
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Physics and Astronomy Dissertations Department of Physics and Astronomy 

Fall 12-13-2021 

Theory of nanospaser: the role of topology and inter-level Theory of nanospaser: the role of topology and inter-level 

relaxation. relaxation. 

Rupesh Ghimire 

Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss 

Recommended Citation Recommended Citation 
Ghimire, Rupesh, "Theory of nanospaser: the role of topology and inter-level relaxation.." Dissertation, 
Georgia State University, 2021. 
doi: https://doi.org/10.57709/26834583 

This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy 
Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, 
please contact scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/phy_astr_diss
https://scholarworks.gsu.edu/phy_astr
https://scholarworks.gsu.edu/phy_astr_diss?utm_source=scholarworks.gsu.edu%2Fphy_astr_diss%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/26834583
mailto:scholarworks@gsu.edu


Theory of nanospaser: the role of topology and inter-level relaxation.

by

RUPESH GHIMIRE

Under the Direction of Vadym Apalkov, PhD

ABSTRACT

Spasers are devices based on the effects of a plasmonic field and emulate a laser phenomenon

in a nanoscale. A spaser consists of a resonator, which is a metal, and a gain, which is

usually a semiconductor. The topological properties of materials are independent of geo-

metrical deformations and are invariant under structural changes and perturbations. The

electronic properties of a group called transition metal dichalcogenides(TMDCs), a type of

two-dimensional(2D) materials, exhibit robustness around certain symmetry points called

valleys, where the dipole-transitions are most probable.

Topological nanospaser consists of a silver nanospheroid and a gain 2D monolayer TMDC

placed atop of it. The metallic spheroid acts as a nanoresonator for the plasmonic field. It

supports two dipole modes rotating in the opposite directions with surface plasmon resonance



frequency (ωsp). When transition frequency in the gain matches to the ωsp of nanospheroid

there is a coupling between the plasmonic modes and the chiral valleys (K and K′) which

results in the generation of plasmons. Here, we selectively pump a single valley and study

the dynamics of a nanospaser for different radii of the gain flake. When the radius of TMDC

nanoflake is less than the radius of nanospheroid, the plasmons generated are only those

which match the chirality of the pumped valley and plasmons with the opposite chirality are

absent. However, for a large enough flake size, the plasmonic field outside the footprint of the

spheroid polarizes the unpumped valley and the generation of these mismatched plasmonic

modes becomes highly probable. In addition, we also analyze the far-field radiation due to

this nanospaser.

We, further, study the effects of inter-level relaxation in a spaser system of spherical

nanoparticle embedded inside a sphere composed of dye. Assuming gain to be a three-

level model, we will explain the effects due to relaxation in the higher energy levels in the

generation of plasmons. Contrary to a two-level system spaser where the dependence of

plasmons on excitation is linear, we observe a quadratic relationship.

Both these nanospasers have tremendous potential uses in the different areas of infrared

spectroscopy, sensing, probing, and mainly biomedical treatment.

INDEX WORDS: Near-field optics, Spaser, Optical pumping, Plasmonics, Symmetry
protected topological states, Topological materials, Valleytronics
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CHAPTER 1

INTRODUCTION

Numerous inventions have made a mark on the collective development of human race.

Amongst them, Laser[1; 2], over 70 years of its introduction, has undeniably shaped al-

most every aspect of living from communication to medicine. Consequently, miniaturization

of a source has enabled laser technology to be integrated with the semiconductor and tran-

sistor applications, which has been an elusive goal for a long time. Conventional photonic

lasers are limited by size, main reason because light cannot be confined in a cavity with a

dimension less than a wavelength. Thus, over the years, continual efforts have been made to

design a laser in a sub-wavelength scale which can open path for several applications.

In the last couple of decades, the research has been mostly centered around the capability

of metals to fill the requirement of a laser such as optical confinement, feedback, electrical

contacts, and thermal management. The approach relies on metals to support EM waves

in the form of localized surface plasmons. Bergman and Stockman[3] in 2003 proposed a

theory, where surface plasmon waves could also be amplified by stimulated emission – a

concept named spaser (surface plasmon amplification by stimulated emission of radiation).

Several spaser devices were later build based on this general concept and many are still in

development proposing many uses in the area of communication, medicine, defense and other

technological areas.

In the following sections, we briefly overview the key concepts of spaser right from the

basics of plasmons and light matter interactions.
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1.1 Plasmons

Plasmons are the eigenmodes of the oscillation of electrons in a metal. Just as the photon

is the quanta of the oscillation of the electromagnetic field, the plasmon is the quanta of the

oscillation of electron density within a metal. Since electrons are associated with charge,

these oscillations of charge involve the generation of field within the region of oscillation. We

can categorize plasmons into 3 main types:

• Bulk Plasmons:

The bulk plasmon is the most common form of plasmon. The electron density inside

a metal undergoes a longitudinal oscillation with a very high frequency called plasma

frequency (ωp). This ωp is a constant for a given type of material.

• Surface Plasmons:

The Surface Plasmons(SP) exist on the surface of a metal-dielectric interface and inter-

act with light to form a propagating surface plasmon polaritons. They are evanescent

waves that can propagate along the interface with a broad range of plasma frequencies

from ω = 0 to ω = ωp/
√
2.

• Localized Surface Plasmons(LSPs):

LSPs are non-propagating types of plasmons that exist in a metal nanoparticle. The

impinging field drives the entire system in oscillation, which is much different from

that of the bulk system. They have a striking resemblance with the surface plasmons

as the frequency of oscillation of these plasmons(LSP frequency) also depends on the
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Figure 1.1 Dispersion curve of photon, bulk plasmons and the surface plasmons are repre-
sented by of dotted blue, dotted orange and solid red lines respectively. The brown line
represents the cut-off frequency of the surface plasmon.

external dielectric environment. However, LSPs are localized within the dimensions of

the nanoparticle.

Fig 1.1 shows the dispersion relation of photon, bulk plasmon and surface plasmon. A dotted

Blue line indicates the linear dispersion relation of the photon. However, the dispersion curve

of the surface plasmon(solid Red) is quadratic in nature. This implies that, for a same value of

frequency, surface plasmon can possess higher values of momentum in comparison to photon,

which allows the confinement of wavelength in tighter spaces. These surface plasmons can
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only sustain below a certain value of frequency known as cut-off frequency(dotted brown).

Bulk plasmon frequency is constant for a given metal as given by the constant dotted Orange

line. The oscillation of electron densities in three different types of plasmons is illustrated

in Fig. 1.2[4].

Figure 1.2 Oscillation of electron densities in the (a) Bulk plasmons, (b) surface plasmon, (c)
localized surface plasmon). The plus(+) and minus(-) signs represent the separated positive
and negative charges which form a dipole. Green lines indicate the direction of electric field
due to these dipoles.

1.2 Light-Matter Interaction

Interactions between light and matter have been a subject of great interest in modern research

in science. The possible applications are seen in the areas of spectroscopy, sensing, informa-

tion processing and lasers. Nanostructured optical materials with subwavelength dimensions
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can exhibit peculiar behavior when they interact with the electromagnetic light(EM wave).

The frequency of oscillation(ωLSP) of electrons in a nanoparticle can be tuned by changing

the geometry of the particle, environment and several other factors. Understanding the

light-matter interaction on the subwavelength scale can open the possibility for several ap-

plications. Such interaction is governed by the Maxwell’s equations, which we discuss in the

next section.

1.2.1 Maxwell’s Wave Equations

Maxwell’s four equations form a complete description of electric and magnetic field due

to electric charges and currents. These equations in a homogeneous and lossless dielectric

medium are written in terms of the electric field E and magnetic field H as

∇ ·D = 4πρext, ( Colomb’s law)

∇ ·B = 0, ( Gauss Law)

∇×H =
1

c

∂D

∂t
+

4π

c
Jext, (Ampere’s Law)

∇× E = − 1

c

∂B

∂t
(Faraday’s Law)

(1.1)

Here, electric flux density D and the magnetic flux density B are defined as D = ϵE

and B = µH respectively, where ϵ and µ denote the permittivity and permeability of the

medium. ρext is an external charge and Jext is the current density due to an external source.

Considering the frequency of propagating wave ω and wavevector k, the above equations

(1.1), in the absence of charge and current i.e. ρext = 0 and Jext = 0, can be written as(in

CGS)
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k ·D = 0,

k ·B = 0.

k×H = −iωϵE
c

,

k× E =
iωB

c

(1.2)

On Solving equations (1.2), we obtain Helmholtz equation, which defines the propagation

of EM wave in a medium.

(k2 +
ω2

c2
µϵ)

[
E
H

]
= 0 (1.3)

1.2.2 Waves in a Medium

The electromagnetic waves with frequency ω propagating through a given medium are af-

fected by the permittivity(ϵω) and permeability(µω) of the medium. The medium can be

also characterized by electric and magnetic susceptibilities, χω and χm,ω. They are related

to ϵω and µω by the following equations

ϵω = (1 + 4πχω),

µω = (1 + 4πχm,ω)

(1.4)

The refractive index, n, of a medium is related to ϵω and µω as

n =
√
ϵω µω

(1.5)
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The refractive index n, usually a complex quantity, can also be written as a sum of real and

imaginary parts

n = n+ ik (1.6)

where n defines the real part which is related to the transmission of a wave through the

medium and k determines the damping of the wave. Further, the electric field and magnetic

field in terms of polarization(P) and magnetization(M) can be written as

D = ϵωE = (1 + 4πχω)E = E+ 4πP

B = µωH = (1 + 4πχm,ω)H = H+ 4πM

(1.7)

In equations (1.7), we divide the displacement field into two parts; the first part is the

response of the free space and the second part is the response of the material. These suscep-

tibilities, in general, show the extent of the displacement of charges or the limit of polarization

that can occur inside the material.

The polarization P, current J and the conductivity σ can be expressed as

P = − 1

4π
(ϵω − 1)E

J = − iω

4π
(ϵω − 1)E

σ = − iω

4π
(ϵω − 1)

(1.8)

From the above equations (1.8), the relation between ϵω and the σ can be written as

ϵω = 1 +
4πi

ω
σ (1.9)
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1.3 Interaction of Electromagnetic Waves with Metal

The optical properties of a metal structure are characterized by the conductivity and electric

susceptibility of the material. For metals, there are two main models, the Lorentz model

and the Drude model, which can be used to estimate these characteristics. Below we review

these models in details.

1.3.1 Lorentz Model

A system of an electron cloud hovering around a nucleus can be thought of as a harmonic

oscillator: a mass in a spring. Any external force applied to that mass brings about an

oscillatory motion in a system. The equation of motion is given as

m
∂2r

∂t2
+mΓ

∂r

∂t
+mω2

0r = −qE

ω0 =

√
K

m

(1.10)

where K is the restoring constant and Γ is a damping parameter and m is the mass of the

electron cloud.

The Fourier transform of Eq. (1.10) yields

(−mω2 − iωmΓ +mω2
0)rω = −qEω

(1.11)

where rω and Eω are the Fourier transforms of the displacement and electric field, respec-

tively. Thus, the displacement in terms of driving electric field and mass can be written as

rω =
−q
m

Eω

ω2
0 − ω2 − iωΓ

(1.12)
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The dipole moment(µω) and the Lorentz polarizability(αω)can be written as

µω = −qrω

µω =
q2

m

Eω

ω2
0 − ω2 − iωΓ

αω =
q2

m

1

ω2
0 − ω2 − iωΓ

(1.13)

The polarization (Pω) is associated with the macroscopic behavior of the system contrary

to the dipole moment which is defined for an atom. Thus, we take a macroscopic average

considering all the atoms are equally polarized. For a given volume V this can be written as

Pω =
1

V

∑
V

µω

= Nq ⟨µω⟩

(1.14)

where Nq is the charge density.

Since Pω = χωEω, the susceptibility of the material for a given frequency ω can be

written as:

χω =
Nq2

m

1

ω2
0 − ω2 − iωΓ

=
ω2
p

ω2
0 − ω2 − iωΓ

(1.15)

where ωp =
Nq2

m
is the plasma frequency which is fixed for a given material.

