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Abstract

The paper develops a semiparametric estimation method for the bivariate count

data regression model. We develop a series expansion approach in which depen-

dence between count variables is introduced by means of stochastically related

unobserved heterogeneity components, and in which, unlike existing commonly

used models, positive as well as negative correlations are allowed. Extensions that

accommodate excess zeros, censored data and multivariate generalizations are also

given. Monte Carlo experiments and an empirical application to tobacco use con-

firms that the model performs well relative to existing bivariate models, in terms

of various statistical criteria and in capturing the range of correlation among de-

pendent variables. This article has supplementary materials online.
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1 INTRODUCTION

The main focus of this paper is on series estimation of bivariate count data regression

models with more flexible correlation structure. Multivariate count data regression

models arise in situations where several counts are correlated and joint estimation

is required. For example, common measures of health-care utilization, such as the

number of doctor consultations, the number of other ambulatory visits, and prescription

drug utilizations, are likely to be jointly dependent. Other leading examples include

the number of hospital admissions and the number of days spent in hospitals, the

number of voluntary and involuntary job changes, the number of firms which enter and

exit an industry and the number of patents made and papers published by scientists

(Mayer and Chappell 1992; Cameron and Trivedi 1993; Jung and Winkelmann 1993;

Hellstrom 2006; Stephan, Gurmu, Sumell and Black 2007). Gurmu and Trivedi (1994)

and Cameron and Trivedi (1998) provide overviews of some of the earlier multivariate

count data regression models. Kocherlakota and Kocherlakota (1992) and Johnson,

Kotz and Balakrishnan (1997) discuss the statistical properties of multivariate discrete

distributions.

Applications of these models in economics, statistics and related fields have largely

been confined to the bivariate Poisson, bivariate negative binomial and bivariate Poisson-

lognormal mixture regression models. The bivariate Poisson model imposes the restric-

tion that the conditional mean of each count variable equals the conditional variance.

This can result in misspecification of the marginals. For the common case of overdis-

persed counts, the bivariate (or multivariate) negative binomial model is potentially

useful. However, the multivariate negative binomial model imposes ad hoc conditions

on the form of the distribution of the common unobserved heterogeneity term affecting

the counts. In estimation of truncated and censored models using a fully parametric

approach, a misspecification of the distribution of unobservables leads to inconsistency.

Since the conditional means in these models depend on the density, the form of the
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density will affect the consistency of the regression parameters. A general flexible

framework of estimation that does not require knowledge of the distribution of the

unobservables is desirable.

Existing commonly used bivariate count models have another potential shortcoming:

they accommodate only non-negative correlation between the counts. The statistics

literature gives examples and general techniques on constructing negatively correlated

multivariate Poisson distributions having Poisson marginals; see, for example, Kocher-

lakota and Kocherlakota (1992) for a review of this literature and Ophem (1999) for

a related approach. In particular, Aitchison and Ho (1989) consider a multivariate

log-normal mixture of independent Poisson distributions. Since the resulting mixture,

the Poisson-log normal distribution, does not have a closed form solution, estimation of

the model requires numerical integration (Munkin and Trivedi 1999; Hellstrom 2006).

The approach also requires knowledge of the distribution of unobserved heterogeneity

components. From the practical point of view, it is desirable to have flexible methods

that allow for both positive and negative correlations between the dependent variables.

This paper addresses these issues.

This paper develops semi-parametric methods for estimation of various mixture bi-

variate count models that allow for negative as well as positive correlations between

the counts. In the context of models with two-factor unobserved heterogeneity compo-

nents, this paper employs a series expansion approach to model the joint distribution

of unobserved heterogeneity components in the context of a bivariate Poisson mixture.

To this end, we begin by analyzing the role played by the distribution of unobserved

heterogeneity in the sign and magnitude of the correlation between counts. We also

present methods for estimating truncated and censored bivariate regression models as

well as extensions to zero-inflation and multivariate models. These extensions can be

found in a Supplemental Appendix. Simulation experiments and an application to to-

bacco consumption are presented. The application involves joint modeling of the use of

smoking tobacco and chewing tobacco as reported in a survey of households.
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The general approach is a multivariate generalization of the semiparametric tech-

niques developed for univariate count regression models (Gurmu 1997; Gurmu, Ril-

stone, and Stern 1999). Semiparametric estimators based on squared polynomial series

expansions provide consistent estimates (Gallant and Nychka 1987; Gurmu et al. 1999;

Bierens 2008). As compared to flexible univariate methods, joint estimation of equa-

tions with correlated dependent count variables is expected to improve efficiency. In

principle, if interest is only on estimation of the parameters of the conditional mean

function in a multivariate count model, seemingly unrelated non-linear least squares

estimation methods may be feasible, provided the underlying model allows for flexible

variance and correlation structures. However, apart from estimation of parameters of

economic interest, the focus of interest in most count regression models is consistent

estimation of cell probabilities for different counts. The proposed series expansion ap-

proach provides flexible specifications for the joint distribution of the counts as well

as the marginals. In addition to estimating the expected number of counts and the

correlation between pairs of endogenous variable, the series method provides consistent

estimates of joint probabilities of event counts, conditional on covariates. Correlations

between jointly distributed variables are not restricted to be non-negative. Further,

methods based on first and second order moments alone are not directly applicable to

truncated and censored models. The semiparametric approach is particularly useful

for truncated and censored regression models, where misspecification of the density

leads to inconsistency. In a recent paper, Gurmu and Elder (2007) analyzed a special

case of the bivariate model proposed in this paper based on first-order series expansion.

The remainder of the paper is organized as follows. The next section develops a

method for flexible series estimation of a bivariate mixture count data regression model.

Section 3 evaluates the feasibility and performance of the proposed method using Monte

Carlo experiments. An application to individual tobacco consumption behavior is given

in Section 4. Section 5 gives concluding remarks. Derivations of main results are

given in Appendix A. Generalizations, detailed derivations, and further results from
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simulations and applications are provided in Supplemental appendices.

2 TWO-FACTOR BIVARIATE MODEL

2.1 The Framework

A major shortcoming of standard models such as the bivariate Poisson and bivariate

negative binomial models is that they do not allow for negative correlations between the

count variables. This restriction arises from the assumption of a common unobserved

heterogeneity component used in the underlying mixing or convolution technique, re-

sulting in the correlation between the counts being introduced through a dispersion

parameter. We consider a two-factor framework in which dependence between count

variables is introduced through correlated unobserved heterogeneity components.

Consider two jointly distributed random variables, Y1 and Y2, each denoting event

counts. For observation i (i = 1, 2, ..., N), we observe {yji,xji}2j=1, where xji is a

(kj×1) vector of covariates. Without loss of generality, the mean parameter associated

with yji can be parameterized as

θji = exp(x
0
jiβj), j = 1, 2 (1)

where βj is a (kj×1) vector of unknown parameters. We model the dependence between

y1 and y2 by means of correlated unobserved heterogeneity components ν1 and ν2. Each

of the components is associated with only one of the event counts. Accordingly, for

j = 1, 2, suppose (yji | xji, νji) ∼ Poisson(θjiνji) with (ν1i, ν2i) having a bivariate

distribution g(ν1i, ν2i) in R2+. Then the ensuing mixture density can be expressed as

f(y1i, y2i | xi) =
Z Z ⎡⎣ 2Y

j=1

exp(−θjiνji) (θjiνji)yji
Γ(yji + 1)

⎤⎦ g(ν1i, ν2i)dν1idν2i. (2)

Let M(−θ1i,−θ2i) = Eν [exp (−θ1iν1i − θ2iν2i)] denote the bivariate moment generat-

ing function (MGF) of (ν1i, ν2i) evaluated at (−θ1i,−θ2i). It can readily be seen that,
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analogous to the one-factor error model (e.g., Gurmu and Elder 2000), (2) takes the

form

f(y1i, y2i | xi) =

⎡⎣ 2Y
j=1

(θji)
yji

Γ(yji + 1)

⎤⎦M (y1,y2) (−θ1i,−θ2i) , (3)

where, suppressing i, M (y1,y2) (−θ1,−θ2) = ∂y.M (−θ1,−θ2) / (∂(−θ1)y1∂(−θ2)y2) is

the derivative of M(−θ1,−θ2) of order y. = y1 + y2.

The sign of the correlation coefficient between y1 and y2 is determined by the sign of

the covariance between the two unobserved variables, Cov(ν1, ν2). This is summarized

in the following proposition.

Proposition 1 In the mixture bivariate model (3), with the assumption of indepen-

dence between x and ν, the covariance between event counts takes the form

cov(y1i, y2i | xi) = θ1iθ2i [Cov (ν1i, ν2i)] .

where cov(ν1i, ν2i) =
£
M (1,1)(0, 0)−M (1,0)(0, 0)M (0,1)(0, 0)

¤
. Since θji is non-negative,

sign (Cov(y1i, y2i)) = sign(Cov(ν1i, ν2i)).

The above result can be obtained using iterated expectations. The intuition about

the sign of the correlation is as follows. In the case of univariate mixing, the corre-

lation between the counts is affected only by the variance of the common unobserved

heterogeneity term. Hence correlation is non-negative. In the bivariate mixing, the

variance of each unobserved components as well as the correlation between the com-

ponents affect Corr(y1i, y2i | xi). Hence, the sign of the correlation between the count

variables is determined by the allowed signs for the correlation between the unobserved

heterogeneity terms, which generally may or may not be restricted.

Using the law of iterated expectations, the other low-order moments of the outcome

variables, conditional on xi, can be obtained as:

E(yji | xi) = θjiE(νji), j = 1, 2 (4)
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Var(yji | xi) = θjiE(νji) + θ2jiVar(νji), (5)

Corr(y1i, y2i | xi) =
Corr(ν1i, ν2i)r³

1 + E(ν1i)
θ1iVar(ν1i)

´³
1 + E(ν2i)

θ2iVar(ν2i)

´ . (6)

Equation (6) shows that, since E(νji), Var(νji) and θji are strictly positive,

|Corr(y1i, y2i | xi)| < |Corr(ν1i, ν2i)| (7)

for any arbitrary mixing distribution for νi. While the sign of the correlation between

the event counts is unrestricted, the magnitudes of these correlations are narrower than

the corresponding correlations from the mixing distribution. However, as θ1i and θ2i

get larger, the gap between the two correlations will be narrower, with Corr(y1i, y2i | xi)

getting very close to Corr(ν1i, ν2i). Aitchison and Ho (1989) derive similar bounds for

bivariate correlations between the count variables for multivariate Poisson-lognormal

mixture model without regressors. The correlation bounds in (7) apply to any arbitrary

Poisson-unobserved factor mixture model, including the one proposed in this paper.

The form of the density (3) depends upon the choice of the distribution of the unob-

servables, g(ν1i, ν2i). If g(.) follows a bivariate (or generally a multivariate) log-normal

distribution, we get the bivariate (or multivariate) Poisson log-normal distribution pro-

posed by Aitchison and Ho (1989). However, since the Poisson-log normal mixture

does not have a closed form, estimation of the unknown parameters requires numerical

integration. Nevertheless, the low-order moments, including correlations, of the multi-

variate Poisson log-normal mixture distribution can easily be obtained (see Aitchison

and Ho 1989). For example, Munkin and Trivedi (1999), Chib and Winkelmann (2001)

and Hellstrom (2006) have applied the Poisson log-normal correlated model using sim-

ulated maximum likelihood or Markov Chain Monte Carlo estimation methods.

