
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

8-7-2018

Data Collection and Aggregation in Mobile Sensing Data Collection and Aggregation in Mobile Sensing

Ji Li

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Li, Ji, "Data Collection and Aggregation in Mobile Sensing." Dissertation, Georgia State University, 2018.
doi: https://doi.org/10.57709/12535402

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/12535402
mailto:scholarworks@gsu.edu

DATA COLLECTION AND AGGREGATION IN MOBILE SENSING

by

JI LI

Under the Direction of Zhipeng Cai, PhD

ABSTRACT

Nowadays, smartphones have become ubiquitous and are playing a critical role in key

aspects of people’s daily life such as communication, entertainment and social activities.

Most smartphones are equipped with multiple embedded sensors such as GPS (Global Po-

sitioning System), accelerometer, camera, etc, and have diverse sensing capacity. Moreover,

the emergence of wearable devices also enhances the sensing capabilities of smartphones since

most wearable devices can exchange sensory data with smartphones via network interfaces.

Therefore, mobile sensing have led to numerous innovative applications in various fields in-

cluding environmental monitoring, transportation, healthcare, safety and so on. While all

these applications are based on two critical techniques in mobile sensing, which are data

collection and data aggregation, respectively. Data collection is to collect all the sensory

data in the network while data aggregation is any process in which information is gathered

and expressed in a summary form such as SUM or AVERAGE. Obviously, the above two

problems can be solved by simply collect all the sensory data in the whole network. But

that will lead to huge communication cost.

This dissertation is to reduce the huge communication cost in data collection and data

aggregation in mobile sensing where the following two technical routes are applied. The first

technical route is to use sampling techniques such as uniform sampling or Bernoulli sampling.

In this way, an aggregation result with acceptable error can be can be calculate while only

a small part of mobile phones need to submit their sensory data. The second technical rout

is location-based sensing in which every mobile phone submits its geographical position and

the mobile sensing platform will use the submitted positions to filter useless sensory data.

The experiment results indicate the proposed methods have high performance.

INDEX WORDS: Data aggregation, Data Collection, Sampling, Smartphone,
Crowdsensing, Auction

DATA COLLECTION AND AGGREGATION IN MOBILE SENSING

by

JI LI

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2018

Copyright by
JI LI
2018

DATA COLLECTION AND AGGREGATION IN MOBILE SENSING

by

JI LI

Committee Chair: Zhipeng Cai

Committee: Anu Bourgeois

Wei Li

Kai Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2018

iv

DEDICATION

This dissertation is dedicated to my family.

v

ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without the guidance of my

committee members, help from my group, and support from my family and my friends.

Therefore, I would like to show my gratitude to them.

I would like to express my deepest gratitude to my advisor Dr. Zhipeng Cai for his

excellent inspiration, guidance, patience, and supporting me for doing research. Dr. Cai

always gave me the greatest support during my PHD studies, he patiently inspired me and

financially supported my research.

I would like to thank my committee members, Dr. Anu Bourgeois, Dr. Wei Li and Dr.

Kai Zhao for their great support for my PHD study. They also kindly provided me some

teaching suggestions.

I also would like to thank all the professors and staffs in our department, especially Dr.

Yingshu Li, Dr. Yi Pan and Ms. Tammie Dudley for their patient help makes my life easier.

I would like to thank my group members, such as Dr. Mingyuan Yan and Dr. Meng

Han, who provided me help and happiness on my research.

Last but not least, I would like to thank all my family and friends for their support,

understanding, and love.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS xv

Chapter 1 INTRODUCTION 1

1.1 Background and Motivations . 1

1.2 Approximate Holistic Aggregation in Mobile Sensing 3

1.3 Bernoulli Sampling Based Approximate Holistic Aggregation in Mo-

bile Sensing . 4

1.4 Data Collection in Geographical Position Conflicting Mobile Sens-

ing . 4

1.5 Approximate Holistic Aggregation in Small Scale Networks . . . 5

1.6 Data Collection in Geographical Position Dependent Mobile Sens-

ing . 6

1.7 Organization . 6

Chapter 2 RELATED WORK 7

2.1 Sampling-based Data Aggregation 7

2.2 Mobile Crowdsensing . 8

2.3 Other Related Work . 9

Chapter 3 APPROXIMATE HOLISTIC AGGREGATION IN MO-

BILE SENSING 10

vii

3.1 Introduction . 10

3.2 Problem Definition . 12

3.3 Preliminaries . 14

3.3.1 (ε, δ)-Approximate Frequency . 14

3.3.2 (ε, δ)-Approximate Rank . 17

3.3.3 (ε, δ)-Approximate Distinct Count 17

3.3.4 (ε, δ)-Approximate Quantile . 20

3.4 (ε, δ)-Approximate Aggregation Algorithms 24

3.4.1 The Uniform Sampling Algorithm 24

3.4.2 The (ε, δ)-Approximate Frequency Algorithm 25

3.4.3 (ε, δ)-Approximate Rank Algorithm 26

3.4.4 (ε, δ)-Approximate Distinct-count Algorithm 27

3.4.5 (ε, δ)-Approximate Quantile Algorithm 31

3.5 Simulation Results . 32

3.5.1 Evaluation of Sample Size and Relative Error 32

3.5.2 Evaluation of Energy Cost . 36

3.6 Conclusions . 39

Chapter 4 BERNOULLI SAMPLING BASED APPROXIMATE HOLIS-

TIC AGGREGATION IN MOBILE SENSING 40

4.1 Introduction . 40

4.2 Problem Definition . 41

4.2.1 Network Model . 41

4.2.2 Frequency Queries . 42

4.3 Preliminaries . 43

4.3.1 Basics of Sampling Probability for Ordinary Frequency Queries . 43

4.3.2 Sampling Probability for Ordinary Frequency Queries 45

viii

4.3.3 Sampling Probability for Single Value Frequency and Range Frequency

Queries . 47

4.4 Network Connectivity . 48

4.5 (ε, δ)-Approximate Frequency Query Algorithms 49

4.5.1 The Bernoulli Sampling Algorithm 49

4.5.2 The (ε, δ)-Approximate Algorithm for Ordinary Frequency Queries 50

4.5.3 The (ε, δ)-Approximate Algorithms for Single Value Frequency Queries

and Range Frequency Queries . 52

4.6 Experimental Results . 52

4.6.1 Sampling Probability and Energy Cost of Ordinary Frequency Query 53

4.6.2 Relative Error of Ordinary Frequency Queries 55

4.6.3 Simulation Results for Single Value Frequency Queries 57

4.6.4 Simulation Results for Range Frequency Queries 57

4.7 Conclusion . 59

Chapter 5 DATA COLLECTION IN GEOGRAPHICAL POSITION

CONFLICTING MOBILE SENSING 61

5.1 Introduction . 61

5.2 Problem Definition . 63

5.2.1 Mobile Crowdsensing Platform . 63

5.2.2 Optimal Winner Selection Problem 65

5.2.3 Problem Formulation . 67

5.3 Optimal Winner Selection Algorithm 68

5.3.1 Problem Representation . 68

5.3.2 A* Algorithm for Optimal Winner Selection 69

5.3.3 Payment Determination . 72

5.4 Non-optimal Winner Selection Algorithm 74

5.4.1 Algorithm Design . 74

ix

5.4.2 Beneficial Properties of the Algorithm 77

5.5 Experiment . 78

5.5.1 Experiment Settings . 78

5.5.2 Optimal Winner Selection Algorithm 79

5.5.3 Non-optimal Winner Selection Algorithm 84

5.6 Conclusion . 85

Chapter 6 APPROXIMATE HOLISTIC AGGREGATION IN SMALL

SCALE NETWORKS 86

6.1 Introduction . 86

6.2 Problem Definition . 89

6.3 Preliminaries . 90

6.3.1 Uniform Sampling Based Approximate Aggregation 90

6.3.2 Bernoulli Sampling Based Approximate Aggregation 93

6.4 δ-Approximate Aggregation Algorithms 96

6.4.1 Uniform Sampling Based Aggregation Algorithm 96

6.4.2 Bernoulli Sampling Based Aggregation Algorithm 99

6.5 Simulation Results . 100

6.5.1 Uniform Sampling Based Aggregation Algorithm 102

6.5.2 Bernoulli Sampling Based Aggregation Algorithm 104

6.6 Conclusions . 106

Chapter 7 DATA COLLECTION IN GEOGRAPHICAL POSITION

DEPENDENT MOBILE SENSING 109

7.1 Introduction . 109

7.2 Problem Definition . 111

7.2.1 Crowdsensing Platform . 111

7.2.2 Optimal Winner Selection Problem 113

x

7.2.3 Problem Formulation . 116

7.3 Optimal Winner Selection Algorithm 117

7.3.1 Algorithm to Select the Winners 118

7.3.2 Payment Determination . 120

7.4 Non-optimal Winner Selection Algorithm 121

7.4.1 Algorithm Design . 122

7.4.2 Algorithm’s Properties . 122

7.5 Problem Extension . 124

7.5.1 Min-K Winner Selection Problem 124

7.5.2 Budget-bounded Winner Selection Problem 126

7.6 Experiment . 127

7.6.1 Experiment Settings . 127

7.6.2 Optimal Winner Selection Algorithm 128

7.6.3 Non-optimal Winner Selection Algorithm 129

7.6.4 Extended Problems . 131

7.7 Conclusion . 133

Chapter 8 CONCLUSION 134

REFERENCES . 136

xi

LIST OF TABLES

Table 3.1 Symbols . 14

Table 5.1 Symbols . 68

Table 5.2 Default Parameters . 80

Table 5.3 Amount of sensory data comparison 84

Table 6.1 Symbols . 90

Table 7.1 Symbols . 117

Table 7.2 Default Parameters . 128

xii

LIST OF FIGURES

Figure 1.1 Sensors in smartphones . 2

Figure 3.1 The relationship among ε, δ and the sample size. 33

Figure 3.2 The relationship among ε, δ and the relative error. 34

Figure 3.3 The relationship between the sampling ratio and the relative error. 34

Figure 3.4 The relationship among network size, sampling ratio and relative er-

ror. 35

Figure 3.5 The relationship between δ and the over-error ratio. 35

Figure 3.6 The relationship among ε, δ and the energy cost. 36

Figure 3.7 The data flow comparison . 37

Figure 3.8 The energy cost comparison . 37

Figure 3.9 The relationship between packet loss rate and the energy cost. . . 38

Figure 3.10 Energy cost comparison for small scale network 39

Figure 3.11 Energy cost comparison for different clustering methods 39

Figure 4.1 The relationship among ε, δ and sampling probability. 54

Figure 4.2 The relationship among ε, δ and energy cost. 54

Figure 4.3 The relationship between sample probability and energy cost. . . 55

Figure 4.4 The relationship among sampling probability, network size and energy

cost. 55

Figure 4.5 Energy cost comparison. 56

Figure 4.6 The relationship among ε, δ and relative error. 56

Figure 4.7 The relationship between sampling probability and relative error. 56

Figure 4.8 The relationship among sampling probability, network size and relative

error. 56

Figure 4.9 The relationship among ε, δ and energy cost. 58

Figure 4.10 The relationship between network size and energy cost. 58

xiii

Figure 4.11 The relationship among ε, δ and sampling probability. 58

Figure 4.12 The relationship among ε, δ and energy cost. 58

Figure 4.13 The relationship between sampling probability and relative error. 59

Figure 4.14 The relationship among sampling probability, network size and relative

error. 59

Figure 5.1 Mobile crowdsensing platform . 65

Figure 5.2 Example of the winner selection problem 66

Figure 5.3 Example of maximum weighted independent set problem 69

Figure 5.4 Searching tree . 72

Figure 5.5 Number of users in UT . 80

Figure 5.6 Average degree of conflict graph 80

Figure 5.7 Bid distribution . 81

Figure 5.8 Execution time comparison for different T.r. 81

Figure 5.9 Execution time comparison for different T.d. 82

Figure 5.10 Execution time comparison between different A* algorithms . . . 83

Figure 5.11 Execution time for different ε . 83

Figure 5.12 Crowdsensing platform’s profile 83

Figure 5.13 Winners’ payments and bids . 84

Figure 5.14 Social welfare comparison . 85

Figure 6.1 The relationship between δ and the sample size. 102

Figure 6.2 The relationship between δ and the energy cost for the uniform sam-

pling based aggregation algorithm. 103

Figure 6.3 Energy cost comparison between the uniform sampling based aggrega-

tion algorithm and the simple distributed algorithm. 104

Figure 6.4 The relationship between δ and the sample probability. 105

Figure 6.5 The relationship between δ and the energy cost for the Bernoulli sam-

pling based aggregation algorithm. 106

xiv

Figure 6.6 Energy cost comparison between the Bernoulli sampling based aggre-

gation algorithm and the simple distributed algorithm. 107

Figure 6.7 Energy cost comparison between the uniform sampling based aggrega-

tion algorithm and Bernoulli sampling based aggregation algorithm. 108

Figure 7.1 Mobile sensing platform . 113

Figure 7.2 Example of the winner selection problem 115

Figure 7.3 Execution time comparison for different T.r 128

Figure 7.4 Execution time comparison for different T.d 129

Figure 7.5 Social welfare comparison for different T.r 130

Figure 7.6 Social welfare comparison for different T.d 130

Figure 7.7 Bids of the winners . 131

Figure 7.8 Execution time comparison for different T.r 132

Figure 7.9 Execution time comparison for different T.d 132

Figure 7.10 Total payments under different budgets 132

xv

LIST OF ABBREVIATIONS

• ADDF-Estimated Annual Average Daily Flows

• CPS-Cyber Physical System

• GPS-Global Positioning System

• IoT-Internet of Things

• MANET-Mobile Ad hoc Network

• NP-Non-deterministic Polynomial-time

• PTAS-Polynomial-Time Approximation Scheme

• VCG-VickreyCClarkeCGroves

• WSN-Wireless Sensor Network

1

Chapter 1

INTRODUCTION

1.1 Background and Motivations

Nowadays, smartphones have become ubiquitous and are playing a critical role in key

aspects of people’s daily life such as communication, entertainment and social activities.

Most smartphones are equipped with multiple embedded sensors such as GPS (Global Po-

sitioning System), accelerometer, camera, etc, and have diverse sensing capacity. Moreover,

the emergence of wearable devices also enhances the sensing capabilities of smartphones since

most wearable devices can exchange sensory data with smartphones via network interfaces.

For example, the sensors in a mobile phones in shown in Fig. 1.1.

Therefore, mobile sensing have led to numerous innovative applications in various fields

including environmental monitoring, transportation, healthcare, safety and so on [1]. While

all these applications are based on two critical techniques in mobile sensing, which are data

collection and data aggregation, respectively. Data collection is to collect all the sensory

data in the network while data aggregation is any process in which information is gathered

and expressed in a summary form such as SUM or AVERAGE. For example, if the sensory

dataset is S = s1, s2, s3 and we have s1=1, s2=1, s1=3. The data collection is to collect

the whole sensory dataset from all the users. The final result is S = s1, s2, s3 The data

aggregation is to get a aggregation result. For final result for SUM operation is 5 while the

final result for the AVERAGE operation is 5
3
.

Obviously, the above two problems can be solved by simply collect all the sensory data

in the whole network. After this process, the data aggregation is finished and all kinds of

data aggregation operations can be easily executed since all the sensory data are gathered.

However, the above method has a very obvious drawback. In the above method, all the

smartphones need to submit their sensory data and the size of users may be quite large in

2

Figure 1.1. Sensors in smartphones

practice [2], [3]. While on the other hand, data transmission for mobile phones may cost

a great deal of energy. For example, according to [4], the energy cost for transmitting one

bit of data is enough for executing 1000 instructions. Therefore, it is a critical problem to

reduce the energy cost in mobile sensing.

This dissertation is to reduce the huge communication cost in data collection and data

aggregation in mobile sensing, where the following two technical routes are applied.

Technical Route 1: Sampling The first technical route is to use sampling techniques

such as uniform sampling or Bernoulli sampling, whose process is as follows.

1. Determine a proper sampling size or a proper sampling probability.

2. Broadcast the sampling size or the sampling probability and sample the sensory data

in the network.

3. Submit sensory data and do partial data aggregation.

In this way, an aggregation result with acceptable error can be can be calculated while only

a small part of mobile phones need to submit their sensory data. Since only a small part of

mobile phones needs to submit their sensory data, the total energy cost will be reduced.

3

Technical Route 2: Location-based Sensing The second technical route is location-

based sensing whose basic idea is as follows.

1. The mobile sensing platform broadcasts the sensing task.

2. Each user submits his/her position to the mobile sensing platform.

3. The mobile crowdsensing platform decides the winner set according to the submitted

positions to filter out useless sensory data.

4. All the selected smartphones submit their sensory data to the mobile sensing platform.

Since only the selected mobile phones need to submit their sensory data, the total energy

cost will also be reduced.

Based on the above two technical routes, the following problems are proposed and

solved, which are listed as follows.

1. Approximate holistic aggregation in mobile sensing.

2. Bernoulli sampling based approximate holistic aggregation in mobile sensing.

3. Data collection in geographical position conflicting mobile sensing.

4. Approximate holistic aggregation in small-scale networks.

5. Data collection in geographical position dependent mobile sensing.

The above problems are briefly introduced in the following three sections. For the detailed

information, please refer to Chapter 3, 4, 5, 6 and 7.

1.2 Approximate Holistic Aggregation in Mobile Sensing

Holistic aggregations are popular queries for users to obtain detailed summary informa-

tion in mobile sensing. An aggregation operation is holistic if there is no constant bound

on the size of the storage needed to describe a sub-aggregation. Since holistic aggregation

4

cannot be distributable, it requires that all the sensory data should be sent to the sink in

order to obtain the exact holistic aggregation results, which costs lots of energy. However,

in most applications, exact holistic aggregation results are not necessary, instead, approxi-

mate results are acceptable. To save energy as much as possible, we study the approximated

holistic aggregation algorithms based on uniform sampling. In this problem, four holistic

aggregation operations, frequency, distinct-count, rank and quantile, are investigated. The

mathematical methods to construct their estimators and determine optional sample size are

proposed, and the correctness of these methods are proved. Four corresponding distribut-

ed holistic algorithms to derive (ε, δ)-approximate aggregation results are given. The solid

theoretical analysis and extensive simulation results show that all the proposed algorithms

have high performance on the aspects of accuracy and energy consumption.

1.3 Bernoulli Sampling Based Approximate Holistic Aggregation in Mobile

Sensing

A frequency query is to acquire the occurrence frequency of each value in a sensory data

set, which is a popular operation in mobile sensing. However, exact frequency results are

not easy to obtain due to the unique characteristics of mobile phone networks. Fortunately,

approximate frequency results are acceptable and affordable in most mobile sensing appli-

cations. In this problem, we study how to process approximate ordinary frequency queries,

approximate single value frequency queries and approximate range frequency queries, and

propose Bernoulli sampling based method to estimate approximate frequencies. The dis-

tributed algorithms to calculate approximate frequency results are introduced. The simula-

tion results show that on the aspects of both energy efficiency and accuracy, the proposed

algorithms have high performance.

1.4 Data Collection in Geographical Position Conflicting Mobile Sensing

Sensor-embedded smartphones have become ubiquitous nowadays, further leveraging

the popularity of mobile crowdsensing. A mobile crowdsensing platform gathers sensory

5

data from smartphone users and makes payments to them in return. Due to the spatial

correlation of sensory data in various applications, users close to each other in geographical

positions usually provide similar sensory data, and it is quite an economic waste for a mobile

sensing platform to buy duplicated sensory data with multiple payments to geographically

close users. Unfortunately, the existing works do not take this matter into consideration. To

prevent waste, the third problem considers geographical position conflicting mobile crowd-

sensing systems in which any two users within a limited geographical distance cannot obtain

payments simultaneously while participating in crowdsensing tasks. Two algorithms are pro-

posed to select appropriate mobile crowdsensing participants and calculate the payments to

them. Solid theoretical proofs are presented to demonstrate the beneficial properties of our

proposed algorithms. The extensive experiment results based on real-world datasets indicate

that our proposed algorithms are efficient while providing beneficial properties.

1.5 Approximate Holistic Aggregation in Small Scale Networks

With the ever-increasing population, problems of everyday sustainability have become

onerous. According to the survey by United Nations, 54% of the world’s current population

lives in urban areas. So, to collect such well spread data, they exploit various sensor equipped

devices in the city to collect data and interpret information at the city level. In today’s world,

all the devices from smart home devices to intelligent transport systems are well connected

with the internet. Such a network with well-connected devices is called Internet-Of-Things

(IoT)

Sensors are the building blocks for many IoT devices. Utilizing sensors as the commu-

nication media helps us resolve many of the problems discussed earlier. The fourth problem

is to propose two algorithms to process δ-approximate maximum queries and δ-distinct-set

queries in small-scale networks. These two algorithms are based on uniform sampling and

Bernoulli sampling, respectively. Proposed algorithms to return the exact query results with

probability not less than 1-δ where the value of δ can be arbitrarily small.

6

1.6 Data Collection in Geographical Position Dependent Mobile Sensing

In real-life applications, the mobile crowdsensing platforms aim to maximize the quality

of gathered sensory data during the above process because the mobile crowdsensing plat-

form needs to pay significant economic costs to the mobile crowdsensing participants for

their sensory data. However, in many applications, the sensory data exhibits strong spatial

correlation. Directly selecting the winners with lower bids may select multiple disjoint users

as the winners, which cannot fully describe sensory data’s spatial correlation or show the

whole circumstance.

The fifth problem is to study incentive mechanisms in the geographical position de-

pendent mobile crowdsensing platforms. In this problem, the mobile crowdsensing platform

cannot select multiple disjoint users as the winners. All the selected winners must form a con-

nected dependent graph so that the sensory data can fully describe the whole circumstance

of the sensory region.

1.7 Organization

The rest of this dissertation proposal is organized as follows: Chapter 2 summarized

the related literature. Chapter 3 is about approximate holistic aggregation in mobile sens-

ing. Chapter 4 studies Bernoulli sampling based approximate holistic aggregation in mobile

sensing. Chapter 5 solves the problem of data collection in geographical position conflict-

ing mobile sensing. Chapter 6 is about approximate holistic aggregation in small networks

Chapter 7 solves the problem of data collection in geographical position dependent mobile

sensing. Chapter 8 is the conclusion.

7

Chapter 2

RELATED WORK

2.1 Sampling-based Data Aggregation

Since the summary information contained by distributable, algebraic and holistic aggre-

gations are quite important for analysis in networks, many related works have been proposed.

Considering that the sensory data are highly correlated in spatial and temporal di-

mensions, the work in [5] presents a distributed approximate aggregation algorithm, which

brings considerable energy savings. By partitioning the precision constraint of data aggre-

gation and allocating error bounds to individual sensor nodes, the work in [6] discusses the

tradeoff between energy consumption and data quality in order to prolong network lifetime.

The experimental results show that the proposed scheme significantly improves network life-

time. However, the algorithms in both [5] and [6] are only designed for continuous queries.

Therefore, they cannot be used for snapshot queries discussed in our dissertation.

The work in [7] proposes an approximate algorithm for the quantile operation in mobile

sensing. This algorithm reduces energy consumption based on the sampling technique. How-

ever, since the variance of the estimator in [7] is larger than 0, the probability of obtaining

a result with the required approximation error is fixed according to Chebyshev’s inequality,

so that it cannot meet the arbitrary precision requirement given by users. The work in

[8] proposes a data aggregation scheme that can be extended to process a class of queries,

including the approximate quantile queries. Strict theoretical guarantees of approximation

quality are provided in [8]. However, the error bound is related to the memory size m, which

is limited in practice. Therefore, the error bound cannot be arbitrarily adjusted. The work in

[9] proposes a protocol to compute approximate median and designs an algorithm to obtain

the median in the presence of compromised nodes. The analysis and simulation results show

that the proposed algorithm is scalable and efficient. However, it is only suitable to deal

8

with median queries and cannot calculate any quantile required by users, and it also needs

additional storage space to decrease the error bound.

Based on a binary trie based summary structure for representing transaction sets,

the work in [10] proposes two algorithms to process frequency queries towards large-scale

databases. The work in [11] proposes an algorithm for computing the approximate distinct-

count. These algorithms are based on the sampling synopsis. However, they are centralized

and cannot be used in large scale WSNs.

The work in [12] proposes an adaptive sampling solution named SILENCE in CPSs.

SILENCE is efficient to reduce redundancy in raw data without compromising accuracy of

reconstruction of the phenomenon at the sink. However, it is only suitable for the circum-

stance that sensory data have spatial and temporal correlations. The algorithm in [13] can

adjust the sampling rate adaptively during the monitoring period. However, the theoretical

bound of monitoring accuracy cannot be guaranteed.

The works in [14] and [15] propose two algorithms for frequency queries in large-scale

database systems. However, these algorithms are centralized and cannot be employed in

MANETs.

2.2 Mobile Crowdsensing

The work in [16] designs a reverse auction based dynamic price incentive mechanism

where users can sell sensory data to the crowdsensing platform at users’ claimed bid prices.

However, the incentive mechanism in [16] does not satisfy the property of truthfulness.

The work in [17] studies the distributed time-sensitive and location-dependent task s-

election problem in mobile crowdsensing. An asynchronous and distributed task selection

algorithm is proposed. But [17] does not take the geographical position conflicting into

consideration. The work in [18] is about photo crowdsensing in disruption tolerant net-

works. However, this work focuses on users’ graphical position-based cooperation instead of

graphical position-based confliction. Therefore, it cannot solve our problem directly.

Massive works use auction-based mechanisms to study the problem of graphical position

9

conflicting spectrum allocation [19], [20]. However, these works are for allocating fixed

number of spectrums rather than maximizing the total social welfare in crowdsensing data

gathering. Moreover, these works’ definition on graphical position confliction also differs

with that of our problem. Therefore, these works cannot be used for our problem directly.

2.3 Other Related Work

The random geometric graph introduced in [21] is an excellent theoretical model to

be used in network connectivity analysis. But it is only suitable for static networks. The

work in [22] proposes a derived version of the random geometric graph named dynamic

random geometric graph which can be used to analyze MANET connectivity. But it only

studies the period for a network to be connected or disconnected. The work in [23] studies

the connectivity of MANETs by simulations. The simulation result is the probability of a

network to be connected. But our work focuses on the number of the connected nodes. The

work in [24] is like an evaluation of MANET connectivity. The simulation results for the size

of the largest connected component are shown. But it does not specify how to calculate the

size of the largest connected component. Furthermore, the simulation results shown in [24]

are the average size. This kind of results cannot be applied to our work since it is possible

that the actual size is smaller than the average size.

The spatial correlation of sensory data is well studied in [25] and [26]. The authors in

[27] proposed a model about users’ sensing area in photo crowdsensing. The factor of both

sensing range and sensing angle are taken into consideration in this model. Massive spatial

correlated sensory data can be found in the Greenorbs Project [28].

The work in [29] uses the Brightkite and Gowalla datasets to study friendships in online

social networks and users’ movements in the physical world. The works in [30] and [31] use

subsets of the Brightkite and Gowalla datasets to study the influence maximization problem

in location based social networks. The work in [32] uses the Swoopo dataset to study

information asymmetries in pay-per-bid auctions, which indicates bid distribution closely

maps with a widely adopted assumption in optimal auction design research [33].

10

Chapter 3

APPROXIMATE HOLISTIC AGGREGATION IN MOBILE SENSING

3.1 Introduction

Mobile sensing have been widely employed in many applications, including military de-

fense, environment monitoring, traffic monitoring, health care, structural health monitoring

and so on [34] [35] [36] [37] [38] [39] [40]. Since sensors are always redundantly deployed in

a monitored region to improve network robustness, the sensory data generated are always

very huge and redundant to users [41] [42] [43] [44] [45]. To deal with such a great amount of

data, the summary information returned by aggregation operations is extremely important

for users to make decisions.

As we know, the existing aggregation operations can be classified into three categories,

distributable aggregations (such as SUM and COUNT), algebraic aggregations (such as AV-

ERAGE), and the holistic aggregations. Among these aggregations, the holistic aggregations

are the most complicated ones to process since there is no constant bound on the size of

the storage needed to describe a sub-aggregation [46] and they cannot be processed in a

distributed manner [47]. However, the summary information returned by many holistic ag-

gregations, such as the quantile and frequency queries, are quite valuable in applications.

For example, the frequency result of air pollution not only reflects the overall pollution sit-

uation in the monitored region, but also shows the detailed distribution of each pollution

grade. Such information cannot be provided by the SUM or AVERAGE aggregation results.

Therefore, it is important to deal with the holistic aggregation efficiently in mobile sensing.

Since a holistic aggregation cannot be distributable, it requires that all sensory data to

be transmitted to the sink to derive the exact holistic aggregation results, which costs high

energy consumption. In practice, exact holistic aggregation results are not necessary in most

applications and approximate ones are also acceptable [48] [49] [50] [51]. Therefore, some

11

approximate aggregation techniques were proposed, such as [52] and [53]. These methods

save lots of energy comparing with the exact holistic aggregation algorithms. However, all

of them have a fixed error bound and cannot satisfy the arbitrary precision requirement

specified by users. For example, the work in [53] focuses on continuous holistic queries in

wireless sensor networks. An approach to derive approximate results for rapid data changing

circumstances is proposed, which significantly reduces the traffic cost. However, the error of

the approximate result cannot be arbitrarily specified by users.

To overcome such problems, this chapter take frequency, distinct-count, rank and quan-

tile as example aggregation operations to investigate the sampling based holistic aggregation

algorithms in this chapter. Our aim is to return an (ε, δ)-approximate holistic aggregation

result to users, which satisfies that the probability of the relative error bound of the results

being larger than ε is smaller than δ, where ε and δ can be arbitrarily small.

Although the works in [54] and [55] propose (ε, δ)-approximate aggregation algorithm-

s based on the uniform and Bernoulli sampling techniques, they can only deal with dis-

tributable and the algebraic aggregations, and are not suitable for our problems. In summary,

the contributions of this chapter are as follows.

1. Four mathematical estimators for the frequency, distinct-count, rank and quantile ag-

gregation operations are provided, and the unbiased properties of these estimators are

proved.

2. The mathematical methods to determine the optional sample size for calculating (ε, δ)-

frequency, (ε, δ)-distinct-count, (ε, δ)-rank and (ε, δ)-quantile results are designed, and

their correctness are guaranteed.

3. The distributed algorithms for (ε, δ)-frequency, (ε, δ)-distinct-count, (ε, δ)-rank and

(ε, δ)-quantile are provided based on the uniform sampling technique, and the compu-

tation complexities and energy costs of these algorithms are analyzed.

4. The extensive simulation results are presented to verify that all the proposed algorithms

have high performance on the aspects of accuracy and energy consumption.

12

The rest of this chapter is organized as follows. Section 3.2 presents the problem defini-

tion. Section 3.3 provides the mathematical foundations of the (ε, δ)-approximate aggrega-

tion algorithms. Section 3.4 explains the (ε, δ)-approximate aggregation algorithms. Section

3.5 shows the simulation results. Section 3.6 concludes this part.

3.2 Problem Definition

Let n denote the size of network and i (1 ≤ i ≤ n) be the ID of a sensor node. We

divide a network into grids, and the sensor nodes in the same grid form a cluster, where the

edge length of each grid is determined by the transmission radius of a sensor node so that it

guarantees that the sensor nodes in the same cluster can communicate with each other by

one-hop communication.

Let sti be the sensory value of node i at time t. Thus St = {st1, st2, . . . , stn} is the

set of all the sensory data in the network at time t. In practice, there always exist some

reduplicated values in St. We use Dis(St) to denote the distinct set of St, which means that

Dis(St) ⊆ St and Dis(St) only contains all the distinct values in St. We assume all the data

distributes randomly in the network. The spatial and temporal correlation for the sensory

data is ignored. Four aggregation operations on St are studied in this chapter, which are

frequency, rank, distinct count and quantile. The definition of these four operations are as

follows.

1. For any x ∈ Dis(St), the exact frequency denoted by F (St, x) satisfies F (St, x) =

|{stj |stj=x∧1≤j≤n}|
n

.

2. The exact rank denoted by R(St, x) satisfies R(St, x) =
|{stj |stj≤x∧1≤j≤n}|

n
.

