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Structural interactions between the RNA and Nucleoprotein. A. Ribbon representation of three 

Nucleocapsid protein subunits constructed from PDB 3PTX. Shown in red is the N-terminal arm, 

which interacts with adjacent subunits. Shown in blue and magenta are the N-lobe and the C-

lobe respectively. Shown in yellow is the C-terminal loop, which also interacts with adjacent 

subunits. Furthermore, the backbone of the RNA is shown as a tan line sandwiched between the 

N and C-lobes. B. A cartoon representation of a tight or loose interaction of the genomic RNA in 

the nucleocapsid. This would regulate the accessibility of the sequestered RNA to vRdRp and 

cause possible disassociation or stalling of vRdRp. C. Stick representation of nine nucleotides 

(Adenosine) encapsidated in the nucleocapsid. Shown in red are the first 4 nucleotides that have 

bases stacked with each other. Shown in blue, are nucleotides 5, 7, and 8 that also have bases 

stacked. Nucleotide 6 is shown in yellow and does not directly interact with other nucleotides.   

 

Figure 4.1 Structural interactions between the RNA and Nucleoprotein 
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In-situ assay of vRdRp activity. A. Vector for the minigenome based on the N gene of VSV. Under 

the control of the T7 promoter, the vector will express the vRNA copy of the N gene, flanked by 

the leader and trailer sequences. B. Top panel shows the relative fold decreases in RNA levels 

from all the minigenomes quantitated by in situ vRdRp activity assays. N stands for the wt 

genome, H stands for the high usage genome and L stands for the low usage genome. Bottom 

panel shows the fold increases of shortened RNAs using primers that correspond to the 

beginning of each viral RNA moiety, as ratios to the full length RNA moieties. C. Construction of 

the chimeric minigenomes. Each was constructed based on the golden-ratio with the darker 

color representing the wt genome and lighter gray representing high or low usage genomes. 

Each chimeric genome is shown in panel B as NH1 or NL1 etc. D. Highlighted sequence of the N 

gene showing the location of the high frequency codons, in green, or the low frequency codons in 

red. Furthermore, highlighted in cyan is the placement of 3-stop codons to prevent translation of 

the mRNA transcripts. Also shown, in magenta, is the PCR-tag utilized in qPCR to identify 

mRNA transcripts transcribed only from the minigenome. 

 

 

 

 

Figure 4.2 In-situ assay of vRdRp activity.  
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Calculated (A+G%) vs KIC. Each panel is a different window size ranging from 9-90 as 

multiples of 9 due to the number of nucleotides in each N subunit. The wt genome is plotted in 

gray, the high usage genome is plotted in red, and the low usage genome is plotted in blue. The 

center of mass is plotted in their respective color for each panel, and all three centers of mass 

are plotted on the wt plot. 

 

Figure 4.3 Calculated (A+G%) vs KIC.  
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Thermal Shift Assays. Thermal shift assay was carried out on the randomly incorporated RNA in 

the recombinantly expressed NLP, poly(rA), and poly(rU) in reconstituted NLPs. Sybr Safe, 

which monitors RNA thermo-release from the NLP, is shown in gray, while Sypro Orange, which 

monitors protein denaturation is shown in black. Average Tm’s with the standard deviation is 

shown on each panel. 

 

Figure 4.4 Thermal Shift Assays.  
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Table 4.1 Primers for Minigenome Construction 

 

 

 

 

 

 

 

 

 

 

 

 
Minigenome Construction 

N-gene-F 5'-CGTACGATGTGATGATGAGTCAAGAG-3' 

N-gene-R 5'-CGTACGTCATTTATCAAATTCTG-3' 

Triple Stop Codon-F 5-’GTAATCACGTACGATGTGATGATGAGTCAAGAGAATCATTG-3’  

Triple Stop Codon-R 5’ CAATGATTCTCTTGACTCATCATCACATCGTACGTGATTAC-3’ 

PCR-tag-F 5'-CGGATGGTTCGAAGATCAAAACAGAAAACCG-3' 

PCR-tag-R 5'-AGCCATTCAACCACATCTCTGCCTTGTGG-3' 
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Table 4.2 RT-PCR primers 

 

 

 

 

 

 

 

 

 