We develop an estimation approach for model (3) that does not require knowledge

of the distribution of the unobserved heterogeneity components. Another attractive

feature of the approach is that, in addition to allowing for negative correlations, we

obtain a closed form for the resulting correlated mixture model. The strategy is to
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approximate the density g(ν1i, ν2i) using techniques in bivariate density expansion.

We propose to take the approximate bivariate density to be of the general form

gN(ν1, ν2) = w(ν1)w(ν2)
1

'

"
KX
k=0

KX
r=0

ρkrPk(ν1)Pr(ν2)

#2
, (8)

where w(ν1) and w(ν2) are the hypothesized baseline marginal densities of ν1 and ν2,

respectively, {Pk(ν1), Pr(ν2)} are orthonormal polynomials of degree k and r, respec-

tively, defined on the respective marginal distributions, and

' =

Z Z
w(ν1)w(ν2)

"
KX
k=0

KX
r=0

ρkrPk(ν1)Pr(ν2)

#2
dv1dv2 (9)

is a constant of proportionality. The polynomial degree K controls the extent to which

the ensuing mixture model f(y1i, y2i | xi) deviates from the assumed baseline density.

As discussed below, whenK is set to zero in the proposed bivariate density of y1 and y2,

we get a density that is a product of two independent negative binomial distributions.

The polynomial degree parameter is expected to increase with the sample size. In

principle, the rule for increasing the size of series expansion can be data dependent (e.g.,

Gallant and Nychka 1987). The parameter ρkr may be considered as the coefficient of

correlation between the (k, r) polynomials in the bivariate distribution gN (ν1, ν2).

The next step is to obtain the MGF of (ν1i, ν2i) and its derivatives of order y. =

y1 + y2, say, M
(y1, y2)
N (−θ1i,−θ2i), and subsequently plug this in (3). Then β1, β2

and parameters in gN(ν1, ν2) are estimated within the likelihood framework. This is

discussed next.

2.2 Estimation

In our implementation, we use bivariate expansions based on generalized Laguerre

polynomials. Let Lkj(νji) denote relevant k-th order generalized Laguerre polynomial

associated with the random variable νji with baseline gamma weight w(νji) having pa-

rameters αj and λj , j = 1, 2; see equations (A.1) and (A.2) in Appendix A. The ensuing
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k-th order orthonormal Laguerre polynomial takes the form Pk(νji) = h
−1/2
kj Lkj(νji),

where

hkj =
Γ(k + αj)

Γ(αj)Γ(k + 1)
, for j = 1, 2.

Given the prevalence of gamma mixing in count and related duration models, the

system of Laguerre polynomials is a natural choice.

The key result we need now is the approximate MGF,MN (−θ1i,−θ2i), and its deriv-

ative derived from the approximate joint density based on Laguerre series expansion.

The derivation of MN (−θ1i,−θ2i) is given in Appendix A. The required derivative of

this MGF is:

M
(y1, y2)
N (−θ1i,−θ2i) = 1

K
k=0

K
k=0 ρ

2
kr

µQ2
j=1

³
1 +

θji
λj

´−αj
(λj + θji)

−yji Γ(αj)

¶

×
PK

k,r,l,m=0 ρkrρlm(hk1hr2hl1hm2)
1/2Ψ1klΨ2rm

(10)

where

Ψ1kl (−θ1i, y1i) =
kX

k1=0

lX
l1=0

µ
k

k1

¶µ
l

l1

¶
Γ(α1 + k1 + l1 + y1i)

Γ(α1 + k1)Γ(α1 + l1)

µ
−1− θ1i

λ1

¶−(k1+l1)
, (11)

and

Ψ2rm (−θ2i, y2i) =
rX

r2=0

mX
m2=0

µ
r

r2

¶µ
m

m2

¶
Γ(α2 + r2 +m2 + y2i)

Γ(α2 + r2)Γ(α2 +m2)

µ
−1− θ2i

λ2

¶−(r2+m2)

,

(12)

To construct the log-likelihood based on (3) and (10), we need to restrict the mean

of each unobserved heterogeneity component to unity; that is M (1,0)
N (0, 0) = 1 and

M
(0,1)
N (0, 0) = 1. As shown in Appendix A (see A.6 and A.7), these conditions impose

restrictions on λ1 and λ2. Hence, the semiparametric (SP2) log-likelihood function
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based on bivariate mixing is

Lsp2(ϕ) =
PN

i=1 [y1i ln θ1i + y2i ln θ2i − ln(Γ(y1i + 1))− ln(Γ(y2i + 1))

+ lnM
(y1,y2)
N (−θ1i,−θ2i)

i
,

(13)

where ϕ now consists of β1, β2, α1, α2, and the ρ’s with normalization ρ00 = 1. SP2 de-

notes a bivariate semiparametric model with 2 unobserved heterogeneity components.

Likewise, SPJ will denote a multivariate model with J unobserved heterogeneity com-

ponents. SP will be used generically to denote the proposed semiparametric method

for a class of multivariate count data models. As is conventional with orthogonal ex-

pansions (e.g., Lancaster 1969), P0(νji) = 1 and ρ00 = 1, so that E[Pk(νji)] = 0 for

k = 1, 2, ..., implying that ρkr = 0 if either k or r is zero, but not both. As ex-

plained in the paragraph following (8), ρkr = Corr(Pk(ν1), Pr(ν2)) with respect to the

approximate bivariate distribution gN(ν1, ν2). For example, if K = 1, the correla-

tion parameter to be estimated is ρ11, where ρ11 = Corr(P1(ν1), P1(ν2)) and P1(νji) =³√
αj − λj√

αj
νji

´
, j = 1, 2. For K = 2, the correlation parameters are ρ11, ρ12, ρ21, and

ρ22. For K = 2, for example, ρ11 =Corr(P1(ν1), P1(ν2)) , ρ12 =Corr(P1(ν1), P2(ν2)) ,

and ρ22 = Corr(P2(ν1), P2(ν2)). Note that, for instance, P2(ν1) = h
−1/2
21 (ν1)L21(ν1) is

a quadratic polynomial in ν1. Here h21 = Γ(2 + α1)/2Γ(α1) and Lkj(νj) is defined in

equation (A.1) of Appendix A.

Due to the assumption of differential variances of the error components, the semipara-

metric approach provides a more flexible form for the variance of (yji | xi) as compared

to standard one-factor bivariate count models based on mixing or convolutions. The

correlation between y1 and y2 for any K is given in Appendix A, equation A.8. This

correlation can take on zero, positive or negative values. The correlation between the

count series depends on the mean parameters (θ’s, hence β’s), the dispersion para-

meters (α’s), and the correlation parameters (ρ’s). By contrast, if the unobservables

log ν1i and log ν2i are assumed to be distributed jointly as normally with mean vector

0, Var(log νji) = σ2j , and Corr( log ν1i, log ν2i) = τ , then Corr(y1, y2) implied by the
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ensuing bivariate Poisson log-normal mixture density depends on θ’s, the σ’s, and a

single correlation parameter τ . As discussed earlier following equation (7), for both

the Poisson-Laguerre Polynomial and Poisson-lognormal mixture models, the range of

values taken by the correlation between y1 and y2 is not as wide as that of the corre-

sponding range of correlation values between ν1 and ν2; they can be close when θj ’s

are large.

The SP2 approach is based on the assumption of a baseline gamma density. The

gamma mixing is a popular approach in applications of count data and related models,

including models of survival data. Since the SP2 density is based on gamma mixing,

it nests the negative binomial class of models. When K = 0 (note ρ00 = 1), we get a

density that is a product of two independent negative binomial distributions. If K > 0,

we get a correlated bivariate density whose shape is modified by the presence of the ρ’s

and degree of series truncation. The bivariate count data model proposed by Gurmu

and Elder (2007) is a special case of (13) with K = 1. Analogous to the Poisson log-

normal model, the SP2 density with K = 1 may be thought of as a mixture of Poisson

and bivariate gamma distributions. One of the main advantages of using the gamma

baseline density is that it yields a computationally tractable closed form of the ensuing

mixture model. As indicated by a referee, more polynomial terms (K) increase the set

of possible distributional shapes obtained. One might argue that the correct choice of

the baseline density is important for low K, say K = 1. However, as explained below,

this may not be an issue if no specification error is detected for low K.

The SP2 class of densities provides reasonable approximations to count models that

include densities with long upper tails, relatively skewed densities, and densities with

low means as well as those with high means. The consistency of the proposed estimator

can be shown using the framework developed by Gallant and Nychka (1987) and Gurmu

et al. (1999). The parameter space is a set B×M, where β ∈ B ⊂ Rp and M is the

set of moment generating functions for positive random variables. Here β = (β01β
0
2)
0.

Note that the estimators of the moment generation function are random sequence based
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on the approximating function gN(.). This requires that K → ∞ as N → ∞, among

other things.

In general, the proposed series estimator may be considered as the quasi maximum

likelihood estimator. Implementation of the estimator requires choosing the degree

of the polynomial K. Following the literature on series estimation, one can use the

Akaike Information Criterion to choose K or to compare different models. As argued

by Gallant and Tauchen (1989), the truncated series expansion approach (K finite)

may be viewed as finite-dimensional inference that has been subjected to a sensitivity

analysis. That is, when specification error is detected, one increases the truncation

point K. In implementation, we use finite-dimensional inference (K fixed) to compute

standard errors. Comparison of bivariate models may also be based on how well they

predict the cell probabilities, P (y1i = r, y2i = s), for r, s = 0, 1, 2, .... These issues will

be considered further in the application section.

3 MONTE CARLO EXPERIMENTS

This section reports the results of Monte Carlo experiments that illustrate the feasi-

bility and finite sample performance of the proposed estimation approach. The data

generating process (DGP) is based on the bivariate Poisson log-normal mixture model,

which is the basis of the estimation approach considered by Munkin and Trivedi (1999)

and others. We also evaluate its performance relative to the bivariate negative binomial

maximum likelihood estimator, which is commonly used in the applied literature due

to its flexibility in handling overdispersed data.

We define an empirically relevant DGP with low means and overdispersed bivariate

counts with varying assumptions about the distribution of unobserved heterogeneity,

allowing for positive as well as negative correlations between the response variables.

Suppressing reference to observation i, the mean parameters of Poisson distributed
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count variables y1 and y2 are specified as

θ∗j = exp
¡
γj + βjxj

¢
νj , j = 1, 2. (14)

The values of explanatory variables x1 and x2 are generated independently from normal

N(0, 1/16), with true values for the regression parameters set to γ1 = β1 = γ2 = β2 = 1

in all experiments. The unobserved heterogeneity terms ν1 and ν2 are generated by bi-

variate uniform and bivariate lognormal distributions using the following specifications,

along the implied average characteristics of the DGP.

1. Bivariate log-normal with positive correlation: log(ν1) = ε1 and log(ν2) = ε2

follow bivariate normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25

and correlation parameter ρε = 0.6. This gives mean(νj) = 1.12, var(νj) = 0.37

and corr(ν1, ν2) = 0.57 and average moments: mean(yj) = 3.08, var(yj) = 8.40

and corr(y1, y2) = 0.24.

2. Bivariate log-normal with negative correlation: log(ν1) = ε1 and log(ν2) = ε2 fol-

low bivariate normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25 and

correlation parameter ρε = −0.6. This implies mean(νj) = 1.12, var(νj) = 0.37

and corr(ν1, ν2) = −0.49 and the average moments: mean(yj) = 3.08, var(yj) =

8.40 and corr(y1, y2) = −0.20.

