) or 2p(3/2). The coupling 

Figure 4.14 Branching ratios of Kr 3d  (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ) and np 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ) calculated with  fully coupled (red-dots), without coupling to 2p channels 

(blue-squares), without coupling to 2p(1/2) channels (yellow-triangles), and without coupling 

to 2p(3/2) channels (green-inverted triangles). The vertical dashed lines indicate the 2p 

thresholds. 
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of 2p excitation channels dramatically changes the plots, demonstrating the interchannel coupling 

effect of 2p channels on the 3p, 4p and 3d photoionization processes. The structures in the 

branching ratios are caused solely by the coupling with 2p channels since the without coupling of 

those channels the branching ratios are featureless in this energy region. 

Moreover, it is evident from the truncated calculations the coupling with 2p(3/2) channels 

is primarily responsible for the structures around 2p(3/2) threshold, and coupling with 2p(1/2) 

channels are mainly responsible for the structures around 2p(1/2) threshold. In all of the fully 

coupled plots, there are a rise and a dip below 2p(3/2) and 2p(1/2) thresholds correspondingly, and 

it indicates the Auger resonance has different shapes in the two cases. The drops above the 2p(1/2) 

and the rises above the 2p(3/2) thresholds are due to the interchannel coupling with the 2p channels 

since the uncoupled branching ratios are monotonically decreasing in this region. 

The calculated branching ratios over an extended range covering both 2p and 2s thresholds 

are shown in figure 4.15, and it reveals the source of the peculiar behavior seen around the 2s 

threshold in figure 4.13. Omitting the coupling with both 2p and 2s channels gives smooth 

monotone decreasing branching ratios over the entire energy range for all the subshells implying 

that the coupling with the 2p channels causes the branching ratios to rise in the vicinity of the 2s 

threshold. Here the coupling with 2p channels is pivotal in the vicinity of the 2s threshold, even 

though 2p thresholds are several hundred electron volts away from it. As found in some previous 

works [9, 10], this behavior of Kr demonstrates that the interchannel coupling with inner shells is 

not limited to a small energy region around the subshell threshold, but it is operative over a broad 

energy range.    

The 3d and 4p branching ratios in the vicinity of 3p and 3s thresholds are given in figure 

4.16, and it includes the truncated results in which coupling with the 3s and 3p channels was 
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omitted. Coupling effects are pretty small in both plots. But interestingly, the 3d branching ratio 

is monotonically decreasing in both fully coupled and truncated plots except in the resonance 

regions, even in this low-energy region. The 4p branching ratio is larger than its statistical value 

and increasing. At such low energies all sorts of correlations affect the branching ratios strongly, 

so that these behaviors are essentially the threshold effects, as seen in figure 4.10. 

 

 

 

Figure 4.15 Branching ratios of Kr 3d (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ), 3p, and 4p 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ )  calculated with  fully coupled (red-dots), and without coupling to 2s 

and 2p channels (blue-squares). The vertical dashed line indicates the thresholds. 
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4.4 Xenon (Xe) 

Xe calculations involve a total of 40 relativistic photoionization channels from 2s, 2p, 3s, 

3p, 3d, 4s, 4p, 4d, 5s, and 5p subshells, leaving out the 1s channels. The 1s threshold is deeply 

bound, over 1200 a. u., and to avoid the RRPA calculation difficulties arising from that, the 1s 

channels were excluded. Since the binding energy of 1s is so much higher than the considered 

energy range, it is essentially irrelevant for the calculations.  

Table 4-4 shows the relativistically and nonrelativistically calculated subshell thresholds 

of Xe. For Xe, atomic number (Z = 54) is much heavier than the atoms considered above and 

therefore, the relativistic and nonrelativistic thresholds deviate considerably from each other. As 

noted and explained for the previous cases, in Xe also, outer subshells experiencing smaller 

deviations between relativistic and nonrelativistic calculations and the nonrelativistic energies for 

Figure 4.16 Branching ratios of Kr 3d (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ), and 4p (
𝜎4𝑝(3/2)

𝜎4𝑝(1/2)⁄ )  

calculated with  fully coupled (red-dots), and without coupling to 3s and 3p channels (blue-

squares). The vertical dashed line indicates the thresholds. 



45 
 

np and nd spin-orbit doublets are the same. All the elements show that for a specific atom, the 

spin-orbit splitting decreases with increasing n and l, while the splitting increases with Z.  

Table 4-4 Calculated subshell thresholds of Xe in atomic energy units 

         Subshell        Threshold (Relativistic)      Threshold (NonRelativistic) 

   1s       1277.256          1224.353 

   2s         202.465            189.335 

2p(1/2)         189.680            177.783 

2p(3/2)         177.705            177.783 

    3s           43.010              40.175 

3p(1/2)           37.660              35.222 

3p(3/2)           35.325              35.222 

3d(3/2)           26.023              26.119 

3d(5/2)           25.537              26.119 

    4s             8.430                7.856 

4p(1/2)             6.453                6.008 

4p(3/2)             5.983                6.008 

 

The overall views of the 2p, 3p, 4p, 5p, 3d and 4d of branching ratios for Xe are depicted 

in figure 4.17. Considering all the elements studied so far, the asymptotic branching ratios decrease 

with nuclear charge owing to the increased relativistic effect with higher Z. At the highest energy 

point, 500 a. u., np branching ratios for Xe are in the range of 1.61 – 1.68, continuing this trend. 

However, the difference between the branching ratios of fully coupled and ones with coupling only 

among particular subshells (intrashell coupling) is slightly smaller for Xe than in Kr, reversing the 

trend seen in Ne, Ar, and Kr. This alteration occurs due to very complicated interactions of 

interchannel coupling, which can increase or decrease cross sections; with so many different 

interchannel coupling interactions in Xe, some of them apparently partially cancel out.    

