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ABSTRACT 

This study examined six large-scale watersheds divided into three pairs (mined and unmined), 

leveraging streamflow and mining permit datasets from the U.S. Geological Survey (USGS) and 

West Virginia Department of Environmental Protection (WVDEP), to develop a novel high-

resolution time series of five decades of surface mining and valley fill activity for each 

watershed. Streamflow metrics were evaluated for trends and any correlation with mining permit 

history. Both mined and unmined watersheds experienced little or no change in annual flow. 

Mined watersheds exhibited significant decreasing trends in maximum flow and significant 

increasing trends in minimum flow, and these metrics were significantly correlated with mining 

permit history. No effect of mining cover on runoff ratio (Q/P) was found for any watershed. 

Future work should differentiate mining from other land-use/land-change disturbances in each 

watershed and expand on the mining permit histories developed in this study. 
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1 INTRODUCTION  

1.1 Surface mining and valley fill  

Surface mining (SFM) and valley fill (VF) are dramatic and complex drivers of environmental 

change, creating a cascade of disturbances at every spatial and temporal level, from the 

headwaters to beyond the watershed outlet, impacting flora, fauna and human communities. SFM 

is a form of mountaintop mining that involves the removal of forest cover, soil, and bedrock to 

access underlying coal seams in mountainous landscapes. SFM creates excess soil and rock, or 

overburden, which is typically either backfilled into the mined-out area to create an approximate 

original contour (AOC) or placed in adjacent valleys or hollows as VF, thus burying headwater 

streams (G.A.O, 2010).  

The full impact of surface mining on hydrology has yet to be understood. SFM/VF 

practices lead to multiple levels of environmental disturbance including the fragmentation of 

forest, a loss of biodiversity, and harm to biotic communities downstream (Holzman, 2011; 

Wickham et al., 2013). Additionally, post-reclamation mined sites may not resemble reference 

sites even decades later, and short-term reclamation efforts may negatively impact long-term 

recovery (Holl, 2002). For these reasons, long term and large-scale SFM and VF research remain 

needed in the Appalachian region of the United States (Palmer et al., 2010).  

SFM/VF has an enormous spatial extent across the Appalachians, giving greater 

importance to large-scale studies. As early as 2001 conservative estimates of mine impacted land 

for West Virginia stood at 244,000 acres and eight years later this increased to 352,000 acres 

(E.P.A, 2003; Yuill, 2003; Geredien, 2009). According to the West Virginia Department of 

Environmental Protection (WVDEP) as of 2017, around 500,000 acres across West Virginia had 

been permitted for surface mining, not counting valley fill permits or any permit overlap. More 
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than 100,000 acres of watershed area were approved for valley fill between 1985 and 2001 in 

West Virginia with a projected loss of 30.72 square kilometers of riparian habitat from mining 

activities (E.P.A, 2011). Mining permitted landscapes can undergo “on-off-on” use, having 

periods of no activity. The rising popularity of fracking in the United States has also played a 

part in the inconsistent usage of SFM/VF for coal mining in West Virginia (Frondel et al., 2019). 

SFM/VF is known to impact hydrologic response in multiple ways. Both valley fill and 

mined sites increase the impermeability of the watershed through compaction, slowing 

infiltration and creating more overland flow (Chong et al., 1997). Valley fill also leads to voids 

beneath the surface of the fill, creating storage spaces that are slow to release flow, and increase 

risk of flooding (Wunsch et al., 1999). This sluggish release of flow from the voids in valley fill 

leads to increased baseflow (Nippgen et al., 2017). Valley fill has also been suggested as playing 

a role in the presence of significantly decreased maximum flow (Messinger et al., 2003; Zégre et 

al., 2014). While SFM/VF has not been found to impact annual flow, mined sites have been 

shown to experience high levels of peak flow during storm events, which may be attributed to 

preferential flow paths within valley fill (Messinger, 2003; Negley et al., 2006; Ferrari et al., 

2009; Evans et al., 2015).  

The purpose of this study was to explore the impact of SFM/VF on streamflow at large 

spatial scales. Therefore, this study examined six large-scale watersheds divided into three pairs 

of watersheds (mined and unmined). To seek out a high-resolution method of characterizing 

mining at the large-scale, mining datasets from the WVDEP were leveraged to develop a novel 

high-resolution time series of five decades of SFM/VF. Five decades of streamflow acquired 

from the United States Geological Survey (USGS) were evaluated for any significant trends over 

time, and any significant correlation with mining permit data. This study found significant 
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correlation between SFM/VF permit history and both reduction in maximum annual flow as well 

as increasing annual minimum flow. Results of this study suggest valley fill impacted headwaters 

begin altering downstream flow regimes upon approaching as little as 1% SFM/VF mining. 

1.2 Long-term hydrological impacts of land use conversion 

Multi-decadal hydrologic flow data is necessary for any examination of disturbance thresholds 

that can support accurately forecasting watershed behaviors. Forecasting watershed behavior is 

important for the management of mined lands, improving upon our uncertain understanding of 

threshold behavior in watersheds, and insight into long-term hydrologic response to mining. 

Additionally, understanding how a watershed responds to change in the long-term is important 

for management of mined lands at each stage, from pre-mining, during the mining process, to 

management of the post-mining condition (Botter, 2014). Research evaluating hydrologic flow 

response typically focuses on event (peak) flow rather than long-term response. The study of a 

mined landscape response to stormflow events is important for management of the mined lands; 

however, evaluating the multidecadal response of mined lands is equally important for long-term 

management (Messinger, 2003; Wiley et al., 2003; Du et al., 2012; Hopkinson et al., 2016).  

Post-mining reclamation processes are inadequate. One reason for the inadequacy of 

current reclamation processes is that reclaimed sites are no longer able to behave as a mature 

landscape, but a young one. The use of long-term hydrologic flow data furthers understanding of 

how to better mimic more mature landscapes. Improving the ability to mimic mature landscapes 

in reclaimed sites will reduce negative impact on watershed flow response to mining disturbance 

in both the short and long term (Eckels et al., 2010; DePriest et al., 2015). Beyond the need for 

mimicking mature landscapes, current reclamation practices do not appear to restore mined sites 

in any meaningful sense. Alongside the challenge of a newly immature landscape, reclamation 
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practices do not bring mined land to a pre-mined state but rather to what approaches an 

urbanized state (Bonta et al., 1997; Ferrari et al., 2009). Urbanized behavior in reclaimed 

watersheds, along with a lack of economic development, adds importance to defining the “end-

point” for post-mined land in a reclamation sense, of which the end point is generally a 

“replacement ecosystem” (Geredien, 2009; Lima et al., 2016). Mining regulations rely on 

mitigation post-mining rather than putting plans into place at the time a permit is granted (Allen, 

2014). The reliance of mining regulations on short term mitigation in mining disturbed sites is 

insufficient, as post-restoration vegetation can substantially differ from the pre-mined state for 

several decades (Holl, 2002).  