Consequently, the dielectric permittivity from Eq. (1.4)can be written as

ϵω = 1 + 4π
ω2
p

ω2
0 − ω2 − iωΓ

(1.16)

This is a simple model where we account for only one type of resonance where electrons

shift back and forth, however, there can be several others like contortion of molecules.
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Here is how to convert polarization expressed in CGS and SI units:

PSI = PCGS

√
4πϵ0

= χCGSECGS

√
4πϵ0

=
χSI

4π

√
4πϵ0ESI

√
4πϵ0

= ϵ0χSIESI

1.3.2 Drude Model

In the Drude model, we consider the restoring force constant equal to zero K = 0 which sets

the resonant frequency (ω0 = 0). In this case, the dielectric permittivity from Eq (1.17) is

given by

ϵω = 1 + 4π
ω2
p

ω2 − iωΓ (1.17)

Further generalization can be done from the equations above.

1.4 NanoPlasmonics: A Brief Overview

Nanoplasmonics is a branch of condensed matter physics that deals with the optical phenom-

ena in the nanoscale. A common presumption tells that electromagnetic radiation cannot

be confined in a space that is half of the light’s wavelength which makes the idea to achieve

electric field modes within less than micrometer dimensions impossible. However, the re-

markable property of a nanoscopic system is that it allows nanoscopic concentration of the

optical energy in the modes of oscillations such as surface plasmons or localized surface

plasmons. The underlying physics is related to the properties of EM waves in the vicinity
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of metal surfaces. When driven by the incident electric field, the free-moving electrons in

the metal nanoparticles are periodically displaced with respect to their lattice ions. The

attraction between these electrons and ions acts as a restoring force to this external field.

This results in an electron oscillator, whose quantum is a localized surface plasmon, and the

frequency of which depends on the restoring force experienced by the system.

The three important aspects of a nanoscopic system are its high quality factor(Q), great

oscillator strength(f ), and a small modal volume(Vm). The quality factor Q defines the

number of electron oscillations within the relaxation time. It’s value for the noble metals is

in the range of 10-100. Oscillator strength f is related to the number of conduction electrons

which is abundant. It’s value in metals is ∼ 105, while in quantum dots it is around 1. Modal

volume Vm depends on the size of the nanoparticle and is of the order of nanometers. All

these properties of a nanoscopic system makes nanoplasmonics a coveted area of research with

numerous applications as biosensors[5–9], optical devices[10–12],photovolatic devices[13] and

others.

1.5 Metal Nano-systems

Below we consider only a special type of metal system: metal nanospheroid or metal

nanosphere.

1.5.1 A Metal Nanospheroid

1.5.1.1 Geometry and Co-ordinate System

The topological nanospaser consists of a silver metal nanospheroid. We assume that the

nanospheroid has an oblate shape with the radius of 12 nm and the height of 1.2 nm. It is



12

described by an azimuthal symmetry and the corresponding plasmonic modes are character-

ized by azimuthal quantum number m.

Figure 1.3 An oblate silver nanospheroid

In the Cartesian coordinate system it is described by the following equation

x2 + y2

a2
+
z2

c2
= 1 , (1.18)

where a and c are semi-axes, ε =
√

1− c2

a2
is the eccentricity of the spheroid.

It is convenient to introduce the spheroidal coordinates, ξ, η and φ, which are related to

the Cartesian coordinates, x, y and z through the following expressions[14]:

x = f
√
ξ2 + 1

√
1− η2 cos(φ), (1.19)

y = f
√
ξ2 + 1

√
1− η2 sin(φ), (1.20)

z = fξη, (1.21)

where 0 ≤ ξ <∞, −1 ≤ η ≤ 1, 0 ≤ φ < 2π and f = εa.
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1.5.1.2 Eigenmodes of a Spheroid and Bergman Parameter

Then the surface plasmon eigenmodes of the metal spheroid are described by the quasistatic

equation [15]

∇ [θ(r)∇ϕm] = ssp∇2ϕm, (1.22)

where ssp is the eigenvalue of the corresponding mode ϕm. Here θ(r) is the characteristic

function that is 1 inside the metal and 0 elsewhere. For oblate spheroid, the eigenmodes are

characterized by multipole quantum number l and magnetic quantum number m. For the

relevant modes of topological nanospaser, the multipole quantum number is 1, l = 1. Then

the corresponding eigenmodes are described by the following expressions

ϕm = CNP
m
1 (η)eimϕ


Pm
1 (iξ)

Pm
1 (iξ0)

, 0 < ξ < ξ0,

Qm
1 (iξ)

Qm
1 (iξ0)

, ξ0 < ξ,

(1.23)

where Pm
l (x) and Qm

l (x) are the Legendre functions of the first and second kind, respectively,

and ξ0 =
√
1−ε2

ε
. The constant CN is determined by normalization condition,

∫
All Space

|∇ϕ(r)m|2d3r = 1. (1.24)

Due to axial symmetry of the nanospheroid, the corresponding eigenvalues, ssp, do not
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depend on m. They can be also found from the following expression[3; 16]

ssp =

∫
All Space

θ(r)|∇ϕm(r)|2d3r∫
All Space

|∇ϕm(r)|2d3r
. (1.25)

Using explicit expression (1.23) for ϕm, we derive the final equation for the eigenvalue

ssp =

dPm
1 (x)

dx
dPm

1 (x)

dx
− Pm

1 (x)

Qm
1 (x)

dQm
1 (x)

dx

∣∣∣∣∣∣
x=iξ0

. (1.26)

To find the plasmon frequency, ωsp, and the plasmon relaxation rate, γsp, we use the following

relations [3; 16]:

ssp = Re[s(ωsp)], (1.27)

rsp =
Im[s(ωsp)]

s′sp
, s′sp ≡ dRe[s(ω)]

dω

∣∣∣
ω=ωsp

, (1.28)

where the Bergman spectral parameter is defined as

s(ω) =
ϵd

ϵd − ϵm(ω)
. (1.29)

Here ϵd is the dielectric constant of surrounding medium, and ϵm(ω) is the dielectric function

of the metal (silver). In our computations, for silver, we use the dielectric function from Ref.

[17].
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1.5.2 A Metal Nanosphere

We use a solid metal silver sphere for our spaser with a three-level system(TLS) of gain. It

is isotropic and the eigenmodes within the sphere can be defined by potential expressed in

terms of spherical harmonics. For a dipole mode, m=1 and l=0, the potential is given by

the following expression

ϕ(r) =
( a
r2

+ br
)
Y10(r), (1.30)

where a and b are constants, and Y10(r) is the spherical harmonics function for a dipole

mode.

A detailed method to evaluate the LSP frequency of the system using a boundary con-

dition approach is explained in Chapter 4.

1.6 Gain

Gain is another key element of a spaser which supports population inversion and acts as a

source of energy for the stimulated emission. We have used two types of gain for the projects

based on their electronic properties

1.6.1 Monolayer TMDC

Because of its many unique features, graphene is immensely popular, but its lack of an

electronic bandgap has sparked a hunt for 2D materials with semiconducting capabilities. A

viable option is transition metal dichalcogenides (TMDCs), which are semiconductors of the

form MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom
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(such as S, Se, or Te) as shown in Fig. 1.4. TMDCs have a unique combination of atomic-

scale thickness, direct bandgap, strong spin–orbit coupling, and favorable electrical and

mechanical properties, making them appealing for fundamental research as well as practical

applications. A suitable monolayer TMDC gain is selected for the nanospaser which is

circular in shape and lies atop of the nanospheroid. The radii of the TMDC is changed to

address the effect of plasmonic field for different size. In our computational work, we mostly

use MoS2 as a gain, though the choice remains feasible as suited to the requirements.

Figure 1.4 (a) a crystal structure of monolayer TMDC showing a layer of molybdenum atoms
(Red) sandwiched between two layers of sulfur atoms (yellow) (b) Unit cell of a TMDC in a
real space (c) hexagonal Brillouin zone in a reciprocal space characterized by the momentum
vectors kx and ky with symmetric points K,K′, Γ and M.

1.6.1.1 Electronic properties of the Gain

The electronic properties of these TMDCs are dominated by the two in-equivalent valleys

that occur at the K and K′ points (see Fig.1.4(c)), which lie at the edges of Brillouin zone.

These valleys can be represented by a binary pseudo-spin which resembles the behavior of a
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spin-1/2 system; the electrons in one valley(K ) designated as spin up and the electrons in

the other valley(K′) as spin down.

Band Structure

A monolayer TMDC has some peculiar properties compared to it’s bulk structure. One of

the most important characteristics is the presence of a direct band-gap in the valleys. This

band-gap enhances the properties like electronic transition rate, absorption and conduction

of the material. Here, we study a band structure of a monolayer MoS2 using 3-band tight

binding model [18]. The Hamiltonian matrix in this model is expressed as

HTMDC =

 h0 h1 h2
h†1 h11 h12
h†2 h†12 h22

 (1.31)

where,

h0 = 2t0(2 cos(α) cos(β) + cos(2α)) + ϵ1

h1 = −2
√
3t2 sin(α) sin(β) + 2it1(sin(α) cos(β) + sin(2α))

h2 = 2t2(cos(2α)− cos(α) cos(β)) + 2i
√
3t1 cos(α) sin(β)

h11 = 2t11 cos(2α) + cos(α) cos(β)(t11 + 3t22) + ϵ2

h22 = cos(α) cos(β)(3t11 + t22) + 2t22 cos(2α) + ϵ2

h12 =
√
3 sin(α) sin(β)(t22 − t11) + 4it12 sin(α)(cos(α)− cos(β)) (1.32)

with α = 1
2
kxa and β =

√
3
2
kya. Here, ϵ1, , ϵ2, t0, t1, t2, t11, t12 and t22 are the on-site

energies and inter-orbital hopping parameters, which are derived from the results of LDA and
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Figure 1.5 Electronic band structure diagram of MoS2 calculated using 3-band tight binding
model

GGA calculations[18]. The values of these parameters differ for different types of TMDCs.

Energy band diagram of a monolayer MoS2 is shown in the Fig. 1.5. The bottom most

conduction band and top most valance band are closest to each other about the K point

which shows a presence of a direct band-gap. The band-gap of a monolayer MoS2 was

theoretically calculated to be 1.66 eV. Similar calculations were done for other TMDCs too.

Berry Curvature and Topological Charge

In solids, the topological properties are determined by the change of phase of an electron

wavefunction within a unit cell of the reciprocal space and are quantified by the Berry
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connection and the corresponding Berry curvature. The Berry curvature acts as a magnetic

field in the reciprocal space and the flux of the Berry curvature through the first Brillouin

zone determines the topological charge that is quantized and is called the Chern number.

While for the systems with time-reversal symmetry the total topological charge is zero, if

the time-reversal symmetry is broken, e.g., by magnetic field, the topological charge can

be non-zero. The famous examples of such quantization for the systems with broken time-

reversal symmetry is Quantum Hall Effect, where the Hall conductance is proportional to

the topological charge and quantized.

Although for the systems with time-reversal symmetry the total topological charge is zero,

it can take non-zero values within some regions of the reciprocal space. That determines

nontrivial topology of the systems. The examples of such systems are graphene-like materials,

such as graphene, silicene, germanene, and TMDC. In these materials there are points in the

reciprocal space, where the Berry curvature is singular, like in graphene, or has maximum,

like in TMDC. These points are called the Dirac points or valleys as discussed above in

section 1.6.1.1 The total flux of the Berry curvature through the surface that encloses the

Dirac point is quantized topological charge, which is related to the geometric Berry phase

accumulated by an electron along a path that encloses the Dirac point. For different valleys

the topological charges are opposite so the total topological charge for the whole system is

zero. Because of the nontrivial topology of the valleys in TMDC, the electron states of the

valleys are chiral with opposite chirality for two valleys, K and K′.
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TMDC Dipole elements (D) Band gap
dK dK′ (eV)

MoS2 17.68e+ 17.68e− 1.66
MoSe2 19.23e+ 19.23e− 1.79
WSe2 18.38e+ 18.38e− 1.43
MoTe2 20.08e+ 20.08e− 1.53

Table 1.1 Parameters employed in the calculations: dipole matrix elements and band gaps
of the TMDCs.

Transition Dipole Matrix

The plasmonic field modes of the nanospheroid couple to the dipole of the TMDC resulting

in a spasing process. For a conduction band c and valance band v, the inter-band transition

is governed by a non-Abelian k-space gauge potential called Berry connection[19; 20] Acv(k)

which is given as

Acv(k) = i
〈
ψ

(c)
k |∇kψ

(v)
k

〉
, (1.33)

where ψ
(c)
k and ψ

(c)
k are the eigenstates of the Hamiltonian given in Eq. 1.31 at a given

momentum k ∼ k(kx, ky). The dipole matrix elements can then be written as

Dcv(k) = eAcv(k). (1.34)

where e is the electronic charge.