3. The exact distinct-count of St denoted by DC(St) satisfies that DC(St) = |Dis(St)|.

4. For any given r (0 ≤ r ≤ 1), the exact quantile denoted by Q(St, r) satisfies Q(St, r) =

argminsti
|{stj |stj≤sti∧1≤j≤n}|

n
≥ r.

13

All the above four holistic aggregations are quite useful for mobile sensing. For example,

in the application of pollution monitoring, the results returned by frequent queries not only

reflect the overall pollution situation in the monitored area, but also provide the detailed

distribution of each pollution grade. Similarly, the results returned by the distinct-count

queries indicate the number of pollution levels in the monitored area, which could help

the users to determine the actions to be carried out. Furthermore, the results of the rank

queries reflect the ratio the of over-polluted area, and the results of the quantile queries

show the pollution degree under a given ratio. Such information is important for users to

make prompt and proper decisions. Obviously, comparing with sum, max/min and average

aggregations, the above four holistic aggregation queries present more detailed information,

and provide more evidences for users to take actions. Therefore, it is quite important to

design distributed and energy-efficient algorithms for these four holistic aggregation queries.

As mentioned in Section 3.1, it leads to a huge communication cost and computation

cost for calculating an exact aggregation result. Therefore, we study how to obtain an (ε, δ)-

approximate result for the above four aggregation operations. Suppose that It denotes an

exact aggregation result of St at time t, and Ît is an approximate result to estimate It. The

relative error between It and Ît, denoted by Error(It, Ît), satisfies that Error(It, Ît) = |It−Ît|
It

.

The definition of the (ε, δ)-estimator is given as follows, which has been proposed in [54].

Definition 3.2.1 ((ε, δ)-estimator). For any ε (ε > 0) and δ (0 ≤ δ ≤ 1), Ît is called the

(ε, δ)-estimator of It if Pr(Error(It, Ît) ≥ ε) ≤ δ, where Error(It, Ît) = |It−Ît|
It

.

According to Definition 3.2.1, the problem of computing (ε, δ)-approximate frequency,

(ε, δ)-approximate rank, (ε, δ)-approximate distinct-count and (ε, δ)-approximate quantile is

defined as follows.

Input: (1) A network with n nodes; (2) The sensory data set St; (3) Aggregation

operator Agg ∈ {Frequency, Rank, DistinctCount, Quantile}; (4) ε (ε > 0), δ (0 ≤ δ ≤ 1),

x (only for rank) and r (only for quantile).

Output: (ε, δ)-approximate aggregation result of Agg.

For the clarity, all the frequently used symbols are summarized in Table 3.1.

14

Name Description
n The size of a network
i (1 ≤ i ≤ n) The ID of a sensor node
sti The sensory value of node i at time t
St = {st1, st2, . . . , stn} The set of all the sensory data in the network at time t
Dis(St) The distinct set of St
F (St, x) The exact frequency of value x for dataset St
R(St, x) The exact rank of value x for dataset St
DC(St) The exact distinct-count of St
Q(St, r) The exact quantile of any given r for dataset St
Ît Approximate result to estimate It
Error(It, Ît) Relative error between It and Ît
U(m) = {X1, X2, ..., Xm} A uniform sample of St with sample size m
nmin/nmax The number of appearances for the least/most appearing data
fi The frequency of the i-th smallest sensory data

Table 3.1. Symbols

3.3 Preliminaries

According to [56], uniform sampling is the best choice for estimating aggregation results.

Therefore, our (ε, δ)-approximate aggregation algorithm is based on the uniform sampling

technique.

Let X1, X2, ..., Xm denote m simple random samplings with replacement from St, that

is, Xi and Xj are independent with each other for all 1 ≤ i 6= j ≤ m, and Pr(Xi = stj) = 1
n

for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, where Pr(Xi = stj) denotes the probability of stj being

sampled by the i-th simple random sampling. Thus, U(m) = {X1, X2, ..., Xm} is called

a uniform sample of St with size m. The preliminaries of computing (ε, δ)-approximate

frequency, (ε, δ)-approximate rank, (ε, δ)-approximate distinct-count and (ε, δ)-approximate

quantile are presented in the following subsections respectively.

3.3.1 (ε, δ)-Approximate Frequency

To obtain (ε, δ)-approximate frequency, the mathematical estimator of a frequency is

needed firstly. Let ̂F (St, x) denote the estimator of exact value F (St, x). Then ̂F (St, x)

15

should satisfy that

̂F (St, x) =
|{Xi|Xi = x ∧ 1 ≤ i ≤ m}|

m
.

The following Theorem 3.3.1 indicates that ̂F (St, x) is an unbiased estimator of F (St, x),

and the variance of ̂F (St, x) is provided by Theorem 3.3.2.

Theorem 3.3.1. ̂F (St, x) is an unbiased estimator of F (St, x).

Proof. Let I(a, b) be a variable which satisfies

I(a, b) =

 1 if a = b

0 otherwise

Then we have

E[̂F (St, x)] =

∑m
i=1 I(Xi, x)

m
(3.1)

Since Xi ∈ U(m), Pr(Xi = stj) = 1
n

for any 1 ≤ i ≤ m, and thus

E[I(X1, x)] = E[I(X2, x)] = · · · = E[I(Xm, x)] =
n∑
i=1

Pr(X1 = sti)I(sti, x) (3.2)

=
n∑
i=1

1

n
I(sti, x) =

1

n

n∑
i=1

I(sti, x) = F (St, x)

Based on the formulas (3.1) and (3.2), we have E[̂F (St, x)] = F (St, x), so that ̂F (St, x) is

an unbiased estimator of F (St, x).

Theorem 3.3.2. V ar[̂F (St, x)] = F (St,x)(1−F (St,x))
m

.

Proof. According to the proof of Theorem 3.3.1, we have Pr(Xi = stj) = 1
n

for any Xi ∈

U(m). Therefore, I(Xi, x) can be regarded as a 0-1 random variable, where Pr{I2(Xi, x) =

1} = Pr{I(Xi, x) = 1} = F (St, x). Thus,

V ar[I(Xi, x)] = E(I2(Xi, x))− (E(I(Xi, x)))2 = F (St, x)(1− F (St, x))

for any 1 ≤ i ≤ m.

16

Thus, V ar[̂F (St, x)] =
V ar[

∑m
i=1 I(Xi,x)]

m2 = V ar[I(X1,x)]
m

= F (St,x)(1−F (St,x))
m

.

Since ̂F (St, x) is an unbiased estimator of an exact frequency and its variance is bounded,

Error(F (St, x), ̂F (St, x)) can be arbitrarily small.

Obviously, it is critical to determine a proper sample size for a sampling based algorithm.

The following theorem shows that ̂F (St, x) is an (ε, δ)-estimator of F (St, x) if the sample

size m satisfies that m ≥
φ2
δ/2

ε2
(n
nmin
− 1).

Theorem 3.3.3. ̂F (St, x) is an (ε, δ)-estimator of F (St, x) if m ≥
φ2
δ/2

ε2
(n
nmin
−1), where φδ/2

is the δ
2

fractile of the standard normal distribution and nmin is the number of appearances

for the least appearing data.

Proof. According to the center limit theory [57], we have ̂F (St, x) ∼ N(E[̂F (St, x)],

V ar[̂F (St, x)]) if the sample size m ≥ 30, i.e.,
̂F (St,x)−F (St,x)√
V ar[̂F (St,x)]

∼ N(0, 1) when m ≥ 30,

where N(E, V) denotes a normal distribution with expectation E and variance V for any

E ∈ (−∞,+∞) and V ∈ [0,+∞).

Since the required sample size is far more than 30 for most cases due to the large scale

of a network, we can assume that
̂F (St,x)−F (St,x)√
V ar[̂F (St,x)]

follows the standard normal distribution in

the rest of the chapter. Meanwhile, we also have Pr(

∣∣∣∣ ̂F (St,x)−F (St,x)√
V ar[̂F (St,x)]

∣∣∣∣ ≥ φδ/2) = δ since φδ/2

denotes the δ
2

fractile of the standard normal distribution, that is

Pr(| ̂F (St, x)− F (St, x)| ≥ φδ/2

√
V ar[̂F (St, x)]) = δ. (3.3)

Based on the condition of Theorem 3.3.3, we have

m ≥
φ2
δ/2

ε2
(
n

nmin
− 1) ≥

φ2
δ/2

ε2
(

1

F (St, x)
− 1) (3.4)

Furthermore,

V ar[̂F (St, x)] =
F (St, x)(1− F (St, x))

m
(3.5)

according to the conclusion of Theorem 3.3.2.

17

Thus, according to Formulas (3.3), (3.4) and (3.5), we have Pr(| ̂F (St, x)− F (St, x)| ≥

εF (St, x)) ≤ δ, i.e., ̂F (St, x) is an (ε, δ)-estimator of F (St, x) based on Definition 3.2.1.

3.3.2 (ε, δ)-Approximate Rank

The mathematical estimator of rank is defined as follows

R̂(St, x) =
|{Xi|Xi ≤ x ∧ 1 ≤ i ≤ m}|

m
.

Using the similar proofs of Theorem 3.3.1 and Theorem 3.3.2, we have that R̂(St, x) is

an unbiased estimator of the exact value, and V ar[R̂(St, x)] = R(St,x)(1−R(St,x))
m

. Meanwhile,

we also have the following theorem.

Theorem 3.3.4. R̂(St, x) is an (ε, δ)-estimator of R(St, x) if m ≥
φ2
δ/2

ε2
(1
inf(R(St,x))

−1), where

inf(R(St, x)) denotes the lower bound of R(St, x) and φδ/2 is the δ
2

fractile of the standard

normal distribution. 2

The proof of Theorem 3.3.4 is similar to that of Theorem 3.3.3.

3.3.3 (ε, δ)-Approximate Distinct Count

The mathematical estimator of distinct count is defined by

D̂C(St) =
∑

s
(d)
tv ∈U(m)

1

Pr(s
(d)
tv ∈ U(m))

.

Let Xv (1 ≤ v ≤ DC(St)) denote a 0-1 random variable that satisfies

Xv =

 1 if
̂

F (St, s
(d)
tv) > 0

0 if
̂

F (St, s
(d)
tv) = 0

We define Yv as

Yv =
Xv − Pr(Xv = 1)

nPr(Xv = 1)
, 1 ≤ v ≤ DC(St).

18

The following theorem proves that D̂C(St) is an unbiased estimator of DC(St) and

provides the variance of D̂C(St).

Theorem 3.3.5. E(D̂C(St)) = DC(St) and the variance of D̂C(St), V ar(D̂C(St)) =∑
s
(d)
tv ∈Dis(St)

1− ̂
Pr(F (St,s

(d)
tv)>0)

Pr(
̂

F (St,s
(d)
tv)>0)

.

Proof. For all the s
(d)
tv ∈ Dis(St),

̂
F (St, s

(d)
tv) > 0 if and only if s

(d)
tv ∈ U(m) according to the

analysis in Section 3.3.1, thus D̂C(St) =
∑

s
(d)
tv ∈U(m)

1

Pr(
̂

F (St,s
(d)
tv)>0)

.

E(Xv) = Pr(
̂

F (St, s
(d)
tv) > 0), and thus

E(D̂C(St)) = E(
∑

s
(d)
tv ∈U(m)

1

Pr(
̂

F (St, s
(d)
tv) > 0)

) = E(
∑

s
(d)
tv ∈Dis(St)

Xv

Pr(
̂

F (St, s
(d)
tv) > 0)

)

=

DC(St)∑
v=1

E(Xv)

Pr(
̂

F (St, s
(d)
tv) > 0)

=

DC(St)∑
v=1

1 = DC(St)

Meanwhile

V ar(D̂C(St)) = V ar(
∑

s
(d)
tv ∈Dis(St)

Xv

Pr(
̂

F (St, s
(d)
tv) > 0)

)

=
∑

s
(d)
tv ∈Dis(St)

V ar(Xv)

Pr2(
̂

F (St, s
(d)
tv) > 0)

=
∑

s
(d)
tv ∈Dis(St)

1− Pr(̂
F (St, s

(d)
tv) > 0)

Pr(
̂

F (St, s
(d)
tv) > 0)

.

The following two lemmas and the theorem give a way to determine the sampling size

m according to ε and δ. The detailed proofs of Lemma 3.3.1 and Lemma 3.3.2 are as follows.

Lemma 3.3.1. Pr(|
∑DC(St)

v=1 Yv| ≥ DC(St)
n

ε) ≤ 2e
− ε2DC(St)

2

4V ar(D̂C(St)) .

Proof. Let nv be the number of appearance of s
(d)
tv in St. According to the definition of Yv,

E(Yv) =
E(Xv)− Pr(Xv = 1)

nPr(Xv = 1)
= 0

19

and

− 1

n
≤ Yv ≤

1− Pr(Xv = 1)

nPr(Xv = 1)
(3.6)

Since Pr(Xv = 1) = 1− (1− 1
nv

)m ≥ 1
nv
≥ 1

n
, |Yv| ≤ 1 according to formula (3.6).

According to Chernoff bound [58], we have

Pr(|
DC(St)∑
v=1

Yv| ≥
DC(St)

n
ε) ≤ 2e

− DC(St)
2ε2

4n2V ar(
∑DC(St)
v=1 Yv) (3.7)

Meanwhile, we also have

V ar(

DC(St)∑
v=1

Yv) =
V ar(D̂C(St))

n2
(3.8)

According to Formulas (3.7) and (3.8), Pr(|
∑DC(St)

v=1 Yv| ≥ DC(St)
n

ε) ≤ 2e
− ε2DC(St)

2

4V ar(D̂C(St)) .

Lemma 3.3.2. − ε2DC(St)2

4V ar(D̂C(St))
≤ ln(δ/2) if m ≥ ln(nε2)−ln(nε2+4nmaxln(2/δ))

ln(1−nmin/n) , where nmin and

nmax are the numbers of the appearances for the least appearing data and most appearing

data respectively.

Proof. Let nv be the number of appearance of s
(d)
tv in St. First, we have

(1− nv
n

)m

1− (1− nv
n

)m
≤

(1− nmin
n

)m

1− (1− nmin
n

)m
≤ nε2

4nmaxln(2/δ)
(3.9)

since m ≥ ln(nε2)−ln(nε2+4nmaxln(2/δ))
ln(1−nmin/n) and nmin ≤ nv, where nv is the number of appearance of

s
(d)
tv in St. According to Theorem 3.3.5 and Formula (3.9), we have

V ar(D̂C(St)) =
∑

s
(d)
tv ∈Dis(St)

1− Pr(̂
F (St, s

(d)
tv) > 0)

Pr(
̂

F (St, s
(d))
tv > 0)

=

DC(St)∑
v=1

(1− nv
n

)m

1− (1− nv
n

)m

≤
DC(St)∑
v=1

nε2

4nmaxln(2/δ)
=

DC(St)nε
2

4nmaxln(2/δ)

=
DC(St)

2nε2

4ln(2/δ)DC(St)nmax
≤ DC(St)

2nε2

4ln(2/δ)
∑DC(St)

v=1 nv
=
DC(St)

2ε2

4ln(2/δ)

20

that is, − ε2DC(St)2

4V ar(D̂C(St))
≤ ln(δ/2).

Theorem 3.3.6. D̂C(St) is an (ε, δ)-estimator of DC(St) if the sample size m ≥
ln(nε2)−ln(nε2+4nmaxln(2/δ))

ln(1−nmin/n) , where nmin and nmax are the numbers of the appearances for the

least appearing data and most appearing data respectively.

Proof. According to the definition of Xv (1 ≤ v ≤ DC(St)) and Yv (1 ≤ v ≤ DC(St)), we

have

D̂C(St) =
∑

s
(d)
tv ∈U(m)

1

Pr(s
(d)
tv ∈ U(m))

=

DC(St)∑
v=1

Xv

Pr(Xv = 1)

=

DC(St)∑
v=1

(nYv + 1) = DC(St) + n

DC(St)∑
v=1

Yv.

Thus,

Pr(Error(DC(St), D̂C(St)) ≥ ε) = Pr(
n

DC(St)
|
DC(St)∑
v=1

Yv| ≥ ε) = Pr(|
DC(St)∑
v=1

Yv| ≥
DC(St)

n
ε),

Based on the condition of the theorem, we have

m ≥ ln(nε2)− ln(nε2 + 4nmaxln(2/δ))

ln(1− nmin/n)

Then we have Pr(Error(DC(St), D̂C(St)) ≥ ε) ≤ 2eln(δ/2) = δ based on Lemma 3.3.1 and

Lemma 3.3.2. Thus, D̂C(St) is an (ε, δ)-estimator of DC(St).

3.3.4 (ε, δ)-Approximate Quantile

For any given r (0 ≤ r ≤ 1), the exact quantile, denoted by Q(St, r), satisfies that

Q(St, r) = argminsti{
|{stj|stj ≤ sti ∧ 1 ≤ j ≤ n}|

n
≥ r}

according to the definition given in Section 3.2.

Let fj = F (St, s
(d)
tj) denote the frequency of s

(d)
tj for any s

(d)
tj ∈ Dis(St), thus Formula

21

(3.10) can be reduced to

Q(St, r) = argmin
s
(d)
ti
{
∑
j

fj ≥ r ∧ s(d)tj ≤ s
(d)
ti }. (3.10)

Since fj is estimated by
̂

F (St, s
(d)
tj) in Section 3.3.1, the estimator of quantile, denoted by

Q̂(St, r), can be easily constructed. For simplicity, we use f̂j to denote
̂

F (St, s
(d)
tj). Therefore,

Q̂(St, r) = argmin
s
(d)
ti
{
∑
j

f̂j ≥ r ∧ s(d)tj ≤ s
(d)
ti }. (3.11)

Suppose that Q(St, r) and Q̂(St, r) are the k-th and k̂-th smallest values in Dis(St).

Since the actual relative error between Q(St, r) and Q̂(St, r) is hard to guarantee since it

depends on sensory data distribution, we use Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) to evaluate the relative

error between Q(St, r) and Q̂(St, r), where Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) =
|
∑k−1
i=1 fi−

∑k̂−1
i=1 fi|∑k−1

i=1 fi
. In

most cases, we have nmin
n

being less than the average of a group of estimated frequencies, and

we assume r > nmax
n

, then we have the following lemma. The detailed proof of the following

lemma is as follows.

Lemma 3.3.3. Error(
k−1∑
i=1

fi,
k̂−1∑
i=1

fi) ≤
|
∑k

i=1 f̂i −
∑k

i=1 fi|nmaxn+ nminnmax
nmin(nr − nmax)

.

Proof. According to the above analysis,

Error(
k−1∑
i=1

fi,
k̂−1∑
i=1

fi) =
|
∑k−1

i=1 fi −
∑k̂−1

i=1 fi|∑k−1
i=1 fi

=
|
∑k−1

i=1 fi −
∑k̂−1

i=1 fi|∑k
i=1 fi − fk

.

Since Q(St, r) = argmin
s
(d)
ti
{
∑

j fj ≥ r ∧ s(d)tj ≤ s
(d)
ti } and Q(St, r) is the k-th smallest value

in Dis(St),
∑k

i=1 fi ≥ r. Moreover, fk ≤ nmax
n

according to the conditions in the theorem.

Thus,

Error(
k−1∑
i=1

fi,

k̂−1∑
i=1

fi) ≤
|
∑k−1

i=1 fi −
∑k̂−1

i=1 fi|
r − nmax

n

.

If k̂ < k, |
∑k−1

i=1 fi −
∑k̂−1

i=1 fi| = |
∑k−1

i=k̂
fi| ≤ |

∑k−1
i=k̂

nmax
n
| = (k − k̂)nmax

n
. Similarly,

22

|
∑k−1

i=1 fi −
∑k̂−1

i=1 fi| = |
∑k̂−1

i=k fi| ≤ |
∑k̂−1

i=k
nmax
n
| = (k̂ − k)nmax

n
if k̂ ≥ k. Thus, |

∑k−1
i=1 fi −∑k̂−1

i=1 fi| ≤ |k̂ − k|
nmax
n

, so that

Error(
k−1∑
i=1

fi,
k̂−1∑
i=1

fi) ≤
|k̂ − k|nmax

n

r − nmax
n

=
|k̂ − k|nmax
nr − nmax

.

If k̂ = k, we have Pr(Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) ≥ ε) ≤ δ.

If k̂ > k, we have
∑k̂−1

i=1 f̂i < r,
∑k̂−1

i=k+1 f̂i < r −
∑k

i=1 f̂i,

k̂ − k <
∑k
i=1 fi−

∑k
i=1 f̂i∑k̂−1

i=k+1 f̂i/(k̂−k−1)
+ 1. And we suppose nmin

n
≤
∑k̂−1

i=k+1 f̂i/(k̂ − k − 1), thus

k̂ − k <
∑k
i=1 fi−

∑k
i=1 f̂i

nmin/n
+ 1. Then we have

Error(
k−1∑
i=1

fi,
k̂−1∑
i=1

fi) ≤
|
∑k

i=1 f̂i −
∑k

i=1 fi|nmaxn+ nminnmax
nmin(nr − nmax)

.

Based on Lemma 3.3.3, we have the following theorem to determine the sample size.

Theorem 3.3.7. Pr(Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) ≥ ε) ≤ δ if the sample size

m ≥ (
φδ/2nmaxn

2εnmin(nr − nmax)− 2nminnmax
)2(

nr

nmin
+ 1)

, where φδ/2 is the δ
2

fractile of the standard normal distribution, r is the input parameter,

and nmin and nmax are the numbers of the appearances for the least appearing data and most

appearing data respectively.

Proof. According to the property of normal distribution [59], we have
∑k

i=1 f̂i ∼ N(
∑k

i=1 fi,∑k
i=1 V ar(f̂i)), that is,

Pr(|
k∑
i=1

f̂i −
k∑
i=1

fi| ≥ φδ/2

√√√√ k∑
i=1

V ar(f̂i)) = δ. (3.12)

Since (k − 1)nmin
n
≤
∑k−1

i=1 fi < r, k < nr
nmin

+ 1. Based on the condition of the theorem,

23

m ≥ (
φδ/2nmaxn

2εnmin(nr−nmax)−2nminnmax)2(nr
nmin

+ 1), so that

m ≥ (
φδ/2nmaxn

2εnmin(nr − nmax)− 2nminnmax
)2k.

Since 0 ≤ fi ≤ 1, fi(1 − fi) ≤ 1
4

for all 1 ≤ i ≤ DC(St). According to Formula (3.10), we

have

m ≥ (
φδ/2nmaxn

εnmin(nr − nmax)− nminnmax
)2

k∑
i=1

fi(1− fi)

= m(
φδ/2nmaxn

εnmin(nr − nmax)− nminnmax
)2

k∑
i=1

V ar(f̂i)

based on Theorem 3.3.2. Therefore, φδ/2

√∑k
i=1 V ar(f̂i) ≤

εnmin(nr−nmax)−nminnmax
nmaxn

.

Then according to Formula (3.12), we have Pr(|
∑k

i=1 f̂i−
∑k

i=1 fi| ≥
εnmin(nr−nmax)−nminnmax

nmaxn
) ≤

δ, that is, Pr(
|
∑k
i=1 f̂i−

∑k
i=1 fi|nmaxn+nminnmax

nmin(nr−nmax) ≥ ε) ≤ δ. Since Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) ≤
|
∑k
i=1 f̂i−

∑k
i=1 fi|nmaxn+nminnmax

nmin(nr−nmax) according to Lemma 3.3.3, we have Pr(Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) ≥

ε) ≤ δ.

If k̂ < k, similarly, we have k − k̂ <
|
∑k̂
i=1 f̂i−

∑k̂
i=1 fi|

nmin/n
+ 1, Error(

∑k−1
i=1 fi,

∑k̂−1
i=1 fi) ≤

|
∑k̂
i=1 f̂i−

∑k̂
i=1 fi|nmaxn+nminnmax

nmin(nr−nmax) . We have

m ≥ (
φδ/2nmaxn

2εnmin(nr − nmax)− 2nminnmax
)2k ≥ (

φδ/2nmaxn

2εnmin(nr − nmax)− 2nminnmax
)2k̂

≥ m(
φδ/2nmaxn

εnmin(nr − nmax)− nminnmax
)2

k̂∑
i=1

V ar(f̂i).

Therefore, we have

φδ/2

√√√√ k̂∑
i=1

V ar(f̂i) ≤
εnmin(nr − nmax)− nminnmax

nmaxn

Then we have Pr(Error(
∑k−1

i=1 fi,
∑k̂−1

i=1 fi) ≥ ε) ≤ δ.

24

3.4 (ε, δ)-Approximate Aggregation Algorithms

To compute (ε, δ)-approximate frequency, (ε, δ)-approximate quantile, (ε, δ)-approximate

distinct-count, and (ε, δ)-approximate rank, the following three steps are required.

1. A proper sample size m needs to be determined according to ε, δ and the given aggre-

gation operation.

2. A distributed uniform sampling algorithm is needed to sample the sensory data from

a network, which will be discussed in Section 3.4.1.

3. The (ε, δ)-approximate aggregation results are calculated using the sampled data, which

will be introduced in Sections 3.4.2, 3.4.3, 3.4.4 and 3.4.5, respectively.

3.4.1 The Uniform Sampling Algorithm

When the sample size m is determined, the naive sampling algorithm consists of two

steps. First, the sink generates m random numbers in the range of {1, 2, 3, . . . , n} and

broadcasts in a network. Second, the sensor node whose id is one of the m numbers sends

its data to the sink.

However, as the simulation results shown in Fig.3.7, the above algorithm costs too

much energy since a large amount of raw data needs to be transmitted. Therefore, we divide

the whole network into k disjoint clusters C1, C2, . . . , Ck and adopt the uniform sampling

algorithm proposed by [54] to further reduce the communication cost during the sampling

process. For clarity, the uniform sampling algorithm is introduced as follows.

The uniform sampling algorithm is called the Uniform Sampling algorithm based on

Clusters (USC) which requires a network to be organized into clusters, and it has three

steps.

1. Each cluster randomly elects a node in it as the cluster-head. All the cluster-heads

are organized as a minimum hop-count spanning tree rooted at the sink using the

25

method in [60]. Because the cluster-heads are randomly selected and they have lim-

ited transmission range, it cannot guarantee that the cluster-heads from two adjacent

clusters could communicate with one-hop communication. Therefore, more ordinary

sensor nodes are selected in the spanning tree by a greedy routing method to keep it

connected.

2. The sink determines the sample size of each cluster as follows. First, the sink generates

a random number Yi with Pr(Yi = l) = nl
n

(1 ≤ i ≤ m), where nl is the number of the

nodes in cluster Cl. Second, the sample size of Cl, denoted by ml, is determined by

ml = |{Yi|Yi = l}| for each 1 ≤ l ≤ k, where k is the number of the clusters in a

network. Finally, the sink sends the sample size {ml | 1 ≤ l ≤ k} to the cluster heads

along the spanning tree.

3. When each cluster head receives the sample size, it samples the sensed data in its

own cluster by the aforementioned naive sampling algorithm. When a cluster head

receives the sampled data, the cluster head calculates the partial aggregation result

according to aggregation operation Agg. Finally, the obtained partial aggregation

result is transmitted and aggregated along the spanning tree towards the sink.

3.4.2 The (ε, δ)-Approximate Frequency Algorithm

For (ε, δ)-approximate frequency query, the problems need to be addressed are as follows.

1. How to calculate the partial frequency result inside each cluster.

2. How to aggregate the partial frequency results during transmission.

3. How to return the (ε, δ)-frequency result when the sink receives the partial frequency

results from the network.

There are three steps to solve the first problem. First, for each cluster head of the

clusters Cl (1 ≤ l ≤ k), it uniformly generates random numbers k1, k2, . . . , kml when it

receives ml from the sink. Then, it broadcasts k1, k2, . . . , kml inside the cluster. Second,

26

the member node whose id is one of {k1, k2, . . . , kml} sends its sensory value to the cluster-

head. The cluster-head can then receive the sample data U(ml) = {stk1 , stk2 , . . . , stkml} from

its own cluster. Third, the cluster-head calculates the partial frequency result Fre(U(ml))

according to sample data stk1, stk1, . . . , stkml .

For the second problem, there are three steps.

1. For each node j in the spanning tree, it sets Frej to ∅.

2. For each node j in the spanning tree, send Fre(U(mj)) to its parent node if j is a leaf

node. Otherwise, j receives the partial frequency results from its children and merges

them to have Frej.

3. If j is the sink, it returns Frej as the final result. If j is not the sink, it sends Frej to

its parent.

Finally, it is easy to solve the third problem when the sink receives the partial frequency

result Fre from the network. The whole algorithm is shown in Algorithm 1.

According to the analysis in Section 3.3.1, the sample size m = min(d
φ2
δ/2

ε2
(n
nmin
−1)e, n),

thus m = O(
φ2
δ/2

ε2
) = O(1

ε2
ln(1

δ
)). In practice, |Fre| can be regarded as a constant. According

to [54], the communication cost and the energy cost of the (ε, δ)-frequency algorithm is

O(|Fre| 1
ε2
ln1

δ
) = O(1

ε2
ln1

δ
).

3.4.3 (ε, δ)-Approximate Rank Algorithm

Since the rank of v is equal to the frequency of the sensory values being less than v, a rank

query is a special case of the frequency query. Therefore, the algorithm to calculate (ε, δ)-

approximate rank can be easily obtained by slightly modifying the (ε, δ)-frequency algorithm.

The detailed (ε, δ)-approximate rank algorithm is omitted due to space limitation.

The communication and computation complexities of the (ε, δ)-approximate rank al-

gorithm are the same as those of the (ε, δ)-approximate frequency algorithm, which are

O(1
ε2
ln1

δ
).

27

Algorithm 1: (ε, δ)-Approximate Frequency Algorithm

Input: ε, δ
Output: (ε, δ)-approximate frequency

1 m = min(d
φ2
δ/2

ε2
(n
nmin
− 1)e, n);

2 generate Yi following Pr(Yi = l) = nl
n

, where nl is the number of the nodes in cluster
Cl (1 ≤ i ≤ m, 1 ≤ l ≤ k);

3 ml = |{Yi | Yi = l}| (1 ≤ i ≤ m, 1 ≤ l ≤ k), the sink sends ml to each cluster head
by multi-hop communication;

4 for each cluster head of the clusters Cl (1 ≤ l ≤ k) do
5 generates random numbers k1, k2, . . . , kml , then broadcast inside the cluster;
6 end
7 for each cluster member of the clusters Cl (1 ≤ l ≤ k) do
8 send sensory value to cluster head if id ∈ {k1, k2, . . . , kml};
9 end

10 for each cluster head of the clusters Cl (1 ≤ l ≤ k) do
11 receive sample data U(ml) and calculate partial frequency result Fre(U(ml));
12 end
13 for each node j in the spanning tree do
14 Frej = ∅;
15 send Fre(U(mj)) to parent if j is a leaf, otherwise get Frej by merging

children’s results;
16 return Frej if j is the sink, otherwise send Frej to parent;

17 end

3.4.4 (ε, δ)-Approximate Distinct-count Algorithm

Based on the analysis in Section 3.3, the mathematical estimator of distinct-count sat-

isfies

D̂C(St) =
∑

s
(d)
tv ∈U(m)

1

1− (1− F (St, s
(d)
tv))m

. (3.13)

However, it is impossible to obtain the accurate frequency in Formula (3.13). In practice, the

approximate frequency computed in Section 3.4.2 can be used to calculate (ε, δ)-approximate

distinct-count as follows

D̂C(St)
′
=

∑
s
(d)
tv ∈U(m)

1

1− (1− ̂
F (St, s

(d)
tv))m

. (3.14)

28

Obviously, the approximate frequency will introduce new error to the approximate distinct-

count result. Therefore, the sample size must be further enlarged to guarantee that the

returned distinct-count result is the (ε, δ)-estimator of the exact one.

Fortunately, the following theorem provides a method to determine the sample size m to

derive (ε, δ)-approximate distinct-count. To prove Theorem 3.4.1, the following two lemmas

needs to be guaranteed firstly. The detailed proofs of Lemma 3.4.1 and Lemma 3.4.2 are as

follows.

Lemma 3.4.1. Let p and p̂ be the frequency of an element in St, then Error(1
1−(1−p)m ,

1
1−(1−p̂)m) ≤

ε(1−(1−ε)nmin/n)b
m
2 c

1−ε if Error(p, p̂) ≤ ε.

