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SPATIAL ANALYSIS OF RETINAL PIGMENT EPITHELIUM MORPHOMETRY

by

HAITAO HUANG

Under the Direction of Yi Jiang, PhD

ABSTRACT

In patients with age-related macular degeneration, a monolayer of cells in the eyes called

retinal pigment epithelium differ from healthy ones in morphology. It is therefore important

to quantify the morphological changes, which will help us better understand the physiol-

ogy, disease progression and classification. Classification of the RPE morphometry has been

accomplished with whole tissue data. In this work, we focused on the spatial aspect of

RPE morphometric analysis. We used the second-order spatial analysis to reveal the dis-

tinct patterns of cell clustering between normal and diseased eyes for both simulated and

experimental human RPE data. We classified the mouse genotype and age by the k-Nearest

Neighbors algorithm. Radially aligned regions showed different classification power for sev-

eral cell shape variables. Our proposed methods provide a useful addition to classification

and prognosis of eye disease noninvasively.

INDEX WORDS: Retinal pigment epithelium, Age-related macular degeneration, Cell
morphometric data, Spatial analysis, k-Nearest Neighbors algorithm,
Classification
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Chapter 1

INTRODUCTION

1.1 Retinal Pigment Epithelium (RPE)

Retinal pigment epithelium (RPE) is a multifunctional monolayer of cells attached to

the overlying retinal photoreceptor cells and the underlying choroid [1]. In healthy eyes,

the RPE is a single sheet of densely packed hexagonal cells that maintains and nourishes

the photoreceptors. Some functions of RPE include absorbing light, supplying nutrients and

oxygen to photoreceptors, removing waste byproducts from the retina and communicating

between inner space of the eye and blood side of the epithelium, such as cells of the immune

system [2]. Disruptions in RPE are prevalent in aged eyes and in the pathogenesis of a

number of ocular disorders, including age-related macular degeneration (AMD) [3].

Age is the largest risk factor for AMD, which plaques around 3% of American adults and

its prevalence increases dramatically with age [3-4]. It is a progressive retinal degenerative

disease that may result in blurred or loss of vision in the central visual field. Although the

presence of a few small hard drusen is a normal, non-vision-impairing part of aging, the

deposition of large diffuse (or soft) drusen in the macula impairs vision and is indicative of

early AMD [5]. While the pathogenesis of AMD is not well understood, it typically involves

imbalance between production of damaged cellular components and degradation, which leads

to the accumulation of metabolic debris and death of photoreceptors. As AMD progresses

to advanced-stages, it is categorized as either dry AMD ot wet AMD. Dry AMD begins with

drusen in the macula between RPE and the choroid, and progresses to extensive atrophy

of RPE and central geographic atrophy with photoreceptor loss. Wet AMD is exudative as

proliferation of abnormal blood vessels in the retina (choroidal neovascularization) will lead

to leak of blood and fluid, causing irreversible damage to photoreceptors and severe loss of

central vision eventually [5-7]. Most AMD starts as the dry form and in some individuals, it
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progresses to the wet form with the passage of time. The dry form of macular degeneration

is much more common than the wet form and makes up about 90% of all cases [8].

To maintain the RPE tissue structures, forces including adhesion, tension and contrac-

tion hold adjacent RPE cells together [9]. An actin-myosin cytoskeleton exerts contractile

forces and leads to regular polygonal, mostly hexagonal shapes of RPE cells. The hexag-

onal network of cells is believed to be the most stable configuration of cells with the least

amount of surface tension [10]. As AMD progresses, mechanical stress induced by drusens

and RPE cell death will lead to shape deformation and re-organization in RPE cells. Dis-

ruptions in cell shape and cell packing would lead to measurable alteration of the RPE sheet

patterns. Therefore, quantitative analysis of the morphology of RPE could be clinically

useful to diagnose the disease stage and predict the progression for retinal degeneration and

AMD. Moreover, due to the development of sophisticated non-invasive imaging technologies

[11], analyses of RPE morphology may be available in the clinical setting for diagnosis and

prognosis.