The calculated values of the transition dipole matrix elements and the bandgap are given

in Table 1.1. The dipole matrix elements at the K and K′ points are purely chiral. They are

proportional to e± = 2−1/2 (ex ± iey), where ex and ey are the Cartesian unit vectors. The

plot of the absolute value of the chiral dipole, |d±|, where d± = e∗±d, is shown in Fig. 1.6.
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Figure 1.6 Absolute value of the left-rotating chiral dipole component, d− = e+d, in MoS2

. It has maximum at K points.

1.6.2 Dye Molecule

A dye molecule is used as a gain in a TLS spaser system. The bandgap of the dye molecule

lies in the range of a semi-conductor . It has a dipole moment of 1.7×10−18 esu(17 D). These

molecules surround the metal sphere and the density of the chromophores is approximately

2× 1020/cm3.
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CHAPTER 2

Topological Nanospaser

2.1 Introduction

Spaser (surface plasmon amplificaiton by stimulated emission of radiation) was originally

introduced in 2003 [3] as a nanoscopic phenomenon and device: a generator and amplifier

of coherent nanolocalized optical fields. Since then, the science and technology of spasers

experienced a rapid progress. Theoretical developments [16; 21–24] were followed by the first

experimental observations of the spaser [25; 26] and then by an avalanch of new developments,

designs, and applications. Currently there are spasers whose generation spans the entire

optical spectrum, from the near-infrared to the near-ultraviolet [27–35].

Several types of spasers, which are synonymously called also nanolasers, have so far

been well developed. Historically, the first is a nanoshell spaser [25] that contains a metal

nanosphere as the plasmonic core that is surrounded by a dielectric shell containing gain

material, typically dye molecules [5; 25]. Such spasers are smallest coherent generators

produced so far, with sizes in the range of tens nanometers. Almost simultaneously, another

type of nanolasers was demonstrated [26] that was built from a semiconductor gain nanorod

situated over a surface of a plasmonic metal. It has a micrometer-scale size along the

nanorod. Its modes are surface plasmon polaritons (SPPs) with nanometer-scale transverse

size. Given that the spasers of this type are relatively efficient sources of far-field light, they

are traditionally called nanolasers though an appropriate name would be polaritonic spasers.

Later, this type of nanolasers (polaritonic spasers) was widely developed and perfected [27;

32; 36–39]. There are also spasers that are similar in design to the polaritonic nanolasers
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but are true nanospasers whose dimensions are all on the nanoscale. Such a spaser consists

of a monocrystal nanorod of a semiconductor gain material deposited atop of a monocrystal

nanofilm of a plasmonic metal [40]. These spasers possess very low thresholds and are

tunable in all visible spectrum by changing the gain semiconductor composition while the

geometry remains fixed [31; 41; 42]. There are also other types of demonstrated spasers.

Among them we mention semiconductor-metal nanolasers [43] and polaritonic spasers with

plasmonic cavities and quantum dot gain media [44].

A fundamentally different type of quantum generators is the lasing spaser [24; 45; 46].

A lasing spaser is a periodic array of individual spasers that interact in the near field and

form a coherent collective mode. Such lasing spasers have been built of plasmonic crystals

that incorporate gain media. One type of the lasing spasers is a periodic array of holes in

a plasmonic metal film deposited on a semiconductor gain medium [30]; another type is a

periodic array of metal nanoparticles surrounded by a dye molecules solution [47]. We have

recently proposed a topological lasing spaser that is built of a honeycomb plasmonic crystal of

silver nanoshells containing a gain medium inside [48]. The generating modes of such a spaser

are chiral surface plsmons (SPs) with topological charges of m = ±1, which topologically

protects them against mixing. Only one of the m = ±1 topologically-charged modes can

generate at a time selected by a spontaneous breaking of the time-reversal symmetry.

The spasers are not only of a significant fundamental interest but also are promising

for applications based on their nanoscale-size modes and high local fields. Among such

demonstrated applications are those to sensing of minute amounts of chemical and biological

agents in the environment [37; 38; 49]. Another class of the demonstrated applications of

the spasers is that in cancer theranostics (therapeutics and diagnostics) [5]. An important
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Figure 2.1 Schematics of the topological spaser. (a) Spaser consists of a silver nanospheroid
placed on the top of TMDC nanoflake of a circular shape. The silver nanospheroid has
oblate shape with radius 12 nm and height 1.2 nm. (b) Schematic of spaser operation. A
circular-polarized light excites the valley with the chirality that match the light helicity. The
metal nanospheroid supports two plasmon modes with azimuthal quantum numbers m = −1
and m = 1. The stimulated CB→VB transitions at the corresponding K or K′ points couple
to these plasmon modes through direct and cross couplings.
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perspective application of spasers is on-chip communications in optoelectronic information

processing [50].

It is of a great interest to explore intersections of the spaser technology and topological

physics. In our recently proposed topological lasing spaser [48], the topologically-charged

eigenmodes stem from the Berry curvature [19; 51] of the plasmonic Bloch bands of a hon-

eycomb plasmonic crystal of silver nanoshells. In contrast, the gain medium inside these

nanoshells is completely achiral. This topological lasing spaser is predicted to generate a

pair of mutually time-reversed eigenmodes carrying topological charges of ±1, which strongly

compete with each other, so only one of them can be generated at a time.

In this Article we propose a topological nanospaser that also generates a pair of mutually

time-reversed chiral SP eigenmodes with topological charges of ±1, whose fields are rotat-

ing in time in the opposite directions. In a contrast to [48], this proposed spaser is truly

nanoscopic, with a radius ∼ 10 nm. The topological charges (chiralities) of its eigenmodes

originate from the Berry curvature of the gain-medium Bloch bands. This gain medium

is a two-dimensional honeycomb nanocrystal of a transition metal dichalcogenide (TMDC)

[52–54]. The plasmonic subsystem is an achiral nanodisk of a plasmonic metal. Note that

previously the TMDCs have been used as the gain media of microlasers where the cavities

were formed by microdisk resonators [55; 56] or a photonic crystal microcavity [57]. None of

these lasers generated a chiral, topologically charged mode.

2.2 Spaser Structure and Main Equations

The geometry and the fundamentals of functioning of the proposed topological nanospaser

is illustrated in Fig. 2.1. This spaser consists of a thin silver nano-spheroid placed atop of
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the two-dimensional (2d) gain medium (a nanodisk of a monolayer TMDC) – see Fig. 2.1(a).

As panel (b) illustrates, the gain medium is pumped with circularly-polarized light, which is

known to selectively populate one of the K or K ′ valleys depending on its helicity [58; 59].

Due to the axial symmetry, the plasmonic eigenmodes, ϕ(r), depend on the azimuthal angle,

φ: ϕm(r) ∝ exp{(imφ)}, where m = const is the magnetic quantum number. Figure 2.1(b)

illustrates that the conduction band (CB) to valence band (VB) transitions in the TMDC

couple predominantly to the SPs whose chirality matches that of the valley: the transitions

in K- or K ′-valley excite the m = 1 or m = −1 SPs, respectively.

The surface plasmon eigenmodes ϕn(r) are described by the quasistatic equation [15]

∇Θ(r)∇ϕn(r) = sn∇2ϕn(r), (2.1)

where n is a set of the quantum numbers defining the eigenmode, sn is the corresponding

eigenvalue, which is a real number between 0 and 1, and Θ(r) is the characteristic function,

which is equal to 1 inside the metal and 0 outside. We assume that the metal nanoparticle

is a spheroid whose eigenmodes can be found in oblate spheroidal coordinates [14] – see

Chapter I (Sec. 1.5.1.1). They are characterized by two integer spheroidal quantum numbers:

multipolarity l = 1, 2, . . . and azimuthal or magnetic quantum number m = 0,±1, . . . . We

will consider a dipolar mode, l = 1 where m = 0,±1. Note that the dipole transitions in the

TMDC at the K-, K ′-points are chiral, and they couple only to the modes with m = ±1.
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The Hamiltonian of the SPs is

HSP = ℏωsp

∑
m=±1

â†mâm, (2.2)

where ωsp is the SP frequency, and â†m and âm are the SP creation and annihilation operators

(we indicate only the magnetic quantum number m). The electric field operator is [3; 16]

Fm(r, t) = −Asp∇ϕm(r)(âme
−iωspt + â†me

iωspt), (2.3)

Asp =

√
4πℏssp
ϵds′sp

, (2.4)

where s′sp = Re[ds(ω)/dω|ω=ωsp ]. The monolayer TMDC is coupled to the field of the SPs

via the dipole interaction. We choose the proper thickness of the silver spheroid so that the

SP energy ℏωsp is equal to the band gap of the TMDC gain medium. The Hamiltonian of

the TMDC near the K or K ′ point can be written as

HK =

∫
d2q

∑
α=v,c

Eα(K+ q)|α,K+ q⟩⟨α,K+ q|, (2.5)

where K = K or K ′, and v and c stand for the valence band and the conduction band,

correspondingly. We expand the Hamiltonian around the K and K ′ points as

HK ≃ νK
∑

α=c, v

Eα(K)|α,K⟩⟨α,K|, (2.6)

where νK is the density of electronic states in theK valley, which we adopt from experimental

data [55; 60]: νK = νK′ = 7.0× 1012 cm−2.
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The field of the SPs in nanoparticles is highly nonuniform in space, which gives rise to

a spatial non-uniformity of the electron population of the TMDC monolayer. To treat this,

we employ a semiclassical approach where the state |α,K, r⟩ represents an electron in the K

valley at position r. The corresponding Hamiltonian in the semiclassical approximation can

be written as

HK = νK
∑

α=c, v

Eα(K)

∫
d2r|α,K, r⟩⟨α,K, r| (2.7)

The interaction between the monolayer TMDC and the SPs is described by an interaction

Hamiltonian

Hint = −νK
∑

K=K,K′

∫
d2r

∑
m=±1

Fm(r)d̂K(r) , (2.8)

where the dipole operator is given by

d̂K(r) = dKe
i∆gt|c,K, r⟩⟨v,K, r|+ h.c. , (2.9)

and ℏ∆g is the band gap (at the K- or K ′-point).

The transition dipole element, dK, is related to the non-Abelian (interband) Berry con-

nection A(cv)(k) as

dK = eA(cv)(k) ,

A(cv)(k) = i

〈
uck

∣∣∣∣ ∂∂k
∣∣∣∣uvk〉∣∣∣∣

k=K
, (2.10)

where uαk are the normalized lattice-periodic Bloch functions.
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In this Article, we consider the dynamics of the system semiclassically: we treat the SP

annihilation and creation operators as complex c-numbers, âm = am and â†m = a∗m, and

describe the electron dynamics quantum mechanically by density matrix ρ̂K(r, t). Further-

more, we assume that the SP field amplitude is not too large, Ω̃m,K ≪ ∆g, where the Rabi

frequency is defined by

Ω̃m,K(r) = −1

ℏ
Asp∇ϕm(r)d

∗
K . (2.11)

Then we can employ the rotating wave approximation (RWA) [61; 62] where the density

matrix can be written as

ρ̂K(r, t) =

(
ρ
(c)
K (r, t) ρK(r, t)e

iωt

ρ∗K(r, t)e
−iωt ρ

(v)
K (r, t)

)
. (2.12)

Following [16], the equations of motion of the SPs and the monolayer TMDC electron density

matrix are

ȧm = [i(ω − ωsp)− γsp]am+

iνK

∫
S

d2r
∑
K

ρ∗K(r)Ω̃
∗
m,K(r) , (2.13)

ṅK(r) =− 4
∑

m=1,−1

Im
[
ρK(r)Ω̃m,K(r)am

]
+

gK [1− nK(r)]− γ2K(r) [1 + nK(r)] , (2.14)
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ρ̇K(r) = [−i(ω −∆g)−Γ12]ρK(r)+

inK(r)
∑

m=1,−1

Ω̃∗
m,Ka

∗
m , (2.15)

where S is the entire area of the TMDC, ωsp is the SP frequency, γsp is the SP relaxation rate,

Γ12 is the polarization relaxation rate for the spasing transition 2 → 1, gK is the pumping

rate in valley K, the population inversion, nK, is defined as

nK ≡ ρ
(c)
K − ρ

(v)
K , (2.16)

and the spontaneous emission rate of the SPs is [16]

γ2K(r) =
2(γsp + Γ12)

(ωsp +∆g)2 + (γsp + Γ12)2

∑
m=1,−1

∣∣∣Ω̃m,K(r)
∣∣∣2 (2.17)

2.3 Results and Discussion

2.3.1 Parameters of Spaser and Chiral Coupling to Gain Medium

We consider a spaser consisting of an oblate silver nanospheroid with semi-major axis a =

12 nm placed atop of a circular TMDC flake whose radius is equal or greater to that of

the nanospheroid. We assume that the system is embedded into a dielectric matrix with

permittivity ϵd = 2. We choose the value of the semi-minor axis c (the height of the silver

spheroid) to fit ωsp to the K-point CV→VB transition frequency in the TMDC, ωsp = ∆g.

