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ABSTRACT 

Technology Usage to Manage Client Growth: Understanding Robo-Advisor Adoption Among 

Registered Investment Firms 

by 

Kevin B. Chalk 

April 2021 

Chair: Vikas Agarwal 

Major Academic Unit: Executive Doctorate in Business 

The purpose of this study was to examine the effects of fee discounts offered by 

Registered Investment Advisors (RIA) on the adoption of a robo-advisor solution by their clients 

within a hybrid investment services model. The analysis of fee discounts within the RIA model is 

based on assets under management, those less than $250 million and those above $250 million.  

In addition to analyzing fee discounts offered by an RIA, this study looks at the characteristics of 

clients using an RIA that has adopted a robo-solution. The findings suggest that RIA firms over 

$250 million, that offer a fee discount on a robo-solution, are likely to have higher adoption rates 

than smaller RIA firms. This study also finds that younger clients and clients with lesser 

investment knowledge have higher adoption of robo-solution offered by the RIA. 

INDEX WORDS: Robo-Advisor, Robo-Advising, Registered Investment Advisor, Registered 

Investment Advisors, Fintech, Wealth Management Technology 
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I INTRODUCTION 

There have been a few technologies that have been introduced in the financial services 

sector in recent years. Referring to the financial industry, Alt et. al (2018) state that an industry 

had remained rather stable over decades was apparently confronted suddenly with new market 

participants and the acceleration of digital innovation. This digital innovation has included the 

onset of technologies geared to managing investment portfolios, specifically the rise of 

automated investment solutions which is synonymous with the term, robo-advisor. Jung et. al 

(2017) references work by Maedche et. al (2016), Sironi (2016), and Ludden et. al. (2015) to 

define robo-advisors as digital platforms comprising interactive and intelligent user assistance 

components that use information technology to guide customers through an automated 

(investment) advisory process.  Much of the current literature has focused on the performance 

aspects of robo-advisors as it relates to portfolio construction and asset allocation methods 

(D’Acunto et. al., 2019, Beketov et. al., 2018), predictive modeling (Gu et. al., 2019), household 

balance sheet and personal finance choices (D’Acunto and Rossi, 2021) or comparing robo-

advisors vs. traditional investment advisors (Uhl and Rohner, 2018, Harrison and Samaddar, 

2020). There is little research addressing the revenue implications of adopting a robo-advisor 

solution within a financial services organization that offers traditional wealth management 

services. Traditional wealth managers have viewed robo-advisors as competition, as they are 

typically offered at lower costs, and not as a solution that can be complementary to the existing 

services they provide. Robo-advisors can assist firms in the overall client experience for certain 

clients of the firm.  As a segment of the fintech trend, robos have broadened the means of 

delivering financial advice (Fan and Chatterjee, 2020). An increasing body of research suggests 

that the future of the financial planning industry lies in a hybrid approach which combines a 
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robo-advisor with the traditional wealth management offering (Sarpong, 2020; Thompson, 2018; 

Lopez et. al., 2015; Kitces et. al, 2015; Stich, 2018). 

The existing research that relates to the hybrid model focuses mainly on the theoretical 

concepts of integrating a robo-advisor such as, pricing strategies (Ludden et. al., 2015; Edwards, 

2018; Garmhausen, 2015; Woodyard and Grable, 2018) and cannibalization of existing business 

(Lopez et. al., 2015). The tension that exists in wealth management firms choosing to offer a 

robo-advisor to their clients lies in the notion that adopting a robo-solution could potentially 

address capacity constraints, which comes with a growing client base, but also potentially 

cannibalize higher revenue streams of business. A robo-advisor can be utilized by investors 

without the assistance of a financial advisor. Wealthfront, Betterment, and Sig-Fig are examples 

of firms that offer a robo-advisor at annual fees ranging from zero to 0.25%.1 Additionally, 

wealth managers that utilize a custodial platform such as Charles Schwab, Fidelity, or TD 

Ameritrade (which are known as custodians), have access to a customizable robo-advisor that is 

offered by the custodian. For examples of wealth managers, RIA Channel.com2 ranks the top 100 

wealth managers of 2020 based on size, growth, and quality. Creative Planning, Plante Moran 

and Wealth Enhancement Advisors are ranked as the top three wealth managers with assets 

under management of $45B, $17B and $13B, respectively. Wealth managers with assets under 

management of $100M or more are required to register with the Securities and Exchange 

Commission (SEC) and file a Form ADV and a 13F filing. These filings can be found on the 

SEC website at www.sec.gov.   

 
1 https://www.businessinsider.com/best-robo-advisors 
2https://www.riachannel.com/top-100-wealth-manager-list-2020/ 

 

 

http://www.sec.gov/
https://www.businessinsider.com/best-robo-advisors
https://www.riachannel.com/top-100-wealth-manager-list-2020/
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The question that arises, for wealth management firms that choose to offer a robo-

advisor, as part of their offering, is do they price the robo-solution at 0.25%? In doing so, would 

this potentially cause clients that are being charged a traditional wealth management fee structure 

(roughly 1%) to want to be in a lower priced investment solution that is offered by their advisor? 

 This study will add to the current literature by proposing a framework to understand 

robo-advisor adoption of investors, through the lens of wealth management firms. Specifically, 

this study aims to address the following research question: For assets managed by an RIA, are 

fee discounts associated with higher allocation of client assets to an automated investment 

solution versus a traditional solution?   

RIABiz, an online journal that targets the financial services industry states “In simple 

terms, an RIA is a registered investment adviser. This generally means a financial firm that 

engages in advising others about investing in securities, gets paid for it and is subject to 

oversight by the SEC or their equivalent regulator at the state level. A confusing factor is that 

people often believe that the term “RIA” applies to an individual that works for the advisory 

firm. However, this is inaccurate. Individuals who provide advice on behalf of the firm are 

referred to as investment adviser representatives. It’s the firm itself that is called an RIA”.3 For 

the purpose of this study, RIA will be used to refer to the firm.  

RIAs have outpaced traditional broker dealers such as Merrill Lynch, UBS, Morgan 

Stanley, in terms of asset market share. A 2019 Investment News Report4 stated “in the financial 

advice industry, money and margins are moving slowly and inexorably away from the bank-

owned wirehouses to independent registered investment advisers, along with other business 

models that either pay more or give advisers equity in their practices.” Cerulli Associates, in 

 
3 https://riabiz.com/a/2011/10/4/what-exactly-is-an-ria.  
4 https://www.investmentnews.com/wall-street-is-going-ria-ish-80224.  

https://riabiz.com/a/2011/10/4/what-exactly-is-an-ria
https://www.investmentnews.com/wall-street-is-going-ria-ish-80224
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their U.S. RIA Marketplace 2019 report5, state “RIAs are expected to control a combined 29.6% 

of industry asset market share by year-end 2023.” The report further states, “from a percentage-

point perspective, hybrids and independent RIAs are expected to increase 3.5 and 2.0 points, 

respectively, versus the wirehouses’ –4.8 points”. With this growth comes capacity constraints.  

The typical RIA firm starts out by bringing on any client they can, regardless of asset size. This 

strategy is the way most firms survive in the early years, serve whomever they can. After 10 or 

15 years in business, an RIA firm might have amassed hundreds of clients and will have a 

heavily concentrated number of smaller clients that generate a very small amount of revenue. 

The capacity constraint issue is one that all wealth management firms must wrestle with and is an 

important issue to address, otherwise firm growth could stall. Michael Kitces, former practitioner 

editor of the Journal of Financial Planning and frequent contributor to RIA industry 

publications, states in reference to an Investment News benchmarking study, the average advisor 

(which includes both lead, service, and support advisors working with clients) was responsible 

for 57 clients, and $477,000 of revenue in 2017. By contrast, back in 2013, the average advisor’s 

productivity was 73 clients and $561,000 of revenue. In other words, despite the rise of more 

advanced technology tools to support advisory firm efficiency, the number of clients that an 

advisor supports dropped by nearly 22%, and the associated revenue/advisor dropped 15%, likely 

buoyed by the fact that the client’s portfolio and AUM fees themselves grew over this time 

period, thanks to market returns, and partially ameliorated the 22% decline in clients/advisor 

(Kitces, 2018). To shed light on how an RIA firm might utilize a robo-advisor to address 

capacity constraints, this study will focus on the characteristics of investors using an RIA, for 

financial services, that have adopted a robo-solution.  