As seen and explained in both Ar and Kr, high-energy branching ratios are highly 

independent of the principal quantum number n of the initial np or nd state, as shown in figure 

4.18.
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Figure 4.17 Branching ratio of Xe 2p, 3p, 4p, 5p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), 3d, and 4d 

(
𝜎3𝑑(5/2)

𝜎3𝑑 (3/2)⁄ ) calculated with  fully coupled (red-dots), and with only intrashell 

coupling (blue-squares). The vertical dashed lines indicate the thresholds. 
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The nd branching ratios of Xe (the statistical value is 1.5) at 500 a. u. is about 1.36 and 

somewhat lower than in the Kr as expected. Furthermore, Xe nd branching ratio also falls off 

slower than that of np as in Kr. It shows that the relativistic effects on the nd wave functions are 

smaller than that on np.  

In the vicinity of inner-shell thresholds, there are large excursions of Xe plots from their 

smooth behavior. To explore this phenomenon, first Xe branching ratios in the vicinity of n = 2 

thresholds were plotted in figure 4.19. Without the coupling of n = 2 channels, the branching ratios 

are monotonically decreasing, thereby showing that the structures are due to the coupling. Here 

the phenomenology is similar to the Kr around n = 2 threshold region (figure 4.15) and for the 

same reasons.  

Figure 4.20 shows the experimental (red) and theoretical (black) Xe 3d and 4d branching 

ratios in the vicinity of n = 2 thresholds [9]. Here the experimental trends follow the theoretica lly 

calculated behavior of the branching ratios with good agreement between theory and experiment.  

 

Figure 4.18 Comparison of Xe branching ratios np (2p –brown, 3p –pink, 4p –
orange, and 5p –purple) (left panel), and nd (3d –brown and 4d –pink) (right panel) at high-

energy region. 
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Figure 4.19 Branching ratios of Xe 3d, 4d (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ), 3p, 4p, and 5p 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ )  calculated with  fully coupled (red-dots), and without coupling to 2s 

and 2p channels (blue-squares). The vertical dashed lines indicate the thresholds. 
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The Xe 4p, 5p, 3d, and 4d branching ratios in the neighborhood of the n = 3 (3s and 3p) 

thresholds are shown in figure 4.21. Qualitatively, the trend of all the branching ratios is the same 

around both sets of thresholds n = 2 and n = 3. As in the case of Kr, in all the plots of Xe, there is 

a rise and then a drop below np(3/2) and np(1/2) thresholds correspondingly, indicating that the 

resonance has different shapes around the spin-orbit doublets of the inner np subshells. Notably, 

in both regions, the structures in branching ratios are not only the same for states with the same 

Figure 4.20 Xe 3d and 4d photoionization branching ratios in the vicinity of the n = 2 

thresholds. Experiment (red), theory (black). The experimental and theoretical energy scales 
are shifted relative to each other so that the respective ionization energies are located at the 

dashed vertical lines [7]. 
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initial angular momentum independent of n, but also structures in both p and d plots are similar. 

Therefore, it appears to be that the interchannel coupling similarly affects np and nd states 

independent of l. Kr showed similar behavior, but we have no obvious explanation for this.  

However, the excursion from the smooth background of plots around n = 3 thresholds is smaller 

in magnitude than around n = 2 thresholds, indicating the interchannel coupling is less relativis t ic 

for n = 3 case than in n = 2 case. This occurs because the 3s and 3p wave functions are less 

relativistic than their n = 2 counterparts owing to their very different binding energies (the binding 

energies for 2p and 2s are about 200 a. u. while that of 3p and 3s are about 40 a. u.). Also, the spin-

orbit splitting decreases with increasing n for both p and d subshells.  

Figure 4.21 Branching ratios of Xe 3d, 4d  (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ), 4p,  and 5p 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ )  calculated with  fully coupled (red-dots), and without coupling to 3s 

and 3p channels (blue-squares). The vertical dashed lines indicate the thresholds. 
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As discussed in the Kr case, for Xe also, interchannel coupling affects the branching ratio s 

over a broad energy range, not just around the subshell thresholds. Moreover, Xe also exhibits the 

peculiar increase of branching ratios with the energy around ns thresholds, as opposed to the 

expected relativistic decrease, due to the interchannel coupling of corresponding np channels. 

The branching ratios of Xe in the vicinity of the 3d thresholds are depicted in figure 4.22, 

and they are particularly interesting because of the unusual structures in the curves. The sharp 

variations in the branching ratios are caused solely by the coupling with 3d channels because 

without coupling of those channels gives featureless plots. 

 

Figure 4.22 Branching ratios of Xe 4p, 5p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), and 4d 

(
𝜎3𝑑(5/2)

𝜎3𝑑 (3/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling to 

3d channels (blue-squares). The vertical dashed lines indicate the 3d thresholds. 
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Around Xe 3d thresholds, branching ratio curves follow a different pattern than in the 

vicinity of np thresholds. Moreover, all the branching ratios follow a similar trend around the np 

threshold, while around 3d thresholds, np, and nd branching ratio curves follow somewhat 

different patterns. Therefore, unlike in other cases, the effect of the interchannel coupling with 3d 

subshells is dependent on the angular momentum. 

In the neighborhood of 3d thresholds, fully coupled np branching ratios vary about 0.6 

within a small energy range, from 1.6 to 2.2 for 4p and from 1.5 to 2.1 for 5p. Moreover, the 

variation of the 4d branching ratio in the same small energy range is much more significant than 

np, about 2.0 from 0.6 to 2.6. Thus, the interchannel coupling is much more important in 4d case 

than in np cases in this region. It happens for this particular situation because the angular part of 

the interchannel coupling matrix element is larger in between channels of the same angular 

momenta than between channels of different angular momenta while, in the present case, the radial 

parts are about the same. 