We employ the three-band tight-binding model for monolayers of group-VIB TMDCs of Ref.

[18]. We also set ℏΓ12 = 10 meV.

From the tight-binding model, we calculate the band structure, including band gap ∆g
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and the transition dipole matrix element d. Note that at theK- andK ′-points, the band gaps

are the same, ∆g (K) = ∆g (K
′), while the transition dipole matrix elements are complex

conjugated, dK = d∗
K′ , as protected by the T-symmetry. The values used in the computations

are listed in Table 1.1. Here we give an example for MoS2: c = 1.2 nm; ℏ∆g = 1.66 eV;

dK = 17.7 e+ D, and dK′ = 17.7 e− D, where e± = (ex ± iey) /
√
2 are the chiral unit

vectors.

There are two modes with the opposite chiralities, m = ±1, and identical frequencies, ωsp,

which are time-reversed with respect to each other, whose wave functions are ∇ϕ ∝ e±iφ.

In the center of the TMDC patch, i.e., at r = 0, the point symmetry group of a metal

nanospheroid on the TMDC is C3v. It contains a C3 symmetry operation, i.e., a rotation in

the TMDC plane by an angle φ = ±2π/3, which brings about a chiral selection rule m = 1

for the K-point and m = −1 for the K ′-point, i.e., the chirality of the SPs matches that

of the valley. For eccentric positions, which are not too far from r = 0, this selection rule

is not exact but still there is a preference for the chirally-matched SPs.We assume that the

pumping is performed with the circularly polarized radiation, and one of the valleys, say

the K valley, is predominantly populated. Consequently, the first mode that can go into

generation is the m = 1 SP.

The dynamics of the spaser is completely determined by the coupling of plasmonic ex-

citations characterized by the Rabi frequency, Ω̃m,K(r), which is a function of the radius

vector, r, within TMDC nanoflake and also depends on the type of the plasmon, m = 1

or m = −1, and the valley of TMDC, K or K ′. The real and imaginary parts of Ω̃m,K(r)

are shown in Fig. 2.2 for different combinations of m and TMDC valley. The radius of

metal nanospheroid, which is 12 nm in the x-y plane, determines two different dependences
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Figure 2.2 The real part (a) and imaginary part (b) of the Rabi frequency. The Rabi
frequency determines the coupling of the plasmon mode m and the K or K ′ valleys of
TMDC. The radius of the metal spheroid is a = 12 nm.

of Ω̃m,K(r). If r < 12 nm, then the Rabi frequency, both it’s real and imaginary parts, is an

isotropic function of radius. It mainly follows the ”angular momentum” selection rule, i.e.,

m = 1 is coupled to the K valley, while m = −1 is coupled to the K ′ valley. This selection

is exact at r = 0, but for r > 0 it is a good approximation.

For r > 12 nm, i.e., a point is outside the metal nanospheroid in the x-y plane, the

plasmonic electric field has a dipole nature. As a result, Ω̃m,K(r) behaves completely differ-

ently. Namely, both Ω̃m=1,K′ and Ω̃m=−1,K are large, while Ω̃m=−1,K′ and Ω̃m=1,K are small.

Also, because of the dipole nature of the plasmonic electric field, the Rabi frequency acquires

strong angular dependence of type exp(2iφ) - see Fig. 2.2, where φ is the polar in-plane

angle.
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Thus, from the properties of the Rabi frequency, we can conclude that if the radius of

TMDC nanoflake is less than 12 nm, then m = 1 plasmon mode is mainly coupled to the

TMDC valley of the same chirality, i.e, the K valley, whilem = −1 plasmon mode - to theK ′

valley. But if the radius of TMDC is greater than 12 nm, then m = 1 and m = −1 plasmon

modes are coupled to both K and K ′ valleys. The larger the radius of the TMDC flake, the

stronger the coupling of the plasmonic mode to the TMDC valley of opposite chirality.

The chiral optical fields generated by the topological spaser are not stationary – they

evolve in time rotating clockwise for m = 1, as illustrated in Fig. 2.3, and counterclockwise

for m = −1. The magnitude of the field is large even for one SP per mode, |E| ∼ 107 V/Å,

which is a general property of the nanospasers related to the nanoscopic size of the mode.

Note that with increase of the SP population, the field increases as |E| ∝
√
Nm.

Below in this Article, we provide numerical examples of the spaser kinetics. For certainty,

we assume that the K-valley is selectively pumped, which can be done with the right-hand

circularly polarized pump radiation. (As protected by the T-symmetry, exactly the same

results are valid for the left-handed pump and the K ′-valley.) Thus, we set gK = g and

gK′ = 0.

Below we discuss the dependencies of the LSPs in spasing modes, m = 1 and m = −1,

with respect to the applied rate of pumping g. In this, we solve the system of Eqs. (2.13)-

(2.15) with the given initial conditions, which are Nm=1 = |a1|2 = 9 (a1 = 3), i.e., there are

nine m = 1 plasmons, and the conduction band populations of both K and K ′ valley are

zero. The two cases we discuss are of i) the radius of TMDC flake equal to the radius of

the nanospheroid and, ii) the radius of TMDC flake greater than that of the radius of the

nanospheroid:
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Figure 2.3 Temporal dynamics of the local electric field, |E|, in topological spaser generating
in them = 1 mode. The curved arrow indicates the rotation direction of the field (clockwise).
The magnitude of the field is calculated for a single SP per mode, Nm = 1; it is color-coded
by the bar to the right. The phase of the spaser oscillation is indicated at the top of the
corresponding panels.

2.3.2 Radius of TMDC Equal to the Nanospheroid

Below we explain the properties of a topological nanospaser when the radius of the TMDC

flake is equal to the radius of the Nanospheroid. We will focus on the description of a

continuous wave solution, dynamics and far-field radiation.
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2.3.2.1 Kinetics of Continuous-Wave Spasing

A continuous wave (CW) solution can be obtained by solving Eqs. (2.13)-(2.15) where the

time derivatives in the left-hand sides are set to zero.The calculated dependences of the

generated coherent SP population, Nm = |am|2 where m = ±1, on the pumping rate, g, for

various TMDC’s are shown in Fig. 2.4(a). As we can see, there is a single spasing threshold

for each of the TMDCs. Significantly above the threshold, for gK > 30 ps−1, the number

of SPs, Nm, grows linearly with pumping rate g. This is a common general property of all

spasers: it stems from the fact that the feedback in the spasers is very strong due to the

extremely small modal volume. Therefore, the stimulated emission dominates the electronic

transitions between the spasing levels, which is a prerequisite of the linear dependenceNm(g).

The slope of this straight line (the so-called slope efficiency) is specific for every given TMDC.

We have verified that the mismatched mode (m = −1) does not have a finite threshold,

i.e., it is not generated at any pumping rate. The reason is that the matched mode (m = 1)

above its threshold clamps the inversion at a constant level [16] preventing its increase with

the pumping and, thus, precluding the generation of the mismatched mode. In this case, the

single chiral mode generation enjoys a strong topological protection.

At the threshold, the spasing curves experience a bifurcation behavior. This is clearly

seen in the magnified plot in Fig. 2.4(b): there is the threshold as the bifurcation point

and two branches of the spasing curve above it. As we see from Fig. 2.4(c), these two

branches differ by the stationary values of population inversion nK: for the upper branch

it is significantly lower than for the lower branch. To answer a question whether these two

branches are stable, we slightly perturb the accurate numerical solutions at g = 25 ps−1 by
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Figure 2.4 Spaser kinetics. (a) Dependence of the number of SP quanta in the spasing mode
on the pumping rate for gain medium of the matched radius, Rg = a = 12 nm. Only the
chirality-matched SP with m = 1 are generated. (b) Magnified near-threshold portion of
panel (a) for MoS2. The number of the SPs, Nm, is indicated for the points shown on the
graphs for the two branches. (c) Radial distribution of the inversion, nk for each of the two
branches. (d) Test of stability of the two SP branches. The kinetics of the SP population,
Nm, after the number of the SPs in each branch is increased by ∆Nm = 0.0001.

changing the number of SPs by a minuscule amount, ∆Nm = 0.0001. The density matrix

solution for the dynamics of the SP population induced by such a perturbation is shown in

Fig. 2.4(d). As we see, the upper branch is absolutely stable but the lower branch is unstable,

and it evolves in time towards the upper branch within less than half a picosecond. As a

result of this bifurcation instability, the system actually evolves with the increase of pumping
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Figure 2.5 Number of SPs Nm as a function of time t for a spaser with MoS2 as a gain
material. The pumping is performed by a radiation whose electric field rotates clockwise
in the plane of system (m = 1). The solid lines denote the chiral SPs with m = −1, and
the dashed lines denote the SPs with m = 1. The pumping rates are indicated in the
panels. (a) Dependence of SP number Nm on time t after the beginning of the pumping for
different initial SP populations (color coded as indicated) for pumping rate g = 50 ps−1. (b)
Dependence of SP number Nm on time t for different pumping rates g (color coded). The
initial SP number is Nm = 10.

along a path indicated by arrows in Fig. 2.4(b): Below the threshold, the population of the

coherent SPs Nm = 0; it jumps to the apex of the curve at the bifurcation point and then

follows the upper branch. One can state that the spatial inhomogeneity of the field and

the inversion cause the spasing transition to become the first order. This is in contrast to

the previous homogeneous case of Ref. [16] where this transition was continuous, i.e., of the

second order.
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2.3.2.2 Stability and Topological Protection of Spaser Modes

In Fig. 2.5(a), we test the stability and topological protection of the spasing mode. Panel

(a) displays the dynamics of the SP population of the topological spaser, Nm(t), for different

initial numbers of SPs, Nm(0), and for their different chiralities, m = ±1. As these data

show, the left-rotating SPs (m = −1) are not amplified irrespectively of their initial numbers:

the corresponding curves evolve with decaying relaxation oscillations tending to N−1 = 0.

In contrast, the m = 1 SPs exhibit a stable amplification: their number increases to a level

that is defined by the pumping rate, g, and does not depend on the initial populations.

The m = 1 chirality SP-amplification stability with respect to the injection of the m = −1

quanta, which these data demonstrate, is due to the topological protection: matching the

phase windings of the SP mode and the electronic states in the pumped K-valley. Although

the selective coupling of electron states of TMDC and plasmonic modes of nanospheroid is

due to chirality of electron states, such chirality is inherent to the systems with nontrivial

topology like TMDC. Namely, any system with nontrivial topology is chiral. At the same

time, the topology plays an important role in protecting such chiral states from perturbations

and long-range disorder. Such topological protection also strongly suppresses the coupling

of states with opposite chirality. In the case of TMDC, there are the states of K and K’

valleys. Thus, the nontrivial topology of TMDC results in topologically protected chiral

electron states that are selectively coupled to plasmonic modes of nanospheroid.

As a complementary test, we show in Fig. 2.5(b) the temporal dynamics of the SP

population for equal initial number of SPs but different pumping rates. The dynamics in

this case is again stable with the mismatchedm = −1 SPs decaying to zero, and the matched
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m = 1 being amplified to the stable levels that linearly increase with the pumping rate.

2.3.2.3 Far-Field Radiation of Spaser

The spaser is a subwavelength device design to generate intense, coherent nanolocalized fields.

Generation of far-field radiation is not its primary function. However, the proposed spaser,

as most existing nanospasers, generates in a dipolar mode that will emit in the far field. This

emission, in absolute terms, can be quite intense for a nanosource. In particular, the spaser

emission was used to detect cancer cells in the blood flow model [5]; it was, actually, many

orders of magnitude brighter than from any other label for biomedical detection.

To describe the spaser emission, we note that the radiating dipole uniformly rotates with

the angular velocity of ωsp. The emitted radiation will be right-hand circularly polarized for

the pumping at the K point and left-hand circularly polarized for the K ′ pumping. Note

that the corresponding two radiating modes are completely uncoupled. This is equivalent to

having two independent chiral spasers in one.

