
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Summer 8-11-2020

Learning Interpretable Features of Graphs and Time Series Data Learning Interpretable Features of Graphs and Time Series Data

Shah Muhammad Hamdi
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Hamdi, Shah Muhammad, "Learning Interpretable Features of Graphs and Time Series Data." Dissertation,
Georgia State University, 2020.
doi: https://doi.org/10.57709/18617943

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/18617943
mailto:scholarworks@gsu.edu

LEARNING INTERPRETABLE FEATURES OF GRAPHS AND TIME SERIES DATA

by

SHAH MUHAMMAD HAMDI

Under the Direction of Rafal A. Angryk, PhD

ABSTRACT
Graphs and time series are two of the most ubiquitous representations of data of

modern time. Representation learning of real-world graphs and time-series data is a

key component for the downstream supervised and unsupervised machine learning

tasks such as classification, clustering, and visualization. Because of the inherent high

dimensionality, representation learning, i.e., low dimensional vector-based embedding

of graphs and time-series data is very challenging. Learning interpretable features

incorporates transparency of the feature roles, and facilitates downstream analytics

tasks in addition to maximizing the performance of the downstream machine learning

models. In this thesis, we leveraged tensor (multidimensional array) decomposition

for generating interpretable and low dimensional feature space of graphs and time-

series data found from three domains: social networks, neuroscience, and heliophysics.

We present the theoretical models and empirical results on node embedding of social

networks, biomarker embedding on fMRI-based brain networks, and prediction and

visualization of multivariate time-series-based flaring and non-flaring solar events.

INDEX WORDS: Data Mining, Graphs, Time Series, Tensor Decomposition

LEARNING INTERPRETABLE FEATURES OF GRAPHS AND TIME SERIES DATA

by

SHAH MUHAMMAD HAMDI

A Dissertation Submitted in Partial Fulfillment for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2020

Copyright
Shah Muhammad Hamdi

2020

LEARNING INTERPRETABLE FEATURES OF GRAPHS AND TIME SERIES DATA

by

SHAH MUHAMMAD HAMDI

Committee Chair: Dr. Rafal Angryk

Committee: Dr. Yubao Wu

Dr. Petrus Martens

Dr. Rajshekhar Sunderraman

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2020

DEDICATION

This work is dedicated to my parents, Maa: AFROZA BEGUM NAZMA and Abbu: MD

SHAHZAHAN ALI SARKER. Your only son could never achieve this goal without your continu-

ous support and priceless inspiration that you provided him throughout his PhD from thousands

of miles away.

iv

ACKNOWLEDGEMENTS

First of all, I would like to pay my heartiest gratitude to most merciful, almighty Allah

for giving me the opportunity to accomplish this dissertation.

I wish to express my sincere gratitude to the best advisor one could ask for, Dr. Rafal

Angryk. Dr. Angryk’s confidence in my abilities, his encouragement, supervision, and

the push he provided helped me tremendously in the completion of this goal.

I would also like to thank each of my committee members – Dr. Yubao Wu, Dr. Raj

Sunderraman, and Dr. Petrus Martens, for their continual support and guidance in my

graduate studies.

I appreciate all the discussions, feedback, assistance, and friendship from the members

of our lab over the years– Ahmet, Azim, Berkay, Dustin, Max, Mike, Ruizhe, Soukaina,

Sushant, and so on.

I would like to mention the support of some of my very close friends such as Soukaina,

Nadir Bhai, Sifat, Adil, Fuad, and Muzaheed during my graduate student life.

In addition to my parents, I would like to mention the names of some of my family

members who directly helped me in achieving this goal such as uncles Dr. Shamsul Alam,

Wahidur Rahman Faruk, Shaheenur Rahman, and Towfiqur Rahman Babu, aunts Nazmin

Nahar, and Salma Begum Runa, and cousin Arifur Rahman. I also thank the rest of my

family including other uncles, aunts, and cousins whose names I could not write due to

the space constraints.

I would like to pay my heartiest tribute to the memory of my family members who left

the world: grandparents Dilua Khatun and Golam Mowla, grandparents Sadhu Sarker

and Bayela Khatun, uncles Obaidur Rahman and Mahabubur Rahman Matin, and cousins

Farhana Rahman Suborna and Silma Subah Nipun. You are in my thoughts and prayers

forever.

Finally, to all my friends and family living in Bangladesh and USA, thank you, I am

honored to have you all in my life.

v

FUNDING ACKNOWLEDGEMENT

This project has been supported in part by funding from the Division of Advanced

Cyberinfrastructure within the Directorate for Computer and Information Science and

Engineering, the Division of Astronomical Sciences within the Directorate for Mathemati-

cal and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within

the Directorate for Geosciences, under NSF awards #1443061, #1812964, #1936361 and

#1931555. It was also supported in part by funding from NASA, through the Heliophysics’

Living With a Star Science Program, under NASA award #NNX15AF39G, as well as

through the direct contract from Space Radiation Analysis Group (SRAG). In addition to

that, the work has been in part sponsored by state funding from Georgia State University’s

Second Century Initiative, and Next Generation Program.

vi

TABLE OF CONTENTS

list of tables . xi

list of figures . xiv

1 introduction . 1

1.1 Motivation . 2

1.2 Challenges . 5

1.3 Contributions . 6

1.4 Outline . 7

2 graph embedding by tensor decomposition 8

2.1 Overview . 9

2.2 Related Work . 10

2.3 Graph notations . 12

2.4 Preliminaries of Tensor Decomposition 13

2.4.1 ALS Solution of CP Decomposition 14

2.5 Interpretable Feature Learning of Graphs 15

2.5.1 Tensor Decomposition-based Node Embedding 16

2.5.2 Tensor Decomposition-based Node Embedding per Slice 17

3 tensor decomposition on brain networks 19

3.1 Tucker Decomposition . 19

3.1.1 ALS Solution of Tucker Decomposition 20

3.2 Application of Tensor Decomposition in Brain Network Representation 21

3.3 Modeling the fMRI data in Tensors 22

3.3.1 Tensor Model 1: Stacked Multivariate Time Series 23

vii

3.3.2 Tensor Model 2: Stacked Functional Connectivity Matrices 24

3.3.3 Tensor Model 3: Stacked Non-negative Functional Connectivity

Matrices . 24

3.3.4 Tensor Model 4: Node-wise Jaccard Kernel on Functional Connec-

tivity Matrices . 24

3.3.5 Tensor Model 5: Node-wise Jaccard Kernel on Non-negative Func-

tional Connectivity Matrices 26

4 biomarker embedding from brain networks 27

4.1 Overview . 28

4.2 Existing Approaches . 31

4.3 Finding Discriminative Subgraph from Complete Functional Connectivity Networks 33

4.3.1 Functional Connectivity Vector 34

4.3.2 Mining Discriminative Subgraph by Feature Selection Algorithms 35

4.4 Representation Learning for the Biomarkers 39

4.4.1 Tensor Construction . 40

4.4.2 Tensor Decomposition in Biomarker Embedding 40

5 time series-based solar flare prediction and visualization . . 46

5.1 Overview . 46

5.2 Related Work . 49

5.3 Data Modeling of the Active Regions 51

5.4 Flare Classification Model . 53

5.4.1 Problem Definition . 53

5.4.2 Summarization of Time Series 53

5.4.3 Parameter Selection and Classification 55

5.5 Solar Event Visualization . 56

6 experimental evaluation . 59

6.1 Graph Embedding by Tensor Decomposition 59

viii

6.1.1 Experimental Settings . 60

6.1.2 Interpretability of the Features 63

6.1.3 Network Reconstruction 65

6.1.4 Link Prediction . 67

6.1.5 Node Classification . 69

6.1.6 Performance and Runtime Varying Dimensionality 71

6.1.7 Graph Classification . 74

6.1.8 Parameter Sensitivity . 77

6.2 Tensor Modeling of the Brain Networks 79

6.2.1 Data Collection . 79

6.2.2 Evaluation Method . 82

6.2.3 Performances in Different Tensor Models 82

6.3 Biomarker Embedding from Brain Networks 86

6.3.1 Generation and Visualization of Discriminative Subgraph 86

6.3.2 Interpretability of the Biomarkers 88

6.3.3 Performance in Different Classifiers 90

6.4 Solar Flare Prediction by Time Series Classification 92

6.4.1 Dataset Description . 92

6.4.2 Train/test Splitting Methodology 93

6.4.3 Performance Measures 95

6.4.4 Best AR Parameter Selection 98

6.4.5 Optimal k in k-NN Classifier 98

6.4.6 Comparison with Other Baselines 100

6.4.7 Span Window-based Performance 102

6.4.8 Effect of C-class Flares in Classification performance 103

6.4.9 Effect of Time Series Summarization 106

6.4.10 Performance using Other Classifiers 106

ix

6.5 Solar Event Visualization . 108

6.5.1 Dataset Description . 108

6.5.2 Baselines . 108

6.5.3 Explanation of the 2D Visualizations 109

7 conclusion . 115

7.1 Concluding Remarks . 115

7.2 Future Work . 116

references . 118

x

List of Tables

Table 4.1 Notations . 39

Table 6.1 Dataset statistics and their use in experiments 61

Table 6.2 Mean execution times of different node embedding algorithms

while varying the number of dimensions 73

Table 6.3 Datasets . 92

Table 6.4 AR parameters used in the experiments 93

Table 6.5 Splitting datasets into train and test sets 94

Table 6.6 Comparison of the proposed method with two other baselines in

11 performance measures 101

Table 6.7 Performance by other classifiers on the summarized time series of

TOTUSJH . 107

xi

List of Figures

Figure 1.1 Embedding of different graph structures in 2D space [1] 3

Figure 2.1 CP decomposition of a third-order tensor. 13

Figure 2.2 CP decomposition-based representation learning of source nodes,

target nodes, and transition steps 15

Figure 3.1 Tucker decomposition of a third order tensor. 20

Figure 3.2 Dimensions for fMRI data using third order tensor 23

Figure 3.3 Two edge-weighted complete graphs. 25

Figure 4.1 Non-binarizing approach can result in producing more significant

biomarkers . 29

Figure 4.2 Extraction of functional connectivity vector 34

Figure 4.3 Constructing third-order tensor from induced discriminative sub-

graph of the complete functional connectivity networks 39

Figure 4.4 CP decomposition of the subjects-discriminative nodes-discriminative

edges-based tensor. 41

Figure 4.5 Tucker decomposition of the subjects-discriminative nodes-discriminative

edges-based tensor. 43

Figure 5.1 Image of an M-class flare which erupts from the right side of the

Sun at 11:24 p.m. EST on Jan. 12, 2015. Credit: NASA/SDO. . . 48

Figure 5.2 Data model of a flaring Active Region in terms of id, generation

time, lookback time, span time, multivariate time series, and label. 52

Figure 5.3 CP decomposition-based representation learning of solar events,

timestamps, and magnetic field parameters 57

xii

Figure 6.1 Executing TDNE on directed Karate network 64

Figure 6.2 Network reconstruction performance of TDNE and TDNEpS with

other baseline algorithms on BlogCatalog network 66

Figure 6.3 Link prediction performance of TDNE and TDNEpS with other

baseline algorithms on BlogCatalog network 68

Figure 6.4 Node classification in airport networks varying training set size . 70

Figure 6.5 Node classification in airport networks varying number of dimen-

sions . 72

Figure 6.6 Graph classification in two brain networks datasets varying training

set size . 76

Figure 6.7 Node classification and graph classification performance of TD-

NEpS in different settings of K and R 78

Figure 6.8 Visualization of 16 ROIs in left and right hemisphere 81

Figure 6.9 Reading disability dataset: Comparison of CP and Tucker decom-

position on five tensor models on the basis of SVM classification

on subject factor matrix 84

Figure 6.10 ADHD dataset: Comparison of CP and Tucker decomposition on

five tensor models on the basis of SVM classification on subject

factor matrix . 85

Figure 6.11 Cross-validation experiment for finding the best k features . . . 87

Figure 6.12 Discriminative subgraph using Fisher-selected 23 edges 88

Figure 6.13 CP and Tucker decomposition-based representations of the dis-

criminative nodes and edges 89

Figure 6.14 Leave-one-out accuracies of different classifiers after selecting fea-

tures in mRMR and Fisher methods 91

Figure 6.15 Confusion matrix . 95

xiii

Figure 6.16 TSS distributions after 20 k-NN executions on the summarized

time series of the individual AR parameters. 97

Figure 6.17 TSS distributions for different k values of k-NN classification on 24

derived datasets of summarized time series of TOTUSJH. 99

Figure 6.18 Variation of TSS after running k-NN (k=1) with different lookback

and span settings on the time series of TOTUSJH 102

Figure 6.19 Performance after k-NN (k=1) execution on the summarized time

series of TOTUSJH with/without considering C-class flares . . . 104

Figure 6.20 Comparison of summarized representation and full-length repre-

sentation of TOTUSJH time series in classification performance . 105

Figure 6.21 Visualization of the flattened mvts’s of the flaring and nonflaring

solar events . 110

Figure 6.22 Visualization of the last timestamp vectors of the flaring and non-

flaring solar events . 111

Figure 6.23 Visualization of the mean magnetic field parameters of the flaring

and nonflaring solar events 112

Figure 6.24 Visualization of the tensor decomposed event-timestamp-parameter

projection vectors of the flaring and nonflaring solar events . . . 113

xiv

1 INTRODUCTION

Interpretability is an important question in machine learning [2]. Representation learning,

one of the most important fields of machine learning [3], has been used in building highly

accurate models for image classification [4], object detection from images [5], speech

recognition [6], word embedding [7], graph embedding [8], and so on. Given the high

dimensional vector-based representation of real-world objects such as images, speeches,

texts, graphs, etc, representation learning models such as manifold learning [9] and

deep learning [3] generate low-dimensional vector-based representations of the objects,

so that the accuracy of the downstream machine learning tasks such as classification

and clustering is maximized. The lack of explainability of the latent features generated

by the black-box models such as deep neural networks results in an uninterpretable

knowledge, even if they are fed into transparent classifiers such as decision tree and

random forest. Moreover, when the latent features are considered for feature selection,

the feature ranking produced by feature scoring algorithms such as Fisher [10], mutual

information [11], minimal Redundancy Maximal Relevance (mRMR) [11], etc also makes

less sense.

In order to generate interpretable features for graphs and time series data, we leverage

tensor decomposition. Tensors are multidimensional arrays, whose low-rank decomposi-

tion can result in low-dimensional, multi-view-based, and interpretable representations.

In particular, we used tensor decomposition-based learning for node embedding for

social networks [12], biomarker embedding for brain networks [13], and magnetic field

parameters embedding for multivariate time series-based solar event data. We showed

how tensor decomposition can be used for capturing the directionality and proximity

1

of the nodes in arbitrary types of networks in order to generate an interpretable feature

space for the nodes. Modeling network data in third-order tensors, and decomposing the

tensors into factor matrices can result in meaningful features, that can be utilized by any

supervised/unsupervised learning models, especially tree-based classifiers and feature

scoring algorithms [14]. We also demonstrated the representation learning of the biomark-

ers, i.e., the discriminative brain regions and their connections that distinguish subjects

with brain-related diseases and normal controls, using the decomposition of tensors.

Finally, we leveraged tensor decomposition for visualizing multivariate time series-based

flaring and nonflaring solar events in two dimensional space. For demonstrating the

interdisciplinary nature of our work, we applied our models in three application areas of

social networks, fMRI-based brain networks, multivariate time series-based flaring and

nonflaring solar event data.

1.1 Motivation

Graphs (a.k.a networks) are one of the most ubiquitous data structures used in computer

science and related fields. By capturing the interactions between individual entities,

graphs facilitate discovering the underlying complex structure of a system. Mining real-

life graphs plays an important role in studying the network behavior of different domains

such as social sciences (social network), linguistics (word co-occurrence network), biology

(protein-protein interaction network), neuroscience (brain network) and so on. Recently,

there has been a surge of research interest in embedding graph structures, such as nodes,

edges, subgraphs, and the whole graph in a low dimensional vector space (e.g., Fig.

1.1). Among them, representation learning of the nodes is most widely studied, which

facilitates downstream machine learning tasks, such as network reconstruction, link

prediction, node classification, and graph classification.

2

Figure 1.1: Embedding of different graph structures in 2D space [1]

In the network reconstruction, the ability to reconstruct the adjacency matrix of the

original network from the embedding matrix is assessed. In link prediction, the embed-

ding algorithm is trained after hiding some edges/links, and the prediction accuracy of

the hidden links is assessed from the reconstructed adjacency matrix derived from the

embedding matrix. In node classification, the learned node embeddings are provided

with the node labels, and embedding performance is evaluated by training and testing a

downstream classifier. Dimensionality reduction of the embedding matrix facilitates the

2D/3D visualization of the nodes. In the multi-graph setting, the whole graph can be

represented by a low-dimensional vector, and graph level classification/clustering can be

performed.

Graph embedding aims to represent the graph structures (e.g., nodes, edges, subgraphs,

or whole graphs) in low-dimensional space so that the performance of downstream

machine learning tasks can be maximized. The problem of graph embedding is related to

two areas : (1) graph analytics, and (2) representation learning. Graph analytics deals

with querying the graphs and leveraging statistical features of the graphs structures to

mine useful information depending on the application. Graph representation learning

embeds the graph structures in fixed-dimensional vector space without the constraint of

low-dimensional embedding. For example, [15] represents each node as a vector with

dimensionality equals the number of nodes in the input graph. Every dimension denotes

the geodesic distance of a node to each other node in the graph. Graph embedding lies in

the overlapping area of graph analytics and graph representation learning [1].

3

While most of the graph embedding models proposed in the literature emphasize

more on the representation learning area so that downstream machine learning tasks

are facilitated, optimizing the embedding matrix to facilitate graph analytics remains

less explored. Graph analytics require the representations to be interpretable so that

querying on the feature space gives meaningful insights of different properties such as

neighborhood, higher-order proximity, directionality (if the graph is directed), clustering

coefficient, closeness centrality, betweenness centrality, PageRank, etc.

Therefore, we are motivated to design one graph embedding model, which will shed

the light of interpretability on the embedding space, so that the objectives of both graph

analytics and graph representation learning are emphasized. We proposed the data model

for the graphs using third-order tensors, which capture higher-order proximities among

nodes. By decomposing the tensor(s), we get the node representations that emphasize

both directionality and proximity.

Beyond graphs, our another motivation came from the problem of visualization of

multivariate time series data in 2D space [16]. Multivariate time series data is high dimen-

sional, and classical dimensionality algorithms such as PCA and t-SNE [17] suffers from

curse of dimensionality, if raw data containing thousands of features are provided directly

as input [18]. Therefore, we leveraged tensor decomposition to reduce the dimensionality

of the multivariate time series data before applying classical dimensionality reduction

algorithms. For experiments, we chose flaring and nonflaring solar active region data as

the source of multivariate time series data. Solar flares are considered as very intense

solar events, which can cause serious damage in the life and property in space and

ground [19]. Predicting solar flares is one of the most prioritized objectives in solar

weather analysis. In our work, we presented the time series classification model for solar

flare prediction, and proposed 2D visualization technique following the interpretable and

low dimensional feature space generation by tensor decomposition.

4

1.2 Challenges

In node embedding, preserving the similarity of the nodes in the embedding space is

hard due to the subjectiveness of the notion similarity. Two nodes can be similar in

terms of the direct neighborhood (first-order proximity), multihop relations (higher-order

proximity), community structure, etc. Therefore, we face the following challenges in node

embedding.

1. Structural property preserving: The learned representations of the nodes should

preserve the structural properties of the graph. From the literature, we know about

different structural features of nodes such as degree, clustering coefficient, PageR-

ank score, closeness centrality, betweenness centrality, etc. The node embedding

algorithms should preserve these properties. For example, if the PageRank scores of

two nodes are similar, the distance of their vector representations should be small.

If the embedding space properly preserves the structure properties, then the feature

space becomes interpretable, and graph analytics tasks are facilitated.

2. Performance in downstream machine learning tasks: Node representations should

be able to maximize the performance of downstream machine learning tasks such

as network reconstruction, link prediction, node classification, clustering, and

visualization.

3. Scalability: Real-world networks can have millions to billions of nodes. The node

embedding algorithm should be scalable for large graphs. This challenge is very

hard when we consider the global structural proximities of the nodes.

4. Less hyperparameter depending: Recent node embedding algorithms especially

random walk-based and deep learning-based methods require optimized tuning of

a lot of hyperparameters. Tuning a large set of hyperparameters increase the cost of

5

using the algorithm in real-world scenarios. Therefore, node embedding algorithms

should be easy to use in terms of hyperparameter tuning.

5. Generalization: Node embedding algorithms should be generic enough to cap-

ture the node similarities in different types of graphs such as (un)-directed, (un)-

weighted, sparse/dense, and small/large graphs.

In this work, we considered static graphs only, and the graphs with auxiliary informa-

tion such as node/edge attributes/labels, knowledge graphs, multi-layer networks, and

dynamic networks are out of the scope of this work.

1.3 Contributions

The contributions of this thesis are listed below.

1. We present two novel tensor decomposition-based node embedding algorithms

that can operate on arbitrary types of graphs, leverage local and global structural

similarities of nodes, require fewer hyperparameters, and generate an interpretable

feature space for nodes (see details at chapter 2 and our papers [12] and [20]).

2. We demonstrate the use of tensor decomposition in representation learning of the

biomarkers from the fMRI-based brain network data and show the use of feature

selection algorithms in discriminative subnetwork mining (see details at chapter 3

and 4, and our papers [13], [21], and [22]).

3. We discuss the modeling of solar flare prediction problem as multivariate time series

classification, and present tensor decomposition-based dimensionality reduction

and 2D visualization of flaring and nonflaring solar events (see details at chapter 5

and our papers [23], [24], and [25]).

6

4. We present our experimental findings on datasets of three domains: social science

(social networks), neuroscience (brain networks), and heliophysics (multivariate

time series of solar weather parameters) (see details at chapter 6).

1.4 Outline

This thesis is organized as follows. Chapter 2 presents node embedding algorithms that

generate interpretable embedding space by capturing directionality and proximity of

nodes. In Chapter 3, we present the comparative analysis of different tensor models on

fMRI-based functional connectivity data. In Chapter 4, we discuss the representation

learning of the biomarkers of the fMRI-based brain networks using tensor decomposition-

based models. In Chapter 5, we discuss the modeling of the solar flare prediction problem

by multivariate time series, and 2D visualization of flaring and nonflaring solar events by

different dimensionality reduction techniques. In Chapter 6, we present the experimental

findings. In Chapter 7, we conclude the thesis and present future work.

7

2 GRAPH EMBEDDING BY TENSOR DECOMPOSITION

Node embedding algorithms have earned considerable attention from the graph mining

community in recent years. The relying on the tuning of a lot of hyperparameters, and

computationally expensive matrix decompositions make the existing algorithms complex

to use and perform poor in real-life graphs. Moreover, most of the algorithms produce

latent features for embedding graph structures, whose roles are not easily understandable.

In this chapter, we present two tensor decomposition-based node embedding algorithms,

which are able to produce interpretable features for nodes in a graph. Both algorithms can

work on different types of graphs such as (un)directed, (un)weighted, and sparse/dense.

They leverage k-step transition probability matrices of graphs to preserve local and global

structural similarities. The k-step transition probability matrices are used to construct one

or more third-order tensors, and factor matrices found from CANDECOMP/PARAFAC

(CP) decomposition of the tensor(s) produce an interpretable and low dimensional feature

space for the nodes. We have experimentally evaluated the algorithms using different

types of real-life graphs found from different domains such as social networks and fMRI-

based brain networks. Our algorithms have proven superiority in terms of interpretability

of the learned features, network reconstruction, link prediction, node classification, and

graph classification.