 
5 The Cerulli Report, U.S. RIA Marketplace 2019. 
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The importance of this study can be gauged from a 2020 benchmarking survey6 of 1010 

RIAs (survey done by Charles Schwab Advisor Services) which lists improving productivity 

with new technology, improving satisfaction for existing clients, and increasing firm capacity as 

three of the top seven strategic initiatives. Figure 1 highlights the findings from the study. The 

top two initiatives are growing via client and center of influence referrals. RIAs are clearly 

focused on growing their businesses’; however, capacity is becoming an increasing issue. The 

traditional way to manage capacity is to hire more staff, which is a costly solution.  RIAs, that 

want to continue to grow, must find a way to embrace technology to help alleviate capacity 

constraints to continue to maintain their growth trajectory.  

 

Figure 1: Top Strategic Initiatives 

 

Schwab’s 2020 benchmarking survey expanded questions, as it relates to standardizing 

procedures and increasing use of technology in managing clients, to include RIAs focused on 

using automated investment solutions. Of the 1,010 participants, only 19% said they are 

currently using or plan to use an automated investment solution in the next 12 months. Citywire, 

 
6 https://content.schwab.com/web/retail/public/about-schwab/schwab_ria_benchmmarking_study_2020_0720-0WBV.pdf 

 

https://content.schwab.com/web/retail/public/about-schwab/schwab_ria_benchmmarking_study_2020_0720-0WBV.pdf
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a news resource targeted at RIAs, stated in a December 2019 article7 “While digital advice has 

made gains in recent years with investors, particularly smaller and younger investors, industry 

experts say adoption of the technology by advisors remains nascent. Actual use cases for robo-

advisors at RIAs are still largely experimental – or very niche.  Through my own interactions 

with RIAs, as a relationship manager for over 16 years to the RIA market, the main concern that 

some RIAs have with robo-advisors is the potential need to lower their fees for offering services 

that are traditionally delivered in a more traditional face-to-face setting.  The notion of having to 

lower fees poses a threat to revenue, however, by not implementing some form of technology to 

assist in managing client growth, there is a threat to overall client growth in the form of firm 

inefficiencies. In addition to a low adoption rate, as previously noted in the 2019 Charles Schwab 

benchmarking study, RIAs still potentially see the robo-advisor as an external threat. Research 

done in January 2019 by Statista, shows 45% of RIAs are concerned robo-advisors pose a threat 

to their firm.8 While the Statista research highlights the perceived threat of robo-advisors to RIAs 

externally, those RIAs that have adopted a robo-solution within their firm grapple with how to 

charge for such a solution vs. their traditional services that are delivered face to face. The first 

contribution this study will make is to examine the effects of an RIA offering fee discounts as it 

relates to the adoption rate of a robo-solution.  

The decision to adopt a robo-advisor is twofold: the first being that the RIA choses to 

adopt and offer such a solution to their clients, and secondly that the client accepts the proposed 

solution by the RIA. It is important to note that in the RIA model, while the firm typically has 

discretion when it comes to investment decisions, in most cases a product offering like a robo-

 
7 https://citywireusa.com/registered-investment-advisor/news/why-are-rias-shying-away-from-robo-

advisors/a1295712 

 
8 https://www.statista.com/statistics/533278/level-of-concern-about-robo-advisors-posing-threat-to-us-ria/.  

https://citywireusa.com/registered-investment-advisor/news/why-are-rias-shying-away-from-robo-advisors/a1295712
https://citywireusa.com/registered-investment-advisor/news/why-are-rias-shying-away-from-robo-advisors/a1295712
https://www.statista.com/statistics/533278/level-of-concern-about-robo-advisors-posing-threat-to-us-ria/
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advisor would involve the client in making that choice.  This implies there are two units of 

analysis that should be considered in the research question. The firm, which this study will 

explore from a fee perspective as previously mentioned but secondly from the individual 

perspective as the client can ultimately choose to proceed with having their assets managed by a 

robo-solution with the RIA or not.  

There is limited research to date that has investigated FinTech adoption (D’Acunto et. al., 

2019) or robo-advisor adoption behavior (Fan and Chatterjee, 2020). The existing literature 

focuses exclusively on the retail consumer and the characteristics of those consumers.  

Woodyard and Grable (2018) address the typical profile of the users of robo technology. They 

validate that the typical user is under age 35, is technologically savvy and confident in their 

decision-making abilities. Additionally, Charlotte Beyer (Beyer 2017) addresses the shifts in 

wealth management due to the younger generation and trends in technology.  Like the work by 

Woodyard and Grable, Beyer discusses how wealth is getting younger and the value propositions 

of financial advisors are changing. There is a view that millennials are much more likely to adopt 

the use of technology in all facets of their lives to include their finances (Cutler 2015, 

Kirchenbauer and Jones, 2018). The millennial age group tends to be more educated, are willing 

to do their own research and tend to be less trusting of financial service professionals (Cutler, 

2015). Additionally, millennials carry more debt (result from educational spending) and 

therefore have smaller asset amounts to invest. These reasons make the robo solutions ideal for 

millennials according to the literature reviewed. Fulk et. al (2018) find that robo-advisor users 

generally (1) had lower income, (2) had lower net worth, (3) had received no or less inheritance, 

and (4) were less impulsive financially.  The second contribution this study will make is to 
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extend the research done on retail adoption of robo-advisors to that of investors that are using an 

RIA for financial guidance.  

The remainder of the study is organized as follows: Section II presents the hypothesis 

development. Section III describes the methods used in the study along with a description of the 

data, summary statistics for key variables, and analysis of the results.  Section IV is a discussion 

of the results, and Section V concludes with the limitations of the study along with 

recommendations for future research.  
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II HYPOTHESIS DEVELOPMENT 

Although existing literature provides insights into the individual investor behavior as it 

relates to robo-advisors, to the best of my knowledge, there is little work on the adoption of 

robo-solutions related to the RIA industry. As noted earlier, the decision to adopt a robo-advisor 

is twofold: first that the RIA choses to adopt and offers a robo-solution to their clients, and 

second that the client accepts the RIA’s proposed solution. The first set of hypotheses explores 

the relationship of the adoption rate of a robo-solution and RIA discretionary AUM along with 

offering fee discounts for the robo-solution. The motivation for this set of hypotheses (H1a-H1c) 

is that fee discounts for a robo-solution are related to adoption rates by clients, specifically for 

smaller RIAs (up to $250M). Firms with AUM under $250M have a median total staff of 4 

serving 132 clients while firms over $250M have a median total staff of 12, serving 389 clients.9  

New client acquisition, client service, firm management, investment management, compliance, 

and operations are among some of the firm activities that all firms face, smaller firms often must 

“outsource” some of these firm activities.  

Building on the work done by Adam Smith (1965) on the division on labor among workers, 

Becker and Murphy (1992) state a worker who does not specialize and performs all tasks 

allocates their time among tasks to maximize common output.  Kumar et al. (2019) states 

individual employee’s specialization is in proportion to the size of the firm. Firms under $250M 

often do not have specialized roles relating to investment management and if a robo-solution is 

being used, this study hypothesizes (H1d) that there is an association between the percentage of 

employees performing the investment advisory role and the adoption rate of a robo-solution. 

 
9 https://content.schwab.com/web/retail/public/about-schwab/schwab_ria_benchmmarking_study_2020_0720-0WBV.pdf 
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Smaller firms could lean more on the efficiencies and scale the robo-solution offers than larger 

firms.  

Cyert and March (1963) state that prices are often set on conventional practice. As a 

consultant to the RIA industry, I have noted numerous conversations where RIA firms are likely 

to discount the fee for the robo-offer versus traditional services. This is a tension that can exist 

across RIA firms. Figure 2 highlights the fees of the top 10 robo-advisors according to Ignites, a 

source for news regarding the mutual fund industry. With the exposure in the popular press that 

robo-advisors are receiving, RIA firms tend to use the marketplace as the “conventional” pricing 

standard in order to avoid competing on price, which could potentially drive better adoption of 

the robo-solution.  
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Figure 2: Fees Charged by Top Robo-Advisors 

 

The first set of hypotheses are stated as follows: 

H1a. The percentage of assets allocated to a robo-solution is associated with an RIA firm’s 

discretionary assets under management (AUM). 

H1b. The percentage of assets allocated to a robo-solution is associated with RIA firms that 

offer a fee discount on the robo-solution.  

H1c. The percentage of assets allocated to a robo-solution is associated with the interaction 

of RIA firm AUM and offering a fee discount on the robo-solution.   

H1d. The percentage of assets allocated to a robo-solution is associated with the percentage 

of employees performing investment advisory functions within RIA firm.  