To find the intensity, I, of the emitted radiation, we need to calculated the radiating

dipole. To do so, we will follow Ref. [63]. We take into account that the modal field,

Em = ∇ϕm, inside the metal spheroid is constant. Then from Eq. (1.25) in Chapter I, we

can find

E2
m =

ssp
Vm

, (2.18)

where Vm is the spheroid’s volume. The physical field squared inside the metal is found from

Eqs. (2.3) and (2.4),

F 2
m =

4πℏs2spNm

ϵds′spVm
. (2.19)



40

From this, we find the radiating dipole squared as

|d0p|2 =
ℏ
4π

(
Re
∂ϵm(ωsp)

∂ωsp

)−1

Re [ϵm(ωsp)− ϵd]
2 VmNm . (2.20)

The dipole radiation rate (photons per second) can be found from a standard dipole-radiation

formula [64] as

I =
4

9

(
ω

c0

)3

(ϵd)
1/2Re [ϵm(ωsp)− ϵd]

2 ×(
Re
∂ϵm(ωsp)

∂ωsp

)−1

a2cNm , (2.21)

where c0 is speed of light in vacuum.

For our example of MoS2, substituting parameters that we used everywhere in our cal-

culations (see Sec. 2.3.1), we obtain

I = 2.1× 1012Nm s−1; P = ℏωspI = 0.55Nm µW , (2.22)

where P is the power of the emission. From these numbers, we conclude that the emission is

extremely bright for a nano-emitter and easily detectable. This is in line with the observation

of the emission from single spasers of the comparable size in Ref. [5].

2.3.3 Radius of TMDC Greater than the Nanospheroid

In this section we will, mostly, discuss the effects of the coupling for the TMDC flake of

size greater than the radius of the nanospheroid. Here, we use numerical approach to solve

the equations Eqs. (2.13)-(2.15). The section primarily focuses on the study of threshold

behavior for different radius of gain at different pumping rate g.
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Figure 2.6 (a)-(c) Number of plasmons, Nm, as a function of gain, g. The solid and dashed
lines correspond to the plasmons withm = 1 andm = −1, respectively. The radius of TMDC
nanoflake is (a) 12 nm, (b) 16 nm, and (c) 18 nm. (d) The topological spaser thresholds as
a function of radius of TMDC nanoflake. If gth,2 > g > gth,1 then only m = 1 plasmon mode
exists in the stationary regime, while if g > gth,2 then both modes m = 1 and m = −1 are
generated.

2.3.3.1 The Kinetics of a Topological Nanospaser: Threshold Behavior and Effects of Pop-
ulation Inversion

The number of plasmons, Nm = |am|2, as a function gain, g, is shown in Fig. 2.6 (a)-(c) for

three different radii of TMDC nanoflake. The solid and dashed lines correspond to m = 1
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and m = −1 plasmons, respectively. If r = 12 nm then only co-rotating (m = 1) plasmon

mode, i.e., the mode that is strongly coupled to the excited K valley, is generated. There is

a characteristic spaser threshold, gth ≈ 20 ps−1, when the plasmon mode starts generating.

For a larger radius, r = 16 nm, see Fig. 2.6(b), the system show different behavior. Now,

the K valley is coupled to both co-rotating m = 1 and counter-rotating m = −1 modes

(although the coupling to the counter-rotating mode is still relatively weak). There are two

thresholds, gth,1 and gth,2. At lower threshold, gth,1 ≈ 49 ps−1, only one mode, m = 1,

is generated, while at larger threshold, gth,2 ≈ 70 ps−1, both plasmon modes, m = 1 and

m = −1, cogenerated. At the second threshold the energy is transferred from the m = 1

mode to m = −1 mode so the number of m = 1 plasmons decreases. Another unique feature

of the second regime, g > gtr,2, is that there are more counter-rotating plasmons than the

co-rotating ones, N−1 > N1.

The corresponding solutions for N−1 and N1 give an idea of why there are more counter-

rotating plasmons than the co-rotating ones. Namely, the numbers of generated plasmons

are effectively proportional to the areas of TMDC nanoflake with large coupling to the

corresponding plasmonic modes and they do not depend on the magnitude of the coupling

as long as the system is above the threshold. Thus, the number of co-rotating plasmons

is proportional to πr20, where r0 ≈ 11 nm and for r < r0 the co-rotating mode is strongly

coupled to the K valley, while the number of counter-rotating plasmons is proportional

to π(r21 − r20), where r1 is the radius of TMDC nanoflake and the counter-rotating mode is

strongly coupled to the K valley of TMDC at r1 > r > r0. Then N−1 > N1 if r1 >
√
2r0 ≈ 16

nm.

When the radius of the TMDC nanoflake increases even more, r = 18 nm, two thresholds,
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Figure 2.7 Inversion population of K and K ′ valleys of MoS2 nanoflake with the radius of
16 nm. The gain is (a),(b) 46 ps−1, (c),(d) 49 ps−1, and (e),(f) 70 ps−1. The panels (a), (c),
and (e) correspond to the K valley, while the panels (b), (d), and (f) describe the K ′ valley.
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Figure 2.8 Inversion population of K and K ′ valleys of MoS2 nanoflake with the radius of
18 nm. The gain is (a),(b) 49 ps−1 and (c),(d) 61 ps−1. The panels (a), (c) correspond to
the K valley, while the panels (b), (d) describe the K ′ valley.

gth,1 and gth,2, merge into a single one, gth,1 = gth,2 ≈ 52 ps−1, at which two plasmon modes

are generated simultaneously - see Fig. 2.6(c). Similar to a smaller radius, the number of

counter-rotating plasmons is more than the number of co-rotating ones. The dependence

of two thresholds, gth,1 and gth,2, on the TMDC radius, r, is shown in Fig. 2.6(d). At

r ≲ 15 nm, there is only one spaser regime when only co-rotating mode is generated. At
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15nm ≲ r ≲ 17nm there are two thresholds and the system can generate either one plasmon

mode, m = 1, or two plasmons modes, m = 1 and m = −1, depending on the gain, g. At

r > 17 nm, two thresholds merge into a single one and there is only one regime with two

generated plasmon modes.

To illustrate different regimes of spaser dynamics, we show in Fig. 2.7 the distributions

of the population inversions at the K and K ′ valleys for the radius of TMDC flake of 16 nm

and different values of gain. If the gain is less than the first threshold, g < gth,1, then no

plasmons are generated and the population inversion of the K valley is close to one, while

the population inversion of the K ′ valley is exactly -1, i.e., the valence band is completely

occupied and the conduction band is empty. This case is shown in Fig. 2.7(a)-(b).

In Fig. 2.7(c)-(d) the gain is greater than gth,1 but less than gth,2. In this case, only one

plasmon mode, m = 1, is generated. The distribution of population inversion is isotropic

and it is close to zero for r < 12 nm for the K valley and for r > 12 nm for the K ′ valley,

which illustrates strong coupling of these spatial regions to the m = 1 mode -see also Fig.

2.2.

Another possibility, when the gain is greater than gth,2, is shown in Fig. 2.7(e)-(f). Under

this condition, both m = 1 and m = −1 plasmon modes are generated. They are coupled to

both valleys at all spatial regions (r < 12 nm and r > 12 nm), as a result, the population

inversions for both K and K ′ valleys are close to zero. Because of the coexistence of two

plasmon modes, the resulting electric field shows interference features, and the corresponding

population inversion distribution is anisotropic - see Fig. 2.7(c)-(d).

The large radius of TMDC nanoflake, r = 18 nm, is illustrated in Fig. 2.8. In this case

there is only one threshold. If the gain is less than the threshold, see Fig. 2.8(a)-(b), then no



46

20 40 60 80

40
20

60
80

Nm

g (ps-1)

r =14nm

20 40 60 80

40
20

60
80

Nm

g (ps-1)
20 40 60 80

40
20

60
80

Nm

g (ps-1)

(a) (b) (c)

00 0

r =16nm r =18nm

Figure 2.9 (a)-(c) Number of plasmons, Nm, as a function of gain, g in the dielectric envi-
ronment with the constant of ϵd = 3.5. The parameters of the nanospheroid are a = 12nm
and c = 2.185nm. The solid and dashed lines correspond to m = 1 and m = −1 plasmons,
respectively. The radius of TMDC nanoflake is (a) 14 nm, (b) 16 nm, and (c) 18 nm.

plasmons are generated and the conduction band of the K valley is highly populated, while

the population inversion of the K ′ valley is -1 at all spatial points. If the gain is greater

than the threshold, see Fig. 2.8(c)-(d), then two plasmon modes, m = −1 and m = 1,

are generated. The population inversion is close to zero for both K and K ′ valleys. The

population inversion distribution is also anisotropic, which is due to the interference of the

plasmonic fields of two modes.

To illustrate that the existence of three different regimes of operating of topological

nanospaser is a generic property and does not depend on specific parameters of the system,

we show in Figs. 2.9 and 2.10 two-threshold behavior for different nanospaser systems. The

parameters of the system are adjusted in a such way that the plasmonic frequency is equal to

the transition frequency, ω21, of the MoS2 monolayer. We change the dielectric constant of

the surrounding media to ϵd = 3.5 and consider two different sizes of the metal nanospheroid:

a = 12nm and c = 2.185nm in Fig. 2.9 and a = 16nm and c = 2.890nm in Fig. 2.10. The



47

20 40 60 80

40
20

60
80

Nm

g (ps-1)

r =20nm

20 40 60 80

40
20

60
80

Nm

g (ps-1)
20 40 60 80

40
20

60
80

Nm

g (ps-1)

(a) (b) (c)

00 0
r =23nm r =24nm

Figure 2.10 (a)-(c) Number of plasmons, Nm, as a function of gain, g in the dielectric
environment with the constant of ϵd = 3.5. The parameters of the nanospheroid are a =
16nm and c = 2.890nm. The solid and dashed lines correspond to m = 1 and m = −1
plasmons, respectively. The radius of TMDC nanoflake is (a) 20nm, (b)23 nm, and (c) 24
nm.

sizes of nanospheroid are defined by the condition that the plasmon frequency is equal to ω21.

In both cases, with increasing the size of TMDC nanopatch, we can clearly see the transitions

from one threshold dynamics when only m = 1 mode is generated to two threshold regime,

and finally to one threshold regime again when two plasmon modes, m = 1 and m = −1,

are generated. The radii when these transitions occur are correlated with the size of TMDC

nanopatch.

In the above analysis we assumed that only the K valley is pumped by a circularly

polarized light, i.e., gK = g and gK′ = 0. If the handedness of the pulse is changed to an

opposite one, then only the K ′ valley will be pumped (gK = 0 and gK′ = g) and the new

results will be identical to what we obtained above but with the interchange of m = 1 and

m = −1 plasmons, so that the m = −1 plasmons will be co-rotating and the m = 1 plasmons

- counter-rotating ones.
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2.3.3.2 Temporal Dynamics of a Topological Nanospaser

The temporal dynamics of the topological spaser is shown in Fig. 2.11. The initial number

of plasmons is nine for both modes, m = 1 and m = −1. In Fig. 2.11(a), the gain is fixed,

g = 82 ps−1, and the results are shown for different radii of TMDC nanoflake. For all

parameters, the number of plasmons, N1 and N−1, show similar initial dynamics (at t ≲ 0.15

ps). Namely, first, both N1 and N−1 sharply decrease to almost zero values, then show small

oscillations and finally monotonically increase to the stationary values. At the stationary

stage, for small radius of TMDC nanoflake, r = 14 nm, only m = 1 is generated, while for

large radius, r = 16 nm or r = 18 nm, both modes, m = 1 and m = −1, are generated - see

Fig. 2.11(a).

This property is also illustrated in Fig. 2.11(b), in which the radius is fixed, r = 16 nm,

and the gain is varied. For g = 50 ps−1 and g = 60 ps−1, which are less then the second

threshold, only m = 1 plasmons are generated in the stationary regime. For larger gain,

g = 70 ps−1, mode m = −1 coexists with m = 1 plasmonic mode.

In the regimes when two plasmonic modes are generated, the relative phases of the

generated modes, m = −1 and m = 1, are equal to the initial relative phases. For example,

if the initial values of a1 and a−1 are real with zero phase difference, then the stationary

values of a1 and a−1 are also real with zero relative phase.