8

2.1 Overview

In recent years, a good number of node embedding algorithms have been proposed. They

can be roughly divided into three categories - matrix decomposition-based approaches,

multihop similarity-based approaches, and random walk-based approaches. Most matrix

decomposition-based approaches decompose various matrix representations of graphs

by eigendecomposition or Singular Value Decomposition (SVD). Multihop similarity-

based approaches consider the higher-order proximities of the nodes, and use matrix

factorization for decomposing higher-order proximity matrices (e.g., GraRep [26], AROPE

[27]). Random walk-based approaches consider the input graph as a set of random walks

from each node (e.g., Node2vec [8], DeepWalk [28]). These random walks are considered

as sentences, where the nodes are considered as words in a Natural Language Processing

(NLP) model. Finally, the Skip-gram model [7] is used to find the node embeddings.

While eigendecomposition on the large real-world networks is very expensive, random

walk-based methods are comparatively scalable. But, the random walk-based approaches

require the tuning of a number of hyperparameters, some of which are NLP-based. For

example, Node2vec requires tuning of several hyperparameters such as context size,

walks per node, walk length, return parameter and in-out parameter. Moreover, almost

all the node embedding algorithms represent the nodes as d-dimensional vectors, and do

not provide any direction to the interpretability of the features.

In this work, we propose two algorithms: Tensor Decomposition-based Node Embed-

ding (TDNE) [12] and Tensor Decomposition-based Node Embedding per Slice (TD-

NEpS) [20]. TDNE uses higher-order transition probability matrices of a graph to construct

one third-order tensor, while TDNEpS considers each transition probability matrix as one

third-order tensor. Both algorithms use higher-order transition probability matrices of

a graph to construct one or more third-order tensors, and perform CP decomposition

to get the representations of the nodes and the representations of the transition steps.

9

The algorithms do not rely on eigendecomposition of large matrices, or tuning of the

NLP-based hyperparameters such as context size.

The main contributions of this work are:

1. To the best of our knowledge, this work is the first attempt to learn embeddings of

the transition steps (one kind of pairwise proximity [26]).

2. Our method provides interpretability by creating a feature space for the nodes,

where the role of each feature is understandable.

3. When we have a set of graphs, and each graph consists of same labeled node set,

we use learned representations of the nodes of each graph for embedding the whole

graphs. Therefore, in addition to evaluate our algorithms in single graph-based tasks

such as node classification and link prediction, we have evaluated our algorithms in

multi-graph-based tasks such as graph classification.

2.2 Related Work

Early works on node embedding were basically dimensionality reduction techniques,

which required the matrix factorization of the first-order proximity matrix or adjacency

matrix. Laplacian Eigenmaps [9] and Locally Linear Embedding (LLE) [29] can be viewed

as those early approaches. After creating a knn graph from the feature space of the data,

Laplacian Eigenmaps embeds the nodes by eigendecomposition of the graph Laplacian.

LLE considers that each node is a linear combination of its neighbors, and finds the

solution by singular value decomposition of a sparse matrix, which is calculated by

subtracting the normalized adjacency matrix from the same-sized identity matrix. The

later approaches such as GraRep [26] and Higher Order Proximity preserved Embedding

(HOPE) [30] considered higher-order proximities of the nodes. GraRep utilizes multihop

10

neighborhood of the nodes by incorporating higher powers of the adjacency matrix and

generates node embedding by successive singular value decomposition of the powers of

the log-transformed, probabilistic adjacency matrix. HOPE measures overlap between

node neighborhoods, where Jaccard similarity, Adamic-Adar score, Katz score or Per-

sonalized PageRank score can be used as overlap calculating functions. Asymmetric

transitivity preserving nature of HOPE enables embedding of nodes of a directed graph.

The relying on eigendecomposition or singular value decomposition of large matrices

makes all the matrix factorization-based approaches computationally expensive, and

results in the compromise of the performance due to poor approximation.

Being inspired by the Skip-gram model [7], which learns word embeddings by employ-

ing a fixed sliding window so that words in the similar context have similar representa-

tions, DeepWalk [28] considered the network as a "document". By applying truncated

random walk, DeepWalk sampled sequence of nodes (similar to the words of a document)

and used Stochastic Gradient Descent (SGD) optimization to learn the representation of

each node so that it is similar to the representations of its neighbor nodes. Node2vec [8]

later increased the flexibility of node sampling by incorporating a biased random walk.

Although both methods are able to achieve more scalability than the matrix factorization-

based methods, dependence on local neighborhood window refrains them from achieving

the global optimal solution.

To capture the highly non-linear structures of the graphs, deep learning has been

used by Structural Deep Network Embedding (SDNE) [31], Deep Neural Networks

for Learning Graph Representation (DNGR) [32], and Graph Convolutional Network

(GCN) [33]. SDNE and DNGR use deep autoencoder to learn node representation from

its global neighborhood vector. GCN becomes comparatively more scalable by defining

a convolution operator on graph, which iteratively aggregates embeddings of the local

neighborhood to reach the global optima. Although deep learning-based models result in

high accuracy, the scalability is compromised because of their high training time.

11

While all the previous node embedding algorithms produce node features that are not

easily interpretable, our tensor decomposition-based node embedding algorithms use

arbitrary-order proximity to generate an interpretable feature space for the nodes.

2.3 Graph notations

Definition 1. (Graph) A graph with n nodes is defined as G = (V ,E), where V =

{v1, v2, v3, . . . , vn} is the set of nodes, and E = {eij}
n
i,j=1 is the set of edges, which are the

relationships between the nodes. The adjacency matrix S of the graph has n rows and n

columns. For unweighted graphs, Sij = 1, if there exists an edge between nodes i and

j, and Sij = 0 otherwise. For weighted graphs, Sij 6= 0 represents the positive/negative

weight of the relationship between nodes i and j, while Sij = 0 means no relationship

between them. For undirected graphs, adjacency matrix S is symmetric, i.e., Sij = Sji. For

directed graphs, adjacency matrix S is not symmetric, i.e., Sij 6= Sji.

Definition 2. (1-step transition probability matrix) The 1-step transition probability be-

tween nodes i and j for both directed and undirected graphs is defined as the normalized

edge weight between those nodes. Therefore, the 1-step transition probability matrix is

found by normalizing each row of the adjacency matrix S.

Aij =
Sij∑
j Si

Definition 3. (k-step transition probability matrix) For preserving the global structural

similarity, we use k-step transition probability matrix Ak, which is the k-th power of

the 1-step transition probability matrix. In this matrix, Akij represents the transition

probability from node i to node j in exactly k steps.

12

+≈ + +. . .b1 b2 bR

CP (R)

a1 aR

c1 c2 cR

𝓧

a2

Figure 2.1: CP decomposition of a third-order tensor.

2.4 Preliminaries of Tensor Decomposition

Tensors are multidimensional arrays. In this work, we consider only the third-order

tensors and CP decomposition. In this section, we briefly review the CP decomposition.

CP decomposition: CP decomposition factorizes the tensor into a sum of rank one

tensors [34]. Given a third-order tensor X ∈ RI×J×K, where I, J and K denote the indices

of tensor elements in three of its modes, CP decomposition factorizes the tensor in the

following way.

X ≈
R∑
r=1

ar o br o cr = [[A, B, C]] (2.1)

Here, o denotes the outer product of the vectors, R is the tensor rank which is a

positive integer, ar, br, and cr are vectors, where ar ∈ RI, br ∈ RJ, and cr ∈ RK for r =

1, 2, 3, . . . R. After stacking those vectors, we can get the factor matrices A = [a1, a2, . . . aR],

B = [b1, b2, . . .bR], and C = [c1, c2, . . . cR], where A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R. Fig.

2.1 is a visualization of the CP decomposition of a third-order tensor.

13

The matricized forms of the tensor X is given by,

X(1) ≈ A(C�B)T

X(2) ≈ B(C�A)T

X(3) ≈ C(B�A)T

where � represents Khatri-Rao product of two matrices.

2.4.1 ALS Solution of CP Decomposition

CP decomposition can be solved by Alternating Least Squares [35]. The cost function of

CP decomposition can be formulated as,

min
A,B,C

∥∥∥∥∥X−

R∑
r=1

ar o br o cr

∥∥∥∥∥
2

F

(2.2)

where ‖.‖2F is the tensor Frobinius norm, which is the sum of squares of all elements of

the tensor. By initializing B and C with random values, ALS updates A by following rule.

A← argmin
A

∥∥∥X(1) − A(C�B)T
∥∥∥2
F

(2.3)

Then by fixing A and C, it updates B by,

B← argmin
B

∥∥∥X(2) − B(C�A)T
∥∥∥2
F

(2.4)

14

A

A2

A3

AK

.
.

.

Target

So
ur
ce

Tran
s.

ste
p

CP (R)

K

n

n

a1 a2 aR. . .

n

R

R

K

c1 c2 cR. . .
Transition step factor matrix, CSource factor matrix, A

.

.

.

.

.

.

b1 b2 bR. . .

n

R

Target factor matrix, B

.

.

.𝓧

(a) Making of a third order tensor from powers of the 1-step transition probability matrix

(b) CP decomposition and the extraction of three factor matrices

Target

So
ur
ce

Tran
s.

ste
p

n

n 𝓧

K

Figure 2.2: CP decomposition-based representation learning of source nodes, target nodes, and
transition steps

Finally, by fixing A and B, it updates C by,

C← argmin
C

∥∥∥X(3) − C(B�A)T
∥∥∥2
F

(2.5)

Equations 2.3, 2.4 and 2.5 are repeated until the convergence of equation 2.2.

2.5 Interpretable Feature Learning of Graphs

In this section, we discuss two algorithms for tensor decomposition-based node embed-

ding: TDNE and TDNEpS.

15

2.5.1 Tensor Decomposition-based Node Embedding

Fig. 2.2 describes our model of tensor decomposition-based node embedding (TDNE).

Without loss of generality, we use an example of a directed graph in the figure. In

TDNE, a third-order tensor X ∈ Rn×n×K is constructed by stacking the k-step transition

probability matrices for k = 1, 2, 3, . . . ,K. The objects represented by the three modes

of this tensor are: nodes (as sources), nodes (as targets), and transition steps. Then CP

decomposition is performed with a given rank R. CP decomposition results in vectors

ar ∈ Rn, br ∈ Rn, and cr ∈ RK for r = 1, 2, 3, . . . R. These vectors are stacked together to

form three factor matrices, A = [a1, a2, . . . aR], B = [b1, b2, . . .bR], and C = [c1, c2, . . . cR],

where A ∈ Rn×R, B ∈ Rn×R, and C ∈ RK×R.

In factor matrix A ∈ Rn×R, each row is an R-dimensional representation of the source

role played by the corresponding node. In factor matrix B ∈ Rn×R, each row is an R-

dimensional representation of the target role played by the corresponding node. In factor

matrix C ∈ RK×R, each row i is an R-dimensional representation of the i-th transition step,

where 1 6 i 6 K.

After we find the source factor matrix A, target factor matrix B, and transition factor

matrix C, we can compute the projection of source embedding of node i on the transition

embedding j, where 1 6 i 6 n and 1 6 j 6 K, and get source-transition embedding matrix

ST ∈ Rn×K. Similarly, we can get a target-transition embedding matrix TT ∈ Rn×K that

reflects the projection of target embeddings on transition step embeddings. Finally, we

get the node embedding matrix Z ∈ Rn×2K by concatenating ST and TT. First K columns

of Z represent source role of a node with varying transition steps, and last K columns of Z

represent target role of a node with varying transition steps. TDNE is shown in Algorithm

2.1.

16

ST = A ∗CT

TT = B ∗CT

Z = [ST, TT]

Algorithm 2.1 TDNE: Tensor Decomposition-based Node Embedding
Input: 1-step transition probability matrix A
Maximum transition step K
CP decomposition rank R
Output: Node embedding matrix Z

1: n = count_rows(A)
2: X = tensor(n,n,K)
3: for k in 1 to K do
4: X(:, :,k) = Ak

5: end for
6: [A, B, C]⇐ CP_ALS(X,R)
7: ST = A ∗CT

8: TT = B ∗CT

9: Z = [ST, TT]
10: return Z

2.5.2 Tensor Decomposition-based Node Embedding per Slice

In TDNEpS (Algorithm 2.2), we consider each transition probability matrix Ak as a

third-order tensor with a single slice. Therefore, instead of having a single third-order

tensor, we have K third-order tensors, where each tensor X(k) ∈ Rn×n×1. Then for each

tensor X(k), CP decomposition is performed with a given rank R, and three factor matrices

are found, which are source factor matrix regarding kth transition step A(k) ∈ Rn×R,

target factor matrix regarding kth transition step B(k) ∈ Rn×R, and kth transition factor

matrix C(k) ∈ R1×R. We compute source-transition embedding matrix ST(k) ∈ Rn×1 and

17

target-transition embedding matrix TT(k) ∈ Rn×1, and finally concatenate ST(k)’s and

TT(k)’s for 1 6 k 6 K to get the node embedding matrix Z ∈ Rn×2K.

ST(k) = A(k) ∗C(k)T

TT(k) = B(k) ∗C(k)T

Z = [ST(1), ST(2), . . .ST(K),

TT(1), TT(2), . . .TT(K)]

Algorithm 2.2 TDNEpS: Tensor Decomposition-based Node Embedding per Slice
Input: 1-step transition probability matrix A
Maximum transition step K
CP decomposition rank R
Output: Node embedding matrix Z

1: n = count_rows(A)
2: for k in 1 to K do
3: X(k) = tensor(n,n, 1)
4: X(k) = Ak

5: [A(k), B(k), C(k)]⇐ CP_ALS(X(k),R)
6: ST(k) = A(k) ∗C(k)T

7: TT(k) = B(k) ∗C(k)T

8: end for
9: Z = [ST(1), ST(2), . . .ST(K), TT(1), TT(2) . . .TT(K)]

10: return Z

The meaning of each column of Z is same for both TDNE and TDNEpS. Although both

algorithms have similar complexities and output, our experimental findings suggest that

TDNEpS has less performance variance and high accuracy in comparison with TDNE.

Both TDNE and TDNEpS can be easily extended to other matrix-based graph rep-

resentations such as considering the adjacency matrices of the line graphs for edge

embedding.

18

3 TENSOR DECOMPOSITION ON BRAIN NETWORKS

A multidimensional array is also known as a tensor. An N-th order tensor is the tensor

product of N vector spaces, where each vector space has its own coordinate system. De-

composing higher order tensor into lower order tensors is a prominent research problem

in mathematics. There are several tensor decomposition algorithms such as CANDE-

COMP/PARAFAC (CP), Tucker, INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and

PARATUCK2 [34]. In this chapter, we consider third order tensors for fMRI data and

consider CP and Tucker as the methods of tensor decomposition. Both CP and Tucker

decomposition can be solved by Alternating Least Squares (ALS) algorithms. In this

chapter, we briefly discuss Tucker decomposition and its ALS optimization algorithms.

The contents in this chapter are presented from [22].

3.1 Tucker Decomposition

Tucker decomposition is a form of higher order Principal Component Analysis (PCA). A

tensor is decomposed into a core tensor, which is multiplied by a matrix along its each

mode. Tucker decomposition of a third order tensor χ ∈ RI×J×K is given by,

χ ≈ g×1 A×2 B×3 C = [[g; A, B, C]] (3.1)

Here, ×n denotes mode-n tensor product. A ∈ RI×P, B ∈ RJ×Q, and C ∈ RK×R are the

factor matrices. These factor matrices can be thought as the principal components along

19

Figure 3.1: Tucker decomposition of a third order tensor.

each mode. The g ∈ RP×Q×R is the core tensor and the elements of this tensor represents

the interaction between those principal components. Unlike CP, where each factor matrix

has the same number of columns, in Tucker decomposition P, Q and R are the number of

columns of the factor matrix A, B and C. When P < I, Q < J and R < K, g can be thought

as a compressed representation of χ. Tucker decomposition is a generalization of CP,

because if P = Q = R, then the decomposition becomes CP. Fig. 3.1 is a visualization of

the Tucker decomposition of a third order tensor.

3.1.1 ALS Solution of Tucker Decomposition

The cost function for ALS optimization for Tucker decomposition is given by,

min
g,A,B,C

‖χ− [[g; A, B, C]]‖2F (3.2)

It is shown by Kolda et al. in [34], that

‖χ− [[g; A, B, C]]‖2F = ‖χ‖
2
F −
∥∥∥χ×1 AT ×2 BT ×3 CT

∥∥∥2
F

(3.3)

20

Therefore, Equation 3.2 can be rewritten as,

max
A,B,C

∥∥∥χ×1 AT ×2 BT ×3 CT
∥∥∥2
F

(3.4)

Similar to CP, ALS optimizes Equation 3.4 by updating A while keeping B and C fixed,

then updating B by keeping A and C fixed, then updating C by keeping A and B fixed,

and iterating until convergence.

3.2 Application of Tensor Decomposition in Brain Network Representation

Brain Informatics, enriched by the advances of neuroimaging technologies such as Mag-

netic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Electroen-

cephalography (EEG), pose many challenges to data mining. These imaging modalities

are noninvasive methods used to diagnose and investigate neurological and neurode-

velopmental disorders. fMRI is a popular brain imaging technique, that records the

change in Blood Oxygenation Level Dependent (BOLD) signals in different brain re-

gions over time. Resting-state fMRI-based data analysis has facilitated diagnosis of

several neurological and neurodevelopmental diseases such as Alzheimer’s, Schizophre-

nia, Bipolar disorder, Attention-deficit/hyperactivity disorder (ADHD), Autism, and

Dyslexia [36], [37], [38], [39].

fMRI data can be represented in various forms, e. g., the sequence of 3D brain volumes

over time, multivariate time series, and functional connectivity graphs. Given a training

set of fMRI data representations of some human subjects and the associated labels

of healthy/diseased, the task of binary classification aims to maximize classification

accuracy on test data. Because of the advances in graph mining algorithms, most of the

supervised learning studies on fMRI data take functional connectivity graphs (binarized

21

by thresholding) as the inputs and transform the problem into graph classification [36],

[37], [40], [41], [38]. Graph classification can be addressed by two approaches: structure-

based approach and subgraph pattern-based approach. In structure-based approach,

node-based features such as degree, PageRank score, and clustering coefficient [36], [38]

are calculated and each graph is transformed into a vector. In subgraph pattern-based

approach [40], discriminative subgraphs are used as features.

When the fMRI data is represented by undirected and unweighted graphs, one big

challenge is the correct representation of the graphs. Since the graphs are made by

thresholding the functional connectivity matrices (each matrix element denotes the

correlation of BOLD time series of two regions of interest or, ROIs), the sparsity of the

generated graphs depends on the threshold value. Sparsity affects the performance of

both graph classification approaches discussed above. Though most of the data mining

papers disregard the edges with negative weights, it is still debated in the neuroscience

community whether to keep or discard negative correlations [42].

To address this problem, some recent studies emerged with the idea of tensor-based

modeling of fMRI data [43], [44]. By stacking the functional connectivity matrices or the

multivariate time series of the ROIs of all subjects, a third order tensor can be formed. By

decomposing the tensor, we can identify the discriminative representations of subjects, so

that subjects with neurological disease and normal controls can be easily separated.

3.3 Modeling the fMRI data in Tensors

In this section, we describe five tensorization schemata for the fMRI data. In Fig. 3.2,

we visualize five models of the tensor. Among these five models, Tensor Model 3 was

previously used in the literature [43], while we designed other four for the purpose

of comparison. All the models of the tensors are third order. After tensorizing the

22

Subjects (n)

Su
bje

cts
 (n

)

ROIs
(m

)
ᵯ

ROIs (m)

Ti
m

es
ta

m
ps

 (t
)

Sub
jec

ts
(n)

ᵯ

ROIs (m)

RO
Is

(m
)

Sub
jec

ts
(n)

(a) Tensor model 1 (b) Tensor model 2 and 3 (c) Tensor model 4 and 5

ᵯ

Figure 3.2: Dimensions for fMRI data using third order tensor

data, we use CP and Tucker decomposition for computing the factor matrices. For the

healthy/disabled prediction, we use only the factor matrix found in subjects mode. Factor

matrices in other modes such as ROIs and Timestamps are out of the scope of this work.

3.3.1 Tensor Model 1: Stacked Multivariate Time Series

We have the dataset D = {A1,A2, . . . ,An}, where each matrix Ai ∈ Rm×t is a multivariate

time series, and their corresponding labels of healthy/disabled, which are given by

yi = {−1,+1}. Here, m denotes the number of ROIs, n denotes the number of subjects,

and t denotes the number of time samples. In this tensorization scheme, we simply stack

all Ai’s together. Therefore, X = [A1;A2; . . . ,An] and X ∈ Rm×t×n (Fig. 3.2a). After CP

decomposition, we get three factor matrices A, B and C, where A ∈ Rm×R, B ∈ Rt×R and

C ∈ Rn×R. After Tucker decomposition, we get three factor matrices of different number

of columns, where A ∈ Rm×P, B ∈ Rt×Q and C ∈ Rn×R ′
. Therefore, C is the factor matrix

in the subject space, where each row is a vector-based representation of each subject. Then,

we split the rows (subjects) into train and test set, concatenate corresponding class label

of each training subject, and train a classifier. Finally, we can evaluate the classification

performance by predicting the class labels of the test subjects.

23

3.3.2 Tensor Model 2: Stacked Functional Connectivity Matrices

For each multivariate time series matrix Ai, we calculate Pearson correlation coefficient be-

tween each pair of time series. It gives us functional connectivity matrices C1,C2, . . . ,Cn,

where Ci ∈ Rm×m. Each matrix Ci is symmetric and can be thought of as an adjacency

matrix of an edge-weighted complete graph Km. By stacking the Ci’s one after another,

we get a tensor X ∈ Rm×m×n (Fig. 3.2b). After CP decomposition we get three factor

matrices A, B and C, where A ∈ Rm×R, B ∈ Rm×R and C ∈ Rn×R. Since two modes are

the same in the third order tensor, after CP decomposition we get two identical factor

matrix, i. e., A = B. The similar case is also found in Tucker decomposition. In this tensor

modeling scheme, C is the necessary subject factor matrix.

3.3.3 Tensor Model 3: Stacked Non-negative Functional Connectivity Matrices

Here, the matrices C1,C2, . . . Cn are thresholded by keeping only the non-negative matrix

elements. Therefore, Ci’s do not represent edge-weighted complete graphs, rather they

denote weighted and undirected sparse graphs. The shape of the tensor is the same as

Tensor Model 2 and the tensor is given by X ∈ Rm×m×n(Fig. 3.2b). The factor matrices

that are found after CP and Tucker decomposition in this tensorization scheme is similar

to the Tensor Model 2. Factor matrix C, which is defined in the subject space is the

necessary factor matrix.

3.3.4 Tensor Model 4: Node-wise Jaccard Kernel on Functional Connectivity Ma-

trices

In this tensor model, we consider each Ci as an edge-weighted complete graph. For each

pair of complete graphs, weighted Jaccard is calculated using the vectors represented by

24

A

B

C

0.1 -0.4

-0.5

g1

A

B

C

0.2 -0.6

0.3

g2

Figure 3.3: Two edge-weighted complete graphs.

each node (vector of each node is found from the weights associated with the adjacent

edges of that node). Given two vectors S and T , weighted Jaccard between them is [45]:

J(S, T) =
∑
kmin(Sk, Tk)∑
kmax(Sk, Tk)

(3.5)

In Fig. 3.3, we show two example edge-weighted complete graphs. If gji denotes

the node j of graph gi, then the calculation of node-wise Jaccard between these two

edge-weighted complete graphs is as follows.

