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ABSTRCT 

Research which explores unchartered waters has a high potential for major impact but also 

carries a high uncertainty of having minimal impact.  Such explorative research is often 

described as taking a novel approach.  This study examines the complex relationship between 

pursuing a novel approach and impact.  We measure novelty by examining the extent to which a 

published paper makes first time ever combinations of referenced journals, taking into account 

the difficulty of making such combinations.  We apply this newly developed measure of novelty 

to a set of one million research articles across all scientific disciplines.  We find that highly novel 

papers, defined to be those that make more (distinct) new combinations, have more than a triple 

probability of being a top 1% highly cited paper when using a sufficiently long citation time 

window to assess impact.  Moreover, follow-on papers that cite highly novel research are 

themselves more likely to be highly cited.  However, novel research is also risky as it has a 

higher variance in the citation performance.  These findings are consistent with the “high 

risk/high gain” characteristic of novel research.  We also find that novel papers are typically 

published in journals with a lower than expected Impact Factor and are less cited when using a 

short time window.  Our findings suggest that science policy, in particular funding decisions 

which are over reliant on traditional bibliometric indicators based on short-term direct citation 

counts and Journal Impact Factors, may be biased against novelty. 
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1. Introduction 

Scientific breakthroughs advance the knowledge frontier.  Research underpinning breakthroughs 

often is driven by novel approaches.  While novel approaches have a higher potential for major 

impact, they also face a higher level of uncertainty.  In addition, novel research may encounter 

resistance from incumbent scientific paradigms and consequently suffer from impeded or 

delayed recognition (Kuhn, 1962; Merton, 1973; Planck, 1950).  This “high risk/high gain” 

nature of novel research makes it particularly appropriate for public support (Arrow, 1962). 

There is growing concern, however, that funding agencies are increasingly risk-averse and that 

their competitive selection procedures encourage relatively safe projects exploiting existing 

knowledge at the expense of novel projects exploring untested approaches (Alberts, 2010; 

Kolata, 2009; NPR, 2013; Petsko, 2012; Walsh, 2013).  In addition, funding agencies 

increasingly rely on bibliometric indicators to aid in decision making and performance 

evaluation (Butler, 2003; Hicks, 2012; Hicks, Wouters, Waltman, de Rijcke, & Rafols, 2015).  

However, if novel research has an impact profile distinct from non-novel research, using 

indicators which do not recognize such difference may unintentionally bias funding decisions 

away from novel research. 

In this study, we examine the complex relationship between novelty and impact, using the life-

time citation trajectories of 1,056,936 research articles published in 2001 across all scientific 

disciplines indexed in the Web of Science (WoS), as well as the profile of papers citing them.  

We demonstrate a “high risk/high gain” profile of novel research, which (i) has a significantly 

higher probability of leading to major impact directly as well as indirectly (ii) while at the same 

time has a higher variance in impact performance.  We also find (i) that the Impact Factor of the 

journals in which novel research is published is lower than expected and (ii) that novel papers are 

less likely to be highly cited in the first few years after publication.  Our findings suggest that 

over-reliance on standard bibliometric metrics, in particular Journal Impact Factors and short-

term citation counts, may bias against novel research. 
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2. Measuring novelty of scientific publications 

We view the process of research as one of puzzle solving, whereby researchers work with pieces 

of knowledge and combine them to generate new scientific knowledge.  Using knowledge pieces 

in well-understood ways corresponds to a search process labeled as exploitation.  On the other 

hand, using existing knowledge pieces in new ways corresponds to an explorative search 

process, which is more likely to lead to major breakthroughs but also comes with a substantial 

risk of no impact (March, 1991).  In this perspective, novelty, which is characterized by making 

new combinations of existing knowledge pieces, is more closely associated with exploration. 

This combinatorial view of novelty has been embraced by studies with various disciplinary roots 

(Burt, 2004; Mednick, 1962; Nelson & Winter, 1982; Schumpeter, 1939; Simonton, 2004), and 

there is an emerging interest in operationalizing this view to measure the novelty of patents, 

research proposals, publications, and journals (Boudreau, Guinan, Lakhani, & Riedl, 2014; 

Fleming, 2001; Lee, Walsh, & Wang, 2015; Packalen & Bhattacharya, 2015; Uzzi, Mukherjee, 

Stringer, & Jones, 2013; Verhoeven, Bakker, & Veugelers, in press).  Following this 

combinatorial novelty approach, we assess the novelty of a research article by examining the 

extent to which it makes novel combinations of prior knowledge. 