3. Bivariate uniform with correlation 0.6 with approximate moments: mean(νj) =

1.0, var(νj) = 0.33 and average moments mean(yj) = 2.81, var(yj) = 6.10 and

corr(y1, y2) = 0.27.

4. Bivariate uniform with correlation −0.6 with approximate moments: mean(νj) =

1.0, var(νj) = 0.33 and average moments mean(yj) = 2.81, var(yj) = 6.10 and

corr(y1, y2) = −0.27.

Specifications 1 and 2 and the ensuing bivariate Poisson-lognormal mixture are based

on the DGP used by Munkin and Trivedi (1999). Simulation experiments are based on

sample size of 1000 with each experiment replicated 1000 times.
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Table 1 summarizes the simulation results in terms of mean bias, root mean squared

error (RMSE) and mean absolute bias based on bivariate lognormal DGP. Figure 1

gives kernel density estimates of the sampling distributions of β̂1 (Beta1) and correla-

tions between the count variables from DGPs 2 and 4; model estimated by SP2 with

K = 2. Additional simulation results, including results using bivariate uniform DGP,

kernel density estimates of the sampling distributions of coefficient estimates and esti-

mated correlations, are given in the Supplemental Appendix online. The results show

that the SP2 estimates have low and insignificant biases under each of the 4 DGPs,

irrespective of the values of the underlying correlations. The bias associated with any

of the coefficients is less than 1% for SP2 with K = 2. The RMSE is roughly about

2% for the intercept terms and about 10% for the slope coefficient estimates. Kernel

density estimates demonstrate that, for a given K, the sampling distributions of γ̂j

and β̂j from SP2 are approximately normal. As expected, the SP2 estimator performs

much better than the commonly used bivariate negative binomial estimator. Unlike

simulation results for univariate NB of Gurmu et al. (1999), the biases associated with

slope parameters resulting from bivariate NB can be quite substantial (35% to 65%)

even when data are uncensored. The variances of the slope estimates from bivariate

NB associated with DGPs with negative correlations tend to be higher than those

with positive correlations. The SP2 approach successfully predicts negative or positive

correlations for all DGPs and even for each replication. However, the sampling distri-

bution of the estimated correlations varies somewhat from the corresponding empirical

distribution of correlations in all cases.

[Figure 1 about here]

Using the bias-corrected simulated ML estimator with N =1000, 100 replications and

200 simulations, Munkin and Trivedi (1999, Table 1 Page 41) report mean estimates

for parameters γ1, β1, γ2 and β2 in DGP 1 of 0.998, 1.012, 0.996 and 1.009, respectively

with the corresponding standard errors of 0.028, 0.1, 0.028 and 0.097. By comparison,
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Table 1: Monte Carlo results on parameter estimates by bivariate count models

DGP: Bivar Est. Method Parameter Mean RMSE Mean

heterogeneity bias abs. bias

1. Lognormal, Corr(ν1, ν2) = 0.57

Bivar NB γ1 0.0116 0.0853 0.0634

β1 0.5890 0.6355 0.5893

γ2 0.0120 0.0862 0.0643

β2 0.5905 0.6297 0.5909

Bivar SP2 γ1 -0.0008 0.0246 0.0196

β1 0.0009 0.0972 0.0772

γ2 -0.0007 0.0253 0.0203

β2 0.0017 0.0960 0.0756

2. Lognormal, Corr(ν1, ν2) = −0.49

Bivar NB γ1 0.0307 0.0530 0.0418

β1 0.4198 0.4640 0.4201

γ2 0.0310 0.0535 0.0421

β2 0.4285 0.4686 0.4288

Bivar SP2 γ1 -0.0008 0.0248 0.0196

β1 -0.0029 0.0968 0.0774

γ2 -0.0007 0.0252 0.0202

β2 0.0028 0.0929 0.0742

NOTE: The SP2 results are for K = 2. The true values for the

parameters are γ1 = β1 = γ2 = β2 = 1.
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using the same design (DGP 1 with 100 replications), our SP2 parameter estimates

for γ1, β1, γ2 and β2 are 0.999, 0.997, 0.998 and 1.014 with the corresponding standard

deviations of 0.028, 0.086, 0.029 and 0.110. The results for DGP 2 (lognormal het-

erogeneity with negative correlation) are qualitatively similar across both estimation

methods; results for SP2 but based on 1000 replications are given in Table 1. Even

though DGPs 1 and 2 based on lognormal heterogeneity favor the Poisson-Lognormal

model employed by Munkin and Trivedi (1999), the proposed SP2 approach performs

very well.

We use the means of the dependent count variables of between 2.8 and 3.1 in DGPs 1

through 4 to mimic reasonable applications of count data in the existing literature. We

also carried out additional simulations to explore examples of correlation bounds that

might be encountered in practice. This is accomplished in two ways. First, we run two

additional simulations to evaluate (i) the performance of the SP2 approach and (ii) the

bounds on the estimated correlation when the conditional means are very low - in the

neighborhood of 0.7. Second, we calculate the correlation bounds from the two-factor

bivariate mixture count models with varying heterogeneity assumptions and means of

the counts, based on Proposition 1 and equations 4 to 6. The means of the counts in

this numerical exercise, which is not a Monte Carlo experiment, vary from 0.5 to about

40. This range captures most of the empirical applications.

The designs of the Monte Carlo simulation and calibration exercises as well as the re-

sults are provided in a Supplemental Appendix. The SP2 model again performs well in

terms of bias and RMSE when the mean of the event counts is very low. However, as the

mean becomes very small, the variance of the slope estimate tends to increase. The re-

sults also confirm that the magnitude of the correlation between the counts is narrower

than the corresponding correlation from the distribution of unobserved heterogeneity

components. As the means of the response variables increase, the correlation between

the counts approaches the correlation between the unobservables. On the other hand,

as the means of the response variables decrease, the gap between the two correlations
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widens. This is potentially disconcerting since in many applications the means of the

response variables may be low. However, the proposed series expansion approach does

a good job of estimating the magnitude and sign of the correlations from the underlying

data generating process. Next, we provide empirical applications involving event count

variables with means ranging from as low as 0.3 to 3.2.

4 APPLICATION TO TOBACCO CONSUMPTION

As an example of an empirical application with negative correlation between counts,

we consider an application to tobacco consumption behavior of individuals based on

the 2001 household Tobacco Prevalence Survey data from Bangladesh. The Survey was

conducted in two administrative districts of paramount interest for tobacco production

and consumption in the country. Data on daily consumption of smoking- and chewing-

tobacco along with other socioeconomic and demographic characteristics were collected

from respondents of 10 years of age and above. The data set has been used previously

by Gurmu and Yunus (2008) in the context of binary response models. Here we focus

on a 32 percent random sample consisting of 4800 individual respondents.

We consider joint modeling of two count variables, the daily number of smoking

tobacco (Smoking) and number of chewing tobacco (Chewing). The average number

of smoking tobacco used daily is about 3.2; the mean number of chewing tobacco is

about 1.1 per day. The mean and standard deviations of both response variables show

unconditional overdispersion. The range is 0 to 50 tobacco consumed per day for each

of the counts. The count variables are unconditionally negatively correlated with a

sample correlation of about -0.022, indicating that smoking and chewing tobacco may

on average be substitutes. It is therefore desirable to consider a joint modeling strategy

that allows for both negative and positive correlations between the counts. The average

respondent is a Muslim (78%), married (57%), in his/her early thirties, lives in rural

area, and has about 7 years of formal schooling. Although the country is mostly
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agrarian, only around 11% of the respondents were related to agricultural occupation

in either doing agricultural operations on their own farms or working as agricultural

wage laborers. About 12% of the respondents belong to the service occupation. The

benchmark occupational group consists of business and other occupations. More than

one-half of the fathers and slightly less than two-thirds of the mothers of the respondents

currently use or have used tobacco products in the past. Detailed summary statistics

are given in a Supplemental appendix.

Table 2 presents coefficient estimates from the proposed bivariate count data model.

Except for income and quadratics in age and education, the rest of the regressors are

binary dummy variables. The semiparametric model dominates the bivariate Poisson

and bivariate negative binomial models in terms of both the maximized value of the

log-likelihood function and the AIC. SP2 with K = 2 yields the smallest AIC of 20117

relative to AIC values of 48061and 28776 for bivariate Poisson and bivariate negative

binomial models, respectively. The two-factor SP2 model also dominates the one-factor

generalized bivariate negative binomial model analyzed by Gurmu and Elder (2000)

in terms of the AIC. Given the high proportion of reported zeros where about 65

percent of respondents are non-users of tobacco, we also estimate a zero-inflated (ZI)

version of the proposed SP2 model with K = 1 (AIC = 19501). The estimates of the

correlation parameters (ρ’s) associated with SP2 models show that modeling higher

order polynomials of unobserved heterogeneity components is important.

The bivariate Poisson model seems to be inadequate for joint estimation of overdis-

persed count data. There are some differences in the results from the semiparametric

and the bivariate negative binomial models. In particular, there are differences in the

statistical significance of some variables such as occupational and regional dummy vari-

ables in both equations. Tobacco consumption is concave in age; tobacco smoking for

example reaches a maximum at about age 50. Male respondents consume significantly

more smoking tobacco than women, while women tend to consume more chewing to-

bacco, a result which is in line with the custom of the country (Gurmu and Yunus
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Table 2: Semiparametric coefficient estimates and t-ratios for smoking and chewing

tobacco (SP2 with K = 2)

Variable Smoking Chewing

Est. | t | Est. | t |

Constant -3.926∗∗∗ 6.86 -4.845∗∗∗ 10.18

Age 0.149∗∗∗ 4.34 0.179∗∗∗ 4.85

Age squared -0.002∗∗∗ 4.20 -0.001∗∗∗ 3.25

Education -0.150∗∗ 2.43 0.052 0.343

Education squared 0.006 1.41 -0.019 1.10

Income -0.001 0.71 0.009 0.48

Male 3.631∗∗∗ 16.33 -0.482 1.52

Married 0.180 0.47 0.285 0.63

Muslim -0.334∗ 1.70 -0.027 1.12

Region -0.164 0.99 1.040∗∗∗ 5.90

Urban -0.246∗ 1.70 -0.044 0.48

Father use -0.017 0.56 -0.184 0.36

Mother use -0.143 0.51 -0.415∗∗ 2.01

log(αj) -1.601∗∗∗ 30.38 -2.475∗∗∗ 41.76

ρ11 -0.059∗∗∗ 5.50

ρ12 -0.016 0.49

ρ21 0.030∗∗ 2.53

ρ22 0.022∗∗∗ 8.04

Log-likel. -10016.6

AIC 20143

NOTE: ∗∗∗ significant at 1%; ∗∗ significant at 5%; ∗ significant at

10%. Regression includes occupation effects.
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2008).

We also computed the average marginal effects of changes in the regressors on the

mean number of daily tobacco use. The marginal effects from bivariate SP2, zero-

inflated bivariate SP2, bivariate Poisson and bivariate negative binomial (NB) are

shown in Table 3. Generally the marginal effects from SP2 models are larger than

those from the other bivariate models. The difference in the mean effects for various

models is likely to be particularly important for significant regressors. The results from

bivariate SP2 shows that on average two additional years of schooling would reduce

smoking by about a half stick of cigarette per month. On average men smoke about 7

cigarettes per day more than women.

