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Abstract: Road dust continues to be a major potential reservoir of Pb in the urban 

environment, and an important potential component of child Pb exposure. This study 

presents ICP-AES analyses of metals in 72 samples of road dust (<250 µm) collected in 

the urban core of Atlanta, Georgia. In the Downtown area, median Pb concentrations are 

~63 mg/kg Pb, with high values of 278 mg/kg. For comparison, median Pb values in a 

nearby residential neighborhood (also in the urban core) were ~93 mg/kg, with a high of 

972 mg/kg. Geospatial variability is high, with significant variation observed over tens to 

hundreds of meters. Spearman Rank Correlation tests suggest that Pb and other metals (Cu, 

Ni, V, Zn) are associated with iron and manganese oxide phases in the residential area, as 

reported in other cities. However, Pb in the Downtown area is not correlated with the 

others, suggesting a difference in source or transport history. Given these complexities and 

the expected differences between road dust and soil Pb, future efforts to assess exposure 

risk should therefore be based on spatially distributed sampling at very high spatial 

resolution. 

Keywords: Pb; geochemistry; geospatial; road dust; children’s health  

 

OPEN ACCESS 



Int. J. Environ. Res. Public Health 2012, 9         

 

 

2021 

1. Introduction 

Significant progress has been made worldwide over the past half century in reducing child Pb 

poisoning rates. In the US, for example, estimates of children and pregnant women with high blood Pb 

levels have dropped significantly in recent decades [1]. Despite this progress, about 250,000 children 

in the US have blood lead levels over the current Level of Concern of 10 µg/dL [2]. This number is 

likely to double as the U.S. Centers for Disease Control and Prevention (CDC) considers the 

recommendation of its advisory body to lower the Level of Concern from 10 µg/dL to 5 µg/dL [3]. 

This major change in national policy is based on a large and growing body of evidence showing that 

even single-digit blood Pb levels have significant impacts on Intelligence Quotients, Attention Deficit 

Hyperactivity Disorder risks, cardiovascular disease, and kidney function [4–8]. If CDC finalizes this 

change, the World Health Organization will likely consider a similar move, potentially impacting the 

Pb regulatory environment worldwide and improving the prospect of reducing the Pb burden on 

millions of impacted children. 

The most common Pb exposure pathways for children are ingestion or inhalation of Pb-bearing 

particulate matter, whether in the household or outdoor environment [9–11]. The most common 

sources of Pb are paint (typically as lead chromate, PbCrO4 or lead carbonate, PbCO3) [12,13] and 

gasoline containing tetraethyl lead. In many settings, mining and smelting operations remain major 

sources as well [14]. Chronic exposure is a long-term legacy, even in jurisdictions where lead releases 

were minimized or eliminated long ago, because Pb persists in near-surface soil environments [15,16]. 

In the US, socio-economic analyses have shown that the exposure burden is disproportionately carried 

by lower-income and minority communities, although significant risks to upper income and non-

minority populations are found as well [1]. 

Numerous studies have shown the importance of the soil Pb reservoir in the cycling of Pb in the 

urban environment [16–21]. Depending on climate, soil Pb can be seasonally resuspended, leading to 

predictable quantitative exposure rates among children [15,16]. In highly urbanized environments, 

however, assessing soil Pb content can be difficult because of high spatial variability and confounding 

factors such as landscaping, erosion, and the presence of impervious surfaces. In a number of cities, 

studies of road dust have also been undertaken, as this material is present in significant quantities and 

is also susceptible to resuspension [21–24].  

The purpose of this paper is to report the preliminary results of analyses of road dust metal contents 

in two urban neighborhoods of Atlanta, GA, USA [25]. The working hypotheses of the study are that: 

(1) despite strict controls on emissions, Pb persists in Atlanta road dust; and (2) physical and social 

processes in different neighborhoods produce different geospatial patterns in metal load. 