When applying a combinatorial novelty approach to scientific publications, journals can be 

viewed as representing bodies of knowledge components.  Uzzi et al. (2013) have applied this 

approach to identify papers which make unusual/unexpected/atypical combinations of referenced 

journals.  Rather than looking at the atypicality of referenced journal combinations as in (Uzzi et 

al., 2013), we focus specifically on novelty of referenced journal combinations, examining 

whether an article makes new referenced journal combinations which have never been made in 

prior publications.  Furthermore, we take into account the knowledge distance between the 

newly-combined journals based on their co-cited journal profiles, i.e., their “common friends.”  

More precisely, we measure the novelty of a paper as the number of new journal pairs in its 

references weighted by the cosine similarity between the newly-paired journals. 

By way of example, a recent breakthrough in human connectome, an automated method to 

collect serial images of brain tissue for reconstructing the neural network, was accomplished by 

combining an electron microscope with an ultra-microtome (Denk & Horstmann, 2004).  While 
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both knowledge pieces already existed, their combination is a true landmark that revitalized the 

dream of mapping the human brain (Cook, 2015; Eisenstein, 2009; Kasthuri & Lichtman, 2010).  

The paper which introduces this novel concept scores in the top 1% of our novelty indicator.  

Detailed documentation on the construction of the measure is reported in Appendix I. 

Applying this newly-minted indicator of novelty on a sample of all 2001 WoS research articles, 

we find that novel research is relatively rare:  Only 11% of all papers make at least one new 

combination of referenced journals.  Furthermore, the degree of novelty is highly skewed:  More 

than half (55%) of novel papers make only one new referenced journal pair, typically combining 

close-by journals, while only a few papers make more new combinations which are typically also 

more distant (Table 1).  To further work with this skewedness, we classify papers into three 

categories: (i) highly novel, if a paper has a novelty score among the top 1% of its subject 

category, (ii) moderately novel, if a paper makes at least one new combination but has a novelty 

score lower than the top 1% of its subject category, and (iii) non-novel, if a paper has no new 

journal combinations. 

3. Data 

The dataset consists of all research articles published in 2001 indexed in Thomson Reuters Web 

of Science (WoS).  These papers span all scientific disciplines, i.e., 251 WoS subject categories.  

Our analysis focuses on original research, so our sample consists of only “articles.” Other 

document types, such as “review” and “letter,” are excluded.  We measure the combinatorial 

novelty for each article, based on the profile of their references, specifically the newness and 

unusualness of referenced journal pairs.  Therefore, we keep only articles referencing to at least 

two WoS journals.  These are in total 773,311 journal articles, 674,546 of which have at least 

two references to WoS journals are kept for analysis.  We also account for field differences in 

our analysis; 203 articles with no subject category information are excluded.  In addition, 

274,072 articles have more than one subject category (up to six subject categories) and are 

counted multiple times.  The final 2001 dataset used has 1,056,936 observations across all 251 

WoS subject categories.  Citations for each article are also retrieved from WoS in each year from 

2001 to 2013.  We also look into the profiles of other articles citing our sampled articles, 
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specifically, whether these citing articles are among the top 1% highly cited in the same WoS 

subject category and publication year. 

4. Results 

4.1. “High risk/high gain” nature of novel research: Why we (should) care about novelty? 

In view of the “high risk/high gain” nature of novel research, we expect novel papers to receive 

more citations on average but also to have a higher variance in their citation performance.  

Following (Fleming, 2001), generalized negative binomial models are used to estimate the 

effects of novelty on both the mean and dispersion of received citations, controlling for potential 

confounding factors, i.e., field differences, international collaboration, and the number of 

references and authors (Fig. 1A and Table 3).  We use a 13-year time window to count citations, 

which is deemed sufficiently long across fields (Wang, 2013).  Compared with non-novel papers, 

ceteris paribus, moderately novel papers receive 2% more citations, while highly novel papers 

receive 11% more citations.  At the same time, however, the higher average impact of novel 

papers is accompanied by a higher variance in citation performance.  This higher variance holds 

most noticeably for highly novel papers, reflecting their higher uncertainty. 