Extensive efforts have already been made in analyzing the morphological changes in RPE

sheets with retinal degeneration. For example, RPE cell morphometrics in rd 10 mouse, such

as number of neighbors, eccentricity and form factors, are analyzed by simply computing

the mean and conducting nonparametric hyphothesis tests to compare the mean data in [12]

and [13]. Such quantitative analyses are useful in characterizing the morphological changes

of RPE cells with age. Jiang et al. [14, 15] proposed to discriminate mouse RPE genotypes

and age through RPE cell morphology by functional principal component analysis and other

classification methods. It was shown that RPE cells’ area and aspect ratio are quantitative

indicators of RPE age and genotype. These studies all used morphometric data for each

flatmount as a whole, without discriminating the retinal regions. However, it is of pratical

importance to describe the changes in RPE cell morphology with respect to location in the

retina as RPE cell characteristics differ by location within each eye. In this thesis, we will

further study RPE morphometry with regard to age, genotype and location of RPE with

mouse models.
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Another direction to pursue is the characterization of the spatial inhomogeneity within

a single RPE flatmount as evident by visual inspection of degenerated eyes. In the RPE

of mutant mice that mimic the development of AMD, the irregularity can occur as early

as postnatal 30 days. While relatively large number of mouse eyes can be collected, it is

prohibitively difficult for obtaining a large sample of human donor eyes. On the other hand,

simple comparison of averaged morphometric variables may not be sensitive enough to detect

the irregularity at the early stage of the disease. From these perspectives, new quantitative

tools are urgently needed to be able to reflect the subtle disruption deviating from the normal

cell pattern. Previous studies of human RPE morphology have found spatial differences in

cell density: a high density of cells in the macula, decreasing peripherally. Recently, spatial

point analysis has emerged as an appropriate technique in revealing the spatial irregularity of

cells, for example, see [16]. This approach is further facillitated by the popular ‘spatstat’ R

package. We propose to study RPE cell morphology in human eyes through spatial analysis

of both simulated and experimental human RPE sheets.

1.2 Description of Data

For the spatial analysis, we used both simulated and real human RPE data. Simulated

RPE images were generated by Dr. Karina Mazzitello, where a normal RPE sheet undergoes

varied degrees of clustered cell death, as shown in Figure 1.1. The black hollow area is where

clustered cell death occurs. From these simulated images we used the ImageJ software to

export cell centroid coordinates. We obtained real human RPE data by first segmenting the

RPE images and then extracting the cell centroid data in ImageJ (NIH).

For the classification study, all RPE images and cell morphometric data came from

our collaborators at the Emory Eye Center, especially from Dr. John Nickerson’s Lab. A

total of 107 mouse RPE flatmounts were collected. Two strains of mice were considered,

namely the C57BL/6J genotype as the wild type and rd10 as the mutant, at ages postnatal

30 (labelled as P30), 45, 60, 100, 180 and 330 days. Each flatmount was dissected manually

into 4 flaps (Inferior, Superior, Nasal, Temporal) and further overlaid with concentric rings in
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Figure 1.1 Simulated sequence of RPE sheets showing cell patterns resulting from clustered
cell death (black hole in the left image, around 100 cells are killed). Courtesy of Dr. Karina
Mazzitello.

image processing softwares. Cutboxes with dimensions of 265×180 pixels were automatically

selected within different geographical regions and cell morphometric data were measured for

all cells from each cutbox. Figure 1.2 shows an RPE flatmount image of a C57BL/6J mouse

eye at age P60 overlaid with cutboxes and concentric rings. All eyes were divided into three

age groups: young age group (group 1) for eyes less than or equal to P45, medium age group

(group 2) for eyes greater than P45 but less than P120, and old age group for eyes greater

than P120. Thus, each cell was labelled with four categorical variables: age, genotype, flap

and zone. Around 1000-10,000 cells were measured in each RPE flatmount. Table 1.1 shows

the number of mice in different groups of ages and genotypes. Roughly, the number of RPE

sheets in different ages and genotypes are balanced to avoid systematic biases.
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Figure 1.2 An RPE flatmount image for a C57BL/6J mouse at age P60. The top, bottom,

left, right flaps are called Superior, Inferior, Temporal and Nasal flaps, respectively. The

concentric rings label zones from 1 to 4, from the center radially outward. The white cubes

are cutboxes tracked by arabic number labels. Courtesy of Kevin Donaldson.