 

 

 
RT-PCR primers 

mRNA 5’-CCAGATCGTTCGAGTCGTTTTTTTTTTTTTTTTTCATTTGTCAAATTCTGACTTAG-3’ 

cRNA 5’-GCTAGCTTCAGCTAGGCATCCGCCGATATCTGTTAG-3’ 

vRNA 5’-GGCCGTCATGGTGGCGAATAGAAGTTTGGTAGGCTCG-3’ 

mRNA-short 5’-CCAGATCGTTCGAGTCGTTTGACATGTATGATTGATAC-3’ 

cRNA-short 5’-GCTAGCTTCAGCTAGGCATCCATCGTACGTGATTACTG-3' 

vRNA-short 5’-GGCCGTCATGGTGGCGAATCGTACGTGATTACTGTTAAAG-3’ 

β-Actin 5'-AGCACTGTGTTGGCGTACAG-3' 
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Table 4.3 Table of qPCR Primers 

 

 

 

 

 
qPCR Primers 

mRNA-F 5’-CCAGATCGTTCGAGTCGT -3’ 

mRNA-R 5’-AAGGCAGAGATGTGGTCG -3’ 

cRNA-F 5’-GCTAGCTTCAGCTAGGCATC-3’ 

cRNA-R 5’-AAACAGAAAACCGACTCCTG -3’ 

vRNA-F 5’-GGCCGTCATGGTGGCGAAT-3’ 

vRNA-R 5’-AGCAGGTTTGTTGTACGC -3’ 

mRNA-s-F 5’-CCAGATCGTTCGAGTCG-3’ 

mRNA-s-R 5’-ATGTGATGATGAGTC-3’ 

cRNA-s-F 5’-GCTAGCTTCAGCTAGGCATC-3’ 

cRNA-s-R 5’-ACGAAGACAAACAAACC-3’ 

vRNA-s-F 5’-GGCCGTCATGGTGGCGAAT-3’ 

vRNA-s-R 5’-ACGAAGACAAACAAAC-3’ 

β-Actin-F 5'-AGAGCTACGAGCTGCCTGAC-3' 

β-Actin-R 5'-AGCACTGTGTTGGCGTACAG-3' 



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.4 Fraction of Codon Usage 
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5 SUMMARY 

The goal of this work is to examine the basic structure-function relationships which guide 

viral replication via the nucleocapsid of VSV. Using a three-pronged approach towards 

understanding these basic principles, this work covers the discovery of a novel antiviral from an 

already widely understood class of compounds, the structure-based elucidation of a region 

important for viral polymerase assembly/processivity, and a paradigm shifting approach towards 

how the virus controls genetic drift of its genome.  

Utilizing these techniques, a new potential antiviral compound was discovered that 

specifically targets the genomic RNA in the nucleoprotein. In doing so, it can specifically inhibit 

the activity of the vRdRp. This is one of the first compounds that can directly target the 

sequestered viral RNA encapsidated by a nucleocapsid. This compound was also found to be 

non-toxic to cells at higher concentrations than is needed to inhibit the activity of the virus. With 

further iterations, the efficacy of this polyamide will only continue to improve. Furthermore, 

these principles can be directly applied to explore if other polyamides can target other NSVs, 

more specifically, pandemic diseases like RSV. The drawback to this approach is that this 

polyamide may be specific for VSV, seeing as it recognizes both the genome and the protein. 

However, this study opens the door for further investigations and design of polyamides that can 

target the nucleocapsid of other more pathogenic viruses. 

Our second approach, examines the fundamental interactions that guide the assembly and 

activity of the vRdRp. Through doing mutational studies on what we are calling the “access 

gate”, which is a helix positioned to protect the RNA, three key interactions were found. Three 

mutations E169A, F171A, and L174A were found to abolish the activity of the polymerase 

complex in a minigenome assay. Furthermore, incorporating these mutations into the 
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nucleoprotein does not disrupt the overall structure and assembly of the nucleocapsid. This 

would be an indicator that these interactions directly influence either the activity or the assembly 

of the vRdRp complex. Finally, after introducing these mutations into the viral genome and 

passaging the virus multiple times, we found compensatory mutations which restored the activity 

of the vRdRp. All the compensatory mutations that were found are on proteins associated with 

the polymerase complex. This indicates that these residues are crucial for the formation of an 

active vRdRp. With this information, we can probe the interactions that are imperative for the 

vRdRp, allowing us to conclude that the “access gate” helix is important for viral RNA 

transcription. 