Proof. If p̂ > p, we have p̂ = (1 + δ)p, 0 < δ ≤ ε

Error(
1

1− (1− p)m
,

1

1− (1− p̂)m
) =

(1− p)m − (1− p̂)m

1− (1− p̂)m
≤ (1− p)m − (1− p̂)m

1− (1− p)m

=
((1− p)− (1− p̂))

∑m−1
i=0 (1− p)m−1−i(1− p̂)i

p
∑m−1

i=0 (1− p)i

= δ

∑m−1
i=0 (1− p)m−1−i(1− p̂)i∑m−1

i=0 (1− p)i
≤ δ

∑m−1
i=0 (1− p)m−1−i(1− p)i∑m−1

i=0 (1− p)i
= δ

m(1− p)m−1∑m−1
i=0 (1− p)i

According to the property of concave function, we have (1 − p)i + (1 − p)m−i−1 ≥

2(1− p)dm2 e−1, thus
∑m−1

i=0 (1− p)i ≥ m(1− p)dm2 e−1, in other words

Error(
1

1− (1− p)m
,

1

1− (1− p̂)m
) ≤ δ

m(1− p)m−1

m(1− p)dm2 e−1
≤ ε(1− nmin

n
)b
m
2
c

If p̂ ≤ p, we have p̂ = (1− δ)p, 0 ≤ δ ≤ ε

Error(
1

1− (1− p)m
,

1

1− (1− p̂)m
) =

(1− p̂)m − (1− p)m

1− (1− p̂)m

=
((1− p̂)− (1− p))

∑m−1
i=0 (1− p̂)m−1−i(1− p)i

p̂
∑m−1

i=0 (1− p̂)i

29

≤ δ

1− δ
×
∑m−1

i=0 (1− p̂)m−1−i(1− p̂)i∑m−1
i=0 (1− p̂)i

=
δ

1− δ
× m(1− p̂)m−1∑m−1

i=0 (1− p̂)i

≤ δ

1− δ
× m(1− p̂)m−1

m(1− p̂)dm2 e−1
=

δ

1− δ
× (1− p̂)b

m
2
c ≤ ε(1− (1− ε)nmin/n)b

m
2
c

1− ε
.

And it is easy to prove

ε(1− nmin
n

)b
m
2
c <

ε(1− (1− ε)nmin/n)b
m
2
c

1− ε

Then this lemma is proved.

Lemma 3.4.2. If Error(1

1−(1−F (s
(d)
tv))m

, 1

1−(1−F̂ (s
(d)
tv))m

) and the error of distinct count are both

at most
√

1 + ε− 1, the error of the final result is at most ε

Proof. Let Error(1

1−(1−F (s
(d)
tv))m

, 1

1−(1−F̂ (s
(d)
tv))m

) = ε′, then we have

(1− ε′)D̂C(St) ≤ D̂C(St)
′
≤ (1 + ε′)D̂C(St)

Let ε′′ be the error of distinct count based on accurate frequency, we have

(1− ε′′)DC(St) ≤ D̂C(St) ≤ (1 + ε′′)DC(St)

(1− ε′)(1− ε′′)DC(St) ≤ D̂C(St)
′
≤ (1 + ε′)(1 + ε′′)DC(St)

Let ε′ = ε′′, (1−ε′)(1−ε′′) = 1−ε, then ε′ = ε′′ = 1−
√

1− ε. Let ε′ = ε′′, (1+ε′)(1+ε′′) =

1 + ε, we have ε′ = ε′′ =
√

1 + ε − 1. And it is easy to prove 1 −
√

1− ε >
√

1 + ε − 1, so

this lemma is proved.

Theorem 3.4.1. D̂C(St)
′

is the (ε, δ)-estimator of DC(St) if the sampling size m sat-

isfies m ≥ max(m1,m2). m1 = ln(n(
√
ε+1−1)2)−ln(n(

√
ε+1−1)2+4nmaxln(2/(1−

√
1−δ)))

ln(1−nmin/n) , m2 =

φ(1−
√
1−δ)/2
ε′2

(n
nmin
− 1), where ε′ is the solution of the equation ε′(1−(1−ε′)nmin/n)b

m1
2 c

1−ε′ =
√

1 + ε−

1.2

30

Algorithm 2: (ε, δ)-Approximate Distinct Count Algorithm

Input: ε, δ
Output: (ε, δ)-approximate distinct count

1 ε1 =
√

1 + ε− 1;

2 δ1 = 1−
√

1− δ;
3 m1 = d ln(nε

2
1)−ln(nε21+4nmaxln(2/δ1))

ln(1−nmin/n) e;

4 Solve the equation
ε2(1−(1−ε2)

nmin
n

)bm1/2c

1−ε2 = ε1;

5 m2 = d
φ2
δ1/2

ε22
(n
nmin
− 1)e;

6 m = min(max(m1,m2), n);
7 get the approximate frequency Fre with sample size m;
8 sum = 0;
9 for i = 1 to |Fre| do

10 temp = 1 + (1− Fre.Count[i])m;
11 sum = sum+ 1/temp;

12 end
13 return sum;

Proof. According to Lemma 3.4.1 and the definitions of m1 and m2, we know that

Error(1

1−(1−F (s
(d)
tv))m

, 1

1−(1−F̂ (s
(d)
tv))m

) and the error of distinct count based on accurate fre-

quency are both at most
√

1 + ε− 1. According to Lemma 3.4.2, the error of the final result

is at most ε.

Moreover, according to the definitions of m1 and m2, the probability of returning over-

error results for frequency and distinct count are both at most 1−
√

1− δ, so the probability

of returning an over-error final result is at most δ. It satisfies the definition of (ε, δ)-estimator.

Then we can calculate (ε, δ)-approximate distinct-count based on the approximate fre-

quency. The detailed algorithm is shown in Algorithm 2.

Since this algorithm is based on the approximate frequency algorithm, the commu-

nication cost and the energy cost of the (ε, δ)-approximate distinct-count algorithm is

O(m) = O(1
ε22
ln 1

δ1
) = O(1

ε22
ln1

δ
).

31

Algorithm 3: (ε, δ)-Approximate Quantile Algorithm

Input: ε, δ, rank r
Output: (ε, δ)-approximate value

1 m1 = d(φδ/2nmaxn

2εnmin(nr−nmax)−2nminnmax)2(nr
nmin

+ 1)e;
2 m2 = d(φδ/2nmaxn

2εnmin(n(1−r)−nmax)−2nminnmax)2(n(1−r)
nmin

+ 1)e;
3 m = min(m1,m2, n);
4 get the approximate frequency Fre with sample size m;
5 sum = 0;
6 if m1 < m2 then
7 for i = 1 to |Fre| do
8 sum = sum+ Fre.Count[i];
9 if sum ≥ r then

10 return Fre.V alue[i];
11 end

12 end

13 else
14 for i = |Fre| to 1 do
15 sum = sum+ Fre.Count[i];
16 if sum ≥ 1− r then
17 return Fre.V alue[i];
18 end

19 end

20 end

3.4.5 (ε, δ)-Approximate Quantile Algorithm

Suppose that Dis(St) is in an ascending order. For any given r, a quantile query can

be processed by adding the frequency of each item in Dis(St) one by one until the sum

exceeds r. Similarly, if Dis(St) is in a descending order, we can return the quantile result by

adding the frequency of each item one by one until the sum is greater than 1− r. Thus, the

(ε, δ)-approximate quantile algorithm can also be obtained by revising the (ε, δ)-approximate

frequency algorithm. The detailed algorithm is shown in Algorithm 3.

Similarly, the communication cost and the energy cost of the (ε, δ)-approximate quantile

algorithm is O(m) = O(
φδ/2
ε2

) = O(1
ε2
ln1

δ
).

32

3.5 Simulation Results

To evaluate the proposed algorithms, we stimulated a network with 5000 nodes. The

nodes are randomly distributed in a rectangular region with size 300m× 300m. The sink is

placed in the center of the region. The region is divided into 10 × 10 grids and the nodes

in the same gird are grouped into the same cluster. The cluster head is randomly chosen

among all the nodes in the same grid. According to [4], for each node, the energy cost to

send and receive one byte are set to be 0.0144mJ and 0.0057mJ, respectively. The results in

[61] for the same type of sensor nodes indicate that the radio range of a sensor node could

be 50m or even longer. Therefore, the radio range of each sensor node is set to be 30
√

2m

so that every sensor node can communicate with its cluster head by one-hop message.

3.5.1 Evaluation of Sample Size and Relative Error

The first group of simulations is to investigate the relationship among ε, δ and the sample

size. Since we consider four aggregation operations in this chapter, the required sample sizes

for different operations are calculated respectively with different ε and δ. The results are

presented in Fig.3.1(a), Fig.3.1(b), Fig.3.1(c) and Fig.3.1(d). All the four figures show that

the sample size increases with the decline of ε and δ since more sample data are needed when

the specified precision is high. Meanwhile, all the sample sizes are very small compared with

the size of the network. For example, when ε = δ = 0.2, the required sample size is about

550 for deriving (ε, δ)-approximate frequency while the size of the network is 5000, which

means that we only need to sample 11% sensory data from the network to guarantee that

the probability of the relative error of approximate frequency being less than 0.2 is greater

than 0.8. Therefore, our USC algorithm saves lots of energy since a little amount of sensory

data is sampled and transmitted in the network.

The second group of simulations is to investigate the relationship among the relative

error of the final result while ε varies from 0.35 to 0.15 and δ varies from 0.05 to 0.2 for the

(ε, δ)-approximate frequency algorithm and (ε, δ)-approximate rank algorithm. Fig.3.2(a)

33

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

0

500

1000

1500

2000

2500

epsilondelta

s
a
m

p
le

 s
iz

e

(a) Frequency

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

0

200

400

600

800

1000

epsilondelta

s
a
m

p
le

 s
iz

e

(b) Rank

0.15
0.2

0.25
0.3

0.35

0.05

0.1

0.15

0.2

200

300

400

500

600

700

epsilondelta

s
a
m

p
le

 s
iz

e

(c) Distinct-count

0.28

0.3

0.32

0.34

0.05

0.1

0.15

0.2

0

500

1000

1500

2000

epsilondelta

s
a
m

p
le

 s
iz

e

(d) Quantile

Figure 3.1. The relationship among ε, δ and the sample size.

and Fig.3.2(b) show the results. We can see the approximate algorithms can achieve the

specified precision. The results also show that our algorithms can obtain an arbitrary preci-

sion.

The third group of simulations is to investigate the relationship between the relative

error of the final result and the sampling ratio while the sampling ratio varies from 0.05 to

0.4 for the (ε, δ)-approximate frequency algorithm and (ε, δ)-approximate rank algorithm.

The results are shown in Fig.3.3(a) and Fig.3.3(b). The results show that in most cases, the

error decreases with the increase of sample ratio since more sensory data are sampled.

The forth group of simulations is to investigate the relationship among the relative

error of the final result, the sampling ratio and the network size for the (ε, δ)-approximate

34

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2
0.05

0.1

0.15

0.2

0.25

epsilon
delta

re
la

ti
v
e
 e

rr
o
r

(a) Frequency

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2
0.05

0.1

0.15

0.2

0.25

epsilon
delta

re
la

ti
v
e
 e

rr
o
r

(b) Rank

Figure 3.2. The relationship among ε, δ and the relative error.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

sample ratio

re
la

ti
v
e
 e

rr
o
r

lower bound=1/15

lower bound=2/15

(a) Frequency

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

sample ratio

re
la

ti
v
e
 e

rr
o
r

lower bound=0.25

lower bound=0.5

(b) Rank

Figure 3.3. The relationship between the sampling ratio and the relative error.

frequency algorithm and (ε, δ)-approximate rank algorithm. The sampling ratio varies from

0.1 to 0.5 and the network size varies from 2500 to 100000. The results are presented in

Fig.3.4(a) and Fig.3.4(b). The results show that for different network sizes, in most cases,

the error decreases with the increase of sampling ratio since more sensory data are sampled.

It is also easy to find that for the same sampling ratio, the error of the result decrease with

the increase of network size since for the same sampling ratio, the sample size increases with

the increase of network size. It indicates that our algorithms are suitable for large-scale

networks.

35

0.1
0.2

0.3
0.4

0.5

10
4

10
5

0

0.05

0.1

0.15

0.2

sampling rationetwork size

re
la

ti
v
e
 e

rr
o
r

(a) Frequency

0.1

0.2

0.3

0.4

0.5

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

sampling ratio
network size

re
la

ti
v
e
 e

rr
o
r

(b) Rank

Figure 3.4. The relationship among network size, sampling ratio and relative error.

0.05 0.1 0.15 0.2
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

delta

ra
ti
o

over−error ratio

value of delta

(a) Frequency

0.05 0.1 0.15 0.2
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

delta

ra
ti
o

over−error ratio

value of delta

(b) Rank

Figure 3.5. The relationship between δ and the over-error ratio.

The fifth group of simulations is to investigate the relationship between the ratio of

results whose error is larger than ε and δ for the (ε, δ)-approximate frequency algorithm and

(ε, δ)-approximate rank algorithm. ε is set to 0.2 and δ varies from 0.05 to 0.2. The results

are shown in Fig.3.5(a) and Fig.3.5(b). We can see that although this ratio increases with

the increase of δ, it is lower than δ. That means these algorithms can return the approximate

results which satisfy the required precision requirement with a probability greater than 1− δ

as expected.

36

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

10

20

30

40

50

epsilon
delta

e
n
e
rg

y
 c

o
s
t
 (

m
J
/B

y
te

)

(a) Frequency

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

10

15

20

25

30

epsilondelta

e
n
e
rg

y
 c

o
s
t
 (

m
J
/B

y
te

)

(b) Rank

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

14

16

18

20

22

epsilondelta

e
n
e
rg

y
 c

o
s
t
 (

m
J
/B

y
te

)

(c) Distinct-count

0.28

0.3

0.32

0.34

0.05

0.1

0.15

0.2

15

20

25

30

35

40

epsilon
delta

e
n
e
rg

y
 c

o
s
t
 (

m
J
/B

y
te

)

(d) Quantile

Figure 3.6. The relationship among ε, δ and the energy cost.

3.5.2 Evaluation of Energy Cost

The first group of simulations is to investigate the relationship among ε, δ and the energy

cost. The energy costs for different operations are calculated respectively with different ε

and δ. The results are shown in Fig.3.6(a), Fig.3.6(b), Fig.3.6(c) and Fig.3.6(d). All the four

figures show that the energy cost increases with the decline of ε and δ since more sample

data are needed when the specified precision is high.

The second group of simulations is to compare the total payload size of the transmitted

packets between the naive sampling algorithm and the USC algorithm during the process of

broadcasting the sampling information. The results are shown in Fig.3.7. According to the

37

frequency rank distinct count quantile
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

different operations

to
ta

l
p

a
y
lo

a
d

 s
iz

e
 (

B
y
te

)

USC

naive sampling algorithm

Figure 3.7. The data flow comparison

frequency rank distinct count quantile
0

100

200

300

400

500

600

different operations

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

USC algorithm

simple distributed algorithm

centralized algorithm

Figure 3.8. The energy cost comparison

results, the USC algorithm has much smaller total payload size since the payload of packets

transmitted in the USC algorithm only contains the sample size in each cluster rather than

the IDs of all the sampled nodes. Therefore, the total energy cost of the USC algorithm is

largely reduced comparing with the naive sampling algorithm.

The third group of simulations is to compare the energy cost between the USC algorithm,

the simple distributed algorithm and the centralized algorithm. We set ε = δ = 0.2. The

results are shown in Fig.3.8, which indicate the USC algorithm has the least energy cost

among all the three aggregation algorithms. Furthermore, since data are aggregated during

transmission, the energy cost of the simple distributed algorithm is much smaller than that

of the centralized one.

The forth group of simulations investigates the relationship between the packet loss rate

and the energy cost. In this group of simulations, the packet loss rate of data transmission

between two sensor nodes changes from 0 to 0.9 and we set ε = δ = 0.2. We use the stop-

and-wait protocol [62] to do retransmission to make sure the sink node could still receive

the sensory data. The results are shown in Fig.3.9. The results indicate that for both the

USC algorithm and the simple distributed algorithm, their energy cost increases with the

increase of packet loss rate due to additional packet retransmission. However, the energy cost

for the USC algorithm is still much smaller than that of the simple distributed algorithm,

which means the USC algorithm has high performance even when the pocket loss rate is

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

packet loss rate

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

USC

simple distributed algorithm

(a) Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

packet loss rate

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

USC

simple distributed algorithm

(b) Rank

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

packet loss rate

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

USC

simple distributed algorithm

(c) Distinct-count

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

packet loss rate

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

USC

simple distributed algorithm

(d) Quantile

Figure 3.9. The relationship between packet loss rate and the energy cost.

high, and the energy cost of the simple distributed algorithm is almost the same for the

four operations. The reason is that the simple distributed algorithm needs to collect all

the sensory data, while the USC algorithm only needs to transmit a sample in the network.

Thus, the number of data packets transmitted by the USC algorithm is quite smaller, so

that the retransmitting times of the USC algorithm is also much smaller compared with the

simple distributed algorithm when a packet is missing. Finally, the energy consumed by the

USC algorithm is much less than that of the simple distributed algorithm.

The fifth group of simulations is about the energy cost in small scale networks. The

results are presented in Fig.3.10. The values of both ε and δ are set to 0.3 and the network

39

100 150 200 250 300 350 400 450 500
4

6

8

10

12

14

16

18

20

network size

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

USC frequency

USC rank

USC distinct count

USC quantile

simple distributed algorithm

Figure 3.10. Energy cost comparison for
small scale network

frequency rank distinct count quantile
0

5

10

15

20

25

different operations

e
n
e
rg

y
 c

o
s
t
(m

J
/B

y
te

)

Grid

LEACH

Figure 3.11. Energy cost comparison for
different clustering methods

size varies from 100 to 500. Based on the results, the energy costs of the USC algorithm is

still smaller than that of the simple distributed algorithm even in small-scale networks since

it only uses the sample data instead of the raw sensory data to process queries. Furthermore,

the energy cost of the USC algorithm increases slowly with the growth of network size, which

also verifies that our USC algorithm is suitable for large scale networks.

In the sixth group of simulations, another famous clustering method, LEACH [63], is

considered. The results are shown in Fig.3.11. We can see that the USC algorithm consumes

low energy to deal with the four aggregation operations when different clustering methods

are employed.

3.6 Conclusions

In this chapter, the (ε, δ)-approximate algorithms for the frequency, rank, distinct-count

and quantile aggregation operations in networks are proposed. Furthermore, the sample

size which can make the final result to satisfy the specified precision and failure probability

requirements is derived. In addition, a cluster-based uniform sampling algorithm is provided.

The simulation results show that the proposed algorithms have high performance on both

energy cost and accuracy.

40

Chapter 4

BERNOULLI SAMPLING BASED APPROXIMATE HOLISTIC

AGGREGATION IN MOBILE SENSING

4.1 Introduction

With the development of wireless communication techniques and embody systems, the

Cyber Physical Systems (CPSs) [64] are being rapidly developed and widely employed. As

an important CPS instance, Mobile Ad hoc Networks (MANETs) play an important role in

many areas such as industrial control and intelligent traffic systems. MANETs are continu-

ously self-configured and infrastructure-less networks consisting of mobile nodes. The mobile

nodes in a MANET are able to communicate using wireless links. This kind of networks can

be widely used in many applications such as pollution monitoring, animal surveillance, etc.

[65]. Many works such as [66], [67] [68] study the problem of routing, fuzzy intrusion detec-

tion and performance evaluation in MANETs.

Frequency query is a popular operation in MANETs aiming at acquiring the frequency

of some values in a sensory data set. For example, a frequency query can help with estimating

the numbers of the injured persons and survivors in a disaster [69].

For many MANET applications, the monitoring period is quite long and the size of the

network is very large, so that the amount of sensory data in a MANET could exceed the

affordable processing cost [70] [71] [72]. Although an exact frequency result can be calculated

by collecting all the sensory data and aggregating partial results during the transmission, it

results in a huge amount of energy consumption. Moreover, because most nodes in a MANET

are mobile and each node’s communication radius is limited, the isolated nodes cannot send

their data immediately. Then a severe delay may be incurred to wait for the isolated nodes

to get connected with some other nodes in the network. The above example indicates that

special techniques should be applied to deal with the big sensory data in MANETs [73].

41

Currently, many MANET applications are in favor of approximate results for the pur-

pose of energy conservation and reduced delay [74] [75] [76] [77] [78] [79]. Although the

algorithms in the previous chapter and the works in [54] and [55] propose approximate da-

ta aggregation algorithms in Wireless Sensor Networks (WSNs). However, they cannot be

employed in MANETs because these algorithms are for stationary networks.

In this part, a Bernoulli sampling based approximate algorithm to process frequency

queries in MANETs is proposed. This algorithm is able to return the query result which

satisfies the user-specified precision and failure probability. The simulation results show

that on the aspects of both energy efficiency and accuracy, the proposed algorithm has high

performance.

4.2 Problem Definition

4.2.1 Network Model

Suppose there is a MANET with n mobile nodes. The set of all the mobile nodes in a

MANET is denoted by S = {s1, s2, . . . , sn}. All the mobile nodes are deployed in an l × l

square uniformly, randomly and independently. All the mobile nodes are moving under the

random waypoint model [80]. For each mobile node, the destination, speed and pause time

during the movement are chosen in [0, l)2, [vmin, vmax) and [pmin, pmax) uniformly, randomly

and independently. At time t, a frequency query is proposed by query node q located at

position (l
2
, l
2
). All the mobile nodes including the query node have communication radius

r. For ∀u, v ∈ S ∪ {q}, let dis(u, v) be the Euclidean distance between u and v. Suppose u

and v can communicate if dis(u, v) ≤ r. Obviously, since all the nodes are moving and the

communication radius r is not large, that is, not all the nodes can communicate with the

query node in one or multiple hops. Then we use S ′ to denote the set of the nodes which

can communicate with the query node in one or multiple hops. We assume the topology of

a MANET changes between different queries while the network topology remains the same

during one particular query even if it needs multiple hops for data transmission. The reason

42

is that, compared with the time for transmitting limited bytes of data using wireless links,

longer time is needed for the change of the the network topology.

4.2.2 Frequency Queries

Suppose a query is proposed at time t. For mobile node v, d(v, t) is the sensory data

collected by v at time t. For mobile node set V , D(V, t) is the sensory data set containing all

the data collected by all the nodes in V at time t. We assume all the possible values of the

sensory data set distribute uniformly for all the nodes. Spatial and temporal correlations of

sensory data are ignored. In this chapter, the ordinary frequency queries, i.e., single value

frequency queries and range frequency queries, are studied. An ordinary frequency query is

to get the frequency of each distinct value in a sensory data set. For a given data set D, the

exact ordinary frequency query result of D is denoted by

F (D, x) =
|{d ∈ D | d = x}|

|D|

where x is any distinct value in D.

In some applications, we only need the frequency of some particular value rather than

the frequency of all the distinct values in a data set. For example, we may only concern

about the frequency of injured persons in a disaster [69]. For a given data set D and a

particular value x′, the exact single value frequency is defined as

SF (D, x′) =
|{d ∈ D | d = x′}|

|D|
.

Some sensory data vary continuously in many applications, such as temperature data,

humidity data and so on. For such sensory data, it is almost impossible and impractical

to evaluate the frequency of a specific value. Therefore, a range frequency becomes more

meaningful. For a given data set D and a user-specified range [Min, Max], the exact range

43

frequency is defined as

RF (D,Min,Max) =
|{d ∈ D | d ∈ [Min,Max]}|

|D|
.

If Min = −∞, RF (D,Min,Max) is the frequency of data being less than or equal to Max.

If Max = +∞, RF (D,Min,Max) is the frequency of data being greater than or equal to

Min.

In this chapter, we study how to obtain an (ε, δ)-approximate frequency query result

for an ordinary frequency query, a single value frequency and a range frequency query,

respectively. The problem of computing (ε, δ)-approximate frequency is then defined as

Input: A MANET with n nodes, the sensory data set Dt, ε (ε > 0) and δ (0 ≤ δ ≤ 1).

Output: (ε, δ)-approximate frequency result.

4.3 Preliminaries

In this section, detailed methodology regarding how to decide an optional sampling

probability is introduced. We use φδ/2 to denote the δ/2 fractile of the standard normal

distribution and inf(x) to denote the lower bound of value x.

4.3.1 Basics of Sampling Probability for Ordinary Frequency Queries

Let B(D, q) = {b1, b2, . . . , b|B(D,q)|} denote a Bernoulli sample of data set D =

{d1, d2, . . . , d|D|} with sample probability q. Count(D) = |D| is the exact size of D. Then

the estimator of Count(D) is ̂Count(D) = |B(D,q)|
q

[55]. Furthermore, we have the following

theorem proved in [55].

Theorem 4.3.1. ̂Count(D) is an unbiased estimator of Count(D). ̂Count(D) is an (ε, δ)-

estimator of Count(D) if sampling probability q satisfies q ≥
φ2
δ/2

inf(|D|)ε2+φ2
δ/2

. 2

44

Let I(a, b) be a variable such that

I(a, b) =

 1 if a=b

0 otherwise

Let Equal(D, x) be the number of elements equal to value x in data set D, then we

have

Equal(D, x) = |{di ∈ D | di = x}| =
∑
di∈D

I(di, x).

The estimator of Equal(D, x) is defined as

̂Equal(D, x) =
1

q

∑
di∈B(D,q)

I(di, x).

The following theorem indicates that ̂Equal(D, x) is an unbiased estimator of Equal(D, x)

and provides the variance of ̂Equal(D, x).

Theorem 4.3.2. ̂Equal(D, x) is an unbiased estimator of Equal(D, x) and

V ar(̂Equal(D, x)) ≤ 1−q
q
Equal(D, x). 2

Proof : For all 1 ≤ i ≤ |D|, let random variable Xi be

Xi =


1 if di ∈ B(D, q)

0 if di /∈ B(D, q)

We have E(Xi) = q and V ar(Xi) = q(1− q), then

E(̂Equal(D, x)) =
E(
∑

di∈D I(di, x)Xi)

q
=

∑
di∈D I(di, x)E(Xi)

q
= Equal(D, x)

V ar(̂Equal(S, x)) =

∑
di∈D I

2(di, x)V ar(Xi)

q2
≤ 1− q

q
Equal(S, x). 2

45

Theorem 4.3.3. ̂Equal(D, x) is an (ε, δ)-estimator of Equal(D, x) if sampling probability

q satisfies q ≥
φ2
δ/2

ε2inf(|D|)inf(F (D,x))+φ2
δ/2

. 2

Proof : According to the center limit theory [57], if sample size m ≥ 30, then

̂Equal(D, x) ∼ N(E[̂Equal(D, x)], V ar[̂Equal(D, x)])

where N(E, V) denotes a normal distribution with expectation E and variance V . Since the

required sample size is far more than 30 for most cases due to the large scale of a MANET,

we can assume
̂Equal(D, x)− Equal(D, x)√
V ar[̂Equal(D, x)]

∼ N(0, 1).

Thus,

Pr(| ̂Equal(D, x)− Equal(D, x)| ≥ φδ/2

√
V ar[̂Equal(D, x)]) = δ.

Based on the condition, we have

φδ/2

√
V ar(̂Equal(D, x)) ≤ εEqual(D, x).

Therefore,

Pr(
| ̂Equal(D, x)− Equal(D, x)|

Equal(D, x)
≥ ε) ≤ δ. 2

4.3.2 Sampling Probability for Ordinary Frequency Queries

The estimator of F (D, x) is defined as

F̂ (D, x) =
̂Equal(D, x)

̂Count(D)

where x is any distinct value in D. Using the similar strategy in [55], it is easy to have the

following corollary.

Corollary 4.3.1. If sampling probability q < 1, F̂ (D, x) is a biased estimator of F (D, x). If

46

both ̂Equal(D, x) and ̂Count(D) are the (ε
2+ε

, δ
2
)-estimator of Equal(D, x) and Count(D),

then F̂ (D, x) is an (ε, δ)-estimator of F (D, x). 2

However, not all the nodes can communicate with the query node in one or multiple

hops. At time t, we can only do data aggregation on D(S ′, t). So we can only get the (ε, δ)-

approximate ordinary frequency result of D(S ′, t). Fortunately, the following corollaries offer

a solution to this problem.

Data set D(S ′, t) can be regarded as a sample of D(S, t) without replacement with

sampling ratio |D(S′,t)|
|D(S,t)| = |S′|

|S| . F (D(S ′, t), x) can be regarded as an estimator of F (D(S, t), x).

According to [81], it is easy to have the following corollary using the similar strategy in the

proof of Theorem 4.3.3.

Corollary 4.3.2. F (D(S ′, t), x) is an unbiased estimator of F (D(S, t), x). If we have

F (D(S ′, t), x) as an (ε, δ)-estimator of F (D(S, t), x), then ε and δ satisfy that φ2
δ/2(

1
inf(F (D(S,t),x))

−

1)(1
|S′| −

1
|S|) ≤ ε2. 2

Suppose we have ̂F (D(S ′, t), x) as an (ε1, δ1)-estimator of F (D(S ′, t), x) and F (D(S ′, t), x)

as an (ε2, δ2)-estimator of F (D(S, t), x), respectively. According to the definition of (ε, δ)-

estimator, we have the following corollary.

Corollary 4.3.3. ̂F (D(S ′, t), x) is an (ε, δ)-estimator of F (D(S, t), x) if (1− δ1)(1− δ2) ≥

1− δ, (1 + ε1)(1 + ε2) ≤ 1 + ε and (1− ε1)(1− ε2) ≥ 1− ε. 2

Finally, according to the above theorems and corollaries, we have the final method-

ology to calculate sampling probability q according to the specified ε and δ which make

̂F (D(S ′, t), x) to be an (ε, δ)-estimator of F (D(S, t), x). The detailed steps are listed below.

First, find a possible pair of ε1 and δ1 satisfying the following condition according

to the input ε and δ: (1 − δ1)(1 − δ2) ≥ 1 − δ, (1 + ε1)(1 + ε2) ≤ 1 + ε, (1 − ε1)(1 −

ε2) ≥ 1 − ε, φ2
δ2/2

(1
inf(F (D(S,t),x))

− 1)(1
|S′| −

1
|S|) ≤ ε22. Second, calculate q1 which makes

̂Count(D(S ′, t)) to be an (ε1
2+ε1

, δ1
2

)-estimator of Count(D(S ′, t)). Third, calculate q2 which

makes ̂Equal(D(S ′, t), x) to be an (ε1
2+ε1

, δ1
2

)-estimator of Equal(D(S ′, t), x). Finally, q =

max(q1, q2) is the final sampling probability.

47

4.3.3 Sampling Probability for Single Value Frequency and Range Frequen-

cy Queries

For the single value and range frequency queries, the estimator of the results, denoted

by ̂SF (D, x′) and ̂RCount(D,Min,Max) respectively, can be calculated as

̂SF (D, x′) =
̂Equal(D, x′)

̂Count(D)

and

̂RF (D,Min,Max) =
̂RCount(D,Min,Max)

̂Count(D)

where x′ and [Min,Max] are the user-specified value and range, ̂RCount(D,Min,Max) =

1
q
|{di ∈ B(D, q) | di ∈ [Min,Max]}| is the estimator of RCount(D,Min,Max), and

RCount(D,Min,Max) = |{di ∈ D | di ∈ [Min,Max]}| is the exact number of elements

belonging to [Min,Max] in D.

The methods of determining the sampling probabilities for single value and range fre-

quency queries are almost the same as the one introduced in Section 4.3.2. The only dif-

ferences are the use of inf(SF (D(S, t), x′)) to replace inf(F (D(S, t), x)) for single value fre-

quency queries, and the use of inf(RF (D,Min,Max)) to replace inf(F (D(S, t), x)) for range

frequency queries when determining the sampling frequency, where inf(SF (D(S, t), x′)) and

inf(RF (D,Min,Max)) are the lower bound of SF (D(S, t), x′) and RF (D,Min,Max), re-

spectively.

In most cases, we have inf(SF (D(S, t), x′)) > inf(F (D(S, t), x)) and inf(RF (D,

Min,Max)) > inf(F (D(S, t), x)). It means that we can use the same sampling proba-

bility for ordinary, single value and range frequency queries if they appear together, and ε

and δ are the same. Therefore, much energy can be saved.