Table 1.1 Number of mouse eyes in different genotype and age groups

Age
Group 1 Group 2 Group 3Genotype

P30 P45 P60 P100 P180 P330
Total

C57BL/6J 15 2 7 7 8 4 43
rd10 12 13 11 13 13 2 64
Total 32 38 27 107

Table 1.2 displays the cell morphometric variables we considered in this study as well as



6

their definitions. Area and perimeter are size parameters for cells whilst solidity, eccentricity,

extent, form factor and major/minor ratio are measures of cell shape. Shape measures have

been shown to be good indicators for the changes in rd10 morphology. Eccentricity shows

how elongated a cell is. A perfect circle has an eccentricity value of 0, while an ellypse has

a larger eccentricity value approaching 1. The definition of major/minor ratio is consistent

with that of eccentricity. Form factor measures how far a cell deviates from the shape of a

perfect hexagon. A cell with perfect equilateral hexagon shape has a form factor of about

0.64, while less regularly shaped hexagons have a smaller value. Solidity and extent are both

differentiators of cells with protrusions or irregular shape compared to generally round cells.

Table 1.2 Cell morphometric variables

Morphometric Variable Definition
Area Area of the cell

Perimeter Perimeter of the cell
Solidity Area/Area of the convex hull

Eccentricity Eccentricity of an ellipse fitted to the cell
Extent Area/Area of the smallest enclosing rectangle

Form Factor Area/Area of a circle with the same perimeter
Major/Minor Ratio Major axis length over minor axis length

1.3 Purpose of the Thesis

We examined the applications of several statistical methods in analyzing human RPE

cell center data and mouse RPE cell morphometric data from the spatial aspect. Our purpose

of this study is two-fold. First, we hypothesize that in AMD eyes, RPE cells exhibit more

irregular shapes and we seek to quantify the globally present spatial disorder by spatial

point analysis. Second, we hypothesize that the RPE morphology changes differently in

different locations (macula, mid-periphery and far-periphery) of the retina and in different

age/disease status groups. We aim to establish the relationships among RPE morphometric

measures and age, RPE location and disease status of normal and AMD eyes that highlight
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morphological irregularities.
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Chapter 2

METHODOLOGIES

2.1 RPE Flatmount and Data Preparation

Mice were euthanized with CO2 in accordance with Emory IACUC guidelines and The

Association for Research in Vision and Ophthalmology guidelines for treatment of animals.

Eyes were marked on the superior side with a blue sharpie and then enucleated, fixed for 10

min in 10% neutral buffered formalin, and then washed 3 times with PBS. Extra tissue was

removed from the outside of the globe. Flatmounting was done by making 4 radial cuts from

the center of the cornea back towards the optic nerve. A drop of PBS was placed on the

eye to keep it moist. The flaps were pealed away from the lens and the lens removed. The

iris and retina were removed using forceps. Tension from the sclera was relieved by making

cuts halfway through each flap at the ciliary body/cornea margin and small cuts through

the ciliary body. The RPE sheet was imaged under fluorescence confocal microscopy after

staining for ZO-1 to identify RPE cell boundaries. Substantial fractions of the RPE sheet

(usually 20-50% of the sheet) could be analyzed. Details of the experimental procedure and

the recent methodological advances for RPE imaging data preparation can be found in [11].

Human RPE images were obtained in similar procedures as above. For obtaining human

RPE cell centroid data, accurate segmentation of RPE images is necessary. Our segmentation

algorithm in ImageJ consists of the following steps:

1. Convert an RGB image to 8-bit grayscale.

2. Apply the bandpass filter to reduce noises (filter large structures down to 20 pixels).

3. Binarize the image using the mean-value threshold.

4. Segment the binary image by the watershed segmentation.
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5. Obtain the final polygonal cell borders by the Voronoi diagram.

6. Extract the coordinates of center of mass (maxima) for further analysis.

2.2 Second-order Spatial Analysis

In this subsection, we review the fundamental concepts and theories underlying second-

order spatial analysis. Spatial data abound in diverse fields, including forestry, agriculture,

astronomy, epidemiology and cellular biology. Statistical models and related inference have

been developed for random patterns of events. Diggle [17] gives the theoretical developments

in spatial statistics. Illian et al. [18] and Waller and Gotway [19] include various applications

of spatial analysis.

We define an event as an occurrence of interest (e.g., an incident case of a disease) and a

point as any location in the study area where an event could occur. As the most basic model

for random patterns, complete spatial randomness (CSR) defines a situation where events

follow the uniform distribution within the study area, and are independent of one another.