  Studies that use multi-decadal hydrologic flow data are important for the management of 

mined lands, improving on the reclamation process, and providing insight into long-term 

hydrologic response to mining. Thresholds for watershed response to mining remain unclear. 

Thresholds have been studied for the long-term impact of forest reduction on hydrology and 

biota downstream but there are no known comprehensive studies for thresholds of mining impact 

on streamflow response (Zégre et al., 2014). Studies of thresholds for mining impact on streams 

are generally conflicted and have focused mainly on changes in water quality rather than overall 

streamflow behavior (Hartman et al., 2005; Petty et al., 2010; Merriam, 2015). A range of 10% 

to 30% disturbance of total watershed area by mining appears to be a threshold for biological 

impairment of streams, while as little as 1 to 5% mining activity has been found to begin 

negatively impacting local ecology (Petty et al., 2010; Merriam et al., 2011). Bernhardt et al. 

(2012) found catchments expressed biological impairment when more than 2.2% of a 

catchment’s surface area had undergone surface mining. A minimum of 20% deforestation has 

been suggested to detect measurable increases in annual streamflow (Bosch et al., 1982). In a 
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study of catchments that were deforested and converted to pasture in Australia, New Zealand, 

and South Africa, Brown et al. (2013) found that catchments needed between 8 and 25 years to 

reach a new equilibrium after loss of forest cover. 

1.3 Inconsistent quality of available SFM/VF data 

A fully comprehensive mining dataset is indispensable to assessing the relationship between 

long-term hydrologic metrics and mining disturbance. While all-inclusive mining data is 

essential for developing insights into the connections between mining and watershed response, 

there are no known comprehensive mining datasets available for the southern Appalachian 

coalfields (Wu et al., 2017). A full data-driven story of the region requires cross-referencing 

several patchwork datasets to create a single comprehensive whole (Geredien, 2009; Soulard et 

al., 2016). Identifying the full extent of mining disturbance is typically accomplished through 

analysis of single ‘snapshots’ of remote sensing imagery such as Landsat 5 TM imagery (USGS) 

that occur close to a specific time-slice and using leaf-off for better resolution of the hillshape 

(Lechner et al., 2016). Satellite images are typically chosen to reflect a moment in time every 

three or five years or even once a decade with varying time gaps between images (Zégre et al., 

2013; Hendrychová et al., 2016). Number of years between satellite images used for analysis and 

degree of variation in years between images generally speak to the overall quality of the 

available data (Townsend et al., 2009; Ross et al., 2016). Analysis of remote sensing imagery 

with an often-variable period of years between images is a commonplace style of mining 

characterization, but mining is a process that is in flux and can be discontinuous for an area. 

Lacking high resolution mining data that would allow studies to accurately track the dynamic 

landscape changes within a mining site leaves open the possibility of making incorrect 

assumptions regarding landscape changes over time. 
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Characterization of mining disturbance may also vary depending on the study. A study 

may not consider underground mining or may differentiate between reclaimed and active mining. 

Another study may use ‘total mining disturbance’ or annual mine production values (Zégre et al., 

2013; Zégre et al., 2014; Ross et al., 2016). Mining permit data may be used to correlate with 

classification of remote sensing data. There can be disadvantages to correlating mining permit 

data with remote sensing data such as computational requirements and increasing complexity 

when leveraging data (Redondo-Vega et al., 2017). 

1.4 Large-scale watersheds 

The impact of surface mining and valley fill goes beyond the changes in topography, requiring 

examination at larger scales (1 km2 - 10,000 km2). More than 6,400 square kilometers of 

overburden, what makes up valley fill, have been conservatively estimated across 11,500 square 

kilometers of southern West Virginia, which is a volume that has been compared to the 1991 

Mount Pinatubo eruption in equivalent volume of displaced material (Umbal et al., 1996; Ross et 

al., 2016). The ability to comprehensively scale watershed modeling upwards to the large-scale 

has been studied extensively for decades and remains not yet fully realized (Beven, 2006). 

Large-scale studies are difficult to pursue due to the increasing complexity of variables and 

mechanisms involved in the watershed at increasing scale (Blöschl et al., 1995). Studying the 

mechanisms of watershed behavior at the microscale is the easiest path for research due to the 

cost and labor prohibitive nature of large-scale studies. Microscale studies are informative for 

studying small-scale interactions with land use change (Hewlett et al., 1967; Alvarenga et al., 

2016). Small catchments are likely to have a more variable hydrologic response than larger 
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catchments to any changes in dynamical systems, which adds value to scaling our understanding 

to larger watersheds (Pilgrim et al., 1982). 

1.5 Paired-catchment studies 

Pairing watersheds and streams to have a reference watershed is a common practice when 

studying catchment response to mining. Paired-catchment studies are useful for evaluating 

watershed response to land use/land change and provide a control sample of undisturbed 

watershed behavior. Similar characteristics such as size and physical features are essential when 

using a paired catchment method (Collier et al., 1964; Hibbert, 1967; Minear et al., 1976; Negley 

et al., 2006). One challenge when studying watersheds at a large-scale (1 km2 - 10,000 km2) and 

using a paired catchment method is that a reference watershed may possess trellis drainage 

patterns while mined watersheds in the Appalachians typically have dendritic drainage patterns 

(Wiley et al., 2013). Because of the potential value of using a reference watershed, any drainage 

pattern differences must be considered during any analysis involving hydrologic flow. 

1.6 Research questions and objectives 

As has been noted, multiple research gaps exist in understanding the relationship between 

SFM/VF and hydrologic flow response within Appalachian watersheds. The impact of surface 

mining processes is extensive and complex, both within and beyond the watershed. Additionally, 

mitigation responses to surface mining have been inadequate, and scaling watershed studies up to 

large-scale watersheds remains a task made difficult by the nature of watershed systems.  

The goal of this study was to evaluate for any long-term trends in hydrologic response 

within large-scale watersheds and evaluate for any significant correlation between hydrologic 

response and mining permit data. In order to meet the previously stated goal, this study evaluated 

three pairs of mined and unmined watersheds using a novel method of mining permit history 
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characterization to assess for any statistically significant trends within long-term hydrologic 

metrics and any significant correlation between hydrologic metrics and corresponding watershed 

mining permit history. Watersheds located within West Virginia, a state in north-eastern United 

States, were chosen due to the extensive surface mining activity across the southern region of the 

state. 