The last investigation reveals new insights into how NSVs control their genetic drift. 

Since RNA viruses are well known to have extremely high mutational rates, there must be 

constraints in place for these viruses to control genetic drift. Traditionally the main evolutionary 

bottleneck was thought to be controlled by the host’s CUB, as in positive strand RNA viruses. 

However, this is not necessarily true when examining NSVs. This work has showed that the 

interactions between the genome and the nucleocapsid play a vital role in controlling the 

processivity of vRdRp. In turn, this would control genetic drift of the virus. Since the polymerase 

must access the RNA sequestered in the nucleocapsid, this would mean that the interactions 

between the genome and the nucleocapsid are central in controlling viral RNA transcription. The 

model states that there are some sections of the genome which will interact tightly with the 

nucleocapsid, making it harder for the polymerase to access and perhaps stalling/slowing it 

down. The inverse could also be true, loosely interacting sequences will make it too easy for 

polymerase to access the RNA and perhaps cause the complex to disassociate. Using an in situ 
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minigenome experiment, genomic sequence analysis, and stability assays, it was found that the 

pyrimidine/purine ratio plays a significant role in controlling the processivity of the vRdRp. 

All this data garners interesting insights into how the nucleocapsid is a central role in the 

life cycle of VSV. Since the nucleoprotein encapsidates the genome, the structure-function 

properties that control its access are vital to the understanding of the viral replication life cycle. 

Furthermore, since these aspects are ubiquitous across NSVs these studies could be directly 

applied to more pathogenic viruses. As shown in this dissertation, understanding how this viral 

family controls and protects its genomic material is important not only for basic science, but also 

for the development of antivirals and vaccines. Hopefully this dissertation can shed light on 

some of these fundamental interests when studying NSV virology, and hopefully have a small 

impact on humanity at large.    

5.1 Forward Looking Directions 

Part of science is utilizing the data available to ask pertinent questions. In pushing the 

boundaries of known knowledge, it is important to be constantly innovating with a clear plan on 

how to move projects forward. In the context of the antiviral drug discovery portion of this 

dissertation, polyamides represent a promising class of compounds. UMSL1011 is the first 

compound which has been found to target the genomic RNA in an NSV. It represents an 

auspicious start towards using these compounds to target more pathogenic NSVs like RSV, 

Ebola, and even Influenza. Currently, UMSL1011 is specific for VSV and needs to be drastically 

improved. Verifying the nucleotide sequence that UMSL1011 targets would allow for the 

development of a set of rules which could be ubiquitously applied to other NSVs. Also, a 

targeted genomic approach can allow for functional studies which elucidate sensitive parts of the 

VSV genome. To make a more efficacious polyamide, without knowing the sequence that it 
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targets, one approach is to focus on a compound which interacts with Arg312 and Gln318. 

Getting a compound to bind in the pocket close to the RNA could disrupt the pertinent 

interactions involved in viral transcription. Another approach is to shorten the polyamide. The 

crystal structure does not contain the full-length polyamide. While it is impossible to tell whether 

this is due to an unstructured portion of the compound in the structure, or if the compound is 

getting hydrolyzed, shortening the polyamide may lead to a targeted effect. One could try the 

structured portion of the polyamide found in the crystal or design one with five linkers to target 

the RNA base stacking. This may lead to a stable compound able to target VSVs genome. Of 

course, the drawback would be an increase in off-target effects, as the promiscuity of the 

compound is going to increase as it gets shorter. 

Studying the interactions which facilitate the assembly of the vRdRp has proven to be a 

challenging problem. The compensatory mutations identified in Chapter 3 lead to many 

interesting insights. Two of the mutations found on the L-protein are located on a single helix 

which borders the site where the template strand of RNA would enter for transcription to take 

place. One method to investigate if this region is important for producing an active vRdRp 

complex, is to identify all the solvent accessible residues on this helix and do alanine scanning 

mutations. Activity can then be tested by one of the in situ minigenome assays presented 

throughout this work. While this study would not allow one to identify if this helix is directly 

interacting with the nucleocapsid, it would build a stronger case for the access gate hypothesis. 