48

4.4 Network Connectivity

The calculation of sampling probability depends on |S| and |S ′|. In most cases, it is

reasonable to assume |S| is known since the number of mobile nodes is known before the

MANET is deployed [82], but it is almost impossible to know the value of |S ′|.

This problem can be solved by doing an exact COUNT query on S ′ before carrying

out an approximate frequency query. However, it consumes a huge amount of extra ener-

gy. Furthermore, the network topology possibly changes during the gap between the exact

COUNT query and the approximate frequency query.

Another solution is to use a formula to calculate |S ′| according to the related variables

n, r, vmin, vmax, pmin, pmax and t. However, we have to confine ourselves to simulation results

due to the intractability of analysis with the existing mathematical methods.

Moreover, it is still a hard problem to find the relationship between the exact value of

|S ′| and the related variables n, r, vmin, vmax, pmin, pmax and t by simulation. Therefore,

we only present the simulation results for the lower 0.05 fractile of |S ′| which is denoted by

f0.05(|S ′|). However, f0.05(|S ′|) is not the exact value of |S ′|. It is necessary to discuss the

result of replacing |S ′| with f0.05(|S ′|).

Obviously, if we have f0.05(|S ′|) < |S ′|, the sampling probability will be greater than the

necessary sampling probability. The final frequency query result still satisfies the specified ε

and δ. But if we have f0.05(|S ′|) ≥ |S ′|, the final frequency query result may not necessarily

satisfy the specified ε and δ. Fortunately, according to the definition of (ε, δ)-estimator, this

problem can be solved by changing the original δ to a new δ′ = 1− 1−δ
0.95

.

Due to space limitation, in this chapter, we only present the conclusions based on the

simulation results. The detailed simulation results can be downloaded at [83].

The first group of simulations is to find the relationship between f0.05(|S ′|) and the

factors of n, r, vmin, vmax, pmin, pmax, and t when f0.05(|S ′|) becomes stable. The results

indicate that if vmin, vmax, pmin, pmax or t is in a reasonable range and f0.05(|S ′|) ≥ 0.75n,

f0.05(|S ′|) tends to be stable. The results also show that if we have f0.05(|S ′|) ≥ 0.75n, the

value of f0.05(|S ′|) has almost nothing to do with vmin, vmax, pmin, pmax or t, but has much to

49

do with n and r. Then the remaining work is just to find the relationship between f0.05(|S ′|)

and the factors of n and r. The impact of vmin, vmax, pmin, pmax or t can be ignored. For

these variables, we can simply use a random value as the input in the simulations.

The second group of simulations is to find the smallest r causing f0.05(|S ′|) ≥ 0.75n.

The results indicate that f0.05(|S ′|) > 0.75n if r > 6l
5
√
n
.

The third group of simulations is to find the smallest r causing f0.05(|S ′|) ≥ 0.99n. The

results indicate that f0.05(|S ′|) > 0.99n if r > 11l
5
√
n
.

The fourth group of simulations is to find the relationship between f0.05(|S ′|) and the

factors of n and r under the condition of 6l
5
√
n
< r ≤ 11l

5
√
n
. The results indicate that f0.05(|S ′|)

is closely mapped to 1
4
n
√

1− n(r − 11
5
√
n
)2 + 0.74n.

Finally, we have the following conclusions. First, f0.05(|S ′|) is not stable if r ≤ 6l
5
√
n
.

Second, f0.05(|S ′|) is closely mapped to 1
4
n
√

1− n(r − 11
5
√
n
)2 + 0.74n if 6l

5
√
n
< r ≤ 11l

5
√
n
.

Third, f0.05(|S ′|) is greater than 0.99n if r > 11l
5
√
n
.

4.5 (ε, δ)-Approximate Frequency Query Algorithms

To calculate an approximate frequency, the following steps are required.

1. Determine a proper sampling probability q according to the specified ε and δ.

2. Use a distributed Bernoulli sampling algorithm to sample sensory data.

3. Based on the sampled data, calculate the (ε, δ)-approximate frequency.

This section introduces the Bernoulli sampling algorithm and the algorithms for ordinary

frequency queries, single value frequency queries and range frequency queries. Due to space

limitation and high similarity, the algorithms for single value frequency queries and range

frequency queries are introduced together.

4.5.1 The Bernoulli Sampling Algorithm

Because all the nodes in a network are moving and the communication radius is limited,

the network topology is changing all the time. However, it is still possible to organize the

50

whole network as a spanning tree using the similar method in [84]. Once a proper sampling

probability q is determined, we can design the Bernoulli sampling algorithm as follows. First,

the query node broadcasts sampling probability q to every node. Second, each node produces

a random number rand in range [0, 1]. Third, for each node, if rand ≤ q, it sends its data

to its parent node.

4.5.2 The (ε, δ)-Approximate Algorithm for Ordinary Frequency Queries

The basic idea of calculating an approximate frequency is as follows.

1. Each node in the spanning tree maintains Fre and Sub Count. Fre records the number

of the occurrences of each value, and Sub Count records the number of the sensory

data items.

2. The query node calculates the frequency according to the final Fre and Sub Count.

The methodology of aggregating the partial result during the transmission is as follows.

1. Set Frej to ∅ and Sub Countj to 0 for each node j in the spanning tree.

2. Each leaf node sends its data to its parent node with probability q.

3. Each non-leaf node receives and merges data from its children, and adds its own data

with probability q, then sends the result to its parent node.

The detailed algorithms are shown in Algorithm 4 and Algorithm 5 respectively.

inf(F (D(S, t)) and inf(F (D(S ′, t)) are the lower bounds for F (D(S, t)) and F (D(S ′, t)),

respectively. f0.05(|S ′|) is the lower 0.05 fractile of |S ′|. c is the number of children for node

j in the spanning tree.

Using the similar strategy in [55], we have the communication cost and energy cost of

the proposed algorithm as O(|Fre|
ε21

ln 1
δ1

). In practice, |Fre| can be regarded as a constant.

Then the communication cost and energy cost of the proposed algorithm can be simplified

as O(1
ε21

ln 1
δ1

).

51

Algorithm 4: (ε, δ)-Approximate Frequency Algorithm

Input: ε, δ
Output: (ε, δ)-approximate frequency
1: Find ε1 and δ1 satisfying (1− δ1)(1− δ2) ≥ 1−δ

0.95
, (1 + ε1)(1 + ε2) ≤ 1 + ε,

(1− ε1)(1− ε2) ≥ 1− ε and φ2
δ2/2

(1
inf(F (D(S,t)))

− 1)(1
f0.05(|S′|) −

1
|S|) ≤ ε22

2: ε3 = ε1
2+ε1

, δ3 = δ1
2

3: q1 =
φ2
δ3/2

f0.05(|S′|)ε23+φ2δ3/2

4: q2 =
φ2
δ3/2

ε23f0.05(|S′|) inf(F (D(S′,t)))+φ2
δ3/2

5: Sink node broadcasts q = max(q1, q2)
6: Call SubData1 for each node in the spanning tree
7: Query node maintains Fre and Sub Count, and divides each value in Fre by
Sub Count

8: return Fre

Algorithm 5: Submitting-Data Algorithm (SubData1)

Output: (Fre, Sub Count)
1: Frej = ∅, Sub Countj = 0 for all j in the spanning tree
2: for each leaf node j in the spanning tree do
3: if rand < q then
4: Frej[j.data] = 1, Sub Countj = 1
5: Send (Frej, Sub Countj) to its parent node
6: end if
7: end for
8: for each non-leaf node j in the spanning tree do
9: Receive {(Frejv, Sub Countjv) | 1 ≤ v ≤ c} from its children

10: Frej = ∪cv=1Frejv
11: Sub Countj =

∑c
v=1 Sub Countjv

12: if rand < q then
13: Frej[j.data] + +
14: Sub Countj + +
15: end if
16: if j is the query node then
17: return (Frej, Sub Countj)
18: end if
19: Send (Frej, Sub Countj) to its parent node
20: end for

52

4.5.3 The (ε, δ)-Approximate Algorithms for Single Value Frequency Queries

and Range Frequency Queries

The basic algorithms for single value and range frequency queries are almost the same

as that for ordinary frequency queries except two major differences. The first difference is

that the algorithm does not need to use Fre to record the number of the occurrences of each

value. It only uses an integer Sum to record the number of the data items which satisfy the

condition. The second difference is that it is necessary to judge whether the sensory data

satisfies the condition rather than submit the sensory values directly. The detailed algorithms

are shown in Algorithm 6 and Algorithm 7. For single value frequency queries, Q(D(S, t)

and Q(D(S ′, t)) denote SF (D(S, t), x′) and SF (D(S ′, t), x′). For range frequency queries,

Q(D(S, t) and Q(D(S ′, t)) denote RF (D(S, t),Min,Max) and RF (D(S ′, t),Min,Max).

Algorithm 6: (ε, δ)-Approximate Frequency Algorithm

Input: ε, δ, x′ for a single value frequency query, Min,Max for a range frequency query
Output: (ε, δ)-approximate frequency
1: Find ε1 and δ1 satisfying (1− δ1)(1− δ2) ≥ 1−δ

0.95
, (1 + ε1)(1 + ε2) ≤ 1 + ε,

(1− ε1)(1− ε2) ≥ 1− ε and φ2
δ2/2

(1
inf(Q(D(S,t)))

− 1)(1
f0.05(|S′|) −

1
|S|) ≤ ε22

2: ε3 = ε1
2+ε1

, δ3 = δ1
2

3: q1 =
φ2
δ3/2

f0.05(|S′|)ε23+φ2δ3/2

4: q2 =
φ2
δ3/2

ε23f0.05(|S′|) inf(Q(D(S′,t)))+φ2
δ3/2

5: Sink node broadcasts q = max(q1, q2)
6: Call SubData2 for each node in the spanning tree
7: Query node maintains Sum and Sub Count
8: return Sum/Sub Count

Using the similar strategy in [55], we have the communication cost and energy cost of

the proposed algorithm as O(1
ε21

ln 1
δ1

).

4.6 Experimental Results

To evaluate the proposed algorithm, we employ a MANET with 5000 mobile nodes in

our simulations. These nodes are deployed in a 1000m × 1000m square uniformly, randomly

53

Algorithm 7: Submitting-Data Algorithm (SubData2)

Output: (Sum, Sub Count)
1: Sumj = Sub Countj = 0 for all j in the spanning tree
2: for each leaf node j in the spanning tree do
3: if rand < q and sensory data satisfies the condition then
4: Send (1, 1) to its parent node
5: end if
6: end for
7: for each non-leaf node j in the spanning tree do
8: Receive {(Sumjv, Sub Countjv) | 1 ≤ v ≤ c} from its children
9: Sumj =

∑c
v=1 Sumjv

10: Sub Countj =
∑c

v=1 Sub Countjv
11: if rand < q and sensory data satisfies the condition then
12: Sumj + +
13: Sub Countj + +
14: end if
15: if j is the query node then
16: return (Sumj, Sub Countj)
17: end if
18: Send (Sumj, Sub Countj) to its parent node
19: end for

and independently. All the nodes are moving under the random waypoint model [80]. We

set vmin = 0, vmax = 500m/s, pmin = 0, pmax = 0.5s, and r = 20m. The sensory data set

is from the AADF (Estimated Annual average daily flows) Data Traffic Counts Metadata

[85]. For each mobile node, the energy consumption to send and receive one byte of data

is set to be 0.0144mJ and 0.0057mJ respectively according to [4]. The energy consumption

for computation is omitted since it is much smaller than that of communication [86]. The

simulation results for ordinary frequency queries, single value frequency queries and range

frequency queries are presented in the following three subsections.

4.6.1 Sampling Probability and Energy Cost of Ordinary Frequency Query

The first group of simulations is to investigate the relationship among ε, δ and the

sampling probability. The results are presented in Fig.4.1. The results show that the required

sampling probability increases with the decrease of ε and δ. The sampling probability is

54

0.1
0.2

0.3
0.4

0.05
0.1

0.15
0.2

0.5

0.6

0.7

0.8

0.9

epsilon
delta

s
a
m

p
lin

g
 p

ro
b
a
b
ili

ty

Figure 4.1. The relationship among ε, δ
and sampling probability.

0.2

0.4
0.05 0.1 0.15 0.2

135

140

145

150

155

160

165

170

175

epsilon
delta

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

Figure 4.2. The relationship among ε, δ
and energy cost.

relatively small. For example, when ε = 0.3 and δ = 0.2, the sampling probability is about

0.5. This means only about half of the mobile nodes in a MANET need to transfer data to

get the required approximate result. Therefore, the proposed algorithm saves much energy

since not all the sensory data are transmitted.

The second group of simulations is to investigate the relationship among ε, δ and the

energy cost. The energy cost is calculated towards different values of ε and δ. The results

are shown in Fig.4.2. It shows that the energy cost increases with the decrease of ε and δ

since more data need to be sampled and transferred. For example, if ε = δ = 0.2, the energy

consumption is 157mJ/Byte. The energy consumption is 173mJ/Byte if ε = δ = 0.14.

The third group of simulations is to investigate the relationship between sampling prob-

ability q and energy cost. The energy cost is calculated towards different sampling prob-

abilities. The sampling probability goes from 0.04 to 0.4 at the step of 0.02. The results

are shown in Fig.4.3. It can be seen that the energy cost increases with the increase of q.

Furthermore, the increase of the energy cost is not proportional to the increase of q. The

reason is that there is extra energy consumption for broadcasting the sampling probability.

The results also show that the energy cost increases with the growth of network size when

the sampling probability q keeps the same.

The fourth group of simulations is to investigate the relationship among sampling proba-

55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
80

100

120

140

160

180

200

220

240

260

280

sampling probability

e
n
e
rg

y
 c

o
s
t

n=5000

n=10000

Figure 4.3. The relationship between
sample probability and energy cost.

0.05
0.1

0.15
0.2

0.25
0.3

0.35

5000

6000

7000

8000

9000

10000

50

100

150

200

250

300

sampling probability
network size

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

Figure 4.4. The relationship among sam-
pling probability, network size and energy
cost.

bility, network size and energy cost. The energy cost is calculated towards different sampling

probabilities and network sizes. The results are shown in Fig.4.4. For the same network size,

the energy cost increases with the increase of sampling probability. Similarly, the increase

of energy cost is not proportional to the increase of sampling probability. For the same

sampling probability, the energy cost increases with the increase of network size since more

data are sampled and transmitted.

The fifth group of simulations is to compare the energy consumption of our algorithm

with that of the naive algorithm. The naive algorithm is to collect all the sensory data in S ′

and aggregate the partial results during the transmission of the sensory data. The results

are shown in Fig.4.5. It can be seen that our algorithm has smaller energy consumption

since not all the mobile nodes in a network need to transfer their own sensory data. The

energy consumption increases with the decrease of ε and δ. Furthermore, although the naive

method collects all the data in S ′, it only returns the accurate frequency results of D(S ′, t)

rather than D(S, t).

4.6.2 Relative Error of Ordinary Frequency Queries

The first group of simulations is to investigate the relationship among ε, δ and relative

error of the final result. The results are shown in Fig.4.6. We can see that our algorithm can

56

(0.28,0.28)(0.26,0.26)(0.24,0.24)(0.22,0.22) (0.2,0.2) naive
0

20

40

60

80

100

120

140

160

180

200

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

Figure 4.5. Energy cost comparison.

0.1

0.2

0.3

0.4

0.5

0.05

0.1

0.15

0.2

0.25
0.01

0.02

0.03

0.04

0.05

0.06

epsilondelta

re
la

ti
v
e
 e

rr
o
r

Figure 4.6. The relationship among ε, δ
and relative error.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

sampling ratio

re
la

ti
v
e
 e

rr
o
r

inf=1/15

inf=2/15

Figure 4.7. The relationship between
sampling probability and relative error.

0
0.1

0.2
0.3

0.4

5000

6000

7000

8000

9000

10000

0

0.05

0.1

0.15

0.2

sampling probabilitynetwork size

re
la

ti
v
e
 e

rr
o
r

Figure 4.8. The relationship among sam-
pling probability, network size and rela-
tive error.

achieve the specified precision. In most cases, the relative error increases with the increase

of ε and δ since less sensory data are sampled in the network.

The second group of simulations is to investigate the relationship between sampling

probability and relative error of the final result. The results are shown in Fig.4.7. We

can see that in most cases, the relative error decreases with the increase of the sampling

probability since more sensory data are sampled. We can also observe that the precision is

still high even when the sampling probability is relatively low. The results also indicate the

relative error decreases when frequency lower bound becomes larger.

The third group of simulations is to investigate the relationship among network size,

57

sampling probability and relative error of the final result. The results are shown in Fig.4.8.

Similar to the previous group of simulations, for the same network size, the relative error

decreases with the increase of sampling probability. For the same sampling probability, the

relative error decreases with the increase of network size since more data are sampled.

4.6.3 Simulation Results for Single Value Frequency Queries

The first group of simulations is to investigate the relationship among ε, δ and energy

cost. The energy cost was calculated while ε varies from 0.14 to 0.36 and δ varies from 0.06

to 0.2. The results are shown in Fig.4.9. It shows that the energy cost increases with the

decrease of ε and δ since more data need to be sampled and transmitted. Moreover, for

the same ε and δ, the single value frequency queries have lower energy cost than ordinary

frequency queries since only the sensory data equal to x′ needed to be submitted.

The second group of simulations investigates the relationship between the network size

and the energy cost where ε and δ were set to be 0.2. The results are shown in Fig.4.10.

It shows that the energy cost increases with the growth of network size. It is strange that

energy cost is even higher when frequency lower bound is greater which is because there will

be more sensory data equal to x′ even though lower sampling probability is needed. Other

simulation results about single value frequency queries are similar to ordinary ones. So that

these results are not presented in the chapter due to space limitation.

4.6.4 Simulation Results for Range Frequency Queries

The first group of simulations is to investigate the relationship among ε, δ and sampling

probability. The results are shown in Fig.4.11. It shows that the required sampling proba-

bility increases with the decrease of ε and δ and the sampling probability is relatively small.

Moreover, for the same ε and δ, the sampling probability is smaller than that of the ordinary

frequency queries. The reason is that we have inf(RF (D,Min,Max)) > inf(F (D(S, t), x))

for range frequency queries in most cases.

The second group of simulations is to investigate the relationship among ε, δ and energy

58

0.15

0.2

0.25

0.3

0.35

0.1
0.15

0.2

95

96

97

98

99

100

101

epsilon

delta

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

Figure 4.9. The relationship among ε, δ
and energy cost.

5000 6000 7000 8000 9000 10000

100

110

120

130

140

150

160

170

180

190

200

210

network size

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 m

J
/B

y
te

inf=1/15

inf=1/5

Figure 4.10. The relationship between
network size and energy cost.

0.1
0.2

0.3
0.4

0.5

0.05
0.1

0.15
0.2

0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

epsilon
delta

s
a
m

p
lin

g
 p

ro
b
a
b
ili

ty

Figure 4.11. The relationship among ε, δ
and sampling probability.

0.1

0.2

0.3

0.4

0.5

0.05
0.1

0.15
0.2

0.25

96

98

100

102

104

106

108

110

112

epsilon
delta

e
n
e
rg

y
 c

o
s
t
m

J
/B

y
te

Figure 4.12. The relationship among ε, δ
and energy cost.

cost. The results are shown in Fig.4.12. It shows that the energy cost increases with the

decrease of ε and δ since more data need to be sampled and transferred. Furthermore, for

the same ε and δ, the energy cost is smaller than that of the ordinary frequency queries. The

first reason is that we have smaller sampling probability required for range frequency with

the same ε and δ. The second reason is that we need to judge if the sensory data are in the

user-specified range. The sensory data out of the range will not be transmitted.

The third group of simulations is to investigate the relationship between sampling prob-

ability and relative error of the final result. The results are shown in Fig.4.13. We can see

that in most cases, the relative error decreases with the increase of sampling probability since

59

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

sampling ratio

re
la

ti
v
e
 e

rr
o
r

inf=1/5

inf=2/5

Figure 4.13. The relationship between
sampling probability and relative error.

0

0.1

0.2

0.3

0.4

5000

6000

7000

8000

9000

10000

0

0.02

0.04

0.06

0.08

0.1

sampling probabilitynetwork size

re
la

ti
v
e
 e

rr
o
r

Figure 4.14. The relationship among sam-
pling probability, network size and rela-
tive error.

more sensory data are sampled. Moreover, for the same sampling probability, the relative

error is lower than that of the ordinary frequency queries. The results also indicate the

relative error decreases for greater frequency lower bound.

The fourth group of simulations is to investigate the relationship among network size,

sampling probability and relative error of the final result. The results are shown in Fig.4.14.

Similar to the previous group of simulations, the relative error decreases with the increase of

sampling probability for a same network size. The relative error decreases with the increase of

network size for a same sampling probability. Furthermore, for a same sampling probability

and network size, the relative error is lower than that of ordinary frequency queries.

4.7 Conclusion

In this chapter, an (ε, δ)-approximate algorithm to process a frequency query is pro-

posed. This algorithm is based on Bernoulli sampling, so only some nodes in a network need

to transfer sensory data. Furthermore, the methodology to calculate the sampling probability

which can make the final query result to satisfy the specified precision and failure probability

is derived. The simulation results for MANET connectivity are presented. These simulation

results can be used in the calculation of sampling probability. Finally, a Bernoulli sampling

60

algorithm is provided and analyzed. The simulation results show that on the aspects of both

energy efficiency and accuracy, the proposed algorithm has high performance.

61

Chapter 5

DATA COLLECTION IN GEOGRAPHICAL POSITION CONFLICTING

MOBILE SENSING

5.1 Introduction

Nowadays, smartphones have become ubiquitous and are playing a critical role in key

aspects of people’s daily life such as communication, entertainment and social activities [87]

[88] [89] [90] [91] [92] [93] [94]. Most smartphones are equipped with multiple embedded

sensors such as GPS (Global Positioning System), accelerometer, camera, etc [95], and have

diverse sensing capacity. Moreover, the emergence of wearable devices also enhances the

sensing capabilities of smartphones since most wearable devices can exchange sensory data

with smartphones via network interfaces. Therefore, mobile sensing have led to numerous

innovative applications in various fields including environmental monitoring, transportation,

healthcare, safety and so on [1] [96] [97] [98] [99] [100].

Mobile crowdsensing which makes use of the sensing capabilities of smartphone has been

gaining increasing popularity in recent years. Multiple works such as [101] and [102] have

studied the problem of incentive mechanism design in mobile crowdsensing platforms. Unlike

traditional applications proposed in the previous chapters, mobile crowdsensing platforms

are not based on voluntary participation. Mobile crowdsensing task participants get paid for

their contribution in return for their own resource consumption including battery, computing

power and data transition fee when participating in a sensing task. For instance in multiple

general-purpose mobile crowdsensing platforms such as Medusa [103], the following process

is used to gather sensory data.

1. The mobile sensing platform broadcasts the description of a mobile sensing task to

smartphone users.

62

2. The smartphone users who are willing to participate in the mobile sensing task transmit

feedback to the mobile crowdsensing platform. A feedback can be a detailed sensing

plan or a bid which is the expected price at which the user wants to sell the sensory

data.

3. The mobile sensing platform selects some smartphone users as winners for participating

in the mobile sensing task and make payments to them.

4. The winners transmit their senory data to the mobile sensing platform.

In real-life applications, during the above process, the mobile crowdsensing platforms

aim to maximize the quality of gathered sensory data, since significant economic costs are

paid to the mobile crowdsensing winners for their sensory data. However, users close to each

other geographically will provide similar sensory data due to the spatial correlation [25], [26]

of the sensing targets. The crowdsensing platform may get enormous amount of similar, or

even duplicated sensory data if it simply gathers all the sensory data from the crowdsensing

participants. Such situation not only leads to unnecessary data collection but also significant

economic waste. Therefore, it is a critical problem to design incentive mechanisms which can

avoid the above situation. Unfortunately, this problem has not been taken into consideration

by existing works.

Our chapter focuses on incentive mechanisms in the geographical position conflicting

mobile crowdsensing platforms, in which two users are defined as conflicting users if the geo-

graphical distance between them is within a predefined threshold. The mobile crowdsensing

platform will not make payments to conflicting users simultaneously. In the design and im-

plementation of such mobile crowdsensing platform naturally arise two problems. First, how

to select the winner set for a mobile crowdsensing task to maximize the mobile crowdsensing

platform’s profit while avoiding simultaneous participation of conflicting users? Second, how

to calculate appropriate payments to the winners satisfying beneficial properties including

truthfulness, individual rationality and profitability? This chapter proposes algorithms to

solve the above two problems with different computation efficiency. In summary, the main

63

contributions of this chapter are as follows.

1. A geographical position conflict based winner selection problem is proposed and for-

mulated as an integer linear programming problem.

2. Two algorithms are proposed to select winners and calculate their payments. The first

algorithm is an A* algorithm based on a polynomial-time approximation scheme, and

it maximizes the total social welfare. The second algorithm achieves sub-optimal total

social welfare and has polynomial time complexity.

3. Solid theoretical proofs are listed which indicate the proposed algorithms have benefi-

cial properties such as truthfulness, individual rationality and profitability.

4. Actual datasets based extensive experimental results are presented, which demonstrate

the proposed algorithms have high performance and confirm the beneficial properties

of these algorithms.

The rest of this chapter is organized as follows. Section 5.2 present the problem defini-

tion. The optimal and non-optimal winner selection algorithms are introduced in Section 5.3

and Section 5.4, respectively. Section 5.5 provides the experimental results. Finally, Section

5.6 concludes this chapter.

5.2 Problem Definition

5.2.1 Mobile Crowdsensing Platform

Suppose there are n users in a region [0, 1)2 and U = {u1, u2, . . . , un} is used to denote

the set of users. Each user is carrying a smart phone equipped with positioning device

to acquire user’s position. Here u.x and u.y are used to denote the x-coordinate and y-

coordinate for user u. We denote the circular region around position (x, y) with radius r by

R(x, y, r) which is defined as

R(x, y, r) = {(x′, y′) ∈ [0, 1)2|(x′ − x)2 + (y′ − y)2 ≤ r2}.

64

Suppose a snapshot sensing task T is proposed by the mobile crowdsensing platform

which invite users to submit sensory data in a sensory data gathering region R(T.x, T.y, T.r).

T.x and T.y are the x-coordinate and y-coordinate of the center of R(T.x, T.y, T.r) and T.r

is the radius of R(T.x, T.y, T.r). We use

UT = {u ∈ U |(u.x, u.y) ∈ R(T.x, T.y, T.r)}

to denote all the users in the sensory data gathering region R(T.x, T.y, T.r). Once the

crowdsensing platform broadcasts the crowdsensing task T , all the users in U will receive

the crowdsensing task T . However, only users within UT will participate in the sensing task

T due to the time-sensitiveness of the snapshot sensing task and the massive moving cost

for users in U/UT to enter the data gathering region [17]. The mobile crowdsensing platform

will collect sensory data using the following process.

1. The crowdsensing platform broadcasts the crowdsensing task T .

2. Each user u ∈ UT submits his/her position (u.x, u.y) and bid u.b to the mobile crowd-

sensing platform. The bid u.b is the expected price user u wants to sell the sensory

data for.

3. The mobile crowdsensing platform decides the winner set W , calculates the payment

to each winner w ∈ W , then sends the payments to the winners.

4. All the winners submit their sensory data to the mobile crowdsensing platform.

The above process is illustrated in Fig.5.1.

Let P denote the profit of the crowdsensing platform generated from a single user’s

sensory data. Then the total social welfare of the mobile crowdsensing platform is

P |W | −
∑
w∈W

w.b

where |W | is the size of set W .

65

Figure 5.1. Mobile crowdsensing platform

5.2.2 Optimal Winner Selection Problem

According to the basic setting of the mobile crowdsensing platform introduced in Section

5.2.1, the mobile crowdsensing platform should simply select the all the users whose bids

are lower than P as the winners to maximize the total social welfare. However, in many

applications, the sensory data exhibits strong spatial correlation [25], [26], which means users

who are very close to each other will submit similar or even duplicate sensory data. To save

economic cost of the mobile crowdsensing platform, it is not necessary to make payments to

users simultaneous if their positions are too close in the physical world. Therefore, we have

the following definition of conflicting users.

Definition 5.2.1 (conflicting users). User u and user v are conflicting users if and only if

dis(u, v) ≤ T.d where is the Euclidean distance between user u and user v and T.d is a

predefined minimum graphical distance for the winners in crowdsensing task T .

Definition 5.2.2 (conflict-free winner set). A winner set W is conflict-free if and only if

@u, v ∈ W where u and v are conflicting users.

During the process of deciding the winners, the mobile crowdsensing platform should

not declare both user u and user v as winners if they are conflicting users. Based on this

winner determination setting, we address the problem of optimal winner selection as follows.

Input: user set U where each user u ∈ U has attributes u.x, u.y and u.b.

Output: 1) Conflict free winner set W which maximizes P |W | −
∑

w∈W w.b. 2) The

payment for each winner.

66

1

2

4

65

3

(T.x, T.y)

T.r

R(T.x, T.y, T.r)

u1.b=-
u2.b=4
u3.b=2
u4.b=2
u5.b=1
u6.b=3

Figure 5.2. Example of the winner selection problem

Fig.5.2 shows an example of our problem. Suppose we have user set U = {u1, u2, u3, u4,

u5, u6}. The circle is used to denote the sensory data gathering region. Suppose u4 conflicts

with u2, u3, u5, u6 and u5 conflicts with u6. According to the sensory data gathering region,

we have UT = {u2, u3, u4, u5, u6}, and u1 cannot be a winner because u1 /∈ UT . Moreover,

u2 and u4, u3 and u4 cannot be the winners simultaneously since u2 and u4, u3 and u4 are

conflicting users. Similarly, at most one user among u4, u5 and u6 can be a winner. If we

have P = 3, u1.b = 1, u2.b = 4, u3.b = 2, u4.b = 2, u5.b = 1, u6.b = 3, then the optimal

winner set is {u3, u5} with social welfare as 3.

Our objective is to design incentive mechanisms to select the winners and calculate

winners’ payments which satisfy the following properties:

1. Computational efficiency: In practice, the number of crowdsensing participants may be

quite large [2], [3]. For a mobile crowdsensing platform to carry out winner selection and

payment determination in a short percoid of time, the incentive mechanism needs to

be computationally efficient. A mechanism is computationally efficient if the outcome

can be computed in polynomial time.

2. Truthfulness: During the whole process of crowdsensing, it is likely that multiple users

submit bids which are different from their true valuations to improve their utility,

which may greatly affect the fairness of the crowdsensing. Therefore, the incentive

67

mechanism needs to be truthful. A mechanism is truthful if no bidder can improve

its utility by submitting a bid different from its true valuation, no matter what others

submit.

3. Individual rationality: During the whole process of crowdsensing, the participants

incur additional costs for battery, computing power, data transition fee, etc. In order to

encourage user participation, the incentive mechanism needs to be individually rational

which means each participant should have a non-negative utility.

4. Profitability: The crowdsensing platform should not incur a deficit. In other words,

the value brought by the winners should be no less than the total payment paid to the

winners.

5.2.3 Problem Formulation

We use boolean variable xi to denote if user ui is the winner or not.

xi =


1 if ui ∈ W

0 if ui /∈ W

Then the optimal winner selection problem can be formalized as the following integer pro-

gramming problem.

max P
n∑
i=1

xi −
n∑
i=1

xibi

s.t. xi ∈ {0, 1}, 1 ≤ i ≤ |U |

xi + xj ≤ 1 if dis(ui, uj) ≤ T.d for 1 ≤ i, j ≤ |U |.

In order to increase the readability, we summarized frequently used symbols in Table

5.1.