To answer major research gaps noted in previous sections, the overarching research 

question was as follows: What is the impact of SFM/VF on both large-scale watersheds and 

long-term hydrologic flow? Building from this question, four research objectives were 

undertaken: (1) Build comprehensive mining permit datasets for three sets of paired watersheds, 

(2) Evaluate long-term hydrologic metrics, (3) Identify significant trends within each flow 

metric, and (4) Identify significant correlations between flow metrics and mining permit history. 
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2 STUDY REGIONS 

This section consists of the six selected watersheds from Section 4.2. West Virginia, located in 

the Appalachian region of the United States, is shown in Figure 1 and gives a top-level view of 

the watersheds being studied and their locations relative to each other. Each figure in the study 

region section (e.g. Figure 2) shows the cumulative mining in the watershed that was used for 

analysis in this study. Each of the 6 watersheds are discussed in detail in the following 

subsections, 2.1 to 2.6. 

 

Figure 1 West Virginia and paired watersheds: Mined; (1) Big Coal River at Ashford; (2) 

Guyandotte River at Logan; (3) Gauley River Above Belva; Unmined; (4) Tygart Valley River at 

Belington; (5) Tygart Valley River at Philippi; (6) Greenbrier River at Alderson. 
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2.1 USGS 3198500 Big Coal River at Ashford, WV 

 

Figure 2 USGS 3198500 Big Coal River at Ashford, WV 
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Located in the far south-western region of West Virginia, Big Coal River watershed covers an 

area of 390 square miles, draining south to north, with an elevation ranging from 620 ft to 3556 

ft and an average elevation of 1736 ft. This study calculated that a cumulative 14.88% of Big 

Coal River has been legally permitted for SFM/VF as of 2018. Big Coal River watershed is 

underlain by sedimentary sandstone (Cardwell et al., 1968). The headwaters of the Big Coal 

River watershed are primarily flood plains that turn into steep, mountainous terrain with narrow 

valley floors that become mountainous plateaus in the northern half of the watershed. The 

southern flood plains have a moderately deep soil with poor drainage and permeability (8). The 

rest of the watershed is generally deep and well drained. Big Coal River is humid subtropical 

with no dry season but may have warm summers in the southern headwaters (11). 

2.2 USGS 3203600 Guyandotte River at Logan, WV 

Guyandotte River Watershed is located in the far south-western region of West Virginia and 

covers an area of 833 square miles, draining from east to west. This study found a cumulative 

7.74% of Guyandotte River watershed has been legally permitted for SFM/VF as of 2018. 

Guyandotte River watershed is primarily humid subtropical with no dry season and a temperate 

oceanic climate along the easternmost headwaters of the watershed (16). Guyandotte River 

watershed has largely mountainous terrain with steep slopes and narrow valley floors, and an 

elevation ranging from 607 ft to 3560 ft with an average elevation of 1880 ft. The watershed 

consists of sedimentary sandstone, along with siltstone and coal (Cardwell et al., 1968). Higher 

elevation soils are generally shallow and poorly drained, and generally acidic alluvium is found 

on the flood plains and valley floors (Ehlke et al., 1983). 
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Figure 3 USGS 3203600 Guyandotte River at Logan, WV 

!(

Logan

Raleigh

Boone

Wyoming

McDowell

Mercer

¯
0 3 6 9 121.5

Miles

Legend

#* USGS 3203600 Guyandotte River at Logan

!( Pineville climate station

Cumulative SFM/VF permitted area

Guyandotte River at Logan Watershed Boundary

Counties



13 
 

2.3 USGS 3192000 Gauley River Above Belva, WV 

 

Figure 4 USGS 3192000 Gauley River Above Belva, WV 
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Gauley River Watershed is located in the south-eastern region of West Virginia and drains an 

area of 1315 square miles. Elevation ranges from 673 ft to 4708 ft with an average elevation of 

2720 ft. Streamflow drains from the high, mountainous eastern region and less mountainous low 

plains of the southern region, into the north-west. This study calculated that a cumulative 3.19% 

of the watershed has been legally permitted for SFM/VF as of 2018. Gauley River watershed 

primarily consists of steep slopes and poorly drained, shallow soils with high potential for 

erosion (Ehlke et al., 1982). Gauley River Watershed is humid continental with warm summers 

and cold winters (2). 

2.4 USGS 3051000 Tygart Valley River at Belington 

The watershed draining into USGS 3051000 will be referred to as the Belington watershed and is 

located in the mid north-east region of West Virginia in the Appalachian Plateaus. The Belington 

watershed covers an area of 415 square miles, draining south to north. The Belington watershed 

has an elevation ranging from 1690 ft to 4764 ft with an average elevation of 2552 ft. This study 

found the Belington watershed to have a cumulative 0.19% area that has been legally permitted 

for SFM/VF as of 2018. The Belington watershed consists of sedimentary bedrock and is defined 

by a distinctive floodplain bisecting almost the full length of the watershed. Soils range from 

well drained, moderately deep soil in the uplands and slopes, to poorly drained flood plains, and 

moderately well drained silt loam in river valleys (8). Tygart Valley watershed is humid 

continental with warm summers (9). 
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Figure 5 USGS 3051000 Tygart Valley River at Belington, WV 
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2.5 USGS 3054500 Tygart Valley River at Philippi, WV 

 

Figure 6 USGS 3054500 Tygart Valley River at Philippi, WV 
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 The watershed draining into USGS 3054500 will be referred to as the Philippi watershed and is 

in the north-eastern region of West Virginia. The Philippi watershed includes the Belington 

watershed used in this study (USGS 3051000) and drains an area of 918 square miles. Watershed 

elevation ranges from 1286 ft to 4767 ft with an average elevation of 2326 ft. In this study a 

cumulative 0.61% of the Philippi watershed was calculated to have been legally permitted for 

SFM/VF as of 2018. Philippi watershed is located in the Appalachian Plateaus province. The 

western half of Philippi is primarily sandstone and shale, while the eastern side consists of shale, 

alluvium, and sandstone (Cardwell et al., 1968). Soils generally range from moderately deep to 

deep, and are well drained (8). The Philippi watershed climate is generally temperate and 

becomes more humid as the elevation lowers into floodplains in the west (9; 18).  

2.6 USGS 3183500 Greenbrier River at Alderson, WV 

Greenbrier River Watershed is located along the south-eastern edge of West Virginia, draining 

from north to south an area of 1384 square miles. Watershed elevation ranges from 1532 ft to 

4852 ft with an average elevation of 2733 ft. This study calculated that a cumulative 0.01% of 

the Greenbrier River watershed has been legally permitted for SFM/VF as of 2018. The 

Greenbrier Watershed is divided by the Valley and Ridge province, consisting mostly of shale 

and limestone (Cardwell et al., 1968). The oldest regions such as along mountain ridges and side 

slopes tend towards well-drained stony soils, surrounded by more shallow but well-drained soil, 

with a range of permeability across the watershed (8). The Greenbrier watershed is primarily 

humid continental with warm summers and cold winters (1; 14). 
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Figure 7 USGS 3183500 Greenbrier River at Alderson, WV 
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3 METHODS 

3.1 Preliminary characterization of streamgages for pairing 

A broad initial query was made of the USGS database for streamgages located within West 

Virginia based on having a minimum and consistent 30-year daily flow period of record. This 

quantity of daily flow data was chosen for the initial query to obtain streamgage data with daily 

flow observations occurring pre-mining, during mining and post-mining. Further constraints 

were then applied to reduce the number of candidate gages for hydrologic analysis and to refine 

the quality of potential streamflow data: (1) Minimum of 10000 observations of daily flow, (2) 

Daily flow must fall into a date range of January 1st, 1970 and November 1st, 2018, and (3) 

Daily flow must have no more than a maximum 30 consecutive days missing from the 

observations. Once the first constraint was applied, streamgages were evaluated using the second 

and third constraint for daily flow data listed above. 