2.3.3.3 Far-Field Radiation

Although it is not its primary role, the topological nanolaser can be used as a miniature source

of far-field radiation, which is due to the oscillating electric dipole of the spaser system. The

induced electric dipole moment of the system is the sum of two contributions: the dipole
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Figure 2.11 The number of surface plasmons, Nm, as a function of time t for topological
spaser with MoS2 nanoflake as a gain medium. The solid and dashed lines correspond to
m = 1 andm = −1 plasmons, respectively. The initial number of plasmons is N1 = N−1 = 9.
(a) The gain is g = 82 ps−1 and the radii of TMDC nanoflake are 14 nm, 16 nm, and 18
nm. The corresponding lines are shown by different colors as marked in the panel. (b) The
radius of TMDC nanoflake is 16 nm and the gain is 50 ps−1, 60 ps−1, and 70 ps−1. The
corresponding lines are shown by different colors as marked in the panel.

moment of TMDC nanoflake, dtmdc, and the dipole moment of the metal nanospheroid,

dmetal,

dtotal = dtmdc + dmetal. (2.23)

The dipole moment of TMDC nanoflake can be expressed in terms of the non-diagonal

part of the density matrix of TMDC system

dtmdc =
∑

K=K,K′

(ρKdKe
iωt + ρ∗Kd

∗
Ke

−iωt)

= (ρKdK + ρK′dK′)eiωt + (ρ∗Kd
∗
K

+ ρ∗K′d∗
K′)e−iωt. (2.24)
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The dipole moment of the metal nanospheroid can be found from the known electric field

[see Eq. (3.6)] inside the metal,

dmetal =

∫
V

Re[ϵmetal − ϵd]

4π
Fm(r, t)dr. (2.25)

Here the integral is calculated over the volume of the nanospheroid. The electric field,

Fm(r, t), inside the metal depends on the number of m = 1 and m = −1 plasmons.

The x and y components of the total dipole moment, which is the sum of Eqs. (42) and

(2.25), can be expressed in the following forms

dtotal,x = B1e
iωt + B̃1e

−iωt, (2.26)

dtotal,y = C1e
iωt + C̃1e

−iωt, (2.27)

where,

B1 = −κAspE0V(â
∗
1 + â∗−1) + fKd0 + fK′d0, (2.28)

C1 = iκAspE0V(â
∗
1 − â∗−1) + ifKd0 − ifK′d0, (2.29)

κ =
Re[ϵmetal − ϵd]

4π
(2.30)
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fK = −ν
∑
S

inK(r)
∑

m=1,−1 Ω̃
∗
m,Ka

∗
m

−(ω −∆g) + iΓ12

, (2.31)

fK′ = −ν
∑
S

inK′(r)
∑

m=1,−1 Ω̃
∗
m,K′a∗m

−(ω −∆g) + iΓ12

, (2.32)

dK = d0e+ & dK′ = d0e−. (2.33)

The derivation of Eqs. (2.28)- (2.32) is given in the Appendix Section (B). The main con-

tribution to the total dipole moment comes from the metal nanospheroid, for which the

corresponding dipole moment is almost two order of magnitude larger than the dipole mo-

ment of TMDC nanoflake.

The components of the dipole radiated field are proportional to the total dipole moment,

Ex ∝ dtotal,x, Ey ∝ dtotal,y. The corresponding polarization ellipse is shown in Fig. 2.12

for two regimes of operation of the topological spaser: (a) only one m = 1 plasmon mode is

generated and (b) two modes, m = 1 and m = −1, are cogenerated. For case (a), the far

field radiation is left circularly polarized, which is the same polarization as the one of the

pump light. This is consistent with the condition that only one plasmon mode is generated

in this case.

If two plasmon modes are generated [Fig. 2.12(b)], then the corresponding polarization

ellipse describes the right elliptically polarized radiation. Note, that the pump light is left

circularly polarized. The change of the handedness of polarization from left to right is due to

the fact that the number of m = −1 plasmons is greater than the number of m = 1 plasmons

in the continuous wave regime of the spaser.

Thus, for a given radius of TMDC nanoflake, by changing the gain, i.e., the intensity of

the circularly polarized light, we can switch the handedness of the far-field radiation from



52

(a) (b)

-1 -0.5 0.5 1

1

0.5

-0.5

-1

0.5

0.25

-0.25

-1 -0.5 0.5 1Ex

Ey

Ex

Ey

-0.5

Figure 2.12 Polarization ellipse of the far field radiation of topological spaser for its two
regimes of continuous wave operation. (a) Radius of TMDC nanoflake is 16 nm and the
gain is 49 ps−1. Only m = 1 plasmon mode is generated. The far field radiation is left
circularly polarized. (b) Radius of TMDC nanoflake is 16 nm and the gain is 70 ps−1. Two
plasmon modes, m = 1 and m = −1 are generated. The far field radiation is right elliptically
polarized. The electric field is shown in arbitrary units.

left to right and vica versa. For example, if gth1 < g < gth2 then the far field radiation is left

circularly polarized, but if gth2 < g then it is right elliptically polarized.

2.4 Conclusion

A topological nanospaser of type II consists of two main components: a metal nanospheroid

and a TMDC, e.g., MoS2, monolayer flake of a circular shape. The nanospheroid functions

as a plasmonic nanoresonator with two relevant plasmonic modes, which rotate in the op-

posite directions and are characterized by azimuthal quantum numbers m = ±1. The MoS2

monolayer is a gain medium with nontrivial topology. It is placed atop of a nanospheroid

and has two chiral valleys, K and K ′. The system is pumped by a circular polarized light,

which populates the conduction band states of only one valley, say the K valley.
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Such topological spaser has been theoretically proposed in Ref. [65]. In the present paper,

we show that it has very rich dynamics, which strongly depends on the radius of the gain

medium (TMDC nanoflake). If the radius of TMDC is small, then the K and K ′ valleys are

mainly coupled to the co-rotating plasmonic modes, e.g., theK valley is coupled to them = 1

mode. In this case the nanospaser has one threshold, gth, so that if the gain is larger than gth

then the co-rotating plasmon mode is generated. For larger radius of nanoflake, the valleys of

TMDC become also strongly coupled to the counter-rotating modes, and the nanospaser has

two thresholds, gth,1 and gth,2, so that if gth,2 > g > gth,1 then only the co-rotating mode is

generated, while if g > gth,2 then both co-rotating and counter-rotating modes are generated.

For an even larger radius of TMDC, the two thresholds merge into one and the nanospaser

has only one regime when two modes, m = 1 and m = −1, are cogenerated. In this case, the

number of counter-rotating plasmons is larger than the number of co-rotating ones. Because

of that property the far-field radiation of nanospaser shows interesting behavior. Namely,

by changing the gain strength, one can change the handedness of the far-field radiation from

left to right and vice versa.

All these unique properties of topological nanospaser make it an extremely viable op-

tion for several nanoscopic applications. Main areas are near-field spectroscopy and sensing

where a plasmon frequency of a nanospaser can be tuned to work at the required condition.

However, the topological nanospaser can also be used in optical interconnects and probing.

Another key area is the biomedical one where similar systems have been previously adopted

[5; 66] for the diagnosis and therapeutics of cancer. With added topoligical chiral benefits,

this nanolaser can be more effective in such detection. In addition to all these, the topological

nanospaser has also a potential as an excellent far-field radiation source.
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CHAPTER 3

Three-level Spaser System: a Semi-Classical Analysis

3.1 Introduction

Scaling down electronic and optical systems to harness their optimum efficiency has been a

goal of today’s scientific and industrial research. Among the research fields, working in this

direction, nanoplasmonics plays an important role due to its unique possibilities and broad

applications [67–69]. In nanoplasmonics, the light is confined within a sub-wavelength scale,

which results in a strong enhancement of the optical field. Some of the notable application

of nanoplasmonics are in the areas of near-field optics [70; 71], bio-sensing [72–74], surface

plasmon-based photo-detectors [75; 76], spaser[77–79] and many others. Spaser (surface

plasmon amplification by stimulated emission of radiation), which has experienced a vast

development over the last decade, plays a special role in this list. It was introduced in the

early 2000’s [3] by David. J. Bergman and Mark. I . Stockman [80; 81], and throughout the

time has paved its way up as a miniature source of spectrally tunable stimulated emission

[16; 21]. Apart from the mainstream research, spaser has found numerous applications in

different areas such as opto-electronic systems[50; 82–88], sensing in biological and chemical

agents[89–91] and also as a biological probe[5; 66] in disease therapeutics and diagnostics.

The whole idea of spaser is based on the existence of localized surface plasmons, which

are characterized by a high concentration of optical energy within a nanoscale range[92].

Such strong concentration of optical field combined with stimulated emission [3] process

allow to design a nanoscale laser - spaser. Different variations of such nanoscopic lasers were

proposed theoretically and realized experimentally. The first of the type[93] was introduced
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Figure 3.1 Schematic illustration of two geometries of spaser: (a) a metal nanosphere sur-
rounded by a gain medium (shown by green) (b) a gain medium placed inside a metal
nanoshell.

in 2008 and was based on an array of plasmonic resonators. A year later, a spaser, based on

Localized Surface Plasmons Resonance[94; 95](LSPR), was demonstrated experimentally[25],

which contained a gold sphere embedded inside a dye. The same design has been also been

studied for a cancer diagnosis and treatment by Ganzala et al[5] in 2017

The design of spaser based on a gain nanorod placed near plasmonic metal with the

dimensions in micrometers has been considered in Ref. [96; 97]. Recently, the topological

spasers of type I and II were introduced[48; 65; 98], where the spaser dynamics is protected by

nontrivial topological properties of either a plasmonic system[48] or a gain medium[65; 98].

Spaser can be understood as a nanoplasmonic counterpart of a normal laser[99]. It

consists of two major components: a metal resonator and a gain medium. Usually, the metal

is silver due to its low non-radiative losses, however, gold or aluminum can also be used for

the spaser operating at high frequency. The gain medium is usually dye molecules, with the
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gap close to the SP frequency. Apart from dyes, materials[18; 100; 101] with non-linear effects

that exhibit topological resonance, have also been studied as a suitable gain. Additionally,

the system may also be placed in an appropriate dielectric environment, which can be used

to adjust the SP frequency of a nanosphere.

The two basic possibilities of how a gain medium can be introduced into a spaser system

are shown in Fig. 3.1: i) gain encapsulating the solid nanosphere ii) gain placed inside a

metal nanoshell. Below, we consider only the first case when the gain is placed outside the

solid silver metal nanosphere as shown in Fig. 3.1a. Additionally, this system is placed in

water which will further help to adjust the LSP frequency(ωsp).

Theoretical modeling[16] of such nanolaser[25] is mostly in agreement with the experi-

mental results, apart from the behavior of the spaser at a large value of electric pumping.

In the present paper, we are using the same theoretical model[16] of spaser with some mod-

ifications, which can address the unexplained behavior. Namely, we consider a three-level

model for the gain while in Ref. [16] only two levels were introduced for the gain medium.

3.2 Model and Main Equations

We consider a gain medium consisting of three energy levels with the corresponding popu-

lations n0, n1 and n2. This approach is similar to the previously studied 2-level [16] system,

but with an additional energy level added to account for the finite relaxation rate of electron

population from the highest level to the second excited level. Many other noticeable works

have been done previously to deal with the effects of multi-level[102; 103] on the spasing

process. However, this paper describes an elegant way to account for coherent processes in

gain, which makes our findings in close appropriation with the experimental ones as discussed
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Figure 3.2 Schematics of energy levels of dye (gain medium) and a silver sphere. Here, |0 >,
|1 >, and |2 > are the three levels of the dye (gain) with the corresponding populations
n1, n2 and n2. External laser pulse pumps the system and excites the gain medium from the
ground state |0 > to the second excited one |2 >. The corresponding transition is shown
by red arrow. The gain system is also characterized by the relaxation processes: from level
|2 > to level |1 > with the rate γ21 and from level |1 > to level |0 > with the rate γ10.
The frequency of the plasmonic dipole mode of the metal nanosphere is ωsp. This mode is
coupled to the inter-level transition |1 >→ |0 > with the frequency ω10 ≈ ωsp.

below. The general schematics of transition within the system is shown in Fig. 3.2.

The gain system is pumped by an external light, which excites the system from the

ground state |0 > to the second excited state |2 > with the transition (gain) rate g. The

excited states of the system are also characterized by relaxation rates γ21 and γ10, which

represent the transitions |2 >→ |1 > and |1 >→ |0 > respectively. The gain medium is

coupled to the plasmonic system through the field-dipole interaction and it is at the almost

resonant condition with the frequency ω12 is close to the surface plasmon frequency, ωsp, see

Fig. 3.2.