2. Materials and Methods 

In May, 2011, two neighborhoods were sampled near the heart of the urban core of Atlanta. The 

first area is known locally as “Downtown”, and is comprised largely of high-rise buildings in a 

commercial setting. The second area is comprised of the western two thirds of Atlanta’s Neighborhood 

Planning Unit V (NPU-V). The neighborhood is within 1 km of Downtown, and is a residential 

neighborhood with mostly early to mid-20th century construction; the neighborhood has a history of 
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mixed residential and light commercial use. Both neighborhoods are adjacent to major transportation 

arteries. Seventy two (72) samples of road dust were collected by sweeping a 1 m × 1 m square area 

and collecting the dust in plastic bags. The two neighborhoods were selected because they are in the 

urban core of Atlanta, but they have different land uses. Individual sample sites were located randomly 

in a grid across the area, with added complexity of problems of access and several samples that did not 

contain enough fine material for analysis. These samples were excluded from the analysis. All 

analyzed samples are reported here. 

In the lab, samples were sieved at 250 µm, and shipped to ALS Chemex (Reno, NV, USA) for 

geochemical analysis. Samples were pulverized and digested in nitric, perchloric, hydrofluoric, and 

hydrochloric acid, and analyzed by inductively coupled plasma atomic emission spectrometry. 

Analytical precision is in all cases less than 10% of the reported values. Metal abundances were treated 

as non-parametric data; correlations among the analytes were determined by Spearman Rank 

Correlation coefficent calculated using SPSS (v. 18). Geospatial analysis of the results was done using 

the Geostatistical Analysis tool in ArcGIS Desktop. 

3. Results 

3.1. Concentrations 

Road dust Pb concentrations are highly variable in both neighborhoods (Table 1). In the Downtown 

area, Pb ranged from 25 to 278 mg/kg, with a median value of 63 mg/kg (n = 26). In NPU-V, Pb 

ranged from 17 to 972 mg/kg, with a median value of 93 mg/kg (n = 48). The median value for the 

combined dataset is 85 mg/kg (n = 74); the commercial downtown area therefore has somewhat lower 

road dust Pb concentrations compared to the residential neighborhood. Mapping of road dust Pb 

concentrations Downtown shows more or less uniform concentrations throughout the area, with the 

exception of two high values found in the northwest (Figure 1A). In NPU-V, road dust to the south 

tends to have higher Pb concentrations (as high as 452 mg/kg) compared to the north where Pb 

concentrations are near the median (Figure 1B). 

Table 1. Summary of metal analyses of road dust in Atlanta, Georgia. All units in mg/kg. 

 # 

analyses 

Minimum 25th 

percentile 

Median 75th 

percentile 

Maximum 

Downtown 26      

Cu  20 53 70 137 226 

Cr  80 119 161 193 310 

Ni  6 11 16 20 68 

Zn  63 128 204 344 789 

Pb  25 52 63 98 278 

NPU-V 48      

Cu  22 49 68 113 1,445 

Cr  76 109 129 171 385 

Ni  7 14 18 22 74 

Zn  68 143 220 308 1,115 

Pb  17 65 93 142 972 
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Figure 1. Maps of road dust Pb concentrations and interpolated prediction values in (A) 

Downtown Atlanta, and (B) Neighborhood Planning Unit V (NPU-V). 

 

(A) 
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Figure 1. Cont. 

 

(B) 

3.2. Intercorrelation 

Several significant (p < 0.005) Spearman Rank correlations are found among several metals (Tables 2 

and 3). Downtown, Pb is not correlated with any other metal; however, it is well correlated with Co, 
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Cu, Fe, Mn, Mo, Ni, and P in NPU-V. This major difference in Pb correlation is shown in Figure 2. In 

the Downtown area, all of the metals shown (Cu, Ni, Pb, V, and Zn) have significant Spearman Rank 

Correlation coefficients with Fe and Mn. However, in NPU-V, Pb does not correlate, even though the 

others do. 