J(g1,g2) = [J(gA1 ,gA2), J(g
B
1 ,gB2), J(g

C
1 ,gC2)]

= [
0.1− 0.5
0.2+ 0.3

,
0.1− 0.6
0.2− 0.4

,
−0.5− 0.6
0.3− 0.4

]

= [−0.8, 2.5, 11]

By calculating the node-wise Jaccard between each pair of complete graphs, we get a

tensor X ∈ Rn×n×m (Fig. 3.2c). After tensor decomposition, we get two identical factor

matrices in the subjects space.

25

3.3.5 Tensor Model 5: Node-wise Jaccard Kernel on Non-negative Functional Con-

nectivity Matrices

In this model, we ignore the negative weighted edges in the complete graphs. Similar

to the calculation of node-wise Jaccard described for Tensor Model 4, we get a tensor

X ∈ Rn×n×m (Fig. 3.2c). We similarly get two identical factor matrices in the subject space

after tensor decomposition.

We discuss the classification performances of the brain network representations mod-

eled by above five tensor models found after CP and Tucker decomposition in the

experiments chapter.

26

4 BIOMARKER EMBEDDING FROM BRAIN NETWORKS

The comprehensive set of neuronal connections of the human brain, which is known as

the human connectomes, has provided valuable insight into neurological and neurode-

velopmental disorders. Functional Magnetic Resonance Imaging (fMRI) has facilitated

this research by capturing regionally specific brain activity. fMRI-based functional con-

nectomes are used to extract the complete functional connectivity networks, which are

edge-weighted complete graphs. In the complete functional connectivity networks, each

node represents one brain region or Region of Interest (ROI), and each edge weight

represents the functional similarity of the adjacent ROIs. In order to leverage from the

graph mining methodologies, these complete graphs are often made sparse by applying

thresholds on weights. This approach can result in losing discriminative information,

while addressing the issue of biomarkers detection, i.e., finding discriminative ROIs and

connections, given the data of healthy and diseased population. We present a framework

for representing the complete functional connectivity networks in a threshold-free man-

ner and finding the biomarkers by using feature selection algorithms. Additionally, for

computing meaningful representations of the discriminative ROIs and connections, we

apply tensor decomposition techniques. The contents of this section are based on the

papers [13] and [21].

27

4.1 Overview

Enriched by the neuroimaging technologies such as Magnetic Resonance Imaging (MRI),

Positron Emission Tomography (PET), Electroencephalography (EEG), and Diffusion

Tensor Imaging (DTI), brain informatics has been playing a key role in the investigation

of neurological and neurodevelopmental disorders. The complexity, heterogeneity, and

scarcity of brain informatics data pose a great challenge to data mining. Among the

data collection modalities, functional MRI (fMRI) is a popular one, which measures the

functional activities of different brain regions. fMRI is used to construct the functional

connectivity network, a complete, edge-weighted graph, where the nodes represent brain

regions (ROIs) and the edge-weights represent similarity/dissimilarity of two ROIs in their

Blood Oxygenation Level Dependent (BOLD) time series. BOLD time series represents

the aggregated activation of the neurons of the ROI over the scan period. The analysis of

functional connectivity networks has facilitated the early diagnosis of several neurological

and neurodevelopmental diseases such as Alzheimer's [36], Schizophrenia [46], Bipolar

disorder [37], Attention-deficit/hyperactivity disorder (ADHD) [47], Autism [48], and

Dyslexia [49].

Given a set of functional connectivity networks and associated healthy/diseased class

labels, one of the most important research questions asked by the neuroscientist com-

munity is, “How can one find the biomarkers that distinguish two classes?” Data

mining people, considering the problem as binary classification, mostly give two types of

solutions - graph classification and tensor decomposition.

Because of the advances of graph mining algorithms, most supervised learning studies

transform the complete functional connectivity networks into sparse graphs by threshold-

ing and binarizing [36], [37], [40], [50], [38]. Then, they extract structure-based features

such as degree, clustering coefficient and PageRank score of each node, and/or subgraph-

based features such as gSpan-based frequent subgraphs [51] to construct a feature space.

28

1 2

34

- 0.0001

0.38

0.92

- 0.45

0.52
- 0.41

Thresholding
(th=0) and
binarizing

1

34

1 2

34

1 2

34

Graph
classification

Features
Label

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

-0.0001 0.52 0.38 -0.45 -0.41 0.92 - 1

-0.95 0.57 -0.18 0.23 -0.62 0.0005 + 1

Absolute
difference

0.9499 0.05 0.56 0.68 0.21 0.9195

Selection ✓ x ✓ ✓ x ✓

Feature selection
(thresholding (th=0.5)
of absolute difference
or top-k (k=4) feature

selection)

1 2

34

0.9499

0.56 0.68

0.9195

Binarizing approach

Non-binarizing approach

Discriminative binary
subgraph

Discriminative weighted
subgraph

H
ea

lth
y

(-
1)

D
is

ea
se

d
(+

1) 1 2

34

- 0.95

-0.18

0.0005

 0.23

0.57
- 0.62

Figure 4.1: Non-binarizing approach can result in producing more significant biomarkers

While structure-based features are hand-engineered and require a lot of domain knowl-

edge, subgraph-based features are computationally very expensive. Another disadvantage

of thresholded and binarized graphs is that they can lose some discriminative informa-

tion. Fig. 4.1 shows a motivating example, where two complete functional connectivity

networks of different class labels are shown. Each network has four nodes and six

weighted edges, where signed weights represent positive/negative correlation of the

BOLD time series of the adjacent nodes (ROIs). For making the sparse graphs, the edges

are positively thresholded and binarized. As a result, both representations fail to find the

discriminative edges (1,2) and (3,4), which distinguish two classes by a big difference in

same-signed weights.

29

This approach also can not weight the edges of the discriminative subgraph in terms of

discrimination score. On the contrary, while thresholding and binarization are not applied

and the complete graphs are represented by fixed-length vectors (since each complete

graph has the same number of nodes and edges), simple feature selection scheme such as

thresholding on absolute difference of edge weights and selecting the edges (features)

with top-k absolute difference of weights, can produce more discriminative edges, e.g.

(1,2), (2,3), (3,4) and (4,1) along with their discrimination scores. The unsupervised feature

selection approach (shown for simplicity in this example) also uses apriori knowledge

such as k in top-k feature selection, but still, this apriori knowledge is less expensive than

the apriori knowledge about the sparsity of the graph [42].

Multi-dimensional arrays or tensor-based approaches stack the adjacency matrices of

the thresholded functional connectivity networks to construct one third-order tensor and

decompose the tensor into one subject factor matrix and two identical ROI factor matrices

(since the adjacency matrices make partially symmetric tensor) [43], [52], [44]. Each

column of the factor matrices represents one latent feature of different entities (subjects or

ROIs). After tensor decomposition, the subject factor matrix is used for classifier training

and testing. While this approach may result in high classification accuracy, the latent

features, i.e., the columns of the subject factor matrix are difficult to interpret, because

the relationship of these latent features with the discriminative ROIs and connections are

not yet established [43].

In this work, we address the problem of graph thresholding by using vector represen-

tation and applying feature selection algorithms to find discriminative features, which

eventually become the edges of the discriminative subgraph. We also address the issue

of interpretability of tensor decomposition-based approach by constructing the tensor

with ROI-connection-based incidence matrices of the induced discriminative subgraphs

of the complete functional networks of the subjects, instead of the adjacency matrices of

the thresholded functional connectivity networks.

30

The main contributions of this work are:

1. Transforming the fMRI-based biomarker detection problem from the graph space to

vector space, i.e., solving the problem with functional connectivity vectors instead

of thresholded graphs.

2. Using feature selection algorithms for constructing the discriminative subgraph,

whose nodes and edges represent the biomarkers.

3. Proposing a novel tensor construction scheme with the computed discriminative

subgraphs so that tensor decomposed factor matrices can be easily manipulated for

determining the influence of the biomarkers on the human subjects.

4.2 Existing Approaches

Data mining research on fMRI-based functional connectivity data can be divided into

two categories : discriminative subgraph-based graph classification and discriminative

latent feature-based tensor decomposition. In this section, we discuss both approaches,

and distinguish our approach from them.

Graph classification-based approaches: In these approaches, binary or weighted

graphs are generated by applying a threshold on functional connectivity matrices so

that all the nodes of the graphs are connected. Then, structure-based and/or subgraph

pattern-based features are extracted for representing the graphs in feature space. Wee

et al. [36] used functional connectivity matrices found from fMRI and DTI modalities to

distinguish Mildly Cognitive Impaired (MCI) subjects from the healthy controls (MCI is

the early stage of Alzheimer’s disease). Their approach is an example of a structure-based

graph classification approach. Given a functional network, weighted local clustering coef-

ficient of each node is calculated, and the graph is represented by a vector consisting of

31

these local connectivity measures. Then SVM classifier is applied to this vector space. This

model gives a ranking of the ROIs in terms of how well they are clustered with respect to

other ROIs, which provides a good step towards the interpretability of the biomarkers.

Jie et al. [38] presented another structure-based graph classification approach, where they

used Weisfeiler-Lehman graph kernel [53] for computing the global connectivity features

of each graph, which are used along with a local connectivity feature of weighted local

clustering coefficient of each node. Considering the thresholded edge weights as the

probabilities of the link between two nodes, Kong et al. [50] presented a discriminative

subgraph feature selection algorithm based on dynamic programming to compute the

probability distribution of the discrimination scores for each subgraph pattern. In some

cases of studies of neurological and neurodevelopmental disorders, along with the neu-

roimaging data, there may be additional clinical, serologic and cognitive measures data

from each subject. Cao et al. [40] presented a discriminative subgraph mining algorithm

for brain networks which leverages such multiple side views-based data.

Tensor decomposition-based approaches: Tensor decomposition is used to extract the

latent discriminative features of each subject. In [43], tensors are formed by stacking the

non-negative connectivity matrices of all subjects. The resulting tensor is decomposed

with several constraints such as symmetry of the factor matrix representing the ROI

space and orthogonality of the factor matrix representing the subject space in order

to maximize the discrimination among the subjects of different classes. In [44], the

time-sliced non-negative connectivity matrices are used to create the tensors in order

to discover the latent factors of the time windows. Both studies [43] and [44] modeled

the problem as constrained CANDECOMP/PARAFAC (CP) decomposition and used

Alternating Direction Method of Multipliers (ADMM) as the optimization framework.

Although tensor decomposition-based approaches represent each functional connectiv-

ity network in latent feature space, graph mining-based approaches can find meaningful

discriminative patterns or biomarkers, i.e., discriminative ROIs and connections. However,

32

the imposed threshold-based sparsity make these approaches lose some discriminative

information. Moreover, some of these approaches rely on the exhaustive enumeration of

the induced subgraphs, which can be computationally very expensive in terms of both

space and time.

The model we present in this work does not use thresholds for imposing sparsity. By

leveraging the completeness and equal number of nodes of the functional connectivity

networks, our model enumerates the edges, and represent each functional connectiv-

ity network as fixed-length vector instead of enumerating the subgraphs. The edges

whose weights are maximally dependent on the class label can be found by applying

feature selection algorithms such as Fisher and minimal Redundancy Maximal Rele-

vance (mRMR) criterion. The selected edges (features) form the discriminative subgraph.

Therefore, our model for fMRI-based biomarker detection does a paradigm shift from

frequent/discriminative subgraph mining to feature selection.

4.3 Finding Discriminative Subgraph from Complete Functional Connectivity Net-

works

In this section, we discuss how to represent a complete functional connectivity network

using a fixed-length functional connectivity vector. Although any feature selection

algorithm can be plugged into our framework, for simplicity and brevity we discuss two

well-known feature selection algorithms from the literature - Fisher [10], and mRMR [11],

which can be used to find discriminative connections from vector represented complete

functional connectivity networks.

33

Voxel1 Voxel2 ... VoxelN

.

.

.

.

.

.

.

.

ROI1 ROI2 ... ROIn

.

.

.

.

.

.

.

.

(a) BOLD time series extraction of the voxels by sequentially capturing
whole brain volume over a period of time

(b) Multivariate time series (voxel-level) (c) Multivariate time series (ROI-level)

(d) Functional connectivity matrix found after pairwise Pearson
correlation calculation on the ROI-based multivariate time series

(e) Complete functional connectivity
network of 16 nodes and 120 edges

(f) Functional connectivity vector found by
flattening the upper/lower triangular portion of
functional connectivity matrix; each feature
represents an edge of the complete graph

Figure 4.2: Extraction of functional connectivity vector

4.3.1 Functional Connectivity Vector

In its raw form, fMRI data is four-dimensional. The scanner captures a sequence of

whole brain volumes of the subject in a regular time interval (Fig. 4.2a). Therefore,

three dimensions represent spatial information and one dimension represents temporal

information. In fMRI scan, a voxel is the unit of the brain volume. After a series

of preprocessing steps, the BOLD time series of each voxel is found as the change of

activation over a time period (Fig. 4.2b). The voxels are grouped into regions of interest

(ROIs), where the regions can be defined manually by the neuroscientists targeting a

specific disease relevant area or by some standard brain atlas such as Harvard-Oxford

Atlas for whole brain analysis. A time series is found for each ROI, which is the mean

of the time series across the voxels of that ROI. One representation of the fMRI data

is the multivariate time series, where the variables are represented by the ROIs (Fig.

4.2c). From these ROI time series, pairwise Pearson correlation coefficients are calculated.

34

Then, Fisher’s r-to-z transformation is applied on the elements of the correlation matrix

to improve the normality of the correlation coefficients as

z =
1

2
ln

(
1+ r

1− r

)
,

where r is the Pearson correlation coefficient. This z-map is used as another data

representation, and called the functional connectivity matrix (Fig. 4.2d). Functional

connectivity matrix is symmetric and can be considered as the adjacency matrix of a

complete graph (Fig. 4.2e), where the entries of the matrix define the edge weights. A

complete graph with n nodes has e = n(n− 1)/2 edges. By considering each edge as a

feature, the complete functional connectivity network of a subject is represented by an e

dimensional vector (Fig. 4.2f). Functional connectivity vector is found by flattening the

upper/lower triangular portion of the functional connectivity matrix. A dataset of ns

subjects, where each subject’s functional connectivity network has n nodes with e edges

is represented by {(X(i),y(i))}nsi=1 , where X(i) ∈ Re and y(i) ∈ {+1,−1}. The feature space

is denoted by X = {x1, x2, . . . , xe}.

4.3.2 Mining Discriminative Subgraph by Feature Selection Algorithms

After extracting the functional connectivity vectors from the complete functional connec-

tivity networks, we get a high dimensional feature space. Since each feature represents

an edge or connection between two ROIs, selection of the edge features that are most

statistically relevant to the class label results in a subgraph that can distinguish healthy

and diseased classes. In the resultant discriminative subgraph, each edge is assigned a

weight, which is the score assigned to its corresponding feature by a feature selection

algorithm.

35

Feature selection algorithms can be divided into three categories - filters, wrappers

and embedding methods [54]. Filter methods use the intrinsic property of the data and

rank the features before feeding the reduced feature space into a classifier for learning.

Wrappers use the classifier performance to evaluate the feature subset. Wrapper models

tend to give better results, but they are classifier dependent and computationally more

expensive than the filters. Embedding methods inject the feature selection process into

the learning step of the classifier.

Because of being classifier independent, supervised filter-based feature selection algo-

rithms can be used for discriminative subgraph mining from vector-represented functional

connectivity data. Depending on whether the label information is used in feature selection,

filter methods are divided into supervised (e.g., Fisher and mRMR), and unsupervised

(e.g., maximum variance and Laplacian score) approaches. Since we consider supervised

case in this work, i.e., biomarker detection from labeled functional connectivity networks,

we propose supervised filter-based feature selection algorithms. Whether the edges of the

discriminative subgraph depend on each other in distinguishing the classes, two variants

of supervised filter-based feature selection algorithms can be applied - univariate and

multivariate.

Univariate feature selection

Univariate feature selection algorithms consider each feature independently and ignore

any correlation between them. Each edge of the discriminative subgraph selected by such

algorithms is individually discriminating, and independent with other selected edges.

Fisher scoring is an example of univariate feature ranking. Fisher score or F-score is the

36

ratio of the inter-class distance and intra-class distance of a given feature [10]. Fisher

score of a feature xj is defined as,

F(xj) =

∑c
k=1 nk(µ

k
j − µj)

2

(σj)2
,

where c denotes the number of classes, nk denotes the number of samples of class k, µj

and σj denote the mean and standard deviation of feature xj, and µkj denotes the mean of

k-th class, corresponding to the feature xj.

Multivariate feature selection

Multivariate feature selection algorithms select features whose combination ensures

higher discrimination ability, although the individual discrimination ability of the se-

lected features might be poor. The edges of the discriminative subgraph selected by such

algorithms are combinedly discriminating. An example of multivariate feature selection

is minimal Redundancy Maximal Relevance (mRMR) [11]. mRMR selects features se-

quentially, and the selected features are expected to have maximal relevance with the

class labels while having minimal redundancy with already selected features.

If f− 1 features are already selected by mRMR and the already selected feature set

is denoted by Sf−1, then the algorithm finds the fth feature from the set X− Sf−1 by

optimizing the following condition:

max
xj∈X−Sf−1

[
I(xj;y) −

1

f− 1

∑
xi∈Sf−1

I(xj; xi)
]
,

37

where y is the class label variable and I(p;q) is the mutual information between two

random variables p and q. Mutual information between p and q is defined in terms of

their probability density function Pr(p), Pr(q), and Pr(p,q).

I(p;q) =
∫∫
Pr(p,q)log

Pr(p,q)
Pr(p)Pr(q)

dpdq

mRMR score of the fth selected feature xj is found by,

mRMR_score(xj) = I(xj;y) −
1

f− 1

∑
xi∈Sf−1

I(xj; xi)

After scoring each feature by univariate/multivariate feature selection algorithm, best

features can be selected by either one of the following two strategies.

1. Feature score thresholding: All the features whose scores are below the given

threshold, are removed.

2. Top-k feature selection: Features are sorted in descending order of their scores.

Top-k features with maximum scores are selected.

Finally, the selected features provide the edges of the discriminative subgraph, where

the feature scores become the weights of the edges. In the discriminative subgraph, the

nodes (ROIs) and the edges (connections) can be considered as the discriminative patterns

or biomarkers of a neurological or neurodevelopmental disease. Visualization of the

edge-weighted discriminative subgraph can help the neuroscientists in their analysis of

these diseases.

38

Table 4.1: Notations
Symbol Definition Symbol Definition

n Number of nodes in each complete graph X Tensor
e Number of edges in each complete graph S Subject factor matrix
ns Number of subjects in the dataset N Discriminative nodes factor matrix
ndn Number of discriminative nodes in the dataset E Discriminative edges factor matrix
nde Number of discriminative edges in the dataset Ik Identity matrix of size k

C Incidence matrix P,Q,R Ranks of tensor decomposition

1 2

34

- 0.0001

0.38

0.92

- 0.45

0.52

- 0.41

1 2

34

- 0.95

-0.18

0.0005

- 0.23

0.57

- 0.62

Keeping only the
discriminative edges

1 2

34

- 0.0001

0.38

0.92

- 0.45

1 2

34

- 0.95

-0.18

0.0005

- 0.23

e1

e2

e3

e4

e1

e2

e3

e4

Incidence matrix of
each discriminative

subgraph

(a) Complete functional connectivity networks (b) Discriminative subgraphs constructed from
the edges (1,2), (2,3), (3,4) and (4,1)

(c) Third-order tensor (ᮌ)

Figure 4.3: Constructing third-order tensor from induced discriminative subgraph of the complete
functional connectivity networks

4.4 Representation Learning for the Biomarkers

Given a set of biomarkers, i.e., discriminative ROIs and connections, how does a subject’s

functional connectivity network interact with them? Good representation of biomarkers

facilitates the computation of the impact of them on the functional connectivity network

of a subject. We address this issue by tensor decomposition technique. In this section,

we discuss the procedure of tensor construction, tensor decomposition techniques, and

utilizing the resultant biomarker factor matrices for computing the biomarker impacts

on healthy and diseased subjects. The important notations used in this section are

summarized in Table 4.1.

39

4.4.1 Tensor Construction

A third-order tensor is constructed by stacking the weighted incidence matrices of the

discriminative subgraphs induced in the complete functional connectivity network of

each subject. Three modes of the tensor are the subjects, discriminative nodes, and

discriminative edges. The set of discriminative edges, which is computed by a feature

selection algorithm after vectorizing all the complete functional connectivity networks

of the dataset, can be used to construct the discriminative subgraph of each subject.

Incidence matrix of the discriminative subgraph has a row for each discriminative node

and a column for each discriminative edge. The weighted incidence matrix C ∈ Rndn×nde

is defined as,

Ci,j =


wj, if node i is end-node of edge j

0, otherwise

for 1 6 i 6 ndn and 1 6 j 6 nde. The weighted incidence matrices of the discriminative

subgraph of all subjects are stacked to construct a third-order tensor X ∈ Rns×ndn×nde .

An example is shown in Fig. 4.3. In this example, the functional connectivity networks

are the same as the functional connectivity networks of Fig. 4.1, and the discriminative

edges are (1,2), (2,3), (3,4), and (4,1).

4.4.2 Tensor Decomposition in Biomarker Embedding

Tensor decomposition is performed to acquire the latent factor-based representations

of the objects defined in each mode of a higher order tensor. Two widely used tensor

decomposition techniques are CP decomposition and Tucker decomposition [34]. In

40

ᮌ

Disc. nodes

D
is

c.
 e

dg
es

Su
bje

cts

+≈ + +. . .n1 n2 nR

CP (R)

e1
e2 eR

s1 s2 sR

n1n2 nR. . .

ndn

R

nde

R

e1 e2 eR. . .

R

ns

s1 s2 sR. . .
Subject factor matrix, S Discriminative nodes

factor matrix, N
Discriminative edges

factor matrix, E

.

.

.

.

.

. .
.
.

n s

ndn

nde

Figure 4.4: CP decomposition of the subjects-discriminative nodes-discriminative edges-based tensor.

this subsection, we briefly discuss them in terms of our subjects-discriminative nodes-

discriminative edges-based tensor.

CP Decomposition

CP decomposition factorizes the tensor into a sum of rank one tensors. Given a third

order tensor X ∈ Rns×ndn×nde , CP decomposition factorizes the tensor as follows.