To understand huge variations in this region, the individual cross sections of the spin-orbit 

doublets of Xe 3d were examined. Figure 4.23 shows the cross section and branching ratio for the 

Xe 3d subhells. As in figure 4.23 left panel, the 3d cross sections show sharp maxima above the 

thresholds. Those maxima are shape resonance or delayed maxima and were discovered many 

years ago [54]. In addition, the Xe 3d(5/2) cross section exhibits an extra small peak at the energy 

of the 3d(3/2) shape resonance maximum. This phenomenon was first discovered experimenta l ly 

[55] and subsequently explained theoretically [13, 56, 57]. It is known as spin-orbit interaction 

activated interchannel coupling (SOIAIC). Briefly, owing to the spin-orbit splitting of the 3d 

threshold, the 3d(3/2) delayed maximum occurs at an energy where the 3d(5/2) cross section is 

small, thereby transferring oscillator strength to the much smaller 3d(5/2) cross section via 
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interchannel coupling and, as a result, an extra peak can be seen in the 3d(5/2) cross section at 

about 26.2 a.u. This can be also seen in the branching ratio plots (figure 4.23 – right panel) as a 

small bump of fully coupled curve at the same energy.  

 

Calculated cross sections for np and nd subshells around 3d thresholds are plotted to further 

understand the above phenomenon, shown in figure 4.24. Let us first focus on the 4d case. As seen 

from figure 4.24, The maxima in the 3d cross sections are two orders of magnitude larger than the 

4d cross sections, thus creating the conditions for significant changes to 4d cross sections via 

interchannel coupling. This interchannel coupling creates structures in the 4d cross section at the 

same energies where the maxima in the 3d cross sections (figure 4.23). Moreover, the 

manifestation of the interchannel coupling in the 4d cross sections is different for two spin-orbit 

doublets. This difference indicates that the interchannel coupling matrix elements are strongly j-

dependent; said another way, photoionization in this energy region is strongly affected by 

Figure 4.23 Calculated Xe 3d cross sections, 3d(3/2) (purple) and 3d(5/2) (red) – left panel 

and branching ratios, fully coupled (red) and 3d(5/2) and 3d(3/2) uncoupled from each other 

– right panel. The vertical dashed lines indicate the 3d thresholds. 
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relativistic interactions. The significant difference in cross sections explains the variations in 4d 

branching ratios in the vicinity of 3d thresholds. 

 

Figure 4.24 Calculated Xe 4d, 4p, and 5p cross sections, fully coupled (red) and 
without coupling to 3d channels (blue-squares). The vertical dashed lines indicate the 3d 

thresholds. 
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The features in the Xe 4p and 5p branching ratios are also located at the exact photon 

energies as in 4d, where the peaks of 3d cross sections appeared (figures 4.23 and 4.24). Therefore, 

the explanation for the huge variations in Xe 4p and 5p branching ratios is essentially the same as 

for the 4d case, although the details differ somewhat.  

Figure 4.25 shows the 4d and 5p branching ratios in the vicinity of 4p and 4s thresholds. 

According to those plots, the interchannel coupling effect is relatively small except for the 

resonance region just below 4p thresholds. Above the 4p(1/2) threshold, the 5p branching ratio 

shows a small effect, while the 4d branching ratio shows no effect at all. It further indicates that 

the interchannel coupling interaction between outer and inner subshells is strongest between 

channels of the same angular momentum than in channels of different angular momentum.  

 

 

 

Figure 4.25 Branching ratios of Xe 4d  (
𝜎3𝑑(5/2)

𝜎3𝑑(3/2)⁄ ), and 5p 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ) calculated with  fully coupled (red-dots) and without coupling to 4s and 

4p channels (blue-squares). The vertical dashed lines indicate the 4s and 4p thresholds. 
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4.5 Mercury (Hg) 

Mercury atoms have a closed-shell structure, and it is a transition metal. So far, all the 

elements studied are noble gasses. There is a lack of experimental studies about Hg because of the 

difficulty arising from the damage made on experimental setups by its evaporation. To fill this gap 

and to identify the variation of other elements from the trends we found on noble gasses, subshell 

photoionization probabilities of Hg were studied in this research. Hg calculations involve a total 

of 47 relativistic photoionization channels from 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5p, 5d, and 6s subshells 

except 1s, 2s, and 2p channels. As discussed in the section of Xe, those channels were excluded to 

avoid the RRPA calculation difficulties. Since the binding energies of those subshells are much 

higher than the considered energy range, they are essentially irrelevant for the present calculations. 

Table 4-5 Calculated subshell thresholds of Hg in atomic energy units 

        Subshell        Threshold (Relativistic)       Threshold (NonRelativistic) 

              1s       3074.231           2778.402 

              2s         550.252             470.404 

          2p(1/2)         526.855             452.182 

          2p(3/2)         455.157             452.182 

              3s         133.113             113.130 

          3p(1/2)         122.639             104.341 

          3p(3/2)         106.545             104.341 

          3d(3/2)           89.437               88.146 

          3d(5/2)           86.020               88.146 

              4s           30.648               25.572 

          4p(1/2)           26.124               21.670 

          4p(3/2)           22.189               21.670 

          4d(3/2)           14.797               14.610 

          4d(5/2)           14.053               14.610 

 

Table 4-5 shows the relativistically and nonrelativistically calculated subshell thresholds 

of Hg. Hg (Z = 80) is much heavier than the previous elements studied, and therefore the relativis t ic 

and nonrelativistic thresholds deviate considerably from each other. As noted and explained in 

connection with the previous elements, in Hg also, thresholds of outer subshells experience smaller 
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deviation from nonrelativistical values than inner subshells. For Hg also, the spin-orbit splitting 

decreases with the increasing n and l.  

