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Abstract

There is increasing evidence suggesting that Medicare beneficiaries do
not make fully informed decisions when choosing among alternative
Medicare health plans. To the extent that deciphering the intricacies of
alternative plans consumes time and money, the Medicare health plan
market is one in which search costs may play an important role. To
account for this, we split beneficiaries into two groups—those who are
informed and those who are uninformed. If uninformed, beneficiaries
only use a subset of covariates to compute their maximum utilities, and
if informed, they use the full set of variables considered. In a Bayesian
framework with Markov Chain Monte Carlo (MCMC) methods, we
estimate search cost coefficients based on the minimum and maximum
statistics of the search cost distribution, incorporating both horizontal
differentiation and information heterogeneities across eligibles. Our
results suggest that, conditional on being uninformed, older, higher
income beneficiaries with lower self-reported health status are more
likely to utilize easier access to information.
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1 Introduction

When first established in 1997, the Medicare + Choice (M+C) program aimed to provide

beneficiaries alternatives to the standard Medicare Fee-for-Service (FFS) plans. Now termed

Medicare Advantage (MA) plans, these provide at a minimum the same coverage offered by

standard Medicare FFS and often provide much more, but additional health plan benefits also

complicate each beneficiary’s choice. In shear number, the choice may be daunting. In 2002,

private insurance companies received 174 Center for Medicare and Medicaid Services (CMS)

contracts to provide 452 different Medicare health plans for different areas across the US. Some

beneficiaries had over 60 different plans offered in their area. Plans can also offer a variety of

optional benefits, and although not all plans are available to all beneficiaries, it is clear that

the potential choice set is overwhelming for most people. In a study commissioned by AARP,

Hibbard and Jewett (1998) find that most beneficiaries do not fully understand the differences

between the standard Medicare FFS and M+C plans. More recently, Atherly (2001), Frank

(2004) and Heiss, McFadden and Winter (2006), among others, present strong survey evidence

suggesting that the choice set is overly complicated and that beneficiaries often do not make

fully informed decisions.

We account for these informational problems by adopting a consumer search model. With

data on Medicare plan choice, beneficiary information structure and demographic variables, we

split buyers into groups of informed and uninformed. If uninformed, beneficiaries only use a

subset of covariates to compute their maximum utilities, and if informed, they use the full set of

variables considered. Intuitively, we can treat all beneficiaries as being initially uninformed, and

through costly search, they can gain knowledge of other characteristics; however, since eligibles

have different search costs, not all beneficiaries want to search. This search process is similar to

Sorensen (2001), who studies search costs in the market for prescription drugs. Due primarily to

data limitations, however, he cannot study the effect of demographic variables on search costs,

while in our paper, we parameterize search costs and explicitly estimate search cost coefficients

based on the minimum and maximum statistics of the search cost distribution. The main

focus of this paper is to explain the primary determinants of these critical search cost values.

We estimate this model in a Bayesian framework with Markov Chain Monte Carlo (MCMC)

methods, incorporating both horizontal differentiation and information heterogeneities across

eligibles.
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Our analysis provides two major contributions. One, we embed a heterogeneous search

process in a discrete choice model with taste differences. This provides a rich decision process

with multiple forms of buyer heterogeneity. And two, we determine not just how beneficiaries

gain information (as in the standard reduced form models) but also which types of beneficiaries

are closer to making informed decisions than others. Since informed decisions are welfare

improving, understanding beneficiary information structure and which beneficiaries are closer

to making an informed decision has important welfare implications. Intuitively, imagine we

want to assess our favorite sports team’s performance. We might first look at wins and losses,

which is what the standard reduced form models tell us about a beneficiary’s information

structure—are beneficiaries informed or uninformed and what factors have the most influence?

But there are degrees of winning and losing, and knowing whether our team lost by 1 or 100

points makes a difference. Our search model, in some sense, tells us the score. Specifically, if we

consider a search cost cutoff above which people are uninformed and below which are informed,

we find that higher income beneficiaries are most likely closer to the cutoff than lower income

beneficiaries, while beneficiaries with more assistance are more likely to have search costs well

away from the cutoff. These results provide strong insight into who would most benefit from

easier access to information and allow us to determine, of those that are uninformed, who needs

the least help to make an informed decision. Therefore, with regard to beneficiary information

structure, we can ex ante assess the efficiency of proposed welfare improving processes.

Search is certainly not the only avenue by which beneficiaries simplify their choice sets.

Gilbride and Allenby (2006), for example, develop a screening-rule model where beneficiaries

choose plans essentially in two stages. In stage one, they select a subset of plans based on

a screening rule, and in stage two, they choose the best plan in their new information set.

They apply this model to self-reported survey data. Li (2006) extends this by incorporating

demographic variables and devoting more attention to the development of the screening rule

mechanism. She also applies her model to realized choices rather than survey data of hypothet-

ical choices.

While both papers are important steps in developing more realistic choice models when

decisions are complicated, the underlying motivation for the screening rule is somewhat dis-

concerting. This assumes that people cannot fully understand the intricacies of each choice

and are burdened by “information overload.” To ease their decision, they screen their choices

and only look at some subset. In a search model, however, anyone can understand the options
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available to them, but the cost of doing so may be substantial. The screening model also does

not differentiate between informed and uninformed buyers and, as such, cannot address which

types of buyers might be closer to making informed decisions than others.

Moreover, in the Medicare health plan market, there is strong evidence that search may

play a role. First, there does seem to be some distinction between informed and uninformed

beneficiaries. When asked a series of questions regarding how intensively they tried to find plan

information, over half of our sample indicated making essentially no effort. Such beneficiaries

could not have made an informed decision—even if the decision were somewhat simplified by a

screening rule, they would still have to research whatever plans passed the first-stage screening

process. Second, there are significant differences across plans offered to each beneficiary, creating

a strong benefit for those beneficiaries deciding to actively research several different plans. For

instance, the average difference between the lowest and highest premium plans offered in a

beneficiary’s area is over $100. Similarly large differences exist for inpatient hospital care costs

($20.11), doctor and specialist co-pay ($13.32), and several services such as vision and hearing.

Third, as mentioned previously, many beneficiaries cite a strong lack of understanding with

their plan’s benefits, implying that they could not have thoroughly researched some of their

plan’s attributes.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the

history of the Medicare Advantage program, Section 3 explains the basic search theory, Section

4 explains the data, Section 5 sets up the model, Section 6 explains the estimation process

and Section 7 summarizes the results. The Gibbs sampler algorithm and simulation results are

deferred to the Appendix.

2 Medicare History

Established in 1965, Medicare provides baseline medical coverage to individuals 65 years or

older or those with permanent disabilities. Until 1982, the only option for Medicare benefi-

ciaries was the basic Medicare Fee-for-Service (FFS), which consists of two parts. All eligibles

are automatically enrolled in Part A, which covers hospital stays and skilled nursing facility

care, and in 2002, roughly 95% of beneficiaries also paid for Medicare Part B, the voluntary

supplemental program covering physician services, medical equipment, and most outpatient

hospital services. Most beneficiaries have already paid for Part A through payroll taxes, while
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Part B usually requires an additional premium ($54 in 2002 and $96.40 in 2007). Since 2006,

beneficiaries can also receive prescription drug coverage through private drug plans (Medicare

part D).

Since the Balanced Budget Act of 1997, and revised in 2003 by the Medicare Modernization

Act, beneficiaries can enroll in private health insurance plans called Medicare + Choice (M+C)

plans. These plans are provided by private companies who contract with the Center for Medicare

and Medicaid Services (CMS) yearly and are designed to replace the traditional Medicare FFS

plans. Contracts apply at the county level, and there can be multiple plans provided under

each contract. Since contracts are county specific, only those residents living in the county in

which the contract applies have access to the plans under that contract.