X ≈
R∑
r=1

sr o nr o er = [[S, N, E]]

Here, o denotes the outer product of the vectors. R is a positive integer and also

called the tensor rank. sr, nr, and er are vectors, where sr ∈ Rns , nr ∈ Rndn , and

er ∈ Rnde for r = 1, 2, 3, . . . ,R. After stacking those vectors, we can get the factor matrices

S = [s1, s2, . . . sR], N = [n1, n2, . . .nR], and E = [e1, e2, . . . eR]. We show a visualization of

the CP decomposition of our subjects-discriminative nodes-discriminative edges-based tensor

in Fig. 4.4. Each row of a factor matrix is a R-dimensional representation of an object, i.e.,

41

subject, discriminative node, or discriminative edge. In CP decomposition, there are no

imposed orthogonality constraints for the factor matrices. Nevertheless, we can compute

the impact of the discriminative node j on subject i by the inner product:

S(i, :) ∗N(j, :)T

Similarly, we can compute the impact of the discriminative edge j on subject i by the

inner product:

S(i, :) ∗ E(j, :)T

Tucker decomposition

Tucker decomposition is a form of higher order Principal Component Analysis (PCA). A

tensor is decomposed into a core tensor, which is multiplied by a matrix along its each

mode. Tucker decomposition of a third order tensor X ∈ Rns×ndn×nde is given by,

X ≈ G×1 S×2 N×3 E = [[G; S, N, E]] (4.1)

Here, ×n denotes mode-n tensor product. S ∈ Rns×P, N ∈ Rndn×Q, and E ∈ Rnde×R

are the factor matrices. These factor matrices can be thought as the principal components

along each mode. G ∈ RP×Q×R is the core tensor and the elements of this tensor represents

the interaction between those principal components. We show a visualization of the

Tucker decomposition of our subjects-discriminative nodes-discriminative edges-based tensor

in Fig. 4.5.

Since we do the projection of the rows of the subject factor matrix on the rows of factor

matrices of the biomarkers, we require each biomarker factor matrix to be orthogonal.

42

≈
Tucker (P, Q, R)

᭻

max(ndn , nde) <= P <= ns

ns

R = nde

nde

Q = ndn

ndn

Subject factor matrix, S

Discriminative edges
factor matrix, E

Discriminative nodes
factor matrix, N

ᮌ

Disc. nodes

D
is

c.
 e

dg
es

Su
bje

cts

n s

ndn

nde

Figure 4.5: Tucker decomposition of the subjects-discriminative nodes-discriminative edges-based
tensor.

43

Additionally, we require the columns of the subject factor matrix to be pairwise orthogo-

nal, because orthogonal columns (features) of subject factor matrix ensures meaningful

representation of each row. If ns > ndn and ns > nde, by setting max(ndn,nde) 6 P 6 ns,

Q = ndn, and R = nde, Tucker decomposition ensures follwing constraints to be held.

• NNT = NTN = Indn , i.e., discriminative nodes factor matrix, N is an orthogonal

matrix.

• EET = ETE = Inde , i.e., discriminative edges factor matrix, E is an orthogonal matrix.

• STS = IP, i.e., columns of the subject factor matrix S are pairwise orthogonal.

• SST 6= Ins , i.e., rows of the subject factor matrix S are not pairwise orthogonal.

Now, we can compute the impact of the discriminative node j on subject i by the inner

product:

S(i, 1 : ndn) ∗N(j, :)T

Similarly, we can compute the impact of the discriminative edge j on subject i by the

inner product:

S(i, 1 : nde) ∗ E(j, :)T

Both CP and Tucker decomposition can be solved by Alternating Least Squares (ALS)

optimization. After a random initialization of all factor matrices, ALS updates one

factor matrix while keeping other two as fixed until convergence. The details of ALS

optimization for CP and Tucker decomposition can be found in [34].

44

Now we summarize our proposed framework, which combines the feature selection-

based discriminative subgraph mining method with the tensor decomposition-based

representation learning of the biomarkers.

1. Firstly, we represent the complete functional connectivity networks of the dataset as

fixed-length functional connectivity vectors.

2. We apply univariate/multivariate filter-based supervised feature selection algorithm

for finding top-k discriminative features. By incrementally selecting features, and

feeding the reduced feature space to a classifier, while train and test examples are

selected by a predefined cross-validation scheme, we can observe the classification

accuracies found from the selected feature sets. The feature set resulting in the

best cross-validation accuracy is considered to be the edge set of the discriminative

subgraph, where the edges are weighted by their corresponding feature scores.

3. After we find the discriminative subgraph of the dataset, we compute the impact

of its nodes and edges on a given subject by decomposing the third-order tensor,

whose three modes represent subjects, discriminative nodes, and discriminative

edges.

45

5 TIME SERIES-BASED SOLAR FLARE PREDICTION AND VISUALIZATION

As an application of time series-based feature learning, we discuss solar flare prediction in

this chapter. In [23], [24], and [25], we presented a multivariate time series classification-

based approach for solar flare prediction. Solar flare prediction is an important task

because of their potential impacts on both space and terrestrial infrastructure [55]. This

prediction task can be modeled as a binary classification between flaring and non-flaring

Active Regions. Previous works on flare prediction focused on representing flaring and

non-flaring Active Region examples in vector space, where the feature space was found

from the Active Region magnetic field parameters. We extract time series samples of

these Active Region parameters and present a flare prediction method based on the k-NN

classification of the univariate time series. We find that, for our classification task, using a

statistical summarization on the time series of a single Active Region parameter, called

total unsigned current helicity, outperforms the use of all Active Region parameters at a

single instant of time. Additionally, we present a data model of the flaring/non-flaring

Active Regions using multivariate time series. In the end of this chapter, we discuss

tensor decomposition-based flaring and non-flaring solar event visualization.

5.1 Overview

Solar flares are sudden bursts of radiation from Sun’s surface. Solar events such as flares

and Coronal Mass Ejections (CMEs) can have hazardous impacts on infrastructures both

in space and on the ground. X-rays and UV radiation of large flares can cause radio

46

blackout. Energetic particle flux from flares can cause solar radiation storm, which can

have negative health effects on astronauts, aircrew and airline passengers, as well as

negative technological impacts on electronic devices of the satellites, aircraft, and even the

devices located on the ground [56]. Therefore, precise forecasting and prediction of severe

space weather conditions such as M-class and X-class flares can save infrastructures

in space and on the ground, whose replacement/repairing cost might be trillions of

dollars [57]. Fig. 5.1 is an example of an M-class flare [58].

Since theoretical models of solar flare occurrence, such as the relationship between

the photospheric and coronal magnetic field of the Sun during the flare occurrence,

are not fully understood, heliophysics community relies on data-driven approaches for

flare prediction. As most flares occur in the Active Regions of the Sun, flare prediction

can be modeled as a supervised learning problem of machine learning, specifically the

binary classification between flaring and non-flaring Active Regions (AR), where flaring

Active Regions are considered to be in the positive class and non-flaring Active Regions

are considered to be in the negative class. In this work, as positive class examples, we

consider the Active Regions that have one or more M-class or X-class flares during their

crossing of the observable solar disk. The Active Regions that have never flared during

the disk crossing (not even C-class flares) are considered as negative class examples.

While the previous studies on flare prediction focused on the vector-based representa-

tion of flaring and non-flaring Active Regions, where the feature space is formed by the

magnetic field-based AR parameters formulated by solar physicists [19, 59, 60], we focus

on the time series properties of the AR parameters. These time series are extracted based

on two time windows : lookback (the time window before which the flare happens), and

span (the time window during which the AR parameter values are calculated).

Time series representation of the AR parameters can be used to rank them based on

the time series quality in classification. When the time series of each AR parameter is

considered, the problem becomes the multivariate time series classification problem. By

47

Figure 5.1: Image of an M-class flare which erupts from the right side of the Sun at 11:24 p.m.
EST on Jan. 12, 2015. Credit: NASA/SDO.

finding the AR parameter whose time series exhibit the best classification performance,

the problem can be simplified into the single-variate time series classification. If time

series data of a single AR parameter is utilized for flare prediction, then time series

classification algorithms which are successfully applied on other domains such as stock

market behavior prediction [61], handwriting recognition [62] and so on, can similarly be

applied to flare prediction.

The complexity of time series classification greatly depends on the length of the time

series, because each time step increase in the time series length is an increase in the

dimension of the input vector space, leading to the curse of dimensionality. To overcome

this problem, we propose to use a statistical summarization of the time series. The

summarized time series of the best AR parameter is considered as the vector-based

representation of flaring/non-flaring AR, and k-nearest neighbors (k-NN) classifier is

used on this vector space. By considering the time series of only one AR parameter,

which is selected based on the classification performance on different datasets, our

model reduces the cost of calculating multiple AR parameters, while exhibiting better

48

classification performance than the models where all AR parameters are used with the

values at a single instant of time.

The contributions made by this work are listed below.

1. Data modeling of the flaring/non-flaring Active Regions using multivariate time

series based on lookback and span time windows.

2. Finding the best AR parameter in terms of its time series quality in classification.

3. Making the summarized representation of the time series of the best AR parameter

to form a new vector space of flaring and non-flaring Active Regions. The perfor-

mance of k-NN classifier on this vector space is better than the state-of-the-art flare

prediction models.

4. Experimentally validating that the consideration of C-class flares in positive class

does not improve classification performance.

5. Leveraging tensor decomposition for unsupervised visualization of flaring and

non-flaring active regions in 2D scatterplots.

5.2 Related Work

While most of the current methods of flare prediction are data-driven approaches, the

earliest flare prediction system was THEO [63], which was an expert system that required

human input. The system was adopted by Space Environment Center (SEC) of National

Oceanic and Atmospheric Administration (NOAA) in 1987. It used a set of sunspot and

magnetic field properties to predict different flare classes.

Later efforts of flare prediction are mostly based on data-driven approaches rather than

on purely theoretical modeling. Data-driven approaches are divided into two categories -

49

linear statistical and nonlinear statistical (mostly machine learning). These two categories

can be subdivided into two subcategories - line-of-sight magnetogram-based models and

vector magnetogram-based models.

Active Regions are parameterized either by photospheric magnetic field data that con-

tain only the line-of-sight component of the magnetic field or by the full-disk photospheric

vector magnetic field. After the launch of Solar Dynamics Observatory (SDO) by NASA

in 2010, its instrument Helioseismic and Magnetic Imager (HMI) has been mapping the

full-disk vector magnetic field every 12 minutes [64]. Although the continuous stream of

vector magnetogram is a better means for parameterizing the Active Regions, it was not

easily available before 2010 and people had to use line-of-sight magnetic data for flare

prediction.

Linear statistical studies focus on identifying the AR magnetic properties that are

correlated with the flares. Cui et al. [65] and Jing et al. [66] used line-of-sight magnetogram

to parameterize Active Regions and studied correlation-based statistical relationships

between those AR parameters and flare occurrences. Leka and Barnes [59] calculated

vector magnetogram-based AR parameters for the first time and used linear discriminant

analysis (LDA) for classification. They collected vector magnetogram data from Mees

Solar Observatory Imaging Vector Magnetograph on the summit of Mount Haleakala.

Nonlinear statistical models mainly use machine learning-based classifiers. After

parameterizing the Active Regions with line-of-sight magnetograms, Ahmed et al. [67]

used the artificial neural network, Yu et al. [68] used C4.5 decision tree, Song et al. [69]

used logistic regression, and Al-Ghraibah et al. [70] used relevance vector machine as

classification models. Qahwaji et al. [71] considered McIntosh classification of sunspot

groups and solar cycle data and used support vector machine (SVM) and Cascade-

Correlation Neural Networks (CCNN) for prediction. Bobra et al. [19] used SVM on

the AR parameters derived from vector magnetograms. Nishizuka et al. [60] used both

50

line-of-sight and vector magnetograms and compared the performance of three classifiers

- k-NN, SVM, and extremely randomized tree (ERT).

Almost all of the abovementioned works focussed on the parameterization of the Active

Regions by line-of-sight or vector magnetograms but did not consider the impact of

the time series of the individual AR parameters that can be extracted for a particular

duration of time before the occurrence of the flare. In this work, we evaluated the vector

magnetogram-based AR parameters based on their time series quality to distinguish

flaring and non-flaring Active Regions.

5.3 Data Modeling of the Active Regions

In this section, we define some terminologies and present a formal data model for our

flaring and non-flaring Active Regions (Fig. 5.2). Each Active Region instance is initially

represented by six data fields.

event = 〈id, timestamp, lookback, span,mvts, label〉

Here, id is the NOAA Active Region number and timestamp is the occurrence time of

the flare (for flaring Active Regions) and the sampling time before which the parameter

data are collected (for non-flaring Active Region). The lookback represents the time

window before the occurence of the flare. The span is the time window for sampling

AR patches from SDO/HMI images in 12 minutes cadence. These AR patches are used

to get timewise magnetic field values B1,B2, . . . ,BT , where Bi = [Bφi,Bθi,Bri] is formed

from the components of the vector magnetic field data (see [19] for details). The magnetic

field values are used to calculate N parameter values of the Active Region. The mvts

is a collection of time series {P1,P2, . . . ,PN}, where Pj represents the time series of j-th

51

. . .

12 mins

Flare on ar_insk

B1(ar_insk)
B2(ar_insk)

BN(ar_insk)

Multivariate time series (mvts) id Time
Stamp

Look-b
ack

Span Label

A1 A2 ... A14

ar_insk te l s ‘F’

1 val1,1 val1,2 ... val1,14

2 val2,1 val2,2 ... val2,14

...

N valN,1 valN,2 ... valN,14

SDO/HMI images
of ar_insk patches

Magnetic field
value collection
from each patch

tete- l(te- l) - s
s l

Data model of a flaring active region instance

Figure 5.2: Data model of a flaring Active Region in terms of id, generation time, lookback time,
span time, multivariate time series, and label.

52

parameter. Each time series has fixed length T . If the time unit of span is hours, and the

time unit of cadence is minutes, then T =
span× 60
cadence

. Therefore, Pj is a vector of length

T and represented by Pj = [v1,j, v2,j, . . . , vT ,j], where vk,j is the k-th value of the time series

Pj. If an M-class or X-class flare occurs in time te of an Active Region, then the label of

this example is +1. If no M-class or X-class flare occurs during the disk crossing of the

Active Region, then the label of that example is −1. The data model of the flaring Active

Regions is depicted in Fig. 5.2.

5.4 Flare Classification Model

5.4.1 Problem Definition

Given lookback l hours and span s hours, a dataset of M events is represented by

{(Xi,yi)}Mi=1, where Xi = mvtsi ∈ RT×N and yi ∈ {+1,−1}. In binary classification, if

Tr is the number of labeled events, i.e., training examples, we train a classifier with

Tr labeled examples {(Xi,yi)}Tri=1 and use the classification model to label M− Tr test

examples {(Xi)}
M
i=Tr+1. In this work, we aim to find a single AR parameter Pj, where

1 6 j 6 N, so that its corresponding time series can give the best classifying features. By

utilizing only one parameter time series, we reduce the data to {(Xi(:,Pj),yi)}Mi=1, where

Xi(:,Pj) ∈ RT , so that the dimensionality decreases and the classification performance

increases in comparison with other representations {(Xi(:,Pj ′),yi)}Mi=1, where j ′ 6= j.

5.4.2 Summarization of Time Series

We represent each time series of length T using 8 summary statistics [72], [73]. First four

of them are mean (µ), standard deviation (σ), skewness (SKEW), and kurtosis (KURT) of

53

the time series. Formulas of these statistics on the time series P = [v1, v2, . . . , vT] are as

follows.

µ(P) =

∑T
i=1 vi
T

(5.1)

σ(P) =

√∑T
i=1(vi − µ(P))

2

T
(5.2)

SKEW(P) =

∑T
i=1(vi − µ(P))

3

Tσ(P)3
(5.3)

KURT(P) =

∑T
i=1(vi − µ(P))

4

Tσ(P)4
− 3 (5.4)

Then we calculate the first derivative of the time series P, which is given by P ′ =

[v ′1, v
′
2, . . . , v

′
T−1].

v ′i = vi+1 − vi, 1 6 i 6 T − 1

Finally, we calculate the same statistics, i.e., mean, standard deviation, skewness, and

kurtosis of P ′.

54

µ(P ′) =

∑T−1
i=1 v

′
i

T − 1
(5.5)

σ(P ′) =

√∑T−1
i=1 (v

′
i − µ(P

′))2

T − 1
(5.6)

SKEW(P ′) =

∑T−1
i=1 (v

′
i − µ(P

′))3

(T − 1)σ(P ′)3
(5.7)

KURT(P ′) =

∑T−1
i=1 (v

′
i − µ(P

′))4

(T − 1)σ(P ′)4
− 3 (5.8)

Equations (1) - (8) provide 8 summary statistics of a time series P of length T . These 8

numbers make a vector u which can be thought as a summarized representation of the

time series P, and is given by

u(P) = [µ(P),σ(P),SKEW(P),KURT(P),

µ(P ′),σ(P ′),SKEW(P ′),KURT(P ′)]

This summarization method can be used for feature-based representation of a time

series of any length.

5.4.3 Parameter Selection and Classification

To assess the classification ability of the time series of each AR parameter, we make

datasets Dj = {(Xi(:,Pj),yi)}Mi=1 for 1 6 j 6 N with given lookback l and span s. Since

Dj ∈ RT×M, and the performance and runtime of time series-based classifiers depend on

the number of dimensions of the vector space, i.e., the length of the time series T , we

55

summarize each time series (column of Dj) by 8 summary statistics. After reducing the

data to Dj ∈ R8×M, we use k-NN classifier to distinguish examples of two classes.

We divide the dataset Dj into a training dataset Dj_train ∈ R8×Tr and a testing dataset

Dj_test ∈ R8×(M−Tr). For each test example in Dj_test, k nearest training examples from

Dj_train are found by calculating the Euclidean distance in 8 dimensional space. The

class label of the test example is found from the most common class label among its k

neighbors of the training dataset [74], [75]. When k = 1, the test example is assigned

the class label of its nearest training example. If k is even and there is a tie between the

numbers of positive and negative nearest neighbors, then the class label of the nearest

neighbor is chosen.

By varying the number of neighbors (k) in k-NN classifier, lookback window size,

and span window size, we measure the performance metrics. The AR parameter whose

summarized time series get consistently better score with k-NN classifier than the summa-

rized time series of other AR parameters can be considered to be the best AR parameter

in distinguishing flaring and non-flaring Active Regions.

5.5 Solar Event Visualization

Visualizing high dimensional data in a scatter plot of two or three dimensions is a very

important data analytics task. Principal Component Analysis (PCA) and Distributed

Stochastic Neighbor Embedding (t-SNE) are two popular visualization techniques. PCA

transforms the raw data from its original dimensionality to first k eigenvectors by the

eigendecomposition of the covariance matrix of the vector represented data. It tries to

provide a minimum number of variables that keep the maximum amount of variation

or information about how the original data is distributed. Contrary to PCA, t-SNE is

not a mathematical technique but a probabilistic one. t-SNE minimizes the divergence

56

𝓧

Mag. Field Param

Ti
m

es
ta

m
p

Eve
nt

+≈ + +. . .
CP (R)

Event factor matrix, E Parameter factor matrix, P Timestamp factor matrix, T

.

.

.

.

.

.

.

.

.

M

N

T

Figure 5.3: CP decomposition-based representation learning of solar events, timestamps, and
magnetic field parameters

between two distributions: the distribution that measures pairwise similarities of the

original high dimensional space, and a distribution that measures pairwise similarities of

the corresponding low-dimensional representation space [17].

A dataset of M flaring and non-flaring events is represented by {(Xi)}
M
i=1, where

Xi = mvtsi ∈ RT×N. Here M is the number of events, T is the number of timestamps,

and N is the number of magnetic field parameters (section 5.3). We avoid using the labels

of flaring and non-flaring events to support the unsupervised behavior of this task.

Fig. 5.3 describes our model of tensor decomposition-based solar events embedding.

A third-order tensor X ∈ RM×T×N is constructed by stacking M multivariate time series

matrices mvtsi ∈ RT×N for 1 6 i 6 M. The objects represented by the three modes

of this tensor are: solar events, timestamps, and magnetic field parameters. Then CP

decomposition is performed with a given rank R. CP decomposition results in vectors

er ∈ RM, tr ∈ RT , and pr ∈ RN for r = 1, 2, 3, . . . R. These vectors are stacked together

to form three factor matrices, E = [e1, e2, . . . eR], T = [t1, t2, . . . tR], and P = [p1, p2, . . .pR],

where E ∈ RM×R, T ∈ RT×R, and P ∈ RN×R.

In factor matrix E ∈ RM×R, each row is an R-dimensional representation of the solar

event. In factor matrix T ∈ RT×R, each row is an R-dimensional representation of the

57

individual time instant of the time series. In factor matrix P ∈ RN×R, each row is an

R-dimensional representation of the magnetic field parameter.

After we find the event factor matrix E, timestamp factor matrix T, and parameter

factor matrix P, we can compute the projection of embedding of event i on the embedding

of timestamp j, where 1 6 i 6 M and 1 6 j 6 T , and get event-timestamp embedding

matrix ET ∈ RM×T . Similarly, we can get a event-parameter embedding matrix EP ∈ RM×N

that reflects the projection of event embeddings on parameter embeddings. Finally, we get

the event embedding matrix Z ∈ RM×(T+N) by concatenating ET and EP. First T columns

of Z represent the individual event with respect to each timestamp, and last N columns

of Z represent the individual event with respect to each magnetic field parameter. By this

way, we get an interpretable feature space of the solar events, where the roles of each

feature understandable with respect to the timestamps and magnetic field parameters.

ET = E ∗TT

EP = E ∗ PT

Z = [ET, EP]

Therefore, by CP decomposition, we are able to represent the multivariate time series-

based solar events with a compressed dimensionality of T +N, which is less than the

original dimensionality of T ×N. Finally, we can project these compressed representations

directly on 2D scatter plot though PCA or t-SNE. Only weakness of this dimensionality

reduction method is: the tuning of hyperparameters such as number of iterations in CP

algorithm and CP decomposition rank R. We recommend the trials of R with the range of

2, 3, ..., 20 for the sake of low rank decomposition, and human observation of each trial

result on the scatter plot.

58

6 EXPERIMENTAL EVALUATION

In this chapter, we present our experimental findings for the interpretable feature space

extraction by tensor decomposition. At first, we present the node embedding perfor-

mances of the tensor decomposition-based methods, which are based on interpretability

of the feature space, network reconstruction, link prediction, node classification, and

graph classification. Then, we present the classification performances found from different

tensor modeling of the fMRI-based brain network data. We demonstrate the discrimina-

tive subnetwork mining, and the visualization of the learned biomarkers from a set of

healthy and struggling population of reading disability-based resting-state fMRI data.

Finally, we present summarized time series-based solar flare prediction performance

analysis, and 2D visualization of flaring and nonflaring solar events in scatter plots. Each

section contains the description of datasets and/or baselines.

6.1 Graph Embedding by Tensor Decomposition

In this section, we experimentally evaluate our algorithms TDNE and TDNEpS with

respect to the interpretability of the feature space, and performance of the network

reconstruction, link prediction, node classification, and graph classification. Among these

tasks, graph classification is a multi-graph-based learning task, while others are single

graph-based. We have also evaluated the performance and runtime of different node

embedding algorithms while varying the number of embedding dimensions.

59

6.1.1 Experimental Settings

To comprehensively experiment our algorithms we have used different types of networks,

such as directed and undirected, weighted and unweighted, sparse and dense, small

and large networks. In Table 6.1, we list the datasets used in the experiments and their

properties.

For network reconstruction, link prediction, node classification, and graph classification,

we have compared our algorithms TDNE and TDNEpS with six baseline algorithms. We

selected the baselines based on the categories of node embedding algorithms (section 2.2).

For all of these baselines, we have used dataset and task-dependent hyperparameters

suggested by their papers, and the survey paper [76].

• Laplacian Eigenmaps (LAP) [9] is a matrix decomposition-based method that per-

forms eigendecomposition of the Laplacian of the graph.

• LLE [29] is a matrix decomposition-based method that embeds nodes by singular

value decomposition, taking into consideration that each node is a linear combina-

tion of its neighbors.

• HOPE [30] is a multihop similarity-based method that performs generalized SVD on

the similarity matrix found from node neighborhoods. We set the decay parameter

β = 0.01 for Katz Index.