 

The overall views of Hg branching ratios of the np (3p, 4p, 5p), nd (3d, 4d, 5d), and 4f are 

depicted in figures 4.26 and 4.27 respectively. The asymptotic branching ratios of Hg are lower 

than other elements owing to the increased relativistic effect with higher Z. The difference between 

the branching ratios of fully coupled and intrashell coupled is slightly larger for Hg than in Xe, 

Figure 4.26 Branching ratio of Hg 3p, 4p, and 5p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ) calculated with  fully 

coupled (red-dots), and with only intrashell coupling (blue-squares). The vertical dashed 

lines indicate the thresholds. 
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following the same trend seen in Ne, Ar, and Kr except in Xe due to very complicated interactions 

of interchannel coupling. 

 

As seen and explained in other elements, Hg high-energy branching ratios are highly 

independent of principal quantum number n of the initial np or nd state, as shown in figures 4.26 

and 4.27. The high-energy branching ratios of Hg subshells are depicted in figure 4.28 to clearly 

identify this behavior.  

 

Figure 4.27 Branching ratio of Hg 3d, 4d, 5d (
𝜎𝑛𝑑(5/2)

𝜎𝑛𝑑 (3/2)⁄ ), and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) 

calculated with  fully coupled (red-dots), and with only intrashell coupling (blue-squares). 

The vertical dashed lines indicate the thresholds. 
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All the branching ratios of Hg move further away below their statistical values with 

increasing energy as in other elements, and for d-subshells in Hg, this has been experimenta l ly 

verified [44]. The nd and np branching ratios of Hg are somewhat lower than in the Xe, as expected. 

Furthermore, Hg nd branching ratios fall off slower than np as discussed in Xe and Kr, and 4f falls 

off even slower. It conveys the idea that the relativistic effects on the wave functions get smaller 

with the angular quantum number l. Hg f subshells experience a huge angular momentum barrier 

involved in the f → g transitions [58], and it causes their slower decrement with energy. 

 

Figure 4.28 Comparison of Hg branching ratios np (3p –brown, 4p –pink, and 5p –
orange) (upper left panel), nd (3d –brown, 4d –pink, and 5d –orange) (upper right panel), and 

4f (lower left panel) at high-energy region. 
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Figure 4.29 Branching ratios of Hg 3d, 4d, 5d  (
𝜎𝑛𝑑 (5/2)

𝜎𝑛𝑑(3/2)⁄ ), 4p, 5p 

(
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) calculated with  fully coupled (red-dots), and 

without coupling to 3s and 3p channels (blue-squares). The vertical dashed lines indicate the 

thresholds. 
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To explore the large excursions of Hg plots from their smooth behavior in the vicinity of 

inner-shell thresholds, Hg branching ratios in the region of n = 3 and n = 4 (ns and np) thresholds 

are shown in figure 4.29 and 4.30 respectively. When the corresponding ns and np channels are 

excluded from the calculations, the branching ratios are monotonically decreasing, thereby 

implying that the structures appeared due to the coupling.   

 

Qualitatively, the trend of all the branching ratios is the same around both sets of thresholds 

n = 3 and n = 4, except that the 4f branching ratio resonance behavior is flipped around n = 4 

Figure 4.30 Branching ratios of Hg 4d, 5d  (
𝜎𝑛𝑑 (5/2)

𝜎𝑛𝑑(3/2)⁄ ), 5p (
𝜎5𝑝(3/2)

𝜎5𝑝(1/2)⁄ ), 

and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling 

to 4s and 4p channels (blue-squares). The vertical dashed lines indicate the thresholds. 
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thresholds. The resonance has different shapes in the vicinity of the spin-orbit doublet threshold 

of Hg p subshells as in other elements. For Hg also, the excursion from the smooth background of 

the branching ratios around n = 4 thresholds is smaller in magnitude than around n = 3 thresholds, 

indicating that the interchannel coupling is less relativistic with principal quantum number n. As 

discussed for other elements, for Hg also, interchannel coupling affects the branching ratios over 

a broad energy range and it is not limited to just around the inner-shell thresholds. However, Hg 

does not exhibit the peculiar increase of branching ratios with the energy around ns thresholds.  

The branching ratios of Hg 4p, 5p, 4d, 5d, and 4f in the vicinity of the 3d thresholds are 

particularly interesting and are shown in figure 4.31. Without the coupling of the 3d 

photoionization channels, the branching ratio plots are smooth and monotonically decreasing, 

demonstrating that the variations with energy are entirely due to the interchannel coupling. The 

branching ratio trends in the vicinity of 3d thresholds are altogether different than in the area of np 

thresholds. All the branching ratios follow a similar trend around the np thresholds. But around 

the 3d thresholds, the nd and nf branching ratios follow a similar pattern with a peak above the 

3d(5/2) and a dip above the 3d(3/2) thresholds, while the np branching ratios exhibit dips above 

both thresholds.  Therefore, the effect of the interchannel coupling with 3d subshells is dependent 

on the angular momentum as in the Xe case. 

It is evident from the truncated calculations that the coupling with 3d(3/2) channels is 

primarily responsible for the structures around the 3d(3/2) threshold and coupling with the 3d(5/2) 

channel is entirely responsible for the structures around 3d(5/2) threshold. In this region also, the 

Auger resonance have different shapes below each of the 3d thresholds. 
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Figure 4.31 Branching ratios of Hg 4d, 5d (
𝜎𝑛𝑑 (5/2)

𝜎𝑛𝑑(3/2)⁄ ), 4p, 5p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), 

and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) calculated with  fully coupled (red-dots), without coupling to 3d 

channels (blue-squares), without coupling to 3d(3/2) channels (yellow-triangles), and without 
coupling to 3d(5/2) channels (green-inverted triangles). The vertical dashed lines indicate the 

3d thresholds. 
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In the vicinity of 3d thresholds, variations of Hg 4d and 5d branching ratios are much more 

significant than np case as in Xe. However, the Hg 4f variation is the largest in this energy region. 