The second set of hypotheses relates to the characteristics of investors that adopt a robo-

solution. This study hypothesizes that age along with other investor traits can influence the 

adoption rate of a technological solution such as a robo-advisor. The motivation for these 

hypotheses comes from the Diffusion of Innovation Theory (Rogers, 1995) which is used in 
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explaining how an idea or product gains traction and spreads (diffuses) through a group or social 

system.  Mahajan et. al (1990) state that the purpose of the diffusion model is to predict the 

successive increases in the number of adopters.  

Rogers offers some socioeconomic and personality characteristics of early adopters that can 

be used to help develop a profile of the typical RIA client that might be willing to adopt a robo-

solution. Rogers states: a) “early adopters have a greater rationality than later adopters. 

Rationality in this sense is defined as the most effective means to reach a given end; b) earlier 

adopters are not different from later adopters in age. There is inconsistent evidence about the 

relationship of age and innovativeness; and c) earlier adopters have a greater ability to deal with 

abstractions than do later adopters. Innovators must be able to adopt a new idea largely on the 

basis of rather abstract stimuli.” While the research from Rogers is inconclusive as it relates to 

age and technological adoption, there have been several studies that have used the Diffusion of 

Innovation Theory to hypothesize age relating to technological adoption (Baldrige and Burnham, 

1975; Gora, 2020; Robertson, Zielinski, and Ward, 1984 quoted in Gatignon and Robertson, 

1985) and recently Fan and Chatterjee (2020) used Diffusion of Innovation theory in their study 

of robo-advisor utilization for individual investors. Also, practitioner literature makes the claim 

that robo-adopters are younger (Huxlex and Kim, 2016; Cutler, 2015; AT Kearney Report, 2015; 

Munk, 2005; Woodyard and Grable, 2018; Fulk et. al., 2018; Lourenço et. al., 2020). In addition 

to the previous research on age relating to technology adoption, this study extends the profile of 

robo-adopters to include investment goals (Lourenço et. al., 2020; Agnew and Mitchell, 2018), 

active vs. passive investors, investment knowledge (Fulk et. al., 2018; AT Kearney Report, 

2015) and experience with market corrections. This background leads to the second set of 

hypotheses: 
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H2a. The percentage of assets allocated to a robo-solution is associated with an 

investor’s goals. 

H2b. The percentage of assets allocated to a robo-solution is associated with an 

investor’s actions (or proposed actions) during a market correction. 

H2c. The percentage of assets allocated to a robo-solution is associated with an 

investor’s age. 

H2d. The percentage of assets allocated to a robo-solution is associated with an 

investor’s knowledge.  

H2e. The percentage of assets allocated to a robo-solution is associated with an 

investor’s experience with a market correction. 

H2f. The percentage of assets allocated to a robo-solution is associated with account 

ownership and account taxability.  
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III METHODS 

III.1 Data  

 This paper used data from a brokerage firm that provides asset custody to RIAs. 

This brokerage firm has built a customizable robo-solution for their RIA clients to use. This 

robo-solution is completely customizable by the RIA to incorporate over 1,300 ETFs or 2,700 

mutual funds that are chosen by the RIA. The brokerage firm has no oversight or input into the 

investment allocation of the models built within the robo-advisor. The only caveat that the RIA 

firm must adhere to is a cash allocation requirement for the models they build. Currently, the 

brokerage firm does not charge a fee for the RIA to use the robo-solution.  

 A data file was created that consisted of all RIA firms that are currently using the 

brokerage firm’s robo-solution, along with the clients that are linked to each RIA firm where the 

RIA firm has employed the robo-solution to manage the client’s assets. The data file was created 

according to the brokerage firms’ approach to serving RIAs based on AUM. Table 1 summarizes 

the data from the brokerage firm. To maintain the confidentiality of the brokerage firm’s service 

model, the classification was changed to Service Model 1, Service Model 2, and Service Model 

3. 

Table 1:  Population Descriptives 
          

 

 

  

 

 

RIA Service Model RIA Firms in 

Population Set 

Clients in 

Population Set 

Client Percentage 

of overall 

Population   

Service Model 1 182 2,888 16% 

Service Model 2 365 12,187 68% 

Service Model 3 101 2,803 16% 

Total 648 17,878 100% 
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A sample set for this study was created as the data file mentioned above did not include 

all the variables needed for the study (the brokerage firm uses multiple databases that contain the 

information needed for this study), therefore a second sample data set was created.  A sample set 

of 1,000 client accounts was chosen based on suggestion in Burns and Burns (2008) to use a 

relationship between effect size and power to determine the sample size. Table 2 and Table 3 

from Burns and Burns (2008) highlight the proposed relationships. Table 2 in Burns and Burns 

(2008) notes that large N (sample size) is a factor for increasing power in a statistical test. 

Additionally, to detect small effect sizes at a significance level of 5%, a sample size of 1,000 is 

needed.   

Table 2: Factors That Influence Power 

 

Table 3: Same Sizes 

 

 As it relates to this study, a simple percentage weighting method was used to determine 

the number of clients to sample from each service model in Table 1. For example, Service 

Models 1 and 2 have 16% of the overall clients in the population set, Service Model 2 has 68% 
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of the overall population set. Using a target of 1,000 clients, a sample of 160 clients was 

collected from Service Models 1 and 3, and 680 clients from Service Model 2.  To collect the 

sample, a simple random sampling technique was used (Trochim et. al, 2016) where the 

population data was loaded into excel for each service model and then all client identifiers were 

removed (to protect client confidentiality) and a random number was assigned by excel to each 

client. The random number assignment was then sorted from lowest to highest and the first 160 

clients were taken from Service Models 1 and 3 and the first 680 clients were taken from Service 

Model 2. Table 4 highlights the variables, along with a definition of each variable, which was 

collected from the client level along with their associated RIA-level variables.  

Table 4: Variable Descriptives 

RIA-Level Variable Variable Definition Client-Level Variable Variable Definition 

RIA assets in robo-

solution 

Total amount of assets 

that the RIA manages for 

their clients using the 

brokerage firm’s robo-

solution. 

Age Age of the client 

The variables below 

were collected from a 

database independent of 

the brokerage firm 

(www.sec.gov) 

RIA Firms must file a 

form ADV, with the SEC 

or State (depending on 

AUM). Each RIA that 

uses the brokerage firms 

robo-solution discloses its 

use on their ADV as well 

as their total amount of 

assets under management 

for the entire firm. 

Total assets with RIA 

The total amount of assets 

the client has placed with 

the RIA 

RIA discretionary assets 

Amount of assets under 

management, of the RIA, 

that is under the 

discretionary control of 

the firm 

Total assets in robo-

solution 

The total amount of assets 

that are in the robo-

solution that is linked to 

the RIA 

RIA-Level Variable Variable Definition Client-Level Variable Variable Definition 

Fee discounts offered on 

robo-solution 

RIA discloses any fee 

discounts that are 

different from their 

“regular” fee schedule. 

Percentage of assets in 

robo-solution 

Represents total assets in 

the robo-solution divided 

by the total assets with 

the RIA 

Percentage of Employees 

Performing Investment 

Advisory Function 

The RIA reports the total 

number of employees 

performing the investment 

advisory functions and the 

total number of 

employees overall.   

Stated investment goal 

When clients enroll in the 

robo-solution, they 

choose their intended 

investment goal which 

could be one of the 

following: prepare for 
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retirement, build long 

term wealth, generate 

income, save for 

something special, build a 

rainy-day fund or save for 

an upcoming expense 

  Investment Knowledge 

When clients enroll in the 

robo-solution they choose 

their investment 

knowledge which could 

be one of the following: 

none, some, good or 

extensive 

  

Experienced a market 

decline of 20% or more 

(Yes or No) 

When clients enroll in the 

robo-solution they 

indicate (yes or no) if 

they have ever 

experienced a market 

decline of 20% or more. 

  
Action Taken During 

Market Decline 

When clients enroll in the 

robo-solution and they 

answer “yes” to having 

experienced a market 

decline of 20% or more, 

they choose from the 

following regarding 

action they took: did 

nothing, bought more, 

reallocated my 

investment, sold 

everything or sold some. 

If the client answered no, 

they were asked what 

they would likely do from 

the following options: do 

nothing, buy more; 

reallocate my 

investments, sell 

everything, sell some 

  Account Registration 
Joint, Individual, 

Custodial or IRA 

  Taxable or Non-Taxable 

From the registration 

label, a variable was 

created to indicate if the 

account was taxable or 

non-taxable. 