It serves as a boundary condition between spatial processes more clustered than random

and processes more regular than random. Spatial scale plays a critical role in describing

the clustering and regularity in observed patterns. It is possible that at one spatial scale

the point patterns are clustered whereas at another spatial scale, they are regular. In our

application, we define an event as the observed location of a cell centroid.

Spatial point processes (SPP) describe a family of stochastic process models where each

random variable represents the location of an event in space. A realization of the process is a

collection of locations generated under the spatial point process model. Typically, one models

spatial clustering as a departure from spatial homogeneous Poisson process, an equivalent

but more rigorous model for CSR, which is defined by the following criteria:

1. The numbers of events in nonoverlapping regions are statistically independent.
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2. For any region A ⊆ D,

λ := lim
|A|→0

Pr[exactly one event in A]

|A|
> 0,

where |A| is the area of region A, D is the study area, and

3.

lim
|A|→0

Pr[two or more events in A]

|A|
= 0.

In the above definition, the quantity λ is the Possion paramter or the ‘intensity’ (mean

number of events per unit area) of the process. For CSR, the number of events in a region A

is a Poisson random variable with mean λ|A|, and the events are uniformly located within

A. Since the intensity of events is constant at all locations in the study area, the process

is said to be homogeneous. Furthermore, if λ is independent of location, then the process

is stationary. Criterion 2 implies that the probability of a single event in an increasingly

smaller area A (adjusted for the area of A) is a constant (λ) independent of the location of

region A within the study area of interest. Criterion 3 implies that the probability of two or

more events occurring in precisely the same location is zero.

Many statistical tests of CSR are based on the distribution of distances from each event

to its nearest neighboring event or the distribution of distances from a randomly selected

point to the nearest event. To address the spatial scale, the second-order properties of an

observed SPP are often considered. While an intensity function informs on the mean, or

first-order properties of a SPP, second-order properties of spatial point processes enable one

to depict spatial variation and correlation among events over a wide range of spatial scales.

Second-order spatial analysis has already been used in biomedical context [18]. Some key

functions include Ripley’s K function, variance-stabilized K function (L function) and pair

correlation function (PCF).
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Ripley’s K function is a reduced second moment measure defined as

K(h) =
E[number of events within h of a random event]

λ
(2.1)

for any nonnegative distance (or spatial lag) h ≥ 0, where where λ is the intensity (mean

number of events per unit area) of the spatial point process. Under CSR, K(h) = πh2.

Hence, K(h) > πh2 indicates clustering and regularity otherwise.

For visualization and diagnosis, the variance-stabilizing transformation of the K func-

tion, i.e., L function,

L(h) =

{
K(h)

π

} 1
2

. (2.2)

Statistical experience shows that the fluctuations of estimated K functions increase with

increasing h. The root transformation stabilises these fluctuations for both the means and

variances. The L function allows a more readily interpretable diagnostic plot because one

may plot h versus L(h)−h and compare the resulting curve to its expected value of zero under

CSR for all h. A nonparametric estimator of K function is given in [20] and the estimate for

L function is given by L̂(h) = {K̂(h)/π}1/2, where K(h) is a consistent estimator of K(h).

Obviously, the K function is a cumulative function of h as it measures the expected

number of events up to a certain distance. If one is interested in the clustering/regularity ob-

served at a particular distance rather than the cumulative evidence for clustering/regularity

observed up to that distance, the pair-correlation function (PCF) g(h) can be used:

g(h) =
1

2πh

dK(h)

dh
. (2.3)

The PCF function provides a scaled measure of the probability of two events occurring

at distance h of each other. Since PCF measures spatial correlation at various distances

indicating degress of clustering or regularity, it is scale invariant. Under CSR, g(h) = 1.

g(h) > 1 indicates clustering and g(h) < 1 means regularity.

For the above second-order functions, Monte Carlo tests based on simulation envelopes
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are important. Pointwise envelopes are constructed by generating random point patterns ac-

cording to CSR. In [21], it is shown that envelope-based statistical tests are correct statistical

procedures, under appropriate conditions. One can compute envelopes defining percentiles

(such as the 5th and 95th percentiles). Such percentiles offer diagnostic implications of spa-

tial scales (distances) at which observed patterns appear to differ from the null hypothesis of

CSR. If the envelopes contain the estimated second-order functions, then it can be inferred

that the SPP is not significantly deviant from CSR. Moreover, since greater distances pro-

duce increasingly inaccurate estimates due to less points and edge effects, we only look at

the properties where h is small. However, they do not provide formal statistical inference in

the form of a test statistic. Estimation and plotting second-order spatial functions can be

performed using the ‘spatstat’ R package.