In general, the interchannel coupling matrix element is larger between channels of the same 

angular momenta than in between channels of different angular momenta. But in this case, 

coupling between 3d and 4f subshells is stronger than the coupling between 3d and other nd 

subshells.  

 

To understand the variations of branching ratios around 3d thresholds, the individual cross 

sections for the 3d spin-orbit doublets were examined and results are shown in figure 4.32. The 

fully coupled Hg 3d(5/2) cross section exhibits a small drop at 90 a. u. near the energy of the 

3d(3/2) maximum (left panel of figure 4.32). If the 3d(5/2) and 3d(3/2) channels are uncoupled 

from each other, this drop disappears (right panel of figure 4.32). This clearly indicates a spin-

orbit interaction activated interchannel coupling (SOIAIC) effect as in the Xe case. However, the 

Hg branching ratios and cross sections do not show huge variations around 3d thresholds as Xe.  

Figure 4.32 Calculated Hg 3d cross sections, 3d(3/2) (purple) and 3d(5/2) (red), left panel – 

fully coupled and right panel – uncoupled from each other. 
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The features in the Xe branching ratios around the 3d thresholds are located at the exact 

photon energies of the shape resonance maxima of 3d spin-orbit doublet. Similarly, the extra drop 

of Hg 3d(5/2) cross section due to the SOIAIC effect is located at the photon energy of 90 a. u., 

and all the branching ratios show a drop at that energy. However, the other extrema of Hg 

branching ratio curves located at 86.6 a. u. while maximum point of 3d(5/2) cross section is located 

at 87.4 a. u. This indicates that for the Hg SOIAIC effect, oscillator strength transfers affect a board 

energy region, unlike Xe. The interchannel coupling effect in the photoionization process is rather 

complicated and can be expressed qualitatively from a perturbation point of view as the equation 

4.2 [59, 60]. 

𝑫𝒊(𝑬) =  𝑴𝒊(𝑬)+ ∑ ∫𝒅𝑬′ ⟨𝝍𝒊(𝑬)|𝑯−𝑯𝟎|𝝍𝒋(𝑬
′)⟩

𝑬−𝑬′ 𝑴𝒋(𝑬
′)𝒋 , (4.2) 

where, 𝐷𝑖(𝐸) is the fully coupled dipole matrix element of channel i, 𝑀𝑖(𝐸) are the uncoupled 

matrix elements of the various photoionization channels j, 𝐻 − 𝐻0 is the perturbing Hamiltonian, 

and 𝜓𝑖(𝐸) and 𝜓𝑗(𝐸
′) are final continuum wave functions of channel i and j and energies E and E’ 

respectively. As per equation 4.2, depending on the configuration interactions in the final 

continuum state, the final continuum state wave functions of the channels with larger and smaller 

cross sections will transfer oscillator strength with each other. The interchannel coupling matrix 

element ⟨𝜓𝑖(𝐸)|𝐻 − 𝐻0|𝜓𝑗(𝐸
′)⟩ will affect strongly to the channels with much smaller matrix 

elements.  

Figure 4.33 shows the 4f, 5p, and 5d branching ratios in the vicinity of 4d thresholds. In 

this low-energy region, coupling effects are small. But still, due to the interchannel coupling of 4d 

channels, there is a rise and a drop above the 4d(3/2) threshold on 4f and 5d branching ratio curves, 
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respectively. As in 3d case, the coupling effect is dominant in d and f subshell branching ratios 

than in p subshell. 

 

 

4.6 Radon (Rn) 

Radon is the heaviest noble gas atom studied, and electrons of Rn in the deeper inner shells 

have large effective Z and, therefore, it is highly relativistic as well as being radioactive. Rn 

calculations involved a total of 52 relativistic photoionization channels from 3s, 3p, 3d, 4s, 4p, 4d, 

Figure 4.33 Branching ratios of Hg 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ), 5d  (
𝜎5𝑑(5/2)

𝜎5𝑑 (3/2)⁄ ), and 5p 

(
𝜎5𝑝(3/2)

𝜎5𝑝(1/2)⁄ )  calculated with  fully coupled (red-dots), and without coupling to 4d 

channels (blue-squares). The vertical dashed lines indicate the 4d thresholds. 
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4f, 5s, 5p, 5d, 6s, and 6p subshells, leaving out the 1s, 2s, and 2p channels. As discussed in the 

sections on Xe and Hg, those channels were excluded since the binding energies of those subshells 

are so much higher than the considered energy range, they are essentially irrelevant for our 

calculations. 

Table 4-6 Calculated subshell thresholds of Rn in atomic energy units 

         Subshell         Threshold (Relativistic)        Threshold (Nonrelativistic) 

   1s        3641.158         3229.917 

   2s          668.805           556.869 

           2p(1/2)          642.330           536.679 

           2p(3/2)          541.103           536.679 

   3s          166.832           138.412 

           3p(1/2)          154.895           128.672 

           3p(3/2)          131.731           128.672 

           3d(3/2)          112.567           110.702 

           3d(5/2)          107.759           110.702 

   4s            41.313             33.918 

           4p(1/2)            36.020             29.491 

           4p(3/2)            30.121             29.491 

           4d(3/2)            21.548             21.331 

           4d(5/2)            20.439             21.331 

 

Table 4-6 shows the relativistically and nonrelativistically calculated subshell thresholds 

of Rn.  The atomic number (Z) of Rn is 86, which is much heavier than the atoms considered so 

far. Therefore, as expected, the relativistic and nonrelativistic thresholds deviate considerably from 

each other. As noted and explained for the previous cases, in Rn also, outer subshells experience 

smaller deviations between relativistic and nonrelativistic calculations, and the nonrelativis t ic 

energies for np, nd and nf spin-orbit doublets are the same. All the elements show that for a specific 

atom, the spin-orbit splitting decreases with increasing n and l, while the splitting increases with 

Z. 
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The overall views of Rn's np, nd, and 4f branching ratios are shown in figures 4.34 and 

4.35 respectively. Owing to the increased relativistic effect with higher Z, Rn exhibit the highest 

decrement of the branching ratios from their statistical ratios out of all the elements studied.  At 

the highest energy point, 470 a. u., the np branching ratios of Rn are in the range of 1.37 – 1.68 

while nd branching ratios are in the range of 1.24 – 1.28. They are somewhat lower than in previous 

elements, as expected. The difference between the branching ratios of fully coupled and intrashe ll 

coupled curves is slightly larger for Rn, following the trend that the difference is increased with Z. 