• GraRep [26] is a multihop similarity-based method that generates node embedding

by successive singular value decomposition of the powers of the log-transformed,

probabilistic adjacency matrix. We set maximum transition step K = 6, and log

shifted factor β = 1/n.

• Node2Vec [8] is a random walk-based method, which is a generalization of Deep-

Walk [28]. Node2Vec uses biased random walk to create node sequences, and uses

60

T
ab

le
6.

1:
D

at
as

et
st

at
is

ti
cs

an
d

th
ei

r
us

e
in

ex
pe

ri
m

en
ts

D
at

as
et

N
et

w
or

k
ty

pe
N

et
w

or
k

pr
op

er
ti

es
|V
|

|E
|

D
en

si
ty

**
Ex

pe
ri

m
en

t

K
ar

at
e

so
ci

al
ne

tw
or

k
di

re
ct

ed
,u

nw
ei

gh
te

d
3
4

7
8

0
.0

6
9
5
2

in
te

rp
re

ta
bi

lit
y

of
th

e
fe

at
ur

es

Bl
og

C
at

al
og

so
ci

al
ne

tw
or

k
un

di
re

ct
ed

,u
nw

ei
gh

te
d

1
0
,3

1
2

3
3
3
,9

8
3

0
.0

0
6
2
8

ne
tw

or
k

re
co

ns
tr

uc
ti

on
an

d
lin

k
pr

ed
ic

ti
on

Br
az

ili
an

ai
rp

or
ts

A
ir

-t
ra

ffi
c

ne
tw

or
k

un
di

re
ct

ed
,u

nw
ei

gh
te

d
1
3
1

1
,0

0
3

0
.1

1
7
7
9

no
de

cl
as

si
fic

at
io

n
Eu

ro
pe

an
ai

rp
or

ts
A

ir
-t

ra
ffi

c
ne

tw
or

k
un

di
re

ct
ed

,u
nw

ei
gh

te
d

3
9
9

5
,9

9
3

0
.0

7
5
4
8

no
de

cl
as

si
fic

at
io

n
A

D
H

D
gr

ap
h

da
ta

ba
se

*
Br

ai
n

ne
tw

or
k

un
di

re
ct

ed
,w

ei
gh

te
d

9
0

1
9
9
2
.8

9
7

0
.4

9
7
6

gr
ap

h
cl

as
si

fic
at

io
n

Sc
hi

zo
ph

re
ni

a
gr

ap
h

da
ta

ba
se

*
Br

ai
n

ne
tw

or
k

un
di

re
ct

ed
,u

nw
ei

gh
te

d
1
3
2

5
5
3
9
.0

6
8

0
.6

4
0
6
5

gr
ap

h
cl

as
si

fic
at

io
n

*
Fo

r
gr

ap
h

da
ta

ba
se

,|
V
|

is
th

e
nu

m
be

r
of

no
de

s
in

ea
ch

gr
ap

h,
an

d
|E
|

is
th

e
m

ea
n

nu
m

be
r

of
ed

ge
s

of
al

lg
ra

ph
s

**
Fo

r
un

di
re

ct
ed

gr
ap

h,
de

ns
it

y=
2
∗
|E
|

|V
|(
|V
|−
1
).F

or
di

re
ct

ed
gr

ap
h,

de
ns

it
y=

|E
|

|V
|(
|V
|−
1
)

61

Skip-gram model [7] to learn node embeddings. We set walks per node r = 80, walk

length l = 10, context size k = 10, return parameter p = 1, and in-out parameter

q = 1.

• SDNE [31] is a deep learning-based method, which adopts a deep auto-encoder to

preserve the first two order proximities. We use the default neural network structure

and parameters in the implementation of the authors.

For node classification and graph classification, we use classification accuracy, i.e.,

percentage of correct predictions. For network reconstruction and link prediction, we use

Precision@Np and mean average precision (MAP) [27], [76].

Precision@Np: Pr@Np is the fraction of correct predictions in top-Np predicted node

pairs. It is defined as,

Pr@Np =
|Epred(1 : Np)∩ Eobs|

Np
(6.1)

where Epred(1 : Np) are top-Np predicted node pairs, and Eobs are the observed edges.

For network reconstruction, Eobs = E. For link prediction, Eobs is the set of hidden edges.

Mean Average Precision: MAP considers the precision of each node and computes the

average over all nodes.

MAP =

∑
iAP(i)

n
(6.2)

AP(i) =

∑
Np
Pr@Np(i)I{Epredi(Np) ∈ Ei}
|{Np : Epredi(Np) ∈ Ei}|

62

Pr@Np(i) =
|Epredi(1 : Np)∩ Ei|

Np

where Epredi is the set of predicted edges for node i. For network reconstruction, Ei is

the set of observed edges for node i. For link prediction, Ei is the set of hidden edges for

node i.

For implementing baseline algorithms and performance evaluation metrics, we used

GEM (Graph Embedding Methods) library 1. All the experiments are conducted in a

single PC with Intel Core i7-6700 CPU (clock speed 3.40GHz), 16 GB RAM, and Ubuntu

16.04 operating system. Our implementation uses Tensorly library of Python [77]. We

made TDNE and TDNEpS available at: https://github.com/hamdi08/TDN.

6.1.2 Interpretability of the Features

For this experiment, we used Zachary’s Karate club network [78] (Fig. 6.1a), where

we consider each edge as directed. The network has 34 nodes and 78 directed edges.

We performed TDNE with K = 6 and r = 2. Therefore, the third-order tensor has size

34*34*6. After CP decomposition, we visualize the embeddings of each transition step

(Fig. 6.1b). The L2 norms of the transition embeddings (Fig. 6.1c) show the relatively high

importance of lower-order proximities compared to the higher-order proximities, which is

intuitive for the social networks. In Fig. 6.1d, the final embeddings of each node is shown

in a 12 (=2*6) dimensional feature space, where the first six features represent the source

property of the nodes with varying transition step from one to six, and the last six features

represent the target property of the nodes with varying transition step from one to six.

Node 1, which has all outgoing edges and no incoming edges, is embedded in a way so

1 https://github.com/palash1992/GEM

63

(a) Directed Karate network of 34 nodes and 78 edges

(b) Transition step embeddings (K=6)
after CP decomposition with rank 2

(d) Representation of the nodes in 2*K
dimensional space

(c) L2-norms of k=1,2,.., 6 step
transition step embeddings

Tr
an

si
tio

n
st

ep
s

CP decomposition rank

L2
 n

or
m

 o
f e

m
be

dd
in

gs

Transition step

N
od

e
id

Features

Figure 6.1: Executing TDNE on directed Karate network

64

that it has high values in only source property representing features (more specifically,

the features which represent source property in lower transition steps). Almost opposite

embedding nature is observed in node 34, which has all incoming edges and no outgoing

edges. For some nodes which have almost equal number of incoming and outgoing

edges, such as node 9 and 10, we see a distribution of high values among source property

representing features and target property representing features. Features representing

higher-order transition steps (such as 4th, 5th and 6th-order) of both source and target

properties have no impact in this network, which supports the facts found in Fig. 6.1(c).

Therefore, in order to further reduce the dimensionality, we can remove these features.

6.1.3 Network Reconstruction

Reconstruction of the network from the learned embeddings of the nodes is a common

task for evaluating node embedding algorithms. The node pairs (possible edges) are

ranked according to the node similarities, i.e., the inner product of two node embeddings,

and equations 6.1 and 6.2 are used to determine Precision@Np and MAP.

For this experiment, we have used BlogCatalog network 2 which consists of 10,312

nodes and 333,983 edges (undirected and unweighted). In this social network, nodes

represent bloggers and edges represent social relationships among them.

Fig. 6.2 shows that TDNE (K = 3, r = 4) and TDNEpS (K = 1, r = 1) outperforms other

baseline algorithms in terms of Precision@Np (Fig. 6.2a) and MAP (Fig. 6.2b). We have

used the number of dimensions d = 128 for the baselines. We varied the number of

reconstructed node pairs from one hundred to one million, and recorded Precision@Np

for each given number of reconstructed node pairs. We executed each algorithm five

times, and plotted the means as points and the standard deviations as shaded regions. We

observe that single matrix factorization-based methods such as Laplacian Eigenmaps and

2 http://socialcomputing.asu.edu/datasets/BlogCatalog3

65

102 103 104 105 106

Number of reconstructed node pairs, Np

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
@

N
p

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(a) Precision@Np in network reconstruction

LAP LLE HOPE GraRep Node2Vec SDNE TDNE TDNEpS
Node embedding algorithm

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ea

n
M

AP
 v

al
ue

 o
ve

r t
he

 e
xp

er
im

en
ts

(b) Mean MAP of each baseline in network reconstruction

Figure 6.2: Network reconstruction performance of TDNE and TDNEpS with other baseline
algorithms on BlogCatalog network

66

LLE perform very poorly because of their relying on the approximation of eigenvectors

of large, first-order proximity matrix. Multihop similarity-based methods such as HOPE

and GraRep that use higher-order proximities of nodes perform comparatively better.

Random walk-based method Node2Vec performs better than them because of its flexible

neighborhood sampling. Although Node2Vec’s performance is better than GraRep in

terms of Precision@Np, in terms of MAP, Node2Vec’s performance is a bit inferior to

GraRep’s. SDNE’s performance in Precision@Np is better than all methods (including

TDNE) except TDNEpS, but in MAP performance SDNE is inferior to both tensor

decomposition-based methods. Surprisingly, TDNE with d = 6 and TDNEpS with d = 2

perform better than all the baselines, which use d = 128. The robust performance of

these tensor decomposition-based node embedding methods can be attributed to the

representation learning of the transition steps (proximities). While TDNE shows some

variance over the experiments, TDNEpS performs consistently and outperform TDNE in

network reconstruction. This proves the superiority of independent decomposition of the

tensor slices in comparison with single decomposition of a single tensor.

6.1.4 Link Prediction

Link prediction is a typical application of node embedding that aims to predict which

pairs of nodes are likely to form edges. In our experiments, we randomly hid 20% of edges

(66,797 edges) of the BlogCatalog network, and executed node embedding algorithms

on the remaining edges (267,186 edges) to learn node representations. We used the

same number of dimensions in each node embedding algorithm as the experiment of

network reconstruction. For both Precision@Np and MAP, we followed exactly the same

experimental settings of network reconstruction (variation of the number of reconstructed

node pairs and number of executions of each algorithm).

67

102 103 104 105 106

Number of reconstructed node pairs, Np

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Pr

ec
isi

on
@

N
p

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(a) Precision@Np in link prediction

LAP LLE HOPE GraRep Node2Vec SDNE TDNE TDNEpS
Node embedding algorithm

0.000

0.005

0.010

0.015

0.020

0.025

M
ea

n
M

AP
 v

al
ue

 o
ve

r t
he

 e
xp

er
im

en
ts

(b) Mean MAP of each baseline in link prediction

Figure 6.3: Link prediction performance of TDNE and TDNEpS with other baseline algorithms
on BlogCatalog network

68

Fig. 6.3 shows that both TDNE and TDNEpS outperform other baselines in terms of

both Precision@Np (Fig. 6.3a) and MAP (Fig. 6.3b). Since link prediction is a harder

task than network reconstruction, all algorithms give smaller values in both metrics.

According to Precision@Np and MAP values of link prediction, we observe a performance

precedence order, which implies TDNEpS > TDNE > SDNE > Node2vec > GraRep >

HOPE > LLE > LAP. These results support the fact that algorithms considering higher-

order proximities tend to have better performance than the algorithms considering

lower-order proximities, and proximity learning nature of tensor decomposition-based

methods perform better in link prediction even with the small number of dimensions.

Like the case of network reconstruction, TDNE shows more variance and less precision

than TDNEpS.

6.1.5 Node Classification

For node classification, we used the Brazilian airport network, which has 131 nodes and

1,003 edges, and Europian airport network, which has 399 nodes and 5,993 edges. Both

networks are undirected and unweighted. The nodes correspond to the airports in Brazil

and Europe, and edges indicate the existence of commercial flights between them. The

nodes have four labels from 0 to 3, which indicate the airport activities, i.e., the number

of takeoffs and landings in the year 2016, and label 0 means the highest activity level.

The data is collected and labeled by Ribeiro et al. [79] from the website of the National

Civil Aviation Agency (ANAC) 3, and made available 4.

We worked with two settings of number of dimensions in two airport networks. We set

d = 16 for Brazil airport network, and d = 32 for Europian airport network. We executed

both tensor decomposition-based methods with R = 4 for both networks, since there are

3 http://www.anac.gov.br/
4 https://github.com/leoribeiro/struc2vec

69

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.3

0.4

0.5

0.6

0.7
Lo

gis
tic

 re
gr

es
sio

n
m

ult
icl

as
s c

las
sif

ica
tio

n
ac

cu
ra

cy

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(a) Node classification performance in Brazilian airport network

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.30

0.35

0.40

0.45

0.50

0.55

Lo
gis

tic
 re

gr
es

sio
n

m
ult

icl
as

s c
las

sif
ica

tio
n

ac
cu

ra
cy

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(b) Node classification performance in Europian airport network

Figure 6.4: Node classification in airport networks varying training set size

70

four classes. As the classifier, we used one-vs-all logistic regression classifier with L2

regularization. We varied the percentage of training representations from 10% to 90% and

reported mean classification accuracy over 10 trials of random sampling (Fig. 6.4). From

Fig. 6.4a and 6.4b, we can see that both TDNE and TDNEpS outperform other baselines

in node classification in both networks.

Experiments on both airport networks with respect to node classification lead to an

interesting observation. The distinction of performances of three classes of algorihtms is

visible. Matrix decomposition-based methods LAP, LLE, and HOPE perform poorest in

both networks. Multihop similarity-based (GraRep), random walk-based (Node2Vec), and

deep learning-based (SDNE) methods perform better than matrix decomposition-based

methods in both datasets. Both tensor decomposition-based methods TDNE and TDNEpS

perform best in both networks. SDNE has good performance in Brazilian airport network,

while it performs poorer in European airport network in comparison with Node2Vec,

GraRep, and tensor decomposition-based methods. Although GraRep does not perform

well in Brazilian airport network with respect to the performances of SDNE, Node2Vec,

and tensor decomposition-based methods, in European airport network it performs very

good by gradually increasing the accuracy with respect to the increase of training set size.

In both networks, with only 30% training data, the classification accuracy of TDNEpS is

almost twice than that of HOPE, the best performing single matrix decomposition-based

method.

6.1.6 Performance and Runtime Varying Dimensionality

We evaluated the effect of the input number of dimensions in node embedding algorithms

for the task of node classification in both airport networks. We varied the number of

dimensions and measured the multiclass classification accuracy of the L2 regularized

logistic regression classifier after splitting the training and test node representations by

71

2 4 6 8 10 12 14 16 18 20
Dimensionality

0.2

0.3

0.4

0.5

0.6

Lo
gis

tic
 re

gr
es

sio
n m

ult
icl

as
s c

las
sif

ica
tio

n a
cc

ur
ac

y

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(a) Node classification performance in Brazilian airport network

2 4 6 8 10 12 14 16 18 20
Dimensionality

0.30

0.35

0.40

0.45

0.50

0.55

Lo
gis

tic
 re

gr
es

sio
n

m
ult

icl
as

s c
las

sif
ica

tio
n

ac
cu

ra
cy

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(b) Node classification performance in Europian airport network

Figure 6.5: Node classification in airport networks varying number of dimensions

72

Table 6.2: Mean execution times of different node embedding algorithms while varying the
number of dimensions

Execution times
(in seconds)

Algorithm
Brazilian

airport network
Europian

airport network
LAP 0.04135 0.09955

LLE 0.03762 0.07717

HOPE 0.00862 0.02715

GraRep 0.03152 0.31382

Node2Vec 0.39355 1.08808

SDNE 16.66337 146.86828

TDNE 0.05425 0.35163

TDNEpS 0.04305 0.39544

10 fold stratified cross-validation. In both networks, TDNE and TDNEpS outperform

other algorithms in almost every setting of the number of dimensions. Fig. 6.5 shows

that with the increase of the number of dimensions, in the case of most algorithms,

classification accuracy increases at first and then becomes stable (TDNEpS, TDNE, SDNE,

and GraRep in Fig. 6.5a), or gradually decreases (SDNE and GraRep in Fig. 6.5b). The

low dimensional setting, which is a deviation from the default 128-dimensional setting

of Node2Vec [8], probably causes the noise in classification accuracy in both networks.

Similar to Fig. 6.4, all matrix decomposition-based methods show poorer performance

than other baselines.

Table 6.2 shows the execution times of different algorithms in embedding the nodes

of both airport networks. We report the mean runtime while varying the number of

dimensions. The slow training time of SDNE is visible while being compared with other

algorithms. Matrix decomposition-based algorithms embed the nodes in the fastest time

for both networks. GraRep and tensor decomposition-based algorithms have similar

execution times, while Node2Vec performs slower than them in both cases.

73

6.1.7 Graph Classification

For graph classification, we have a graph database of labeled graphs,D = {G1,G2, . . . ,G|D|}.

We can represent each graph by a fixed dimensional vector space by different graph em-

bedding schemes, such as computing the structural properties such as degree, clustering

coefficient, etc of the nodes [36], counting the appearances of frequent/discriminative

subgraph patterns [40], and so on. While structure-based features are hand-engineered

and require a lot of domain knowledge, subgraph-based features are computationally

very expensive [21]. To evaluate the node embedding algorithms in the light of graph

classification, we take a graph database, where each graph has the same labeled node

set, and apply node embedding algorithms to embed the nodes of each graph. If each

graph has n nodes, then graph Gi has a node embedding matrix Zi ∈ Rn×d. We get

the embedding of the graph Gi by reshaping its node embedding matrix by Zi ∈ R1×nd.

Therefore, the embedding matrix of the graph database is ZD ∈ R|D|×nd.

Brain network classification is a good example of graph classification, where each

graph has the same labeled node set. In brain networks, the nodes represent brain

regions defined by some standard brain atlas, and edges represent functional/struc-

tural similarity of the brain regions [38]. Non-invasive neuroimaging modalities such

as Magnetic Resonance Imaging (MRI), Electroencephalography (EEG), and Diffusion

Tensor Imaging (DTI) can be used to construct brain networks, that have been used

by the neuroscience community to investigate different neurological disorders such as

Alzheimer's, Schizophrenia, Bipolar disorder, and Attention-deficit/hyperactivity disor-

der (ADHD) [13]. Given a set of brain networks and associated case/control labels, we

aim to maximize the classification performance. For this experiment, we have considered

two resting-state fMRI (Functional Magnetic Resonance Imaging)-based brain network

datasets on ADHD and Schizophrenia.

74

fMRI measures the functional activities of different brain regions by capturing 3D brain

volumes over time. The time series of each voxel (the unit of brain volume) is calculated,

which represents the change in Blood Oxygenation Level Dependent (BOLD) signal over

the scan period. The voxels are grouped together to predefined brain atlas-based regions,

and the mean time series is calculated for each region. The pairwise Pearson correlation

coefficients between the time series of the regions give the correlation matrix. By applying

threshold (usually 0) on the correlation matrix, we get the adjacency matrix of the brain

network [40]. We performed the experiments of brain network classification on two

datasets: ADHD and Schizophrenia.

As the first dataset, we used a brain network dataset from ADHD-200 global compe-

tition 5. The dataset has 768 brain networks, where 280 of them are labeled as ADHD

positive, and the rest are normal control. There are 90 nodes in each network, which

represents 90 cerebral brain regions defined by the Automated Anatomical Labeling

(AAL) parcellation on resting-state fMRI scans of the subjects. The detailed preprocessing

steps of this dataset are discussed in [80]. We made the graphs sparse by removing the

edges which have negative weights in the correlation matrix.

We have used d = 16 for all node embedding algorithms. We have used binary logistic

regression classifier with L2 regularization. We report the mean classification accuracy

after 10 trials of train/test sampling, while varied the train set size from 10% to 90%.

From Fig. 6.6a, we see that TDNEpS outperforms all other baselines. Node2Vec performs

better than TDNE in this experiment. LAP performs better than other single matrix

factorization-based methods such as LLE and HOPE. The performances of SDNE and

GraRep are almost same as that of matrix decomposition-based methods.

As the second dataset, we used a brain network dataset collected by The Center for

Biomedical Research Excellence (COBRE) 6. The dataset has 147 functional MRI scans,

where 72 of them are diagnosed with Schizophrenia, and the rest are normal control. We

5 http://fcon_1000.projects.nitrc.org/indi/adhd200/
6 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58
Lo

gis
tic

 re
gr

es
sio

n
cla

ss
ific

at
ion

 ac
cu

ra
cy

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(a) Graph classification performance in ADHD graph database

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.40

0.45

0.50

0.55

0.60

Lo
gis

tic
 re

gr
es

sio
n

cla
ss

ific
at

ion
 ac

cu
ra

cy

LAP
LLE
HOPE
GraRep
Node2Vec
SDNE
TDNE
TDNEpS

(b) Graph classification performance in Schizophrenia graph database

Figure 6.6: Graph classification in two brain networks datasets varying training set size

76

used the software Conn [81] for preprocessing the fMRI scans by head motion correction,

slice timing correction, normalization to MNI template, and spatially smoothing with

8mm Gaussian kernel [40]. After default segmentation, we found the time series of 132

brain regions, which combine FSL Harvard-Oxford atlas-based cortical and subcortical

regions, and AAL atlas-based cerebellar regions. Therefore, each network has 132 nodes.

Similar to ADHD dataset, we added sparsity in the graphs by removing the edges with

negative weights. Unlike the experiment with ADHD dataset, we considered unweighted

(binary) graphs for Schizophrenia dataset. We kept other experimental settings such as

number of dimensions of the node embedding algorithms, the classifier, and accuracy

reporting strategy same as that of the experiment with ADHD dataset.

In Fig. 6.6b, we see the performances of different node embedding algorithms in

Schizophrenia dataset. While the performance of almost all algorithms drop in a particular

sampling (30%) of training instances, TDNEpS perform better than others in most cases.

LLE, a matrix decomposition-based algorithm, performs better than all algorithms with

90% training data.

6.1.8 Parameter Sensitivity

Fig. 6.7 shows the node classification and graph classification performance of TDNEpS

with the change of hyperparameters K and R. The tensor decomposition rank R is set

as the number of class labels in the dataset, and maximum transition step K is tuned

with keeping R fixed. Therefore, for the Brazilian airport network, which has four class

labels, we set R = 4 to see the effect of K in the node classification performance with

respect to train set size (Fig. 6.7a). The setting of K = 2 performs well when the train

set size is small. Then with fixed K = 2, we vary R (Fig. 6.7b), and see R = 2 performs

consistently better with K = 2. We set R = 2 for binary labeled ADHD dataset in graph

classification, and vary K with R fixed. We see from Fig. 6.7c that graph classification

77

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Lo
gi

st
ic

re
gr

es
sio

n
m

ul
tic

la
ss

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

K=1
K=2
K=3
K=4
K=5
K=6

(a) Brazil airport network with fixed R(=4) and
varying K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Lo
gi

st
ic

re
gr

es
sio

n
m

ul
tic

la
ss

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

R=1
R=2
R=3
R=4

(b) Brazil airport network with fixed K(=2) and
varying R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

Lo
gis

tic
 re

gr
es

sio
n c

las
sif

ica
tio

n a
cc

ur
ac

y

K=1
K=2
K=3
K=4
K=5
K=6

(c) ADHD dataset with fixed R(=2) and varying K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train set size

0.545

0.550

0.555

0.560

0.565

0.570

0.575

Lo
gis

tic
 re

gr
es

sio
n c

las
sif

ica
tio

n a
cc

ur
ac

y

R=1
R=2
R=3
R=4

(d) ADHD dataset with fixed K(=1) and varying R

Figure 6.7: Node classification and graph classification performance of TDNEpS in different
settings of K and R

78

performance in ADHD dataset is very sensitive with K. For some K values, the classifier

might have overfit (for example, K = 4). We take K = 1 as best maximum transition step

and vary R (Fig. 6.7d). Although R = 1 and R = 3 give some good results, it is difficult to

find optimal R. Therefore, we recommend to use grid search for optimizing these two

hyperparameters K and R.