A higher variance in impact performance can be driven by more extreme successes and/or more 

cases of uncited or rarely cited papers.  Our analysis shows that highly novel papers are more 

likely to be among the least 10% cited papers in its field (Table 3). 

A more important question is whether novel papers are more likely to become “big hits,” i.e., 

receive an exceptionally large number of citations, defined here, following the bibliometric 

convention, as being top 1% highly cited in the same WoS subject category and publication year.  

When we use a long (13-year) time window for counting citations, the chance of big hits is more 

than three times the expected value for highly novel papers and more than 1.5 times for 

moderately novel papers.  Econometric analysis controlling for potential confounding factors 

confirms this correlation:  The odds of big hits is 36% higher for highly novel papers, compared 

with comparable non-novel papers (Fig. 1B and Table 3). 

Furthermore, novel papers are more likely not only to become big hits themselves but also 

stimulate follow-up research that leads to breakthroughs.  We find that papers that cite novel 
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papers are more likely to themselves receive more citations, compared with papers citing non-

novel papers.  Likewise, for highly novel papers, the probability of being cited by an article 

which itself becomes a big hit is about two times the probability for non-novel papers.  

Econometric analysis, which estimates the probability of a paper being cited by big hits, teasing 

out any contamination from direct citations received, in addition to controlling for previously 

mentioned other confounding factors, confirms the positive relation between novelty and indirect 

impact, (Fig. 1C and Table 3). 

4.2. Bias against novelty: How does novel research score on standard bibliometric 

indicators? 

Given the “high risk/high gain” profile of novel research, the question which follows is:  How 

such research would perform on standard bibliometric indicators.  The most influential indicator 

is probably the Journal Impact Factor.  Therefore, we investigate whether novel papers, with 

their “high risk/high gain” nature, are published in high Impact Factor journals.  Although on 

average novel papers are published in journals with higher Impact Factors, compared with non-

novel ones, the multivariate analysis controlling for other confounding factors such as field 

differences reveals that the Journal Impact Factor of moderately- and highly-novel papers is 

significantly and substantially lower (approximately 11% and 18% respectively) than 

comparable non-novel papers (Fig. 2 and Table 4).  This finding that novel papers are published 

in journals with Impact Factors below their potential indicates the obstacles these papers face to 

being accepted by journals holding central positons in science.  Moreover, the negative 

association between novelty and Journal Impact Factor is not because novel papers are more 

likely to be published in new journals.  Regression analysis additionally controlling for the 

journal age or whether the journal is new delivers the same conclusion that novel papers are 

published in lower Impact Factor journals than expected (Table 4). 

Another widely used bibliometric procedure that we scrutinize is the use of short time windows 

to count received citations.  Despite the fact that novel papers have more citations in the long run 

as shown in the preceding section, they may take a longer time to be recognized, and such 

delayed process of citation accumulation might lead to a biased evaluation of impact, when an 

insufficient time window is adopted to count citations.  We estimate the probabilities of being a 
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top 1% highly cited paper for non-, moderately-, and highly-novel papers, using various lengths 

of time windows (Fig. 3A and Table 5).  In the first few years after publication, novel papers are 

less likely to be top cited.  For example, using a 3-year time window, which is the standard time 

window used in classic bibliometrics, highly novel papers are not more likely to be a top cited 

paper than non-novel papers, despite the fact that they have a much higher chance of being top 

cited when a 13-year citation time window is adopted.  As a footnote, although novel papers 

display a delayed recognition in their direct impact (i.e., being big hits), we find that they have a 

significantly higher indirect impact (i.e., being cited by big hits) across all citation time windows 

compared with non-novel papers. 