Figure 4.34 Branching ratio of Rn 3p, 4p, 5p, and 6p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ) calculated with  

fully coupled (red-dots), and with only intrashell coupling (blue-squares). The vertical 

dashed lines indicate the thresholds. 
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Moreover, high-energy branching ratios are primarily independent of the principal quantum 

number of the initial p or d state. The comparison of high-energy branching ratios of Rn is shown 

in figure 4.36. The Rn nd branching ratios fall off slower than np as discussed in previous elements, 

and 4f falls off even slower. This shows that the relativistic effect on the wave functions is getting 

smaller with the angular quantum number l. moreover, f subshells are experiencing a huge angular 

momentum barrier involved in the f → g transitions causing a slower decrement of branching ratio 

with energy. 

 

Figure 4.35 Branching ratio of Rn 3d, 4d, 5d (
𝜎𝑛𝑑 (5/2)

𝜎𝑛𝑑 (3/2)⁄ ), and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) 

calculated with  fully coupled (red-dots), and with only intrashell coupling (blue-squares). 

The vertical dashed lines indicate the thresholds. 
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To explore the effect of interchannel coupling, Rn branching ratios in the vicinity of inner -

shell thresholds n = 3 and n = 4 (ns and np) were plotted and shown in figures 4. 37, 4.38, and 

4.39. When the corresponding ns and np channels are excluded from the calculations, the 

branching ratios monotonically decrease, demonstrating that the structures are due to interchanne l 

coupling.  However, Rn does not exhibit the increase of branching ratios with the energy around 

ns thresholds as seen in Xe and Kr. 

 

Figure 4.36 Comparison of Rn branching ratios np (3p –brown, 4p –pink, 5p –orange, and 6p 
-purple) (upper left panel), nd (3d –brown, 4d –pink, and 5d –orange) (upper right panel), 

and 4f (lower left panel) at high-energy region. 
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Qualitatively, the trend of all the branching ratios is the same around both sets of thresholds 

n = 3 and n = 4. The pointing up and down of the branching ratio curves before thresholds indicate 

that the resonance has different shapes around different subshells as in other elements. For Rn also, 

the excursion from the smooth background of plots around n = 4 thresholds is smaller in magnitude 

than around n = 3 thresholds, indicating the interchannel coupling is getting less relativistic with 

principal quantum number n. As discussed in the other elements, for Rn also, interchannel coupling 

affects the branching ratios over a broad energy range, not limited to subshell thresholds. 

Figure 4.37 Branching ratios of Rn 4p, 5p, and 6p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ) calculated with  fully 

coupled (red-dots) and without coupling to 3s and 3p channels (blue-squares). The vertical 

dashed lines indicate the thresholds. 
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Similar interchannel coupling effects were found at low energies in previous studies [61, 

62], especially for n = 5 subshells. In these studies, several minima in dipole matrix elements 

induced by interchannel coupling were found. The existence and location of these various minima 

are important determinants of the spectral distribution of the oscillator strength in the 

photoionization cross sections and branching ratios [62].  

 

Figure 4.38 Branching ratios of Rn 3d, 4d, 5d  (
𝜎𝑛𝑑(5/2)

𝜎𝑛𝑑(3/2)⁄ ), and 4f 

(
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling to 3s and 

3p channels (blue-squares). The vertical dashed lines indicate the thresholds. 

 



73 
 

 

 

 

Figure 4.39 Branching ratios of Rn 4d, 5d  (
𝜎𝑛𝑑(5/2)

𝜎𝑛𝑑(3/2)⁄ ), 5p, 6p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), 

and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ ) calculated with  fully coupled (red-dots), and without coupling to 

4s and 4p channels (blue-squares). The vertical dashed lines indicate the thresholds. 
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The branching ratios of Rn 4p, 5p, 6p, 4d, 5d, and 4f in the vicinity of the 3d thresholds are 

particularly interesting because of the unusual structures in the curves and are shown in figure 

4.40. The sharp variations in the branching ratios are caused solely by the coupling with 3d 

channels because omitting coupling of those channels gives featureless plots. The branching ratio 

trends in the vicinity of 3d thresholds are altogether different from the area of np thresholds as in 

the Xe case. All the branching ratios follow a similar trend around the np thresholds. But around 

the 3d thresholds, the nd and nf branching ratios follow a similar pattern with a peak and then a 

drop above the 3d(5/2) threshold and a dip and then a rise above the 3d(3/2) threshold, while the 

np branching ratios exhibit a drop and then a rise above both thresholds.  Therefore, the effects of 

the interchannel coupling with 3d subshells are dependent on the angular momentum as in the Xe 

and Hg cases. 

In the neighborhood of 3d thresholds, fully coupled 4p, 5p, and 6p branching ratios vary 

by about 0.6, 0.5, and 0.4, respectively, within a small energy range. Also, fully coupled 4d, 5d 

and 4f branching ratios vary about 0.6, 0.5, and 2.2 respectively, within the same energy range. 

This pattern indicates that the interchannel coupling effect of 3d increases with the angular 

momentum quantum number l while decreasing with the principal quantum number n. This 

decrement with n can be explained in that with the increasing n, the subshell moves further away 

from the 3d subshells thereby decreasing the interchannel coupling matrix element. 