3.2 Refinement of characterization 

Digital Elevation Models (DEMs) covering the West Virginia Appalachians were acquired for 

the remaining streamgage candidates to delineate catchment basins using streamgages as the 

pour point (https://viewer.nationalmap.gov/basic/). These DEM derived watersheds along with 

mining and valley fill permit boundaries were used to determine percent of legally permitted 

mining and valley fill for each watershed (WVDEP, http://tagis.dep.wv.gov/home/Downloads). 

3.3 Calculating watershed permit areas 

The mining layers shown in Section 2 Study Regions are derived from mining and valley fill 

permits acquired from the West Virginia Department of Environmental Protection (WVDEP) 

after having undergone the steps that will be described in this section, and these layers depict 

cumulative legally permitted SFM/VF as of the end of 2018. Mining permits and valley fill 
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permits provided by the WVDEP were used to calculate the cumulative legally permitted mining 

area for each watershed. Mining permits are vulnerable to human error and do not accurately 

describe the true beginning and end period of mining activity, only the legally permissible time 

period they may occur. Permits may be explicitly identified as surface mining based on the 

permit identification (S at the beginning of the PERMIT_ID; S301496), but surface mining may 

occur within an area permitted under a different permit identification code (e.g. O504293). 

Additionally, Valley Fill permits may have permit identifiers beginning with a U (e.g. U002685), 

which is understood to denote an underground mine. After careful consideration of permit 

records and comparing the landscape over time in watersheds, it was concluded that valley fill 

permits with ‘U’ in the permit identifier would still be considered valley fill as this study focused 

on the VF itself rather than the source of VF material. 

To address the complexity of mining permits a set of four distinct permutations of mining 

permits were devised to describe maximum to minimum possible legally permitted mining area 

over time within each watershed. These four permutations of mining permits allow us to 

approximate those permits not specifically evaluated for this study. The following four 

permutations were calculated for each of the watersheds: 

 

1. Area of all mining permits and valley fill permits. 

2. Area of all mining permits including valley fill, but not including 'not 

started'/’NS’. 

3. Area of all surface mining permits, including valley fill permits. 

4. Area of all surface mining permits and valley fill permits, not including 'not 

started'/’NS’. 
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As this study focused on surface mining and valley fill, Permutation 4 was converted into 

a percentage of area for each watershed to provide a method of ranking SFM/VF permitted area 

for the eventual pairing of watersheds. All four permutations of permits were then averaged, and 

this average turned into a percent of the amount of area legally permitted to be disturbed by any 

given permit within each catchment basin. The Permutation 4 percentage value of SFM/VF 

disturbance and percentage value of the average of Permutations 1-4 were then statistically 

compared using Spearman’s rho. Only SFM and VF permits active to the end of 2018 were 

evaluated for the purposes of this study. 

3.4 Creating paired watersheds 

If cumulative legally permitted area for SFM/VF in a watershed was greater than 3% of 

watershed area, then this watershed was considered a candidate for being a mined watershed to 

pair with an unmined watershed. Watersheds that crossed over the West Virginia border were 

removed as an option for pairing due to lack of available permit data for outside states. Once 

watersheds considered highly disturbed were chosen, the drainage area of these watersheds was 

then ranked for pairing highly disturbed catchments with those of similar size but with less than 

1% mining disturbance. 

3.5 Compiling mining history timeseries 

A comprehensive time series of mining permit history was developed for each watershed based 

on the results of Section 3.3. Mining permit history time series analysis used each year of 

recorded permits within each watershed by considering the time period from issue date to 

expiration date for each surface mine permit and the epoch of each VF permit.  
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VF permits are treated differently from MTM permits as they are not issued in the same 

way as other mining permits. VF permits are issued without distinct issue-and-expiration dates 

that can be marked as clear periods of activity. VF permits consider the VF within an ‘epoch’ 

and permits are given a specific set of epochs; 1984; 1990; 1996; 2003; 2009; 2011; 2012. For 

this study if a valley fill permit epoch was 1984 the area of the permit was considered active 

from 1984 to the next listed epoch year. If a surface mine permit was issued and/or active before 

December 31st of a given year then the area was used for that year. Evaluating SFM and VF 

permits cumulatively would not have considered remediation work or potential recovery over 

time. Annual mining permit time series for each watershed was then transformed from square 

miles into a percentage of the area of the watershed for each year for each watershed. 

3.6 Annual metrics and statistical analysis 

The annual hydrologic metrics used for analysis were a) average annual streamflow (Qavg), b) 

annual minimum daily streamflow (Qmin), c) annual maximum daily streamflow (Qmax), d) 

annual 25th percentile (Q25), e) annual 75th percentile (Q75) and f) annual interquartile range 

(QIQR). If any observation days were missing data, an average of the previous day and the next 

day was used in its place. These six hydrologic flow metrics were chosen to more closely 

replicate results of Zégre et al. (2014). In order to use complete years of recorded hydrologic 

flow data the following constraints were applied to each streamgage in addition to the previously 

mentioned constraints from Section 3.1: 

 

1. Only hydrologic flow data starting on the first of the year was used 

2. When hydrologic flow data does not begin at the beginning of the year, we start at the 

beginning of the first full year 
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Each of the 6 watersheds were evaluated for: 1) trends in clear directionality in flow over time, 

2) differences or similarities in flow metrics between each pair, 3) any significant correlation 

between hydrologic metric and mining permit history. Precipitation for the 1963-2018 period 

was acquired from the National Oceanic and Atmospheric Administration (NOAA) and used to 

create simple runoff ratios (Q/P) for annual total flow in each watershed. These annual runoff 

ratios were compared with cumulative annual mining permits for each watershed.  