 

I decided that the service model classification, for RIAs, by the brokerage firm would not 

create results that could be generalized (Trochim et. al, 2016) therefore the RIA firms were 

broken into categories based on discretionary AUM. The categories created are as follows: under 
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$100M, $100M-$250M, $250M-$500M, $500M-$750M, $750M-$1B and $1B+. Table 5 

summarizes the data set based on the new RIA firm categories.  

Table 5: RIA AUM Descriptives 

(A) RIA AUM 

Category 

(B) Number of 

RIAs in 

Population 

(C) Number of 

RIAs in Sample 

(D) Clients in 

population set 

(E) Percentage 

of clients (within 

RIA AUM 

category) 

relative to 

overall 

population 

(F) Clients in 

Sample Set 

<$100M 133 37 2,825 16% 160 

$100M-$250M 155 50 6,023 34% 302 

$250M-$500M 116 49 4,644 26% 280 

$500M-$750M 57 28 1,133 6% 74 

$750M-$1B 27 14 349 2% 30 

$1B+ 160 55 2904 16% 154 

Total 648 233 17,878 100% 1,000 

  

It should be noted that the clients in the sample set (column F) do not exactly match the 

respective percentages in (column E) as the number of clients to include in the sample set were 

determined from the service model classification outlined in Table 1.  

III.2 Variables 

Based on the research question, “are fee discounts associated with higher allocation of 

client assets to an automated investment solution vs a traditional solution”, the dependent 

variable for both hypotheses was the percentage of client assets allocated to a robo-solution. This 

variable was calculated by taking the assets allocated to the robo-solution offered by the RIA 

divided by the total assets the RIA manages for the client. Table 6 offers summary statistics for 

assets managed by the RIA versus those allocated to a robo-solution from the sample set (see 

Appendix A for further comparisons). The independent variables for the first set of hypotheses 

(H1a-H1d) are RIA discretionary AUM, fee discounts (yes or no) and the percentage of 

employees dedicated to the investment function. For the second hypotheses (H2a-H2e), 
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independent variables are age, investment knowledge, investment goals, market decline 

(participation in a 20% market correction) and actions taken if the client participated in a market 

correction or what they would do if a 20% market correction occurred. For H2f, the independent 

variables are account ownership type and taxability of the account (see Table 7 for descriptive 

statistics).  Independent variables are chosen with the goal of providing some direction to RIAs 

on fee structure for a hybrid model and whether a client might be a good fit for a robo-solution. 

Additionally, these variables (H2a-H2f) can be determined during the client on-boarding process.  

Table 6: Continuous Variable Summary Statistics 
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Table 7:Categorical Variable Summary Statistics 
Table 7 reports summary statistics for the categorical variables of investment knowledge, investment goals, experience with 

market declines, action taken if a market decline has been experienced or action that would be taken if a person were to 

experience a market decline, account ownership and taxability. As mentioned in Table 4, variable descriptives, these categorical 

variables are collected as clients enroll in a robo-solution.  
Variable Frequency Percentage of Sample 

      

Stated Investment Knowledge     

None 130 13% 

Some 550 55% 

Good 241 24.1% 

Extensive 79 7.9% 

Stated Investment Goal     

Build Long Term Wealth 293 29.3% 

Build a rainy-day fund 13 1.3% 

Generate income 33 3.3% 

Prepare for Retirement 613 61.3% 

Save for an upcoming expense 28 2.8% 

Save for something special 20 2.0% 

Experienced a Market Decline of 20% or more   

Yes 435 43.5% 

No 565 56.5% 

Action Taken (If Yes to Decline)     

Bought More 93 9.3% 

Did Nothing 242 24.2% 

Reallocated my investments 83 8.3% 

Sold Some 12 1.2% 

Sold Everything 5 0.50% 

      

Action Taken (If No to Decline)     

Buy More 86 8.6% 

Do Nothing 218 21.8% 

Reallocate my investments 229 22.9% 

Sell Some 30 3.0% 

Sell Everything 3 0.20% 

Ownership     

Individual  930 93% 

Joint 70 7% 

Taxability     

Taxable 270 27% 

Non-Taxable 730 73% 

III.3 Analyses and Results 

Robo-Advisor Assets-RIA AUM and Fee Discounts 
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This study hypothesizes that RIA Discretionary AUM, employee specialization and if the 

RIA firm offers a fee discount on a robo-solution should explain the cross-sectional variation in 

the assets an investor allocates to a robo-solution (see hypotheses H1a, H1b, and H1c and H1d). 

To understand how firm size, fee discounts and the percentage of employees performing 

investment advisory functions (H1a, H1b, H1c, H1d) interact to explain the percentage of assets 

held in a robo-solution, I conduct multivariate analysis by estimating the following models:  

(1)    % assets in robo = b0 + b1AUMSize + b2FeeDiscount + b3AUMSize*Fee + e 

(2)    % assets in robo = c0 + c1AUMSize + c2FeeDiscount + c3AUMSize*Fee + c4%age of 

Advisory Employees + e 

(3)    % assets in robo = d0 + d1SmallNoFee+ d2SmallFeeDiscount + d3LargeFeeDiscount + e 

where % assets in robo represents the percentage of assets a client of the RIA holds in the 

robo-solution in Models 1, 2 and 3. For Model 1, AUMSize represents the total discretionary 

AUM of an RIA firm. If the RIA firm is under $250M, the indicator variable AUMSize takes on a 

value of 1, and if the RIA firm is over $250M, AUMSize = 0. Fee Discount represents whether 

the RIA firm offers a fee discount on the robo-solution, if yes then the indicator variable takes on 

a value of 1, and if they do not offer a fee discount then the variable = 0. I also create an 

interaction variable (represented by AUMSize*FeeDiscount) between AUMSize and whether the 

RIA firm offers fee discounts (FeeDiscount) to capture the incremental effect of fee discount 

over the RIA size on the percentage investment in robo-solution. For Model 2, the variables take 

on the same values as in Model 1, with the addition of %age of Advisor Employees representing 

the percentage of employees of an RIA firm that perform the investment advisory function. For 

Model 3, SmallNoFee represents RIAs that are under $250M and do not offer a fee discount. 
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SmallFeeDiscount represents RIAs that have under $250M in AUM and offer a fee discount and 

LargeFeeDiscount represents RIAs that have over $250M in AUM and offer a fee discount.  

The results from Models 1, 2 and 3 are reported in Table 8.  

Table 8: Robo-Advisor Assets- RIA AUM and Fee Discounts 
Table 8 reports the results of regressing the percentage of investor assets in a robo-solution on RIA Discretionary 

AUM (AUMSize), fee discounts (FeeDiscount) and the interaction variable of AUM and fee discounts 

(AUM*FeeDiscount) which is shown in Model 1. AUMSize equals 1 if RIA AUM is under $250M, and 0 if RIA AUM 

is over $250M. FeeDiscount equals 1 if an RIA firm offers a fee discount, and 0 if it does not offer a fee discount. 

AUM*FeeDiscount equals 1 if RIA AUM is under $250M and RIA firm offers a fee discount on its robo-solution, and 

0 otherwise. These indicator variables take on the same values in Model 2. The additional indicator variable in Model 

2 is %age of Advisory Employees, which represents the percentage of employees performing an investment advisory 

role. For Model 3, SmallNoFee represents RIAs that are under $250M and do not offer a discount, SmallFeeDiscount 

equals 1 if the RIA is under $250M and offers a fee discount, and 0 otherwise. LargeFeeDiscount equals 1 if the RIA 

is over $250M and offers a fee discount, and 0 otherwise. The bottom panel provides the results of the pairwise 

comparison tests for the mean coefficients in Model 3.  p-values are reported in parentheses, *** indicates significance 

level at 1%.  