The average of the correlations between Smoking and Chewing is about 0.55 for the

bivariate NB model, 0.16 for Bivariate SP2 and 0.27 for ZI-bivariate SP2. Given the

characteristics of the individuals, the correlation between the two tobacco consumption

variables estimated from ZI-bivariate SP2 model varies between a minimum of about

-0.003 and maximum of 0.932 with 16.2% of the 4800 observations having negative cor-

relations. These results suggest that, smoking and chewing tobacco may be substitutes

for some individuals, rather than being complements for everyone.

Compared with univariate and bivariate standard models, there is preponderance of

statistical evidence (e.g., using AIC and tests of independence) in favor of the SP class

of models of tobacco use. Direct comparisons of the unconditional sample moments

and estimated conditional and average (unconditional) moments are generally difficult

because of the role of explanatory variables and the sampling distributions of the es-

timated moments in the latter. For example, introduction of covariates will generally

dampen the amount of conditional overdispersion. Subject to these caveats, compar-

isons of models show that the estimated average means, degree of overdispersion, and

correlations from the SP2 model are generally consistent with the corresponding un-

conditional sample moments. The SP2 model fits the empirical distribution better than

bivariate Poisson and negative binomial models.
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Table 3: Average marginal effects and average of moments of the number of daily

tobacco use

Variable Bivar Poisson Bivar NB Bivar SP2 ZI-Bivar SP2

Smoke Chew Smoke Chew Smoke Chew Smoke Chew

Age 0.003 0.005 0.005 0.007 0.007 0.008 -0.001 -0.0002

Education -0.002 -0.0001 -0.005 -0.001 -0.007 0.001 -0.003 0.0003

Income -0.002 0.009 -0.012 0.016 -0.005 0.014 -0.007 0.014

Male 5.809 -0.635 6.725 -0.654 7.268 -0.724 6.010 -0.689

Married 1.225 0.052 0.561 -0.020 0.749 0.400 0.905 0.452

Muslim -0.238 -0.142 -0.550 -0.291 -1.625 -0.042 -0.752 -0.357

Region -0.471 0.614 -0.847 1.238 -0.729 1.533 -1.004 1.212

Urban -0.368 -0.137 =1.016 -0.161 -1.041 -0.067 -0.520 0.021

Agri-labor 0.260 -0.044 0.283 0.250 0.658 0.411 0.371 0.075

Service -0.231 -0.109 -0.180 0.237 0.407 0.835 -0.200 0.107

Business 0.610 -0.068 0.862 0.114 1.769 0.602 0.937 0.166

Self employ 0.649 0.194 0.983 0.542 0.623 1.048 0.546 0.496

Student -2.919 -1.081 -2.990 -1.162 -3.877 -1.301 -1.505 -0.724

Father use 0.039 -0.017 0.448 -0.107 -0.076 -0.298 -0.047 -0.021

Mother use -0.163 -0.452 -0.942 -0.787 -0.650 -0.708 -0.379 -0.169

Mean(yj) a 3.215 1.134 3.678 1.308 4.424 1.556 3.378 1.228

Var(yj)a 3.215 1.134 186.202 26.941 523.520 184.542 133.137 58.445

Corr(y1, y2)b 0.00003 0.548 0.159 0.265

a Sample averages of fitted marginal moments of smoking and chewing tobacco.

b Sample average of fitted correlations between smoking and chewing tobacco. The range of estimated

correlation from ZI-Bivar SP2 model is -0.003 to 0.932.
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In an earlier version of this paper, we provide an application to health care utiliza-

tion measures; also given in the Supplemental appendix. Though not overwhelming,

there are some differences between the SP2 model and existing realistic competitors

in the significance of the variables and estimated marginal effects in both applica-

tions. Univariate models, such as negative binomial model, that appropriately handle

overdispersion are better than bivariate Poisson model. The usefulness of the bivariate

negative binomial model in empirical applications is limited since it imposes correla-

tion between series to be non-negative. In general, the analysis in this paper suggests

that bivariate mixture models with a common unobserved heterogeneity component

are inadequate in empirical applications, in that a single unobserved variable may not

be able to account both for the dependence between the counts and for the variation

in the dependent variables due to changes in unobservables.

To obtain satisfactory starting values for the mean parameters in both applications,

we sequentially estimate standard bivariate count models, such as the bivariate Poisson

and bivariate negative binomial models. Using estimates from these models as our

starting values, the optimization algorithm for our model is typically able to achieve

the usual gradient-based convergence criteria, resulting in substantial improvements

in the log likelihood function and AIC. As we increase the degree of polynomial, we

use starting values from lower order polynomial model. At each step, we re-initiate

the optimization procedure using different starting values to start a fresh search for a

global maximum. In the Monte-Carlo analysis, for small proportion of the replications,

the optimization routine was restarted with slightly altered starting values. Although

optimization algorithms cannot guarantee that they achieve the global optimum, we

feel confident that our parameter estimates are valid given the plausibility and the

qualitative aspects of our results.
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5 CONCLUSION

This paper has developed a flexible two-factor bivariate count data regression model

based on series expansion for the joint density of the unobserved heterogeneity com-

ponents. Multivariate generalizations as well as extensions to accommodate truncated,

censored and zero-inflated correlated count data models are provided. We obtain a com-

putationally tractable closed form of the bivariate model that allows for both negative

and positive correlations. Our empirical application and simulation experiments show

that the proposed model fits various features of the data well and compares favorably

with existing bivariate count data models.

The gain in the proposed SP2 model comes from suitably modeling overdispersion

as well as correlation between variables within a flexible likelihood framework. As

compared to the Poisson log-normal mixture model, the SP2 model relies less on dis-

tributional assumptions and provides a closed form of the likelihood function. Note

that the dispersion (α’s) and correlation (ρ’s) parameters also appear in the marginal

distributions implied by the correlated SP2 model. When a test of the null hypothesis

of independence is rejected, the SP2 model is expected to fit both the bivariate distri-

bution as well as the implied marginals better. If the correlation between y1 and y2 is

not significantly different from zero, the SP2 model is simply fitting the marginals bet-

ter. However, if the test of independence is not rejected, it is more sensible to estimate

flexible univariate models such as those considered by Cameron and Johansson (1997),

Gurmu (1997) and Gurmu et al. (1999).

As in univariate models, the semiparametric approach for multivariate models is par-

ticularly attractive for censored, truncated and related modified models where para-

metric maximum likelihood estimates are not robust to misspecification of the error

distribution. Monte Carlo results reported in Gurmu et al. (1999) show that biases

and the sampling variances resulting from censored and truncated parametric models,

such as the censored negative binomial, can be substantial. Their Monte Carlo results
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from the regular (uncensored) sample show that, although the SP procedure has an

edge over standard parametric models, the biases resulting from parametric and SP

models with heterogeneity are not substantial. By contrast, the Monte Carlo results

in this paper show that the biases and sampling variances from the standard (uncen-

sored/untruncated) bivariate models (such as bivariate negative binomial model) may

be substantial.

While the sign of the correlation between counts is unrestricted, the range of possible

values from the Poisson-unobserved factor mixture models is generally narrower than

that of the corresponding mixing distribution. The range of possible correlations can

be quite high in absolute terms for large values of the means of the counts, but this is

not attainable in some common applications with small means. An ideal extension of

the method proposed in this paper is to have a multivariate generalization that achieves

the full range of correlations between the counts.

APPENDIX: DERIVATIONS AND GENERALIZATIONS

A Derivations and some Expressions of the SP2 Model

We outline the derivation of the MGF based Laguerre series expansion. The relevant

k-th order generalized Laguerre polynomial associated with the random variable νji is

Lkj(νji) =
kX
l=0

µ
k

l

¶
Γ(k + αj)

Γ(l + αj)Γ(k + 1)
λlj(−νji)l, for j = 1, 2, (A.1)

with baseline gamma weight

w(νji) =
ν
αj−1
ji λ

αj
j

Γ(αj)
e−λjνji . (A.2)
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These polynomials are orthogonal, Eνj [Lkj(νji)Llj(νji)] = 0 for k 6= l, and each with

unit variance, Eνj

h
h−1kj L

2
kj(νji)

i
= 1. Since

"
KX
k=0

KX
r=0

ρkrPk(ν1)Pr(ν2)

#2
=

KX
k=0

KX
r=0

KX
l=0

KX
m=0

ρkrρlmPk(ν1)Pl(ν1)Pr(ν2)Pm(ν2),

the constant of proportionality in equation (9) takes the form

' =
KX
k=0

KX
r=0

KX
l=0

KX
m=0

ρkrρlmE [Pk(ν1)Pl(ν1)]E [Pr(ν2)Pm(ν2)]

=
KX
k=0

KX
r=0

ρ2krP
2
k (ν1)P

2
r (ν2)

=
KX
k=0

KX
r=0

ρ2kr;

the last 2 lines follow from the properties that E [Pk(νj)Pl(νj)] = 0 for k 6= l by

orthogonality of polynomials and each with unit variance (E
£
P 2k (νj)

¤
= 1). The

approximate density will then take the form

gN(ν1i, ν2i) =
w(ν1i)w(ν2i)

'

"
KX
k=0

KX
r=0

ρkrh
−1/2
k1 h

−1/2
r2 Lk1(ν1i)Lr2(ν2i)

#2
, (A.3)

with its MGF defined by MN(t1i, t2i) = Eν [exp(t1ν1i + t2ν2i)].

The main result we need is the MGF

MN (−θ1i,−θ2i) =
ZZ

exp(−θ1iν1i − θ2iν2i) gN(ν1i, ν2i)dν1idν2i,

where gN (.) is given in (A.3). Using properties of orthonormal polynomials and since

the integration and expectations are taken with respect to the baseline marginal dis-

tributions, this MGF can be reorganized and expressed readily as

MN (−θ1i,−θ2i) =
1

'

KX
k=0

KX
r=0

KX
l=0

KX
m=0

ρkrρlr (hk1hr2hl1hm2)
−1/2 (A.4)

×Eν1i

h
Lk1(ν1i)Ll1(ν1i)e

−θ1iν1i)
i

×Eν2i

h
Lr2(ν2i)Lm2(ν2i)e

−θ2iν2i
i
.
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We exploit the properties of the gamma function, Γ(γ) =
Z
zγ−1e−z dz, and a two-

parameter gamma density,
Z
zγ−1e−z/δ dz = Γ(γ)γδ, to obtain a closed form solution

for this MGF. The approximate moment generating function corresponding to the i-th

observation is

MN (−θ1i,−θ2i) = 1
K
k=0

K
r=0 ρ

2
kr

µQ2
j=1

³
1 +

θji
λj

´−αj
Γ(αj)

¶

×
PK

k,r,l,m=0 ρkrρlm(hk1hr2hl1hm2)
1/2Ψ01klΨ

0
2rm,

(A.5)

where

Ψ01kl =
kX

k1=0

lX
l1=0

µ
k

k1

¶µ
l

l1

¶
Γ(α1 + k1 + l1)

Γ(α1 + k1)Γ(α1 + l1)

µ
−1− θ1i

λ1

¶−(k1+l1)
and

Ψ02rm =
rX

r2=0

mX
m2=0

µ
r

r2

¶µ
m

m2

¶
Γ(α2 + r2 +m2)

Γ(α2 + r2)Γ(α2 +m2)

µ
−1− θ2i

λ2

¶−(r2+m2)

.

Detailed derivations for (A.5) are available in a Supplemental Appendix.