The Mann-Whitney U test was performed on annual hydrologic metrics to evaluate the 

hydrologic metrics between each watershed pair using the null hypothesis that distribution of 

metrics would be equal between pairs using a significance level of p ≥ 0.05. The Mann-Whitney 

U test allowed for any differences in normality between metrics of each pair as some metrics 

could be normally distributed for one watershed in the pair but not the other. Kendall’s tau-b 

was used to test annual values for trends over time for hydrologic metrics within each watershed 

using a significance level of p ≥ 0.05. Kendall’s tau-b was also used to test for any significant 

trends over time for the runoff ratio noted previous. Pearson r correlation test using a 

significance level of p ≥ 0.05 was performed on annual hydrologic metrics and mining permit 

history for each watershed to test for any significant correlation between both metrics. 
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4 RESULTS 

4.1 Characterization of streamgages and watersheds 

The initial query of streamgages in West Virginia for a minimum of 10000 daily flow 

observations resulted in 101 streamgages. Further constraints as described in Section 3.1 were 

then applied to both reduce the number of candidates and refine the quality of the potential 

streamflow for analysis. The data constraints described in 3.1 as well as the data limitations 

described in Section 3.2 resulted in 20 streamgages, illustrated in Figure 8. The four 

permutations of SFM/VF permit area were then developed to characterize the mining history of 

each of the 20 watersheds (Table 1). Using Spearman’s rho to test for correlation between 

Permutation 4 as a percentage and an average of Permutations 1 through 4 transformed into a 

percentage found a significant correlation at r = 0.952 respectively with a p value of 0.00. 

Permutation 4 (all surface mine and valley fill permits minus those marked as not yet begun) was 

deemed appropriately representative of mining disturbance in each watershed, while maintaining 

an approximation of permits not within the scope of the study and so was used for the rest of the 

study.  
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Figure 8 West Virginia and pairing candidates (20 streamgage/watersheds). 

#

#
#
#
#

#

##
#

#

#

#
#

#

#

#

#

#

#

#
03203600

03202400

03200500

03198500

03197000

03192000

03186500

03184000

03183500

03182500

03180500

03155000
03069500 03066000

03061500

03054500

03053500

03052500

01604500

¯
0 20 40 60 8010

Miles

# USGS Streamgage stations

West Virginia counties

Surface mining and valley fill boundaries

Watershed pairing candidates

West Virginia state boundary



26 
 

 

 

 

 

Table 1 Final streamgage/watershed pairing candidates. Permutation 1 - All mining and 

valley fill permits; Permutation 2 - All mining and valley fill permits not started as of 2018 are 

removed from Permutation 1; Permutation 3 - All surface mine and valley fill permits; 

Permutation 4 - All surface mine and valley fill permits not started as of 2018 are removed from 

Permutation 3 

 

 

 

USGS 

Number STREAM GAGE NAME

Watershed 

Area (mi²)

Permutation 

1 (mi²)

Permutation 

2 (mi²)

Permutation 

3 (mi²)

Permutation 

4 (mi²)

Mining %  

(Perm. 4)

1604500 PATTERSON CREEK NEAR HEADSVILLE, WV 221.11 0.68 0.68 0.00 0.00 0.00

3051000 TYGART VALLEY RIVER AT BELINGTON, WV 414.68 2.58 2.19 1.06 0.79 0.19

3052500 SAND RUN NEAR BUCKHANNON, WV 14.26 0.05 0.05 0.04 0.04 0.28

3053500 BUCKHANNON RIVER AT HALL, WV 276.76 5.77 5.76 3.74 3.74 1.35

3054500 TYGART VALLEY RIVER AT PHILIPPI, WV 917.84 10.95 10.54 5.88 5.56 0.61

3061500 BUFFALO CREEK AT BARRACKVILLE, WV 115.74 2.83 2.83 0.19 0.19 0.16

3066000 BLACKWATER RIVER AT DAVIS, WV 85.75 1.56 1.32 0.62 0.62 0.73

3069500 CHEAT RIVER NEAR PARSONS, WV 717.46 4.19 3.95 1.93 1.90 0.26

3155000 LITTLE KANAWHA RIVER AT PALESTINE, WV 1514.15 0.21 0.21 0.13 0.13 0.01

3180500 GREENBRIER RIVER AT DURBIN, WV 133.03 0.00 0.00 0.00 0.00 0.00

3182500 GREENBRIER RIVER AT BUCKEYE, WV 539.31 0.04 0.04 0.00 0.00 0.00

3183500 GREENBRIER RIVER AT ALDERSON, WV 1384.45 1.53 1.53 0.21 0.17 0.01

3184000 GREENBRIER RIVER AT HILLDALE, WV 1619.58 2.00 2.00 0.21 0.17 0.01

3186500 WILLIAMS RIVER AT DYER, WV 127.49 0.00 0.00 0.00 0.00 0.00

3192000 GAULEY RIVER ABOVE BELVA, WV 1314.90 53.00 50.70 44.16 41.98 3.19

3197000 ELK RIVER AT QUEEN SHOALS, WV 1143.68 39.97 37.97 33.41 32.53 2.84

3198500 BIG COAL RIVER AT ASHFORD, WV 390.44 70.90 70.45 59.10 58.12 14.88

3200500 COAL RIVER AT TORNADO, WV 858.07 170.04 163.72 143.86 137.95 16.08

3202400 GUYANDOTTE RIVER NEAR BAILEYSVILLE, WV 307.10 13.18 12.07 13.18 12.07 3.93

3203600 GUYANDOTTE RIVER AT LOGAN, WV 832.82 86.30 82.10 67.56 64.50 7.74
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4.2 Pairing of watersheds 

Five watersheds experienced greater than 3% cumulative mining permitted area and therefore 

were considered mined for this study. Of these five watersheds, three were successfully paired 

with watersheds that met two requirements: The watershed 1) had less than 1% cumulative 

mining permitted area and 2) was of reasonably similar size. This pairing resulted in 6 

watersheds divided into 3 pairs (mined versus unmined) (Table 2, Figure 1). 

Figures 9, 10 and 11 illustrate the contextual relationship between mining permit 

permutations 1 through 4 as calculated in Section 4.1 for each of the six final paired watersheds. 

Figure 11 illustrates the potential unaccounted mining permitted area within each of the final six 

watersheds. 

 

Table 2 Final 6 streamgages chosen for pairing. 

Study 

Number 

USGS 

Number Streamgage name 

Mining 

Percent 

Watershed 

Area (mi²) 

Streamflow 

date range 

1 3198500 BIG COAL RIVER AT ASHFORD, WV 14.88 390.44 1931-2018 

4 3051000 TYGART VALLEY RIVER AT BELINGTON, WV 0.19 414.68 1908-2018 

2 3203600 GUYANDOTTE RIVER AT LOGAN, WV 7.74 832.82 1963-2018 

5 1608500 TYGART VALLEY RIVER AT PHILIPPI, WV 0.61 917.84 1941-2018 

3 3192000 GAULEY RIVER ABOVE BELVA, WV 3.19 1314.90 1929-2018 

6 3183500 GREENBRIER RIVER AT ALDERSON, WV 0.01 1384.45 1896-2018 
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Figure 9 Watershed mining permit permutations 1, 2, 3 and 4 for each paired watershed.  