2.3 Principal Component Analysis and k-Nearest Neighbors

Principal component anlaysis (PCA) concerns explaining the variance–covariance struc-

ture of a set of variables through linear combinations of these variables. Its general objectives

are dimensionality reduction and interpretation. It frequently serves as intermediate steps

in other analyses, such as cluster analysis.

Suppose the random vectors X′ = [X1, X2, ..., Xp] have covariance matrix Σ. Consider

the linear combinations

Y1 = a′
1X = a11X1 + a12X2 + ...+ a1pXp,

Y2 = a′
2X = a21X1 + a22X2 + ...+ a2pXp,

...

Yp = a′
pX = ap1X1 + ap2X2 + ...+ appXp, (2.4)
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It is easy to obtain that

Var(Yi) = a′
iΣai i = 1, 2, ..., p, (2.5)

Cov(Yi, Yj) = a′
iΣaj i, j = 1, 2, ..., p. (2.6)

The principal components are the linearly uncorrelated combinations of variables with max-

imal variances.

The k-Nearest Neighbors algorithm (kNN) is a non-parametric lazy learning method

and one of the simplest of machine learning algorithms used for classification and regression

[22]. In kNN classification, an object is classified by a majority vote of its neighbors and

assigned to the class most frequently occurring among its k nearest neighbors measured

by some distance function. Figure 1 illustrates how kNN works for different k values and

gives some commonly used distance functions. The best choice of k entirely depends on

the observed data and is usually chosen empirically. If k is too small, it will lead to noisy

decision boundaries. Conversely, if k is too large, it will lead to over-smoothed boundaries.

In practice, the optimal k should be chosen so that only nearby samples are included and

the error rate is minimized. If k = 1, the object is assigned to the class of the unique

nearest neighbor, which is usually called the nearest neighbor algorithm. The performance

of the kNN classifier also depends significantly on the distance metric used. For continuous

variables, a commonly used distance metric is Euclidean distance. For high dimensional

data, dimension reduction is typically performed on the raw data before applying the kNN

algorithm on the transformed data in feature space.

In our application, the following procedure is adopted for classification and validation

using kNN. First, for a morphometric variable in a specific flap/zone in each RPE flatmount,

the quantiles of all observations are computed from the 0.10 quantile to the 0.90 quantile

with an increment of 0.04, so that 21 transformed data points are obtained in each eye for

the variable of interest. Store the 21 data points in a row vector and stack the row vectors

for all eyes. Hence, our initial data consists of a matrix A with 21 columns with each row
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Figure 2.1 An illustration of the kNN algorithm (right)
and some common distance functions (right). Taken from
http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3.

corresponding to the RPE of a mouse. Second, apply PCA to the matrix A and choose the

first 5 principal components, so that a reduced matrix B is obtained with column number 5.

Third, the optimal k value is selected using the leave-one-out cross validation method with

the matrix B. Finally, the rows of matrix B are randomly partitioned and 80% of eyes are

chosen as the training data for building the classification model in each classification run.

The rest 20% of eyes are used for validating the model. The classification and validation

procedure is repeated 2000 times and the prediction accuracy is calculated as the mean of the

proportions of correctly classified objects in each iteration. For classification of the genotype,

which is a binary variable, other quantities such as sensitivity (percentage of rd10 correctly

identified as rd10) and specificity (percentage of C57 correctly identified as such) can also

be calculated to assess the performance of the kNN classification.
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Chapter 3

RESULTS AND DISCUSSION

3.1 Second-order Spatial Analysis of RPE Cell Patterns

In this section, we report the results from both simulation and analysis of real data of

normal and diseased human RPE patterns. Second-order spatial analysis on the simulated

data shows the distinct cell patterns between normal and diseased eyes. Cells in normal RPE

seets have more homogeneous distributions than those in AMD eyes. The real data analysis

of human RPE cell paterns further shows that the second-order spatial properties of the cell

centroids provide evidence of the cell deformation and rearrangement in AMD eyes.