There are two different types of plans under the M+C heading–risk plans (e.g., Managed

Care plans—mainly Health Maintenance Organizations (HMOs), Preferred Provider Organiza-

tion plans, Provider-Sponsored Organization plans and Private Fee-for-Service plans) and cost

plans. Risk and cost plans differ in that CMS provides a monthly payment to risk plans for

each enrolled beneficiary, while with cost plans, CMS only pays the cost of services in excess

of the standard Medicare FFS. Prior to the Medicare Modernization Act, however, most M+C

plans were Managed Care plans.1

In choosing their Medicare health plans, beneficiaries give up the traditional benefits of

Medicare FFS but must still enroll in Parts A and B. CMS also requires M+C plans to offer at

least what the beneficiary could receive from Medicare FFS. For 2002 coverage, open enrollment

was from November 1 to December 31, 2001. During this time, eligibles ages 65 years or older

without end stage renal disease (ESRD) could choose any plan available in their area. Limited

enrollment went from January 1 through June 30, 2002, where beneficiaries could still enroll in

M+C plans but only if the plan in question was accepting new members.2 During the limited

enrollment period, beneficiaries were free to switch plans but could only do so once. This

included switching back to the standard Medicare FFS. For example, a beneficiary could enroll

in November of 2001 and switch plans in May of 2002, at which point they were locked-in to

the new plan for the rest of the year. Beneficiaries might also move out of their plan’s service

area, in which case they could still receive coverage if the plan allows, or they must disenroll
1Other types of health plans exist, such as Health Care Prepayment Plans, but are strongly regulated by

CMS. For a detailed description of different types of plans, see the “Medicare & You” booklet published yearly
by CMS or “Report to the Congress: Medicare Payment Policy” from MedPAC.

2Beneficiaries were generally only denied membership if the plan had previously set a maximum member
number and had already reached that limit.
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and choose another plan in their new location or stay with Medicare FFS.

Since 2004, M+C plans have changed to Medicare Advantage (MA) plans. Similar to

M+C, private companies provide these plans with contracts from CMS. The types of plans

include Health Maintenance Organizations, Preferred Provider Organization plans, Private Fee-

for-Service plans, and Medical Savings Account plans. New plans include Regional Preferred

Provider Organization plans and Special Needs Plans. Any plans besides Private FFS and

Medicare Savings Accounts must offer at least one benefit package that includes prescription

drug coverage.

For the most part, standard Medicare FFS leaves the beneficiary with a large amount of risk,

often without dental, vision, long-term care, preventative care, or prescription drug coverage.

Parts A and B also require rather substantial deductables and co-payments and do not place a

maximum on out-of-pocket expenses. Due to this increased exposure, nearly 90% of beneficiaries

have some sort of supplemental coverage, either through Medicaid, Medigap, employer provided

insurance, or Medicare Advantage. For those enrolled in MA plans, they must pay the plan

premium and also enroll in Medicare part B and pay the part B premium. Despite the extra

premium, most MA plans offer significantly more benefits than the standard Medicare FFS.

In fact, in our dataset, 33% of MA plans charge no additional premium and still offer more

benefits.3

3 Literature Review

Due to the influx of Medicare beneficiaries, there has been increased attention paid to the Medi-

care Advantage market. This includes analyzing the enrollment decision process, the utilization

process, as well as the overall welfare effects of privately provided Medicare health plans. De-

spite the increased awareness and applicability, there is no consensus as to how beneficiaries

actually make their enrollment decisions. Initial studies, such as Atherly et al. (2004) and

Dowd et al. (2003), model this decision in a standard discrete choice framework (e.g., probit).

But due to strong evidence suggesting that beneficiaries do not make informed decisions, the

complete information assumption inherent in the standard discrete choice models has come

under question. Some attempts to address these problems include Frank and Lamirand (2007),

Gillbride and Allenby (2006), Lowenstein (1999) and Li (2006), all of which integrate concepts
3We treat Medicare Advantage and Medicare + Choice interchangeably, even though our 2002 data technically

only apply to the Medicare + Choice market.
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from behavioral psychology (e.g., information overload or anxiety) into consumer decision pro-

cesses. Li (2006), however, is the only paper to use observational data rather than experimental

or hypothetical survey data.

Although not strictly related to behavioral psychology, the motivation for our approach is

similar. We acknowledge that beneficiaries are often not fully informed of all characteristics

across all possible decisions; however, contrary to the approaches above, we believe that all

beneficiaries are capable of being completely informed. The assumed computational capacity

of beneficiaries is an important difference between the screening and search models. In a search

context, the problem is that each person has a different cost of collecting information and

therefore may not make an informed decision.

3.1 Search Literature

Theoretically, consumer search first developed as an explanation for observed price differences

in seemingly homogeneous product markets. For instance, assume that several buyers are all

looking for the best price for some homogeneous good sold by several firms.4 Everyone knows

the distribution of prices but not the specific price of a given firm. If each buyer has some cost

of going from one firm to another, and this cost is different across buyers, then under certain

restrictions on the search cost and price distributions, there exists a price dispersed equilibrium.5

Using this theoretical background, Hong and Shum (2006) impose the equilibrium restrictions

in order to estimate the search cost distribution using only price data. They apply this analysis

to the online market for statistics textbooks and show that search may account for the observed

price dispersion in this seemingly homogeneous product market.

If we further assume that firms have some marginal cost differences, then price dispersed

equilibria exist under more general search cost distributions.6 Hortacsu and Syverson (2004)

exploit this theoretical setup in their study of search costs and mutual funds. Similar to Hong

and Shum (2006), they exploit equilibrium relationships in order to estimate the search cost

distribution in the market for S&P 500 index funds using both price and quantity (market

share) data. They do so under three general sequential search settings. One, they assume

funds are homogeneous and that each fund is equally likely to be sampled, in which case
4There are two general branches of search—sequential search and fixed sample size search. We focus here on

the sequential consumer search rule. For a survey of both, as well as empirical studies, see Baye, Morgan and
Scholten (2006).

5See Rob (1985) and Stahl (1989) for more detail.
6See Bénabou (1993) and Carlson and McAfee (1983) for more detail.
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cutoff search cost values come directly from the equilibrium restrictions of the model. Two,

they allow for some vertical product differentiation where plans remain equally likely to be

sampled. Here, given some additional marginal cost assumptions, search cost cutoffs are again

estimated directly from equilibrium restrictions. And three, they consider homogeneous funds

with unequal sampling probabilities, and estimate the parameters of an assumed search cost

distribution using nonlinear least squares. This paper is particularly interesting as it integrates

consumer search and product differentiation; however, as Hortacsu and Syverson indicate, they

cannot consider taste heterogeneities along with search costs since their data do not provide an

exogenous source of variation for the search cost distribution.7

The main goal in these empirical search models is to estimate the search cost distribution,

usually in a structural model and usually in a nearly homogeneous good market, or to more

formally model the mechanism by which certain consumers are more informed than others.

There is currently little work, however, on the actual determinants of individual consumer search

costs. Moreover, the data considered in these models do not allow for both taste differences

across choices and heterogeneous search costs. This paper addresses both of these issues.

4 Data

The data for individual plan characteristics come from the Medicare Health Plan Compare

(MHPC) dataset. This is a freely available dataset collected by CMS. Since we use 2002

beneficiary demographic data, we use the beginning-of-year MHPC for 2002. We combine the

county code data with the benefit structure data to get one dataset consisting of the Medicare

plan contract, the plan id, the county code from which this contract operates, and the benefit

structure of each plan. The full dataset includes up to 38 different plan attributes for each plan

under each contract, where there are 452 different plan/contract combinations and 174 different

contracts. Variable definitions and summary statistics are included in Table 1, where we see

that nearly 70% of plans offered some sort of hearing, vision or prescription drug coverage,

while less than 30% offered any dental coverage. As mentioned previously, we also see the large

range of premium, inpatient hospital care costs, skilled nursing facility costs and doctor co-pay.

In premium alone, the incentive to search could exceed $300. Since all eligibles have access to
7Other empirical search studies include Wildenbeest (2006), which also estimates the search cost distribution

with vertically differentiated products, and Moraga-González and Wildenbeest (2006). Lewis (2004) and Sorensen
(2001) also study consumer search but do not estimate the search cost distribution.
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the standard Medicare FFS, we treat this as the baseline utility that anyone can obtain for free.

We normalize the FFS premium to $0, and we set the inpatient hospital care equal to $13.53

per day for the first 60 days and the doctor or specialist co-payment to $25 as per the 2002

“Medicare and You” booklet.