68

Symbol Description
u.x x-coordinate of user u’s position
u.y y-coordinate of user u’s position
u.b bid of user u
u.w weight of user u defined as u.w = P − u.b
u.p payment of user u, u.p = 0 if u is not a winner
T.x x-coordinate of sensory data gathering region center
T.y y-coordinate of sensory data gathering region center
T.r radius of sensory data gathering region
T.d minimum distance between any two winners
dis(u, v) Euclidean distance between user u and user v
R(x, y, r) {(x′, y′) ∈ [0, 1)2|(x′ − x)2 + (y′ − y)2 ≤ r2}
U the set of users
UT the set of users in the data gathering region of task T
W the set of winners
P the profit brought to the platform by one user’s data

Table 5.1. Symbols

5.3 Optimal Winner Selection Algorithm

5.3.1 Problem Representation

According to the problem definition in Section 5.2, the conflict relationships among

users can be represented by a unit disk graph G = (UT , E) [104]. For any u, v ∈ UT , we

have (u, v) ∈ E if dis(u, v) ≤ T.d. We also assign a weight ui.w = P − ui.b for each user

ui ∈ UT . Then the optimal winner selection problem can be represented as a maximum

weighted independent set problem on a unit disk graph G = (UT , E) [105]. For example,

the winner selection problem shown in Fig.5.2 can be presented as a maximum weighted

independent set problem of the graph shown in Fig.5.3, where each number near a node

represents the weight of that node.

Obviously, there is a brute-force algorithm for the optimal winner selection problem,

and the process is as follows.

1. Enumerate all the subsets of UT .

2. Remove the subsets with conflicts, i.e. the subset with user u, user v and (u, v) ∈ E.

69

2

4

65

3

u2.w=-1 u3.w=1

u4.w=1

u5.w=2 u6.w=0

Figure 5.3. Example of maximum weighted independent set problem

3. Find the subset which maximizes the social welfare.

Moreover, we can also directly solve the integer programming problem shown in Section

5.2.3. However, all these algorithms have huge computation cost since they need to examine

all the possible winner combinations. Therefore, we propose the following A* algorithm to

select winners with maximal social welfare efficiently.

5.3.2 A* Algorithm for Optimal Winner Selection

Our A* algorithm is based on a robust Polynomial-Time Approximation Scheme (PTAS)

proposed in [106]. The ratio bound and computation complexity of the PTAS in [106] are

1 + ε and O(n1/ε2 log 1/ε), where ε is a real number which can be arbitrarily small. According

to the definition of ratio bound [107], we have the following theorem.

Theorem 5.3.1. For any graph G = (V,E), suppose Vopt is the maximum weighted inde-

pendent set of G and Vapp is the solution of the PTAS on graph G, then we have

1.
∑

v∈Vapp v.w is the lower bound of
∑

v∈Vopt v.w

2. (1 + ε)
∑

v∈Vapp v.w is the upper bound of
∑

v∈Vopt v.w

where v.w is the weight of node v.

According to the above theorem, the PTAS in [106] plays the following roles in our

optimal winner selection algorithm:

70

1. The PTAS is used to calculate the lower bound of maximum independent set’s total

weight at the beginning of our algorithm. Then our algorithm can make use of the

lower bound for pruning.

2. The PTAS is used to calculate the upper bound of the total weight for an induced

subgraph’s maximum independent set, and this establishes the essential process for

the heuristic function of the A* algorithm.

Since the ratio bound of the PTAS is 1 + ε where ε is a real number which can be

arbitrarily small, using the PTAS can make accurate estimations for both the lower bound

and the upper bound of maximum independent set’s total weight. Therefore, the time

complexity of the A* algorithm can be further reduced. The above conclusion has been

verified by the experiment result shown in Fig. 5.10.

Our algorithm uses a 0-1 bit string to denote a conflict-free winner set. For any given

0-1 bit string str and node set U where all the nodes are sorted in ascending order of their

IDs, str[i] = 1 if U [i] is the winner. For the example shown in Fig.5.3, 0-1 bit string “01010”

is used to denote the optimal winner set {u3, u5} (note that u1 is ignored in the 0-1 bit

string). Then the main job of our algorithm is to find a 0-1 bit string to denote the optimal

winner set.

In our algorithm, Q is used to denote the priority queue in the A* algorithm which

contains multiple 0-1 bit strings. All the elements in Q are sorted according to the heuristic

function introduced in Algorithm 9. Q.top is used to denote the element in Q with the

highest priority. U ′T is used to denote the node set which contains all the nodes in UT with

positive weights. Moreover, for any node set V ⊆ U ′T , ISG(V) = G(V, {(u, v)|u ∈ V ∧ v ∈

V ∧ dis(u, v) ≤ T.d}) is used to denote the induced subgraph of node set V . Finally, we

have our A* algorithm to compute the optimal winner selection with basic idea as follows.

1. Calculate the lower bound of maximum independent set’s total weight. Then push an

empty 0-1 bit string into the priority queue Q.

2. While Q is not empty and |Q.top| < |U ′T |, pop Q.top as q, then examine q+“0” and

71

q+“1”. For each of them, compute its score using the heuristic function, if the score is

no less than the lower bound computed in step 1 and the examined string is conflict-

free, push the examined string into Q.

3. Compute the final winner set according to Q.top when the above step is finished.

The detailed process is shown in Algorithm 8 where LB denotes the lower bound of

maximum independent set’s total weight. HF in Algorithm 8 denotes the heuristic function

of the A* algorithm whose input is a 0-1 bit string str. Here str stands for a set of possible

winner sets.

According to the definition of A* algorithm, the HF function needs to calculate upper

bound of maximum independent set’s total weight. A straightforward approach to solve this

problem is to calculate the sum of all the nodes’ weights without considering the conflict

between them. But the above method leads to inaccurate estimation of the upper bound.

Therefore, in our algorithm, we use a PTAS-based heuristic function whose basic procedure

is as follows.

1. Calculate the total weight for the users who have already been chosen as the winner.

2. For the undecided users, the heuristic function uses the PTAS to calculate the upper

bound of total weight for the maximum weighted independent set.

The detailed process of the heuristic function is shown in Algorithm 9. In our A* algorithm,

the HF function is used in the following two scenarios. First, it is used to calculate the

priorities of the elements in the priority queue Q in order to sort those elements. Second,

the HF function is used for pruning of the A* algorithm.

Fig.5.4 shows the execution process of Algorithm 8 which is used to solve the max-

imum weighted independent set problem in Fig. 5.3 where ε = 0.1. Initially, we have

U ′T = {u3, u4, u5}, LB = 3. Node 1 is the root node of the search tree. Algorithm 1 will

extend node 1 and get node 2, node 3. Node 2 will not be further extended since the value

of heuristic function is less than LB. By extending node 3, we get node 4 and node 5. Then

72

0 1

10

0 1

W={u3,u5},HF=3

W={u3,u4},conflict

W=Φ,HF=3.3

W={u3},HF=1

W= Φ,HF=2.2

1

2 3

4 5

6 7

W={u3},HF=3.2

Figure 5.4. Searching tree

node 5 will not be further extended due to conflict. By extending node 3, we have node 6

and node 7. Finally, we get the optimal solution {u3, u5} at node 7.

For the optimal winner selection algorithm, we can see that in the 14th step, it checks

if the winner set represented by q1 is conflict free. This step ensures that the final winner

set does not contain conflict users.

5.3.3 Payment Determination

Once the optimal winners are selected, we will use the VCG (VickreyCClarkeCGroves)

auction to calculate the payment for each winner [108]. The detailed process is shown in

Algorithm 10.

According to the process of Algorithm 8, we can easily find that the winner set W

calculated by Algorithm 8 is conflict free and it maximizes the total social welfare. Moreover,

according to [108], we can conclude that the payment strategy is truthful, individual rational

and profitable.

73

Algorithm 8: Optimal Winner Selection Algorithm Opt(UT)

Input: User set UT
Output: Winner set W
1: U ′T = {u ∈ UT |u.w > 0}
2: Vapp =PTAS(ISG(U ′T))
3: LB =

∑
v∈Vapp v.w

4: Q.push(“”)
5: while Q 6= ∅ do
6: if |Q.top| = |U ′T | then
7: break
8: end if
9: q = Q.top, Q.pop()

10: q0 = q+“0”, q1 = q+“1”
11: if HF(q0, U

′
T) ≥ LB then

12: Q.push(q0)
13: end if
14: if q1 is conflict-free and HF(q1, U

′
T) ≥ LB then

15: Q.push(q1)
16: end if
17: end while
18: W = ∅
19: for i=1 to |U ′T | do
20: if Q.top[i]=1 then
21: W = W ∪ {U ′T [i]}
22: end if
23: end for
24: return W

Algorithm 9: Heuristic Function HF

Input: 0-1 bit string str and user set U ′T
Output: Upper bound of maximum independent set’s total weight if str is further

extended
1: V1 = {U ′T [i]|1 ≤ i ≤ |str| ∧ str[i] = 1}
2: V2 = {U ′T [i]||str|+ 1 ≤ i ≤ |U ′T | ∧ dis(U ′T [i], v) > T.d for any v ∈ V1}
3: ub1 =

∑
v∈V2 v.w

4: V3=PTAS(ISG(V2))
5: ub2 = (1 + ε)

∑
v∈V3 v.w

6: return min(ub1, ub2) +
∑

v∈V1 v.w

74

Algorithm 10: Payment Determination Algorithm

Input: Winner set W and U ′T
Output: Payment for each winner u ∈ W
1: maxw =

∑
u∈W u.w

2: for u ∈ W do
3: W ’=Opt(U ′T − {u})
4: maxw′ =

∑
v∈W ′ v.w

5: u.p = maxw −maxw′
6: end for
7: return W

5.4 Non-optimal Winner Selection Algorithm

5.4.1 Algorithm Design

First, we introduce the following theorem proposed in [104].

Theorem 5.4.1. The maximum weighted independent set problem in unit disk graphs is

NP-hard.

Since the A* algorithm proposed in the previous section can maximize the total social

welfare, we have the following corollary.

Corollary 5.4.1. The optimal winner selection algorithm has exponential time complexity.

The above corollary indicates that the optimal winner selection algorithm still has high

computational complexity although it uses PTAS in [106] to further reduce the computation

cost. However, the number of users can be quite large for multiple representative samples

of crowdsensing applications [2], [3]. Therefore, it is critical to propose a computationally

efficient winner selection algorithm even if the algorithm may not maximize the total social

welfare.

A straightforward approach to solve the above mentioned problem is to use the PTAS

in [106] to calculate an approximate solution for the optimal winner selection problem, and

then use VCG auction to calculate the payment. However, [109] indicates VCG auction

loses its truthful property when applied along with an approximation algorithm to compute

75

resource allocation. Therefore, we propose another truthful winner selection methodology

based on a theorem in [110], which is listed as follows.

Theorem 5.4.2. An auction mechanism is truthful if and only if:

1. The selection rule is monotone: if user i wins the auction by bidding bi, it also wins

by bidding b′i ≤ bi.

2. Each winner is paid the critical value: user i would not win the auction if it bids higher

than this value.

Based on the above theorem, we propose an algorithm to calculate the winner set W

and the payment for each winner according to user set U and mobile crowdsensing task T .

The basic idea of our proposed algorithm is explained as below.

Obviously, it is not necessary to consider the users whose bid is greater or equal to P .

Therefore, first the crowdsensing platform calculates user set U ′T which contains all the users

in the sensory data gathering region whose bid is less than P according to U and T . Second,

the crowdsensing platform set W = ∅. Then the crowdsensing platform sorts all the users in

U ′T in ascending order of their priorities. The priority is defined as follows.

1. If two users have different bids, the user with a lower bid has a higher priority.

2. If two users have the same bid, the user with a lower ID has a higher priority.

Finally, the crowdsensing platform checks each user u ∈ U ′T using the following strategy

where U ′T [i] is used to denote the user with the i-th lowest bid in U ′T .

1. Add U ′T [i] into winner set W if no user in W conflicts with U ′T [i].

2. Set U ′T [i]’s payment U ′T [i].p to min{u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} if

{u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} 6= ∅. Otherwise, set U ′T [i] to P .

3. Update the users in U ′T by removing all the users who conflict with U ′T [i] and bid

greater than U ′T [i]’s bid.

76

Algorithm 11: Non-optimal Winner Selection Algorithm

Input: User set UT and mobile crowdsensing task T
Output: Winner set W and payment to each winner
1: U ′T = {u ∈ UT |u.b < P}
2: Sort the users in U ′T in ascending order of their priorities.
3: W = ∅
4: for i=1 to |U ′T | do
5: for j=1 to |W | do
6: if dis(U ′T [i],W [j]) < T.d then
7: break
8: end if
9: end for

10: if j > |W | then
11: if {u.b|u ∈ U ′T ∧ u.b > U ′T [i].b ∧ dis(u, U ′T [i]) < T.d} 6= ∅ then
12: U ′T [i].p = min{u.b|u ∈ U ′T ∧ u.b > U ′T [i].b ∧ dis(u, U ′T [i]) < T.d}
13: else
14: U ′T [i].p = P
15: end if
16: W = W ∪ {U ′T [i]}
17: U ′T = U ′T − {u ∈ U ′T |u.b > U ′T [i].b ∧ dis(u, U ′T [i]) < T.d}
18: end if
19: end for
20: return W

77

The detailed process of the above algorithm is shown in Algorithm 11.

For the non-optimal winner selection algorithm, we can see that in the 10th step, it

checks if j > |W |. In other words, it checks if there exists a user in W which conflicts with

U ′T [i]. Therefore, the final winner set does not contain conflict users.

For the example shown in Fig.5.2, the execution process of the non-optimal winner se-

lection algorithm is as follows. First, we have UT = {u2, u3, u4, u5, u6} and U ′T = {u5, u3, u4}.

In the first iteration, u5 is chosen as the winner. In the second iteration, u3 is chosen as the

winner. Finally, we have W = {u3, u5} and the payment for both u3 and u5 is 3.

5.4.2 Beneficial Properties of the Algorithm

According to Algorithm 11, we can observe that the winner set W calculated using this

algorithm is conflict free. In addition, we also have the following theorems which indicate

the non-optimal winner selection algorithm is computationally efficient, truthful, individual

rational and profitable.

Theorem 5.4.3. The time complexity of Algorithm 11 is O(|UT |2)

Proof: The time complexity of calculating U ′T and sorting the users in U ′T are O(|UT |)

and O(|U ′T | log |U ′T |), respectively. The time complexity of calculating winner set W and

payment is O(|U ′T ||W |). Finally, the total time complexity is O(|UT |2) since W ⊆ U ′T ⊆ UT .

2

Theorem 5.4.4. The non-optimal winner selection mechanism is truthful.

Proof: Let Wi be the winner set W in the ith iteration of Algorithm 11. If user u

is chosen as a winner in the ith iteration, then there is no user in Wi conflicting with u.

Suppose u proposes another bid u.b′ ≤ u.b and u is checked in the jth iteration, then we

have j ≤ i since all the users in U ′T are sorted in the ascending order of their bids. Then

there is no user in Wj conflicting with u since Wj ⊆ Wi. Therefore, u will also be chosen as

a winner. Then we can conclude the selection rule in Algorithm 11 is monotone.

78

According to the process of Algorithm 11, we have w.p = P if {u.b|u ∈ U ′T ∧ u.b >

w.b ∧ dis(u,w) < T.d} = ∅. In this case, if we have w.b > w.p, then we have w /∈ U ′T which

lead to w /∈ W . Similarly, if {u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} 6= ∅ and w.b > w.p,

another user bidding at w.p in {u|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} will become the

winner and w cannot be the winner in the following iterations due to conflict. Then we can

conclude that each winner in Algorithm 11 is paid the critical value.

Finally, we conclude that the non-optimal winner selection mechanism is truthful ac-

cording to Theorem 5.4.2. 2

Theorem 5.4.5. The non-optimal winner selection algorithm is individual rational.

Proof: According to the process of Algorithm 11, for each winner w ∈ W , we have

w.p = P ≥ w.b if {u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} = ∅ according to the

definition of U ′T . Similarly, if {u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} 6= ∅, then we have

w.p = min{u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} ≥ w.b. What’s more, according to

Theorem 5.4.4, the value of w.b could be regarded as the true valuation of winner w. Then

this theorem is proved. 2

Theorem 5.4.6. The non-optimal winner selection algorithm is profitable.

Proof: According to the process of Algorithm 11, for each winner w ∈ W , we have

w.p ≤ P if {u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) < T.d} = ∅. Similarly, if {u.b|u ∈ U ′T ∧ u.b >

w.b ∧ dis(u,w) < T.d} 6= ∅, then we have w.p = min{u.b|u ∈ U ′T ∧ u.b > w.b ∧ dis(u,w) <

T.d} ≤ P according to the definition of U ′T . Therefore, we have w.p ≤ P for each winner

w ∈ W , which leads to P |W | −
∑

w∈W w.p to be non-negative. Therefore, this theorem is

proved. 2

5.5 Experiment

5.5.1 Experiment Settings

We investigated two actual datasets from the Stanford Large Network Dataset Collec-

tion named Brightkite and Gowalla as user distribution in the physical world [111]. Both

79

Brightkite and Gowalla are location-based social network service providers where users can

share their locations. In the original Brightkite and Gowalla datasets, all the users distribute

worldwide. However, in actual crowdsensing applications, the range of sensing region is lim-

ited [18]. Therefore, we employ part of the original Brightkite and Gowalla datasets. In the

employed two subsets, the users are distributed in 400km× 400km rectangle regions. These

regions include New York, Washington and Philadelphia where users are densely distributed.

Random way point model is used to estimate users’ positions [112]. The detailed position

estimation method is omitted due to page limitation. Two groups of measurement results

on Brightkite and Gowalla datasets are presented in Fig.5.5 and Fig.5.6. Fig.5.5 shows the

number of users in UT and Fig.5.6 depicts the average of degree of conflict graph G(UT , E),

respectively. In the conflict graph, a node denotes a user. There is an undirected edge be-

tween two nodes if two users are conflict users. Therefore, the average degree of the conflict

graph is used to denote the average number of conflict users.

We use an actual bidding dataset named Swoopo to generate users’ bids [113]. The

preprocessed the raw data as following.

1. A subset of the original dataset which only contains the bids of a single good is ex-

tracted.

2. For simplicity, all the original bids are normalized by dividing the bid average.

The preprocessed bid dataset contains 5372 bids. The distribution of users’ normalized

bids is shown in Fig.5.7. The parameters and their default values for the experiments are

listed in Table 5.2. The experiment results for the optimal winner selection algorithm and

non-optimal winner selection problem are shown in Section 5.5.2 and Section 5.5.3.

5.5.2 Optimal Winner Selection Algorithm

We compared the execution speed of our algorithm with the Debbassac algorithm pro-

posed by [114]. The Debbassac algorithm explores the space of feasible winner selections

80

Parameter Brightkite Dataset Gowalla Dataset
T.x 0.627164 0.837312
T.y 0.485815 0.681470
T.r 0.0045 0.003
T.d 0.001 0.001
P 1 1
ε 0.1 0.1

Table 5.2. Default Parameters

1 2 3 4 5 6 7 8 9 10

x 10
−3

0

50

100

150

200

250

300

350

T.r

N
u
m

b
e
r

o
f
u
s
e
rs

Brightkite

Gowalla

Figure 5.5. Number of users in UT

0.5 1 1.5 2

x 10
−3

0

5

10

15

20

25

30

35

T.d

A
v
e
ra

g
e
 d

e
g
re

e

Brightkite

Gowalla

Figure 5.6. Average degree of conflict
graph

in a depth-first-search fashion and uses a branch-and-bound approach to prune the search

space.

The first group of experiments is to compare the execution time with different radiuses

of sensing data gathering regions denoted by T.r. The results for both the Brightkite and

Gowalla datasets are shown in Fig.5.8. We can see that the execution time for both the

A* algorithm and the Debbassac algorithm increases with T.r due to the increase of the

total number of crowdsensing participants. Also, the execution time for the A* algorithm

is much lower than that of the Debbassac algorithm for the same T.r, which demonstrates

the efficiency of the algorithm we proposed. Moreover, we can see that for the Brightkite

dataset, the execution time for the A* algorithm does not increase when T.r > 4 × 10−3.

The reasons are as follows.

1. The number of users almost remains the same when T.r > 4 × 10−3 due to user’s

81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

600

bid

n
u
m

b
e
r

o
f
b
id

s

Figure 5.7. Bid distribution

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15

x 10
−3

10
0

10
1

10
2

10
3

T.r

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

A*

Debbassac

(a) Brightkite

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

x 10
−3

10
0

10
1

10
2

10
3

10
4

10
5

T.r

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

A*

Debbassac

(b) Gowalla

Figure 5.8. Execution time comparison for different T.r.

geographical distribution.

2. Newly induced users have high bids, which greatly helps the pruning of the A* algo-

rithm.

The second group of experiments is to compare the execution time with different mini-

mum distances for the winners which is denoted by T.d. We set the value of T.r to 0.003 for

both the Brightkite and Gowalla datasets. The results are shown in Fig.5.9. We can observe

that the A* algorithm executes much faster than the Debbassac algorithm, which indicates

that the proposed A* algorithm is efficient.

The Debbassac algorithm proposed in [114] can also solve the optimal winner selec-

82

1 1.1 1.2

x 10
−3

10
1

10
2

10
3

T.d

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

A*

Debbassac

(a) Brightkite

1 1.1 1.2

x 10
−3

10
1

10
2

10
3

T.d

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

A*

Debbassac

(b) Gowalla

Figure 5.9. Execution time comparison for different T.d.

tion problem. However, according to [114], the Debbassac algorithm also has exponential

time complexity. Although both these two algorithms have exponential time complexity, the

experiment results show that our algorithm is much more efficient than the Debbassac algo-

rithm. The reason is that PTAS [106] can accurately estimate the maximized total weight

of a given graph, which greatly helps the pruning of the A* algorithm.

The third group of experiments is to compare the execution time between the PTAS-

based A* algorithm and the naive A* algorithm. The only difference between the naive A*

algorithm and the A* algorithm is that the naive A* algorithm simply sets the lower bound

to 0 and the upper bound to sum+ub1 for calculating the heuristic function. The results are

shown in Fig.5.10. The results indicate that the proposed A* algorithm runs faster than the

naive A* algorithm on both Brightkite and Gowalla datasets although additional overhead

is investigated in the PTAS-based calculation of lower bound and upper bound.

The fourth group of experiment is to compare the execution time of the PTAS-based A*

algorithm for different choices of ε. The results are shown in Fig.5.11. We can see that the

execution time for the A* algorithm increases with the increase of ε for both the Brightkite

and Gowalla datasets. The results indicate that an accurate estimation of lower bound and

upper bound is helpful for the reduction of total execution time, even though using lower ε

value may cause additional calculation overhead.

83

4 4.1 4.2 4.3 4.4

x 10
−3

10
3

10
4

T.r

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Naive A*

PTAS−based A*

(a) Brightkite

3.2 3.25 3.3 3.35 3.4 3.45

x 10
−3

10
2

10
3

T.r

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Naive A*

PTAS−based A*

(b) Gowalla

Figure 5.10. Execution time comparison between different A* algorithms

0.1 0.15 0.2 0.25 0.3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

epsilon

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Brightkite

Gowalla

Figure 5.11. Execution time for different
ε

0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P

P
ro

fi
le

Brightkite

Gowalla

Figure 5.12. Crowdsensing platform’s
profile

The fifth group of experiments is to show the benefits of inducing geographical position

conflict. All the users are assigned with spatial correlated sensory data. The results are shown

in Table 5.3. The naive method simply collects the sensory data for all the users whose bids

are greater than P . We can see for both Brightkite and Gowalla, the naive method collects a

large amount of sensory data while the number of the distinct readings is limited. However,

for the optimal winner selection method, the number of the distinct readings remains the

same while the amount of sensory data is much less than that of the naive method. The

above results indicate that the optimal method can greatly reduce redundant sensory data.

84

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Winner’s payment
W

in
n
e
r’
s
 b

id

Brightkite

Gowalla

Figure 5.13. Winners’ payments and bids

Dataset Sensory data count Distinct values
Naive method on Brightkite 23 3
Naive method on Gowalla 24 3
Optimal method on Brightkite 6 3
Optimal method on Gowalla 5 3

Table 5.3. Amount of sensory data comparison

5.5.3 Non-optimal Winner Selection Algorithm

The first group of experiments is to compare the total social welfare between the optimal

and non-optimal algorithm. The results are shown in Fig.5.14. The results for the Brightkite

dataset and the Gowalla dataset are shown separately for comparison. For both the optimal

and non-optimal winner selection algorithm, we can see that the total social welfare decreases

with the increase of T.d due to the increase of conflicts. Moreover, for the same T.d, the total

social welfare of the non-optimal algorithm is smaller than that of the optimal algorithm,

which illustrates our tradeoff between the total social welfare and algorithm performance.

The second group of experiments is to compare the profile of crowdsensing platform

with different P . The results are shown in Fig.5.12. We can see the total social welfare of

the crowdsensing platform increases with the increase of P for both the Brightkite and the

Gowalla datasets. Moreover, the results also indicate the crowdsensing platform has non-

negative social welfare even if P is relatively low, which verifies the correctness of Theorem

5.4.6.

85

1.25 1.3 1.35 1.4 1.45 1.5

x 10
−3

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

T.d

S
o
c
ia

l
w

e
lf
a
re

Optimal

Non−optimal

(a) Brightkite

1 1.1 1.2

x 10
−3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

T.d

S
o
c
ia

l
w

e
lf
a
re

Optimal

Non−optimal

(b) Gowalla

Figure 5.14. Social welfare comparison

The third group of experiments is to compare winners’ payments and bids. The results

are shown in Fig.5.5.2 where the dots are used to denote the bids and payments of the

winners. The results indicate each winner’s payment is greater than its bid for both the

Brightkite and the Gowalla datasets, which verifies the correctness of Theorem 5.4.5.

5.6 Conclusion

In this chapter, we propose a geographical position conflicting based winner selection

problem in mobile crowdsensing. An optimal winner selection algorithm is proposed to

maximize the total social welfare. Moreover, we also propose a computationally efficient non-

optimal winner selection algorithm. Solid theoretical proofs indicate both these algorithms

are truthful, individual rational and profitable. The experimental results which are based

on actual datasets indicate the proposed algorithms are efficient. An interesting aspect of

research in the future is to make use of the sensory data’s spatial correlation to study users’

cooperation in geographical position based crowdsensing tasks.

86

Chapter 6

APPROXIMATE HOLISTIC AGGREGATION IN SMALL SCALE

NETWORKS

6.1 Introduction

With the ever-increasing population, problems of everyday sustainability have become

onerous. According to the survey by United Nations, 54% of the world’s current population

lives in urban areas. It is also expected that the percentage increases to 66 by 2050. With

this escalation in urban population, new challenges have emerged. These challenges include

the constant power supply, public safety, disaster prediction, and traffic maintenance. Smart

City has become inevitable to address these challenges [115] [116] [117] [118] [119] [120].

Many cities like New York, Detroit, Singapore, and London are working towards smart city

development. These cities have adopted for various technologies like smart parking services,

intelligent street light systems, sensors to redirect traffic, and water conservation. Although

these applications are designed for urban living, they should also be incorporated in rural

areas so that more resources could be preserved for future generations. SC networks should

collect data from all over the city to provide better information. So, to collect such well

spread data, they exploit various sensor equipped devices in the city to collect data and

interpret information at the city level.

In today’s world, all the devices from smart home devices to intelligent transport sys-

tems are well connected with the internet. Such a network with well connected devices is

called Internet-Of-Things (IoT) [121] [122] [123] [124] [125] [126]. As the network grows, our

need for intelligent devices develop and so does the necessity to sense various activities for

the convenient living of people in the cities. some of the applications like transportation,

healthcare, and seamless internet connection widely use IoT technologies. The main aim in

IoT is to reduce cost and provide faster access to the data. But the primary challenge is

87

that the deployment of IoT network is expensive as it requires a large number of sensing de-

vices. Additionally, it is also important to collect data autonomously and provide intelligent

methods that address the issues of dynamic traffic, accommodating new services, channel

conditions, and ever-increasing user requirements.

Sensors are the building blocks for many IoT devices. Utilizing sensors as the commu-

nication media helps us resolve many of the problems discussed earlier. IoT devices with

self-configurable sensors do not require external infrastructure for communication [127] [128]

[129] [130] [131] [132]. Previous researchers have studied the issues of routing, topology con-

trol and time synchronization in networks that include sensors for communication [66], [133],

[134]. Although using sensors reduces the communication cost, it raises the issue of process-

ing cost. Sensors collect data for a more extended period over vast networks. Therefore, we

end up with massive data being processed for information retrieval at a single sensor node

and thus increasing the processing cost. To address this issue, we need data aggregation at

the sensor level. When data is aggregated, we do not transmit the whole sensing data but

instead, send the aggregated partial data into the network. This further raises the energy

consumption issue as the aggregation costs much energy and the sensor are not equipped

with huge amounts of power supply. According to [86], cost of transmitting one bit of data

using wireless link is equivalent to the cost of executing 1000 instructions. So, reducing the

data transmission is one of the major ways to decrease the energy consumption in IoTs [135]

[136] [137] [138] [139] [140]. Hence, it is critical to design energy efficient data aggregation

models for sensor equipped IoT networks.

There are two kinds of aggregation queries: maximum query and distinct set query. The

maximum query is to calculate the maximum of all the readings in the sensory data while

the distinct set query is to calculate the unique values in the sensory data. Both the queries

are essential for a given network. For example, while monitoring pollution, maximum query

results in the most polluted area along with its values. Similarly, distinct set query shows

the pollution levels in all the regions. Hence, the energy efficient data aggregation model

should accommodate both queries in its development.

88

In practice, exact query results are not always necessary while approximate query results

may also be acceptable for the purpose of energy conservation [141] [142]. Therefore, in this

chapter, two algorithms to process δ-approximate maximum queries and δ-distinct-set queries

are proposed. These two algorithms are based on uniform sampling and Bernoulli sampling,

respectively. Unlike the algorithms proposed in Chapter 3 and Chapter 4, which are for large

scale networks, the algorithms proposed in this chapter are for small scale networks. The

proposed algorithms are able to return the exact query results with probability not less than

1-δ where the value of δ can be arbitrarily small. The main contributions of this chapter can

be summarized are as follows.

1. Mathematical estimators for the maximum value and distinct-set aggregation opera-

tions are provided.

2. The mathematical methods to determine the required sample size and sample prob-

ability for calculating δ-approximate maximum value and δ-approximate distinct-set

are designed.

3. Distributed algorithms for δ-approximate maximum value and δ-approximate distinct-

set are provided. Additionally, the energy costs of these two algorithms are analyzed.

4. Extensive simulation results are presented which indicates that both δ-approximate

maximum value and δ-approximate distinct set algorithms perform significantly better

than a simple distributed algorithm in terms of energy consumption.

The rest of the chapter is organized as follows. Section 6.2 defines the problem. Section

6.3 provides the mathematical proof for the δ-approximate aggregation algorithms. Section

6.4 explains the proposed δ-approximate aggregation algorithms. Section 6.5 shows the

simulation results. Section 6.6 concludes this chapter.

89

6.2 Problem Definition

Let us assume that we have a sensor equipped IoT network with n sensor nodes and

sti is the sensory value of node i at time t. St = {st1, st2, . . . , stn} is used to denote the set

of all the sensory data in the network at time t. We use Dis(St) = {sdt1, sdt2, . . . , sdt|Dis(St)|}

to denote the distinct set of St, which contains the distinct values in St. For example, if

we have St = {st1, st2, st3, st4, st5} and st1 = 1, st2 = 1, st3 = 2, st4 = 3, st5 = 3; then the

Dis(St) = {1, 2, 3}. In this chapter, we assume that the data is distributed randomly in the

network while the spatial and temporal correlation for the sensory data is ignored.

In this chapter, we focus on two aggregation operations on St, which are max and

distinct set. The definition of the maximum value and distinct-set are as follows:

1. The exact maximum value denoted by Max(St) satisfies Max(St) = max{sti ∈ St|1 ≤

i ≤ n}.

2. The exact distinct-set of St denoted by Dis(St) satisfies that ∀s ∈ St,∃sd ∈

Dis(St), s = sd and ∀sdx, sdy ∈ Dis(St), x 6= y ⇒ sdx 6= sdy.

A naive method that solves the max and distinct set aggregation problems has three

main steps.

1. Organize all the nodes in the network into an aggregation tree. The sink node broad-

casts the aggregation operation in the network.

2. All the nodes in the network submits its sensory data to the sink node along the

aggregation tree.

3. The intermediate nodes in the aggregation tree aggregates the partial results during

the data transmission.