Mined 1 - Big Coal River at Ashford, Mined 2 - Guyandotte River at Logan, Mined 3 - Gauley 

River Above Belva, Unmined 1 - Tygart Valley River at Belington, Unmined 2 – Tygart Valley 

River at Philippi; Unmined 3 – Greenbrier River at Alderson. 

 

 

 

Figure 10 Mining percentage versus watershed area (square miles). 
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Figure 11 Unaccounted cumulative mining permitted area within each paired watershed 

(percentage). 

4.3 Mining permit history timeseries 

As can be seen in Figure 12, the mined watersheds experienced similar growth in area permitted 

for mining beginning in the early 1970’s until diverging in the early 1990’s. Big Coal River 

experienced a dramatic increase in mining permitted area in the 1990’s and continued to increase 

with small reductions in mining in 2002 and 2011, until seeing a sharp drop in mining between 

2017 and 2018. Guyandotte River experienced around half as much active mining permitted area 

as Big Coal River, reaching around 5% mining in 2001 and remaining steady until gradually 

decreasing down to around 4% in 2018. Annual area permitted for mining remained under 1% 

for Gauley River save for 1986-1997 and 2012-2017 and rose to a high of 1.8% in 1991.  

Unmined watersheds remained consistently very low in mining permit area throughout 

their time series at less than 1% among all three watersheds, which can be seen in their study 

figures in Section 2 (2.1-2.6). 
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Figure 12 Time-series of mining permit history for mined and unmined watersheds. X 

axis is years 1963-2018, y axis is percentage of area permitted for mining in watershed. a) USGS 

3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River at Logan, c) USGS 

3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River at Belington, e) 

USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier River at Alderson. 

4.4 Annual hydrologic metrics for paired watersheds 

The full time series data for Guyandotte River is unavailable and due to this the scope of the data 

for the five other watersheds was clipped to just the available data for Guyandotte River (1963-

2018). This restraint of data by only analyzing hydrologic flow from 1963 to 2018 for each 

watershed was done to maintain consistency in analysis across watersheds. The complete results 

without this clipping are available in Appendix A. Six hydrologic flow metrics were created 

based on the time period restraint of 1963-2018 for each streamgage belonging to each 

watershed.  



31 
 

 

1. Average annual streamflow (Qavg) 

2. Annual Minimum daily streamflow (Qmin) 

3. Annual Maximum daily streamflow (Qmax) 

4. Lower 25th percentile (Q25) 

5. Lower 75th percentile (Q75) 

6. Interquartile Range (QIQR) 

4.4.1 Average annual daily flow 

All six watersheds experienced no significant trends in average annual flow (Table 4).  

 

 

Figure 13 Mined and unmined watersheds average annual daily flow. First column is 

mined, second column is unmined. Left axis is (mm/day) and right axis shows mining percentage. 

a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River at Logan, c) 

USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River at Belington, 
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e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier River at 

Alderson. 

4.4.2 Minimum daily flow 

Two mined watersheds experienced significant increasing minimum flow (Table 4). Big Coal 

River experienced a significant increase in minimum flow that appears to have begun pre-1973 

and this increasing trend appears to continue to the present (Figure 14, Table 4). Unmined 

watersheds had no significant trends in minimum flow.  

 

 

Figure 14 Mined and unmined watersheds annual minimum daily flow. First column is 

mined, second column is unmined. Left axis is (mm/day) and right axis shows mining percentage. 

a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River at Logan, c) 

USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River at Belington, 

e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier River at 

Alderson. 
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4.4.3 Maximum daily flow 

Big Coal River showed significant decreasing maximum flow post-1973 and this appears to have 

begun in the late 1970’s/early 1980’s (Figure 15, Table 4). Guyandotte River experienced a 

significant decreasing maximum flow that begins in the early 1980’s and after this change it does 

not return to pre-1980’s levels. Gauley River did not present with any significant changes in 

maximum flow. Unmined watersheds showed no significant trends in maximum flow. 

 

 

Figure 15 Mined and unmined watersheds annual maximum daily flow. First column is 

mined, second column is unmined. Left axis is (mm/day) and right axis shows mining percentage. 

a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River at Logan, c) 

USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River at Belington, 

e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier River at 

Alderson. 
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4.4.4 25th percentile 

Big Coal River experienced a significant increasing trend in the 25th Percentile (Table 6) from 

1963 to 1973, and then a slightly more positive trend from 1973 to 2018 but after 2008 these 

increasing values do not return to 2007 levels (Figure 16). Guyandotte River had a significant 

increasing trend in the 25th percentile (Table 4). Unmined watersheds had no significant trends 

in 25th percentile flow.  

 

 

Figure 16 Mined and unmined watersheds annual 25th percentile daily flow. First column 

is mined, second column is unmined. Left axis is (mm/day) and right axis shows mining 

percentage. a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River 

at Logan, c) USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River 

at Belington, e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier 

River at Alderson. 



35 
 

4.4.5 75th percentile 

Of the mined watersheds only Big Coal River was found to have a significant positive trend in 

75th percentile flow (Table 4). Unmined watersheds had no significant trends in 75th percentile 

flow. 

 

 

Figure 17 Mined and unmined watersheds annual 75th percentile daily flow. First column 

is mined, second column is unmined. Left axis is (mm/day) and right axis shows mining 

percentage. a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River 

at Logan, c) USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River 

at Belington, e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier 

River at Alderson. 

4.4.6 Interquartile 

No watershed was found to have a significant trend in interquartile (IQR) flow  
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Figure 18 Mined and unmined watersheds annual Interquartile daily flow. First column 

is mined, second column is unmined. Left axis is (mm/day) and right axis shows mining 

percentage. a) USGS 3198500 Big Coal River at Ashford, b) USGS 3203600 Guyandotte River 

at Logan, c) USGS 3192000 Gauley River Above Belva, d) USGS 3051000 Tygart Valley River 

at Belington, e) USGS 3054500 Tygart Valley River at Philippi, f) USGS 3183500 Greenbrier 

River at Alderson. 

4.4.7 Runoff ratios and mining permit history 

The Pearson r correlation test found no significant correlation between Q/P and mining permit 

history for any watershed. 
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Figure 19 Runoff ratio (Q/P) vs. annual mining permit percentage in each watershed. 