For more than two mediums present in the system, we use the standard Laplace equation
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Figure 3.3 Electric field of the dipole mode of the spaser. The diameter of the spaser is 32
nm with a 10 nm diameter metal core inside it.

approach as adopted in a popular spaser research[5] to calculate the field of the Localized

Surface Plasmons. In the spherical system, we consider the electric potential of the dipole

mode to be of the form

ϕi(r) =
(ai
r2

+ bir
)
Y10(r), (3.1)
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where i labels the medium (i = 1, 2, 3), ai and bi are coefficients corresponding to medium i,

and Y10(r) is a spherical harmonics (l = 1 and m = 0). The Maxwell’s continuity equations

across the interfaces of the layers are given by the following expressions

ϕi(ri) = ϕi+1(ri), (3.2)

ϵi
∂

∂r
ϕi(ri) = ϵi+1

∂

∂r
ϕi+1(ri), (3.3)

where ϵi is the permittivity of medium i. For our system, which consists of 3 layers, silver

sphere, dye, and water, we solve Eqs. (3.2) and (3.3) to obtain permittivity of silver (ϵs) as

a function of permittivities of dye (ϵd) and water (ϵw), i.e.,

ϵs ≈ ϵs(ϵd, ϵw). (3.4)

The frequency of LSPs is then obtained by equating ϵs to the experimental value ϵsil(ω)[104]

ϵs = Re[ϵsil(ωsp)] (3.5)

The plasmon dipole mode creates a highly localized dipole-field as shown in the cross-section

diagram in Fig. 3.3. The corresponding operator of electric field[3; 16] can be expressed in

terms of creation and annihilation operators, â and â∗, of SP,

E(r, t) = −Asp(∇ϕ(r)âe−iωt +∇ϕ∗(r)â∗eiωt), (3.6)
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where

Asp =

√
4πℏ

s1
dϵsil(ω)

dω

∣∣∣
ω=ωsp

(3.7)

Here, the geometrical parameter s1 is given by the following expression

s1 =

∫
Vmetal

|∇ϕi(r)|2d3r∫
All Space

|∇ϕi(r)|2d3r
. (3.8)

The Hamiltonian of a spaser can be expressed in terms of individual Hamiltonians of

surface plasmons and the gain medium, and the dipole type interaction Hamiltonian of the

SP and the gain:

Ĥtotal = ℏωspâ
∗â+ Ĥgain +

∫
V

E(r, t)d̂ d3r. (3.9)

Here V is the total volume of the gain medium and d̂ is the transition dipole moment operator

of the gain medium.

In this article, we adopt a quasi-classical approach [16; 68] to study the properties of SPs,

where the operators â and â∗ are treated as classical variables represented in the form of a

time dependent variable â = a0e
−iωt with a0 being the slow varying amplitude. Then, the

number of SPs in a given mode then can be written as Nn = |a0|2.

Below we assume that the corresponding dipole matrix elements are nonzero only between

the levels |0 > and |1 > of the gain system, i.e., only the transitions between these levels

can generate SPs. These interactions can be also characterized by the Rabi frequency[105],
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which is given by the following expression

Ω10(r, t) =
E(r, t)d01

ℏ
, (3.10)

where d01 =< 0|d̂|1 >.

We describe the gain system within the density matrix approach with the corresponding

equation of motion

iℏ ˙̂ρ(r, t) = [ρ̂(r, t), Ĥ], (3.11)

where ρ̂ is the density matrix of three level gain system. Using Rotating Wave Approxi-

mation(RWA), we can express ρ̂(r, t) as slow-varying diagonal terms and fast varying non-

diagonal terms with frequency ω ≈ ωsp.

ρ̂(r) =

 ρ22(r, t) 0 0
0 ρ11(r, t) ρ10(r, t)e

iωt

0 ρ01(r, t)e
−iωt ρ00(r, t)

 . (3.12)

It is convenient to introduce the following notations: n0 = ρ00, n1 = ρ11 and n2 = ρ22.

Then equations for the elements of the density matrix, which can be derived from Eq. (3.11),
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take the following form

ρ̇10(r) = [−i(ω − ω10)− Γ10]ρ10(r) +

in10(r)Ω
∗
10(r)a

∗
0, (3.13)

ṅ2 = gn0 − γ21n2, (3.14)

ṅ1 = −γ10n1 + γ21n2 − 2

∫
V

d3r Im (ρ10(r)a0Ω10(r)) , (3.15)

ṅ0 = −gn0 + γ10n1 + 2

∫
V

d3r Im (ρ10(r)a0Ω10(r)) , (3.16)

where ω10 is the transition frequency between |1 > and |0 > levels of the gain medium and

g is the rate of excitation from the |0 > level to the |2 > level by an external pulse. In

the above equations, we also introduced the relaxation rates: polarization relaxation rate

Γ10 and the spontaneous relaxation rates γ10 and γ21 between the corresponding states as

indicated by the indices.

The equation of motion for SPs is obtained from Hamiltonian (3.9) and is given by the

following expression

ȧ = −a0γsp(ω) + i(ω − ωsp)a0+

i

∫
V

d3r (ρ∗10(r)Ω
∗
10(r)) , (3.17)

where the plasmon relaxation rate γsp(ω) is introduced, γsp(ω) =
Im{ϵsil(ω)}
Re ϵsil(ω)

∂ω

. Since the tran-

sitions between the levels |0 > and |1 > are due to coupling to the SPs, the corresponding
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relaxation rate, γ10, can be expressed as

γ10 = |Ω10|2
2(γsp + Γ10)

(ωsp − ω10)2 + (γsp + Γ10)2
. (3.18)

Equations (3.13)-(3.17) determine the dynamics of three level spaser. First, we analyze

the stationary solution of these equations, i.e., the continuous wave regime of a spaser. In

this regime, the time derivatives in the left hand sides of Eqs. (3.13)-(3.17) are zero. It is

convenient to introduce the population inversions through the following expressions

n10 = n1 − n0, (3.19)

n21 = n2 − n1. (3.20)

Then taking into account that n0+n1+n2 = 1, we can express populations of different levels

in terms of n10 as follows

n0 =
γ21n10 − γ21
2γ21 + g

, (3.21)

n1 = −−γ21 − gn10 − γ21n10

2γ21 + g
, (3.22)

n2 = −gn10 − g

2γ21 + g
. (3.23)

Substituting Eqs. (3.21)-(3.23) into the system of equations (3.13)-(3.17) we obtain the

following solution of the stationary equations

ρ10(r) = − (a∗0n10Ω
∗
10(r))

iΓ10 − ωs + ω10

, (3.24)
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n10 =
(ωs − ωsp)(ω10 − ωs) + γspΓ10

V ρΩ2
10

, (3.25)

Nn = |a0|2 =
Γ2
10 + (ωs − ω10)

2

2n10Γ10

×

γ21 (g − γ10 − n10 (γ10 + g))− γ10gn10

(2γ21 + g) Ω2
10

. (3.26)

In the above equations we assumed that the Rabi frequency is constant within the gain

medium and the corresponding integrals in Eqs. (3.15) and (3.16) can be replaced by V .

Here the spasing frequency ωs is given by the following expression

ωs =
ω10γsp + Γ10ωsp

Γ10 + γsp
, (3.27)

where ωsp < ωs < ω10, and in the absence of detuning, i.e., if ωsp = ω10, it is equal to ωsp.

From the above expressions we can identify the effect of relaxation rate γ21 on the main

spaser characteristics such as population inversion n10, spasing frequency ωs, threshold, and

the number of generated plasmons Nn. From Eqs. (3.25), (3.27) one can see that both the

population inversion and the spasing frequency do not depend on γ21.

The spasing threshold gth can be found from Eq. (3.26), where the threshold is determined

from the condition Nn = 0,

gth = γ10
1 + n10

1− n10 − γ10
γ21
n10

. (3.28)

Thus the spaser threshold depends on the relaxation rate, γ21, but since γ10 ≪ γ21 this

dependence is weak. Taking into account that γ10/γ21 ≪ 1, we can find the correction to
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the threshold g
(0)
th determined by the two-level spaser model

gth ≈ g
(0)
th

(
1 +

γ10
γ21

n10

1− n10

)
, (3.29)

where g
(0)
th = 1+n10

1−n10
γ10.

Finite relaxation rate γ21 also affects the number of generated plasmons, see Eq. (3.26).

When γ21 is large enough, i.e., γ21 ≫ g, we can consider 1
γ21

as a small parameter and find

expansion of Eq. (3.26) in the powers of 1
γ21

as follows

Nn =
(Γ2

10 + (ωs − ω10)
2) (g − γ10 − n10 (γ10 + g))

4n10γ10Γ10Ω2
10

−

g (1− n10) (g − γ10) (Γ10
2 + (ωs − ω10)

2)

8n10γ210Γ10Ω2
10

(
1

γ21

)
−

g2 (1− n10) (Γ
2
10 + (ωs − ω10)

2)

16n10γ210Γ10Ω2
10

(
1

γ21

)2

. (3.30)

The first term in this expansion is the result for the two-level spaser system[16], for which

γ21 → ∞. In this case, the number of generated SPs is proportional to the gain, g. The

second and the third terms give the correction due to finite relaxation rate, γ21. These terms

introduce quadratic dependence on g.

3.3 Results and Discussions

3.3.1 System and Parameters

The spaser system is shown schematically in Fig. 3.1(a). A solid silver sphere of radius

5.15 nm is enclosed with a spherical dye layer making the total radius of the system 16

nm. The dielectric permittivity of the dye is ϵd = 2.2, water is ϵw = 1.8 and that of the

metal ϵm(ω) was obtained from the experimental data [104] of optical constants. The gain
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medium has an electronic band-gap of ℏω10 = 3.13 eV. We have also used a small detuning

(δ2 = ℏ(ωsp−ω10) = 0.05 eV) to highlight the robustness of the spaser under small frequency

mismatch. The selection of these specific dimensions of the system ensures the matching of

SPs frequency ωsp to the transition frequency ω10. Also, Additional parameters that is used

are: ℏΓ10 = 0.01 eV, d10 = 1.5×10−17 esu and the density of chromophores in a gain medium

ρ = 1.8× 1020 cm−3.

3.3.2 Spasing in Continuous Wave (CW) Regime

In this subsection, we study the stationary solution, which is given by Eq. (3.26), as a

function of the pumping rate, g: Nn(g). The external optical pulse excites the gain system

from the ground level, |0 >, to the second excited level, |2 >. If the relaxation from the level

|2 > to first excited level |1 > is fast enough, then the spaser system is equivalent to the

two-level system[16]. In this case, we observe the linear dependence of Nn on the gain rate

g, see Fig. 3.4(a), where the fast relaxation rate, γ21 → ∞, is shown by the blue line.

With decreasing the relaxation rate, γ21, the first excited state, |1 >, becomes less popu-

lated at a given value of the pump rate, g, which results in a smaller number of the generated

SP. The corresponding dependencies, Nn(g), are shown in Fig. 3.4(a) for γ21 in the range of

0.01 eV and 0.1 eV, i.e., for the relaxation time in the range of 6.5 fs and 65 fs. The data

clearly show that Nn monotonically decreases with γ21. For example, at g = 25 ps−1, the

number of plasmons decreases by almost a factor of 2 when the relaxation rate decrease from

a large value to 0.01 eV. The dependence of Nn on g becomes also parabolic at finite values

of γ21.

To provide a more clear comparison of the two-level and the three-level spaser systems,
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we show in Fig. 3.4(b) the results for γ21 = ∞ (two-level system) and ℏγ21 = 0.03 eV, i.e,

the corresponding relaxation time is 22 fs, and interpolate them with parabolic dependence.

While for the two-level system we have a clear linear dependence on g, the three-level system

has an extra quadratic term. Interestingly, these calculations match the previous experimen-

tal findings [5; 102], where the Nn does not show a linear dependence on the pumping rate,

but rather follows a parabolic dependence at a higher pumping rate g.
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Figure 3.4 The number of generated SPs as a function of gain g in the stationary regime.

(a) The number of SPs Nn is shown for different values of the relaxation rate γ21, which

characterizes the relaxation from the second excited states of the gain medium to the first

excited state. For γ21 = ∞, our model is equivalent to the two-level spaser model. The

cropped figure on the top right shows the presence of threshold visible at the lower values of

pumping rate (b) The number of SPs as a function of g is shown for two values of γ21 with

the corresponding parabolic fits. While for γ21 = ∞ the function Nn(g) is a linear function,

for ℏγ21 = 0.03 eV, it is a parabolic function.