However, the above method will lead to an immense communication cost and computation

cost for calculating exact aggregation result. Therefore, we propose a δ-approximate result

for the above two aggregation operations. Let It and Ît are the exact aggregation result and

90

Name Description
n The size of network
sti The sensory value of node i at time t
sdti The i-th distinct sensory value at time t
St = {st1, st2, . . . , stn} The sensory data in the network at time t
Max(St) The maximum value of St
Dis(St) The distinct set of St
U(m) A uniform sample of St with size m
B(q) A Bernoulli sample of St

with sampling probability q
nx Number of appearance of value x in St
nmin Number of appearances

for least appearing data
k Number of clusters
Ci The i-th cluster

Table 6.1. Symbols

approximate aggregation result of St at time t respectively. The definition of the δ-estimator

is as follows.

Definition 6.2.1 (δ-estimator). For any δ (0 ≤ δ ≤ 1), Ît is called the δ-estimator of It if

Pr(Ît 6= It) ≤ δ,

According to Definition 6.2.1, the problem of computing δ-approximate maximum value

and δ-approximate distinct-set is defined as follows.

Input: (1) A sensor equipped IoT network with n nodes; (2) The sensory data set St;

(3) Aggregation operator Agg ∈ {Max, DistinctSet} and δ (0 ≤ δ ≤ 1).

Output: δ-approximate aggregation result of Agg.

Summary of all the frequently used symbols is shown in Table 6.1.

6.3 Preliminaries

6.3.1 Uniform Sampling Based Approximate Aggregation

Let u1, u2, ..., um denote m simple random samplings with replacement from St, U(m) =

{u1, u2, ..., um} is used to denote a uniform sample of St with sample size m, then we have

91

the following conclusions.

1. ui and uj are independent with each other for all 1 ≤ i 6= j ≤ m.

2. Pr(ui = stj) = 1
n

for any 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Based on the above conclusions, we have the following theorem.

Lemma 6.3.1. For any given value x ∈ Dis(St), we have

Pr(x /∈ U(m)) = (1− nx
n

)m

where nx is the number of appearance of value x in St.

Proof: Pr(x /∈ U(m)) = Pr(u1 6= x ∧ u2 6= x ∧ . . . um 6= x). Since all the samples

u1, u2, . . . um are independent with each other, we have

Pr(x /∈ U(m)) =
m∏
i=1

Pr(ui 6= x) = (Pr(u1 6= x))m.

Moreover, we also have

Pr(u1 6= x) = 1− Pr(u1 = x) = 1− nx
n
.

Then this lemma is proved. 2

To obtain δ-approximate maximum value, the mathematical estimator is needed firstly.

Let ̂Max(St)u denote the uniform sampling based estimator of exact value Max(St). Then

̂Max(St)u is defined as

̂Max(St)u = Max(U(m)) = max{ui ∈ U(m)|1 ≤ i ≤ m}.

Based on Lemma 6.3.1, we have the following theorem.

92

Theorem 6.3.1. ̂Max(St)u is a δ-estimator of Max(St) if

m ≥ ln δ

ln(1− nmin
n

)

where nmin is the number of appearances for the least appearing data.

Proof: Based on the condition, we have

m ln(1− nmin
n

) ≤ ln δ

(1− nmin
n

)m ≤ δ.

According to Lemma 6.3.1, we have

Pr(Max(St) /∈ U(m)) = (1−
nMax(St)

n
)m

where nMax(St) is the number of appearance for the maximum value in St. Since nMax(St) ≥

nmin, we have

Pr(Max(St) /∈ U(m)) ≤ (1− nmin
n

)m ≤ δ.

Then this theorem is proved. 2

Let ̂Dis(St)u denote the uniform sampling based estimator of exact result Dis(St). Then

̂Dis(St)u is defined as

̂Dis(St)u = Dis(U(m)).

Based on Lemma 6.3.1, we have the following theorem.

Theorem 6.3.2. ̂Dis(St)u is a δ-estimator of Dis(St) if

m ≥ ln(1− (1− δ)nmin/n)

ln(1− nmin
n

)

where nmin is the number of appearances for the least appearing data.

93

Proof: Based on the condition, we have

(1− nmin
n

)m ≤ 1− (1− δ)nmin/n

(1− (1− nmin
n

)m)n/nmin ≥ 1− δ

1−
|Dis(St)|∏
i=1

(1− (1− nmin
n

)m) ≤ δ

Let nsdti to denote the number of appearance for sdti , then we have

1−
|Dis(St)|∏
i=1

(1− (1−
nsdti
n

)m) ≤ δ

since nmin ≤ nsdti . Moreover, according to Lemma 6.3.1, we have

1−
|Dis(St)|∏
i=1

(1− Pr(sdti /∈ U(m))) ≤ δ

1−
|Dis(St)|∏
i=1

Pr(sdti ∈ U(m)) ≤ δ

1− Pr(̂Dis(St)u = Dis(St)) ≤ δ

Pr(̂Dis(St)u 6= Dis(St)) ≤ δ

Then this theorem is proved. 2

6.3.2 Bernoulli Sampling Based Approximate Aggregation

Let B(q) = {b1, b2, . . . , b|B(q)|} denote a Bernoulli sample of data set St with sample

probability q. Then we have the following lemma.

Lemma 6.3.2. For any given value x ∈ Dis(St), we have

Pr(x /∈ B(q)) = (1− q)nx

94

where nx is the number of appearance of value x in St.

Proof: Without loss of generality, we assume st1 = st2 = · · · = stnx = x, then we have

Pr(x /∈ B(q)) = Pr(st1 /∈ B(q) ∧ st2 /∈ B(q) ∧ · · · ∧ stnx /∈ B(q)). Therefore, we have

Pr(x /∈ B(q)) =
nx∏
i=1

Pr(sti /∈ B(q)) = (Pr(st1 /∈ B(q)))nx .

According to the definition of Bernoulli sampling, we have

Pr(st1 /∈ B(q)) = 1− Pr(st1 ∈ B(q)) = 1− q.

Then this lemma is proved. 2

Let ̂Max(St)b denote the Bernoulli sampling based estimator of exact value Max(St).

̂Max(St)b is defined as

̂Max(St)b = Max(B(q)) = max{bi ∈ B(q)|1 ≤ i ≤ |B(q)|}.

Based on Lemma 6.3.2, we have the following theorem.

Theorem 6.3.3. ̂Max(St)b is a δ-estimator of Max(St) if

q ≥ 1− (δ)1/nmin

where nmin is the number of appearances for the least appearing data.

Proof: Based on the condition, we have

(1− q)nmin ≤ δ.

According to Lemma 6.3.2, we have

Pr(Max(St) /∈ B(q)) = (1− q)nMax(St)

95

where nMax(St) is the number of appearance for the maximum value in St. Since nMax(St) ≥

nmin, we have

Pr(Max(St) /∈ B(q)) ≤ (1− q)nmin ≤ δ.

Then this theorem is proved. 2

Let D̂is(St)b denote the Bernoulli sampling based estimator of exact result Dis(St).

Then D̂is(St)b is defined as

D̂is(St)b = Dis(B(q)).

Based on Lemma 6.3.1, we have the following theorem.

Theorem 6.3.4. D̂is(St)b is a δ-estimator of Dis(St) if

q ≥ 1− (1− (1− δ)nmin/n)1/nmin

where nmin is the number of appearances for the least appearing data.

Proof: According to the condition, we have

(1− q)nmin ≤ 1− (1− δ)nmin/n

(1− (1− q)nmin)n/nmin ≥ 1− δ

1−
|Dis(St)|∏
i=1

(1− (1− q)nmin) ≤ δ.

Let nsdti to denote the number of appearance for sdti , since nmin ≤ nsdti , we have

1−
|Dis(St)|∏
i=1

(1− (1− q)nsdti) ≤ δ.

Moreover, according to Lemma 6.3.2, we have

1−
|Dis(St)|∏
i=1

(1− Pr(sdti /∈ B(q))) ≤ δ

96

1−
|Dis(St)|∏
i=1

Pr(sdti ∈ B(q)) ≤ δ

1− Pr(D̂is(St)b = Dis(St)) ≤ δ

Pr(D̂is(St)b 6= Dis(St)) ≤ δ.

Then this theorem is proved. 2

6.4 δ-Approximate Aggregation Algorithms

The theorems in Section 6.3 show how to calculate the required sampling size and

sampling probability according to given δ. However, we still have the following problems to

be solved.

1. How does the sink node broadcasts the sampling information in the whole network.

2. How to sample the sensory data from the whole network.

3. How to transmit and aggregate the partial aggregation results.

The methodology to solve the above problems will be introduced in the following two sub-

sections.

6.4.1 Uniform Sampling Based Aggregation Algorithm

When the sample size m is calculated using the theorems in Section 6.3.1, there is a

simple method to sample the sensory data.

1. The sink generates m random numbers in {1, 2, 3, . . . , n} and broadcasts them in

the whole network.

2. The sensor node whose id belongs to the m numbers sends its sensory data to the sink

node.

97

However, the above algorithm has a huge energy cost during the first step since a

significant amount of sampling information needs to be transmitted. To further reduce the

energy cost, we divide the whole network into k disjoint clusters C1, C2, ... , Ck. Each

cluster randomly selects one of its node as the cluster head. By using the method, proposed

in [60], all the cluster heads in the network are organized as a minimum hop-count spanning

tree rooted at the sink node. We then adopt the uniform sampling algorithm proposed by

[54], described as follows.

1. The sink generates a series of random numbers Yi with the probability Pr(Yi = l) =

|Cl|
n

(1 ≤ i ≤ m),

2. Let ml be the sample size of Cl. Then ml is calculated by ml = |{Yi|Yi = l}|.

3. The sink node sends the sample size {ml | 1 ≤ l ≤ k} to each cluster head. Each

cluster head samples the sensory data in the cluster using the above naive sampling

algorithm.

When the cluster head of the l-th cluster receives all the sampled sensory data, U(ml),

it calculates the partial aggregation result R(U(ml)) according to aggregation operation Agg

by using the following method.

R(U(ml)) =


Max(U(ml)) if Agg = Max

Dis(U(ml)) elsewhere

The partial aggregation result R(U(ml)) is transmitted along the spanning tree to the sink

node. To further reduce the transmission cost, the intermediate nodes in the spanning tree

aggregate the received partial result while transmitting the data. Above process is explained

in Algorithm 12.

98

Algorithm 12: Uniform Sampling Based Aggregation Algorithm

Input: δ, aggregation operator Agg ∈ {Max, DistinctSet}
Output: δ-approximate aggregation results
1: if Agg = Max then
2: m = d ln δ

ln(1−nmin
n

)
e

3: else
4: m = d ln(1−(1−δ)

nmin/n)

ln(1−nmin
n

)
e

5: end if
6: generate Yi following Pr(Yi = l) = |Cl|

n
,

7: ml = |{Yi | Yi = l}| (1 ≤ i ≤ m, 1 ≤ l ≤ k), the sink sends ml to each cluster head by
multi-hop communication

8: for each cluster head of the clusters Cl (1 ≤ l ≤ k) do
9: generates random numbers k1, k2, . . . , kml then broadcast inside the cluster

10: end for
11: for each cluster member of Cl (1 ≤ l ≤ k) do
12: send sensory value to cluster head if its id ∈ {k1, k2, . . . , kml};
13: end for
14: for each cluster head of the clusters Cl (1 ≤ l ≤ k) do
15: receive sample data U(ml) and calculate partial result R(U(ml));
16: end for
17: for each node j in the spanning tree do
18: if j is the leaf node then
19: Send Rj to its parent node
20: else
21: Receive partial results Rj1, Rj2, . . . , Rjc from its children
22: if Agg = Max then
23: Rj = max(Rj1, Rj2, . . . , Rjc)
24: else
25: Rj =

⋃c
i=1Rji

26: end if
27: if j is the sink node then
28: return Rj

29: else
30: Send Rj to its parent node
31: end if
32: end if
33: end for

99

According to the analysis in Section 6.3.1, for the sample size m, we have

m =


d ln δ
ln(1−nmin

n
)
e if Agg = Max

d ln(1−(1−δ)
nmin/n)

ln(1−nmin
n

)
e if Agg = Dis

Therefore, we have

m =


O(ln 1

δ
) if Agg = Max

O(ln(1
1−(1−δ)nmin/n)) if Agg = Dis

In practice, |Rj| can be regarded as a constant. According to [54], the communication cost

and the energy cost of the uniform sampling based δ-approximate aggregation algorithm is

O(ln 1
δ
) if Agg = Max, while the cost is O(ln(1

1−(1−δ)nmin/n)) if Agg = Dis.

6.4.2 Bernoulli Sampling Based Aggregation Algorithm

Unlike the uniform sampling based aggregation algorithm, the sampling information

of Bernoulli sampling based aggregation algorithm utilizes only the sampling probability q.

Additionally, Bernoulli based method provides a mechanism for each node in the network

to do the sampling independently. Therefore, the following steps are used in the Bernoulli

sampling based aggregation algorithm to perform sampling and the network need not be

divided into clusters.

1. Sink node broadcasts the sampling probability q in the network.

2. Each node generates a random number rand in the range of [0,1], submit its sensory

data to the parent node if rand < q.

When the intermediate nodes in the spanning tree receive the submitted sensory data,

they will calculate the partial aggregation results using the similar method introduced in

Section 6.4.1. These nodes then transmit the partial results along the spanning tree. Sim-

ilarly, during the process of transmitting partial aggregation results to the sink node along

100

the spanning tree, the intermediate nodes in the spanning tree aggregate the received partial

results. The process mentioned above is explained in detail in the Algorithm 13.

According to the analysis in Section 6.3.2, for the sample probability q, we have

q =


1− (δ)1/nmin if Agg = Max

1− (1− (1− δ)nmin/n)1/nmin if Agg = Dis

Similarly, we have the communication cost and the energy cost of the Bernoulli sampling

based δ-approximate aggregation algorithm is O(n − n(δ)1/nmin) if Agg = Max, while the

cost is O(n− n(1− (1− δ)nmin/n)1/nmin) if Agg = Dis.

6.5 Simulation Results

To evaluate the proposed algorithms, we have simulated a network with 1000 nodes.

All the nodes are randomly distributed in a rectangular region of size 300m× 300m and the

sink is in the center of the region. For the uniform sampling based aggregation algorithm,

the following strategy is used to define the clusters.

1. Divide the whole region into 10× 10 grids.

2. Group the nodes in the same gird into the same cluster.

3. Randomly chose the cluster head among the nodes of the same grid.

For each node, the energy cost to send and receive one byte is set as 0.0144mJ and 0.0057mJ

according to [4]. According to the experiment results in [61] about the same type of sensor

node, the communication range of each sensor node is set to be 30
√

2m in our simulation.

This kind of simulation setting can make every sensor node communicate with its cluster

head by a one-hop message.

101

Algorithm 13: Bernoulli Sampling Based Aggregation Algorithm

Input: δ, aggregation operator Agg ∈ {Max, DistinctSet}
Output: δ-approximate aggregation results
1: if Agg = Max then
2: q = 1− (δ)1/nmin

3: else
4: q = 1− (1− (1− δ)nmin/n)1/nmin

5: end if
6: Sink node broadcasts q in the network
7: for each leaf node j in the spanning tree do
8: if rand < q then
9: Send its own sensory data to its parent node;
10: end if
11: end for
12: for each non-leaf node j in the spanning tree do
13: Receive partial results Rj1, Rj2, . . . , Rjc from its children
14: if Agg = Max then
15: Rj = max(Rj1, Rj2, . . . , Rjc)
16: else
17: Rj =

⋃c
i=1Rji

18: end if
19: if rand < q then
20: if Agg = Max then
21: Rj = max(Rj, j.data)
22: else
23: Rj = Rj ∪ {j.data}
24: end if
25: end if
26: if j is the sink node then
27: return Rj

28: else
29: Send Rj to its parent node
30: end if
31: end for

102

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
20

40

60

80

100

120

140

delta

s
a

m
p

le
 s

iz
e

n/n
min

=30

n/n
min

=15

(a) Maximum Value

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
60

80

100

120

140

160

180

200

220

240

delta

s
a

m
p

le
 s

iz
e

n/n
min

=30

n/n
min

=15

(b) Distinct-Set

Figure 6.1. The relationship between δ and the sample size.

6.5.1 Uniform Sampling Based Aggregation Algorithm

The first group of simulations is about the relationship between δ and the sample size.

The results are presented in Fig.6.1. The results for both the maximum value aggregation

and the distinct-set aggregation are listed. Additionally, two groups of results with different

values of n
nmin

are listed for comparison. These results show that the sample size increases

with the decline of δ. Moreover, the sample sizes are much smaller than the size of the

network. For example, when δ = 0.01, the sample size is about 67 for deriving δ-approximate

maximum value. If n
nmin

= 15, which indicates that we just need to sample 6.7% sensory data

from the network to guarantee that the estimated maximum value being equal to the actual

maximum value with the probability greater than 99%. Therefore, our uniform sampling

based algorithm saves a tremendous amount of energy as it only needs a little amount of

sensory data to be sampled and transmitted in the network. Moreover, we can see that in

the same condition, the required sample size for the distinct-set aggregation is greater than

that of the maximum value aggregation since distinct-set aggregation needs to make sure all

the distinct values being sampled.

The second group of simulations is about the relationship between δ and the energy cost.

The results are shown in Fig.6.2. These results indicate that the energy cost increases with

103

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
9

9.5

10

10.5

11

11.5

12

delta

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

n/n
min

=30

n/n
min

=15

(a) Maximum Value

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

10.5

11

11.5

12

12.5

13

13.5

14

delta

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

n/n
min

=30

n/n
min

=15

(b) Distinct-Set

Figure 6.2. The relationship between δ and the energy cost for the uniform sampling based
aggregation algorithm.

the decline of δ. We can also see that in the same condition, the energy cost for the distinct-

set aggregation is higher than that of the maximum value aggregation as the distinct-set

aggregation has a greater sample size.

The third group of simulation is to compare the energy cost between the uniform sam-

pling based aggregation algorithm and the simple distributed algorithm. The simple dis-

tributed algorithm is to collect all the raw sensory data and aggregate the partial results

during the transmission, which can always return accurate aggregation results. For the uni-

form sampling based aggregation algorithm, we set δ = 0.1 and n
nmin

= 15 and the network

size varies from 500 to 1500. The results are listed in Fig.6.3. We can see that for all

the proposed algorithms, the energy cost increases with the increase of the network size.

Moreover, for the same network size, the energy cost of the uniform sampling based aggre-

gation algorithm is much lower than that of the naive distributed algorithm as there are

only a small number of nodes need to submit their sensory data. These results indicate

that the uniform sampling based aggregation algorithm performs better in terms of energy

consumption although it returns wrong aggregation results with the probability less than

δ. It is also to be observed that with an increase in the network size, the energy cost of

the naive distributed algorithm proliferates, while the energy cost of the uniform sampling

104

500 1000 1500
5

10

15

20

25

30

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

simple distributed algorithm

uniform sampling algorithm

(a) Maximum Value

500 1000 1500
5

10

15

20

25

30

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

simple distributed algorithm

uniform sampling algorithm

(b) Distinct-Set

Figure 6.3. Energy cost comparison between the uniform sampling based aggregation
algorithm and the simple distributed algorithm.

based aggregation algorithm almost remains the same. The above phenomenon indicates

that the uniform sampling based aggregation algorithm has even better performance when

the network size is large.

6.5.2 Bernoulli Sampling Based Aggregation Algorithm

The first group of simulations is about the relationship between δ and the sample prob-

ability. These results are presented in Fig.6.4. The results show that the sample probability

increases with the decline of δ. Moreover, the sample probabilities are much smaller than 1.

For example, when δ = 0.01, the sample probability is about 0.066 for deriving δ-approximate

maximum value. Therefore, the proposed Bernoulli sampling based algorithm saves a huge

amount of energy. Similarly, the required sample size for the distinct-set aggregation is

greater than that of the maximum value aggregation in the same condition.

The second group of simulations is about the relationship between δ and the energy

cost. The results are shown in Fig.6.5. We can observe from these results that the energy

cost increases with the decline of δ and the energy cost for the distinct-set aggregation is

higher than that of the maximum value aggregation.

The third group of simulation is to compare the energy cost between the Bernoulli sam-

105

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

delta

s
a

m
p

le
 p

ro
b

a
b

ili
ty

n
min

=34

n
min

=67

(a) Maximum Value

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

delta

s
a

m
p

le
 p

ro
b

a
b

ili
ty

n
min

=34

n
min

=67

(b) Distinct-Set

Figure 6.4. The relationship between δ and the sample probability.

pling based aggregation algorithm and the simple distributed algorithm. For the Bernoulli

sampling based aggregation algorithm, we set δ = 0.1 and nmin = 67. The network size varies

from 500 to 1500 nodes. The results are listed in Fig.6.6. Similar results can be observed for

the same network size, the energy cost of the Bernoulli sampling based aggregation algorithm

is much lower than that of the simple distributed algorithm. These results indicate that the

Bernoulli sampling based aggregation algorithm has high performance on energy consump-

tion. Moreover, we can also see that the Bernoulli sampling based aggregation algorithm

has even better performance on large-scale networks.

The fourth group of simulation is to compare the energy cost between the Bernoulli

sampling based aggregation algorithm and the uniform sampling based aggregation algorith-

m. We set δ = 0.1 and n
nmin

= 15. To ensure the network connectivity when the network

size is small, we set node’s communication to 60m for this group of simulation. The results

are shown in Fig.6.7. From these results, we observe that for both the uniform sampling

based aggregation algorithm and the Bernoulli sampling based aggregation algorithm, the

energy cost increases with the increase in network size. Additionally, the Bernoulli sampling

based aggregation algorithm has lower energy cost when the network size is small, while the

uniform sampling based aggregation algorithm has lower energy cost when the network size

is large. From the above results, we can see that the Bernoulli sampling based aggregation

106

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

delta

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

n
min

=34

n
min

=67

(a) Maximum Value

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10.5

11

11.5

12

12.5

13

13.5

14

delta

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

n
min

=34

n
min

=67

(b) Distinct-Set

Figure 6.5. The relationship between δ and the energy cost for the Bernoulli sampling
based aggregation algorithm.

algorithm has the following advantages.

1. The Bernoulli sampling based aggregation algorithm can be used in unclustered net-

works.

2. The Bernoulli sampling based aggregation algorithm has lower energy cost in small-

scale networks.

While on the other hand, the uniform sampling algorithm is appropriate for large-scale

clustered networks.

6.6 Conclusions

In this chapter, the δ-approximate algorithms for the maximum value and distinct-set

aggregation operations in sensor equipped IoT networks are proposed. These algorithms are

based on the uniform sampling and Bernoulli sampling respectively. Mathematical proofs

have been made for better understanding of these algorithms. Additionally, we have also

proposed mathematical estimators for the two algorithms. Moreover, we have derived the

values for the sample size and the sample probability which satisfies the specified failure

107

500 1000 1500
5

10

15

20

25

30

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

simple distributed algorithm

Bernoulli sampling algorithm

(a) Maximum Value

500 1000 1500
5

10

15

20

25

30

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

simple distributed algorithm

Bernoulli sampling algorithm

(b) Distinct-Set

Figure 6.6. Energy cost comparison between the Bernoulli sampling based aggregation
algorithm and the simple distributed algorithm.

probability requirements of the final result. Finally, a uniform sampling based algorithm

and a Bernoulli sampling based algorithm are provided.

Experiments are conducted for various delta values and the network sizes. The results

are then compared between the naive method and the proposed algorithms. The simulation

results indicate that the proposed algorithms have high performance with respect to the

energy cost.

108

100 200 300 400 500 600 700 800 900 1000
4

5

6

7

8

9

10

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

uniform sampling algorithm

Bernoulli sampling algorithm

(a) Maximum Value

1000 1200 1400 1600 1800 2000
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

network size

e
n

e
rg

y
 c

o
s
t

(m
J
/B

y
te

)

uniform sampling algorithm

Bernoulli sampling algorithm

(b) Distinct-Set

Figure 6.7. Energy cost comparison between the uniform sampling based aggregation
algorithm and Bernoulli sampling based aggregation algorithm.

109

Chapter 7

DATA COLLECTION IN GEOGRAPHICAL POSITION DEPENDENT

MOBILE SENSING

7.1 Introduction

Nowadays, smartphones have gained popularity and are playing a key role in multiple as-

pects of people’s daily life such as entertainment, communication and social activities. Most

smartphones are equipped with embedded sensors such as camera, GPS (Global Positioning

System), accelerometer, etc [95] [143] [144] [145] [146] [147]. Moreover, the popularity of

wearable devices also enhances the smartphones’ sensing capabilities by exchanging sensory

data with smartphones using network interfaces. Therefore, in various fields, mobile sensing

has numerous innovative applications including environmental transportation, monitoring,

safety, healthcare and so on [1] [148] [149] [150] [151] [152].

Mobile crowdsensing is to make use of the sensing capabilities of smartphones to get

sensory data. This problem has been gaining significant popularity in recent years. Multi-

ple works have studied the problem of incentive mechanism design in mobile crowdsensing

platforms [101] [102]. In traditional applications and systems of mobile sensing such as [153]

and [154], the mobile sensing platform is based on voluntary participation. While in mobile

crowdsensing, task participants get paid for their contribution [155] [156] [157]. The reason

is the participants have their own resource consumption such as battery and data transition

fee while participating in a sensing task. For example, the following process is used to gather

sensory data for multiple general-purpose mobile crowdsensing platforms [103],

1. The mobile crowdsensing platform broadcasts a mobile sensing task to the users.

2. The users transmit feedback to the mobile crowdsensing platform. A feedback can be

a detailed sensing plan or a bid which is the expected price at which the user wants to

110

sell the sensory data.

3. The mobile crowdsensing platform selects some smartphone users as winners for par-

ticipating in the mobile sensing task.

4. The mobile crowdsensing platform makes payments to the winners. The winners submit

their sensory data to the mobile crowdsensing platform.

In real-life applications, the mobile crowdsensing platforms aim to maximize the quality

of gathered sensory data during the above process because the mobile crowdsensing plat-

form needs to pay significant economic costs to the mobile crowdsensing participants for

their sensory data. However, in many applications, the sensory data exhibits strong spatial

correlation [25], [26]. Directly selecting the winners with lower bids may select multiple dis-

joint users as the winners, which cannot fully describe sensory data’s spatial correlation or

show the whole circumstance. This phenomenon is shown in the example in Section 7.2.2.

Therefore, it is necessary to design incentive mechanisms to solve the above problem.

This chapter is to study incentive mechanisms in the geographical position dependent

mobile crowdsensing platforms. Unlike the previous chapter, this chapter is to select users

who could form a connected graph. In this problem, the mobile crowdsensing platform cannot

select multiple disjoint user as the winners. All the selected winners must form a connected

dependent graph so that the sensory data can fully describe the whole circumstance of the

sensory region. Then we have the following two problems to be solved.

1. How to select the winner set to maximize the social welfare for a mobile crowdsensing

task while the selected winners form a connected dependent graph.

2. How to calculate appropriate payments to the winners?

This chapter proposes algorithms to solve the above two problems. Moreover, we also propose

and solve two extended winner selection problems, which are the min-K and budget-bounded

winner selection problem, respectively. In summary, the main contributions of our chapter

are as follows.

111

1. A geographical position dependent winner selection problem is proposed and formu-

lated as an optimization problem.

2. Proposes two algorithms to select winners and calculate winners’ payments. The first

algorithm is an A* algorithm which can maximize the total social welfare. The sec-

ond algorithm has polynomial time complexity while achieves sub-optimal total social

welfare only.

3. Proposes two extended winner selection problems. Another two algorithms are pro-

posed to solve the extended problems.

4. Offers solid theoretical proofs which indicate the proposed algorithms have beneficial

properties such as truthfulness, individual rationality and profitability.

5. Real datasets based experimental results are presented, which indicate the proposed

algorithms have high performance.

The rest of this chapter is organized as follows. Section 7.2 shows the problem defini-

tion. Section 7.3 and Section 7.4 are about the optimal and non-optimal winner selection

algorithms. Section 7.5 is about the algorithms for two extended problems. Experimental

results are provided in Section 7.6. Finally, Section 7.7 concludes this chapter.

7.2 Problem Definition

7.2.1 Crowdsensing Platform

Suppose there are n users deployed in a region and the set of users is denoted by

U = {u1, u2, . . . , un}. Each user in U carries a smartphone equipped with positioning device.

u.x and u.y are used to denote user u’s x-coordinate and y-coordinate. R(x, y, r) is used to

denote the circular region around position (x, y) with radius r which is defined as

R(x, y, r) = {(x′, y′)|(x′ − x)2 + (y′ − y)2 ≤ r2}.

112

Suppose a snapshot crowdsensensing task T is proposed by the mobile crowdsensing plat-

form. Task T invites users to submit sensory data in a sensory data gathering region

R(T.x, T.y, T.r). T.x and T.y are the x-coordinate and y-coordinate of the center of

R(T.x, T.y, T.r) and T.r is task T ’s sensing radius.

UT = {u ∈ U |(u.x, u.y) ∈ R(T.x, T.y, T.r)}

is used to denote the users in the sensory data gathering region R(T.x, T.y, T.r). After the

crowdsensing platform broadcasts the crowdsensing task T , all the users in U will receive it.

But only the users in UT will participate in the sensing task T due to the following reason.

1. Snapshot sensing task has high time-sensitiveness

2. There is massive moving cost for the users in U−UT to enter the region R(T.x, T.y, T.r)

[17].

The mobile crowdsensing platform uses the following process to collect sensory data.

1. The crowdsensing task T is sent to all the users by the crowdsensing platform.

2. Each user u ∈ UT submits its bid u.b and position (u.x, u.y) to the mobile crowdsensing

platform. The bid u.b is user u’s expected price to sell the sensory data for. The users

in U − UT will not further paticipate the crowdsensing task.

3. The mobile crowdsensing platform calculates the winner set W and the payment w.p

for each winner w ∈ W , then sends the payments to each winner.

4. The winners send their sensory data to the crowdsensing platform.

The above process is shown in Fig.7.1.

We use the total social welfare of the mobile crowdsensing platform to evaluate the

winner set W . Suppose P is the profit the crowdsensing platform acquires from a single

user’s sensory data. Since the mobile sensing platform does not know the exact payment to

113

Figure 7.1. Mobile sensing platform

each user during the process of winner selection, then the total social welfare is defined as its

total profile minus the sum of winners’ bids. In other words, the total social welfare equals

to

P |W | −
∑
w∈W

w.b

where |W | is the size of winner set W .

In practice, users may submit bids differ from their true valuations to improve their

utility. However, the theoretical proofs in Section 7.3, Section 7.4 and Section 7.5 indicates

the proposed algorithms are truthful. In other words, one user’s profit is maximized if its

bid is equal to its true cost. Therefore, u.b can be regarded as user u’s true cost.

7.2.2 Optimal Winner Selection Problem

According to the basic setting introduced in Section 7.2.1, there is a straightforward

method for the mobile crowdsensing platform to maximize the total social welfare, which is

to select the all the users whose bids are lower than P as the winners. However, in actual

applications, the sensory data may have strong spatial correlation [25], [26]. Directly using

the above method will have the following drawback.

Since each user decides its own bid independently and some users may have high bids

in order to get high payments, it is likely that users whose bids are lower than P sparsely

distribute in the sensing region. In other words, the users whose bids are lower than P may

be very far away from each other. In this way, directly using the above method may select

multiple disjoint users as the winners. Therefore, the positions for the gathered sensory data

will also be far away from each other, which cannot fully describe sensory data’s spatial

114

correlation. The above problem can be verified in the example shown in Fig. 7.2. In order

to solve the above problem, we have the following definitions of dependent users, dependent

graph and connected winner set.

Definition 7.2.1 (dependent users). User u and user v are dependent users if and only if

dis(u, v) ≤ T.d where

dis(u, v) =
√

(u.x− v.x)2 + (u.y − v.y)2

is the Euclidean distance between user u and user v and T.d is a predefined distance.

Definition 7.2.2 (dependent graph). Let G = (V,E) to denote a graph with node set V and

edge set E. For a winner set W , the dependent graph of W is defined as

DG(W) = G(W,E(W))

where

E(W) = {(u, v)|u, v ∈ W ∧ u, v are dependent users}.