Next, we show the implications of restricting the mean of each unobserved hetero-

geneity component to unity. Using (10), set M (1,0)
N (0, 0) = 1 and M

(0,1)
N (0, 0) = 1.

These restrictions yield

λ1 = 1
K
k=0

K
r=0 ρ

2
kr

hQ2
j=1 Γ(αj)

iPK
k=0

PK
r=0 ρkr (hk1hr2)

1/2PK
l=0

PK
m=0 ρlm(hl1hm2)

1/2Ψ1kl (0, 1)Ψ2rm (0, 0) ,
(A.6)

and
λ2 = 1

K
k=0

K
r=0 ρ

2
kr

hQ2
j=1 Γ(αj)

iPK
k=0

PK
r=0 ρkr (hk1hr2)

1/2PK
l=0

PK
m=0 ρlm(hl1hm2)

1/2Ψ1kl (0, 0)Ψ2rm (0, 1) .
(A.7)

Here, for example, Ψ1kl (0, 1) = Ψ1kl (−θ1i = 0, y1i = 1). Finally, the correlation coeffi-

cient for the SP2 model is:

Corr (y1i, y2i | xi) =
θ1iθ2i

h
M
(1,1)
N (0, 0)− 1

i
rh

θ1i + θ21i

³
M
(2,0)
N (0, 0)− 1

´i h
θ2i + θ22i

³
M
(0,2)
N (0, 0)− 1

´i .
(A.8)
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This is obtained readily using the general results in proposition 1 and equation (7) with

the mean of each unobserved heterogeneity component set to unity.

Multivariate generalizations as well as extensions to accommodate truncated, cen-

sored and zero-inflated correlated count data models are provided in Supplementary

Appendix B. Shaw (1988), Grogger and Carson (1991(), Silva (1997) and Gurmu et

al. (1999) provide background and applications of truncated and censored univariate

count data models. See, for example, Wang (2003) and Gurmu and Elder (2008) for

background, applications and recent developments in univariate zero-inflated models.

SUPPLEMENTAL MATERIAL

Supplemental appendices B through G contain generalizations, additional derivations,

results, tables and graphs for the applications and Monte Carlo experiments. These

appendices and the GAUSS program used in this paper can also be downloaded from

the authors’ homepages: http://www2.gsu.edu/~ecosgg/research/pdf/ge_jbes.pdf.
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Supplemental Appendices B through G: Deriva-
tions, Results, Tables and Graphs
Contents:

• Appendix B: Generalizations

• Appendix C: Derivation of the Moment Generating Function for the Mixing

Distribution

• Appendix D: Tests of Independence in Bivariate Models

• Appendix E: Additional Monte Carlo and Related Results

• Appendix F: Additional Tables for Tobacco Data

• Appendix G: Application to Health-care Utilization

A Derivations and some Expressions of the SP2 Model

Appendix A has been included in the main paper.

B Generalizations

Apart from nesting some familiar baseline models, the approach based on series expan-

sion also provides smooth estimation of the distribution of unobserved heterogeneity.

In truncated and censored models, misspecification of the distribution of the unob-

served heterogeneity leads to inconsistent parameter estimates. Accordingly the series

expansion approach is particularly useful for truncated and censored models. Here, we

extend the SP2 approach to the estimation of truncated and censored jointly dependent

count regression models. We also provide multivariate generalizations and extension

to accommodate excess zeros.
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B.1 Truncated and Censored Models

In these models, the ranges of the dependent variables may be constrained in much

the same way as in the univariate count data models. The most common form of

truncation is the omission of zeros. On-site surveys, such as interviewing people at

the mall about the number of shopping trips, give rise to zero-truncated models. For

discussion of related issues in models for on-site samples, see Shaw (1988), Grogger and

Carson (1991) and Silva (1997). Censored samples may result when high counts are not

observed, or may be imposed by survey design; see, for example, Gurmu et al. (1999).

Thus, right censoring is the most common form in the analysis of univariate count

models. Since the conditional mean in truncated and censored models depends on the

density, the form of the density will affect the consistency of the regression parameters.

Thus a misspecification of the distribution of the unobserved heterogeneity leads to

inconsistency. It is therefore desirable to extend the semiparametric approach to the

analysis of truncated and censored bivariate models.

Suppose the support of y = (y1, y2) is restricted to the region S∗. For example, for a

zero truncated bivariate distribution, S∗ is a set of positive integers inR2. The density

or probability mass function of the truncated distribution is

f(y1, y2; δ)

φ
, y ∈ S∗

where δ is a parameter vector and φ =
PP

y∈S∗ f(y1, y2; δ). Thus the log-likelihood

function takes the general form

LT (δ) =
NX
i=1

[ln f(y1i, y2i; δ)− lnφi] . (B.1)

We focus on the empirically relevant case, models that are truncated at zero.

Consider the double truncation case, in which the zero class is missing for both

dependent variables so that yji = 1, 2, 3, ... for j = 1, 2. The approach of Section 2

can be extended to the estimation of zero-truncated bivariate regression models. To

implement this for SP2, we need to obtain the normalization probability φi associated
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with the semiparametric mixture density (3) with M
(y1, y2)
N (−θ1i,−θ2i) given in (10).

The SP2 log-likelihood function for the double-truncated model is

Lsp2t(ϕ) =
PN

i=1 [y1i ln θ1i + y2i ln θ2i − ln(Γ(y1i + 1))− ln(Γ(y2i + 1))

+ lnM
(y1,y2)
N (−θ1i,−θ2i)− lnφi

i
,

(B.2)

where φi = 1−MN (−θ1i)−MN (−θ2i)+MN(−θ1i,−θ2i). Here MN(−θji) is the MGF

of νji and MN(−θ1i,−θ2i) is given by (A.5) in Appendix A. The approach can easily

be extended to the case where only a single-variable is truncated at zero. For example,

if only yj is truncated at zero, then φ = 1− f(yj = 0).

Since censoring is closely related to truncation, we provide only a sketch. Suppose

that the bivariate counts are right censored at r = (r1, r2) so that yji = 1, 2, 3, ...rj for

j = 1, 2. If (y1i, y2i; δ) denotes the complete bivariate density, the log-likelihood for the

right-censored bivariate count model is

Lc(δ) =
NX
i=1

di [ln f(y1i, y2i; δ)] + [1− di] ln

"
1−

r1−1X
l=0

r2−1X
m=0

f(y1i = l, y2i = m)

#
,

where di = 1 if y falls in the uncensored region, and di = 0 otherwise. Thus, using the

preceding equation, the log-likelihood for the right censored bivariate SP2 model can

be constructed from (3) and (10).

B.2 Zero-inflated Model and Other Extensions

The proposed bivariate count data model can be extended to allow for excess of zeros;

see for example, Wang (2003) and Gurmu and Elder (2008) for background and recent

developments. Consider the mixture density f(y1i, y2i | xi) of the bivariate SP2 model

specified in (3) and (10). This can be accomplished by increasing the probability

associated with the zero-zero state, (y1 = 0, y2 = 0), and decreasing proportionately

the values of the other joint probabilities. Define an indicator variable Si = 1 if

(y1i + y2i) = 0, and Si = 0 otherwise. The ensuing zero-inflated bivariate SP2 density
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is given as

h(y1i, y2i | xi) =

⎧⎨⎩ πi + (1− πi)f(y1i = 0, y2i = 0 | xi), if Si = 1

(1− πi)f(y1i, y2i | xi) if Si = 0
, (B.3)

where the inflation parameter πi, 0 ≤ πi < 1, can be parameterized in terms of vector

zi of observed factors using the logit form. In the empirical implementation of this

model - reported in Section 4 above, the use of tobacco by the mother and father were

included in z of the inflation submodel, but were excluded from x in the main parts of

the smoking and chewing equations.

Multivariate extensions of the proposed semiparametric mixture approaches are fea-

sible. Consider the case of J count variables where each yji is conditioned on the

unobserved heterogeneity term νji. The unobserved heterogeneity components may

be correlated. This gives rise to a multi-factor multivariate model. Without any loss

of generality, let J = 3. Suppose (yji | xji, νji) ∼ Poisson(θjiνji) with (ν1i, ν2i, ν3i)

having a trivariate distribution g(ν1i, ν2i, ν3i) in R3+. Techniques in multivariate den-

sity expansions may be used to approximate g(.). The ensuing mixture density takes a

general form

f(y1i, y2i, y3i;ϕ | xi) =

⎡⎣ 3Y
j=1

(θji)
yji

Γ(yji + 1)

⎤⎦M (y1,y2,y3)
N (−θ1i,−θ2i,−θ3i) ,

where the MGF term associated with the trivariate distribution g(ν1i, ν2i, ν3i) can be

obtained in a manner analogous to the bivariate case. The approach can be extended

to any arbitrary J . However, unlike one-factor multivariate models, if J is large, SPJ

models based on multivariate mixing are computationally demanding. One solution is

to assume that some of the unobserved heterogeneity components are common. These

details depend largely on specific applications, and we do not pursue them further.

In principle, multivariate generalizations of truncated and censored models are also

possible.
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C Derivation of the Moment Generating Function for the

Mixing Distribution

We provide additional details of the derivation of the MGF of the mixing density

evaluated at (−θ1i,−θ2i), MN(−θ1i,−θ2i), given in A.5 of the paper. For convenience,

equations in this web appendix are re-numbered as appropriate. Consider the approx-

imate density in A.3

gN (ν1i, ν2i) =
w(ν1i)w(ν2i)

'

"
KX
k=0

KX
r=0

ρkrh
−1/2
k1 h

−1/2
r2 Lk1(ν1i)Lr2(ν2i)

#2
, (C.1)

where for j = 1, 2 :

w(νji) =
ν
αj−1
ji λ

αj
j

Γ(αj)
e−λjνji , (C.2)

' =
KX
k=0

KX
r=0

ρ2kr, (C.3)

Lkj(νji) =
kX
l=0

µ
k

l

¶
Γ(k + αj)

Γ(l + αj)Γ(k + 1)
λlj(−νji)l, (C.4)

hkj =
Γ(k + αj)

Γ(αj)Γ(k + 1)
, (C.5)

Pk(νji) = h
−1/2
kj Lkj(νji). (C.6)

By properties of orthonormal polynomials, we have:

Eνj [Pk(νji)] = 0,

Eνj [Pk(νji)Pl(νji)] = 0, for k 6= l (C.7)

Eνj

£
P 2k (νji)

¤
= 1. (C.8)

We also exploit the result that, for any random variable z ∼ Gamma(γ, δ) with mean

E(z) = γδ, Z
1

Γ(γ)γδ
zγ−1e−z/δ dz = 1
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so that Z
zγ−1e−z/δ dz = Γ(γ)γδ. (C.9)

The MGF of gN (ν1i, ν2i) at (t1i, t2i) = (−θ1i,−θ2i) is

MN (−θ1i,−θ2i) =

ZZ
exp(−θ1iν1i − θ2iν2i) gN(ν1i, ν2i)dν1i dν2i

=

ZZ
exp(−θ1iν1i − θ2iν2i)

w(ν1i)w(ν2i)

'

×
"

KX
k=0

KX
r=0

ρkrh
−1/2
k1 h

−1/2
r2 Lk1(ν1i)Lr2(ν2i)

#2
dν1i dν2i

=

ZZ
exp(−θ1iν1i − θ2iν2i)

w(ν1i)w(ν2i)

'

×
KX
k=0

KX
r=0

KX
l=0

KX
m=0

h
ρkrρlrh

−1/2
k1 h

−1/2
r2 h

−1/2
l1 h

−1/2
m2

× Lk1(ν1i)Lr2(ν2i)Ll1(ν1i)Lm2(ν2i)] dν1i dν2i.