Table 2. Matrix of Spearman Rank Correlations of all available analyzed elements in road 

dust in Downtown Atlanta, GA, USA. 

Ba Co Cr Cu Fe Mn Mo Ni P Pb S V Zn 

Ba  –0.01 –0.15 0.48 0.13 0.16 0.12 0.21 –0.04 0.01 0.34 –0.10 0.29 

Co   0.27 0.36 0.70 0.59 0.28 0.73 0.45 0.10 0.59 0.55 0.40 

Cr    0.30 0.36 0.25 0.65 0.44 0.18 0.07 0.14 0.24 0.37 

Cu     0.50 0.55 0.71 0.72 0.32 0.23 0.56 0.24 0.65 

Fe      0.88 0.42 0.88 0.69 0.05 0.69 0.85 0.54 

Mn       0.35 0.82 0.71 0.10 0.71 0.74 0.55 

Mo        0.60 0.39 0.21 0.44 0.25 0.73 

Ni         0.63 0.12 0.74 0.69 0.61 

P          0.19 0.75 0.75 0.72 

Pb           –0.12 –0.05 0.42 

S            0.62 0.63 

V             0.36 

Zn              

4. Discussion 

4.1. Statistical Analysis 

The lack of strong correlation with other metals in the Downtown road dust is surprising, and 

contrary to results found in other studies, especially those that focused on soil Pb [26]. The association 

of Pb from automobile exhaust with other metal indicators of automobiles provides some statistical 

evidence regarding the source. In other studies where soil Pb concentrations are heavily impacted by 

transportation infrastructure (i.e., fuel exhaust legacy), associated deposits are often rich in metals such 

as Zn and Cu that have other automobile sources such as tire or brake dust [27].  

In a chemical speciation study, Wang et al. [28] showed that metals in road dust in London and 

Hong Kong were highly associated with Fe-Mn oxides, with typically >70% of the Pb associated with 

Fe-Mn oxide phases. Li et al. [22] found similar results, as did Lu et al. [29]. The Atlanta results are 

consistent with this finding for the residential neighborhood, where Spearman Rank Correlation 

coefficients with both Fe and Mn are 0.5 or greater for Cu, Ni, Pb, V, and Zn (Figure 2). In Downtown 

Atlanta, the other metals are also highly correlated with Fe and Mn, with the exception of Pb. This 

suggests a reservoir of Pb in Downtown road dust other than Fe-Mn oxides; perhaps carbonate species 
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originating from industrial paint sources, which are not regulated as residential paints are. Another 

possible source that would deliver exclusively Pb without much other metal contribution is wheel 

weights, which are ~95% Pb [30]. 

Figure 2. Spearman Rank Correlation Coefficients of metals with Fe (A) and Mn (B). 

Downtown, no relationship is found between Pb and the other metals, whereas in the 

residential NPU-V, the relationships are strong. 

 

4.2. Geospatial Distribution 

Initial prediction maps were constructed using various approaches including ordinary kriging and 

inverse distance weighting. However, autocorrelation analysis using Moran’s I (ArcGIS for Desktop 

10 Advanced) revealed no discrete spatial correlation; therefore a weighted geospatial prediction map 

was not appropriate [31]. The prediction maps shown in Figure 1 are not weighted, but are based on a 

simple inverse distance weighting interpolation, and should only be considered an approximation of 

the Pb distribution pattern.  

Road dust samples in the northwest of the Downtown area have elevated Pb concentrations (Figure 1A). 

The Downtown area has median road dust Pb of ~63 mg/kg. The high values in the northwest therefore 

represent enrichment of three to four times the median Downtown values, signifying a potential source 

in that direction. 
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Table 3. Matrix of Spearman Rank Correlations of all available analyzed elements in road 

dust in residential Neighborhood Planning Unit V, Atlanta, GA, USA. 