To understand interchannel coupling effects in this region, the individual cross sections of 

the Rn 3d spin-orbit doublets were examined, and the results are shown in figure 4.41. The 3d 

cross sections show sharp maxima above the thresholds known as shape resonance or delayed 

maxima, as discussed in the Xe section. In addition, the Rn 3d(5/2) cross section exhibits an extra 

small drop and a rise in the energy region of the 3d(3/2) shape resonance maximum. If the 3d(5/2) 
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and 3d(3/2) channels are uncoupled from each other, these extrema disappear (right panel of figure 

4.41). This clearly indicates a SOIAIC effect as in the Xe and Hg case. 

Figure 4.40 Branching ratios of Rn and 4p, 5p, 6p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), 4d, 5d  

(
𝜎𝑛𝑑(5/2)

𝜎𝑛𝑑(3/2)⁄ ), and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ )  calculated with  fully coupled (red-dots), 

and without coupling to 3d channels (blue-squares). The vertical dashed lines indicate the 

3d thresholds. 
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The shape resonance occurred on Rn 3d cross sections at 108 a. u. and 113 a. u. and the 

extrema on all the branching ratio curves located around the same energy points. As in equation 

4.2, the interchannel coupling matrix element strongly affects the channels with much smaller 

matrix elements. Here the shape resonance in 3d(3/2) induces variations in the 3d(5/2) cross 

section at the energy where it is comparably small. This phenomenon makes significant variations 

on other cross sections, making features in branching ratio curves. 

  The branching ratios of Rn 5p, 6p, 5d, and 4f in the vicinity of the 4d thresholds are shown 

in figure 4.42, and the 3d cross sections in the same energy region are shown in figure 4.43. They 

exhibit similar behavior as the above phenomenon around 3d thresholds. However, in this 

situation, the features of the branching ratios are smaller, and extrema are not sharp, as in 3d case. 

It is interesting to note that except for 5d, all the other branching ratio curves flip around 4d 

thresholds compared to around 3d thresholds. To verify and fully understand this behavior, further 

studies with high Z atoms will be needed.    

 

Figure 4.41 Calculated Rn 3d cross sections, 3d(3/2) (purple) and 3d(5/2) (red), left panel – 

fully coupled and right panel – uncoupled from each other. 
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The variation of 4d cross sections in the vicinity of their thresholds is also similar to that 

of 3d. However, the induced SOIAIC feature in the 4d(5/2) cross section, just above the 4d(3/2) 

threshold is smaller than in the 3d case.  This occurs because the maximum in the uncoupled 

4d(3/2) cross section is only a factor of two larger than the 4d(5/2) cross section at the same energy, 

while in the 3d case, it is a factor of four, thereby making the interchannel coupling proportionally 

smaller in the 4d case.  

Figure 4.42 Branching ratios of Rn and 5p, 6p (
𝜎𝑛𝑝(3/2)

𝜎𝑛𝑝(1/2)⁄ ), 5d  

(
𝜎5𝑑(5/2)

𝜎5𝑑 (3/2)⁄ ), and 4f (
𝜎4𝑓(7/2)

𝜎4𝑓(5/2)⁄ )  calculated with  fully coupled (red-

dots), and without coupling to 4d channels (blue-squares). The vertical dashed lines 

indicate the 4d thresholds. 
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Figure 4.43 Calculated Rn 4d cross sections, 3d(3/2) (purple) and 3d(5/2) (red), left panel 

– fully coupled and right panel – uncoupled from each other. 
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5 CONCLUSIONS 

A survey of the branching ratios of spin-orbit doublets of the noble gases Ne, Ar, Kr, Xe, 

Rn, and Hg has been conducted over a broad range of photon energies. It was found that 

photoionization branching ratios of spin-orbit doublets at high energies well above their thresholds, 

do not approach the statistical value of (l + 1)/l, but decrease with energy owing to the relativis t ic 

effects on the initial state npj wave functions as predicted many years ago [8, 48] and confirmed 

experimentally for few cases recently [9].  

The matrix element is generated at smaller and smaller r, closer to the nucleus, with 

increasing energy. This occurs due to the constraints of the combination of energy and momentum 

conservation in the photoionization process. Further away from the nucleus, both nlj spin-orbit 

split wave functions behave similarly, and are virtually identical.  But closer to the nucleus, nlj 

bound states behave differently as a function of j as determined by the Dirac equation. As a result, 

the ratio of the radial charge densities of state l−1/2 to state l+1/2 increases as r decreases and 

diverges as 1/r2 as r → 0. It was found that this phenomenon is caused the branching ratio to 

decrease from the statistical value at higher energies [49] and continue to decease with energy. 

Furthermore, this effect increases with Z since relativistic effect increases with Z. 

Well above the thresholds, nd branching ratios fall off slower than np branching ratios with 

energy due to the strong centrifugal repulsion, which keeps the nd wave functions further away 

from the nucleus than np wave functions. The 4f branching ratio falls off even slower, owing to 

the huge angular momentum barrier involved in the f → g transitions. But, the initial state principa l 

quantum number n is not important for the high-energy behavior of spin-orbit doublet branching 

ratios. This occurs because the wave functions of initial states of the same l but different n are 
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exactly the same at small r except for an overall normalization factor that cancels out in the 

branching ratios. 

As suggested earlier [9, 10], it was found through this study that the branching ratios could 

be strongly affected in the vicinity of inner-shell thresholds through correlation in the final-state 

wave functions by interchannel coupling. The interchannel coupling affects the two members of 

spin-orbit doublets differently, indicating that the interchannel coupling itself is also affected by 

relativistic interactions. This effect is evident even in Ne, the lowest-Z atom studied.  

The difference between the fully coupled and intrashell coupled branching ratios increases 

with Z for Ne, Ar and Kr. But the Xe results diverge from this behavior due to very complicated 

interchannel coupling interactions which can increase or decrease cross sections; with so many 

different interchannel coupling interactions in Xe, some of them apparently partially cancel out.  