Table 1 goes here

For informed beneficiaries, we consider premium (in excess of the $54 for Part B coverage),

prescription drug coverage, average doctor or specialist co-pay, vision services, dental services,

hearing services, home health care coverage, physical exam coverage, inpatient hospital care

costs and skilled nursing facility costs. We also combine general health education and acupunc-

ture into one variable named “extras”. These characteristics are commonly studied in the

Medicare literature. Due to little variability across plans, we do not use out-of-network cover-

age, chiropractic care or emergency room coverage in our analysis. For uninformed beneficiaries,

we assume they only observe premium, doctor and specialist co-pay and prescription drug cov-

erage. These were chosen for two reasons. One, the knowledge and needs supplement indicates

that the cost of medical services is the most important aspect to beneficiaries next to general

Parts A and B services—premium and co-pay are the most easily observed out-of-pocket cost

variables included in our analysis. Two, in the screening literature, there is strong evidence that

prescription drug coverage is a major screening variable.8 For these reasons, we use premium,

co-pay and prescription drug coverage as our covariates for uninformed beneficiaries.

We then combine these plan characteristics with individual beneficiary characteristics from

the 2002 Medicare Current Beneficiary Survey (MCBS), Access to Care module. This contains

demographic data such as age, income, race, self-reported health status and Medicare use, as

well as whether the beneficiary is employed or not,9 as described in Table 2, for a cross-section

of 16,409 beneficiaries.

Table 2 goes here

8See Li (2006) for more detail.
9We note that one’s employment status may intuitively impact a beneficiary’s search decision. To estimate

such effects, we include active workers in our estimation and include a dummy variable for whether a beneficiary
is employed or not in our estimation of search cost coefficients.
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In order to characterize each beneficiary’s plan choice set, we apply the following filters:

(1) we exclude beneficiaries with unknown age – 94 observations; (2) we exclude beneficiaries

completing interviews in medical facilities (e.g., nursing homes) – 1,173 additional observations;

(3) we exclude beneficiaries classified as anything other than “aged, no ESRD” – 2,536 additional

observations; (4) due to fundamental differences between, say, the choice of Medigap versus

M+C plans, we follow Atherly, Dowd, and Feldman (2004) and exclude beneficiaries with any

type of supplemental coverage besides M+C (e.g., Medigap, Medicaid, public health coverage, or

employer provided insurance) – 9,499 additional observations; and (5) we exclude beneficiaries

claiming to have HMO or GHP coverage but who do not have a contract offered in their area

– 218 additional observations.

Using the county code data, we match beneficiaries to a specific plan and choice set. We

form the choice set by matching the contracts offered by county code with each beneficiary’s

county of residence. Matching beneficiaries to specific plans, however, is not as clear. The

MCBS only has data on the contract under which the beneficiary’s plan exists—not which plan

was chosen. Therefore, we match plans to beneficiaries by analyzing the deviation between

each plan’s characteristics and the beneficiary’s perceived plan characteristics.10 For some

beneficiaries, however, this still does not uniquely match them to one plan. In this case, we

assume that beneficiaries choose the best plan in regard to premium, prescription drug coverage,

co-pay, vision, dental, hearing, physical exam coverage, inpatient hospital care costs and skilled

nursing facility costs, in this order.11 Recall that we consider only the first three characteristics

for uninformed eligibles as they are assumed to never see the remaining characteristics. If plans

remain identical across these characteristics, we randomly assign one of the remaining plans.

We lose another 655 observations who are under contracts that do not match the contracts

available to them or who are matched to plans not offered under their original contract.12 The

final dataset therefore consists of N = 2, 234 beneficiaries, 970 of which are enrolled in the

basic Medicare FFS and the remaining enrolled in a Medicare health plan (managed care plan).

From Table 2, we see that a large portion of our sample has annual income between $5,000 and

$25,000, education at or below a high school diploma, good to excellent (self-reported) health
10The survey asks questions about how much the beneficiary pays per month and what type of prescription

drug coverage they receive. We use the answers to these questions to determine the “distance” from the benefits
available to the beneficiary and the benefits received by the beneficiary.

11These characteristics are sufficient to match beneficiaries to plans, so we ignore health education and
acupuncture in our matching process.

12Most of these observations are those who have moved or switched plans throughout the year but who had
a plan prior to moving.
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status and few chronic diseases.

For data on search behavior, we use the beneficiary Knowledge and Needs survey. These

variables explain whether a beneficiary contacted Medicare prior to choosing their plan, whether

they accessed the internet, reviewed the plan quality charts, and other similar activities. Sum-

mary statistics are included in Table 3. This tells us how active beneficiaries are in finding

information, where we see that only 6% claimed to have looked for payment information and

only 5% claimed to have looked for benefit information. Over 43%, however, claimed to read

and at least partially understand the “Medicare and You” booklet.

Table 3 goes here

To appropriately split beneficiaries into groups of informed and uninformed, we need to

determine which avenues a beneficiary can take to gain information. From the data available,

we determine 11 such avenues: (1) whether the beneficiary switched plans within the past year,

(2-4) whether they are informed of Medicare payment, benefit or coverage information, (5)

whether they are informed of HMO information, (6) whether they read the “Medicare and You”

booklet, (7-8) whether they looked at quality ratings or the plan information chart, (9) whether

they called the Medicare hotline, (10) whether they visited the Medicare website (provided they

have internet access), and (11) whether they have someone assisting them in their Medicare

decisions. Out of these 11 categories, we see from Table 4 that over 45% of our sample made no

observable attempt to gain information.13 Of the 600 that took only one avenue, most of them

read the “Medicare and You” booklet. And since the booklet is fairly general and does not

discuss individual plans, we assume that those beneficiaries who only read the booklet still most

likely made an uninformed decision. We therefore assume that anyone taking one or less avenue

to gain information is uninformed, leaving N1 = 627 informed beneficiaries and N2 = 1, 607

uninformed beneficiaries.

Table 4 goes here

13The percentages presented in Table 4 are consistent across the subsets of beneficiaries choosing FFS and
those choosing HMO coverage.
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5 The Model

There are i = 1, ..., N beneficiaries choosing between j = 1, ..., Ji different health care plans,

where each beneficiary has some search cost, ci > 0, and where the numbers and types of

plans available vary by zip code and county code. As mentioned previously, N is the sum of N1

informed buyers and N2 uninformed buyers. All N2 uninformed beneficiaries know only a subset

of plan characteristics as well as the maximum utility available to them if they decide to search,

while the N1 informed beneficiaries have full information on all plan characteristics. This type

of information structure is similar to Sorensen (2001), where buyers know the maximum utility

available to them but must engage in costly search to match plans with utility values.

Everyone has information on some characteristics but must engage in costly search in order

to become fully informed. In this sense, searching and making an informed decision are syn-

onymous. Since utilities and search costs are heterogeneous across beneficiaries, not everyone

finds it beneficial to search. Those that do not search therefore choose the best plan based on

a subset of characteristics. This subset determines the baseline utility that buyers can attain

with certainty and without search. Note that, since some attributes remain unknown without

search, uninformed beneficiaries may select plans that, had they been informed, would not have

offered the highest utility. The timing of the process is as follows:

1. Buyers form their own benefit of search, bi, determined by the difference between the

maximum utility available to them through search and the maximum available without

search.

2. Buyers decide to search or not, depending on their search cost ci. If ci < bi, then benefi-

ciary i searches.

3. If beneficiary i is completely informed, they choose the highest utility available. Otherwise,

they choose the plan offering the highest utility according to a subset of covariates.

Recall from Section 3 that the standard theoretical search model assumes buyers know the

full distribution of utilities available but are ex ante uninformed about which plans offer which

utilities. In a sequential setting, buyers would go from one plan to the next searching for the

best deal and stop searching once the benefit to search is below their cost. The major differences

between our “all or nothing” search process and this standard theoretical search process is two-

fold. One, in our model, beneficiaries have knowledge of a subset of characteristics across all
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plans. Therefore, beneficiaries need not search in order to look at more than one plan—they

must search in order to look at more characteristics. Two, if they search, they do so exhaustively.