Ba Co Cr Cu Fe Mn Mo Ni P Pb S V Zn 

Ba  0.23 –0.13 0.18 0.15 0.22 0.16 0.33 0.24 0.14 0.51 0.12 0.35 

Co   0.19 0.29 0.75 0.84 0.16 0.63 0.61 0.45 0.27 0.81 0.50 

Cr    0.34 0.42 0.30 0.49 0.47 0.05 0.39 0.21 0.24 0.36 

Cu     0.42 0.40 0.57 0.60 0.24 0.55 0.30 0.29 0.62 

Fe      0.85 0.16 0.67 0.62 0.59 0.24 0.87 0.54 

Mn       0.18 0.65 0.71 0.54 0.44 0.87 0.50 

Mo        0.56 0.07 0.45 0.39 –0.06 0.58 

Ni         0.51 0.68 0.44 0.52 0.82 

P          0.54 0.59 0.70 0.59 

Pb           0.35 0.39 0.79 

S            0.30 0.55 

V             0.35 

Zn              

 

In NPU-V, high Pb content is found in the road dust in the southern portion of the sampled area, 

reaching a maximum of 972 mg/kg. A steep north-south gradient is observed (Figure 1B). In addition 

to the overall greater concentrations of Pb found in the south of NPU-V, the range of values is greater 

in the south. Road dust Pb in the NPU-V is not in all cases higher than that found Downtown, but 

discrete enriched areas are found, leading to overall a higher median Pb value for NPU-V. Intervening 

areas have road dust Pb more comparable to that of Downtown. Although the typical association 

between Pb and Zn is found in NPU-V (Table 3), which is commonly interpreted as representing a 

transportation-related source of the Pb, no obvious traffic corridor parallels the east-west trend of the 

high in the south portion of NPU-V (Figure 1B).  

The complexities in the road dust Pb distribution reflect the complex natural and anthropogenic 

processes at play in the road environment. In addition to the potential complexities of Pb source 

location across space and time (i.e., transportation patterns and land use), road dust Pb is more 

susceptible to remobilization compared to soil Pb. Mobilization and transport of road dust Pb is not 

well understood, but the relatively impervious surface of roadways would make transport easier by 

both wind and episodic water action (e.g., stormwater sheetwash). It seems likely that impervious 

surfaces and a lower levels of organic and mineral matter make road dust Pb more mobile than soil Pb. 

This may account for the significant drop found in studies of Hong Kong road dust between 1986 and 

2000 [22]. Over time, then, the effects of banning Pb in gasoline may be reflected by progressively 

lower Pb content in road dust; soil Pb, however, is not as likely to lower over time because Pb 

retention is higher in soils [16]. 
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5. Conclusions 

Road dust in the NPU-V and Downtown Atlanta neighborhoods has median Pb concentrations of 

about 85 mg/kg. Values in the northwest of the Downtown area reach a high of 278 mg/kg Pb, whereas 

high samples in the southern part of NPU-V reach 972 mg/kg Pb. These results suggest that despite the 

complexities of resuspension and transport of Pb-bearing particulates by wind and water in the road 

environment, substantial Pb remains in road dust decades after Pb-containing gasoline was banned, 

just as it is well known to persist in urban soils. This may be due to limits on rates of Pb removal from 

road dust, or other continuing sources of Pb in the urban environment. Geospatial variation can be 

observed at the scale of tens to hundreds of meters, and probably at even finer scales. Very high 

resolution of sampling is therefore required to adequately assess Pb exposure risks due to road dust, as 

well as other sources of Pb in the urban setting. 

Acknowledgements 

Thanks to four anonymous reviewers for their helpful comments that improved the manuscript. This 

is Georgia State University Community-Soil-Air-Water (CSAW) Contribution #1. 

References  

1. Jones, R.L.; Homa, D.M.; Meyer, P.A.; Brody, D.J.; Caldwell, K.L.; Pirkle, J.L.; Brown, M.J. 

Trends in blood lead levels and blood testing among US children aged 1 to 5 years, 1988–2004. 

Pediatrics 2009, 123, 376–385. 