6.2 Tensor Modeling of the Brain Networks

In this section, we present the performance of brain network representations after mod-

eling the data in different tensor models (Chapter 3). We used Tensor Toolbox [82] of

MATLAB for computing CP and Tucker decomposition with ALS optimization. In this

section, we show the performance of CP and Tucker decomposition on five tensor models.

6.2.1 Data Collection

In our first dataset, the target neurodevelopmental disorder was a reading disability. For

the study, we used preprocessed resting-state fMRI scans of 14 adult subjects from the local

community, seven labeled as “struggling" readers (below-average reading test scores),

and seven labeled “typical" (average on reading test). Because of the specific experimental

setting and preprocessing requirements of this study, the number of collected samples is

small. We summarize the preprocessing steps as follows.

1. Removal of time-locked physiological noise

2. Slice timing correction

3. Bulk head motion correction

4. Reorientation

79

5. Echo-planar Imaging (EPI)-based distortion correction

6. Linear and nonlinear coregistration to template space

7. Resampling to EPI voxel size

8. Removal of physiological noise by detrending time-shifted respiratory volume per

time

9. Removal of local white matter BOLD time series

10. Skull-stripping

11. Low-pass filtering in the range of 0.001-0.1 Hz

12. Smoothing with Gaussian kernel (FWHM 6mm)

The details of the preprocessing steps for this study can be found in [83]. We are

also provided 16 ROIs based on apriori reading research [39]. In Fig. 6.8, we show the

visualization of these ROIs in left and right hemisphere. The preprocessing steps are

done using AFNI [84], FSL [85], and FreeSurfer [86]. The subjects are scanned in one

session. After preprocessing, the number of voxels in one brain volume is 53× 63× 45,

while the repetition time (time between capturing two whole brain volume) is 2 seconds.

Finally, using Conn [81] the multivariate time series and functional connectivity matrices

of each subject are extracted. The length of each time series of each ROI is 125.

Since the number of samples in the reading disability dataset is small, we collected

another dataset from ADHD-200 global competition 7. We used the data from NeuroIM-

AGE study (Radboud University Nijmegen Medical Centre, Vrije Universiteit Amsterdam,

UMC Groningen), which contains data of 48 subjects (23 are normal control and rest

are ADHD positive). The data of each subject is a multivariate time series, which is

computed by the Automated Anatomical Labeling (AAL) parcellation on resting-state

7 http://fcon_1000.projects.nitrc.org/indi/adhd200/.

80

http://fcon_1000.projects.nitrc.org/indi/adhd200/

L_
A

G
: L

ef
t

an
gu

la
r g

yr
us

L_
FG

: L
ef

t
fu

si
fo

rm
 g

yr
us

L_
M

TG
: L

ef
t

m
id

dl
e

te
m

po
ra

l
gy

ru
s

L_
SM

G
: L

ef
t

su
pr

am
ar

gi
na

l
gy

ru
s

L_
ST

G
:L

ef
t

su
pe

rio
r t

em
po

ra
l

gy
ru

s

L_
pO

B
: L

ef
t

pa
rs

 o
rb

ita
lis

L_
pO

P:
 L

ef
t p

ar
s

op
er

cu
la

ris
L_

pT
R

: L
ef

t
pa

rs
 tr

ia
ng

ul
ar

is

R
_A

G
: R

ig
ht

an

gu
la

r g
yr

us
R

_F
G

: R
ig

ht

fu
si

fo
rm

 g
yr

us
R

_M
TG

: R
ig

ht

m
id

dl
e

te
m

po
ra

l
gy

ru
s

R
_S

M
G

: R
ig

ht

su
pr

am
ar

gi
na

l
gy

ru
s

R
_S

TG
: R

ig
ht

su

pe
rio

r t
em

po
ra

l
gy

ru
s

R
_p

O
B

: R
ig

ht

pa
rs

 o
rb

ita
lis

R
_p

O
P:

 R
ig

ht

pa
rs

 o
pe

rc
ul

ar
is

R
_p

TR
: R

ig
ht

pa

rs
 tr

ia
ng

ul
ar

is

F
ig

ur
e

6.
8:

V
is

ua
liz

at
io

n
of

1
6

R
O

Is
in

le
ft

an
d

ri
gh

t
he

m
is

ph
er

e

81

fMRI data. The length of each time series of each ROI is 257. AAL-parcellation segments

the brain into 90 cerebral and 26 cerebellar ROIs. We consider all 90 cerebral regions

similar to [40], [43], [52], and [44] as ROIs. Therefore, the multivariate time series of each

subject has shape (257, 90).

6.2.2 Evaluation Method

After obtaining the subject factor matrix by tensor decomposition, label information

is concatenated and labeled representations of the subjects are fed into a classifier

with a predefined train/test splitting strategy. In our experiments, we chose Support

Vector Machine (SVM) as the classifier with the radial basis function as the kernel.

As the train/test splitting method, in the reading disability dataset, we chose 7-fold

stratified cross validation, and in the ADHD dataset, we performed 8-fold cross validation.

Therefore, in the reading disability dataset, at each iteration 12 labeled subjects are taken

as training subjects and two of them are taken as test subjects, while half of the training

and test subjects are labeled as struggling, and half of them are labeled as typical. In the

ADHD dataset, at each iteration 40 samples are taken as training samples, and 8 of them

are taken as test samples.

6.2.3 Performances in Different Tensor Models

We have experimented five tensor models with both CP and Tucker decompositions. For

the reading disability dataset, we varied the number of columns in the subjects factor

matrix from 1 to 10 (in Tucker decomposition for both datasets, we set the number of

columns of other factor matrices as fixed values) and then evaluated the quality of the

subject factor matrix by SVM with 7-fold stratified cross validation. For ADHD dataset,

82

we varied the number of columns in the subjects factor matrix from 1 to 20 and used

8-fold cross validation for evaluating the classifier accuracy.

Fig. 6.9a – 6.9e show the SVM classification accuracy on the subject factor matrix found

after CP and Tucker decomposition of five different tensors constructed from the reading

disability dataset. Since ALS implementation of CP and Tucker is used, the resulting

factor matrix depends on the initialization of other factor matrices representing ROIs

and timestamps. Therefore, if we increase the number of columns of the subject factor

matrix, which is equivalent to increasing the number of features in feature space, the

classification accuracy may not increase linearly. In Fig. 6.9f, we summarized our findings

by presenting the best accuracy rates along with the number of columns used in the factor

matrix, and the mean accuracy found by varying the number of columns. In the reading

disability dataset, Tensor Model 3, which was used previously in the literature [43],

showed the most robust performance in both CP and Tucker decomposition with mean

accuracy over 70%. The nonlinearity of accuracy with respect to the number of columns

of the factor matrix is also supported by other studies [43], [52]. We also see that Tucker

decomposition performs better than CP in all tensor models except Tensor Model 5.

Moreover, when the number of columns in the subject factor matrix is small, e. g., 1, CP

decomposition performs better than Tucker decomposition in most cases.

Experimental results on five tensor models constructed from the ADHD data are shown

in Fig. 6.10a – 6.10f. In terms of best accuracy, similar to the reading disability dataset,

Tucker decomposition shows better performance than CP decomposition in almost all

tensor models. According to the mean accuracy, in ADHD dataset, Tensor Model 5

performs best.

We evaluated five different tensor models, and showed the classification accuracy on

the subject factor matrix generated by CP and Tucker decomposition. When we construct

the tensors from a dataset of a small number of samples, such as reading disability

dataset, Tensor Model 3, where the tensor is constructed by stacking the non-negative

83

1 2 3 4 5 6 7 8 9 10
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 7-fold cross validation
CP
Tucker

(a) Tensor model 1

1 2 3 4 5 6 7 8 9 10
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 7-fold cross validation
CP
Tucker

(b) Tensor model 2

1 2 3 4 5 6 7 8 9 10
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 7-fold cross validation
CP
Tucker

(c) Tensor model 3

1 2 3 4 5 6 7 8 9 10
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 7-fold cross validation
CP
Tucker

(d) Tensor model 4

1 2 3 4 5 6 7 8 9 10
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 7-fold cross validation
CP
Tucker

(e) Tensor model 5

Tensor
model

Tensor
decomposition

Best
accuracy
gained

Number of columns
of factor matrix

when best accuracy
was gained

Mean accuracy
over all runs

varying number of
columns

1
CP 0.7857 3 0.3786

Tucker 0.6429 2 0.4286

2
CP 0.6429 4 0.5

Tucker 0.9286 6 0.6

3
CP 0.8571 1 0.7143

Tucker 0.8571 5 0.7286

4
CP 0.6429 1 0.4571

Tucker 0.6429 6 0.4571

5
CP 0.8571 9 0.6643

Tucker 0.6429 2 0.5429

(f) Comparison of all tensor models

Figure 6.9: Reading disability dataset: Comparison of CP and Tucker decomposition on
five tensor models on the basis of SVM classification on subject factor matrix

84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

rac
y

Classification accuracy with SVM and stratified 8-fold cross validation
CP
Tucker

(a) Tensor model 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 8-fold cross validation
CP
Tucker

(b) Tensor model 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 8-fold cross validation
CP
Tucker

(c) Tensor model 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification accuracy with SVM and stratified 8-fold cross validation
CP
Tucker

(d) Tensor model 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of columns in subject factor matrix

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Classification accuracy with SVM and stratified 8-fold cross validation
CP
Tucker

(e) Tensor model 5

Tensor
model

Tensor
decomposition

Best
accuracy
gained

Number of columns
of factor matrix

when best accuracy
was gained

Mean accuracy
over all runs

varying number of
columns

1
CP 0.6875 20 0.5406

Tucker 0.7917 9 0.5688

2
CP 0.6667 3 0.5917

Tucker 0.7083 3 0.4979

3
CP 0.6875 3 0.574

Tucker 0.6875 2 0.5156

4
CP 0.5625 15 0.449

Tucker 0.7292 12 0.5094

5
CP 0.75 14 0.6521

Tucker 0.7917 16 0.6021

(f) Comparison of all tensor models

Figure 6.10: ADHD dataset: Comparison of CP and Tucker decomposition on five
tensor models on the basis of SVM classification on subject factor matrix

85

functional connectivity matrices, performs consistently with good classification accuracy.

In a dataset of comparatively large number of samples, such as the ADHD dataset,

we show that Tensor Model 5, which is constructed by node-wise Jaccard kernel on

non-negative functional connectivity matrices, performs better than other tensor models.

6.3 Biomarker Embedding from Brain Networks

In this section, we demonstrate the experiemental findings of discriminative subnetwork

mining and biomarker representation learning and visualization of the resting-state

fMRI dataset of reading disability. We used Feature Selection Toolbox [54] for mRMR and

Fisher-based feature selection, and Tensor Toolbox [82] for computing CP and Tucker

decomposition with ALS optimization, and ran all experiments in MATLAB 2017a.

After extracting the ROI-level time series from the readling disability dataset (intro-

duced in previous section), we calculate the Pearson correlation matrix of the ROI-based

multivariate time series. Finally, we compute the functional connectivity matrix by

Fisher’s r-to-z transformation on the elements of the Pearson correlation matrix. Because

of 16 ROIs, the resultant functional connectivity matrix has size 16× 16. The functional

connectivity matrix is the weighted adjacency matrix of the complete functional connec-

tivity network. Since each complete functional connectivity network has 16 nodes and

16 ∗ (16− 1)/2 = 120 weighted edges, the functional connectivity vector of each subject is

120 dimensional.

6.3.1 Generation and Visualization of Discriminative Subgraph

After representing the complete functional connectivity networks of the dataset as 120-

dimensional functional connectivity vectors, we apply mRMR and Fisher-based feature

86

10 20 30 40 50 60 70 80 90 100 110 120
Number of selected features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
in

 n
ea

re
st

 n
ei

gh
bo

r
cl

as
si

fi
er

mRMR
Fisher

Figure 6.11: Cross-validation experiment for finding the best k features

selection algorithm to select k discriminative features. The discriminative subgraph

is found after a cross-validation-based experiment. Because of the small number of

examples in our dataset, we used leave-one-out (LOO) train/test splitting strategy. Leave-

one-out is a special case of K-fold cross-validation while K is the number of examples.

At i-th iteration of leave-one-out, all examples except the i-th one are used as training

examples and the i-th example is used as the test example. For this cross-validation-based

experiment, we used nearest neighbor classifier with Euclidean distance measure. At

k-th iteration, we first select k features by mRMR/Fisher scoring, and report the mean

accuracy of the nearest neighbor classifier, over the iterations of leave-one-out. In Fig.

6.11, we show the accuracy of nearest neighbor classifier after incrementally selecting

features. Since Fisher-based top-23 selected features give maximum LOO accuracy, i.e.,

74%, we get k = 23, and consider these 23 features as the edges of the discriminative

subgraph. Each edge of the discriminative subgraph is assigned a weight, which is

the Fisher score of its corresponding feature. In Fig. 6.12, we show the discriminative

87

 L_AG

 L_FG

 L_MTG

 L_STG

 L_pOB

 L_pOP

 L_pTR

 R_AG

 R_MTG

 R_SMG
 R_STG

 R_pOB

 R_pOP

 R_pTR

Figure 6.12: Discriminative subgraph using Fisher-selected 23 edges

subgraph for our dataset, where edge weights are visualized by the thickness of the edge.

It is easy to see that the connections (R_AG, R_STG) and (R_SMG, R_MTG) has maximum

discrimination ability.

6.3.2 Interpretability of the Biomarkers

This experiment is done to verify the discrimination ability of the selected biomarkers.

Firstly, Fisher-selected top 23 features are used to construct the discriminative subgraph.

Then, a third-order tensor is constructed by stacking the incidence matrices of the

induced discriminative subgraph of the complete functional connectivity networks. After

construction of the tensor, CP and Tucker decomposition are performed separately.

As a result of tensor decomposition, three factor matrices representing the subjects,

discriminative nodes, and discriminative edges are found. Then, the rows of the subject

factor matrix are divided into healthy and diseased classes. Inner product (cosine

similarity) of each healthy subject representation and discriminative node representation

is calculated and mean similarity of the healthy subjects with the discriminative nodes

are calculated. The similar calculation is done to find the mean similarity of the healthy

88

L_
A

G

L_
F

G

L_
M

T
G

L_
S

T
G

L_
pO

B

L_
pO

P

L_
pT

R

R
_A

G

R
_M

T
G

R
_S

M
G

R
_S

T
G

R
_p

O
B

R
_p

O
P

R
_p

T
R

Name of discriminative nodes

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

n
in

ne
r

pr
od

uc
t w

ith
 th

e
su

bj
ec

t f
ac

to
rs

Diseased
Healthy

(a) Discrimination made by CP-based node factors

L_
A

G

L_
F

G

L_
M

T
G

L_
S

T
G

L_
pO

B

L_
pO

P

L_
pT

R

R
_A

G

R
_M

T
G

R
_S

M
G

R
_S

T
G

R
_p

O
B

R
_p

O
P

R
_p

T
R

Name of discriminative nodes

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
ea

n
in

ne
r

pr
od

uc
t w

ith
 th

e
su

bj
ec

t f
ac

to
rs

Diseased
Healthy

(b) Discrimination by Tucker-based node factors

L_
A

G
 L

_p
O

P
L_

A
G

 R
_M

T
G

L_
F

G
 L

_S
T

G
L_

F
G

 L
_p

O
P

L_
F

G
 R

_p
T

R
L_

M
T

G
 R

_p
O

P
L_

S
T

G
 L

_p
O

P
L_

S
T

G
 R

_A
G

L_
S

T
G

 R
_M

T
G

L_
pO

B
 R

_p
O

B
L_

pO
B

 R
_p

O
P

L_
pO

P
 R

_S
M

G
L_

pO
P

 R
_p

T
R

L_
pT

R
 R

_S
M

G
L_

pT
R

 R
_S

T
G

L_
pT

R
 R

_p
O

P
R

_A
G

 R
_S

M
G

R
_A

G
 R

_S
T

G
R

_A
G

 R
_p

O
B

R
_M

T
G

 R
_S

M
G

R
_M

T
G

 R
_S

T
G

R
_M

T
G

 R
_p

O
P

R
_S

T
G

 R
_p

T
R

Name of discriminative edges

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
in

ne
r

pr
od

uc
t w

ith
 th

e
su

bj
ec

t f
ac

to
rs Diseased

Healthy

(c) Discrimination by CP-based edge factors

L_
A

G
 L

_p
O

P
L_

A
G

 R
_M

T
G

L_
F

G
 L

_S
T

G
L_

F
G

 L
_p

O
P

L_
F

G
 R

_p
T

R

L_
M

T
G

 R
_p

O
P

L_
S

T
G

 L
_p

O
P

L_
S

T
G

 R
_A

G
L_

S
T

G
 R

_M
T

G

L_
pO

B
 R

_p
O

B
L_

pO
B

 R
_p

O
P

L_
pO

P
 R

_S
M

G
L_

pO
P

 R
_p

T
R

L_
pT

R
 R

_S
M

G

L_
pT

R
 R

_S
T

G
L_

pT
R

 R
_p

O
P

R
_A

G
 R

_S
M

G
R

_A
G

 R
_S

T
G

R
_A

G
 R

_p
O

B
R

_M
T

G
 R

_S
M

G
R

_M
T

G
 R

_S
T

G
R

_M
T

G
 R

_p
O

P
R

_S
T

G
 R

_p
T

R

Name of discriminative edges

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
in

ne
r

pr
od

uc
t w

ith
 th

e
su

bj
ec

t f
ac

to
rs

Diseased
Healthy

(d) Discrimination by Tucker-based edge factors

Figure 6.13: CP and Tucker decomposition-based representations of the discriminative nodes and
edges

89

subjects with the discriminative edges. For the diseased class, mean similarity of the

diseased subjects to the discriminative nodes, and mean similarity of the diseased subjects

to the discriminative edges are calculated. In the discriminative subgraph (Fig. 6.12),

there are 14 discriminative nodes and 23 discriminative edges. From Fig. 6.13, we see that

almost all the discriminative nodes and edges show a high difference in mean similarity

with the healthy and diseased class. Some less discriminative patterns are also found by

this verification, such as the node L_MTG and the edge (R_STG, R_PTR). Fig. 6.12 also

supports the fact that the edge (R_STG, R_PTR) has comparatively smaller Fisher score

than other edges.

6.3.3 Performance in Different Classifiers

The selected features by mRMR and Fisher algorithms are tested using four classifiers

- Support Vector Machine (SVM) with radial basis function kernel, Naïve Bayes, knn

(number of neighbors=1), and knn (number of neighbors=10). In Fig. 6.14, we observe

that in most of the cases, Fisher-based feature sets result in higher classification accuracy

than mRMR-based feature sets. Around top-20% Fisher-selected features give maximum

accuracy in most of the cases. The reason why Fisher-based approach gives better

performance is the nature of this dataset. It proves the fact that in this dataset most

features are independently relevant to the class labels. In case of other fMRI-based

functional connectivity datasets, where the features are statistically dependent on each

other, mRMR-based approach can perform better than Fisher-based approach. The

better discrimination ability of Fisher-selected top-20% features in most of the classifiers

also supports the selection of 23 features (≈ 20% of the total number of features) for

constructing the discriminative subgraph for this dataset.

90

10 20 30 40 50 60 70 80 90 100
Percentage of selected features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

mRMR
Fisher

(a) SVM

10 20 30 40 50 60 70 80 90 100
Percentage of selected features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

mRMR
Fisher

(b) Naïve Bayes

10 20 30 40 50 60 70 80 90 100
Percentage of features selected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

mRMR
Fisher

(c) knn (number of neighbors = 1)

10 20 30 40 50 60 70 80 90 100
Percentage of features selected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

mRMR
Fisher

(d) knn (number of neighbors = 10)

Figure 6.14: Leave-one-out accuracies of different classifiers after selecting features in mRMR and
Fisher methods

91

Table 6.3: Datasets

Tag
(lLsS)

Lookback L
(hours)

Maximum
span S (hours)

of
events

of
flares

of
non-flares

l12s24 12 24 3,436 431 3,005

l24s24 24 24 3,292 403 2,889

6.4 Solar Flare Prediction by Time Series Classification

In this section, we demonstrate our experimental findings of multivariate time series-based

solar flare prediction. We used Python’s Scikit-learn library for using k-NN classifier. In

all the experiments, k-NN classifier uses Euclidean distance. The code of the experiments

is available at our Github repository. 8

6.4.1 Dataset Description

In the dataset tagged by lLsS, the time series of a set of AR parameters are collected

before L hours of M/X-class flare occurrence (or before L hours of sampling time of

non-flaring Active Regions) and these time series are stacked together to make the mvts

of the event. The length of each time series of the events of the dataset lLsS is S× 5, since

the magnetic field values of the AR patches are calculated by SHARP (Spaceweather HMI

Active Region Patch) in 12 minutes cadence [87]. When S = 24 hours, each time series

reach maximum length of 24× 5 = 120. Therefore, l12s24 and l24s24 are two primitive

and full datasets used in the experiments (Table 6.3). Datasets lLsS with other spans,

where S < 24 can be derived by slicing the last S× 5 values from each time series of the

events of lLs24, where L ∈ {12, 24}. In this work, we have used 16 AR parameters shown

in Table 6.4, whose formulas can be found in [19].

8 http://github.com/hamdi08/Flare_expts_SABID17/

92

http://github.com/hamdi08/Flare_expts_SABID17/

Table 6.4: AR parameters used in the experiments

Tag Description
USFLUX Total unsigned flux

MEANGAM Mean angle of field from radial
MEANGBT Mean gradient of total field
MEANGBZ Mean gradient of vertical field
MEANGBH Mean gradient of horizontal field
MEANJZD Mean vertical current density

TOTUSJZ Total unsigned vertical current
MEANALP Mean characteristic twist parameter α
MEANJZH Mean current helicity (Bz contribution)

TOTUSJH Total unsigned current helicity
ABSNJZH Absolute value of the net current helicity
SAVNCPP Sum of the modulus of the net current per polarity

MEANPOT Mean photospheric magnetic free energy
TOTPOT Total photospheric magnetic free energy density

MEANSHR Mean shear angle
SHRGT45 Fraction of Area with Shear > 45°

6.4.2 Train/test Splitting Methodology

In Table 6.5, we have described the splitting strategy in datasets with fixed lookback time.

We trained the model with four years data, sampled from January 2011 to December

2014 and tested the model with events sampled from January 2015 to December 2016.

Class imbalance ratio for training is 6.14, and for testing is 11.5. Overall 73% events of

a dataset are used for training, while rest 27% are used for testing. Since the train/test

splitting is done on the basis of the temporal occurrence of the events, in order to calculate

the performance measures, unstratified splitting is performed once. Before running the

classifier, both training and test datasets are z-normalized.

93

T
ab

le
6.