Search therefore has two effects on beneficiary behavior and utility: (1) the beneficiary becomes

aware of plan attributes that would otherwise have a negative effect on their utility, and thus

avoids the plan if such negative effects are sufficiently large; or (2) the beneficiary becomes

aware of plan attributes that have a positive effect on their utility and will choose differently

(relative to had they been uninformed) if such effects are sufficiently large. In either case, an

informed decision yields a higher ex post utility than an uninformed decision. In this sense,

the search process automatically dictates that an informed decision is no worse, but perhaps

better, from a welfare standpoint than an uninformed decision. This is true for all beneficiaries

and derives theoretically from the search process considered.

In the Medicare health plan market, the assumption of exhaustive search is more appropriate

as often data that are available for one plan are available for many other plans at the same

time. For instance, the Medicare website compares several plans across whatever characteristics

are chosen, similar to other websites such as plan prescriber (www.planprescriber.com). The

more likely decision may therefore be whether to search at all instead of whether to search one

more time. To some extent, this search process is also data driven. We cannot allow for a

fully sequential search model because we can never be sure where different beneficiaries have

searched. Even if we knew how many plans someone looked at, there would be generally too

many combinations of different plans to identify utility and search cost coefficients. As discussed

in Section 4, we split beneficiaries into informed and uninformed groups based on how many

avenues they took to gain information, taking one or less implies they are uninformed while

taking two or more implies they are informed.

5.1 Utility Specification

We allow for two separate utility specifications, one for informed and one for uninformed benefi-

ciaries. In both cases, we adopt the standard random coefficient multinomial probit (RCMNP)

model.14 For informed buyers, the latent utility for beneficiary i is determined by

uij = xjβi + εij , (1)

14One important justification of the RCMNP model is to avoid Independence of Irrelevant Alternatives (IIA).
See Athey and Imbens (2007) for more detail.
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where xj = (x1j , ..., xK1j)
′ is the K1×1 vector of plan characteristics, K1 is the number of plan

characteristics relevant for informed beneficiaries, and εij
iid∼ N(0, 1), independent of X. For

uninformed eligibles, denote by x̃j the subset of xj consisting of K2 characteristics on which all

beneficiaries are informed, with corresponding coefficients β̃i. Therefore, the latent utility for

(uninformed) beneficiary i is determined by

ũij = x̃j β̃i + ε̃ij . (2)

Again, ε̃ and x̃j are independent for all j and ε̃ij
iid∼ N(0, 1). We also assume that ε̃ and ε are

independent.

We specify the random coefficients for informed buyers as follows:

β′i = z′i∆ + νi, where νi
iid∼ N (0, Vβ) , (3)

where zi is the D × 1 vector of demographic variables, ∆ is a D × K1 matrix of common

coefficients, and Vβ is a K1 × K1 covariance matrix. The analogous equation for uninformed

beneficiaries is

β̃′i = z′i∆̃ + ν̃i, where ν̃i
iid∼ N

(
0, Vβ̃

)
, (4)

where ∆̃ is now a D×K2 matrix of common coefficients, and Vβ̃ is a K2×K2 variance matrix.

Note that this approach allows for demographic and plan characteristic interactions as well as

unobserved heterogeneity in preferences. We use demeaned values for demographic explanatory

variables. This simplifies interpretation so that the constant terms represent marginal utilities

for the average beneficiary. For instance, if x1 is premium, then ∆1 represents the marginal

effect of premium for a beneficiary of average age, average income, average education and so

forth.

5.2 Search Rule

Since buyers know their maximum utilities prior to search, but not which plan offers which

utility, the benefit from search is

bi = max{ui1, ..., uiJ} −max{ũi1, ..., ũiJ}. (5)
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This is just the difference between the potential utility available through costly search and the

guaranteed utility everyone can obtain without searching. Since each beneficiary potentially

observes different utility values, each bi also differs across eligibles.

This benefit of search is also the minimum (for uninformed buyers) or maximum (for in-

formed buyers) search cost. Denote these minima and maxima for each i beneficiary by mi and

m̄i, respectively. The main focus of this paper is to explain the primary determinants of these

critical search cost values. To do so, we specify the following functional forms:

m̄i = wiγ + µi,

mi = wiγ̃ + µ̃i, (6)

where wi is a 1 ×M vector of demographics for both informed and uninformed beneficiaries.

We assume the error terms, µi for informed and µ̃i for uninformed, are iid with µi ∼ N(0, σ2)

and µ̃i ∼ N(0, σ̃2).

We identify search cost coefficients through two avenues. One, the level of information is

observed in the data, as discussed in Section 4, so that beneficiaries are matched to one of

two information types. Two, we include in wi certain demographics that are excluded from zi,

such as the number of helpers assisting the beneficiary and race, so that there is an exogenous

source of variation within beneficiaries of a particular information structure. This provides

the necessary independent variation between search and taste heterogeneities, as mentioned

in Section 3. Our specification therefore introduces a second type of heterogeneity into the

standard discrete choice model, allowing for both heterogeneity in taste, due to the random

coefficients, as well as heterogeneity in information.

More generally, we assume a single search cost distribution from which all beneficiaries have

some unobserved search cost. We make no restrictions on this distribution and instead restrict

the minimum and maximum search costs (i.e., search cost cutoffs) to follow normal distributions.

From these minima and maxima, and from our assumed search process discussed previously,

we know on which side of these cutoffs each beneficiary lies. We can then determine, among

uninformed beneficiaries, who is most likely to benefit from small information improvements.

This tells us who needs the smallest push in order to become informed.

Figure 1 provides a graphical exposition. The distribution itself represents the full, uncon-

ditional search cost distribution, while the lines, ma and mb, represent the mean estimated
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cutoff values for two uninformed beneficiaries (i.e., the minimum search costs). The true search

costs, sa and sb, lie somewhere to the right of the respective minima. To better understand

our results, assume that a given demographic component, w1, has the following relationship

across the two beneficiaries: w1a < w1b. For instance, beneficiary b’s income level exceeds that

of beneficiary a. Further assume that γ̃1 > 0, which in this case implies that income has a

positive effect on uninformed beneficiaries’ minimum search costs. Therefore, beneficiary b has

a higher minimum search cost than beneficiary a, as depicted in the graph. It follows that

beneficiary b is more likely to have a search cost closer to their cutoff than beneficiary a, and we

interpret this to mean that beneficiary b is more likely to make an informed decision in response

to a uniform decrease in all beneficiary search costs. We can also think of this in terms of the

benefit to search, in which case beneficiary a has a smaller benefit to search than beneficiary b.

This again implies that, if we could lower the search costs of both people, beneficiary b would

be more likely to search than beneficiary a. Since a given beneficiary would only search if the

utility gain exceeds their search cost, “becoming informed” is completely welfare improving (or

at least not welfare decreasing).

Figure 1 goes here

5.3 Decision Rule

To study the final decision rule, we denote by yi the plan chosen by beneficiary i. For yi = j,

we therefore know the following:

1. If uninformed, then the beneficiary’s utility is ũij = max{ũij , ..., ũij} and

mi = max{ui1, ..., uiJ} − ũij ,

and

2. If informed, then the beneficiary’s utility is uij = max{ui1, ..., uiJ} and

m̄i = uij −max{ũij , ..., ũij}.
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To back out critical search costs, note that for uninformed buyers, all uij are formed by taking

the counterfactual—if beneficiary i were informed, then their utilities would be uij , ..., uiJ—and

similarly for informed buyers.

6 Estimation

To estimate utility and search cost coefficients, we use a Bayesian Markov Chain Monte Carlo

(MCMC) approach. We specify prior distributions for ∆, ∆̃, Vβ, Vβ̃, γ, γ̃, σ2 and σ̃2 in order to

obtain draws from the posterior distributions. We follow Athey and Imbens (2007) as well as

Rossi, McCulloch and Allenby (1996) and Chib and Greenberg (1998) in our sampling algorithm.