3.1.1 Analysis of simulated RPE

Figure 3.1 shows the simulated RPE tissues (Courtesy of Dr. Karina Mazzitello) with

cell apoptosis occuring in multiple locations as well as the estimated second-order spatial

function plots. A sequence of 120 simulated RPE images respresented the tissue pattern

evolvement as a result of cell death. We selected and analyzed 5 images at different time

points of the simulation. From (A) to (E), it is obvious that the cells around the holes

become larger and more stretched at later stages, in comparison with the normal cells at

initial stages. If we look at distance around 20 pixels in (F), the SPP formed by cell centers

exhibit a pattern of regularity for all images. However, at larger distances, markedly distinct

patterns occur. The initial normal cells result in a curvy shape for estimated L function

while the patterns of cells in (D) and (E) lose this property and appear more clustered in

distances between 40 and 100. This can be explained as follows. As cells stretch and distort,

patches of smaller cells are formed and the cell centers are more clustered at certain spatial

scales. Similar conclusion can be drawn for the PCF plot. In summary, the clear oscillatory

shape in both the variance stabilized K function (L plot) and pair correlation function (PCF)
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plot for normal eyes results from the well-ordered nearly hexagonal cell packing. With AMD

disease, the cells become more ellyptical in shape, resulting in the irregularities in cell center

distances.

Figure 3.1 Simulated RPE tissue undergoing repeated clustered damage (black area: regions

of cell apoptosis) and recovery from a normal RPE pattern.(A-E). F: plots of estimated

variance stabilized K function; G: plots of estimated pair correction function. The numbers

in the legends correspond to time-steps of the selected images in the simulated sequence.

We also simulated RPE cell sheets from the same normal condition, but different

amounts of cells were removed in a single cluster. We removed 10 cells, 50 cells and 100

cells, respectively, and obtained 3 sequences of RPE sheets recovering following the cell re-

moval, each consisting of 10 images. Similar to the above procedures, we selected images at

the initial stages and later stages from each sequence and plotted the L functions, as shown

in Figure 3.2. With less cells removed, the point patterns of cell centers do not change notice-

ably. However, when more cells are removed, the L function increase drastically, suggesting

that cells are more clustered at a large spatial distance. Comparing (b) and (c) in Figure
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3.2, we find greater seperation in the L functions of cell center spatial patterns in the initial

and later stages when 100 cells are removed. This small simulation study indicates that

with more severe damage to the RPE sheets, more profound changes in the second-order

properties of the cell center SPP will be observed. It shows that the second-order spatial

analysis is helpful in discriminating the effects of normal aging and AMD disease progression

on the RPE sheets.
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(a) RPE with 10 cells killed (b) RPE with 50 cells killed (b) RPE with 100 cells killed

Figure 3.2 Estimated L plots for simulated RPE sheets with different amount of cell loss.

(a) 10 cells are killed; (b) 50 cells are killed; (c) 100 cells are killed

3.1.2 Analysis of human RPE

We further performed second-order spatial analysis on both normal and diseased human

RPE data. ImageJ was used for segmentation and data extraction. Second-order spatial

analysis on human RPE images shows a clear change of cell distribution between normal

and AMD eyes. Figure 3.3 shows that the oscillations in the L plot and PCF plot for

normal RPE gradually disappear as hexagonal cells stretch and distort. The AMD-like RPE

patterns show an increased clustering between distance 50 and 100 (in pixels), indicative of

the disordered RPE pattern and close cell packing in AMD. The big dip at distance less than

50 pixels shows that the normal RPE cells are more regular compared to CSR, corresponding

to the regular cell-cell distance. The dip also exist for the AMD RPE, but the spatial distance
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h decreases to around 10 pixels, which indicates that as a result of cell stretching in diseased

RPE, the minimal cell-cell distance decreases. Nonetheless, nearly all of the estimated L
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(a) Normal human RPE of age 80 (b) AMD RPE of age 80
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Figure 3.3 Comparison of the second-order spatial properties in normal and diseased RPE
in an individual of age 80. (a) Cell center locations for normal RPE; (b) Cell center locations
for diseased RPE; (c) Estimated L plots; (d) Estimated pair correlation function plots

function for AMD RPE lies above that of the normal RPE, which implies more clustered cell

distribution in AMD RPE sheets. The PCF plots can be interpreted similar to the L plots.

The highest peaks suggest that at a distance less than 50 pixels, the SPP of cell centers are
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clustered than CSR for both normal and diseased RPE. The distance moves to the left for

AMD RPE, suggesting again a reduced cell-cell distance. These findings are consistent with

the simulation study in the preceeding subsection. The second-order spatial analysis works

reasonably well in reflecting the changes in RPE cell morphology as a result of AMD disease.