5:
Sp

lit
ti

ng
da

ta
se

ts
in

to
tr

ai
n

an
d

te
st

se
ts

D
at

as
et

Tr
ai

ni
ng

se
t

Te
st

se
t

D
ur

at
io

n
#

of
ev

en
ts

#
of

fla
re

s
#

of
no

n-
fla

re
s

D
ur

at
io

n
#

of
ev

en
ts

#
of

fla
re

s
#

of
no

n-
fla

re
s

l1
2
sS

2
0
1
1

-2
0
1
4

2
,5

0
3

3
4
9

2
,1

5
4

2
0
1
5
-2

0
1
6

9
3
3

8
2

8
5
1

l2
4
sS

2
,4

0
8

3
2
8

2
,0

8
0

8
8
4

7
5

8
0
9

94

+1 -1 Total

+1 TP FN P

-1 FP TN N

Total P′ N′ P + N

Predicted class

Actual
class

Figure 6.15: Confusion matrix

6.4.3 Performance Measures

To compare our classification results with the existing flare prediction studies ([19],

[67], [68], [69], [88], [89]), we evaluate 11 performance measures: accuracy, precision

(positive and negative), recall (positive and negative), F1 (positive and negative), HSS1,

HSS2, GS and TSS. Given a set of test examples, we get a confusion matrix as a result of

classification (Fig. 6.15) [75]. The confusion matrix has four entries - TP, TN, FP and FN,

where TP (true positive) is the number of positive examples that are correctly labeled, TN

(true negative) is the number of negative examples that are correctly labeled, FP (false

positive) is the number of negative examples that are misclassified as positive, and FN

(false negative) is the number of positive examples that are misclassified as negative. P

and N are the numbers of actual positive and negative examples respectively. Since in

flare prediction P << N, class imbalance problem exists and therefore accuracy is not

a good performance measure. In this subsection, we briefly discuss some performance

measures such as HSS1, HSS2, GS and TSS which are typically used in the evaluation of

flare prediction performance.

95

Heidke Skill Score and Gilbert Score: To deal with the class imbalance problem, two

versions of Heidke Skill Score HSS1 [88] and HSS2 [64], and Gilbert score GS [64] have

been used in previous solar flare prediction literature [19].

HSS1 =
TP+ TN−N

P

HSS2 =
2× [(TP× TN) − (FN× FP)]

P×N ′ +N× P ′

GS =
TP× (P+N) − P× P ′

FN× (P+N) −N× P ′

While HSS1 measures the improvement of the prediction over the “always negative class”

prediction, HSS2 measures the improvement of the prediction over random prediction.

GS considers the number of TP obtained by chance.

True Skill Statistic: Since HSS1,HSS2 and GS still show some dependence on the class

imbalance ratio, Bloomfield et al. [89] defined TSS, which is independent on class im-

balance ratio and defined as the difference between true positive rate and false positive

rate.

TSS =
TP

P
−
FP

N

TSS ranges from −1 to + 1, where random prediction scores 0, perfect prediction scores

+1, and the prediction that is always wrong scores −1. According to Bobra et al. [19], TSS

is the most meaningful measure for performance comparison of different flare prediction

studies.

96

US
FL

UX

ME
AN

GA
M

ME
AN

GB
T

ME
AN

GB
Z

ME
AN

GB
H

ME
AN

JZ
D

TO
TU

SJ
Z

ME
AN

AL
P

ME
AN

JZ
H

TO
TU

SJ
H

AB
SN

JZ
H

SA
VN

CP
P

ME
AN

PO
T

TO
TP

OT

ME
AN

SH
R

SH
RG

T4
5

AR parameter

0.0

0.2

0.4

0.6

0.8

1.0
TS

S

Individual impact of each AR parameter time series on TSS

(a) Time series extracted with lookback 12 hours

US
FL

UX

ME
AN

GA
M

ME
AN

GB
T

ME
AN

GB
Z

ME
AN

GB
H

ME
AN

JZ
D

TO
TU

SJ
Z

ME
AN

AL
P

ME
AN

JZ
H

TO
TU

SJ
H

AB
SN

JZ
H

SA
VN

CP
P

ME
AN

PO
T

TO
TP

OT

ME
AN

SH
R

SH
RG

T4
5

AR parameter

0.0

0.2

0.4

0.6

0.8

1.0

TS
S

Individual impact of each AR parameter time series on TSS

(b) Time series extracted with lookback 24 hours

Figure 6.16: TSS distributions after 20 k-NN executions on the summarized time series of the
individual AR parameters.

97

6.4.4 Best AR Parameter Selection

Among the 16 AR parameters, the AR parameter whose corresponding time series give

maximum mean TSS with minimum variance after k-NN classification with varying k

is considered to be the best AR parameter in terms of the distinguishing ability of the

time series. For this experiment, we use both datasets l12s24 (Fig. 6.16a) and l24s24

(Fig. 6.16b) because of the completeness of their time series. For each event of these

datasets, we collect the time series of only one parameter Pj at a time, where 1 6 j 6 16

and summarized the time series by 8 summary statistics described in Section 5.4.2. Then

we run k-NN classifier with varying k = 1, 2, . . . , 20 and measure the TSS value for each

run. From the boxplots of Fig. 6.16, it is visible that the summarized time series of total

unsigned current helicity (TOTUSJH) achieve maximum mean TSS with minimum variance

for both lookback settings. This finding is exactly the same as [19], where they found

TOTUSJH as the top-1 selected AR parameter based on Fisher criterion. Like [19], our

result also indicates that the parameters which calculate sums, e.g., TOTUSJH, TOTUSJZ,

TOTPOT, SAVNCPP etc are better than the parameters that calculate the means, e.g.,

MEANGBZ, MEANGBT, MEANGBH, MEANALP etc. In our later experiments, we only

used the time series of the parameter TOTUSJH.

6.4.5 Optimal k in k-NN Classifier

Since the number of neighbors (k) in k-NN classifier can affect the classification perfor-

mance, we look for best performing k value in all datasets. For each lookback L where

L ∈ {12, 24} hours, we derive 12 datasets by increasing the span by 2 hours. The derived

datasets are {l12s2, l12s4, . . . , l12s24, l24s2, l24s4, . . . , l24s24}. Then for each of these 24

datasets, we extract the summarized time series of the AR parameter TOTUSJH of each

event. Finally, for k = 1, 2, . . . , 20, we measure the TSS values in all 24 datasets. From

98

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k values

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

TS
S

TSS boxplots for each k value of k-NN classifier

Figure 6.17: TSS distributions for different k values of k-NN classification on 24 derived datasets
of summarized time series of TOTUSJH.

99

the boxplots of Fig. 6.17, we see that k = 1 and k = 2 has the maximum mean TSS. We

consider k = 1 as optimal k for the later experiments.

6.4.6 Comparison with Other Baselines

In this subsection, we compare our method with two other baselines.

Baseline 1: For each mvtsi ∈ RT×N, where 1 6 i 6 M, we collect only the last row

(latest value of each of the N time series) and consider it as a vector. The resultant vector

space has size N×M (recall that N is the number of AR parameters and M is the number

of examples). Unlike other two baselines, this baseline does not consider any span time

window. SVM with weighted class weights (cost of the positive class is set greater than

that of the negative class since positive examples are comparatively rare) is applied on

this vector space. A similar approach was taken in [19]. Since this baseline uses only the

latest value of each AR parameter time series, this is tagged as lvep in Table 6.6.

Baseline 2: For each mvtsi ∈ RT×N, where 1 6 i 6 M, we collect the mean value of

each time series (AR parameter). Similar to baseline 1, the resultant vector space has

size N×M and SVM with weighted class cost is used as the classifier. One significant

difference between baseline 1 and baseline 2 is, baseline 1 does not use the time series

of the AR parameters, while baseline 2 uses the mean (one summary statistic) of the

time series of each AR parameter. Since this baseline uses the mean value of each AR

parameter time series, this is tagged as mvep in Table 6.6.

In the proposed method, each mvtsi is represented by the summarized representation

of full span (24 hours) time series of the best AR parameter TOTUSJH. The resultant

vector space has size 8×M. Finally, k-NN classifier with k = 1 is run on this vector space.

Since only the best AR parameter is used, we tag the proposed method as bp in Table 6.6.

In Table 6.6, we show the performance comparison of three methods lvep, mvep, and bp

using 11 performance measures. For both datasets of lookback 12 and 24 hours, except

100

T
ab

le
6.

6:
C

om
pa

ri
so

n
of

th
e

pr
op

os
ed

m
et

ho
d

w
it

h
tw

o
ot

he
r

ba
se

lin
es

in
1
1

pe
rf

or
m

an
ce

m
ea

su
re

s

D
at

as
et

ta
g

l1
2
sS

l2
4
sS

Ba
se

lin
e

ta
g

*
lv

ep
m

ve
p

bp
lv

ep
m

ve
p

bp
Sp

an
w

in
do

w
us

ed
0

ho
ur

2
4

ho
ur

s
2

4
ho

ur
s

0
ho

ur
2

4
ho

ur
s

2
4

ho
ur

s
A

R
pa

ra
m

et
er

s
us

ed
A

ll
A

ll
TO

TU
SJ

H
A

ll
A

ll
TO

TU
SJ

H

C
la

ss
ifi

er
SV

M
(w

ei
gh

te
d

cl
as

s
co

st
)

SV
M

(w
ei

gh
te

d
cl

as
s

co
st

)
k-

N
N

(k
=1

)
SV

M
(w

ei
gh

te
d

cl
as

s
co

st
)

SV
M

(w
ei

gh
te

d
cl

as
s

co
st

)
k-

N
N

(k
=1

)
A

cc
ur

ac
y

0
.9

1
9

0
.9

1
9

0.
97
5

0
.9

0
6

0
.9

1
3

0.
97
5

Pr
ec

is
io

n
(p

os
it

iv
e)

0
.5

2
0

0
.5

2
1

0.
83
1

0
.4

7
2

0
.4

9
3

0.
85
3

Pr
ec

is
io

n
(n

eg
at

iv
e)

0.
99
4

0
.9

9
2

0
.9

9
1

0.
99
1

0.
99
1

0
.9

8
6

R
ec

al
l(

po
si

ti
ve

)
0.
93
9

0
.9

2
7

0
.9

0
2

0.
90
7

0.
90
7

0
.8

5
3

R
ec

al
l(

ne
ga

ti
ve

)
0
.9

1
7

0
.9

1
8

0.
98
2

0
.9

0
6

0
.9

1
3

0.
98
6

F1
(p

os
it

iv
e)

0
.6

7
0

0
.6

6
7

0.
86
5

0
.6

2
1

0
.6

3
8

0.
85
3

F1
(n

eg
at

iv
e)

0
.9

5
4

0
.9

5
4

0.
98
6

0
.9

4
6

0
.9

5
0

0.
98
6

H
S
S
1

0
.0

7
3

0
.0

7
3

0.
72
0

-0
.1

0
7

-0
.0

2
7

0.
70
7

H
S
S
2

0
.6

2
7

0
.6

2
4

0.
85
2

0
.5

7
3

0
.5

9
4

0.
84
0

G
S

0
.4

5
7

0
.4

5
4

0.
74
2

0
.4

0
2

0
.4

2
2

0.
72
4

T
S
S

0
.8

5
6

0
.8

4
4

0.
88
5

0
.8

1
3

0
.8

2
0

0.
84
0

*
lv

ep
:l

at
es

t
va

lu
e

of
ea

ch
pa

ra
m

et
er

,m
ve

p:
m

ea
n

va
lu

e
of

ea
ch

pa
ra

m
et

er
,b

p:
be

st
pa

ra
m

et
er

101

2 4 6 8 10 12 14 16 18 20 22 24
Span window

0.80

0.82

0.84

0.86

0.88

TS
S

TSS in 1NN with varying lookback and span time window
Lookback 12 hours
Lookback 24 hours

Figure 6.18: Variation of TSS after running k-NN (k=1) with different lookback and span settings
on the time series of TOTUSJH

the precision (negative) and recall (positive), our proposed method bp performs best in all

other measures. The performance of lvep and mvep are almost the same in all measures,

but lvep performs slightly better in small lookback window while mvep has slightly better

performance in large lookback window. Although lvep and mvep are almost as good as bp

in some measures such as TSS, they exhibit poor performance in other measures such as

HSS1, HSS2, and GS in comparison with bp.

6.4.7 Span Window-based Performance

Given a fixed lookback window L, how does the classification performance change if we

change the span window size? Fig. 6.18 shows the change of TSS value after running

102

k-NN (k = 1) with varying lookback and span windows of the time series of TOTUSJH.

When the lookback is small such as 12 hours, the temporal proximity to the actual event

is small, and we observe a linearly increasing trend (dashed red straight line) with the

increase of span window. On the contrary, when the lookback is large, e.g., 24 hours,

we observe a linearly decreasing trend of TSS (dashed blue straight line). Although the

increase or decrease of TSS is not obvious after increasing span since the extension of

time series with new values might improve/deteriorate the performance, this overall

linear increasing/decreasing trend is an indication of good time series quality of the AR

parameter TOTUSJH.

6.4.8 Effect of C-class Flares in Classification performance

In this experiment, we added the Active Regions with having one or more C-class flares

(less intense flares in comparison with X/M-class flares) in the positive class. The number

of sampled C-class flares for lookback 12 hours is 5,527 and for lookback 24 hours is

5,353. The inclusion of C-class flares changes the class imbalance ratio stated in Section

6.4.2 since the number of positive examples (X, M and C-class flares) exceeds the number

of non-flares (Active Regions with no flares occurring during the disk crossing). Fig. 6.19

shows that in both lookback settings with full span window, the inclusion of C-class flares

has a slightly negative impact in almost all performance metrics, while we consider k-NN

(k = 1) classification on the summarized time series of the AR parameter TOTUSJH. This

result agrees with the finding of Bloomfield et al. [89] which says that HSS1 increases as a

result of including of C-class flares in positive class, but it results in the decrease in TSS.

103

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

Lookback 12 hours

Ac
cu

ra
cy

Pr
ec

isi
on

(p
os

iti
ve

)

Pr
ec

isi
on

(n
eg

at
iv

e)

Re
ca

ll
(p

os
iti

ve
)

Re
ca

ll
(n

eg
at

iv
e)

F1
(p

os
iti

ve
)

F1
(n

eg
at

iv
e)

HS
S1

HS
S2 GS TS
S

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

Lookback 24 hours

Effect of C-class flares in prediction performance

With C-class Without C-class

Figure 6.19: Performance after k-NN (k=1) execution on the summarized time series of TOTUSJH
with/without considering C-class flares

104

Ac
cu

ra
cy

Pr
ec

isi
on

(p
os

iti
ve

)

Pr
ec

isi
on

(n
eg

at
iv

e)

Re
ca

ll
(p

os
iti

ve
)

Re
ca

ll
(n

eg
at

iv
e)

F1
(p

os
iti

ve
)

F1
(n

eg
at

iv
e)

HS
S1

HS
S2 GS TS
S

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

Performance variation with full and summarized time series of TOTUSJH
Full time series
Summarized time series

Figure 6.20: Comparison of summarized representation and full-length representation of TO-
TUSJH time series in classification performance

105

6.4.9 Effect of Time Series Summarization

Fig. 6.20 provides the rationale for our preference of summarized representation of the

time series over the full-length time series. This experiment is run on the l12s24 dataset.

It is visible that if we consider the summarized representation instead of the full-length

time series of the AR parameter TOTUSJH, we get an increase in all performance metrics.

The number of dimensions in the full-length time series representation is 120, while in

case of the summarized representation the number of dimensions is only 8. Since k-NN

classifier greatly depends on the number of dimensions in the vector space, the runtime

of the classifier is more than 10 times bigger for full-length time series representation

than that of summarized representation.

6.4.10 Performance using Other Classifiers

When flaring and non-flaring Active Regions are represented by the summarized repre-

sentation of the time series of the AR parameter TOTUSJH, other sophisticated classifiers

can achieve even better performance than k-NN (k = 1). Table 6.7 shows the 11 perfor-

mance metrics found after running the classifiers SVM, random forest, and naïve Bayes on

l12s24 and l24s24 datasets with the default settings of their Scikit-learn implementations.

We also show the performance of k-NN (k = 1) in Table 6.7 for comparison. These

classifiers and their hyperparameters (according to their Scikit-learn specifications) are

listed below.

• SVM: C=1.0, kernel=rbf, gamma=1/8, class_weight=None.

• Random forest: n_estimators=10, criterion=gini, max_depth=None, class_weight=None.

• Naïve Bayes: priors=None.

• k-NN: number of neighbors (k) = 1.

106

T
ab

le
6.

7:
Pe

rf
or

m
an

ce
by

ot
he

r
cl

as
si

fie
rs

on
th

e
su

m
m

ar
iz

ed
ti

m
e

se
ri

es
of

TO
TU

SJ
H

D
at

as
et

ta
g

l1
2
s2
4

l2
4
s2
4

C
la

ss
ifi

er
SV

M
R

an
do

m
fo

re
st

N
aï

ve
Ba

ye
s

k-
N

N
(k

=1
)

SV
M

R
an

do
m

fo
re

st
N

aï
ve

Ba
ye

s
k-

N
N

(k
=1

)
A

cc
ur

ac
y

0.
99

0
.9

7
0
.9

8
0
.9

8
0.
99

0
.9

7
0
.9

8
0

.9
8

Pr
ec

is
io

n(
po

si
ti

ve
)

0.
96

0
.8

0
.8

0
.8

3
0.
98

0
.8

1
0
.8

4
0

.8
5

Pr
ec

is
io

n(
ne

ga
ti

ve
)

0
.9

9
0
.9

9
1.
0

0
.9

9
0.
99

0.
99

0.
99

0.
99

R
ec

al
l(

po
si

ti
ve

)
0
.9

3
0
.9

0.
95

0
.9

0
.8

7
0

.8
7

0.
91

0
.8

5

R
ec

al
l(

ne
ga

ti
ve

)
1.
0

0
.9

8
0
.9

8
0
.9

8
1.
0

0
.9

8
0
.9

8
0

.9
9

F1
(p

os
it

iv
e)

0.
94

0
.8

5
0
.8

7
0
.8

7
0.
92

0
.8

4
0
.8

7
0

.8
5

F1
(n

eg
at

iv
e)

0.
99

0
.9

8
0.
99

0.
99

0.
99

0
.9

8
0.
99

0.
99

H
S
S
1

0.
89

0
.6

7
0
.7

2
0
.7

2
0.
85

0
.6

7
0
.7

3
0

.7
1

H
S
S
2

0.
94

0
.8

3
0
.8

6
0
.8

5
0.
92

0
.8

2
0
.8

6
0

.8
4

G
S

0.
88

0
.7

1
0
.7

5
0
.7

4
0.
84

0
.7

0
.7

5
0

.7
2

T
S
S

0
.9

2
0
.8

8
0.
93

0
.8

9
0

.8
7

0
.8

5
0.
89

0
.8

4

107

Experimental results that are shown in Table 6.7 show the robustness of our data

representation, i. e., the summarized representation of the time series of AR parameter

TOTUSJH, in classifying flaring and non-flaring Active Regions regardless of the classifier.

Although some of these classification models have better performance than k-NN, k-NN

is found to be more interpretable than these classifiers with respect to lookback and span

windows of the time series (Fig. 6.18).

6.5 Solar Event Visualization

In this section, we present the experimental findings of the solar event visualization in 2D

space using different dimensionality reduction methods (see details in section 5.5).

6.5.1 Dataset Description

We used a dataset introduced in Big Data Challenge 2019 [90]. The dataset contains 25,157

solar events in the form of multivariate time series (mvts) collected in the duration

of 09/29/2013 - 03/19/2014. Each mvts contains 25 time series of length 60 of the

magnetic field parameters. Therefore, according to the problem formulation of section

5.5, M = 25157, T = 60, and N = 25. Among these events, 1,231 are flaring (124 X-class

flares and 1,107 M-class flares), and rest 23,926 are non-flaring.

6.5.2 Baselines

We used PCA and t-SNE on four vector represented datasets.

108

1. Flattened MVTS: For each mvtsi ∈ RT×N, where 1 6 i 6 M, we flattened as

a vector of length TN. We used these vector representations in PCA and t-SNE

dimensionality reduction algorithms.

2. Last timestamp vectors: We extracted the last row of each mvts, which represents

the magnetic field parameter values at the last time instant. Therefore, each event is

represented by a vector of length N. Similar approach was taken in [19].

3. Mean of each parameter: We calculated the mean of each magnetic field parameter

of each mvts. Each event is represented by a vector of length N.

4. Tensor decomposition: We followed the approach discussed in section 5.5. We

considered all the mvts’s forming a third order tensor, where the modes represent

the event, timestamp, and magnetic field parameter (Fig. 5.3). We decompose

the tensor by CP decomposition with a given rank R = 2. We find three factor

matrices of events, timestamps, and magnetic field parameters. Then we project the

representations of events on the representations of timestamps and magnetic field

parameters separately. Finally, we perform PCA and t-SNE on the event-timestamp-

parameter vectors, which are the concatenations of the event-timestamp vectors and

event-parameter vectors.

6.5.3 Explanation of the 2D Visualizations

In Fig. 6.21, Fig. 6.22, Fig. 6.23, and Fig. 6.24, we show the PCA and t-SNE visualizations

of the flaring and nonflaring solar events on the baseline data representations. Flaring

events are projected using red points, while nonflaring events are projected using green

points on the scatter plots. Although the overall performance of class separability is

found better in the classical dimensionality reduction methods (PCA and t-SNE on

flattened mvts, last timestamp vectors, and mean of magnetic field parameters), the

109

(a) PCA

(b) t-SNE

Figure 6.21: Visualization of the flattened mvts’s of the flaring and nonflaring solar events

110

(a) PCA

(b) t-SNE

Figure 6.22: Visualization of the last timestamp vectors of the flaring and nonflaring solar events

111

(a) PCA

(b) t-SNE

Figure 6.23: Visualization of the mean magnetic field parameters of the flaring and nonflaring
solar events

112

(a) PCA

(b) t-SNE

Figure 6.24: Visualization of the tensor decomposed event-timestamp-parameter projection vec-
tors of the flaring and nonflaring solar events

113

tensor decomposition-based method (Fig. 6.24a and Fig. 6.24b) was performed without

hyperparameter search, i.e., tuning of CP decomposition rank R, random initialization of

the factor matrices, and number of iterations in the CP decomposition.

114

7 CONCLUSION

7.1 Concluding Remarks

Our prime contribution of this thesis is generating interpretable feature space leveraging

tensor modeling of graph and time series data, decomposing the tensor into factor

matrices, and projections of factor matrix of one entity type to another. We applied our

algorithms on real world datasets of social networks, fMRI-based brain networks, and

multivariate time series-based flaring and nonflaring solar events.

In the node embedding task, we presented two novel tensor decomposition- based

node embedding algorithms TDNE and TDNEpS, which utilizes higher-order transition

probability matrices of a graph (directed or undirected, weighted or unweighted) to

construct one or more third-order tensor(s), and use CP decomposition to extract factor

matrices containing the representations of the source and/or target properties of the

nodes, and the transition steps. We have theoretically and experimentally shown that the

node features produced by these algorithms are highly interpretable in terms of the un-

derstandability of the feature roles. Moreover, learned embeddings of the transition steps

make them perform well in network reconstruction, link prediction, node classification,

and graph classification.