The basic idea is as follows:15

1. Draw latent utilities for informed and uninformed beneficiaries, {u1, ...,uN1} and {ũ1, ..., ũN2}

respectively. Recall from Section 5.1, informed and uninformed utilities take the form of

uij = xjβi + εij and ũij = x̃j β̃i + ε̃ij , respectively. Conditional on each set of parame-

ters, utilities therefore follow a normal distribution with mean and variance provided in

Appendix A. We obtain draws of each plan’s utility for each beneficiary as follows: (1)

draw the utility of the chosen option from a conditional normal distribution, truncated

below by 0; and (2) draw the remaining utilities from a conditional normal distribution,

truncated above by the utility of the chosen option.16

2. Draw corresponding random utility coefficients, βi for i = 1, ..., N1 and β̃i for i = 1, ..., N2.

Recall from Section 5.1, random coefficients for informed and uninformed beneficiaries take

the form of β′i = z′i∆ + νi and β̃′i = z′i∆̃ + ν̃i, respectively. Conditional on utilities from

the previous step, random coefficients again follow a normal distribution with mean and

variance provided in Appendix A.

3. Draw common coefficients ∆ and ∆̃. This stage is essentially a regression of random

parameters on demographic variables. As such, conditional on the random parameters

from the previous step, common coefficients follow a normal distribution with mean and

variance given in Appendix A.
15For a more formal discussion of our estimation procedure, see Appendix A.
16We draw the utility for the chosen option using the inverse transform method and draw the remaining

utilities using the accept/reject method.
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4. Draw variance matrices Vβ and Vβ̃. Conditional on the parameters from the preceding

steps, each variance matrix follows an inverted Wishart distribution with inverse scale

matrix and degrees of freedom provided in Appendix A.

5. Form benefits {b1, ..., bN} as well as maximum search costs, {m̄1, ..., m̄N1} and minimum

search costs, {m1, ...,mN2
}. To form these values, we pose a counterfactual. For example,

consider an uninformed beneficiary with demographic variables z1. From the first 3 steps,

we have an estimate of max{ũ11, ..., ũ1J} and a draw of ∆. From z1 and ∆, we obtain

a draw of β with mean z
′
1∆. We then obtain draws of {u11, ..., u1J}, find the maximum

of such draws and take the difference from this maximum and max{ũ11, ..., ũ1J}. This

difference provides a draw of m1.

6. Draw search cost coefficients γ and γ̃. Given the minimum and maximum search costs,

this step is essentially a regression of maximum and minimum search costs on demographic

variables. Conditional on search costs, γ and γ̃ therefore follow a normal distribution with

mean and variance given in Appendix A.

7. Draw search cost variances σ2 and σ̃2. Analogous to Vβ and Vβ̃, search cost variances

follow an inverted gamma distribution conditional on previous parameter draws with

shape and scale provided in Appendix A.

In each step, we draw from distributions conditional on the previous coefficient draws. We adopt

the standard discrete choice framework and study utilities in relation to a base option available

to all beneficiaries. Since all beneficiaries have the option of FFS, we use basic Medicare

FFS as the default plan. This means that our plan characteristic variables, xj and x̃j , are

actually differenced by the level of each characteristic offered under the standard Medicare FFS.

Similarly, εij and ε̃ij represent differenced error terms. This normalizes the basic Medicare FFS

plan to zero utility and implies that all other latent utilities are relative to this base level.

We follow the steps above for 50,000 draws. For ∆, ∆̃, Vβ and Vβ̃, we drop the first

10,000 draws and take each 20th draw to form the posterior distributions. In this case, the

Geweke Separated Partial Means (GSPM)17 test yields p-values above 0.5 for most coefficients

and above 0.1 for all coefficients, suggesting our simulators successfully converged to their
17The GSPM test determines whether the mean from the first 10% of the MCMC draws is identical to the

mean of the final 50% of the draws. See Geweke (2005) for more detail. We also ran the model with 75,000 draws
with no noticeable change in the results.
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respective posterior distributions. Since draws of search cost coefficients depend strongly on

utility coefficients and variances, we drop an additional 10,000 draws for these coefficients. This

amounts to dropping the first 20,000 draws for γ, γ̃, σ2 and σ̃2. Similar convergence diagnostics

yield p-values above 0.3 for both informed and uninformed search cost coefficients.

7 Results

For all sets of coefficients, we follow Rossi, McCulloch, and Allenby (1996) and indicate the

probability of coefficients being the same sign as the posterior mean with a * for at least 80%

probability and ** with at least 90% probability. This gives us some feel for which coefficients

are sufficiently far from zero.

7.1 Utility Coefficients

Results for informed beneficiaries are in Table 5, and results for uninformed beneficiaries are in

Table 6.18 These tables present the posterior means for ∆ and ∆̃, respectively, with posterior

standard deviations in parentheses. As mentioned in Section 5.1, all demographic variables are

demeaned so that the constant term represents the average effect across all beneficiaries. Also

note that Inpatient Hospital Care (IHC), Skilled Nursing Facility (SNF) care and premium

are measured in $100s while doctor and specialist co-pay is measured in $10s. Therefore, for

informed beneficiaries, the constant for premium implies that the average informed beneficiary’s

expected utility decreases by 0.193 as the plan’s premium increases by $100, all else constant.

Similarly, expected utility for an average informed beneficiary decreases by 0.180 in response

to a $100 per day increase to stay in a Skilled Nursing Facility.

Tables 5 and 6 go here

The remaining coefficients represent interaction terms between beneficiary demographics

and plan characteristics. For instance, consider the coefficient for the plan characteristic titled

“Extra” and the demographic variable “# Chronic Diseases”. The posterior mean of 0.042

implies that beneficiaries with more chronic diseases place more value on health education and

acupuncture services than beneficiaries with fewer chronic diseases. Similarly, beneficiaries with
18For brevity, estimated covariance matrices for informed and uninformed beneficiaries are relegated to the

Appendix.
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better self-reported health status care more about such services than those reporting poor health

(recall larger values of this variable indicate poorer health).

From Table 6 we see that posterior means are generally further away from zero than for

informed beneficiaries with smaller relative variances. The constant term still represents the

average effect across uninformed beneficiaries. The most important difference is premium, on

which uninformed beneficiaries put far more weight than informed beneficiaries. This makes

sense as premium is one of the more easily observed plan characteristics. Therefore, uninformed

beneficiaries are much more attracted to lower premium plans. Specifically, a $100 increase in

premium or a $10 increase in co-pay decreases the expected utility of an average uninformed

beneficiary by 3.541 and 0.352, respectively. For the interaction terms, we see that uninformed

beneficiaries in good health tend to value prescription drug coverage more than beneficiaries

reporting poor health. Also note the large negative effect of co-pay for beneficiaries with

diabetes. This implies that uninformed beneficiaries with diabetes are more negatively affected

by a high doctor and specialist co-pay than those without diabetes, which is intuitively clear as

these beneficiaries are more likely to need such visits. As we discuss further in the next Section,

this effect for diabetes has important implications for search behavior.

7.2 Information Structure

We can now discuss search behavior and determinants of critical search costs, the main focus

of the paper. Posterior means of minimum search cost coefficients for uninformed beneficiaries

are included in Table 7. These minimum search costs represent the smallest possible search

cost a beneficiary could have had in order to still have made an uninformed decision. The

coefficients themselves represent marginal effects on these minima. Recall from our discussion

of Figure 1 that, for uninformed beneficiaries, a larger minimum search cost implies that this

beneficiary is more likely to have a search cost close to their minimum and vice versa for smaller

minimum search costs. Specifically, the positive coefficient for age means that being one year

older increases the expected minimum search cost by 0.005. Similarly, moving up one income

bracket increases the expected minimum search cost by 0.010. Self-reported health status and

race also have positive effects. Together, these results imply that older, higher income, African

American beneficiaries with poor self-reported health status are more likely to utilize easier

access to information.
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Table 7 goes here

Conversely, employed beneficiaries with diabetes and extra assistance are less likely to utilize

improved access to information. For employed beneficiaries, this is intuitively clear as they may

have some non-medicare coverage through their employer. This also makes sense for those with

extra household assistance and diabetes as these beneficiaries are more likely to have someone

making their decision for them and therefore much less likely to search. Recall that this analysis

is conditional on being uninformed. Therefore, this does not imply that someone with diabetes

benefits less from search—only someone with diabetes who was observed to make an uninformed

decision.