2. Centers for Disease Control and Prevention (CDC). CDC National Surveillance Data (1997–

2009), National Center for Environmental Health; 2012. Available online: http://www.cdc.gov/ 

nceh/lead/data/national.htm (accessed on 24 April 2012). 

3. Advisory Committee on Childhood Lead Poisoning Prevention, of the Centers for Disease 

Control and Prevention (ACCLPP). Low Level Lead Exposure Harms Children: A Renewed Call 

for Primary Prevention; Report to the CDCP; ACCLPP: Atlanta, GA, USA, 2012; pp. 1–54. 

4. Needleman, H.L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E.N. The long-term effects of 

exposure to low doses of lead in childhood. An 11-year follow up report. N. Engl. J. Med. 1990, 

322, 83–88. 

5. Binns, H.J.; Campbell, C.; Brown, M.J. Interpreting and managing blood lead levels of less than 

10 microg/dL in children and reducing childhood exposure to lead: Recommendations of the 

Centers for Disease Control and Prevention Advisory Committee on Childhood Lead Poisoning 

Prevention. Pediatrics 2007, 120, e1285–e1298. 

6. Bellinger, D.C. Lead neurotoxicity and socioeconomic status: Conceptual and analytical issues. 

Neurotoxicology 2008, 29, 828–832. 

7. Gump, B.B.; Stewart, P.; Reihman, J.; Lonky, E.; Darvill, T.; Parsons, P.J.; Granger, D.A.  

Low-level prenatal and postnatal blood lead (Pb) exposure and adrenocortical responses to acute 

stress in children. Environ. Health Perspect. 2008, 116, 249–255. 



Int. J. Environ. Res. Public Health 2012, 9         

 

 

2029 

8. Nigg, J.T.; Knottnerus, G.M.; Martel, M.M.; Nikoas, M.; Cavanagh, V.; Karmaus, W.; Rappley, M.D. 

Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder 

and mediated by weak cognitive control. Biol. Psychiatry 2008, 63, 325–331. 

9. American Academy of Pediatrics. Lead exposure in children: Prevention, detection, and 

management: Statement of policy reaffirmation. Pediatrics 2009, 123, 1421–1422. 

10. Dixon, S.L.; Gaitens, J.M.; Jacobs, D.E.; Strauss, W.; Nagaraja, J.; Pivetz, T.; Wilson, J.W.; 

Ashley, P.J. Exposure of U.S. children to residential dust lead, 1999–2004: II. The contribution of 

lead-contaminated dust to children’s blood lead levels. Environ. Health Perspect. 2009, 117,  

468–474. 

11. Mielke, H.W.; Laidlaw, M.A.; Gonzales, C.R. Estimation of Leaded (Pb) gasoline’s continuing 

material and health impacts on 90 urbanized areas. Environ. Int. 2011, 37, 248–257. 

12. Lewis, P.A. Inorganic Colored Pigments. In Paint and Coating Testing Manual, 14th ed.;  

Koleske, J.V., Ed.; ASTM: West Conshohocken, PA, USA, 1995; pp. 1–950. 

13. Hall, G.; Tinklenberg, J. Determination of Ti, Zn, and Pb in lead-based house paints by EDXRF.  

J. Anal. Atom. Spectr. 2003, 18, 775–778. 

14. Chaulya, S.K. Air quality status of an open pit mining area in India. Environ. Monit. Assess. 2005, 

105, 369–389. 

15. Filippelli, G.M.; Laidlaw, M.A.S.; Latimer, J.C.; Raftis, R. Urban lead poisoning and medical 

geology: An unfinished story. Geolog. Soc. Am. Today 2005, 15, 4–11. 

16. Laidlaw, M.A.S.; Zahran, S.; Mielke, H.W.; Taylor, M.P.; Filippelli, G.M. Re-suspension of lead 

contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, 

Detroit and Pittsburgh, USA. Atmos. Environ. 2012, 49, 302–310. 