The additional cross terms in moving from row 2 to row 3 above vanish due to the

orthogonality property (C.7). Since the integration and expectations are taken with

respect to the baseline marginal distributions, the above MGF can be reorganized and

expressed readily as

MN (−θ1i,−θ2i) =
1

'

KX
k=0

KX
r=0

KX
l=0

KX
m=0

ρkrρlr (hk1hr2hl1hm2)
−1/2 (C.10)

×Eν1i

h
Lk1(ν1i)Ll1(ν1i)e

−θ1iν1i)
i

×Eν2i

h
Lr2(ν2i)Lm2(ν2i)e

−θ2iν2i
i
.

Next, we will simplify the expectation associated with, say ν1i, using (C.2) and (C.4)
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as follows:

Eν1i

h
Lk1(ν1iLl1(ν1i)e

−θ1iν1i)
i
=

Z
Lk1(ν1i)Ll1(ν1i)e

−θ1iν1iw(ν1i)dν1i (C.11)

=

Z
Lk1(ν1i)Ll1(ν1i)

να1−11i λα11
Γ(α1)

e−λ1ν1ie−θ1iν1i dν1i

=

Z kX
k1=0

lX
l1=0

∙µ
k

k1

¶
Γ(k + α1)

Γ(k1 + α1)Γ(k + 1)
λk11 (−ν1i)k1

×
µ
l

l1

¶
Γ(l + α1)

Γ(l1 + α1)Γ(l + 1)
λl11 (−ν1i)l1

× να1−11i λα11
Γ(α1)

e−λ1ν1ie−θ1iν1i

#
dν1i

= Γ(α1)hk1hl1

Z kX
k1=0

lX
l1=0

∙µ
k

k1

¶µ
l

l1

¶
(−1)k1+l1

× 1

Γ(k1 + α1)Γ(l1 + α1)
λα1+k1+l11 να1+k1+l1−11i

× e−(λ1+θ1i)ν1i
i
dν1i.

By the property of gamma density (C.9),Z
να1+k1+l1−11i e−(λ1+θ1i)ν1idν1i = Γ(α1 + k1 + l1)

µ
1

λ1 + θ1i

¶α1+k1+l1

(C.12)

so that λα1+k1+l11 (−1)k1+l1
Z
να1+k1+l1−11i e−(λ1+θ1i)ν1idν1i equals

µ
1 +

θ1i
λ1

¶−α1 µ
−1− θ1i

λ1

¶−(k1+l1)
Γ(α1 + k1 + l1). (C.13)

Consequently C.11 simplifies as

Eν1i

h
Lk1(ν1iLl1(ν1i)e

−θ1iν1i)
i
= hk1hl1

µ
1 +

θ1i
λ1

¶−α1
Γ(α1) (C.14)

×
kX

k1=0

lX
l1=0

∙µ
k

k1

¶µ
l

l1

¶
Γ(α1 + k1 + l1)

Γ(k1 + α1)Γ(l1 + α1)

×
µ
−1− θ1i

λ1

¶−(k1+l1)#
.
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By analogy of the derivation of (C.14), we get:

Eν2i

h
Lr2(ν2i)Lm2(ν2i)e

−θ2iν2i
i
= hr2hm2

µ
1 +

θ2i
λ2

¶−α2
Γ(α2) (C.15)

×
rX

r2=0

mX
m2=0

∙µ
r

r2

¶µ
m

m2

¶
Γ(α2 + r2 +m2)

Γ(α2 + r2)Γ(α2 +m2)

×
µ
−1− θ2i

λ2

¶−(r2+m2)
#
.

Finally, plugging (C.14) and (C.15) into (C.10) and simplifying slightly gives

MN (−θ1i,−θ2i) =
1PK

k=0

PK
r=0 ρ

2
kr

⎛⎝ 2Y
j=1

µ
1 +

θji
λj

¶−αj
Γ(αj)

⎞⎠ (C.16)

×
KX
k=0

KX
r=0

KX
l=0

KX
m=0

ρkrρlr (hk1hr2hl1hm2)
1/2Ψ01klΨ

0
2rm,

where

Ψ01kl =
kX

k1=0

lX
l1=0

µ
k

k1

¶µ
l

l1

¶
Γ(α1 + k1 + l1)

Γ(α1 + k1)Γ(α1 + l1)

µ
−1− θ1i

λ1

¶−(k1+l1)
and

Ψ02rm =
rX

r2=0

mX
m2=0

µ
r

r2

¶µ
m

m2

¶
Γ(α2 + r2 +m2)

Γ(α2 + r2)Γ(α2 +m2)

µ
−1− θ2i

λ2

¶−(r2+m2)

.

The MGF in (C.16) above is identical to equation (A.5) in the paper. This completes

the proof of the main result for the MGF of the approximated bivariate density of the

two-factor unobserved heterogeneity in equation (8) of the paper.

It is straightforward to find the cross-derivatives of MN(−θ1i,−θ2i),

∂y1i+y2iMN (−θ1i,−θ2i)
∂y1i(−θ1i)∂y2i(−θ2i)

≡M
(y1+y2i)
N (−θ1i,−θ2i),

by continuous differentiation involving a term of the type
³
1 +

θji
λj

´−aj
in equation

(C.16), and making use of the definition Γ(aj) = (aj − 1)Γ(aj − 1). This process

provides the result in equation (10) of the main paper.
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D Tests of Independence in Bivariate Models

Loosely speaking, the score test of independence between y1 and y2 is based on H0 :

E [Pk(y1i)Pm(y2i)] = 0 for k,m = 1, 2, ...,K, where Pq(yji) denotes an orthogonal

polynomial of degree q associated with variable yj , and expectations are taken under

the null hypothesis of independence. We focus on tests of zero correlations of order two

(K = 2) in the Poisson and negative binomial models.

The steps required to implement two variants of tests of independence in Poisson and

negative binomial models are:

1. Assuming independence between y1 and y2, obtain consistent estimates of βj (and

of αj in the case of the negative binomial model), j = 1, 2.

2. In Table D.1, let θji = exp(x0jiβj), εji = yji − θji, bji = 1 +
2θji
αj
, and σ2ji =

θji+
θ2ji
αj
, for j = 1, 2. To compute τ121 in (D.1) based on Poisson pseudo-maximum

likelihood, for example, we need P2(y1i)P1(y2i) =
¡
(y1i − θ1i)

2 − y1i
¢
(y2i − θ2i),

evaluated at β̂1 and β̂2. Using orthogonal polynomials based on Poisson and

negative binomial models summarized in Table D.1, compute test statistic 1:

τ1km =

Ã
NX
i=1

Pk(y1i)Pm(y2i)

!2 " NX
i=1

(Pk(y1i)Pm(y2i))
2

#−1
for k, m = 1, 2.

(D.1)

For example, τ121 =
³PN

i=1 P2(y1i)P1(y2i)
´2 hPN

i=1 (P2(y1i)P1(y2i))
2
i−1

. τ1km is

asymptotically distributed as χ2(1). A large computed value of τ1km results in

the rejection of the null hypothesis. A sufficient condition for rejection of the null

hypothesis of independence is that τ111 be large.

3. Compute test statistic 2:

τ2km =

Ã
NX
i=1

Qk(y1i)Qm(y2i)

!2 "Ã NX
i=1

Q2k(y1i)

!Ã
NX
i=1

Q2m(y2i)

!#−1
for k, m = 1, 2,

(D.2)
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where, for example, Qk(y2i) denotes the k-th order polynomial having a unit

variance (see Table D.1). τ2km also converges to a χ2(1) distribution.

Table D.1 Orthogonal Polynomials for Tests of Independence

Polynomial Poisson Negative Binomial

P1(yji) εji εji

P2(yji) ε2ji − yji ε2ji − bjiεji − σ2ji

Q1(yji)
P1(yji)√

θji

P1(yji)

σ2ji

Q2(yji)
P2(yji)

(
√
2)θji

P2(yji)

σ2ji+2σ
4
ji+(6σ

4
ji/αj)−b2jiσ2ji

The estimated variances of these tests are based on the outer-products of the gra-

dients. The first test, τ1km, requires the correct specification of the first k moments

of y1i and m moments of y2i. Similarly, τ2km requires the correct specification of the

first 2k moments of y1i and 2m moments of y2i. In the empirical application involv-

ing smoking and chewing tobacco, the p-values for the first-order test τ111 is 0.001 for

Poisson and 0.104 for negative binomial. Moreover, most of the p-values corresponding

to higher-order tests of independence are low. For example, the respective p-values

corresponding to τ112, τ
1
21, and τ122 are 0.002, 0.000, and 0.000 for negative binomial

model, and 0.131, 0.080, and 0.000 for Poisson model.

E Additional Monte Carlo and Related Results

This section presents additional tables and graphs from the Monte Carlo experiments

from DGP 1 through 4 as well as results from two new simulation experiments de-

scribed below. We also provide results from a numerical exercise showing the range of

correlations the dependent variables could take, particularly as the means of the count
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variables change and with focus on the empirically relevant cases of small means. The

contents of tables and figures for this supplemental appendix are as follows.

• Table E.1: Monte Carlo results from DGPs 3 and 4 (Poisson - bivariate uniform

mixture model) using bivariate negative binomial and bivariate SP2 estimators.

• Table E.2: Monte Carlo results from additional experiments with very low means

(DGPs 5 and 6) using bivariate SP2 estimator.

• Table E.3: Monte Carlo results from DGPs 1 through 6 - summary statistics of

correlations between the counts estimated by SP2.

• Table E.4: Correlation bounds for two-factor mixture models with varying het-

erogeneity parameters and means of the counts (Positive correlations).

• Table E.5: Correlation bounds for two-factor mixture models with varying het-

erogeneity parameters and means of the counts (Negative correlations).

• Figure E.1: Kernel density estimates of the distributions of β̂1 and β̂2 (estimates

of the slope coefficients in MC designs) from DGPs 1 and 2 (Poisson-Bivariate

lognormal mixture model) using SP2 estimates.

• Figure E.2: Kernel density estimates of the distributions of β̂1 and β̂2 (estimates

of the slope coefficients in MC designs) from DGPs 3 and 4 (Poisson-Bivariate

uniform mixture model) using SP2 estimates.

• Figure E.3: Kernel density estimates of the distributions of the correlations (at

the means of covariates) between the response variables. Graphs obtained from

results of MC experiments from DGPs 1 through 4 using SP2 estimators.