Although our policy discussion pertains mainly to uninformed beneficiaries, we include

results for informed beneficiaries in Table 8. In this case, coefficients represent marginal effects

for maximum search costs—the largest possible search cost a person could have had in order

to still make an informed decision. Our interpretation in this case is slightly different. Here,

a lower maximum search cost implies that these beneficiaries must have relatively low search

costs in order to have made an informed decision. This also implies that such beneficiaries

were closer to making an uninformed decision. Therefore, since the posterior mean for diabetes

is negative and sufficiently far from zero, informed beneficiaries with diabetes are more likely

closer to making an uninformed decision than those without diabetes. A similar interpretation

holds for informed beneficiaries with more chronic diseases. This is somewhat surprising as we

might initially expect diabetics to have a very large benefit to search. Intuitively, however, this

result derives primarily from taste differences among diabetics, where we see from Table 6 that

uninformed beneficiaries with diabetes place substantial weight on co-pay and prescription drug

coverage. Therefore, utility differences between informed and uninformed are smaller for those

with diabetes as opposed to, for instance, someone with a strong education. In this case, our

assumption that uninformed beneficiaries still observe co-pay is important. If we eliminated

co-pay from the uninformed beneficiaries’ information sets, the benefit to search for diabetics

would be substantially higher.

Table 8 goes here

As mentioned previously, the policy implication for our model is that older, higher income,

African American beneficiaries with lower self-reported health status need less help to go from
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uninformed to informed. Note that this interpretation holds for uninformed beneficiaries and is

therefore conditional on the information structure. This does not mean that such a beneficiary

is more or less likely to be informed. It means that, conditional on being uninformed, these

types of beneficiaries need less of a push in order to make an informed decision. This has

important policy implications if we imagine wanting to target beneficiaries most likely to use

new information. This result could not be attained, for instance, with a standard reduced-form

probit model using informed or uninformed as the dependent variable.19 Such a model would

only determine which types of beneficiaries are more likely to be informed or uninformed—not

who is closer to being informed conditional on being uninformed.

8 Conclusion

This paper introduces consumer search into a discrete choice model while accounting for horizon-

tal taste differentiation across plans. A major underlying premise is that information structures

are due both to general demographic characteristics as well as taste differences. We estimate a

RCMNP model where beneficiaries are either informed or uninformed and have different deci-

sion processes accordingly. Using these utility coefficients, we model a consumer search process

and estimate critical search cost coefficients.

Our analysis provides two main contributions, one of which is more econometric and the

last more policy oriented. One, due to strong differences across coefficients, there is evidence

that information heterogeneities are an important determinant of plan choice. Ignoring such

heterogeneities may have important implications. Two, we address these informational hetero-

geneities with a consumer search model while still accounting for horizontal taste differentiation.

This assumes that all beneficiaries are capable of understanding the health plans available to

them, but it may be overly costly for some of them to do so. This allows us to study how close

beneficiaries must have been to making an informed or uninformed decision. For example, our

search cost coefficients imply that higher income beneficiaries are most likely closer to their

threshold search cost values than lower income beneficiaries, while beneficiaries with more as-

sistance are more likely to have search costs well away from the cutoff. This implies that high

income, older beneficiaries with little household assistance will benefit more from easier access

to information than younger, low income beneficiaries with more assistance.
19For completeness, results for such a model, as well as for a standard count model using the level of information

as the dependent variable, are included in Table 9 in the Appendix.
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A Gibbs Sampler Algorithm

Denote by N(t, µ, σ2) a normal distribution truncated below by t and by N(t, µ, σ2) a normal distribution

truncated above by t. We consider the following conjugate (and diffuse) priors:

∆ ∼ N(0, V∆) ∆̃ ∼ N(0, V∆̃)

V −1
β ∼W (µVβ

, IK1) V −1

β̃
∼W (µ̃Vβ̃

, IK2)

γ ∼ N(µγ , Vγ) γ̃ ∼ N(µγ̃ , Vγ̃)

σ2 ∼ IG(a, b) σ̃2 ∼ IG(ã, b̃)

Given these priors, we sample from the conditional distributions as follows:

1. Draw latent utilities:

ũij |x̃j , (yi = j), (φ = 0), β̃i ∼ N
(

max
l 6=j
{ũil}, x̃j β̃i, 1

)
∀(i, j)

ũik|x̃k, (yi = j), (φ = 0), β̃i ∼ N
(
ũij , x̃kβ̃i, 1

)
∀(i, k 6= j)

uij |xj , (yi = j), (φ = 1), βi ∼ N (maxl 6=j{uil}, xjβi, 1)∀(i, j)

uik|xk, (yi = j), (φ = 1), βi ∼ N (uij , xkβi, 1)∀(i, k 6= j)

2. Draw random utility coefficients:

β̃i|ũi, X̃ ∼ N
(

(X̃′X̃ + V −1

β̃
)−1(X̃′ũi + zi∆̃V −1

β̃
), (X̃′X̃ + V −1

β̃
)−1
)

βi|ui,X ∼ N
(

(X′X + V −1
β )−1(X′ui + zi∆V −1

β ), (X′X + V −1
β )−1

)

3. Draw common coefficients:

∆̃|β̄ =
(
β̃1, ..., β̃N2

)′
,Z =

(
(IK2 ⊗ z′1), ..., (IK2 ⊗ z′N2

)
)′

∼ N
(

(Z′(IN2 ⊗ V −1

β̃
)Z + (IK2 ⊗ V −1

∆̃
)−1(Z′(IN2 ⊗ V −1

β̃
)β̄), (Z′(IN2 ⊗ V −1

β̃
)Z + (IK2 ⊗ V −1

∆̃
)−1
)

∆|β̄ = (β1, ..., βN1)′ ,Z =
(
(IK1 ⊗ z′1), ..., (IK1 ⊗ z′N1

)
)′

∼ N
(

(Z′(IN1 ⊗ V −1
β )Z + (IK1 ⊗ V −1

∆ )−1(Z′(IN1 ⊗ V −1
β )β̄), (Z′(IN1 ⊗ V −1

β )Z + (IK1 ⊗ V −1
∆ )−1

)
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4. Draw variance matrices:

V −1

β̃
|β̃i, zi, ∆̃ ∼W

µVβ̃
+N2,

(
IK2 +

N2∑
i=1

(
β̃i − z′i∆̃

)(
β̃i − z′i∆̃

)′)−1


V −1
β |βi, zi,∆ ∼W

µVβ
+N1,

(
IK1 +

N1∑
i=1

(βi − z′i∆) (βi − z′i∆)′
)−1


Given ∆̃, V −1

β̃
, Ũ,∆, V −1

β ,U, we can then estimate minimum and maximum search costs.

1. Form counter-factual utility values (i.e., if beneficiary i was informed, we estimate utility values

if beneficiary i would have been uninformed, and vice versa):

β̃i ∼ N
(
zi∆̃, Vβ̃

)
ũij ∼ N

(
x̃j β̃i, 1

)
βi ∼ N (zi∆, Vβ)

uij ∼ N (xjβi, 1)

2. Estimate benefit to search as well as minimum and maximum search costs:

bi = max{ui1, ..., uiJ} −max{ũi1, ..., ũiJ}

m̄i|γ,wi ∼ N
(
wiγ, σ

2
)

bi = max{ui1, ..., uiJ} −max{ũi1, ..., ũiJ}

mi|γ̃,wi ∼ N
(
wiγ̃, σ̃

2
)
.

3. Draw search cost coefficients:

γ|W,∼ N
(
(W′W/σ2 + V −1

γ )−1(W′m̄/σ2 + V −1
γ µγ), (W′W/σ2 + V −1

γ )−1
)

γ̃|W,∼ N
(

(W′W/σ̃2 + V −1
γ̃ )−1(W′m/σ̃2 + V −1

γ̃ µγ̃), (W′W/σ̃2 + V −1
γ̃ )−1

)

4. Draw search cost variances:

σ2|m̄,W, γ ∼ IG
(
N1/2 + a,

[
b−1 + (1/2)(m̄−Wγ)

′
(m̄−Wγ)

]−1
)

σ̃2|m,W, γ̃ ∼ IG
(
N2/2 + ã,

[
b̃−1 + (1/2)(m−Wγ̃)

′
(m−Wγ̃)

]−1
)
.
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B Simulation Results

To test our estimation procedure, we simulate a simple model with N = 2000 (1000 informed and 1000

uninformed) beneficiaries choosing among J = 5 plans, where beneficiaries have random coefficients

discussed in the model description. The data generating process is as follows.