Definition 7.2.3 (connected winner set). A winner set W is a connected winner set if and

only if the dependent graph DG(W) is a connected graph.

Based on the above winner determination setting, the problem of optimal winner selec-

tion is defined as follows.

Input: user set U and mobile sensing task T .

Output: 1) connected winner set W which maximizes P |W | −
∑

w∈W w.b. 2) The

payment for each winner w ∈ W .

Fig.7.2 shows an example of our optimal winner selection problem. Suppose the user

set is U = {u1, u2, u3, u4, u5, u6}. The blue-shadowed circle is the sensory data gathering

region. The circles are used to denote the users and the number in a circle is user’s ID. The

number beside a circle is the corresponding user’s weight which is defined as the value of P

115

1

2 3

4

5 6

-1

-1

2

2 0

Figure 7.2. Example of the winner selection problem

minus corresponding user’s bid. Two dependent users are connected by an edge. According

to the sensory data gathering region, we have UT = {u2, u3, u4, u5, u6}, and u1 cannot be a

winner because u1 /∈ UT . If we have P = 3, u2.b = 4, u3.b = 1, u4.b = 4, u5.b = 1, u6.b = 3,

then the optimal winner set is {u3, u4, u5} with social welfare as 3. Although using {u3, u5}

as the optimal winner set can further increase the total social welfare, but {u3, u5} is not a

connected winner set, which does not satisfy the conditions of our problem definition.

This chapter is to design incentive mechanisms which can select the winners and deter-

mine winners’ payments. Moreover, the proposed incentive mechanisms should satisfy the

following properties:

1. Computational efficiency: In practice, the number of users who participants in mobile

crowdsensing may be very large [2], [3]. Therefore, the incentive mechanism should be

computational efficient. A mechanism is computationally efficient if the outcome can

be calculated in polynomial time.

2. Truthfulness: In mobile crowdsensing, users may submit bids differ from their true

valuations to improve their utility. This may significantly affect the fairness of mobile

crowdsensing. Therefore, the incentive mechanism needs to be truthful which means

no bidder can improve its utility by submitting a bid different from its true valuation,

no matter what others submit.

3. Individual rationality: Each participant has a non-negative utility. In other words, one

116

participant’s payment must be greater or equal to its actual cost in order to encourage

user’s participation.

4. Profitability: The platform cannnot incur a deficit. The value brought by the winners

should be greater than or equal to the payment to the winners.

7.2.3 Problem Formulation

Boolean variable xi is used to denote if user ui is the winner or not, in other words,

xi =


1 if ui ∈ W

0 if ui /∈ W

ISG(V) is used to denote the induced subgraph of node set V , which is defined as follows

ISG(V) = G(V, {(u, v)|u ∈ V ∧ v ∈ V ∧ dis(u, v) ≤ T.d}).

Moreover, connected(G) is used to denote whether graph G is connected or not, in other

words,

connected(G) =


1 if G is connected

0 if G is not connected

Then the optimal winner selection problem can be formalized as the following optimization

problem.

max P

n∑
i=1

xi −
n∑
i=1

xibi

s.t. xi ∈ {0, 1}, 1 ≤ i ≤ |UT |

connected(ISG({U [i]|xi = 1})) = 1.

In order to increase the readability of this chapter, we summarized frequently used

symbols in Table 7.1.

117

Symbol Description
u.x/u.y x/y-coordinate of user u’s position
u.b/u.w/u.p user u’s bid/weight/payment
T.x/T.y x/y-coordinate of sensory data gathering region center
T.r sensory data gathering region’s radius
T.d dependent distance between two users
dis(u, v) Euclidean distance between user u and user v
R(x, y, r) {(x′, y′) ∈ [0, 1)2|(x′ − x)2 + (y′ − y)2 ≤ r2}
U the set of users
UT Users in the data gathering region of task T
W winner set
P the profit of one user’s sensory data

Table 7.1. Symbols

7.3 Optimal Winner Selection Algorithm

According to Section 7.2, our optimal winner selection problem can be formulated as

the maximum weight connected subgraph problem where each user is a node in the graph

and the weight of node u is defined as P − u.b [158]. Obviously, the following brute-force

algorithm can be used to solve the optimal winner selection problem.

1. Enumerate all subsets of UT .

2. Remove the subsets which are not connected winner sets.

3. Find the subset with the maximum social welfare.

However, this algorithm has huge computation cost since it needs to examine all the possible

subsets of UT . Therefore, the following A* algorithm is proposed to efficiently select winner

set which can maximal the social welfare.

118

7.3.1 Algorithm to Select the Winners

In our algorithm, a winner set is denoted by a 0-1 bit string. For a 0-1 bit string str

and node set U where all the nodes are sorted in ascending order of their IDs, we have

str[i] =


1 if U [i] is the winner

0 elsewhere

For the example shown in Fig.7.2, 0-1 bit string “01110” is used to denote the optimal winner

set {u3, u4, u5} Then the our algorithm is to find a 0-1 bit string to denote the optimal winner

set.

We use Q to denote the priority queue of the A* algorithm. Multiple 0-1 bit strings

which are used to denote all the possible winner combinations are stored in Q. Heuristic

function HF is used to calculate the priority of the elements in Q. The detailed steps of HF

are introduced in the remaining part of this section. Q.top is the element in Q which has

the highest priority. Q.pop() is used to indicate the operation of removing the element with

the highest priority. Q.push() is used to denote the operation of inserting a new element

into priority queue Q. Finally, the basic process of our A* algorithm is as follows.

1. Calculate the lower bound of maximum connected subgraph’s total weight, push 0-1

bit string “” into Q.

2. While Q 6= ∅ and |Q.top| < |UT |, pop Q.top as q, then examine q+“0” and q+“1”. For

each of them, use the heuristic function HF to compute its score, if the score is no less

than the lower bound computed in step 1, push the examined string into Q.

3. Calculate the final winner set according to Q.top.

The detailed process is shown in Algorithm 14. LB denotes the lower bound of maximum

connected subgraph’s total weight and HF denotes the heuristic function of the A* algorithm.

According to the process of A* algorithm, the HF function should calculate the upper

bound of connected winner set’s total weight. The basic procedure of our heuristic function

119

is as follows.

1. If |Q.top| = |UT |, the heuristic function returns 0 if ISG({UT [i]|str[i]=1}) is connected.

otherwise, the heuristic function returns −∞.

2. If |Q.top| < |UT |, the heuristic function returns the total weight for the undecided

users with positive weights.

The detailed process of the heuristic function HF is shown in Algorithm 15. The symbol u.w

is used to denote user u’s weight which is defined as

u.w = P − u.b.

Algorithm 14: Optimal Winner Selection Algorithm Opt(UT)

Input: User set UT
Output: Winner set W
1: LB = max(maxu∈UT u.w, 0)
2: Q.push(“”)
3: while Q 6= ∅ do
4: if |Q.top| = |UT | then
5: break
6: end if
7: q = Q.top, Q.pop()
8: q0 = q+“0”, q1 = q+“1”
9: if HF(q0) ≥ LB then
10: Q.push(q0)
11: end if
12: if HF(q1) ≥ LB then
13: Q.push(q1)
14: end if
15: end while
16: return {UT [i]|Q.top[i] = 1}

We can see that the heuristic function will return −∞ if the induced subgraph is not

connected. This will make sure that the selected winners will form a connected geographical

dependent graph.

120

Algorithm 15: Heuristic Function HF

Input: 0-1 bit string str
Output: Upper bound of maximum independent set’s total weight if str is further

extended
1: if |str| = |UT | then
2: if Connected(ISG({UT [i]|str[i]=1}))=false then
3: return −∞
4: else
5: return 0
6: end if
7: end if
8: sum=0
9: for i=|str|+ 1 to UT do

10: if UT [i].w > 0 then
11: sum=sum+UT [i].w
12: end if
13: end for
14: return sum

7.3.2 Payment Determination

After the optimal winners are selected, we will use the Vickrey-Clarke-Groves (VCG)

auction to calculate each winner’s payment [108]. The detailed process for the payment

determination is shown in Algorithm 16.

Algorithm 16: Payment Determination Algorithm

Input: Winner set W and U ′T
Output: Payment for each winner u ∈ W
1: maxw =

∑
u∈W u.w

2: for u ∈ W do
3: W ’=Opt(U ′T − {u})
4: maxw′ =

∑
v∈W ′ v.w

5: u.p = maxw −maxw′
6: end for
7: return W

According to Algorithm 14, we can easily find that the winner set W calculated by

Algorithm 14 is a connected winner set and the total social welfare is maximized. Moreover,

121

we can conclude that the payment strategy is truthful, individual rational and profitable

according to [108].

7.4 Non-optimal Winner Selection Algorithm

Although Section 7.3 introduces an A* algorithm which can maximize the total social

welfare and it uses the heuristic function to reduce the computation cost. However, according

to the following theorem [159], this algorithm still has high computational complexity.

Theorem 7.4.1. Maximum weighted connected subgraph problem is NP-complete.

While on the other hand, the number of participants can be quite large in many crowd-

sensing applications [2], [3]. Therefore, it is necessary to propose a computationally efficient

winner selection algorithm even if the total social welfare may not be maximized.

Obviously, there is straightforward approach to solve the above problem, whose process

is as follows.

1. Decide a winner set using an existing approximate algorithm with polynomial complic-

ity.

2. Decide the payment for each winner using the VCG auction.

However, [109] indicates VCG auction loses its truthful property if it the total social welfare

is not maximized. Therefore, we propose another winner selection algorithm based on a

theorem in [110], which is as follows.

Theorem 7.4.2. An auction mechanism is truthful if and only if:

1. The selection rule is monotone: if user i wins the auction by bidding bi, it also wins

by bidding b′i ≤ bi.

2. Each winner is paid the critical value: user i would not win the auction if it bids higher

than this value.

Moreover, this winner selection algorithm is based on the following definition.

122

Definition 7.4.1 (maximum positive connected component). Graph G’s connected compo-

nent C is a maximum positive connected component if and only if:

1. Every node in C has positive weight.

2. C cannot be further expended by adding another node.

For the example shown in Fig. 7.2, we can see that {u3} and {u5} are maximum positive

connected components while {u3, u4, u5} is not a maximum positive connected component

although {u3, u4, u5} has greater total weight.

7.4.1 Algorithm Design

Based on Theorem 7.4.2 and Definition 7.4.1, we have the following algorithm to select

the winners and determine winners’ payments where Ci is used to denote the i-th maximum

positive connected component and m is used to denote the number of maximum positive

connected components.

1. Set W = ∅, check each maximum positive connected component C1, C2, . . . , Cm of

graph G

2. Set W = Ci if
∑

u∈W u.w <
∑

v∈Ci v.w

3. All winners’ payments are set to P

The above process is shown in Algorithm 17.

According to Algorithm 17’s process, we can see that it will select one maximum positive

connected component in C1, C2, . . . , Cm. This will make sure the selected winners form a

connected geographical dependent graph.

7.4.2 Algorithm’s Properties

According to the process of Algorithm 17, we also have the following theorems which

indicate the proposed algorithm is computational efficient, truthful, individual rational and

profitable.

123

Algorithm 17: Non-optimal Winner Selection Algorithm

Input: User set UT and mobile crowdsensing task T
Output: Winner set W
1: W = ∅
2: for i=1 to m do
3: if

∑
u∈W u.w <

∑
v∈Ci v.w then

4: W = Ci
5: end if
6: end for
7: for i=1 to |W | do
8: W [i].p = P
9: end for

10: return W

Theorem 7.4.3. The time complexity of Algorithm 17 is O(U2
T)

Proof: All the maximum positive connected components can be calculated using

breadth-first search whose time complexity is O(U2
T). Moreover, the time complexity of

checking all the maximum positive connected components and calculating the payments are

O(U2
T) and O(UT) since we have m ≤ |UT | and Ci ≤ |UT | 1 ≤ i ≤ m. Finally, the total time

complexity is O(U2
T). 2

Theorem 7.4.4. The suboptimal auction mechanism is truthful.

Proof: According to the process of Algorithm 17, Algorithm 17 is to choose the maxi-

mum positive connected component with the highest total weight. So if user u ∈ Ci proposes

another bid u′b < ub, the total weight of Ci will become even larger. Then user u will still be

chosen as the winner. Therefore, we conclude that Algorithm 17 is monotone.

According to the process of Algorithm 17, each winner’s payment is P . If user u’s bid

is greater than P , u will not belong to any maximum positive connected component, which

makes u cannot be the winner. Therefore, we conclude that each winner in Algorithm 17 is

paid the critical value.

Since Algorithm 17 is monotone and each winner is paid the critical value, we can

conclude that Algorithm 17 is truthful according to Theorem 7.4.2. 2

124

Theorem 7.4.5. The non-optimal auction is individual rational.

Proof: According to the process of Algorithm 7.4.2, each winner’s payment is P . Then

this theorem can be easily proved according to the definition of maximum positive connected

component. 2

Theorem 7.4.6. The non-optimal auction is profitable.

Proof: According to the process of Algorithm , the payment to each winner is P . In

other words, |W |P−
∑

w∈W w.p will always be 0. Therefore, the value brought by the winners

is no less than the total payment paid to the winners 2

7.5 Problem Extension

Although the above two sections proposed two algorithms to select the winners, there

are still some troublesome problems to be solved, which could be regarded as the extension

of the winner selection problem defined in Section 7.2.

7.5.1 Min-K Winner Selection Problem

In practice, the mobile crowdsensing platform may need enough sensory data to do the

analysis. Therefore, it is possible to select a connected winner set while letting the number

of winners to be greater or equal to a given value K? The formal problem definition is as

follows.

Input: user set U where each user u ∈ U has attributes u.x, u.y and u.b.

Output: 1) connected winner set W which maximizes P |W |−
∑

w∈W w.b and |W | ≥ K.

2) The payment for each winner.

For the example shown in Fig.7.2, if we have K = 5, then the optimal winner set is

{u2, u3, u4, u5, u6} where the total social welfare is 2. Comparing with the optimal winner

set {u3, u4, u5} for the original winner selection problem, we can see that in this problem,

the mobile crowdsensing platform may select some users whose bid is equal or even greater

125

than P in order to let the number of winners to be greater or equal to K. In this way, the

total social welfare may be less than that of the original winner selection problem.

This problem can be solved by the following methodology where the total social welfare

can be maximized.

1. The mobile crowdsensing platform still uses Algorithm 14 to select the winners and

Algorithm 16 to calculate the payments.

2. Revise the original heuristic function. If |str| = |UT | and the number of winners is less

than K, the heuristic function returns −∞.

The revised heuristic function is shown in Algorithm 18. According to [108], we can conclude

that the payment strategy for the min-K winner selection problem is truthful, individual

rational and profitable.

Algorithm 18: Heuristic Function HF

Input: 0-1 bit string str, k
Output: Upper bound of maximum independent set’s total weight if str is further

extended
1: if |str| = |UT | then
2: if Connected(ISG({UT [i]|str[i]=1}))=false then
3: return −∞
4: else if |{1 ≤ i ≤ |UT ||str[i] = 1}| < k then
5: return −∞
6: else
7: return 0
8: end if
9: end if

10: sum=0
11: for i=|str|+ 1 to UT do
12: if UT [i].w > 0 then
13: sum=sum+UT [i].w
14: end if
15: end for
16: return sum

126

7.5.2 Budget-bounded Winner Selection Problem

Since the mobile crowdsensing platform need to pay enormous payments to the winners,

then how does the crowdsensing platform select the winners while the total payment to the

winners is less than or equal to a given budget B? The formal problem definition is as

follows.

Input: user set U where each user u ∈ U has attributes u.x, u.y and u.b.

Output: 1) connected winner set W which maximizes P |W |−
∑

w∈W w.b and |W | ≥ K.

2) The payment for each winner where the total payment is less or equal to budget B.

This problem can be solved using the following methodology which has polynomial

execution time.

1. Calculate the initial winner set W using Algorithm 17. Return W as the winner set if

the total payment is less than or equal to B.

2. If the total payment is greater than B, use the following steps to remove some winners

from W .

(a) Check the winners in W in decreasing order of bid.

(b) Remove winner w from winner set W if Connected(ISG(W − {w})) = true.

(c) The above process keep on until the total payment is less than or equal to B.

3. Return the winner set W .

The above process is shown in Algorithm 19.

Using the similar methodology shown in Section 7.4.2, it is easy to have the following

theorem.

Theorem 7.5.1. Algorithm 19 is computational efficient, truthful, individual rational and

profitable.

For the example shown in Fig.7.2, if we have B = 2.4, then output winner set of

Algorithm 19 is ∅ where the total social welfare is 0. Comparing with the output winner set

127

Algorithm 19: Non-optimal Winner Selection Algorithm

Input: User set UT , crowdsensing task T and budget B
Output: Winner set W
1: W=Non-optimal(UT , T)
2: Sort the winners in W in increasing order of bid
3: while P |W | > B do
4: for i=1 to |W | do
5: if Connected(ISG(W − {W [i]})) = true then
6: W = W − {W [i]}
7: end if
8: end for
9: end while

10: return W

{u3} of Algorithm 17, we can see that in Algorithm 19, the mobile crowdsensing platform

may select fewer winners in order to let the total payment to be less or equal to budget B.

Similarly, the total social welfare of this problem may be less than that of the original winner

selection problem.

7.6 Experiment

7.6.1 Experiment Settings

We investigated one real dataset from trip record data from New York City Taxi &

Limousine Commission to generate users’ positions [160]. The preprocessed data contains

the positions of 413 users and these users are distributed in a 4.68km × 13.20km rectangle

region in downtown Manhattan.

The Swoopo bidding dataset named is used to generate users’ bid [113]. The following

steps are used to preprocess the raw data.

1. A subset of the original dataset which only contains the bids of one single good is

extracted.

2. For simplicity, all the original bids are normalized by dividing the bid average.

128

Parameter Value Parameter Value
T.x 2km T.y 4km
T.r 600m T.d 300m
P 1 K 5

Table 7.2. Default Parameters

500 520 540 560 580 600
10

1

10
2

10
3

10
4

10
5

10
6

T.r (m)

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Brute Force Algorithm

A* algorithm

Figure 7.3. Execution time comparison for different T.r

There are 5372 bids in the preprocessed bid set. The bid of each individual user is determined

by randomly selecting one bid from this bid set. The parameters and their default values for

the experiments are listed in Table 7.2. The setting for the value T.r is relatively low since the

baseline algorithm has exponential time complexity. The experiment results for the optimal

winner selection algorithm, non-optimal winner selection problem and the extended winner

selection problems are shown in Section 7.6.2, Section 7.6.3 and Section 7.6.4, respectively.

7.6.2 Optimal Winner Selection Algorithm

The first group of experiments is to compare the execution time between the A* algo-

rithm and the brute force algorithm with different T.r. The results are shown in Fig. 7.3

where T.r varies from 500m to 600m. We can see the execution time of the brute force

algorithm increases sharply with the increase of T.r due to the increase of |UT | while the

execution time of the A* algorithm varies with the increase of T.r. Moreover, the execution

time of the A* algorithm is lower than that of the brute force algorithm, which demonstrates

the efficiency of the algorithm we proposed.

129

230 240 250 260 270 280 290 300 310 320 330
10

1

10
2

10
3

10
4

10
5

10
6

T.d (m)

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Brute Force Algorithm

A* algorithm

Figure 7.4. Execution time comparison for different T.d

The second group of experiments compares the execution time between the A* algorithm

and the brute force algorithm with different T.d. The value of T.d changes from 230m to

330m. The results are listed in Fig. 7.4. We can see the execution time of the A* algorithm

is much lower than the brute force algorithm with different T.d.

7.6.3 Non-optimal Winner Selection Algorithm

The first group of experiments is to compare the social welfare, i.e. |W |P −
∑

u∈W u.b

of the optimal winner selection algorithm and non-optimal winner selection algorithm with

different T.r. The results are shown in Fig. 7.5. We can see that for the same T.d, the

non-optimal algorithm’s total social welfare is smaller than the optimal algorithm’s welfare.

This kind of result illustrates the tradeoff between the total social welfare and the algorithm

performance.

The second group of experiments is to compare the social welfare of the optimal winner

selection algorithm and non-optimal winner selection algorithm with different T.d. The

results are shown in Fig. 7.6. Similarly, we can see that for different T.d, the non-optimal

algorithm’s social welfare is smaller than the optimal algorithm’s social welfare although the

non-optimal algorithm has polynomial execution time.

The third group of experiments shows the bid of the winners. We set T.r = 2km for this

group of experiments. The results are shown in Fig. 7.7. We can see that winners’ bids are

130

550m 575m 600m
0

0.5

1

1.5

2

2.5

3

T.r

S
o

c
ia

l
w

e
lf
a

re

Optimal

Non−Optimal

Figure 7.5. Social welfare comparison for different T.r

250m 300m 350m
0

0.5

1

1.5

2

2.5

3

3.5

T.d

S
o

c
ia

l
w

e
lf
a

re

Optimal

Non−Optimal

Figure 7.6. Social welfare comparison for different T.d

131

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Winner ID

W
in

n
e

r’
s
 b

id

Figure 7.7. Bids of the winners

lower than the payments they get, which is equal to P = 1. This kind of results verifies the

correctness of Theorem 7.4.5, in other words, the non-optimal winner selection algorithm is

individual rational.

7.6.4 Extended Problems

The first group of experiments is to compare the execution time between the A* al-

gorithm and the brute force algorithm with different T.r for the min-K winner selection

problem. The results are shown in Fig. 7.8. Similarly, we can see the execution time of the

brute force algorithm increases sharply with the increase of T.r while the execution time of

the A* algorithm varies with the increase of T.r. Moreover, the execution time of the A*

algorithm is lower than that of the brute force algorithm.

The second group of experiments compares the execution time between the A* algorithm

and the brute force algorithm with different T.d for the min-K winner selection problem. The

results are listed in Fig. 7.9. Similarly, we can see the execution time of the A* algorithm is

much lower than the brute force algorithm with different T.d.

The third group of experiments is to compare the total payment to the winners and

the budget for the budget-bounded winner selection problem. The results are listed in Fig.

7.10. The results show the total payment calculate by Algorithm 7.4.2 is always less than

the budget B as expected.

132

500 520 540 560 580 600
10

1

10
2

10
3

10
4

10
5

T.r (m)

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Brute Force Algorithm

A* Algorithm

Figure 7.8. Execution time comparison for different T.r

230 240 250 260 270 280 290 300 310 320 330
10

1

10
2

10
3

10
4

10
5

10
6

T.d (m)

E
xe

cu
tio

n
tim

e
(m

s)

Brute Force Algorithm
A* Algorithm

Figure 7.9. Execution time comparison for different T.d

1 2 3 4 5 6
0

1

2

3

4

5

6

Budget

P
a

y
m

e
n

t

Budget

Payment

Figure 7.10. Total payments under different budgets

133

7.7 Conclusion

We propose a geographical position dependent winner selection problem in mobile

crowdsensing in this chapter. An optimal winner selection algorithm which can maximize the

total social welfare is proposed. We also designed a non-optimal winner selection algorithm

which is computationally efficient. Moreover, we also proposed and solved two extended

problems. Solid theoretical proofs indicate these algorithms are truthful, individual rational

and profitable. The real datasets based experimental results indicate the proposed algorithms

have high performance.

134

Chapter 8

CONCLUSION

Data collection and aggregation has been considered as essential techniques in mobile

sensing. Using the naive methodology to do data collection and data aggregation in mobile

sensing will cause huge data transmission cost. Therefore, to reduce the cost, this dissertation

follows the following technical routes. The first route is to use sampling technique which

only let a small part of nodes to submit their sensory data. The second route is to make

use of users’ positions to reduce useless sensory data submission. Based on the above two

technical routes the following problems are solved.

First, the (ε, δ)-approximate algorithms for the frequency, rank, distinct-count and quan-

tile aggregation operations in networks are proposed. Furthermore, the sample size which

can make the final result to satisfy the specified precision and failure probability require-

ments are derived. In addition, a cluster-based uniform sampling algorithm is provided. The

simulation results show that the proposed algorithms have high performance on both energy

cost and accuracy.

Second, an (ε, δ)-approximate algorithm to process a frequency query is proposed. This

algorithm is based on Bernoulli sampling, so only some nodes in a network need to transfer

sensory data. Furthermore, the methodology to calculate the sampling probability which

can make the final query result to satisfy the specified precision and failure probability is

derived. The simulation results for MANET connectivity are presented. These simulation

results can be used in the calculation of sampling probability. Finally, a Bernoulli sampling

algorithm is provided and analyzed. The simulation results show that on the aspects of both

energy efficiency and accuracy, the proposed algorithm has high performance.

Third, we propose a geographical position conflicting based winner selection problem

in mobile crowdsensing. An optimal winner selection algorithm is proposed to maximize

135

the total social welfare. Moreover, we also propose a computationally efficient non-optimal

winner selection algorithm. Solid theoretical proofs indicate both these algorithms are truth-

ful, individual rational and profitable. The experimental results which are based on actual

datasets indicate the proposed algorithms are efficient. An interesting aspect of research in

the future is to make use of the sensory data’s spatial correlation to study users’ cooperation

in geographical position based crowdsensing tasks.

Fourth, the δ-approximate algorithms for the maximum value and distinct-set aggrega-

tion operations in sensor-equipped IoT networks are proposed. These algorithms are based on

the uniform sampling and Bernoulli sampling respectively. Mathematical proofs have been

made for better understanding of these algorithms. Additionally, we have also proposed

mathematical estimators for the two algorithms. Moreover, we have derived the values for

the sample size and the sample probability which satisfies the specified failure probability

requirements of the final result. Finally, a uniform sampling based algorithm and a Bernoulli

sampling based algorithm are provided. Experiments are conducted for various delta values

and the network sizes. The results are then compared between the naive method and the

proposed algorithms. The simulation results indicate that the proposed algorithms have high

performance with respect to the energy cost.

Finally, we propose a geographical position dependent winner selection problem in mo-

bile crowdsensing in this paper. An optimal winner selection algorithm which can maximize

the total social welfare is proposed. We also designed a non-optimal winner selection al-

gorithm which is computationally efficient. Moreover, we also proposed and solved two

extended problems. Solid theoretical proofs indicate these algorithms are truthful, individu-

al rational and profitable. The real datasets based experimental results indicate the proposed

algorithms have high performance.

136

REFERENCES

[1] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A

survey of mobile phone sensing,” IEEE Communications magazine, vol. 48, no. 9, pp.

140–150, 2010.

[2] R. K. Balan, K. X. Nguyen, and L. Jiang, “Real-time trip information service for a

large taxi fleet,” in Proceedings of the 9th international conference on Mobile systems,

applications, and services. ACM, 2011, pp. 99–112.

[3] S. Wakamiya, R. Lee, and K. Sumiya, “Crowd-sourced urban life monitoring: urban

area characterization based crowd behavioral patterns from twitter,” in Proceedings of

the 6th International Conference on Ubiquitous Information Management and Com-

munication. ACM, 2012, p. 26.

[4] MPR-Mote Processor Radio Board User’s Manual, Crossbrow Inc.

[5] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in sensor networks: an

energy–accuracy trade-off,” Ad hoc networks, vol. 1, no. 2, pp. 317–331, 2003.

[6] X. Tang and J. Xu, “Extending network lifetime for precision-constrained data aggre-

gation in wireless sensor networks,” in Proceedings IEEE INFOCOM 2006. 25th IEEE

International Conference on Computer Communications, April 2006, pp. 1–12.

[7] Z. Huang, L. Wang, K. Yi, and Y. Liu, “Sampling based algorithms for quantile com-

putation in sensor networks,” in Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data. ACM, 2011, pp. 745–756.

[8] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and beyond: new

aggregation techniques for sensor networks,” in Proceedings of the 2nd international

conference on Embedded networked sensor systems. ACM, 2004, pp. 239–249.

137

[9] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Securely computing an approximate median

in wireless sensor networks,” in Proceedings of the 4th international conference on

Security and privacy in communication netowrks. ACM, 2008, p. 6.

[10] D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski, “Summary structures for

frequency queries on large transaction sets,” in Data Compression Conference, 2000.

Proceedings. DCC 2000. IEEE, 2000, pp. 420–429.

[11] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, “On synopses for

distinct-value estimation under multiset operations,” in Proceedings of the 2007 ACM

SIGMOD international conference on Management of data. ACM, 2007, pp. 199–210.

[12] E. K. Lee, H. Viswanathan, and D. Pompili, “Distributed data-centric adaptive sam-

pling for cyber-physical systems,” ACM Transactions on Autonomous and Adaptive

Systems (TAAS), vol. 9, no. 4, p. 21, 2015.

[13] J. Bai, E. P. Eyisi, F. Qiu, Y. Xue, and X. D. Koutsoukos, “Optimal cross-layer design

of sampling rate adaptation and network scheduling for wireless networked control

systems,” in Proceedings of the IEEE/ACM Third International Conference on Cyber-

Physical Systems. IEEE Computer Society, 2012, pp. 107–116.

[14] H. H. Malik and J. R. Kender, “Optimizing frequency queries for data mining appli-

cations,” in Data Mining, ICDM. Seventh IEEE International Conference on. IEEE,

2007, pp. 595–600.

[15] D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski, “Summary structures for

frequency queries on large transaction sets,” in Data Compression Conference. Pro-

ceedings. DCC. IEEE, 2000, pp. 420–429.

[16] J.-S. Lee and B. Hoh, “Sell your experiences: a market mechanism based incentive for

participatory sensing,” in Pervasive Computing and Communications (PerCom), 2010

IEEE International Conference on. IEEE, 2010, pp. 60–68.

138

[17] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed time-sensitive task

selection in mobile crowdsensing,” in Proceedings of the 16th ACM International Sym-

posium on Mobile Ad Hoc Networking and Computing. ACM, 2015, pp. 157–166.

[18] Y. Wu, Y. Wang, W. Hu, X. Zhang, and G. Cao, “Resource-aware photo crowdsourcing

through disruption tolerant networks,” in Distributed Computing Systems (ICDCS),

2016 IEEE 36th International Conference on. IEEE, 2016, pp. 374–383.

[19] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue generation for truthful spectrum

auction in dynamic spectrum access,” in Proceedings of the tenth ACM international

symposium on Mobile ad hoc networking and computing. ACM, 2009, pp. 3–12.

[20] W. Wang, B. Liang, and B. Li, “Designing truthful spectrum double auctions with

local markets,” IEEE Transactions on Mobile Computing, vol. 13, no. 1, pp. 75–88,

2014.

[21] M. Penrose, Random geometric graphs. Great Clarendon Street, Oxford OX2 6DP,

United Kingdom: Oxford University Press Oxford, 2003, vol. 5.

[22] J. Dı́az, D. Mitsche, and X. Pérez-Giménez, “Large connectivity for dynamic random

geometric graphs,” Mobile Computing, IEEE Transactions on, vol. 8, no. 6, pp. 821–

835, 2009.

[23] G. T. Pitsiladis, A. Krokos, A. D. Panagopoulos, and P. Constantinou, “Connectivity

calculation in mobile ad hoc networks: Realistic performance simulation,” in Ultra

Modern Telecommunications and Control Systems and Workshops (ICUMT), 3rd In-

ternational Congress on. IEEE, 2011, pp. 1–5.

[24] P. Santi and D. M. Blough, “An evaluation of connectivity in mobile wireless ad

hoc networks,” in Dependable Systems and Networks, DSN, Proceedings. International

Conference on. IEEE, 2002, pp. 89–98.

139

[25] M. C. Vuran, Ö. B. Akan, and I. F. Akyildiz, “Spatio-temporal correlation: theory

and applications for wireless sensor networks,” Computer Networks, vol. 45, no. 3, pp.

245–259, 2004.

[26] I. F. Akyildiz, M. C. Vuran, and O. B. Akan, “On exploiting spatial and temporal

correlation in wireless sensor networks,” in Proceedings of WiOpt, vol. 4, 2004, pp.

71–80.

[27] Y. Wu, Y. Wang, and G. Cao, “Photo crowdsourcing for area coverage in resource

constrained environments,” in IEEE INFOCOM, 2017.

[28] Greenorbs. [Online]. Available: http://www.greenorbs.org/

[29] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement in

location-based social networks,” in ACM SIGKDD, 2011, pp. 1082–1090.