17. Brown, R.W.; Gonzales, C.; Hooper, M.J.; Bayat, A.C.; Fornerette, A.M.; McBride, T.J.; 

Longoria, T.; Mielke, H.W. Soil lead (Pb) in residential transects through Lubbock, Texas:  

A preliminary assessment. Environ. Geochem. Health 2008, 30, 541–547. 

18. Cicchella, D.; de Vivo, B.; Lima, A.; Albanese, S.; McGill, R.A.R.; Parrish, R.R. Heavy metal 

pollution and Pb isotopes in urban soils of Napoli, Italy. Geochem. Explor. Environ. Anal. 2008, 

8, 103–112. 

19. Diawara, M.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.; Crock, J.G. Arsenic, cadmium, 

lead, and mercury in surface soils in Pueblo, Colorado: Implications for population health risk. 

Environ. Geochem. Health 2006, 28, 297–315. 

20. Dunlap, C.E.; Alpers, C.N.; Bouse, R.; Taylor, H.E.; Unhruh, D.M.; Flegal, A.R. The persistence 

of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence 

from lead isotopes in the Sacramento River, California, USA. Geochim. Cosmochim. Acta 2008, 

72, 5935–5948. 

21. Laidlaw, M.A.S.; Filippelli, G.M. Resuspension of urban soils as a persistent source of lead 

poisoning in children: A review and new directions. Appl. Geochem. 2008, 23, 2021–2039. 

21. Thornton, I. Metal Contamination of Soils in Urban Areas. In Soils in the Urban Environment; 

Bullock, P., Gregory, P.J., Eds.; Blackwell: Oxford, UK, 1991; pp. 47–75. 

22. Li, X.; Poon, C.-S.; Liu, P.S. Heavy metal contamination urban soils and street dusts in Hong 

Kong. Appl. Geochem. 2001, 16, 1361–1368. 



Int. J. Environ. Res. Public Health 2012, 9         

 

 

2030 

23. Sezgin, N.; Ozcan, H.K.; Demir, G.; Nemlioglu, S.; Bayat, C. Determination of heavy metal 

concentrations in street dusts in Instanbul E-5 highway. Environ. Int. 2004, 29, 979–985. 

24. Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and 

agricultural soils from China. Microchem. J. 2010, 94, 99–107. 

25. Kalenuik, A.; Deocampo, D.M. Pb in urban road dust of Atlanta, Georgia: Distribution and 

Geostatistical analyses. Geolog. Soc. Am. Abs. Prog. 2011, 43, 582. 

26. Solt, M.; Deocampo, D. Multivariate analysis of lead in urban soil in Sacramento, CA. Geol. Soc. 

Am. Abs. Prog. 2010, 42, 615. 

27. McKenzie, E.R.; Money, J.E.; Green, P.G.; Young, T.M. Metals associated with stormwater-

relevant brake and tire samples. Sci. Total Environ. 2009, 407, 5855–5860. 

28. Wang, W.H.; Wong, M.H.; Leharne, S.; Fisher, B. Fractionation and biotoxicity of heavy metals 

in urban dusts collected in Hong Kong and London. Env. Geochem. Health 1998, 20, 185-198. 

29. Lu, Y.; Gong, Z.; Zhang, G.; Burghardt, W. Concentrations and chemical speciations of Cu, Zn, 

Pb and Cr of urban soils in Nanjing, China. Geoderma 2003, 115, 101–111. 

30. Root, R.A. Lead loading of urban streets by motor vehicle wheel weights. Environ. Health 

Perspect. 2000, 108, 937–940. 

31. Krivoruchko, K. Spatial Statisical Data Analysis for GIS Users; ESRI Press: Redlands, CA, USA, 

2011. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


	Road Dust Lead (Pb) in Two Neighborhoods of Urban Atlanta, (GA, USA)
	Recommended Citation

	Road Dust Lead (Pb) in Two Neighborhoods of Urban Atlanta, (GA, USA)