  
Model 1            

Beta (p-value)  

Model 2             

Beta (p-value) 

Model 3         

Beta (p-value) 

Constant 85.54 (0.001)*** 
82.85 

(0.001)*** 

85.54 

(0.001)*** 

AUMSize (Small/Large) -2.16 (.370) -2.73 (.270)   

Fee Discount (Y/N) 7.46 (0.001)*** 7.49 (0.001)***   

%age of Advisory Employees   .04 (.317)   

Interaction 

(AUMSize*FeeDiscount) 
-1.20 (.817) -1.10 (.831) 

  

SmallNoFee     -2.16 (.370) 

SmallFeeDiscount (Y/N)     4.10 (.280) 

LargeFeeDiscount (Y/N)     7.46 (0.001)*** 

        

R2 0.02 0.02 0.02 

F Statistic 6.64 (0.001)*** 5.23 (0.001)*** 6.64 (0.001)*** 

No. of Obs. 1000 1000 1000 

Test for linear combinations of coefficients     

SmallNoFee-

LargeFeeDiscount(Y/N)  
  

-9.62 

F Statistic 
    

15.27 
(0.001)*** 

SmallNoFee-

SmallFeeDiscount(Y/N) 
  

-6.26 

F Statistic     1.74 (.188) 

LargeFeeDiscount(Y/N)-SmallFeeDiscount(Y/N)  3.36 

F Statistic     .54 (.464) 
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I conduct preliminary analyses to ensure no violation of the assumption of 

multicollinearity (see Appendix C), and none existed. The observations from the analysis in 

Model 1 (shown in Table 8) indicate that clients of small RIA firms would hold 2.16% less in a 

robo solution than a client associated with a larger RIA firm (over $250M). However, the 

indicator variable, AUMSize, is not significant.  This is somewhat of a surprising result based on 

my observations as a consultant to the RIA Industry. Not surprising is that advisors offering a fee 

discount would hold just over 7% more assets in a robo-solution. For clients associated with 

smaller RIAs, the interaction of firm AUM and fee discounts, although statistically insignificant, 

indicates that smaller firms offering a fee discount, clients would hold roughly 1% less in a robo-

solution. The F-statistic reported for Model 1 is statistically significant, which indicates 

AUMSize, FeeDiscount and the interaction of AUMSize and FeeDiscount are reliable predictors 

of the percentage of the assets held in a robo-solution. However, the low R2 indicates overall low 

explanatory power of Model 1 in explaining the variation in the percentage of assets held in a 

robo-solution.   

For Model 2, I test if adding the percentage of employee performing an investment 

advisory function (%age of Advisory Employees) to the model would increase the explanatory 

power of the model. The results show that for every unit increase in the percentage of employees 

performing the advisory function, the percentage of increase in a robo-solution is very minimal. 

The F-statistic continues to be significant for Model 2. However, the overall explanatory power 

of the model remains low (R2 = 2%).  

In Models 1 and 2, the interaction variable, AUM*FeeDiscount, compares the percentage 

of assets in a robo-solution between RIA firms that are less than $250 million and offer a fee 

discount with all other RIA firms. Therefore, it does not allow pairwise comparison across RIA 
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firms categorized on the basis of AUM and fee discount. Therefore, in Model 3, I refine the 

specification, as mentioned previously, where SmallNoFee represents RIAs that are under 

$250M in AUM and do not offer a fee discount, SmallFeeDiscount represents RIAs that are 

under $250M in AUM and offer a fee discount, and LargeFeeDiscount  represents RIAs that are 

over $250M in AUM and offer a fee discount. Like in Models 1 and 2, for the association of RIA 

size and fee discounts, an interaction variable (represented by SmallFeeDiscount and 

LargeFeeDiscount) was created between the independent variable of RIA AUM and those RIAs 

that offer fee discounts. To create the interaction variable, I separate RIA AUM into two 

categories, AUM < $250M and AUM > $250M, both of which are indicator variables that take a 

value of 1 if RIA AUM meets the criterion, and 0 otherwise. I create a third category, fee 

discount, that consisted of whether the RIA offered a fee discount on their robo-solution offer, 

with yes=1 and no=0. A fourth category was created, small fee category interaction 

(SmallFeeDiscount), which is equal to 1 if the advisor offered a fee discount, and 0 if there is no 

fee discount.  

The results from Model 3 indicate that clients associated with a small RIA (under 

$250M) that offers a fee discount would increase their percentage of assets held in a robo-

solution by 4.10%. However, this finding is not statistically significant. For clients associated 

with large RIAs (over $250M), they increase their holdings by roughly 7.5%, this finding is 

statistically significant. For Model 3, the F-statistic and R2 values remain similar to those for 

Models 1 and 2.  Pairwise comparison tests show that only the estimated coefficients on 

SmallNoFee and LargeFeeDiscount are different from each other, which indicates that large 

advisors offering a fee discount would attract a greater percentage of assets in a robo-solution 

compared to the small advisors that do not offer a fee discount. 
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To better understand these results, I isolate the independent variables of RIA 

discretionary assets, and RIAs offering a fee discount. Table 9 shows these results.   RIA AUM 

was isolated as a continuous variable vs. a categorical variable as there is a possibility that 

statistical power is reduced by dichotomizing the data for RIA AUM. In Table 9, Model 4 

(DiscAUM) represents RIA AUM as a continuous variable. The results of regressing the 

percentage of assets held in a robo solution against DiscAUM, indicates that for every dollar 

increase in discretionary assets of an RIA, the assets held in a robo solution would actually 

decrease.  This regression shows no significance at conventional levels (p-value = 0.198) in 

addition to the model having a low R2.  

Comparing the previous analysis shown in Table 8, of RIA AUM (represented by 

AUMSize) the results seem to suggest that non-linearity exists in the data as it relates to RIA 

Discretionary AUM. As previously mentioned, the results shown in Table 8 for Model 1 and 

Model 2 indicated an RIA firm over $250M would hold more assets (2.16% and 2.73% 

respectively) in a robo-solution vs. an RIA firm under $250M. By changing RIA AUM to a 

continuous variable, the results indicate an opposite relationship. The scatter plot in Figure 3 

confirms that a nonlinear relationship exists in the data relating to RIA Discretionary AUM and 

the percentage of assets held in a robo-solution. There is a large number of smaller RIAs under 

$100M that hold a high percentage of assets in a robo-solution, however that percentage declines 

up until approximately $10B at which time the percentage of assets held in a robo solution 

begins to increase.  

Given the nonlinear relationship of RIA AUM and the percentage of assets held in a 

robo-solution, I estimate a quadratic regression by squaring the continuous variable for RIA 

AUM. Results are shown in Model 5 in Table 9. The squared term confirms that as RIA firms 
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grow larger, they will hold more in a robo-solution. Both DiscAUM and DiscAUM2 (Model 5), 

are significant at the 1% level when I estimate a quadratic regression. However, explanatory 

power continues to be low (R2 is 1%). Table 9 also shows RIA AUM (AUM < $250M) as a 

categorical variable (Model 6) instead of using RIA AUM as a continuous variable. The 

regression output shows significance at the 5% level (p-value = 2.7%), but still shows little 

explanatory power (R2 is 0.4%). Finally, Model 7 shows the results of RIAs that offer a fee 

discount. RIAs that offer a fee discount were coded as a 1 or 0, with 1 representing RIAs offering 

a fee discount. The results show that offering a fee discount is significant at the 1% level (p-value 

= 0.001). However, the contribution to explaining the variation in percentage of assets held in a 

robo solution remains low, R2 = 2%.  

 

Figure 3:Robo Advisor Percentage – RIA AUM Scatter Plot 
Total Discretionary ADV Assets is scaled down by a factor of 1000. 

Given that using a continuous variable, for RIA AUM, does not increase the explanatory 

value of the regression model, I use the categorical approach as the data for this study was 

segmented based on RIA AUM and some of the practitioner press is geared towards advisor 

AUM segments.  
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Referring to the models presented in Table 8, the models are significant at the 1% level 

(p-value < .001) and based on these results H1b and H1c could be supported. However, there is 

little support for H1a and H1d. 

Table 9: Robo-Advisor Assets- RIA AUM 

Table 9 reports the results of regressing the percentage of investor assets in a robo-solution on RIA’s Discretionary 

AUM (DiscAUM), and Fee Discounts (FeeDiscount). DiscAUM and DiscAUM2 were scaled down by 

DiscAUM/1000000 and DiscAUM2/10^20. Model 1 shows the results of DiscAUM independently as a continuous 

variable.  Model 2. combines DiscAUM and the quadratic variable DiscAUM2. Model 3 shows the results of isolating 

RIA Firm AUM as a categorical variable (SmallCat). If an RIA has discretionary AUM of less than $250M, then the 

variable is assigned a 1, otherwise 0.  Model 4 shows the results of fee discounts (FeeDiscount) independently.  p-

values are reported in parentheses, *** and ** indicates significance level at the 1% and 5% respectively.  