The simulation study provide further insights into the pathophysiology of AMD.

3.2 Classification of Mouse Genotype and Age through Cell Morphometry

We applied kNN to the mouse RPE morphometric data for classification of the genotypes

and ages of RPE in different spatial regions. From macula outward, there are 4 zones for

each RPE sheet, labelled zone 1, zone 2, zone 3 and zone 4, respectively. Further, we

considered combining adjacent zones so that we have 3 zones corresponding roughly to

macula, mid-periphery and far periphery regions. Table 3 shows the four cases with and

without combining zones. The classification of genotype was performed in three age groups,

which is different from previous studies. Similarly, the classification of age was conducted

in different genotypes. The separation of age groups or genotype groups allows us to reveal

more information for each genotype/age combination.

Table 3.1 Different cases of zone combination

Case Description
I All 4 zones remain the same
II zone 1 and 2 as zone 1, zone 3 as zone 2, zone 4 as zone 3
III zone 1, zone 2 and 3 as zone 2, zone 4 as zone 3
IV zone 1, zone 2, zone 3 and zone 4 as zone 3

The classification of genotype/age was further performed in each zone/flap. The accu-

racy of classification was plotted against the zone/flap and the results are reported in Figures

3.4-3.13. In all succeeding figures, the error bars represent the 95% confidence intervals.
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3.2.1 Classification of genotype by zone in different age groups

Figures 3.4-3.7 show the classification results of genotype by zone in different age groups

for all cases. In Figure 3.4, the area and perimeter variables give nearly linearly decreasing

accuracy with increasing zone numbers in age group 1. Other variables do not give consistent

results. However, most variables have higher classification accuracy in zones 1 and 2. This

means in young mice, the region closer to the macula is more informative of distinguishing

the genotypes. Notice that nearly all classification accuracies are lower than 80%. Hence,

the difference between normal and diseased RPE is really not so remarkable at early stage

of the disease. In age group 2, the pattern changes abrutly. Area and perimeter again have

the best performance, with accuracies close to 1. Solidity, extent and form factor all have

the lowest accuracy in zone 2 but higher accuracy in zone 1 and zone 4. Eccentricity and

major/minor ratio have the same pattern with highest accuracy in zone 3. At this stage, the

RPE cells in AMD individuals begin to undergo more change in cell sizes while maintaining

relatively stable cell shapes. Cell shapes distort from hexagonal shape more drastically in

macula and peripheral regions of the RPE. A shift in the patterns also occurs in age group

3. It can be found that in age group 3 the zones with larger numbers have higher accuracy

for most shape variables. This suggests that as mice grow older, the RPE cells undergo

even more distortion in the periphery regions than in macula region. Note also that overall

accuracy goes up.

For Cases II, III and IV, Figures 3.5-3.7 give consistent results similar to the findings

in Figure 3.4. In the young age group, since the differences between normal and AMD RPE

are negligible, no obvious patterns are found and the classification accuracy is relatively

low. In the medium age group, cell sizes and cell shapes begin to change. Both area and

perimeter perform similarly well in all zones, suggesting cell sizes are changing globally with

age, bringing differences in RPE morphology among normal and AMD individuals. Shape

variables have better classification of the genotype in zones 1 and 3. This is a direct indication

that cell shapes in macula and peripheral regions go through more drastic change as AMD

progresses. In the old populations, the peripheral region is more indicative of whether an
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individual is normal or diseased.

Our results provide some insights into the study of RPE morphology. We suggest that

for rd10 RPE cells, instead of measuring the whole RPE flatmount, researchers can directly

measure cell size in macula or far-peripheral region for medium aged individuals, and obtain

cell shape measurements in the far-peripheral regions for old individuals.

Figure 3.4 Classification of genotype by zone in three age groups for Case I. Figures from

left to right correspond to age group 1, age group 2 and age group 3, respectively.
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Figure 3.5 Classification of genotype by zone in three age groups for Case II. Figures from

left to right correspond to age group 1, age group 2 and age group 3, respectively.

Figure 3.6 Classification of genotype by zone in three age groups for Case III. Figures from

left to right correspond to age group 1, age group 2 and age group 3, respectively.
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Figure 3.7 Classification of genotype by zone in three age groups for Case IV. Figures from

left to right correspond to age group 1, age group 2 and age group 3, respectively.