• Figure E.4: Kernel density estimates of the distributions of the inverse hyperbolic

tangent of the correlations from Figure E3, with normal density added.
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Table E.1 Monte Carlo results on parameter estimates by bivairate count models

DGP: Bivar Est. Method Parameter Mean RMSE Mean

heterogeneity bias abs. bias

3. Uniform, Corr(ν1, ν2) = 0.6

Bivar NB γ1 0.0187 0.1185 0.0884

β1 0.6552 0.7021 0.6556

γ2 0.0201 0.1187 0.0879

β2 0.6696 0.7193 0.6697

Bivar SP2 K = 1 γ1 -0.0187 0.0328 0.0264

β1 -0.0184 0.0991 0.0783

γ2 -0.0177 0.0323 0.0260

β2 -0.0107 0.1012 0.0802

Bivar SP2 K = 2 γ1 -0.0086 0.0299 0.0238

β1 -0.0074 0.0984 0.0780

γ2 0.0077 0.0210 0.0241

β2 0.0006 0.1021 0.0813

NOTE: The true values for the parameters are γ1 = β1 = γ2 = β2 = 1.
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Table E.1 Continued
DGP: Bivar Est. Method Parameter Mean RMSE Mean

heterogeneity bias abs. bias

4. Uniform, Corr(ν1, ν2) = −0.6

Bivar NB γ1 0.0029 0.0443 0.0349

β1 0.3591 0.4038 0.3621

γ2 0.0037 0.0426 0.0333

β2 0.3654 0.4127 0.3673

Bivar SP2 K = 1 γ1 -0.0056 0.0276 0.0220

β1 -0.0145 0.0992 0.0792

γ2 -0.0051 0.0270 0.0213

β2 -0.0115 0.1035 0.0815

Bivar SP2 K = 2 γ1 -0.0024 0.0273 0.0217

β1 -0.0092 0.0961 0.0762

γ2 -0.0017 0.0264 0.0209

β2 -0.0055 0.0999 0.0790

NOTE: The true values for the parameters are γ1 = β1 = γ2 = β2 = 1.
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Figures E.1 through E.4 are given at the end of this document. In contrast with esti-

mated correlations from SP2 shown in figures E.3 and E.4, the distribution of estimated

correlations from bivariate negative binomial model shifts to the right significantly in

all cases and, as expected, the model predicts positive correlations for DGPs (2 and 4)

with negative correlations. The estimated means (standard deviations) of corr(y1, y2)

from bivariate NB are 0.50 (0.04 ), 0.34 (0.04 ), 0.57 (0.05 ), and 0.32 (0.04 ) based on

DGPs 1, 2, 3, and 4, respectively. The respective empirical means of corr(y1, y2) for

DGPs 1, 2, 3, and 4 are 0.24, -0.20, 0.27 and -0.27.

We use the means of the dependent count variables of between 2.8 and 3.1 in DGPs 1

through 4 to mimic reasonable applications of count data in the existing literature. We

also run two additional simulations to (i) evaluate the performance of the SP2 approach

and (ii) gauge the correlation bounds when the conditional means are relatively low,

about 0.7. For both DGPs (called DGPs 5 and 6), the mean parameters of Poisson

distributed count variables y1 and y2 are specified as in equation (14) of the paper. The

values of explanatory variables x1 and x2 are generated independently from normal

N(0, 1/16), with true values for the regression parameters set to γ1 = γ2 = −0.5 and

β1 = β2 = 1 in both experiments. The unobserved heterogeneity terms ν1 and ν2 are

generated by bivariate lognormal distributions using the following specifications, along

the implied average characteristics of the DGP.

5. Bivariate log-normal with positive correlation: log(ν1) = ε1 and log(ν2) = ε2

follow bivariate normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25

and correlation parameter ρε = 0.6. This gives mean(νj) = 1.12, var(νj) = 0.37

and corr(ν1, ν2) = 0.57 and average moments: mean(yj) = 0.71, var(yj) = 0.99

and corr(y1, y2) = 0.11.

6. Bivariate log-normal with negative correlation: log(ν1) = ε1 and log(ν2) = ε2 fol-

low bivariate normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25 and

correlation parameter ρε = −0.6. This implies mean(νj) = 1.12, var(νj) = 0.37
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Table E.2 Monte Carlo results on parameter estimates by SP2 with K=1

DGP: Bivar Parameter Mean RMSE Mean

heterogeneity bias abs. bias

5. Lognormal, Corr(ν1, ν2) = 0.57

γ1 -0.0027 0.0426 0.0338

β1 -0.0017 0.1719 0.1385

γ2 -0.0031 0.0413 0.0328

β2 0.0101 0.1711 0.1354

6. Lognormal, Corr(ν1, ν2) = −0.49

γ1 -0.0026 0.0425 0.0338

β1 -0.0011 0.1729 0.1392

γ2 -0.0027 0.0414 0.0324

β2 0.0118 0.1685 0.1343

NOTE: The true values for the parameters are γj = −0.5

and βj = 1, for j = 1, 2.

and corr(ν1, ν2) = −0.49 and the average moments: mean(yj) = 0.71, var(yj) =

0.99 and corr(y1, y2) = −0.09.

Monte Carlo results from these new DGPs using our proposed SP2 with K = 1 are

shown in Table E.2. The biases of the coefficients are generally very low. As compared

to results from DGPs with higher means, the variance of each slope estimate is higher

(with an increase in RMSE of about 6%). Combining simulation experiments from

DGPs 1 through 6, Table E.3 reports on the reliability of the proposed SP2 approach

in correctly predicting both the signs and the magnitudes of the correlations allowed

by the underlying DGPs.

On the other hand, using Proposition 1 and equations 4 to 6 in the main paper,

tables E.4 and E.5 give correlation bounds from the two-factor bivariate mixture count

models with varying heterogeneity parameters and means of the counts. The means of
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Table E.3 Monte Carlo results for correlation estimates from SP2
DGP: Bivar Mean(yj) Expected corr SP2 estimate of corr(y1, y2)

heterogeneity (ν1, ν2) (y1, y2) Mean SD 5% 95%

1. Lognormal 3.08 0.57 0.24 0.21 0.03 0.16 0.25

2. Lognormal 3.08 -0.49 -0.20 -0.17 0.02 -0.19 -0.14

3. Uniform 2.81 0.60 0.27 0.29 0.06 0.21 0.39

4. Uniform 2.81 -0.60 -0.27 -0.18 0.02 -0.20 -0.15

5. Lognormal 0.71 0.57 0.11 0.06 0.02 0.03 0.09

6. Lognormal 0.71 -0.49 -0.09 -0.05 0.01 -0.07 -0.03

NOTE: Results for DGPs 1 to 4 are from SP2 with K = 2; those for

DGPs 5 and 6 are from SP2 with K = 1. DGP moments in columns 2-4

are evaluated at the average of xj . SD denotes standard deviation and

the figures in the last two columns are the 5 and 95 percentiles.

the counts in this calibration exercise (not a Monte Carlo experiment) vary from 0.5 to

about 40 such that E(yj) = θjE(νj), where θj is a constant (no regressors). The range

for mean counts captures most empirical applications using count data. For example,

while the mean number of applications such as health care consultation trips, number

of shopping trips and number of patents issued to individual scientists is quite low

(Cameron et al., 1988; Gurmu et al. 1999; Stephan et al. 2007), applications such as

the number of annual patents granted to firms have relatively large means of about 25

to 40 (e.g., Hausman et al., 1984). In specifications, denoted specs, (a) through (h)

below, the moments of the bivariate unobserved heterogeneity (UH) used in generating

the correlation bounds are consistent with parametrization from bivariate lognormal

and uniform distributions as follows, with implied moments given in tables E.4 and

E5.

a. Bivariate log-normal such that log(ν1) = ε1 and log(ν2) = ε2 follow bivariate

normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25 and correlation

17



parameter ρε = 0.6 (Corr(ν1, ν2) = 0.57)

b. Bivariate log-normal such that log(ν1) = ε1 and log(ν2) = ε2 follow bivariate

normal distribution with mean (0, 0), variances σ21 = σ22 = 0.36 and correlation

parameter ρε = 0.85 (Corr(ν1, ν2) = 0.82).

c. Bivariate uniform with correlation corr(ν1, ν2) = 0.6.

d. Bivariate uniform with correlation corr(ν1, ν2) = 0.85.

e. Bivariate log-normal such that log(ν1) = ε1 and log(ν2) = ε2 follow bivariate

normal distribution with mean (0, 0), variances σ21 = σ22 = 0.25 and correlation

parameter ρε = −0.6 (Corr(ν1, ν2) = −0.49)

f. Bivariate log-normal such that log(ν1) = ε1 and log(ν2) = ε2 follow bivariate

normal distribution with mean (0, 0), variances σ21 = σ22 = 0.36 and correlation

parameter ρε = −0.85 (Corr(ν1, ν2) = −0.61)

g. Bivariate uniform with correlation corr(ν1, ν2) = −0.6.

h. Bivariate uniform with correlation corr(ν1, ν2) = −0.85.

The results reported in tables E.4 and E.5 provide numerical evidence of the correla-

tion bounds given in Proposition 1 and equation 7 of the main paper. The magnitudes

are narrower than the corresponding correlations from distributions of unobserved het-

erogeneity components. As the means of the response variables increase, the correlation

between the counts approaches the correlation between the unobservables. On the other

hand, as the means of the response variables decrease, the gap between the two corre-

lations widens. This is potentially disconcerting since in many applications the means

of the response variables may be low. However, as reported in Table E.3 and figures

E.3 and E.4, the proposed series expansion approach does a good job of estimating the

magnitude and sign of the correlations from the underlying data generating process
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Table E.4 Correlation bounds for two-factor mixture models with varying

heterogeneity parameters and means of the counts (Positive correlations)

Spec for Bivar Mean(yj) Var(yj) Corr(y1.y2)

heterogeneity

a) Mean(νj) = 1.13, Var(νj) = 0.36,

Corr(ν1, ν2) = 0.567

0.57 0.66 0.079

1.13 1.50 0.139

2.27 3.73 0.223

4.53 10.37 0.321

11.33 47.80 0.435

33.99 362.22 0.516

45.33 628.84 0.529

b) Mean(νj) = 1.20, Var(νj) = 0.62,

Corr(ν1, ν2) = 0.826

0.60 0.76 0.170

1.20 1.82 0.282

2.39 4.88 0.421

4.79 14.73 0.503

11.97 74.08 0.693

35.92 59.91 0.776

47.89 1041.65 0.788

NOTE: Parameterization of moments of UH

in specs (a) and (b) are based on bivariate lognormal;

see text in Supplemental Appendix E.

19



Table E.4 Bounds for positive correlations (Continued)

Spec for Bivar Mean(yj) Var(yj) Corr(y1.y2)

heterogeneity

c) Mean(νj) = 1, Var(νj) = 0.33,

Corr(ν1, ν2) = 0.6

0.5 0.58 0.086

1.0 1.33 0.150

2.0 3.33 0.240

4.0 9.33 0.343

10.0 43.33 0.462

30.0 330.00 0.545

40.0 573.33 0.558

d) Mean(νj) = 1, Var(νj) = 0.33,

Corr(ν1, ν2) = 0.850

0.5 0.58 0.121

1.0 1.33 0.213

2.0 3.33 0.340

4.0 9.33 0.485

10.0 43.33 0.654

30.0 330.00 0.739

40.0 573.33 0.791

NOTE: Parameterization of moments of UH

in specs (c) and (d) are based on bivariate uniform;

see text in Supplemental Appendix E.
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Table E.5 Correlation bounds for two-factor mixture models with varying

heterogeneity parameters and means of the counts (Negative correlations)

Spec for Bivar Mean(yj) Var(yj) Corr(y1.y2)

heterogeneity

e) Mean(νj) = 1.13, Var(νj) = 0.36,

Corr(ν1, ν2) = −0.490

0.57 0.66 -0.068

1.13 1.50 -0.119

2.27 3.73 -0.192

4.53 10.37 -0.276

11.33 47.80 -0.374

33.99 362.22 -0.444

45.33 628.84 -0.455

f) Mean(νj) = 1.20, Var(νj) = 0.62,

Corr(ν1, ν2) = −0.608

0.60 0.76 -0.126

1.20 1.82 -0.208

2.39 4.88 -0.310

4.79 14.73 -0.411

11.97 74..08 -0.510

35.92 59.91 -0.572

47.89 1041.65 -0.580

NOTE: Parameterization of moments of UH

in specs (e) and (f) are based on bivariate uniform;

see text in Supplemental Appendix E.
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Table E.5 Bounds for negative correlations (Continued)

Spec for Bivar Mean(yj) Var(yj) Corr(y1.y2)

heterogeneity

g) Mean(νj) = 1, Var(νj) = 0.33,

Corr(ν1, ν2) = −0.6

0.5 0.58 -0.086

1.0 1.33 -0.150

2.0 3.33 -0.240

4.0 9.33 -0.343

10.0 43.33 -0.462

30.0 330.00 -0.545

40.0 573.33 -0.558

h) Mean(νj) = 1, Var(νj) = 0.33,

Corr(ν1, ν2) = −0.850

0.5 0.58 -0.121

1.0 1.33 -0.213

2.0 3.33 -0.340

4.0 9.33 -0.485

10.0 43.33 -0.654

30.0 330.00 -0.739

40.0 573.33 -0.791

NOTE: Parameterization of moments of UH

in specs (g) and (h) are based on bivariate lognormal;

see text in Supplemental Appendix E.
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Table F.1 Definition, mean and standard deviation of variables for tobacco data

Name Definition Mean St. Dev.