  

 
Variable  Variable Type Intercept 

Coefficient(s)                             

p-values are in parentheses 
R2 No. of Obs 

Model 

4 
DiscAUM Continuous 88.43 (0.001)***                -.000280 (.198) 0.002 1,000 

Model 

5 

DiscAUM 

DiscAUM2 
Continuous 89.47 (0.001)*** 

 

0.01 1,000 

Model 

6 
SmallCat Categorical 89.025 (0.001)***       -4.589 (.027)** 0.004 1,000 

Model 

7 
FeeDiscount Categorical 84.802 (0.001)***        7.837 (0.001)*** .02 1,000 

 

Determinants of Robo Assets 

This study also hypothesizes that an investor’s goals, age, knowledge, experience with 

market corrections, action taken (or potential action taken) after a market decline, account 

ownership type and account taxability are associated with the percentage and assets in a robo-

solution (see H2a-H2f). To test these hypotheses, I combined these variables to estimate the 

following model: 

(8)  % assets in robo = e0 + e1Goals + e2Actions + e3Age + e4Knowlege+ e5MktDecline+ 

e6Taxability + e7Ownership + e 

% asset in robo 
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where % assets in robo represents the percentage of assets a client of the RIA holds in the 

robo-solution. Investor goals are the goals of the investor, which were segmented into two 

categories consisting of long term and short term. Long-term goals (build long-term wealth and 

prepare for retirement) = 1, and short-term goals (generate income, save for upcoming expenses, 

and build a rainy-day fund for emergencies) = 0. Actions represented specific actions that 

investors took if they experienced a market correction of 20% or more or potential actions an 

investor would take if they have not experienced a market correction. If an investor either did 

nothing or would do nothing, if a market correction were experienced, a value of 1 was assigned. 

If an investor took any action or would take any action, which would include buying more, sell 

some or all, or reallocating investments), a value of 0 was assigned.  Client’s age were grouped 

according to Pew Research10 and are associated with Gen Z (under 22), Millennials (23-38), Gen 

X (39-54), Boomers (55-73), and Silent Generation (74-91). I assign the following values for 

different age groups: Gen Z = 4, Millennials = 3, Gen X = 2, Boomers = 1 and Silent Generation 

= 0. I also use Age as a continuous variable to determine if there is greater explanatory power, 

and find no benefit to the analysis in doing so.  Knowledge represents an investor’s knowledge 

with an investor having no knowledge being assigned a code of 0, 1= some knowledge, 2= good 

knowledge and 3= extensive knowledge. MktDecline represents if an investor has experienced a 

market decline of 20% or more, with 0 = having experienced a market decline and 1 = having not 

experienced a market decline.  Taxability represents the tax effects of the account, where 1= 

taxable and 0 = qualified (non-taxable). And finally, Ownership represents the account 

ownership where 1 = individual ownership and 0 = joint ownership. I report the results from 

regression (2) in Table 10.  

 
10 https://www.pewresearch.org/fact-tank/2019/01/17/where-millennials-end-and-generation-z-begins/.  

https://www.pewresearch.org/fact-tank/2019/01/17/where-millennials-end-and-generation-z-begins/
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Table 10: Robo-Advisor Assets- Investor goals, actions, age, knowledge, and experience 

with market corrections 
Table 10 reports the results of regressing the percentage of investor assets in a robo-solution on investor Goals, 

Actions, Age (using both categorical and continuous variables), investor Knowledge, MktDecline (experience with 

market corrections of 20% or more), account Taxability and account Ownership. Investor goals were coded as long 

term = 1. Long Term is defined as building long term wealth or preparing for retirement. Short term goals =0. Short 

term goals were defined as generating income, saving for upcoming expenses, or building a rainy-day fund.  Investor 

actions are coded as did nothing or do nothing =1, all other actions =0. Age (categorical) is coded as Gen Z = 4, 

Millennials = 3, Gen X = 2, Boomers = 1 and Silent Generation = 0. Knowledge was coded as none =0, 1= some, 2= 

good and 3= extensive. Experiencing a market correction of 20% or more was coded as 0 and no experience with a 

market correction coded as 1.  For taxability, 1 represents accounts that are taxable, 0 represents IRAs and account 

ownership, 1 = individual ownership and 0 = joint ownership. *** indicates significance level at 1% level.  

% assets in robo 

 

% assets in robo (age as continuous variable) 

 

 

As in the previous model, I conduct a preliminary analysis for multicollinearity and find 

it not to be the case (see Appendix C). Results from regression 8 explains slightly more of the 

variable in assets held in a robo-solution (6.5%). The analysis did confirm what other studies 

(Fan and Chatterjee, 2020; Woodyard and Grable, 2018; Cutler, 2015; Kirchenbauer and Jones, 

2018) have found as it relates to younger investors’ adoption of robo-solution.  The analysis 

shows that Generation Z investors would hold 15% (gen z code of 4 x 3.77 % vs. silent 

generation coding of 0) more of their investable assets in a robo solution than an investor in the 

Silent Generation.  The model also confirms that an investor’s knowledge can be used to predict 

the level of adoption of a robo-solution. An investor with extensive knowledge would tend to 

hold roughly 20% less in a robo-solution than an investor with no experience. Investor goals, 

experience with market declines, actions taken with market declines, account taxability and 

Constant Goals Actions Age Knowledge Mkt 

Decline 

Taxability Ownership No. 

of 

obs. 

R2 F 

Statistic 

94.63 -4.10 2.68 3.77 -6.69 1.32 -3.32 -3.65 1000 .065 10.01 

(0.001)*** (.179) (.142) (0.001)*** (0.001)*** (.518) (.138) (.341)   (0.001)*** 

Age Constant No. of 

obs. 

R2 

-.282 100.84 1000 .02 

(0.001)*** (0.001)***   
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ownership do not appear to make a significant contribution to the percentage of assets an 

investor holds in a robo-solution. The model is significant at the 1% level (p-value < .001), and 

based on these results, H2c and H2d could be supported. However, there is little support for H2a, 

H2b, H2e and H2f. Table 11 summarizes the findings from H1a-H1d and H2a- H2f.  

Table 11: Null Hypothesis Results 
Table 11. shows a summary of the results for each hypothesis tested for H1 and H2. The description summarizes the 

hypothesis along with the findings. Null Hypothesis represents the alternative conclusion to the hypothesis tested. 

Fail to Reject represents a finding that the sample tested did not provide sufficient evidence of a relationship 

between the dependent variable (percentage of assets in a robo-solution) and the independent variable. Reject 

represents a finding that the sample tested did provide sufficient evidence a relationship exists between the 

dependent and independent variable.  

Hypothesis  Description 

 

Reject or Fail 

to Reject the 

Null 

Hypothesis  

H1a 
Association of percentage of assets to a robo-solution 

with RIA AUM 
Fail to Reject 

H1b 
Association of percentage of assets to a robo-solution 

with offering Fee Discounts 
Reject 

H1c 
Association of percentage of assets to a robo-solution 

with interaction of AUM and Fee Discounts 

Reject 

 

H1d 

Association of percentage of assets to a robo-solution 

with percentage of employees performing investment 

advisory function 

Fail to Reject 

H2a 
Association of percentage of assets to a robo-solution 

with an investor’s goals 
Fail to Reject 

H2b 

Association of percentage of assets to a robo-solution 

with an investor’s actions (or proposed actions) during a 

market correction 

 

Fail to Reject 

H2c 
Association of percentage of assets to a robo-solution 

with an investor’s age 
Reject 

H2d 
Association of percentage of assets to a robo-solution 

with an investor’s knowledge 
Reject 

H2e 
Association of percentage of assets to a robo-solution 

with an investor’s experience with a market correction 
Fail to Reject 

H2f 
Association of percentage of assets to a robo-solution 

with account ownership and account taxability 
Fail to Reject 
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IV DISCUSSION 

There have been many advances within the technology sector, or more specifically the 

FinTech space, that are geared towards support of the growth trajectory in the RIA industry. 

While robo-advisors have received their fair share of practitioner press, there has been little 

research devoted to robo-advisor usage within the financial services industry. The difficult 

challenge RIA firms face today is should they adopt a robo solution to help with capacity 

constraints and once they decide to adopt, what would be the best pricing structure (Lopez et. al., 

2015) and who are the clients they should target for robo usage.  Singh et al. (2017) state 

advances in frontline interface technologies and devices are profoundly disrupting how 

organizations and customers interact to create and exchange value. The concept of a hybrid 

model (Sarpong, 2020; Thompson, 2018; Lopez et. al., 2015; Kitces et. Al., 2015; Stich, 2018) 

brings forth the notion of how a robo-solution might complement the traditional service model of 

RIAs. In keeping with the hybrid model framework, this research adds to current literature by 

extending the focus beyond the individual investor level to the RIA level by assessing the effects 

of fee discounts, RIA AUM and employee specialization on robo-adoption. Secondly, this study 

extends the current research on the characteristics of individual adopters by considering factors 

such as investor goals, experience with market declines and investment account attributes. These 

contributions help RIA firms, seeking to either implement a hybrid model or increase current 

adoption rates to manage client capacity, with evaluating a pricing structure for the robo-solution 

and identification of client characteristics of likely robo adopters.  