To directly test if this helix is interacting with the nucleocapsid, the construction of a fusion 

protein could be done. Replacing the N-terminal arm on the nucleocapsid with a flexible linker 

and the L-protein helix could allow one to recombinantly express a pseudo-vRdRp complex. 
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Structurally characterizing the fusion protein would be hard, but if in situ minigenome 

experiments show promising results, the likelihood of the fusion protein working would be high. 

Being able to understand the constraints placed on the vRdRp and how it influences the 

mutation rates of NSVs is an interesting topic of study. While VSV is a great model system, 

replicating these results with an Ebola or RSV minigenome system would give credence to this 

ubiquitous method of evolutionary control throughout all NSVs. Furthermore, identifying the 

impact that this may have on different genes in VSV would be interesting. While it has already 

been shown that changing the codons in the L-protein can lead to viral attenuation, other genes 

have yet to be investigated in this manner. Further quantifying the amount of short terminating 

transcripts by the polymerase when altering the base stacking properties, is another direction that 

this study to go. Being able to tell where the polymerase would be stalling/dissociating would 

give a better idea of sequences that the polymerase is sensitive too. Finally, an interesting 

approach to understand how sequences control mutational constraints of the polymerase may lie 

in the fast-developing field of Deep Learning. Neural networks are now being extensively used 

in natural language processing. Nucleotide sequences are nothing but a language which we are 

not fluent in. Utilizing the large databases of viral sequences, which are tied to activity or 

attenuation of the virus and applying what we have found about the base stacking properties to 

these sequences, it is possible to build a deep learning model which could reveal unforeseen 

patterns and predict attenuating mutants. 

While these are just some future directions that this work could take, sometimes the best 

scientific discoveries lie in the unpredictable. Most of the time an experiment does not tell you 

what you want, but it always tells you what is true. Following the truth will lead to interesting 
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discoveries and breakthrough scientific innovations. Nature always reveals herself in due time, it 

just takes a person who is willing to look and ask the right questions.   
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APPENDICES  

Appendix A 

Appendix A.1 

 2-ΔΔC
T Values for Minigenome 

Comparison: 2-ΔΔC
T 

UMSL1011:DMSO(control) 0.33 

DMSO(control):Mock(control) 0.88 

UMSL1011:Mock(control) 0.29 

 

Appendix A.2 

 

 

 

 

 

 

 

 

 

 

Figure A.2 Amplification plots of the qPCR in the minigenome assays in Figure 3.6. This 

illustrates that the controls do not have any amplification even when compared to the experimental 

conditions. 
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Appendix A.3 

Polyamide Characterization 

UMSL1013 Im-Py-Py-Py--Py-Py-Im-Py--Dp (3 TFA): 

1H NMR (600 MHz, DMSO-d6) being obtained now.  

HRMS (ESI) calculated for C58H71N21O10 [MH]+, 1221.5684, found, 1221.5702. 

Reverse Phase HPLC purity (trace shown): 94%. 

 

UMSL2082 Im-Im-Py--Py-Py-Py--Ta (4 TFA): 

1H NMR (600 MHz, DMSO-d6)  = 7.54 (s, 1 H), 7.42 (s, 1 H), 7.20 -7.18 (dd, 1 H), 7.13 

(s, 1 H), 7.07 (d, 1 H), 7.01 (s, 1 H), 6.96 (d, 1 H), 6.85-6.84 (m, 2 H), 3.98-3.97 (m, 7 H), 3.80-

3.77 (m, 14 H), 3.48 (19 H, H2O), 3.37-3.35 (m, 3 H), 3.20-2.99 (m, 12 H), 2.84-2.81 (m, 3 H), 

2.73-2.71 (s, 4 H), 2.35-2.32 (t, 2 H), 2.27-2.25 (t, 2 H), 1.90-1.86 (m, 3 H), 1.79-1.73 (m, 5 H). 

HRMS (ESI) calculated for C48H64N18O8 [M]+, 1020.5154, found, 1020.5101. 
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Reverse Phase HPLC purity (trace shown): 98%. 
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