4.5 Statistical analysis of paired watersheds 

The Mann-Whitney U test (2-tailed, significance at p < 0.05) showed both the watershed pair Big 

Coal River and Tygart Valley River (1&4) and the pair Gauley River and Greenbrier (3&6) had 

statistically different distributions across all metrics (Table 3). The medium sized pair 

Guyandotte River and Tygart Valley River at Philippi had a statistically similar distribution for 

the 25th Percentile at a p value of 0.11 (Table 3).  Belington and Philippi both had higher total 

annual flow than their watershed counterpart, however Gauley had more total annual flow than 
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its reference watershed, Greenbrier. To adjust for precipitation a simple runoff ratio was used for 

annual total flow in each watershed. Kendall’s tau-b (1-tailed) found no statistically significant 

changes in the runoff ratio of any of the watersheds. 

Kendall’s tau-b non-parametric test of hydrologic metrics in each watershed for trends 

over time detected significant trends in flow metrics of several watersheds (Table 4). Big Coal 

River (Watershed 1) experienced a significant positive trend in minimum flow (r = 0.368), a 

slightly less significant negative trend in maximum flow (r = -0.19), and significant positive 

trends in the 25th and 75th percentiles (r = 0.257, r = 0.183). Guyandotte River (Watershed 2) 

had a significant negative trend in maximum flow (r = -0.336) and a significant positive trend in 

the 25th percentile (r = 0.224). Gauley River (Watershed 3) had a significant positive trend in 

minimum flow (r = 0.191). For the unmined watersheds there were no statistically significant 

trends.  

As noted by ** in Table 3, Tygart Valley River at Belington (Unmined, Watershed 4) 

experienced higher flows than Big Coal River (Mined, Watershed 1), Tygart Valley River at 

Philippi (Unmined, Watershed 5) had higher flow than Guyandotte River (Mined, Watershed 2) 

but Gauley River (Mined, Watershed 3) had higher flows than Greenbrier River (Unmined, 

Watershed 6). 

Pearson r correlation test between hydrologic flow metrics and mining for each 

watershed found significant correlation for hydrologic flow metrics and mining history in two of 

the mined watersheds (Table 5). Big Coal River had a strong positive correlation between mining 

and minimum flow with an r value of 0.479** (p value = 0.000) and a strong positive correlation 

between mining and the 25th percentile with an r value of 0.300* and a p value of 0.025. In the 

Pearson r correlation test Big Coal River also showed a correlation between maximum flow and 
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mining with an r value of -0.263 and a p value of 0.05 which was considered significant. 

Guyandotte River (Table 5) showed a significant negative correlation for mining and its 

maximum flow with an r value of -0.544* (p value = 0.000). Gauley River had no significant 

correlation between hydrologic metrics and mining, however maximum flow, the 75th Percentile, 

and Interquartile did have negative r values. 

 

 

Table 3 Mann-Whitney U test values. Comparing hydrologic metrics between each pair. 

Statistical significance is indicated with * with null hypothesis of similarity between metrics of 

the watershed pair retained with p < 0.05. ** denotes watershed with higher flow in each pair. 

1, 2 and 3 are mined; 4, 5 and 6 are unmined. 1) Big Coal River, 2) Guyandotte River, 3) Gauley 

River, 4) Tygart Valley River at Belington, 5) Tygart Valley River at Philippi, and 6) Greenbrier 

River. 

Mann Whitney U test (2-tailed) 

   p value   

Hydrologic metrics 1 & 4** 2 & 5** 3** & 6 

average annual flow 0.00 0.00 0.00 

minimum flow 0.00 0.00 0.00 

maximum flow 0.01 0.00 0.00 

25th Percentile 0.02 0.11* 0.00 

75th Percentile 0.00 0.00 0.00 

Interquartile 0.00 0.00 0.00 

Mining 0.00 0.00 0.00 
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Table 4 Kendall's tau-b nonparametric test for hydrologic metric trends in each 

watershed. Values marked by * are significant at p < 0.05. 1) Big Coal River, 2) Guyandotte 

River, 3) Gauley River, 4) Tygart Valley River at Belington, 5) Tygart Valley River at Philippi, 

and 6) Greenbrier River. 

Kendall's tau-b nonparametric test for hydrology metrics vs. year 

r values mined unmined 

Hydrologic metrics 1 2 3 4 5 6 

average annual flow 0.129 0.095 0.104 0.057 0.104 0.077 

minimum flow 0.368** 0.144 0.191* -0.070 0.010 -0.022 

maximum flow -0.19* -0.336** -0.040 -0.087 0.040 -0.107 

25th Percentile 0.257** 0.224* 0.111 0.068 0.101 0.023 

75th Percentile 0.183* 0.154 0.100 0.054 0.105 0.137 

Interquartile 0.123 0.102 0.035 0.047 0.098 0.160 

 

 

Table 5 Pearson correlation test for mining history and each hydrologic metric.  2-tailed 

test using 0.05 significance. Statistically significant values are marked with * at a significance of 

p ≤ 0.05. 1) Big Coal River, 2) Guyandotte River, 3) Gauley River, 4) Tygart Valley River at 

Belington, 5) Tygart Valley River at Philippi, and 6) Greenbrier River. 

Pearson r correlation test on flow metrics vs. mining (1963-2018) 

r values mined unmined 

Hydrologic metrics 1 2 3 4 5 6 

average annual flow 0.110 0.021 0.024 -0.065 0.106 0.015 

minimum flow 0.479** 0.139 0.069 -0.029 0.027 -0.085 

maximum flow -0.263* -0.544* -0.114 -0.010 0.055 -0.046 

25th Percentile 0.300* 0.211 0.141 -0.150 -0.003 -0.081 

75th Percentile 0.196 0.170 -0.009 -0.085 0.079 0.035 

Interquartile 0.099 0.121 -0.070 -0.047 0.108 0.081 
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5 DISCUSSION 

The two mined watersheds Big Coal River and Guyandotte River showed significant negative 

trends in maximum flow over time as well as significant correlation between maximum flow and 

mining permit history (Table 4, 5). Big Coal and Guyandotte also showed significant increases in 

25th percentile, while Big Coal and Gauley River showed significant increasing minimum flow. 

For the mined watersheds, the lack of change in annual flow and increasing response for 

minimum flow and 25th percentile appears to be in line with the findings of Negley et al. (2006) 

as well as Nippgen et al. (2017). The former reasoned that reduced infiltration led to increased 

runoff, and the latter suggested the presence of valley fill leads to increased storage capacity as 

well as prolonged storage times, leading to higher baseflows. Unmined watersheds might show 

correlation of flow metrics and mining permit history if their mining history varied more 

significantly, along with having a similar extent of mining permit history as the mined 

watersheds, however they did not (Table 4, Figure 12). No significant correlation between 

percent mining cover and Q/P was found for any watershed (Figure 19). This lack of effect on 

Q/P is notable considering the correlations found for several flow metrics in Big Coal and 

Guyandotte, and their mining permit history. 