Moreover, Kr and Xe branching ratios show an increase with energy in the vicinity of ns thresholds 

due to the interchannel coupling with np channels. This indicates that the interchannel coupling 

with inner shells is not limited to a small energy region around the subshell threshold, but it is 

operative over a broad energy range and redistributes the probability for photoionization. 

As a rule, it was found that the interchannel coupling matrix elements were largest between 

photoionization channels of the same initial state angular momentum. This was demonstrated in 

the 4d branching ratio in the neighborhood of the 3d thresholds. In addition, the interactions 

became less important with increasing angular momentum difference. Interestingly, the 4f 

branching ratios of Hg and Rn show the highest variation around nd thresholds. In that case, 

coupling between nd and 4f subshells is stronger than the coupling between nd subshells. 

The interchannel coupling effect of a particular channel on branching ratio decreases with 

the principal quantum number n of the spin-orbit doublets. This decrement with n can be explained 
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by noting that with the increasing n, the spin-orbit doublet wave functions move further away from 

the particular inner subshell, thereby decreasing the overlap and the interchannel coupling matrix 

element. 

The SOIAIC effect was found earlier through experimental and theoretical studies in the 

Xe 3d spin-orbit doublets [13, 57]. In the present study, we found similar SOIAIC effects in Hg 

3d, Rn 3d, and Rn 4d spin-orbit doublets. The nd subshells in those elements show shape resonance 

above their thresholds, and small extrema in nd(5/2) cross sections were found in the vicinity of 

nd(3/2) shape resonance maxima. And these structures were evident in the branching ratios as well.  

In the final continuum state, the interchannel coupling (essentially configura t ion 

interaction in the continuum) mixes the wave functions of the various channels. As a result of this 

mixing channels with larger cross sections will transfer oscillator strength to the channel with the 

smaller cross section. This phenomenon is responsible for the SOIAIC effect in the nd(5/2) cross 

sections. Moreover, this interchannel coupling was seen to induce significant variations in high 

energy cross sections of all subshells of all the atoms studies, particularly in the neighborhood of 

inner-shell thresholds. 

This research provides a broad theoretical analysis of relativistic effects and interchanne l 

coupling interactions in the photoionization branching ratios of spin-orbit doublets in high-energy 

regions and gives an overview of the phenomenology. This work will be extended to higher Z 

atoms in the future to test the various conclusions that the present work has suggested. It will also 

be interesting to look at how the branching ratios of spin-orbit doublets work in the vicinity of nf 

thresholds. Other than the work of Ref.[9] there is no experimental work on the noble gas 

branching ratios at the higher energies. We hope the present paper will prompt new laboratory 

studies. 
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APPENDICES 

A. Dipole Approximation 

  In the photoionization process, the interaction of a photon with an electron of an atom 

depend on the exponential term 𝑒𝑖𝑘̅∙𝑟̅ as in equation 2.6. Where 𝑘 is the wavenumber of the incident 

photon and 𝑟̅ is the coordinate of the target electron. This exponential term can be expanded as in 

equation 2.7, and it can be replaced by unity using the dipole approximation. 

|𝒌 ∙ 𝒓| =  
𝒑

ℏ
𝒓 =

𝑬

ℏ𝒄
𝒓 =

𝑬𝒂𝟎

ℏ𝒄

𝒓

𝒂𝟎
= 𝜶𝑬

𝒓

𝒂𝟎
. (A.1) 

Where P and E are the momentum and energy of the incident photon. For an inner shell, 𝑟 𝒂𝟎
⁄ ~0.1 

and for a photon with wavelength λ >> 100 Å, |𝑘 ∙ 𝑟| ≪ 1. Then the exponential term can be 

replaced by unity. If |𝑘 ∙ 𝑟| = 0.1 then, 𝐸 = 137 𝑎.𝑢. as in equation A.1. If we take the second 

term of the expansion (quadrupole term), 

𝒆𝒊𝒌∙𝒓 = 𝟏 + 𝒊𝜿 ∙ 𝒓. (A.2) 

Where the second term is nearly 0.1, however, the first and second terms go to different final states, 

and thus there are no cross terms. And, since the cross sections depend upon the absolute squares 

are the matrix elements, the absolute squares of the first two terms should be compared.  Then, 

noting the dot product of the second (quadrupole) term introduces a cosine, and the average value 

of the square of the cosine is ½, we find that for outer shells, the quadrupole cross section is less 

than 10% of the dipole cross section up to an energy of about 100 a.u.; for inner shells, this becomes 

about 800 a.u. Therefore, for the present calculations, we use the electric dipole approximation, 

i.e. the above expansion A.2 is replaced by unity.  
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B. Selection rules for electric dipole transitions 

Since the total angular momentum J and the parity operators of electrons in atoms commute 

with the total Hamiltonian operator, atomic states are eigenstates of J2, Jz (with quantum numbers 

J and MJ, respectively) and of parity. Therefore to have non-vanishing Clebsch-Gordan 

coefficients for the electric dipole matrix, the following selection rules are applied for the allowed 

dipole transitions of photoionization of atomic electrons [16].  

a. ∆𝑀𝐽 = 0,±1  

b. ∆𝐽 = 0,±1  (J = 0 ↔ J’ = 0 forbidden) 

c. According to Laporte’s rule, initial and final atomic states must have opposite 

parity. 

Where prime above the quantum numbers indicates the final state. If the spin-orbit interactions are 

weak (L-S coupling limit), then the total orbital angular momentum L and the total spin angular 

momentum S of electrons are conserved. In this situation, selection rules can be written as follows 

[16], 

a. ∆𝑀𝐿 = 0,±1  

b. ∆𝐿 = 0,±1  (L = 0 ↔ L’ = 0 forbidden) 

c. ∆𝑆 = 0  
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