3.2.2 Classification of age by zone in different genotype groups

Figures 3.8-3.11 present the results for the classification of age by zone in different geno-

type groups. In Figure 3.8, we observe that for normal RPE, that is, the C57BL/6J genotype,

all variables yield good classification of the age except eccentricity, extent and major/minor

ratio. No conspicuous difference exists in zones. In rd10 RPE, the outer peripheral regions

are best at classifying the age groups. These observations remain the same for Cases II, III

and IV. The interpretations and implications are as follows. In normal individuals, aging

brings global change to the RPE morphology whereas in diseased individuals, aging results

in more profound change in RPE morphology in the peripheral region.
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Figure 3.8 Classification of age by zone in two genotype groups for Case I. Left: C57BL/6J;

right: rd10.

Figure 3.9 Classification of age by zone in two genotype groups for Case II. Left: C57BL/6J;

right: rd10.
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Figure 3.10 Classification of age by zone in two genotype groups for Case III. Left:

C57BL/6J; right: rd10.

Figure 3.11 Classification of age by zone in two genotype groups for Case IV. Left:

C57BL/6J; right: rd10.
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3.2.3 Classification of genotype by flap in different age groups

The classification results of genotype by flap in different age groups are shown in Figure

3.12. We do not observe patterned differences among flaps in all of the age groups, suggesting

no orientational differences in where aging affects the cell size or shape. We do observe,

similar to previous findings, that in the medium age group, area and perimeter perform

better in discriminating the disease versus normal RPE and that in the old age group, cell

shape measurements are good indicators of rd10 genotype.

Figure 3.12 Classification of genotype by flap in three age groups. Figures from left to

right correspond to age group 1, age group 2 and age group 3, respectively.

3.2.4 Classification of age by flap in different genotype groups

Figure 3.14 shows the classification of age by flap in twp genotypes. We cannot make

any conclusion with regard to which flap classifies age the best or what variables perform

the best as no obvious trends are found.
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Figure 3.13 Classification of age by flap in two genotype groups. Left: C57BL/6J; right:

rd10.
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Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, we quantitatively analyzed RPE morphometry from the spatial aspect.

Second-order spatial analysis reveals distinct patterns of cell packing in normal and dis-

eased RPE sheets. Cells are more clustered in diseased RPE sheets, indicative of cell re-

organization brought about by AMD disease. The more severe the damage is to the RPE

sheet, the more clustered the cell center point patterns will be. kNN algorithm provides a

powerful tool in classifying the genotype and age of normal and diseased RPE in different

spatial regions of the RPE sheet. In medium age groups, cell size measurements perform

the best in classifying the disease status. In old individuals, peripheral regions have higher

classification accuracy for area and shape variables, indicating that AMD leads to more cell

shape deformation in periphery of RPE. The study does not reveal significant patterns in

flaps. Our study provides some quantitative tools for analyzing spatially RPE morphometry,

which shall be helpful for investogators to obtain RPE data efficiently and for clinicians to

diagnose the disease.

4.2 Limitations and Future Work

It is recognized that this thesis is only a small effort towards unveiling the fundamental

knowledge for AMD and RPE. Several limitations are present and continual research are

required to validate what has been found in this study, to formalize the procedures and

to develop new methods. For example, for second-order spatial analysis of human RPE,

researchers may be concerned with when the RPE cell point patterns in AMD individuals

begin to deviate from those of normal ones. Hence, one may collect more RPE flatmounts

(preferably non-invasively) at different ages and explore the aging effects seperately in both
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normal and diseased RPE. Besides, it is known that two cell centers can not lie too close

to each other. Hence, the hard-core process may be better suited to model the cell center

spatial process. For analysis of real human RPE sheets, where to select the cutboxes and

how large the cutboxes should be might influence the results substantially. The whole RPE

gives use complete information about the characteristics of each individual. In reality, for

the purpose of spatial analysis, we could only select cutboxes from certain regions since

some areas are messy and require accurate image segmentation techniques. Several issues

are also noticed in RPE morphometric analysis. The classification study can be coupled with

other types of study to mutually corroborate on the findings. For example, researchers need

to investigate and identify the underlying causes of changes in the periphery compared to

the macular region. In addition, other classification methods might also be used, including

support vector machines and linear discrimination analysis. Theoretical studies for the data

structure might be helpful for formulating rigorous models and procedures.
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