3.3.3 Spasing in a Dynamic Regime

The time dynamics of three-level spaser is shown in Fig. 3.5(a) for different values of γ21. The

initial number of SP, Nn(t = 0), does not affect the final value of Nn. Thus, we arbitrarily set

the initial value of Nn equals 100. The temporal profile of Nn is similar for different values
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Figure 3.5 Illustration of the temporal dynamics of a spaser. (a) The number of generated
SPs is shown as a function of time for different values of the relaxation rate γ21. The gain
is 20 ps−1. The initial number of plasmons is 100, Nn(t = 0) = 100. (b) The number of
generated SPs is shown as a function of time for different initial numbers of SPs. The gain
is 20 ps−1 and ℏγ21 = 0.05 eV. (c) Populations n2, n1, n0 of the corresponding levels of the
gain medium, |2 >, |1 >, |0 >, are shown as a function of time for two values of the γ21. (d)
The population inversion, n10 = n1 − n0, is shown as a function of time. The values of γ21
are the same as in panel (a). The gain is 20 ps−1.
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of γ21 with one difference that with decreasing γ21 more pronounced oscillation at t ≈ 0.6 ps

are developed. The final stationary values of Nn follows the results shown in Fig. 3.4.

To illustrate that the stationary value of Nn does not depend on the initial condition,

we show in Fig. 3.5(b) the profile Nn(t) for different initial values. The relaxation rate is

ℏγ21 = 0.05 eV. The results show that the initial value of Nn only affects the amplitude of

oscillations while the stationary solution is independent of Nn(0).

Other characteristics of the spaser dynamics are populations of three levels of the gain

medium, n0, n1, and n2. They are shown in Fig. 3.5(c) for fast and slow relaxation rates,

where the solid lines correspond to ℏγ21 = 0.03 eV while the dashed lines correspond to

ℏγ21 = 0.3 eV. The data show that with a fast relaxation rate (ℏγ21 = 0.3 eV) the population

of the high energy level |2 > is almost zero, which corresponds to the limit of a two-level

spaser system. Also, as expected, with increasing the relaxation rate, the populations of

the ground and the first excited states, n0 and n1, increases while the population of the

second excited state, n2, decreases. The population inversion, which is the difference between

populations n1 and n0, n10 = n1 − n0, is the same for both large and small relaxation rates.

To illustrate this property we show in Fig. 3.5(d) the population inversion for different

values of relaxation rate γ21. The values of γ21 are the same as in Fig. 3.5(a). In all cases,

the stationary population inversion does not depend on the relaxation rate, γ21. This is

consistent with expression (3.25), the right-hand side of which does not depend on γ21.

3.4 Conclusion

Spaser is a unique system where the coupling of the plasmonic system and the gain medium

results in the coherent generation of the localized plasmons at the nanoscale. The theories of
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spaser that are based on the two-level system of gain have their limitation in explaining the

spasing behavior at the high pumping rates. In the present paper, we considered, within a

semi-classical approach, a three-level gain system to identify the effects of relaxation between

the non-spasing levels on the spaser dynamics. Our results show that the number of generated

surface plasmons strongly depends on the relaxation rate γ21. At large values of γ21, i.e.,

fast relaxation, the three-level system converges to the regular two-level spaser system[16]

with linear dependence of the number of generated plasmons on the pumping rate. However,

at smaller values of γ21, the dependence of the number of plasmons on the pumping rate

becomes parabolic, which is more pronounced at large pump intensity. Such behavior is

consistent with experimental results[5; 102]. Our spaser model can be beneficial in improving

the efficacy of existing models and comparison with experimental results.
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A Supporting information for the Topological Nanospaser

A Stationary solution

For the large radius of TMDC nanopatch and for the gain rate larger than the critical value,

in the stationary regime, two types of plasmons, co-rotating (m = −1) and counter-rotating

(m = 1), are generated. Although the co-rotating mode is more strongly coupled to the K

valley of TMDC then the counter-rotating one, the number of generated counter-rotating

plasmons is larger then the number of co-rotating ones, N−1 > N1. To understand this

relation we consider the following approximation for the Rabi frequency dependence on the

position within the TMDC nanopatch: (i) the m = 1 plasmon mode is coupled to the K

valley of TMDC at r < r0 ≈ 12 nm and to the K ′ valley of TMDC at r1 > r > r0; (ii)

the m = −1 plasmon mode is coupled to the K ′ valley of TMDC at r < r0 and to the K

valley of TMDC at r1 > r > r0. Here r1 is the radius of TMDC nanopatch. Under this

approximation, there two uncoupled systems: system ”1”: m = 1 plasmons, K valley of

TMDC at r < r0, and K
′ valley of TMDC at r1 > r > r0; system ”2”: m = −1 plasmons,

K ′ valley of TMDC at r < r0, and K valley of TMDC at r1 > r > r0.

Then the stationary equations for system ”1” become (see Eqs. (2.13)-(2.15) of the main
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text)

γspa1 = iν

∫
S0

d2rρ∗K(r)Ω̃
∗
1,K(r) + iν

∫
S1

d2rρ∗K′(r)Ω̃∗
1,K′(r) ,

4Im
[
ρK(r)Ω̃1,K(r)a1

]
= gK [1− nK(r)]− γ2K [1 + nK(r)] ,

Γ12ρK(r) = inK(r)Ω̃
∗
1,Ka

∗
1 ,

4Im
[
ρK′(r)Ω̃1,K′(r)a1

]
= −γ2K [1 + nK′(r)] ,

Γ12ρK′(r) = inK′(r)Ω̃∗
1,K′a∗1 .

Here S0 and S1 are defined by the conditions r < r0 and r0 < r < r1, respectively. We also

take into account that only the K valley is pumped by a circularly polarized light. Similar

system of equations can be written for the system ”2”

γspa−1 = iν

∫
S1

d2rρ∗K(r)Ω̃
∗
−1,K(r) + iν

∫
S0

d2rρ∗K′(r)Ω̃∗
−1,K′(r) ,

4Im
[
ρK(r)Ω̃−1,K(r)a−1

]
= gK [1− nK(r)]− γ2K [1 + nK(r)] ,

Γ12ρK(r) = inK(r)Ω̃
∗
−1,Ka

∗
−1 ,

4Im
[
ρK′(r)Ω̃−1,K′(r)a−1

]
= −γ2K [1 + nK′(r)] ,

Γ12ρK′(r) = inK′(r)Ω̃∗
1,K′a∗−1 .

From the above systems of equation, assuming that |Ωm,K|2a2m ≫ gKΓ12, we obtain

N1 = |a1|2 =
ν

4γsp
[gKS0 − γ2K(S0 + S1)] (31)

and

N−1 = |a−1|2 =
ν

4γsp
[gKS1 − γ2K(S0 + S1)] , (32)
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where S0 and S1 are the areas of the corresponding regions. Thus, above the threshold,

the number of generated plasmons is proportional to S0 = πr20 for co-rotating plasmons and

to S1 = π(r21 − r20) for counter-rotating plasmons. If r1 >
√
2r0 ≈ 16 nm, i.e., S1 > S0,

then the number of counter-rotating plasmons is larger than the number of co-rotating ones,

N−1 > N1.

B Far-field radiation

The total dipole moment of the spaser can be expressed in the following form

dtotal = dmetal + dtmdc, (33)

where dmetal is the dipole moment of the metal nanospheroid and dtmdc is the dipole moment

of the TMDC nanoflake.

B.1 Dipole moment of the metal nanospheroid

The electric field inside the metal, which is produced by generated plasmon modes, both

m = 1 and m = −1, is uniform and is given by the following expression

Em(r, t) = −Asp(∇ϕmâme
−iωt +∇ϕ∗

mâ
∗
me

iωt), (34)

where

Asp =

√
4πℏs(ω)
ϵds′(ω)

(35)

and

s(ω) =
ϵd

ϵd − ϵm(ω)

, (36)
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Then the dipole moment of the metal nanospheroid can be found from the following expres-

sion

dmetal =

∫
V

µEm(r, t) dv (37)

where

µ =
Re[ϵmetal − ϵd]

4π
. (38)

Taking into account that the electric field inside the metal is a constant, E0 = |∇ϕm|, we

derive the following expressions for the dipole moment of the metal nanospheroid

dmetal,x = −µAspE0V

(
(â1e

−iωt + â∗1e
iωt) + (â−1e

−iωt + â∗−1e
iωt)

)
(39)

dmetal,y = −µAspE0V

(
i(â1e

−iωt − â∗1e
iωt)− i(â−1e

−iωt − â∗−1e
iωt)

)
(40)

B.2 Dipole moment of TMDC monolayer

The density matrix of TMDC nanoflake has the following structure

ρ̂K(r, t) =

(
ρ
(c)
K (r, t) ρK(r, t)e

iωt

ρ∗K(r, t)e
−iωt ρ

(v)
K (r, t)

)
. (41)

where K is the valley index, K or K ′. The off-diagonal elements, i.e., coherences, determine

the dipole moment of TMDC system

dtmdc =
∑
S

∑
K=K,K′

(ρK(r)dKe
iωt + ρ∗K(r)d

∗
Ke

−iωt) + h.c., (42)

where
∑

S is the sum (integral) over all points r of TMDC nanoflake.



77

The coherences satisfy the following stationary equation (see Eq. (2.13) of the main text)

[−i(ω − ω21)− Γ12]ρK(r) + inK(r)
∑

m=1,−1

Ω̃∗
m,K(r)a

∗
m = 0, (43)

where Γ12 is the polarization relaxation rate, nK is the population inversion defined as

nK ≡ ρ
(c)
K − ρ

(v)
K , (44)

and

Ω̃m,K(r) = −1

ℏ
Asp∇ϕm(r)dK . (45)

From Eq. (43) we can find the stationary coherences of TMDC monolayer

ρK(r) = −
inK(r)

∑
m=1,−1 Ω̃

∗
m,K(r)a

∗
m

−(ω − ω21) + iΓ12

. (46)

We substitute Eq. (46) into Eq. (42) and obtain the following expression for the dipole

moment of TMDC

dtmdc = fKdKe
iωt + fK′dK′eiωt + h.c., (47)

where the following notations were introduced

fK = −ν
∑
S

inK(r)
∑

m=1,−1 Ω̃
∗
m,Ka

∗
m

−(ω −∆g) + iΓ12

(48)

fK′ = −ν
∑
S

inK′(r)
∑

m=1,−1 Ω̃
∗
m,K′a∗m

−(ω −∆g) + iΓ12

. (49)
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Taking into account that dK = d0(1, i) and dK′ = d0(1,−i) we obtain the x and y compo-

nents of the dipole moment

dtmdc,x = fKd0e
iωt + fK′d0e

iωt + h.c. (50)

dtmdc,y = ifKd0e
iωt − ifK′d0e

iωt + h.c. (51)

B.3 Far field dipole radiation

The total dipole moment of the spaser system is the sum of the dipole moment of the metal

nanospheroid and TMDC nanoflake. Its x and y components can be expressed as

dtotal,x = −µAspE0V
(
â1e

−iωt + â−1e
−iωt + h.c.

)
+
(
fKd0e

iωt + fK′d0e
iωt + h.c.

)
(52)

dtotal,y = −µAspE0V
(
(iâ1e

−iωt − iâ−1e
−iωt + h.c.

)
+
(
ifKd0e

iωt − ifK′d0e
iωt + h.c.

)
(53)

These expressions have the following structure

dtotal,x = 2Re
[
Bxe

iωt
]
, (54)

dtotal,y = 2Re
[
Bye

iωt
]
, (55)
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where,

Bx = −µAspE0V(â
∗
1 + â∗−1) + fKd0 + fK′d0, (56)

By = iµAspE0V(â
∗
1 − â∗−1) + ifKd0 − ifK′d0. (57)

The total dipole moment of the system determines the far-field radiation of the spaser.

The polarization of radiation is characterized by the x and y components of the far electric

field, which are proportional to the corresponding components of the dipole moment, i.e.,

dtotal,x and dtotal,y, while the total radiation power is given by the following expression

I =
4

3

(
ω

c0

)3
(ϵd)

1/2

ℏ
⟨|dtotal|2⟩

=
8

3

(
ω

c0

)3
(ϵd)

1/2

ℏ
(|Bx|2 + |By|2) (58)

where ⟨. . .⟩ means the time average.
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