• Plan characteristics for informed buyers

– Disease 1 Coverage: Binomial with P (X = 0) = 0.2, P (X = 1) = 0.6 and P (X = 2) = 0.2

– Disease 2 Coverage: Bernoulli with P (X = 0) = 0.5)

– (-) Premium: −expN(0, 1)

• Plan characteristics for uninformed buyers

– Disease 2 Coverage: Bernoulli with P (X = 0) = 0.5)

– (-) Premium: −expN(0, 1)

• Demographics for both informed and uninformed

– Log of income: ln(40000) + ln(3000)
1.96 N(0, 1)

– Disease 1 indicator: Bernoulli with P (X = 0) = 0.6

– Disease 2 indicator: Bernoulli with P (X = 0) = 0.5

• Outside good for both informed and uninformed

– Disease 1 Coverage: 1

– Disease 2 Coverage: 0

– Premium: $0

Our simulated data assume that the variance matrices of random coefficients for informed and

uninformed beneficiaries are .1× I3 and .1× I2, respectively, and the common utility coefficients are

Plan Characteristics

Demographics Disease 1 Coverage Disease 2 Coverage (-) Premium

Constant 1 -1 2

Log of Income (demeaned) 0 0 -0.1

Disease 1 (demeaned) 0.5 0 0

Disease 2 (demeaned) 0 0.5 0

for informed beneficiaries and
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Plan Characteristics

Demographics Disease 2 Coverage (-) Premium

Constant 1 2

Log of Income (demeaned) 0 0.2

Disease 1 (demeaned) 0.2 0

Disease 2 (demeaned) 0 -0.2

for uninformed beneficiaries.

C Reduced Form Information Structure

As an initial assessment of beneficiary information structure, we consider a standard Poisson count model

with the level of information as the dependent variable and age, health status, income, education and

other demographics as the independent variables. Results are included in Table 9. A common problem

with the Poisson model, however, is that it underfits dispersion in the dependent variable. To account

for this, we run a Negative Binomial model, also included in Table 9. Although coefficients essentially do

not change, a likelihood-ratio test for α = 0 concludes that there is significant evidence of overdispersion,

suggesting a preference for the Negative Binomial model.

Table 9 goes here

The interpretations essentially do not change across the two models. We see that age is positively

related to gaining information, age (in tens of years) squared is negatively related, and that education and

the number of chronic diseases are positively related. More specifically, we see from the factor changes

that becoming one year older increases the expected number of information resources used by a factor of

about 1.2. Similarly, increasing education by one level (e.g., going from some college to gaining a college

degree) or having one more chronic disease increases the expected number of information resources used

by a factor of 1.07 and 1.11, respectively.

As a robustness check, we also form an indicator variable for whether the beneficiary is informed

or not, as per our definition of informed in Section 4. We do this because our consumer search process

similarly splits buyers into two groups, and we want to ensure that imposing this type of cutoff does

not drive our results. From the probit model, also included in Table 9, we see that for sign and signifi-

cance, most coefficients do not change. We conclude that any major differences between our search cost

coefficients and the probit or count model coefficients are probably not attributed to our assignment of

beneficiaries into one of only two groups.
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D Variance-covariance Matrices for Utility Coefficients

Tables 10 and 11 go here
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Figure 1: Predicted Minimum Search Costs for Uninformed Beneficiariesa

ma mb

0

f(s)

Search Costs
aThis depicts the movement of a predicted minimum search cost from ma to mb and represents the effect of

variables with positive search cost coefficients on the minimum search cost of a given beneficiary. The interpre-
tation is that beneficiary b is more likely closer to their minimum search cost than beneficiary a, and therefore,
beneficiary b needs less “push” (probabilistically) to make an informed decision.
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Table 1: Definitions and Summary Statistics for Plan Characteristic Variables

Variable Name Definition Measurement Mean Std Min Max

Premium Monthly premium (in
addition to Part B
premium)

Dollars $45.86 $43.76 $0 $304

Inpatient
Hospital Care

Average
out-of-pocket cost for
90 day stay in
hospital

Dollars $19.71 $60.81 $0 $295

Skilled Nursing
Facility

Average
out-of-pocket cost for
20 day stay in
skilled nursing facility

Dollars $9.27 $28.44 $0 $175

Co-pay Average doctor or
specialist co-payment

Dollars $12.94 $6.83 $0 $80

Variable Name Definition Measurement Percentage Mean

0 for no extra coverage 35.84 1.11
1 for some coverage 26.77
2 for one free service 28.10

Hearing Services Hearing services
covered (in addition
to basic Medicare
coverage) 3 for tests and hearing aids

free
9.29

0 for neither 21.90 0.80
1 for education/acupuncture 75.88

Extra Health education and
acupuncture coverage

2 for both 2.21

0 for no coverage 0.22 1.94
1 for some co-payment 5.53

Home Health Coverage for home
health care visits

2 for free home health visits 94.25

0 for no coverage 33.85 1.09
1 for generic coverage 23.67

Prescription
Drug Coverage

Total drug coverage

2 for generic and brand name
coverage

42.48

0 for no coverage 74.56 0.65
1 for some coverage 8.63
2 for one service free 5.31
3 for two services free 3.98
4 for three services free 4.20

Dental Dental services covered

5 for four services free 3.32

0 for no coverage 17.04 1.42
1 for some coverage 40.49
2 for up to two services free 25.66

Vision Vision services
covered (in addition
to basic Medicare
coverage) 3 for more than two services

free
16.81

0 for no coverage 2.88 1.36
1 for some co-payment 57.96

Physical Exam Routine physical
exam coverage

2 for no co-payment 39.16

N = 452

30



Table 2: Definitions and Summary Statistics for Demographic Variables

Variable Name Measurement Mean Std

Age Years of age 76.30 7.30

GHPs available Total number of group health plans
available in beneficiary’s area

4.23 3.16

Risk plans available Total number of risk plans available
in beneficiary’s area

3.40 2.93

Number of helpers Total number of people reported to
have helped beneficiary in some way

0.63 0.77

Variable Name Measurement Percentage Mean

Income 1 for $5,000 or less 3.58 4.87
2 for $5,001 to $10,000 13.03
3 for $10,001 to $15,000 23.32
4 for $15,001 to $20,000 16.11
5 for $20,001 to $25,000 11.91
6 for $25,001 to $30,000 8.95
7 for $30,001 to $35,000 5.15
8 for $35,001 to $40,000 5.15
9 for $40,001 to $45,000 2.78
10 for $45,001 to $50,000 2.82
11 for $50,001 or more 7.21

Education 1 for no school 1.70 4.41
2 for no more than 8th grade 15.44
3 for some high school without diploma 17.82
4 for high school diploma 29.14
5 for technical or vocational school 6.27
6 for some college without degree 15.53
7 for associate’s degree 3.04
8 for bachelor’s degree 6.54
9 for post-graduate degree 4.52

General health status 1 for excellent 18.17 2.63
2 for very good 28.16
3 for good 31.78
4 for fair 15.98
5 for poor 5.91

0 51.12 0.67
1 33.93
2 11.91
3 2.60

Number of Chronic
Diseases

4 0.45

Diabetes 0 for no problems 81.42 0.19
1 for some problems 18.58

Employed 0 for no 88.36 0.12
1 for yes 11.64

Smoke 0 for never 36.97 0.63
1 for sometimes 63.03

Gender 0 for female 53.13 0.47
1 for male 46.87

White 0 for no 17.41 0.83
1 for yes 82.59

Black 0 for no 88.94 0.11
1 for yes 11.06

Other Race 0 if white or black 93.64 0.06
1 if neither white or black 6.36

N = 2, 234
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Table 3: Definitions and Means of Self-reported Beneficiary Information Vari-
ables