The first contribution, relating to RIA AUM and fee discounts, suggests that offering a 

fee discount increases the adoption of a robo-solution but not when offered by an RIA under 

$250M.  Specifically, the findings show a large RIA firm offering a fee discount is a significant 

contributor to the percentage of assets held in a robo solution. A client working with an RIA over 
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$250M would hold roughly 7.5% more in robo-solution vs. a client working with an RIA under 

$250M. As previously mentioned, several practitioner papers (Lopez et. al., 2015, Ludden et. al., 

2015, Kitces et. al., 2015) pose the question of the proper pricing structure for a financial 

planning firm offering a hybrid model. This study, to my knowledge, is the first to begin to 

answer this question. Even though the findings suggest fee discounts increase adoption for larger 

RIAs, there are other elements in the data from this study that should be taken into context.  

First, referring to the work by Cyert and March (1963), prices are set based on 

conventional practice. As previously highlighted (see Figure 2 on page 10), the range of pricing 

for the top 10 robo-advisors was from 0 basis points to 89 basis points. Also, previously noted, 

the typical RIA charges roughly 1% on their traditional services for clients. This study’s findings 

suggest that RIAs might not follow conventional pricing practices when it comes to offering a 

robo-solution.  Figure 4 shows a 2x2 matrix of clients from this study linked to large RIAs that 

offer a fee discount vs. clients linked to small RIAs that offer a fee discount. Only 39% (393 out 

of 1,000 sampled) of the clients in this study are linked to an RIA that offer a fee discount. Table 

5, on page 18, points out that 233 RIAs represented the 1,000 clients in this study which 

indicates an RIA is represented more than once in the sample of clients. Of the 233 RIAs in the 

sample, only 31% offer a fee discount. This low percentage of firms offering discounts could 

speak to the notion that RIAs feel there is more value addition in their relationship with the 

client, beyond just that of the investment solution they provide.  
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Figure 4: Population RIA AUM-Fee Discount 2x2 Matrix 

 

One possible explanation for fee discounts being significant in this study, specifically in 

larger RIAs, could be found in Figure 5, which represents a 2x2 matrix of the 233 advisors in the 

study. Of the large RIAs, 38% offer a fee discount vs. 19.5% of the small RIAs offering a fee 

discount. Also, large RIAs (over $250M) represent 63% of the sample in this study. As 

previously mentioned, from the 2020 Schwab Benchmarking Study, large RIAs serve a median 

of 389 clients vs. small RIAs having a median client base of 132, which could account for the 

high number of clients from the sample being associated with a large RIA. Another explanation, 

as to why the findings suggest fee discounts are significant for larger RIAs, could be the pricing 

strategy of these larger firms. Given larger RIA firms generate more revenue, than smaller firms, 

they may have more flexibility in offering discounts and are able absorb these discounts more so 

than smaller firms.  
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Figure 5: Sample RIA AUM- Fee Discount 2x2 Matrix 

One of the potential advantages of a hybrid model is the ability to leverage technology to 

help manage client capacity, as mentioned in the introduction of this study. This study attempts 

to add to the current literature by leveraging work done by Adam Smith (1965) on the division of 

labor among workers. Specifically, this study argues that RIA firms under $250M do not have 

specialized roles relating to investment management. The basis for this argument is from my 

observations as a consultant to the RIA Industry having worked with RIA firms, ranging from 

$50M up to $20B in AUM, for over 16 years. As shown in the results (Table 8), the independent 

variable used to isolate employee specialization, %age of Advisory Employees, was not 

significant. A potential factor causing the low significance is how RIAs report employee 

specialization. As shown in Table 4, the RIA reports the total number of employees and the total 

number of employees performing investment advisory functions on their ADV. A limiting factor 

could be how “investment advisory” function is defined by the RIA. Investment advisory 

function, could be interpreted to mean, solely focused on investment management or it could be 

interpreted to be more of an “advisory” function that is client facing which could involve 

advising clients on their investments. For example, consider a small RIA with 5 employees. Of 

the 5 total employees, 1 employee is in a front office role and the other 4 are advisors that meet 

with clients. This particular RIA could answer the question, on the ADV relating to investment 
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advisory functions, as having 4 employees dedicated to the investment advisory role. For 

comparison, a large RIA with 50 employees with 4 dedicated to specifically investments, could 

answer the question as having 4 employees dedicated to investment advisory. This variation in 

how the question is answered could lead to a low significance factor in the model. More research 

would need to be done, at the advisor level, to isolate the variability in the data.  

The second contribution of this study to the existing literature is to extend the research 

done by Fan and Chatterjee (2020) by using the Diffusion of Innovation Theory (Rogers, 1995) 

to understand the investor characteristics of robo-adopters. One of the unique characteristics of 

this study is the data consists of investors that have a chosen to work with an RIA firm and 

therefore are looking to the RIA firm for investment guidance.  Current literature has focused on 

the “do-it-yourself” investor, and while some of the characteristics of a “do-it-yourself” investor 

and an RIA might be similar as it relates to age, investment knowledge, or goals, this study adds 

elements such as account attributes and experience with market declines to further help RIAs 

refine the ideal client profile for robo-adoption.  

This study, similar to other studies (Fan and Chatterjee, 2020; Fulk et. al; 2018;), finds 

that age is a significant predictor of the percentage of assets held in a robo-solution. The results 

show that Generation Z and Millennials would hold roughly 11% and 8% more, respectively, of 

their investable assets in a robo solution than an investor in the Baby Boomer generation. The 

willingness to embrace technology is one likely explanation for these findings. But, unlike their 

parents who might have engaged a financial advisor, younger investors are less likely wanting a 

face-to-face interaction and find the occasional validation of investment progress as sufficient in 

a financial advisor relationship. Therefore, a robo-solution allows RIAs to manage capacity and 

maintain a relationship with younger investors (typically children of older clients) which 
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ultimately could help the RIA maintain the assets of their older clients as they pass to their 

children. In keeping in line with age being associated with robo adoption, this study 

hypothesized that there is an association with an investor goals and the percentage of assets held 

in a robo-solution. Surprisingly, investor goals had little significance as it relates to robo-

adoption.  A possible explanation for this finding is that investors do not place importance on the 

type of investment solution or vehicle that helps them accomplish their goals, the importance lies 

in the achievement of their goals.  

I analyzed the client’s stated investment knowledge and the findings, while a significant 

predictor in the model, were contrary to Fan and Chatterjee’s (2020) findings.  The investor 

knowledge (as described in Table 4) is collected as a subjective measure in the account opening 

process. This study’s results show that an investor with extensive knowledge would hold 20% 

less in a robo-solution than an investor with no investment knowledge. While this finding is 

contrary to that of Fan and Chatterjee (2020), as part of their results, they state it is possible that 

those who are more knowledgeable are more likely to prefer to work with a human advisor and 

refrain from delegating their portfolio management to a robo-advisor platform. I would agree 

with this assessment on the basis of a more knowledgeable investor is likely to be older (and as 

previously stated less likely to adopt a robo-solution) and if they have hired an RIA, they are 

more likely to want to have their investments “managed” by a human. D’Acunto and Rossi 

(2019) state, in their discussion of the spectrum of robo-advisors, that a hybrid model caters to 

wealthier and older clientele. They go on to state the importance of having a human advisor 

involved in the elements of the client relationship that cannot be automated, such as financial 

planning.  
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For investors that have experienced a market correction, there is comfort in knowing they 

have someone that is making decisions about how the correction impacts their financial situation. 

This study also hypothesizes that there is an association with robo-adoption and an investor’s 

experience with a market correction and also their actions (or proposed actions) during a market 

correction.  The notion behind these hypotheses is that for investors that have weathered a 

market downturn, the image of a robo advisor at the helm of their portfolio would likely be a 

tough sell for the RIA to their clients. The results show that neither experience with a market 

correction or action taken make a significant contribution to the percentage of assets held on a 

robo-solution. A possible explanation for this result lies in one of the limitations of this study. I 

did not observe the interaction between the RIA and client, and I cannot attest to the approach 

each RIA included in this study takes when recommending how they would serve each client. 