[30] J. Li, Z. Cai, M. Yan, and Y. Li, “Using crowdsourced data in location-based social

networks to explore influence maximization,” in The 35th Annual IEEE International

Conference on Computer Communications (INFOCOM 2016), 2016.

[31] M. Han, J. Li, Z. Cai, and Q. Han, “Privacy reserved influence maximization in gps-

enabled cyber-physical and online social networks,” in Big Data and Cloud Comput-

ing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Com-

puting and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016

IEEE International Conferences on. IEEE, 2016, pp. 284–292.

[32] J. W. Byers, M. Mitzenmacher, and G. Zervas, “Information asymmetries in pay-per-

bid auctions,” in Proceedings of the 11th ACM conference on Electronic commerce.

ACM, 2010, pp. 1–12.

[33] R. B. Myerson, “Optimal auction design,” Mathematics of operations research, vol. 6,

no. 1, pp. 58–73, 1981.

http://www.greenorbs.org/

140

[34] Z. Cai, G. Lin, and G. Xue, “Improved approximation algorithms for the capacitated

multicast routing problem,” in In Proceedings of the 11th International Computing and

Combinatorics Conference (COCOON 2005), vol. 8881. Springer, 2005, pp. 136–145.

[35] Z. Cai, Z.-Z. Chen, G. Lin, and L. Wang, “An improved approximation algorithm

for the capacitated multicast tree routing problem,” The 2nd Annual International

Conference on Combinatorial Optimization and Applications (COCOA2008), vol. 5165,

pp. 286–295, 2008.

[36] C. Vu, Z. Cai, and Y. Li, “Distributed energy-efficient algorithms for coverage problem

in adjustable sensing ranges wireless sensor networks,” Discrete Mathematics, Algo-

rithms and Applications, vol. 1, no. 03, pp. 299–317, 2009.

[37] Z. Cai, Z.-Z. Chen, and G. Lin, “A 3.4713-approximation algorithm for the capacitated

multicast tree routing problem,” Theoretical Computer Science, vol. 410, no. 52, pp.

5415–5424, 2009.

[38] J. Lu, Z. Cai, X. Wang, L. Zhang, P. Li, and Z. He, “User social activity-based routing

for cognitive radio networks,” Personal and Ubiquitous Computing, pp. 1–17, 2018.

[39] X. Zheng, Z. Cai, J. Li, and H. Gao, “A study on application-aware scheduling in

wireless networks,” IEEE Transactions on Mobile Computing, vol. 16, no. 7, pp. 1787–

1801, July 2017.

[40] X. Wang, L. Guo, C. Ai, J. Li, and Z. Cai, “An urban area-oriented traffic information

query strategy in vanets,” in The 8th International Conference on Wireless Algorithms,

Systems and Applications (WASA2013). Springer, 2013, pp. 313–324.

[41] Z. Cai, R. Goebel, and G. Lin, “Size-constrained tree partitioning: A story on approx-

imation algorithm design for the multicast k-tree routing problem.” in The 3nd An-

nual International Conference on Combinatorial Optimization and Applications (CO-

COA2009). Springer, 2009, pp. 363–374.

141

[42] L. Guo, C. Ai, X. Wang, Z. Cai, and Y. Li, “Real time clustering of sensory data in

wireless sensor networks.” in The 28th IEEE International Performance Computing

and Communications Conference (IPCCC 2009), 2009, pp. 33–40.

[43] C. Ai, L. Guo, Z. Cai, and Y. Li, “Processing area queries in wireless sensor networks,”

in The Fifth International Conference on Mobile Ad-hoc and Sensor Networks (MSN

2009). IEEE, 2009, pp. 1–8.

[44] Z. Cai, R. Goebel, and G. Lin, “Size-constrained tree partitioning: approximating the

multicast k-tree routing problem,” Theoretical Computer Science, vol. 412, no. 3, pp.

240–245, 2011.

[45] Y. Li, C. Ai, Z. Cai, and R. Beyah, “Sensor scheduling for p-percent coverage in wireless

sensor networks,” Cluster Computing, vol. 14, no. 1, pp. 27–40, 2011.

[46] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and H. Pirahesh, “Data cube: A relational aggregation operator generalizing group-

by, cross-tab, and sub-totals,” Data mining and knowledge discovery, vol. 1, no. 1, pp.

29–53, 1997.

[47] K. Zhang, H. Gao, X. Han, Z. Cai, and J. Li, “Probabilistic skyline on incomplete

data,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, 2017, pp. 427–436.

[48] Z. He, Z. Cai, S. Cheng, and X. Wang, “Approximate aggregation for tracking quantiles

in wireless sensor networks,” in The 8th Annual International Conference on Combi-

natorial Optimization and Applications (COCOA2014). Springer, 2014, pp. 161–172.

[49] J. Li, S. Cheng, H. Gao, and Z. Cai, “Approximate physical world reconstruction algo-

rithms in sensor networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 12, pp. 3099–3110, 2014.

142

[50] S. Cheng, J. Li, and Z. Cai, “O (ε)-approximation to physical world by sensor network-

s,” in The 32rd Annual IEEE International Conference on Computer Communications

(IEEE INFOCOM 2013). IEEE, 2013, pp. 3084–3092.

[51] Z. He, Z. Cai, S. Cheng, and X. Wang, “Approximate aggregation for tracking quantiles

and range countings in wireless sensor networks,” Theoretical Computer Science, vol.

607, pp. 381–390, 2015.

[52] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi, “Holistic aggregates

in a networked world: Distributed tracking of approximate quantiles,” in Proceedings

of the 2005 ACM SIGMOD international conference on Management of data. ACM,

2005, pp. 25–36.

[53] K. Liu, L. Chen, M. Li, and Y. Liu, “Continuous answering holistic queries over sensor

networks,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-

tional Symposium on. IEEE, 2008, pp. 1–11.

[54] S. Cheng and J. Li, “Sampling based (epsilon, delta)-approximate aggregation algo-

rithm in sensor networks,” in Distributed Computing Systems, 2009. ICDCS’09. 29th

IEEE International Conference on. IEEE, 2009, pp. 273–280.

[55] S. Cheng, J. Li, Q. Ren, and L. Yu, “Bernoulli sampling based (ε, δ)-approximate

aggregation in large-scale sensor networks,” in Proceedings of the 29th conference on

Information communications. IEEE Press, 2010, pp. 1181–1189.

[56] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Sampling algorithms: lower bounds and

applications,” in Proceedings of the thirty-third annual ACM symposium on Theory of

computing. ACM, 2001, pp. 266–275.

[57] J. Rice, Mathematical statistics and data analysis. Nelson Education, 2006.

[58] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms

and probabilistic analysis. Cambridge University Press, 2005.

143

[59] M. H. M. H. DeGroot et al., Probability and statistics, 1986, no. 04; QA273, D4 1986.

[60] R. Lachowski, M. E. Pellenz, M. C. Penna, E. Jamhour, and R. D. Souza, “An efficient

distributed algorithm for constructing spanning trees in wireless sensor networks,”

Sensors, vol. 15, no. 1, pp. 1518–1536, 2015.

[61] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori, “Performance mea-

surements of motes sensor networks,” in Proceedings of the 7th ACM international sym-

posium on Modeling, analysis and simulation of wireless and mobile systems. ACM,

2004, pp. 174–181.

[62] A. S. Tanenbaum, Computer networks. Prentice Hall New Jersey, 1996, vol. 4.

[63] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient commu-

nication protocol for wireless microsensor networks,” in System sciences, 2000. Pro-

ceedings of the 33rd annual Hawaii international conference on. IEEE, 2000, pp.

10–pp.

[64] E. Lee et al., “Cyber physical systems: Design challenges,” in Object Oriented

Real-Time Distributed Computing (ISORC), 11th IEEE International Symposium on.

IEEE, 2008, pp. 363–369.

[65] R. S. Mohan, R. Sachin, and U. Sakthivel, “Vehicular ad hoc network based pollu-

tion monitoring in urban areas,” in Computational Intelligence and Communication

Networks (CICN), Fourth International Conference on. IEEE, 2012, pp. 214–217.

[66] S. Fujiwara, T. Ohta, and Y. Kakuda, “An inter-domain routing for heterogeneous

mobile ad hoc networks using packet conversion and address sharing,” in Distributed

Computing Systems Workshops (ICDCSW), 32nd International Conference on. IEEE,

2012, pp. 349–355.

[67] A. Chaudhary, V. N. Tiwari, and A. Kumar, “Design an anomaly based fuzzy intrusion

144

detection system for packet dropping attack in mobile ad hoc networks,” in Advance

Computing Conference (IACC), IEEE International. IEEE, 2014, pp. 256–261.

[68] T. Afroze, “Performance evaluation of the hostile environment in mobile ad-hoc net-

work,” in Telecommunication Networks and Applications Conference (ATNAC), Aus-

tralasian. IEEE, 2012, pp. 1–8.

[69] J. T. B. Fajardo, K. Yasumoto, N. Shibata, W. Sun, and M. Ito, “Dtn-based data

aggregation for timely information collection in disaster areas,” in Wireless and Mo-

bile Computing, Networking and Communications (WiMob), IEEE 8th International

Conference on. IEEE, 2012, pp. 333–340.

[70] Q. Chen, H. Gao, S. Cheng, X. Fang, Z. Cai, and J. Li, “Centralized and distribut-

ed delay-bounded scheduling algorithms for multicast in duty-cycled wireless sensor

networks,” IEEE/ACM Transactions on Networking, vol. PP, no. 99, pp. 1–14, 2017.

[71] M. Ren, J. Li, L. Guo, and Z. Cai, “Data collection with probabilistic guarantees in

opportunistic wireless networks,” International Journal of Sensor Networks, vol. 24,

no. 2, pp. 125–137, 2017.

[72] K. Zhang, Q. Han, Z. Cai, G. Yin, and J. Lin, “Doami: A distributed on-line algorithm

to minimize interference for routing in wireless sensor networks,” Theoretical Computer

Science, 2016.

[73] D. Takaishi, H. Nishiyama, N. Kato, and R. Miura, “Toward energy efficient big data

gathering in densely distributed sensor networks,” Emerging Topics in Computing,

IEEE Transactions on, vol. 2, no. 3, pp. 388–397, 2014.

[74] Q. Chen, H. Gao, S. Cheng, J. Li, and Z. Cai, “Distributed non-structure based data

aggregation for duty-cycle wireless sensor networks,” in The 36th Annual IEEE Inter-

national Conference on Computer Communications (INFOCOM 2017), May 2017, pp.

1–9.

145

[75] Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li, “Energy-collision aware data aggre-

gation scheduling for energy harvesting sensor networks,” in The 37th Annual IEEE

International Conference on Computer Communications (INFOCOM 2018), 2018.

[76] T. Shi, J. Li, H. Gao, and Z. Cai, “Coverage in battery-free wireless sensor networks,”

in The 37th Annual IEEE International Conference on Computer Communications

(INFOCOM 2018), 2018.

[77] Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, “Deep learning based inference of private

information using embedded sensors in smart devices.” IEEE Network Magazine, 2018.

[78] J. Li, S. Cheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Approximate holistic aggregation

in wireless sensor networks.” ACM Transactions on Sensor Networks, vol. 13, no. 2,

pp. 1–11, 2017.

[79] X. Zheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Follow but no track: Privacy preserved

profile publishing in cyber-physical social systems,” IEEE Internet of Things Journal,

vol. 4, no. 6, pp. 1868–1878, 2017.

[80] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance com-

parison of multi-hop wireless ad hoc network routing protocols,” in Proceedings of the

4th annual ACM/IEEE international conference on Mobile computing and networking.

ACM, 1998, pp. 85–97.

[81] J. Devore, Probability and Statistics for Engineering and the Sciences. 20 Channel

Center Street Boston, MA 02210, USA: Cengage Learning, 2015.

[82] M. Pascoe, J. Gomez, V. Rangel, and M. Lopez-Guerrero, “An upper bound on net-

work size in mobile ad-hoc networks,” in Global Telecommunications Conference, IEEE

GLOBECOM. IEEE. IEEE, 2008, pp. 1–6.

[83] http://grid.cs.gsu.edu/\simjli30/simulation/.

http://grid.cs.gsu.edu/$\sim $jli30/simulation/

146

[84] G. Huang, X. Li, and J. He, “Dynamic minimal spanning tree routing protocol for

large wireless sensor networks,” in Industrial Electronics and Applications, 2006 1ST

IEEE Conference on. IEEE, 2006, pp. 1–5.

[85] 2013. [Online]. Available: https://www.gov.uk/government/collections/

road-traffic-statistics

[86] J. Li and J. Li, “Data sampling control, compression and query in sensor networks,”

International Journal of Sensor Networks, vol. 2, no. 1-2, pp. 53–61, 2007.

[87] X. Zheng, G. Luo, and Z. Cai, “A fair mechanism for private data publication in online

social networks,” IEEE Transactions on Network Science and Engineering, 2018.

[88] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization for preventing sensitive

information inference attacks in social networks,” IEEE Transactions on Dependable

and Secure Computing, vol. PP, no. 99, pp. 1–1, 2017.

[89] T. Shi, S. Cheng, Z. Cai, Y. Li, and J. Li, “Retrieving the maximal time-bounded pos-

itive influence set from social networks,” Personal and Ubiquitous Computing, vol. 20,

no. 5, pp. 717–730, 2016.

[90] Y. Wang, Z. Cai, G. Yin, Y. Gao, X. Tong, and Q. Han, “A game theory-based trust

measurement model for social networks,” Computational Social Networks, vol. 3, no. 1,

p. 2, 2016.

[91] Z. He, Z. Cai, and J. Yu, “Latent-data privacy preserving with customized data utility

for social network data,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,

pp. 665–673, 2018.

[92] Y. Huang, Z. Cai, and A. G. Bourgeois, “Location privacy protection with accurate

service,” Journal of Network and Computer Applications, vol. 103, p. 146C156, 2018.

https://www.gov.uk/government/collections/road-traffic-statistics
https://www.gov.uk/government/collections/road-traffic-statistics

147

[93] Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, and Y. Li, “Cost-efficient strategies for re-

straining rumor spreading in mobile social networks,” IEEE Transactions on Vehicular

Technology, vol. 66, no. 3, pp. 2789–2800, March 2017.

[94] X. Wang, Y. Lin, Y. Zhao, L. Zhang, J. Liang, and Z. Cai, “A novel approach for

inhibiting misinformation propagation in human mobile opportunistic networks,” Peer-

to-Peer Networking and Applications, vol. 10, no. 2, pp. 377–394, 2017.

[95] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad, “Mobile phone sensing systems:

A survey,” Communications Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 402–427,

2013.

[96] Z. He, Z. Cai, Y. Sun, Y. Li, and X. Cheng, “Customized privacy preserving for

inherent data and latent data,” Personal and Ubiquitous Computing, vol. 21, no. 1,

pp. 43–54, 2017.

[97] X. Wang, Y. Lin, S. Zhang, and Z. Cai, “A social activity and physical contact-based

routing algorithm in mobile opportunistic networks for emergency response to sudden

disasters,” Enterprise Information Systems, vol. 11, no. 5, pp. 597–626, 2017.

[98] M. Han, M. Yan, Z. Cai, Y. Li, X. Cai, and J. Yu, “Influence maximization by probing

partial communities in dynamic online social networks,” Transactions on Emerging

Telecommunications Technologies, vol. 28, no. 4, 2017.

[99] Z. He, Z. Cai, Q. Han, W. Tong, L. Sun, and Y. Li, “An energy efficient privacy-

preserving content sharing scheme in mobile social networks,” Personal and Ubiquitous

Computing, vol. 20, no. 5, pp. 833–846, 2016.

[100] Z. He, Z. Cai, and X. Wang, “Modeling propagation dynamics and developing opti-

mized countermeasures for rumor spreading in online social networks,” in The 35th

IEEE International Conference on Distributed Computing Systems (ICDCS 2015),

June 2015, pp. 205–214.

148

[101] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: incentive

mechanism design for mobile phone sensing,” in Proceedings of the 18th annual inter-

national conference on Mobile computing and networking. ACM, 2012, pp. 173–184.

[102] J. Wang, J. Tang, D. Yang, E. Wang, and G. Xue, “Quality-aware and fine-grained

incentive mechanisms for mobile crowdsensing,” in Distributed Computing Systems

(ICDCS), 2016 IEEE 36th International Conference on. IEEE, 2016, pp. 354–363.

[103] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A programming frame-

work for crowd-sensing applications,” in Proceedings of the 10th international confer-

ence on Mobile systems, applications, and services. ACM, 2012, pp. 337–350.

[104] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete mathe-

matics, vol. 86, no. 1-3, pp. 165–177, 1990.

[105] J. M. Robson, “Algorithms for maximum independent sets,” Journal of Algorithms,

vol. 7, no. 3, pp. 425–440, 1986.

[106] T. Nieberg, J. Hurink, and W. Kern, “A robust ptas for maximum weight independent

sets in unit disk graphs,” in Graph-theoretic concepts in computer science. Springer,

2004, pp. 214–221.

[107] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[108] T. Sandholm, “Algorithm for optimal winner determination in combinatorial auctions,”

Artificial intelligence, vol. 135, no. 1, pp. 1–54, 2002.

[109] N. Nisan and A. Ronen, “Computationally feasible vcg mechanisms.” J. Artif. Intell.

Res.(JAIR), vol. 29, pp. 19–47, 2007.

[110] Y. Singer, “Budget feasible mechanisms,” in Foundations of Computer Science (FOC-

S), 2010 51st Annual IEEE Symposium on. IEEE, 2010, pp. 765–774.

149

[111] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset collection,”

http://snap.stanford.edu/data, Jun. 2014.

[112] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,”

in Mobile computing. Springer, 1996, pp. 153–181.

[113] [Online]. Available: http://people.bu.edu/zg/swoopo.html

[114] P. Papadimitriou and H. Garcia-Molina, “Sponsored search auctions with conflict con-

straints,” in Proceedings of the fifth ACM international conference on Web search and

data mining. ACM, 2012, pp. 283–292.

[115] Q. Chen, S. Cheng, H. Gao, J. Li, and Z. Cai, “Energy-efficient algorithm for mul-

ticasting in duty-cycled sensor networks,” Sensors, vol. 15, no. 12, pp. 31 224–31 243,

2015.

[116] L. Zhang, Z. Cai, J. Lu, and X. Wang, “Mobility-aware routing in delay tolerant

networks,” Personal and Ubiquitous Computing, vol. 19, no. 7, pp. 1111–1123, 2015.

[117] X. Guan, A. Li, Z. Cai, and T. Ohtsuki, “Coalition graph game for robust routing

in cooperative cognitive radio networks,” Mobile Networks and Applications, vol. 20,

no. 2, pp. 147–156, 2015.

[118] S. Cheng, Z. Cai, and J. Li, “Curve query processing in wireless sensor networks,”

IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5198–5209, 2015.

[119] Q. Chen, H. Gao, S. Cheng, and Z. Cai, “Approximate scheduling and constructing

algorithms for minimum-energy multicasting in duty-cycled sensor networks,” in In-

ternational Conference on Identification, Information and Knowledge in the Internet

of Things 2015 (IIKI 2015). IEEE, 2015, pp. 163–168.

[120] T. Shi, J. Wan, S. Cheng, Z. Cai, Y. Li, and J. Li, “Time-bounded positive influence

in social networks,” in International Conference on Identification, Information and

Knowledge in the Internet of Things 2015 (IIKI 2015). IEEE, 2015, pp. 134–139.

http://snap.stanford.edu/data
http://people.bu.edu/zg/swoopo.html

150

[121] K. Zhang, Q. Han, Z. Cai, G. Yin, and J. Lin, “Metric and distributed on-line algorithm

for minimizing routing interference in wireless sensor networks,” in The 9th Annual

International Conference on Combinatorial Optimization and Applications (COCOA

2015). Springer, 2015, pp. 279–292.

[122] T. Zhu, X. Wang, S. Cheng, Z. Cai, and J. Li, “Critical point aware data acquisi-

tion algorithm in sensor networks,” in The 10th International Conference on Wireless

Algorithms, Systems, and Applications (WASA 2015). Springer, 2015, pp. 798–808.

[123] J. Li, S. Cheng, Z. Cai, Q. Han, and H. Gao, “Bernoulli sampling based (epsilon,

delta)-approximate frequency query in mobile ad hoc networks,” in The 10th Interna-

tional Conference on Wireless Algorithms, Systems, and Applications (WASA 2015).

Springer, 2015, pp. 315–324.

[124] S. Cheng, Z. Cai, J. Li, and X. Fang, “Drawing dominant dataset from big sensory

data in wireless sensor networks,” in The 34th Annual IEEE International Conference

on Computer Communications (INFOCOM 2015), April 2015, pp. 531–539.

[125] J. Gao, J. Li, Z. Cai, and H. Gao, “Composite event coverage in wireless sensor net-

works with heterogeneous sensors,” in The 34th Annual IEEE International Conference

on Computer Communications (INFOCOM 2015), April 2015, pp. 217–225.

[126] Y. Huang, M. Chen, Z. Cai, X. Guan, T. Ohtsuki, and Y. Zhang, “Graph theory based

capacity analysis for vehicular ad hoc networks,” in 2015 IEEE Global Communications

Conference (GLOBECOM), Dec 2015, pp. 1–5.

[127] X. Guan, Y. Huang, Z. Cai, and T. Ohtsuki, “Intersection-based forwarding protocol

for vehicular ad hoc networks,” Telecommunication Systems, vol. 62, no. 1, pp. 67–76,

2016.

[128] T. Zhu, S. Cheng, Z. Cai, and J. Li, “Critical data points retrieving method for big

sensory data in wireless sensor networks,” EURASIP Journal on Wireless Communi-

cations and Networking, vol. 2016, no. 1, p. 18, 2016.

151

[129] L. Guo, Y. Li, and Z. Cai, “Minimum-latency aggregation scheduling in wireless sensor

network,” Journal of Combinatorial Optimization, vol. 31, no. 1, pp. 279–310, 2016.

[130] J. Lu, Z. Cai, X. Wang, L. Zhang, P. Li, and Z. He, “Primary and secondary social

activity aware routing for cognitive radio networks.” in The International Conference

on Identification, Information and Knowledge in the Internet of Things (IIKI 2016),

2016.

[131] M. Yan, M. Han, C. Ai, Z. Cai, and Y. Li, “Data aggregation scheduling in probabilistic

wireless networks with cognitive radio capability (globecom 2016),” in 2016 IEEE

Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[132] L. Zhang, Z. Cai, P. Li, and X. Wang, “Exploiting spectrum availability and quality

in routing for multi-hop cognitive radio networks,” in International Conference on

Wireless Algorithms, Systems, and Applications (WASA 2016). Springer, 2016, pp.

283–294.

[133] Y. Wang, “Topology control for wireless sensor networks,” in Wireless sensor networks

and applications. Springer, 2008, pp. 113–147.

[134] J. Elson and D. Estrin, Time synchronization for wireless sensor networks. IEEE,

2001.

[135] T. Shi, S. Cheng, Z. Cai, and J. Li, “Adaptive connected dominating set discovering

algorithm in energy-harvest sensor networks,” in The 35th Annual IEEE International

Conference on Computer Communications (INFOCOM 2016), April 2016, pp. 1–9.

[136] L. Zhang, Z. Cai, P. Li, L. Wang, and X. Wang, “Spectrum-availability based routing

for cognitive sensor networks,” IEEE Access, vol. 5, pp. 4448–4457, 2017.

[137] K. Zhang, Q. Han, Z. Cai, and G. Yin, “Rippas: a ring-based privacy-preserving

aggregation scheme in wireless sensor networks,” Sensors, vol. 17, no. 2, p. 300, 2017.

152

[138] L. Zhang, X. Wang, J. Lu, M. Ren, Z. Duan, and Z. Cai, “A novel contact prediction-

based routing scheme for dtns,” Transactions on Emerging Telecommunications Tech-

nologies, vol. 28, no. 1, 2017.

[139] S. Cheng, Z. Cai, J. Li, and H. Gao, “Extracting kernel dataset from big sensory data

in wireless sensor networks,” IEEE Transactions on Knowledge and Data Engineering,

vol. 29, no. 4, pp. 813–827, April 2017.

[140] T. Shi, S. Cheng, J. Li, and Z. Cai, “Constructing connected dominating sets in

battery-free networks,” in The 36th Annual IEEE International Conference on Com-

puter Communications (INFOCOM 2017), May 2017, pp. 1–9.

[141] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation techniques for

sensor databases,” pp. 449–460, 2004.

[142] G. Hartl and B. Li, “infer: A bayesian inference approach towards energy efficient data

collection in dense sensor networks,” pp. 371–380, 2005.

[143] J. Wang, Z. Cai, C. Ai, D. Yang, H. Gao, , and X. Cheng, “Differentially private k-

anonymity: achieving query privacy in location-based services,” in The International

Conference on Identification, Information and Knowledge in the Internet of Things

(IIKI 2016), 2016.

[144] J. Li, Z. Cai, M. Yan, and Y. Li, “Using crowdsourced data in location-based social

networks to explore influence maximization,” in The 35th Annual IEEE International

Conference on Computer Communications (INFOCOM 2016), April 2016, pp. 1–9.

[145] X. Zheng, Z. Cai, J. Li, and H. Gao, “Location-privacy-aware review publication mech-

anism for local business service systems,” in The 36th Annual IEEE International

Conference on Computer Communications (INFOCOM 2017), May 2017, pp. 1–9.

[146] Z. Duan, W. Li, and Z. Cai, “Distributed auctions for task assignment and scheduling

153

in mobile crowdsensing systems,” in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), June 2017, pp. 635–644.

[147] L. Zhang, X. Wang, J. Lu, P. Li, and Z. Cai, “An efficient privacy preserving data ag-

gregation approach for mobile sensing,” Security and Communication Networks, vol. 9,

no. 16, pp. 3844–3853, 2016.

[148] Y. Liang, Z. Cai, Q. Han, and Y. Li, “Location privacy leakage through sensory data,”

Security and Communication Networks, vol. 2017, 2017.

[149] J. Li, Z. Cai, J. Wang, M. Han, and Y. Li, “Truthful incentive mechanisms for ge-

ographical position conflicting mobile crowdsensing systems,” IEEE Transactions on

Computational Social Systems, 2018.

[150] J. Wang, Z. Cai, Y. Li, D. Yang, J. Li, and H. Gao, “Protecting query privacy with

differentially private k-anonymity in location-based services,” Personal and Ubiquitous

Computing, pp. 1–17, 2018.

[151] Y. Wang, Z. Cai, X. Tong, Y. Gao, and G. Yin, “Truthful incentive mechanism with

location privacy-preserving for mobile crowdsourcing systems,” Computer Networks,

vol. 135, pp. 32–43, 2018.

[152] X. Zheng, Z. Cai, and Y. Li, “Data linkage in smart iot systems: A consideration from

privacy perspective,” IEEE Communications Magazine, 2018.

[153] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitoring of road and

traffic conditions using mobile smartphones,” in Proceedings of the 6th ACM conference

on Embedded network sensor systems. ACM, 2008, pp. 323–336.

[154] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard,

R. West, and P. Boda, “Peir, the personal environmental impact report, as a platform

for participatory sensing systems research,” in Proceedings of the 7th international

conference on Mobile systems, applications, and services. ACM, 2009, pp. 55–68.

154

[155] Z. Duan, M. Yan, Z. Cai, X. Wang, M. Han, and Y. Li, “Truthful incentive mechanisms

for social cost minimization in mobile crowdsourcing systems,” Sensors, vol. 16, no. 4,

p. 481, 2016.

[156] Y. Wang, Z. Cai, G. Yin, Y. Gao, X. Tong, and G. Wu, “An incentive mechanism with

privacy protection in mobile crowdsourcing systems,” Computer Networks, vol. 102,

pp. 157–171, 2016.

[157] L. Zhang, Z. Cai, and X. Wang, “Fakemask: a novel privacy preserving approach for

smartphones,” IEEE Transactions on Network and Service Management, vol. 13, no. 2,

pp. 335–348, 2016.

[158] E. Álvarez-Miranda, I. Ljubić, and P. Mutzel, “The maximum weight connected sub-

graph problem,” in Facets of Combinatorial Optimization. Springer, 2013, pp. 245–

270.

[159] D. S. Johnson, “The np-completeness column: an ongoing guide,” Journal of Algo-

rithms, vol. 6, no. 3, pp. 434–451, 1985.

[160] [Online]. Available: http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

http://www.nyc.gov/html/tlc/html/about/trip_ record_data.shtml

	Data Collection and Aggregation in Mobile Sensing
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background and Motivations
	Approximate Holistic Aggregation in Mobile Sensing
	Bernoulli Sampling Based Approximate Holistic Aggregation in Mobile Sensing
	Data Collection in Geographical Position Conflicting Mobile Sensing
	Approximate Holistic Aggregation in Small Scale Networks
	Data Collection in Geographical Position Dependent Mobile Sensing
	Organization

	Related Work
	Sampling-based Data Aggregation
	Mobile Crowdsensing
	Other Related Work

	Approximate Holistic Aggregation in Mobile Sensing
	Introduction
	Problem Definition
	Preliminaries
	(,)-Approximate Frequency
	(,)-Approximate Rank
	(,)-Approximate Distinct Count
	(,)-Approximate Quantile

	(,)-Approximate Aggregation Algorithms
	The Uniform Sampling Algorithm
	The (,)-Approximate Frequency Algorithm
	(,)-Approximate Rank Algorithm
	(,)-Approximate Distinct-count Algorithm
	(,)-Approximate Quantile Algorithm

	Simulation Results
	Evaluation of Sample Size and Relative Error
	Evaluation of Energy Cost

	Conclusions

	Bernoulli Sampling Based Approximate Holistic Aggregation in Mobile Sensing
	Introduction
	Problem Definition
	Network Model
	Frequency Queries

	Preliminaries
	Basics of Sampling Probability for Ordinary Frequency Queries
	Sampling Probability for Ordinary Frequency Queries
	Sampling Probability for Single Value Frequency and Range Frequency Queries

	Network Connectivity
	(,)-Approximate Frequency Query Algorithms
	The Bernoulli Sampling Algorithm
	The (,)-Approximate Algorithm for Ordinary Frequency Queries
	The (,)-Approximate Algorithms for Single Value Frequency Queries and Range Frequency Queries

	Experimental Results
	Sampling Probability and Energy Cost of Ordinary Frequency Query
	Relative Error of Ordinary Frequency Queries
	Simulation Results for Single Value Frequency Queries
	Simulation Results for Range Frequency Queries

	Conclusion

	Data Collection in Geographical Position Conflicting Mobile Sensing
	Introduction
	Problem Definition
	Mobile Crowdsensing Platform
	Optimal Winner Selection Problem
	Problem Formulation

	Optimal Winner Selection Algorithm
	Problem Representation
	A* Algorithm for Optimal Winner Selection
	Payment Determination

	Non-optimal Winner Selection Algorithm
	Algorithm Design
	Beneficial Properties of the Algorithm

	Experiment
	Experiment Settings
	Optimal Winner Selection Algorithm
	Non-optimal Winner Selection Algorithm

	Conclusion

	Approximate Holistic Aggregation in Small Scale Networks
	Introduction
	Problem Definition
	Preliminaries
	Uniform Sampling Based Approximate Aggregation
	Bernoulli Sampling Based Approximate Aggregation

	-Approximate Aggregation Algorithms
	Uniform Sampling Based Aggregation Algorithm
	Bernoulli Sampling Based Aggregation Algorithm

	Simulation Results
	Uniform Sampling Based Aggregation Algorithm
	Bernoulli Sampling Based Aggregation Algorithm

	Conclusions

	Data Collection in Geographical Position Dependent Mobile Sensing
	Introduction
	Problem Definition
	Crowdsensing Platform
	Optimal Winner Selection Problem
	Problem Formulation

	Optimal Winner Selection Algorithm
	Algorithm to Select the Winners
	Payment Determination

	Non-optimal Winner Selection Algorithm
	Algorithm Design
	Algorithm's Properties

	Problem Extension
	Min-K Winner Selection Problem
	Budget-bounded Winner Selection Problem

	Experiment
	Experiment Settings
	Optimal Winner Selection Algorithm
	Non-optimal Winner Selection Algorithm
	Extended Problems

	Conclusion

	Conclusion
	References