Variable Name Measurement Mean
Switch plans this year 0 if no 0.02

1 if yes
Very easy to understand Medicare 0 if no 0.19

1 if yes
Easy to understand Medicare 0 if no 0.42

1 if yes
Hard to understand Medicare 0 if no 0.21

1 if yes
Very hard to understand Medicare 0 if no 0.07

1 if yes
Informed of payment info 0 if no 0.06

1 if yes
Informed of benefit info 0 if no 0.05

1 if yes
Informed of Medicare coverage info 0 if no 0.07

1 if yes
Informed of HMO info 0 if no 0.04

1 if yes
Read “Medicare and You” book 0 if no 0.43

1 if yes
Looked at quality ratings 0 if no 0.07

1 if yes
Looked at plan info chart 0 if no 0.13

1 if yes
Called Medicare hotline 0 if no 0.13

1 if yes
Visited Medicare websitea 0 if no 0.03

1 if yes

aOnly pertains to those who own a computer with internet access
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Table 4: Tabulation of Beneficiaries’ Information Levels

Level of Informationa Frequency Percentage
0 1,007 45.08
1 600 26.86
2 300 13.43
3 185 8.28
4 92 4.12
5 28 1.25
6 15 0.67
7 6 0.27
8 1 0.04

N = 2, 234

aDetermined by the sum of 11 indicators: (1) whether the beneficiary switched plans within the past year,
(2-4) whether they are informed of Medicare payment, benefit or coverage information, (5) whether they are
informed of HMO information, (6) whether they read the “Medicare and You” booklet, (7-8) whether they
looked at quality ratings or the plan information chart, (9) whether they called the Medicare hotline, (10)
whether they visited the Medicare website (provided they have internet access), and (11) whether they have
someone assisting them in their Medicare decisions. Anyone with 1 or less such attempt to find information is
assumed to be uninformed.
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Table 6: Utility Coefficients for Uninformed Beneficiariesa

Posterior Meansb

Demographic
variablesc

Premium Co-pay Pres. Drug

Constant −3.541∗∗ −0.352∗∗ 0.312∗∗

(0.370) (0.163) (0.171)
Age −0.030∗∗ −0.013∗∗ 0.010∗∗

(0.012) (0.007) (0.007)
Education −0.079∗ −0.010 0.014

(0.079) (0.042) (0.044)
Income 0.149∗∗ −0.041∗∗ 0.012

(0.055) (0.032) (0.033)
Health Status 0.241∗∗ 0.204∗∗ −0.140∗∗

(0.123) (0.069) (0.074)
Smoke −0.372∗ -0.022 0.104

(0.289) (0.159) (0.170)
Diabetes −0.199 −0.361∗∗ 0.241∗

(0.313) (0.181) (0.197)
Male 0.385∗∗ 0.289∗∗ −0.463∗∗

(0.291) (0.158) (0.180)
# Chronic Diseases −0.301∗∗ −0.153∗∗ 0.071

(0.195) (0.107) (0.105)

aUninformed beneficiaries are the 1,607 beneficiaries that tried in no more than 1 way to gain information.
bStandard deviations are in parenthesis. A * or ** indicate at least 80% or 90% of draws are of the same

sign as the posterior mean. All values represent marginal effects on utility for uninformed beneficiaries–for the
constant, these are average marginal effects across all demographic variables.

cAll demographic variables are demeaned in order to simplify interpretation.
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Table 7: Critical Search Cost Coefficients for Uninformed Beneficiariesa

Posterior Meansb

Constant 0.001∗∗

(0.001)
Age 0.005∗∗

(0.004)
Education 0.007

(0.012)
Income 0.010∗∗

(0.009)
Health Status 0.016∗

(0.021)
Smoke 0.012

(0.048)
Diabetes −0.040∗

(0.053)
Helpers −0.046∗∗

(0.024)
Male −0.028

(0.046)
White −0.021

(0.058)
Black 0.143∗∗

(0.077)
Job −0.043∗

(0.051)
# Chronic Diseases −0.009

(0.025)
Age2 −0.001

(0.004)

aUninformed beneficiaries are the 1,607 beneficiaries that tried in no more than 1 way to gain information.
The critical search cost represents the smallest possible search cost a person could have had in order to still make
an uninformed decision. The coefficients presented represent marginal effects of these critical search costs.

bStandard deviations are in parenthesis. A * or ** indicate at least 80% or 90% of draws are of the same
sign as the posterior mean.
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Table 8: Critical Search Cost Coefficients for Informed Beneficiariesa

Posterior Meansb

Constant −0.000
(0.001)

Age 0.001
(0.005)

Education −0.003
(0.011)

Income 0.006
(0.008)

Health Status 0.006
(0.019)

Smoke 0.001
(0.044)

Diabetes −0.061∗∗

(0.045)
Helpers −0.008

(0.025)
Male −0.025

(0.046)
White −0.011

(0.095)
Black −0.068

(0.105)
Job 0.038

(0.060)
# Chronic Diseases −0.021∗

(0.024)
Age2 0.001

(0.005)

aInformed beneficiaries are the 627 beneficiaries that tried in more than 1 way to gain information. The
critical search cost represents the largest possible search cost a person could have had in order to still make an
informed decision. The coefficients presented represent marginal effects of these maximum search costs.

bStandard deviations are in parenthesis. A * or ** indicate at least 80% or 90% of draws are of the same
sign as the posterior mean.
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Table 9: Poisson, Negative Binomial and Probit Regression Results

Poissona Negative Binomiala Probitab

Coefficient Factor Change Coefficient Factor Change Coefficient Marginal Effectc

Age 0.170∗∗∗ 1.185 0.141∗ 1.151 0.122∗ 0.048
(0.062) (0.075) (0.069)

Health Status −0.023 0.976 −0.029 0.972 −0.055∗∗ −0.022
(0.021) (0.027) (0.027)

Male −0.095∗∗ 0.909 −0.099∗ 0.906 −0.021 −0.008
(0.045) (0.058) (0.059)

White 0.246∗∗ 1.279 0.231∗ 1.260 0.177 0.070
(0.097) (0.119) (0.112)

Black 0.002 1.002 −0.007 0.993 0.057 0.023
(0.117) (0.143) (0.134)

Education 0.067∗∗∗ 1.069 0.067∗∗∗ 1.069 0.066∗∗∗ 0.026
(0.011) (0.015) (0.015)

Income 0.005 1.005 0.008 1.009 0.014 0.005
(0.008) (0.011) (0.011)

# Chronic Diseases 0.100∗∗∗ 1.105 0.100∗∗∗ 1.106 0.091∗∗∗ 0.036
(0.025) (0.033) (0.035)

Employed −0.113∗ 0.892 −0.107 0.899 −0.099 −0.039
(0.066) (0.084) (0.089)

Smoke 0.039 1.040 0.043 1.044 0.094 0.037
(0.046) (0.059) (0.060)

# of Helpers −0.010 0.990 −0.010 0.990 −0.012 −0.005
(0.031) (0.039) (0.040)

Diabetes 0.023 0.977 0.025 0.975 0.021 0.008
(0.054) (0.069) (0.071)

Age2 −0.123∗∗∗ 0.884 −.105∗∗ 0.901 −0.089∗∗ −0.035
(0.040) (0.048) (0.044)

Constant 1.262 1.300 −4.385
(0.288) (0.369) (2.715)

α 0.568
-Log Likelihood 3267.79 3145.85 1491.25
Pseudo R2 0.026 0.016 0.030
N 2234 2234 2234

aResults are from a count model with the number of attempted ways to find information as the dependent
variable. Standard errors are in parenthesis. 90%, 95%, and 99% levels of significance are indicated by *, **,
and ***, respectively.

bResults are from a zero/one dependent variable equal to one if beneficiary engaged in 2 or more activities
to gain information and zero otherwise.

cMarginal effects calculated at mean values. For dummy variables, marginal effects represent changes from
0 to 1.
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Table 11: Covariance Matrix for Uninformed Utility Coefficientsa

Posterior Meansb

Premium Co-pay Pres. Drug
Premium 3.102∗∗

(2.238)
Co-pay −0.274 2.197∗∗

(1.703) (2.925)
Pres. Drug −1.320∗∗ −1.709∗∗ 2.763∗∗

(2.250) (3.031) (2.961)

aUninformed beneficiaries are the 1,607 beneficiaries that tried in no more than 1 way to gain information.
bStandard deviations are in parenthesis. A * or ** indicate at least 80% or 90% of draws are of the same

sign as the posterior mean.
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