Big Coal River underwent an increase in minimum flow in the 1970’s that began before 

recorded mining (Figure 14), however a significant statistical correlation (Table 5) between 

mining permit history and minimum flow suggests the need for a closer examination to separate 

land-use/land-change from mining disturbance. Like the Big Coal River watershed, Gauley River 

experienced an upward shift in minimum flow before recorded mining. There are multiple 

possible reasons for the streamflow behavior of Gauley River found in this study that must be 

investigated in future work. Firstly, the preparatory deforestation in advance of mining, second, 
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an increase in impermeable surfaces from urbanizing activities, and third, an increase in 

agriculture or pasture for livestock. The construction of Summersville Dam from 1960 to 1966 is 

an important consideration for Gauley River experiencing a decrease in maximum flow, 

significant increase in minimum flow, clear regime changes in both metrics, along with no 

significant correlation between mining history and these trends (Marcinkowski et al., 2017). 

Mined watersheds did not express similar relationships with mining permits for all metrics, 

which may be attributed to one or many reasons: 1) Big Coal River at Ashford had 3.48% 

maximum percentage of possible unaccounted for mining permit area and Guyandotte River had 

1.89% while Gauley River only had 0.65%, 2) The dynamic mining permit history over time for 

each mined watershed (Figure 12), 3) Differences in infiltrability and general soil compositions, 

4) Differences in land use/land change over time, 5) Location of SFM/VF. As this study did not 

include underground mining, future work should take the underground mining permits into 

account. Differences in location of mining permits, such as one watershed having more mining 

permits located at the headwaters than other watersheds, may also have some influence on 

differences in flow response.  

To study watersheds at the large scale while also using a paired catchment method meant the 

possibility of using watersheds outside the south west region of West Virginia (Figure 8). Due to 

the size of the watersheds chosen for pairing, one unmined watershed (Greenbrier) is located 

partly within a separate physiographic province as compared to their mined counterpart. The 

Greenbrier watershed is almost completely divided lengthwise between Appalachian Plateau and 

Ridge & Valley provinces. Ridge & Valley typically expresses a trellis drainage pattern with 

streams that flow parallel to mountains while Appalachian plateau regions have more dendritic 

patterns of drainage (Wiley et al., 2013). The dendritic drainage pattern for the mined watersheds 
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could suggest more of a reliance on mountain slope storages for baseflow. Gauley River 

watershed expressed consistently higher flow than its unmined counterpart (Greenbrier 

watershed), and it is worth further investigation to determine whether this may be due in part to a 

higher volume of mountainous storage area (Figure 4) as compared to Greenbrier River (Figure 

7) or what other factors may be at play. Gauley River watershed experienced higher levels of 

precipitation than Greenbrier, however Big Coal River also experienced higher levels of 

precipitation than Belington  and so this does not seem to explain the consistently higher levels 

of flow, or else this similar trend in higher flow would be seen in Big Coal River’s relationship 

with Belington. 

Big Coal River and Guyandotte River presented with a strong decline in their maximum flow 

as SFM/VF approached 2% but Gauley River did not experience a year of mining permitted area 

greater or equal to 2%. These possible threshold findings require future investigation. Valley fill 

and deep mine drainage have been attributed to decreasing maximum flow, which is significant 

for this study as Big Coal River and Guyandotte River experienced less than 1% area permitted 

for VF during any given year (Zégre et al., 2014; Ross et al., 2016). Future work should account 

for the (underground) mining not analyzed in this study to determine the role it may play in the 

significant declining maximum annual flow both Big Coal River and Guyandotte River 

experienced. Future work should also look to additive modeling such as nested streamgages to 

examine the possible threshold behavior found in this study. Additive models have been used to 

look for thresholds in watershed response to mining, evaluating a watershed or a section of 

watershed and then adding further sections until a change has been found such as changes in the 

health of biotic communities (Petty et al., 2010; Bernhardt et al., 2012). Finally, as mining for 

coal in West Virginia began more than a century ago, future work should investigate whether 
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historic mining data exists that would allow for the application of the methods developed in this 

study (Burns, 2005).  
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6 CONCLUSIONS 

This study assessed long-term hydrology in six large-scale watersheds divided into three pairs of 

watersheds (mined and unmined) to look for trends in annual hydrologic metrics and any 

significant correlation between mining permit history and annual hydrologic metrics. Significant 

trends in minimum and maximum flow were found in two mined watersheds as well as 

significant correlation between several metrics in mined watersheds and their respective mining 

permit history. This study found no significant correlation between mining permit history and 

Q/P. This lack effect on Q/P is notable considering the significant correlations between flow 

metrics and mining permit history for two of the heavily permitted watersheds and requires 

investigation to determine what factors are at play. Visual analysis suggested possible thresholds 

of mining disturbance for streamflow regime change in several watersheds that require more in-

depth future examination. The mining permit data used for this study allowed for a high 

resolution (annual) view of mining history in each watershed. Permit data format limits our 

understanding of the true relationship of mining disturbance to reclamation and land-use/land 

change in each watershed. When evaluating mining impact on streamflow in large-scale 

watersheds future work should examine annual and long-term land-use/land-change to separate 

mining disturbance from other landscape changes.  

Suggestions for further research include increasing the resolution of data for the 

hydrologic time series to monthly rather than annual metrics and developing time series of 

mining data for more than one mining condition, such as including underground mining in the 

time series. While this study compared Q/P to mining permit history, future work should include 

the use of double-mass curves when evaluating flow metrics and seek to rule out precipitation as 

a contributor to any positive or negative trends in streamflow. Further suggestions would include 
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a more robust analysis of sources of impermeability within each watershed as well as developing 

more streamgage pairs at more refined values of disturbance, such as pairing watersheds with 1 - 

3% cumulative mining permit history rather than restricting the study to using watersheds with a 

cumulative permit history greater or equal to 3%. Pairing watersheds at 1 - 3% cumulative 

mining permit history may offer a more detailed understanding of the differences in streamflow 

response between paired watersheds. Finally, future work should investigate whether the 

methods developed in this study are applicable to any existing historic mining data. 
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Appendix A 

 

Appendix A.1 Lifetime hydrologic metrics 

 

Figure 20 Lifetime average annual flow. 
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Figure 21 Lifetime minimum flow. 

 

 

Figure 22 Lifetime maximum flow.  
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Figure 23 Lifetime 25th Percentile flow. 

 

 

Figure 24 Lifetime 75th Percentile flow. 
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Figure 25 Lifetime interquartile flow. 


	A Paired-catchment Approach for Characterizing Hydrologic Response to Mountaintop Mining
	Recommended Citation

	FirstPage
	TableOfContents
	Tables
	Figures
	Abbreviations
	Introduction
	Methods
	Results
	StudyRegions
	MinedWatersheds
	UnminedWatersheds
	HydrologicMetrics
	StatisticalAnalysis
	Discussion
	Conclusions
	References
	Appendices