Smoking Number of smoking tobacco used daily 3.215 6.867

chewing Number of chewing tobacco used daily 1.134 3.640

Age Age in years 30.350 14.875

Education Years of formal schooling 6.896 4.679

Income Monthly family income in ’000 of Taka 7.572 10.131

Male =1 if male 0.546 0.498

Married =1 if married 0.574 0.495

Muslim = 1 if religion is Islam 0.787 0.410

Region =1 if region is Rangapur 0.499 0.500

Urban =1 if urban 0.380 0.486

Agri-labor =1 if agriculture labor occupation 0.110 0.312

Service =1 if service occupation 0.125 0.331

Business =1 if business occupation 0.130 0.336

Self employ =1 if self-employed or household chores 0.305 0.460

student =1 if student 0.268 0.443

Wage labor =1 if wage labor occupation 0.063 0.243

Father use =1 if father uses tobacco 0.544 0.498

Mother use =1 if mother uses tobacco 0.649 0.477

F Additional Tables for Tobacco Data

Table F.1 gives detailed definitions, means and standard deviations of variables for

tobacco data. Table F.2 reports the empirical versus fitted frequencies (%) from

standard bivariate models and 2 estimators using SP2 approach.
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Table F.2 Empirical and Fitted Joint Percentage Frequencies from Bivariate Models

Counts Empirical Bivar Bivar SP2 ZI-SP2

Smoke,Chew Poisson NB K=2 K=1

0, 0 65.9 29.7 62.0 65.6 64.9

0, 1-6 4.7 15.0 7.2 6.4 4.7

0, >6 5.6 1.4 0.9 2.4 2.0

1-6, 0 3.9 18.7 12.9 14.5 13.3

7-12, 0 9.1 5.7 1.7 2.8 3.5

13-24, 0 5.3 1.2 0.8 2.4 2.9

Others 5.5 28.3 14.6 6.0 8.7

G Application to Health-care Utilization

Models of health-care utilization have been used to estimate relationships of economic

interest, and to predict outcomes such as the probability of not utilizing doctor con-

sultations or emergency room service. Here we analyze jointly two health utilization

measures, the number of consultations with a doctor and the number of non-doctor

consultations. The data were originally employed by Cameron et al (1988) in their

analysis of various measures of health-care utilization using a sample of 5190 single-

person households from the 1977-78 Australian Health Survey. Here we model two

possibly correlated dependent variables: (1) the number of consultations with a doc-

tor during the two-week period prior to the survey (Doctor), and (2) the number of

consultations with non-doctor health professionals (chemist, optician, physiotherapist,

social worker, district community nurse, chiropodist or chiropractor) during the past 4

weeks (Nondoc).The data are obtained from the Journal of Applied Econometrics June

1997 Data Archive. These health utilization measures have two interesting features

- overdispersion and very high proportion of nonusers. The mean and the standard

deviation of doctor visits are 0.302 and 0.798. The corresponding values for health pro-

fessionals are 0.215 and 0.965. The frequencies of zero visits in the Doctor and Nondoc
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samples are 80% and 91%, respectively. The sample correlation coefficient between the

two series is 0.148.

The explanatory variables are:

• Socio-economic variables - a dummy variable for whether female (Sex), age in

years divided by 100 (Age), age-squared (Agesq), and annual income in ten-

thousands of dollars (Income).

• Insurance and health status variables - indicator variable for private insurance

coverage (Levyplus), free government insurance cover due to low income (Freep-

oor), free government coverage due to old age, disability or veteran status (Freerepa),

default government Medibank insurance cover paid for by income levy (Levy),

number of illness in the past two weeks (Illness), number of days reduced ac-

tivity in past two weeks due to illness or injury (Actdays), general health ques-

tionnaire score using Goldberg’s method with high score indicating bad health

(Hscore), indicator variable for chronic condition not limiting activity (Chond1 ),

and indicator variable for chronic condition limiting activity (Chond2 ).

See Cameron et al. (1988) for summary statistics of the covariates.

Given that the 2 dependent variables Doctor and Nondoc have been analyzed previ-

ously using univariate models, we shall focus on results from the bivariate regressions.

An important consideration is whether the two health utilization variables are indepen-

dent or not. We carried out conditional moment tests of independence in the Poisson

and negative binomial models. The p-values of the first order tests of independence

for Doctor and Nondoc are all below a significance level of 2%, which is a sufficient

condition to reject the test of independence in each case. Moreover, most of the p-

values corresponding to higher-order tests of independence are low. Overall, there is

an overwhelming evidence that Doctor and Nondoc are dependent counts, and hence

joint estimation is desirable.
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Table G.1 presents coefficient estimates from the proposed bivariate count data model.

The semiparametric model dominates the bivariate Poisson and bivariate negative bi-

nomial models in terms of both the maximized value of the log-likelihood function and

the AIC. The two-factor SP2 model also dominates the one-factor generalized bivariate

negative binomial model analyzed by Gurmu and Elder (2000) in terms of the AIC.

Overall, SP2 with K = 2 yields the minimum AIC. The estimates of the correlation

parameters (ρ’s) show that modeling higher order polynomials of unobserved hetero-

geneity components is important. The bivariate Poisson model seems to be inadequate

for joint estimation of overdispersed count data. There are some differences in the

results from the semiparametric and the bivariate negative binomial models. In partic-

ular, there are differences in the statistical significance of some variables such as Sex,

Levyplus, and Chond2 in the Doctor equation. The semiparametric estimates show

that recent health status measures (Illness, Actdays) and one of the measures of long-

term health status (Hscore) are important determinants of both doctor and non-doctor

health professional visits. All of these are significant at 5%. The positive coefficient

on the health status insurance variable Levyplus indicates that, relative to the default

government Medibank insurance coverage, private insurance is associated with higher

use of health services. Further, based on results from the SP2 regression, Non-doctor

consultation is responsive to Freerepa, Chond1, and Chond2. The model predicts a

convex relationship between Non-doctor health care utilization and age. Both health

utilization measures are unresponsive to changes in income. This result is consistent

with previous studies (e.g., Cameron et al. 1988).

We also computed the predicted marginal effects of changes in the regressors on the

mean number of visits. The marginal effects from bivariate SP2, bivariate Poisson

and bivariate negative binomial (NB) are shown in Table G.2. Generally the marginal

effects are greater in the bivariate models than in the independent Poisson and NB

models originally analyzed by Cameron et al. (1988) using the same data set. The dif-

ference in the mean effects for various models is likely to be particularly important for
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Table G.1 Semiparametric Coefficient Estimates and t-ratios

SP2 Estimates (K = 2)

Variable Doctor Nondoc

Est | t | Est | t |

Constant -2.229 13.28 -2.820 6.04

Sex .217 2.59 .288 1.41

Age -.155 .94 -3.103 1.04

Agesq .555 1.46 4.414 1.37

Income -.143 1.02 -.036 0.62

Levyplus .145 1.26 .348 2.28

Freepoor -.551 2.11 -.169 0.46

Freerepa .155 .96 .534 2.00

Illness .217 8.78 .142 2.68

Actdays .141 17.36 .134 7.66

Hscore .040 2.60 .083 2.59

Chond1 .110 .89 .450 2.79

Chcond2 .205 1.72 1.241 6.50

log(αj) .073 .65 -2.059 23.89

ρ11 .004 .11

ρ12 -.085 2.90

ρ21 .101 6.90

ρ22 .043 1.49

Log-likel. -5346.5

AIC 10757.0
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Table G.2 Estimates of Marginal Effects and Moments of the Number of Visits

Variable Bivar Poisson Bivar NB Bivar SP2

Doctor Nondoc Doctor Nondoc Doctor Nondoc

Sex .048 .072 .061 .087 .070 .081

Age .075 .261 .164 .425 .126 .490

Income -.062 -.007 -.048 -.001 -.047 -.010

Levyplus .038 .072 .043 .084 .047 .098

Freepoor -.129 .008 -.194 -.040 -.179 -.047

Freerepa .023 .103 .075 .145 .050 .150

Illness .056 .011 .082 .027 .071 .040

Actdays .038 .021 .053 .034 .046 .038

Hscore .009 .010 .015 .015 .013 .023

Chond1 .036 .113 .029 .115 .036 .127

Chcond2 .043 .232 .104 .278 .067 .349

Mean(yj) .299 .212 .349 .254 .325 .281

Var(yj) .302 .215 1.378 .931 .805 7.671

Corr(yj) .019 .310 .058
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significant regressors. The sample average of the correlations between Doctor and Non-

doc is about 0.3 in the bivariate NB. The average correlation from the SP2 regression

is about 0.06.

Compared with univariate and bivariate standard models, there is preponderance

of statistical evidence (e.g., using AIC and tests of independence) in favor of the

SP class of model of health care utilization. Direct comparisons of the unconditional

sample moments and estimated conditional moments are generally difficult because

of the role of explanatory variables and the sampling distributions of the estimated

moments in the latter. For example, introduction of covariates will generally dampen

the amount of overdispersion. Subject to this caveat, comparisons of models show

that the estimated average means, variances, degree of overdispersion, and correlations

from the SP2 model are generally consistent with the corresponding unconditional

sample moments. Though not overwhelming, there are some differences between the

results from the SP2 model and the results from realistic competitors in terms of the

significance of the variables and the estimated marginal effects.

Additional Reference

Cameron, C., P. K. Trivedi, F. Milne and J. Piggott (1988), “A Microeconometric

Model of the Demand for Health Care and Health Insurance in Australia,” Review of

Economic Studies, LV, 85-106.

Hausman, J.A., B.H. Hall, Z. Griliches (1984). "Econometric Models for Count Data

with Applications to the Patents R and D Relationship," Econometrica, 52, 909—938.
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Figure E.1. Kernel density estimates of distributions of coefficients
Bivariate Lognormal DGP - SP2, Sample size 1000
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Figure E.2. Kernel density estimates of distributions of coefficients
Bivariate Uniform DGP - SP2, Sample size 1000
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