There is an assumption that if the RIA proposes a robo-solution, the client makes a choice as to 

whether to proceed with that recommendation or not. These results could be due to the trust 

(Rossi and Utkus, 2020), regardless of any previous market experiences, a client places in the 

RIA when they choose to hire the firm. 

Two other variables included in the regression analysis are taxability and account 

ownership. When it comes to managing taxes for investments, robo-advisors are an effective way 

to manage tax implications as they employ passive investment strategies and apply rebalancing 

techniques (Uhl and Rohner, 2018). Additionally, as a consultant to the RIA industry I can attest 

to the fact that when RIAs have thought about how a robo-solution might fit their client’s needs, 

typically the types of accounts that seem most appropriate are the accounts where parents set 

aside money for college funds for their children, or investors that are just putting money away 

for savings after maximizing any retirement accounts. As noted in Table 10, from the data set, 
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taxable accounts were coded as a 1, with IRA accounts coded as 0. Individual accounts were 

coded as a 1 and joint accounts coded as a zero. The results show both taxability and account 

ownership are not significant determinants of the adoption of a robo-solution.  

Both regression models in this study had very low R2 values. As it relates to the models 

associated with RIA AUM and fee discounts (R2 of 2%), there are a few potential explanations 

for the low explanatory value. First, the robo-solution involved in this study has evolved since its 

inception (and since the data sample was collected) and it is possible that this custodian’s initial 

release of the robo-solution did not entice RIA firms to adopt the technology as part of their 

offering. For example, lower trading costs or additions to investment solutions (such as adding 

mutual funds) could have an impact on overall adoption that is not examined in this study. 

Another possible explanation is the previously mentioned cash mandate by the custodian, which 

the data was obtained from, that RIAs hold a certain amount of the model in cash. This mandate 

could be viewed by some RIAs as having a negative effect on overall investment performance 

(as they might hold less cash in their traditional portfolios) and therefore they might use other 

model portfolio solutions for their clients. The model tested for client attributes also had a low 

explanatory value (R2 of 6.5%).  One possible explanation for this can be attributed to the 

association of the client with an RIA in that the client has already decided to hire the RIA and 

therefore has placed their decision making (as it relates to choosing a robo-solution) in the hands 

of the RIA.  

While neither model has great explanatory power, there are several implications for RIAs 

that can be drawn from this study. First, this study sets out to answer the question: For assets 

managed by an RIA, are fee discounts associated with higher allocation of client assets to an 

automated investment solution vs. a traditional solution. While fee discounts were found to be 
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significant in this study’s regression models, when evaluating these findings against the mean 

assets held by clients in a robo solution, RIAs should not consider having to reduce their 

traditional fees when adopting a hybrid model as a must. Certainly, there are robo-solutions in 

the marketplace that are priced much less than the traditional fee structure of RIAs, but the 

reduction in fees by the RIA appears to have a small overall impact to the percentage of assets 

held in a robo-solution. Additionally, clients of RIAs might place more value in the overall 

relationship and not focus as much on the fee as some RIAs might think. And secondly, the 

hybrid model might offer a real opportunity for RIAs to engage the younger generation in an 

effective way, given the results relating to age and investment experience. The engagement of 

the younger generation could come in the form of the children of older clients or an opportunity 

to grow a segment of the market.  
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V LIMITATIONS AND FUTURE RESEARCH 

There are several limitations associated with the data used in this study. First, as 

mentioned previously, the data set was collected from a single brokerage firm which poses a few 

issues regarding the generalizability of the findings. While the brokerage firm does represent a 

large population of RIAs, this study does not consider RIAs that are not using the firm’s 

custodial services and potentially use other brokerage firm’s robo-solution. This limitation 

introduces a potential selection bias within the data in that the firms included in the study have 

already chosen to use a particular robo-solution and firms that offer a fee discount have already 

made that choice. Second, as it relates to selection bias, there is an implication that the RIAs 

included in this study have taken other robo-solutions into account in making the choice to use 

this firm’s solution. That decision process is not within the scope of this study as it does not 

review the merits of one robo-solution over another. Third, while the RIAs included in this study 

have discretion over the investment process, the decision to adopt a robo-solution is not 

specifically known as to how much influence the RIA had in actual adoption. Finally, this study 

uses the Diffusion of Innovation Theory (DOF) to examine the characteristics of investors that 

adopt a robo-solution. As, previously noted, DOF (Rogers, 1995) is used to explain how an idea 

or product gains traction and spreads through a group or social system. Therefore, there is a time-

series element to DOF, in that it assumes the diffusion process is over a period of time. However, 

this study does not use time-series data, and only considers a single point in time.  

These limitations may offer several opportunities for future research. A more expansive 

time-series study across multiple robo-platforms would provide greater insights into other 

potential factors that might affect adoption such as investment solutions within a particular robo-

solution or the robo-solution interface itself. This study only focused on whether a fee discount 

was offered or not, it did not consider the magnitude of the discount. The magnitude of the 
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discount or whether the discount was applied could be a factor that could a part of future 

research. As mentioned previously, the regression models in this study have very low 

explanatory power. A possible explanation could be due to the decision-making process a client 

goes through in hiring an RIA, they have made a decision to hire the RIA and therefore there 

could be an implied trust in the recommendation of the RIA. A qualitative study could be done 

across advisors and their clients to better understand the interaction between the RIA and the 

clients regarding a robo-solution. An additional measure in this qualitative study could look at 

the satisfaction level of the client as it relates to the hybrid used by the RIA. And finally, to 

understand if a hybrid model truly helps with capacity constraints, within an RIA firm, a 

longitudinal study could be done to measure firm performance relating to AUM growth, client 

growth and retention rates and staff productivity measures.  
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APPENDICES 

Appendix A 

The bar chart below shows the comparison (by category) of client assets held in a robo-

solution vs. assets held with the RIA Firm. 
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Appendix B 

The Scatter Plot below shows the relationship between Percentage of Employees 

Performing the Investment Advisory Function and Percentage of Assets held in a robo-solution. 

Percentage of Employees Performing IA (Investment Advisory) Function is calculated by dividing 

the number of employees an RIA reports that is performing an Investment Advisory role by the 

total number of employees of the RIA.  
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The scatter plot below shows the relationship between the percentage of assets held in a 

robo-solution and age.  
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Appendix C 

Coefficients for Correlation and Multicollinearity 

The tables below show correlation and collinearity statistics for the regression models 

examined in this study. Correlation coefficients take on values between -1 and +1, indicating a 

perfect correlation. Tolerance and Variance inflation indicator (VIF) values are shown to test for 

correlation between independent variables (multicollinearity). Tolerance values less than .10 

indicates that the multiple correlation with variables is high. VIF values above 10 would indicate 

the presence of multicollinearity. 

Model 1 
Correlations Collinearity Statistics 

Zero-order Partial Part Tolerance VIF 

  AUMSize -0.070 -0.028 -0.028 0.729 1.371 

FeeDiscount 0.135 0.114 0.114 0.784 1.276 

AUMSize*FeeDiscount 0.013 -0.007 -0.007 0.731 1.368 

 

Model 2 
Correlations Collinearity Statistics 

Zero-order Partial Part Tolerance VIF 

  AUMSize -0.070 -0.035 -0.035 0.691 1.448 

FeeDiscount 0.135 0.043 0.042 0.867 1.153 

%of Advisory Employees 0.009 0.032 0.031 0.929 1.076 

AUMSize*FeeDiscount 
0.013 -0.007 -0.007 0.731 1.368 

 

Model 3 
Correlations Collinearity Statistics 

Zero-order Partial Part Tolerance VIF 

  SmallNoFee -0.081 -0.028 -0.028 0.831 1.203 

SmallFeeDiscount 0.013 0.029 0.028 0.945 1.059 

LargeFeeDiscount 0.133 0.114 0.114 0.821 1.218 
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Model 8 
Correlations Collinearity Statistics 

Zero-order Partial Part Tolerance VIF 

  Goals -0.024 -0.044 -0.043 0.950 1.053 

Actions 0.060 0.047 0.046 0.918 1.089 

Age -0.147 -0.116 -0.113 0.794 1.260 

Knowledge -0.216 -0.175 -0.172 0.846 1.182 

Mkt Decline 0.123 0.017 0.017 0.716 1.397 

Taxability -0.032 -0.046 -0.045 0.764 1.308 

Ownership 0.006 -0.030 -0.029 0.789 1.267 
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