In the application of the brain networks, we evaluated five different tensor models of

fMRI data, and found the stacked non-negative functional connectivity matrices produce

robust classification results. Later, we presented the method of finding discriminative

patterns, that is, ROIs and connections from fMRI-based complete functional connectivity

networks that can act as biomarkers for some neurological and neurodevelopmental

115

diseases. Instead of representing the complete functional connectivity networks as thresh-

olded graphs, and using computationally expensive frequent/discriminative subgraph

mining algorithms, we represented each complete functional connectivity network by

threshold-free connectivity vector and apply univariate/multivariate feature selection

algorithms for finding the important features, which eventually became the edges of the

discriminative subgraph. We used a tensor decomposition-based approach for finding

the meaningful representations of the biomarkers and computing the biomarker impacts

on the subjects.

Our third application is multivariate time series-based flaring and nonflaring solar

events prediction and visualization. We showed a novel way of predicting that an Active

Region of the Sun might lead to an X-class or M-class flare by leveraging the time

series behavior of the magnetic field parameters. We presented a formal data model

for representing flaring and non-flaring Active Regions using multivariate time series,

where each time series, extracted before the lookback time of the occurrence of the event

and collected throughout the span period, represents one AR parameter. We used k-NN

classifier for classifying the summarized representations of the time series of the AR

parameter total unsigned current helicity, and exhibit better performance than considering

all parameters without time series. We also show the robustness of this representation

using other classifiers. Finally, we demonstrated the visualization of multivaraite time

series-based flaring and nonflaring solar events using classical dimensionality reduction

techniques such as PCA and t-SNE on various data representations.

7.2 Future Work

We plan to extend our research on interpretable feature learning of graphs and time series

data. In the following list, we specify these ideas.

116

1. Our presented node embedding algorithms TDNE and TDNEpS are transductive, i.

e., all examples (training and test) are used in learning. When new nodes enter the

network, the whole algorithm needs to be retrained. We look forward to designing

an inductive algorithm, where the new nodes entering the network can use the

parameters learned from the training nodes.

2. Reducing time and space complexity of the tensor decomposition-based node

embedding algorithms is challenging. We look forward to reduce these complexities,

and increase scalability of our models.

3. We aim to extend the node embedding algorithms for subgraph embedding. Inter-

pretability in the multi-resolution graph embedding can be an interesting topic.

4. We look forward to work on solar event graphs. Considering the correlation

matrices of the multivariate time series data of solar events as adjacency matrices

of labeled graphs, and applying thresholds on edge weights can model the solar

flare prediction problem as a graph classification problem. When the solar events

are represented as graphs, classical graph classification algorithms such as gSpan-

based [51] frequent subgraphs enumeration (as features) followed by classification,

gBoost [91], and so on, and graph representation learning models such as Node2Vec

[8], DeepWalk [28], and so on can be applied.

117

Bibliography

[1] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey

of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowledge and Data

Engineering, 30(9):1616–1637, 2018.

[2] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine

learning. arXiv preprint arXiv:1702.08608, 2017.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,

2013.

[4] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507, 2006.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[6] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural

networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29,

2012.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In 1st International Conference on Learning Representations,

ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

118

[8] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864. ACM, 2016.

[9] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embed-

ding and clustering. In Advances in Neural Information Processing Systems 14 [Neural Information

Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British

Columbia, Canada], pages 585–591. MIT Press, 2001.

[10] Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature selection.

arXiv preprint arXiv:1202.3725, 2012.

[11] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on pattern

analysis and machine intelligence, 27(8):1226–1238, 2005.

[12] Shah Muhammad Hamdi, Soukaina Filali Boubrahimi, and Rafal A. Angryk. Tensor

decomposition-based node embedding. In Proceedings of the 28th ACM International Conference

on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019,

pages 2105–2108, 2019.

[13] Shah Muhammad Hamdi, Yubao Wu, Rafal A. Angryk, Lisa Crystal Krishnamurthy, and

Robin Morris. Identification of discriminative subnetwork from fmri-based complete func-

tional connectivity networks. Intl. Journal of Semantic Computing, 13(1):25–44, 2019.

[14] Soukaina Filali Boubrahimi, Ruizhe Ma, and Rafal A. Angryk. Neuro-ensemble for time

series data classification. In 5th IEEE International Conference on Data Science and Advanced

Analytics, DSAA 2018, Turin, Italy, October 1-3, 2018, pages 50–59. IEEE, 2018.

[15] Arif Mahmood, Michael Small, Somaya Ali Al-Maadeed, and Nasir Rajpoot. Using geodesic

space density gradients for network community detection. IEEE Transactions on Knowledge

and Data Engineering, 29(4):921–935, 2016.

119

[16] Soukaina Filali Boubrahimi, Ruizhe Ma, Berkay Aydin, Shah Muhammad Hamdi, and

Rafal A. Angryk. Scalable knn search approximation for time series data. In 24th International

Conference on Pattern Recognition, ICPR 2018, Beijing, China, August 20-24, 2018, pages 970–975.

IEEE Computer Society, 2018.

[17] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605, 2008.

[18] Soukaina Filali Boubrahimi and Rafal A. Angryk. Heuristics significance of neuro-ensemble-

based time series classification. In IEEE International Conference on Big Data, Big Data 2018,

Seattle, WA, USA, December 10-13, 2018, pages 6–15. IEEE, 2018.

[19] Monica G Bobra and Sebastien Couvidat. Solar flare prediction using SDO/HMI vector

magnetic field data with a machine-learning algorithm. The Astrophysical Journal, 798(2):135,

2015.

[20] Shah Muhammad Hamdi and Rafal A. Angryk. Interpretable feature learning of graphs

using tensor decomposition. In 2019 IEEE International Conference on Data Mining, ICDM 2019,

Beijing, China, November 8-11, 2019, pages 270–279. IEEE, 2019.

[21] Shah Muhammad Hamdi, Berkay Aydin, Soukaina Filali Boubrahimi, Rafal A. Angryk,

Lisa Crystal Krishnamurthy, and Robin D. Morris. Biomarker detection from fmri-based

complete functional connectivity networks. In First IEEE International Conference on Artificial

Intelligence and Knowledge Engineering, AIKE 2018, Laguna Hills, CA, USA, September 26-28,

2018, pages 17–24. IEEE Computer Society, 2018.

[22] Shah Muhammad Hamdi, Yubao Wu, Soukaina Filali Boubrahimi, Rafal A. Angryk, Lisa Crys-

tal Krishnamurthy, and Robin D. Morris. Tensor decomposition for neurodevelopmental

disorder prediction. In Brain Informatics - International Conference, BI 2018, Arlington, TX,

USA, December 7-9, 2018, Proceedings, volume 11309 of Lecture Notes in Computer Science, pages

339–348. Springer, 2018.

120

[23] Shah Muhammad Hamdi, Dustin Kempton, Ruizhe Ma, Soukaïna Filali Boubrahimi, and

Rafal A Angryk. A time series classification-based approach for solar flare prediction. In Big

Data (Big Data), 2017 IEEE International Conference on, pages 2543–2551. IEEE, 2017.

[24] Ruizhe Ma, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi, and Rafal A. Angryk.

Solar flare prediction using multivariate time series decision trees. In 2017 IEEE International

Conference on Big Data, BigData 2017, Boston, MA, USA, December 11-14, 2017, pages 2569–2578.

IEEE Computer Society, 2017.

[25] Rafal A Angryk, Petrus C Martens, Berkay Aydin, Dustin Kempton, Sushant S Mahajan,

Sunitha Basodi, Azim Ahmadzadeh, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi,

Michael A Schuh, et al. Multivariate time series dataset for space weather data analytics.

2019.

[26] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with

global structural information. In Proceedings of the 24th ACM International Conference on

Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19 - 23,

2015, pages 891–900. ACM, 2015.

[27] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu. Arbitrary-

order proximity preserved network embedding. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August

19-23, 2018, pages 2778–2786. ACM, 2018.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social

representations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM, 2014.

[29] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear

embedding. science, 290(5500):2323–2326, 2000.

[30] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity

preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference

121

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages

1105–1114. ACM, 2016.

[31] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San

Francisco, CA, USA, August 13-17, 2016, pages 1225–1234. ACM, 2016.

[32] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph

representations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February

12-17, 2016, Phoenix, Arizona, USA, pages 1145–1152. AAAI Press, 2016.

[33] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[34] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455–500, 2009.

[35] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E.

Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and machine

learning. IEEE Trans. Signal Process., 65(13):3551–3582, 2017.

[36] Chong-Yaw Wee, Pew-Thian Yap, Daoqiang Zhang, Kevin Denny, Jeffrey N Browndyke,

Guy G Potter, Kathleen A Welsh-Bohmer, Lihong Wang, and Dinggang Shen. Identification

of MCI individuals using structural and functional connectivity networks. Neuroimage,

59(3):2045–2056, 2012.

[37] Bokai Cao, Liang Zhan, Xiangnan Kong, S Yu Philip, Nathalie Vizueta, Lori L Altshuler, and

Alex D Leow. Identification of discriminative subgraph patterns in fmri brain networks in

bipolar affective disorder. In Int. Conf. on Brain Informatics and Health, pages 105–114. Springer,

2015.

122

[38] Biao Jie, Daoqiang Zhang, Wei Gao, Qian Wang, Chong-Yaw Wee, and Dinggang Shen. Inte-

gration of network topological and connectivity properties for neuroimaging classification.

IEEE Trans. on Biomedical Engineering, 2014.

[39] Anna Martin, Matthias Schurz, Martin Kronbichler, and Fabio Richlan. Reading in the brain

of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies.

Human brain mapping, 36(5):1963–1981, 2015.

[40] Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, and Ann B. Ragin. Mining brain

networks using multiple side views for neurological disorder identification. In 2015 IEEE

Intl. Conf. on Data Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015, pages

709–714, 2015.

[41] Xiangnan Kong and Philip S Yu. Semi-supervised feature selection for graph classification.

In Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, pages

793–802. ACM, 2010.

[42] Yunan Zhu and Ivor Cribben. Graphical models for functional connectivity networks: best

methods and the autocorrelation issue. bioRxiv, page 128488, 2017.

[43] Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S Yu, Heide Klumpp, and Alex D

Leow. t-bne: Tensor-based brain network embedding. SIAM, 2017.

[44] Bokai Cao, Chun-Ta Lu, Xiaokai Wei, S Yu Philip, and Alex D Leow. Semi-supervised tensor

factorization for brain network analysis. In Joint European Conf. on Machine Learning and

Knowledge Discovery in Databases, pages 17–32. Springer, 2016.

[45] Anna Huang. Similarity measures for text document clustering. In Proc. of the 6th New Zealand

Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, pages

49–56, 2008.

[46] Vince D Calhoun, Paul K Maciejewski, Godfrey D Pearlson, and Kent A Kiehl. Temporal

lobe and default hemodynamic brain modes discriminate between schizophrenia and bipolar

disorder. Human brain mapping, 29(11):1265–1275, 2008.

123

[47] Anderson dos Santos Siqueira, Claudinei Eduardo Biazoli Junior, William Edgar Comfort,

Luis Augusto Rohde, and João Ricardo Sato. Abnormal functional resting-state networks in

adhd: graph theory and pattern recognition analysis of fmri data. BioMed Research Int., 2014,

2014.

[48] Lucina Q Uddin, Kaustubh Supekar, Charles J Lynch, Amirah Khouzam, Jennifer Phillips,

Carl Feinstein, Srikanth Ryali, and Vinod Menon. Salience network–based classification and

prediction of symptom severity in children with autism. JAMA psychiatry, 70(8):869–879,

2013.

[49] Emily S Finn, Xilin Shen, John M Holahan, Dustin Scheinost, Cheryl Lacadie, Xenophon

Papademetris, Sally E Shaywitz, Bennett A Shaywitz, and R Todd Constable. Disruption of

functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biological

psychiatry, 76(5):397–404, 2014.

[50] Xiangnan Kong, Philip S Yu, Xue Wang, and Ann B Ragin. Discriminative feature selection

for uncertain graph classification. In Proceedings of the 2013 SIAM International Conference on

Data Mining, pages 82–93. SIAM, 2013.

[51] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In Data

Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pages 721–724.

IEEE, 2002.

[52] Bokai Cao, Lifang He, Xiangnan Kong, S Yu Philip, Zhifeng Hao, and Ann B Ragin. Tensor-

based multi-view feature selection with applications to brain diseases. In Data Mining (ICDM),

2014 IEEE Int. Conf. on. IEEE, 2014.

[53] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and

Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,

12(Sep):2539–2561, 2011.

[54] Giorgio Roffo, Simone Melzi, Umberto Castellani, and Alessandro Vinciarelli. Infinite

latent feature selection: A probabilistic latent graph-based ranking approach. In 2017 IEEE

International Conference on Computer Vision (ICCV), Oct 2017.

124

[55] Ahmet Küçük, Shah Muhammad Hamdi, Berkay Aydin, Michael A. Schuh, and Rafal A.

Angryk. Pg-trajectory: A postgresql/postgis based data model for spatiotemporal trajectories.

In 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social

Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom),

BDCloud-SocialCom-SustainCom 2016, Atlanta, GA, USA, October 8-10, 2016, pages 81–88. IEEE

Computer Society, 2016.

[56] Shah Muhammad Hamdi, Berkay Aydin, and Rafal A. Angryk. A pattern growth-based

approach for mining spatiotemporal co-occurrence patterns. In IEEE International Conference

on Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain, pages

1125–1132. IEEE Computer Society, 2016.

[57] JP Eastwood, E Biffis, MA Hapgood, L Green, MM Bisi, RD Bentley, R Wicks, L-A McKinnell,

M Gibbs, and C Burnett. The economic impact of space weather: Where do we stand? Risk

Analysis, 37(2):206–218, 2017.

[58] Solar flare captured by SDO. https://www.nasa.gov/content/goddard/

nasa-releases-images-of-1st-notable-solar-flare-of-2015. [Online; accessed 30-

may-2017].

[59] KD Leka and G Barnes. Photospheric magnetic field properties of flaring versus flare-quiet

active regions. ii. discriminant analysis. The Astrophysical Journal, 595(2):1296, 2003.

[60] N Nishizuka, K Sugiura, Y Kubo, M Den, S Watari, and M Ishii. Solar flare prediction

model with three machine-learning algorithms using ultraviolet brightening and vector

magnetograms. The Astrophysical Journal, 835(2):156, 2017.

[61] Kyoung-jae Kim. Financial time series forecasting using support vector machines. Neurocom-

puting, 55(1):307–319, 2003.

[62] Toni M Rath and Raghavan Manmatha. Word image matching using dynamic time warping.

In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society

Conference on, volume 2, pages II–II. IEEE, 2003.

125

https://www.nasa.gov/content/goddard/nasa-releases-images-of-1st-notable-solar-flare-of-2015
https://www.nasa.gov/content/goddard/nasa-releases-images-of-1st-notable-solar-flare-of-2015

[63] Patrick S McIntosh. The classification of sunspot groups. Solar Physics, 125(2):251–267, 1990.

[64] James P Mason and JT Hoeksema. Testing automated solar flare forecasting with 13 years of

michelson doppler imager magnetograms. The Astrophysical Journal, 723(1):634, 2010.

[65] Yanmei Cui, Rong Li, Liyun Zhang, Yulin He, and Huaning Wang. Correlation between solar

flare productivity and photospheric magnetic field properties. Solar Physics, 237(1):45–59,

2006.

[66] Ju Jing, Hui Song, Valentyna Abramenko, Changyi Tan, and Haimin Wang. The statistical

relationship between the photospheric magnetic parameters and the flare productivity of

active regions. The Astrophysical Journal, 644(2):1273, 2006.

[67] Omar W Ahmed, Rami Qahwaji, Tufan Colak, Paul A Higgins, Peter T Gallagher, and

D Shaun Bloomfield. Solar flare prediction using advanced feature extraction, machine

learning, and feature selection. Solar Physics, pages 1–19, 2013.

[68] Daren Yu, Xin Huang, Huaning Wang, and Yanmei Cui. Short-term solar flare prediction

using a sequential supervised learning method. Solar Physics, 255(1):91–105, 2009.

[69] Hui Song, Changyi Tan, Ju Jing, Haimin Wang, Vasyl Yurchyshyn, and Valentyna Abramenko.

Statistical assessment of photospheric magnetic features in imminent solar flare predictions.

Solar Physics, 254(1):101–125, 2009.

[70] Amani Al-Ghraibah, LE Boucheron, and RTJ McAteer. An automated classification approach

to ranking photospheric proxies of magnetic energy build-up. Astronomy & Astrophysics,

579:A64, 2015.

[71] R Qahwaji and Tufan Colak. Automatic short-term solar flare prediction using machine

learning and sunspot associations. Solar Physics, 241(1):195–211, 2007.

[72] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-based classification of

time-series data. International Journal of Computer Research, 10(3):49–61, 2001.

126

[73] Eamonn J. Keogh. A decade of progress in indexing and mining large time series databases. In

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September

12-15, 2006, page 1268, 2006.

[74] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on

information theory, 13(1):21–27, 1967.

[75] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques, 3rd edition.

Morgan Kaufmann, 2011.

[76] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and perfor-

mance: A survey. Knowl. Based Syst., 151:78–94, 2018.

[77] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor

learning in python. Journal of Machine Learning Research, 20(26):1–6, 2019.

[78] Wayne W Zachary. An information flow model for conflict and fission in small groups.

Journal of anthropological research, 33(4):452–473, 1977.

[79] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R. Figueiredo. struc2vec:

Learning node representations from structural identity. In Proc. of the 23rd ACM SIGKDD

Intl. Conf. on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017,

pages 385–394, 2017.

[80] John Boaz Lee, Xiangnan Kong, Yihan Bao, and Constance M. Moore. Identifying deep

contrasting networks from time series data: Application to brain network analysis. In Proc.

of the 2017 SIAM Intl. Conf. on Data Mining, Houston, Texas, USA, April 27-29, 2017., pages

543–551, 2017.

[81] Susan Whitfield-Gabrieli and Alfonso Nieto-Castanon. Conn: a functional connectivity

toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3):125–141,

2012.

[82] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online,

February 2015.

127

[83] Venkatagiri Krishnamurthy, Lisa C Krishnamurthy, Dina M Schwam, Ashley Ealey, Jaemin

Shin, Daphne Greenberg, and Robin D Morris. Retrospective correction of physiological noise:

impact on sensitivity, specificity, and reproducibility of resting-state functional connectivity

in a reading network model. Brain connectivity, (ja), 2017.

[84] Robert W Cox. Afni: software for analysis and visualization of functional magnetic resonance

neuroimages. Computers and Biomedical Research, 29(3):162–173, 1996.

[85] John Ashburner, Gareth Barnes, C Chen, Jean Daunizeau, Guillaume Flandin, Karl Friston,

Stefan Kiebel, James Kilner, Vladimir Litvak, Rosalyn Moran, et al. Spm12 manual. Wellcome

Trust Centre for Neuroimaging, London (UK), 2014.

[86] Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

[87] Joint Science Operations Center (JSOC). http://jsoc.stanford.edu/. [Online; accessed

01-October-2017].

[88] G Barnes and KD Leka. Evaluating the performance of solar flare forecasting methods. The

Astrophysical Journal Letters, 688(2):L107, 2008.

[89] D Shaun Bloomfield, Paul A Higgins, RT James McAteer, and Peter T Gallagher. Toward

reliable benchmarking of solar flare forecasting methods. The Astrophysical Journal Letters,

747(2):L41, 2012.

[90] BigData Cup Challenge 2019: Flare Prediction. http://www.kaggle.com/c/

bigdata2019-flare-prediction. [Online; accessed 14-June-2020].

[91] Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, and Koji Tsuda. gboost: a

mathematical programming approach to graph classification and regression. Mach. Learn.,

75(1):69–89, 2009.

128

http://jsoc.stanford.edu/
http://www.kaggle.com/c/bigdata2019-flare-prediction
http://www.kaggle.com/c/bigdata2019-flare-prediction

	Learning Interpretable Features of Graphs and Time Series Data
	Recommended Citation

	Abstract
	Titlepage
	Copyright
	ApprovedForm
	Dedication
	Acknowledgements
	TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Outline

	2 GRAPH EMBEDDING BY TENSOR DECOMPOSITION
	2.1 Overview
	2.2 Related Work
	2.3 Graph notations
	2.4 Preliminaries of Tensor Decomposition
	2.4.1 ALS Solution of CP Decomposition

	2.5 Interpretable Feature Learning of Graphs
	2.5.1 Tensor Decomposition-based Node Embedding
	2.5.2 Tensor Decomposition-based Node Embedding per Slice

	3 TENSOR DECOMPOSITION ON BRAIN NETWORKS
	3.1 Tucker Decomposition
	3.1.1 ALS Solution of Tucker Decomposition

	3.2 Application of Tensor Decomposition in Brain Network Representation
	3.3 Modeling the fMRI data in Tensors
	3.3.1 Tensor Model 1: Stacked Multivariate Time Series
	3.3.2 Tensor Model 2: Stacked Functional Connectivity Matrices
	3.3.3 Tensor Model 3: Stacked Non-negative Functional Connectivity Matrices
	3.3.4 Tensor Model 4: Node-wise Jaccard Kernel on Functional Connectivity Matrices
	3.3.5 Tensor Model 5: Node-wise Jaccard Kernel on Non-negative Functional Connectivity Matrices

	4 BIOMARKER EMBEDDING FROM BRAIN NETWORKS
	4.1 Overview
	4.2 Existing Approaches
	4.3 Finding Discriminative Subgraph from Complete Functional Connectivity Networks
	4.3.1 Functional Connectivity Vector
	4.3.2 Mining Discriminative Subgraph by Feature Selection Algorithms

	4.4 Representation Learning for the Biomarkers
	4.4.1 Tensor Construction
	4.4.2 Tensor Decomposition in Biomarker Embedding

	5 TIME SERIES-BASED SOLAR FLARE PREDICTION AND VISUALIZATION
	5.1 Overview
	5.2 Related Work
	5.3 Data Modeling of the Active Regions
	5.4 Flare Classification Model
	5.4.1 Problem Definition
	5.4.2 Summarization of Time Series
	5.4.3 Parameter Selection and Classification

	5.5 Solar Event Visualization

	6 EXPERIMENTAL EVALUATION
	6.1 Graph Embedding by Tensor Decomposition
	6.1.1 Experimental Settings
	6.1.2 Interpretability of the Features
	6.1.3 Network Reconstruction
	6.1.4 Link Prediction
	6.1.5 Node Classification
	6.1.6 Performance and Runtime Varying Dimensionality
	6.1.7 Graph Classification
	6.1.8 Parameter Sensitivity

	6.2 Tensor Modeling of the Brain Networks
	6.2.1 Data Collection
	6.2.2 Evaluation Method
	6.2.3 Performances in Different Tensor Models

	6.3 Biomarker Embedding from Brain Networks
	6.3.1 Generation and Visualization of Discriminative Subgraph
	6.3.2 Interpretability of the Biomarkers
	6.3.3 Performance in Different Classifiers

	6.4 Solar Flare Prediction by Time Series Classification
	6.4.1 Dataset Description
	6.4.2 Train/test Splitting Methodology
	6.4.3 Performance Measures
	6.4.4 Best AR Parameter Selection
	6.4.5 Optimal k in k-NN Classifier
	6.4.6 Comparison with Other Baselines
	6.4.7 Span Window-based Performance
	6.4.8 Effect of C-class Flares in Classification performance
	6.4.9 Effect of Time Series Summarization
	6.4.10 Performance using Other Classifiers

	6.5 Solar Event Visualization
	6.5.1 Dataset Description
	6.5.2 Baselines
	6.5.3 Explanation of the 2D Visualizations

	7 CONCLUSION
	7.1 Concluding Remarks
	7.2 Future Work

	 References