We investigate the bias against novelty and Journal Impact Factors further by additionally 

incorporating an interaction effect between novelty and Journal Impact Factor, specifically 

whether the journal in which the focal paper is published has a top 10% Impact Factor in its 

field.  Although publication in a high Impact Factor journal contributes to a faster citation 

accumulation process, novel papers published in high Impact Factor journals still suffer from a 

delayed citation accumulation process, compared with comparable non-novel papers in high 

Impact Factor journals (Fig. 3B and Table 6).  When using a 13-year citation time window, a 

novel paper in a high Impact Factor journal is more likely to be a big hit than a non-novel paper 

in a high Impact Factor journal, which is also true when comparing novel and non-novel papers 

in low Impact Factor journals.  However, when using a three-year citation time window, for 

papers published in low Impact Factor journals, the odds of big hits is 47% higher for highly 

novel papers than for non-novel papers, but for papers published in high Impact Factor journals, 

the odds of big hits is 16% lower for highly-novel papers than for non-novel papers.  These 

findings suggest that novel research faces an additional obstacle in the citation accumulation 

process, even if they successfully enter prestigious journals.  This additional obstacle might be 

explained by the fact that novel research is ahead of its time and needs supporting science and 

technology to be developed in order to have its potential recognized. 

4.3. Robustness analysis 

The observed relationship between novelty and impact is universal across fields:  Separate 

analyses by fields yielded similar results (Appendix II).  We also determined that our results were 
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not sensitive to the procedure of excluding 50% of the least cited journals and requiring that the 

new combination of journals be reused at least once in the next three years.  Relaxing these 

constraints yielded consistent results.  The results are also robust to other variations of our 

novelty measure, such as excluding referenced star and multidisciplinary journals (Appendix III). 

Additional analysis also shows that our measure for novelty identifies a much rarer phenomenon 

than the Uzzi et al. (2013) measure for atypicality of referenced combinations:  While 11% of all 

publications in our sample score on our novelty indicator, 48% make atypical combinations.  

Although both measures of atypicality and novelty are significantly correlated, they nevertheless 

are measuring distinct profiles (Appendix IV).  Papers that score in the top 1% of their field and 

publication year on atypicality are six times more likely to be at the same time highly novel 

papers.  Nevertheless, for two thirds of them the atypical combinations they make are not novel.  

Furthermore, the impact profile of atypical papers is different from novel papers.  First, the 

higher dispersion in impact performance plays out more prominently for novel papers than for 

atypical papers.  Second, novelty also has a much stronger effect on stimulating follow-up 

creativity (i.e., being cited by big hits).  Hence, it is not the atypicality of combinations being 

made, but the novelty of combinations which identifies the “high risk/high gain” profile of novel 

research (Appendix IV). 

5. Discussion 

This study contributes to better understanding the relationship between novelty and impact and 

also uncovers how novel research is “judged” by standard bibliometric indicators.  Applying a 

newly-minted measure of combinatorial novelty on all WoS research articles published in 2001 

across all scientific disciplines, we find that novel research (i) has a larger variance in its citation 

distribution, (ii) is more likely to eventually become a big hit, and (iii) is more likely to stimulate 

follow-up research which itself become a big hit.  These characteristics demonstrate a “high 

risk/high gain” profile of novel research.  However, novel research underperforms in classic 

bibliometric indicators, (i) being published in journals with lower Impact Factors and (ii) having 

fewer citations when a short time window is used for counting citations.  Therefore, the use of 

these classic bibliometric metrics would lead to a biased assessment of the value of novel 

research. 
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Our findings suggest that caution is called for in using standard bibliometric indicators for 

funding decisions.  Funding agencies are alleged to be increasingly risk-averse and rely on 

bibliometric indicators for selecting applicants and evaluating their performance.  Widely used 

indicators, such as the Journal Impact Factor and other citation-based metrics using short time 

windows, run the risk of being biased against novel research given that novel research 

underperforms on these indicators.  This bias imperils scientific progress, as novel research is 

much more likely to become a big hit itself in the long run as well as to stimulate follow-up big 

hits.  This caveat applies not only to funding decisions but also science policy more generally.  

The prevailing use of standard bibliometric indicators in various decisions (e.g., hiring and 

tenure of researchers) at various levels (i.e., department, university, and national) is likely to 

further disincentivize novel research.  We advocate the awareness of such potential bias and 

suggest, when relying on bibliometric indicators, to use a wider portfolio of indicators.  We also 

call for future research on more nuanced measures to capture other aspects of scientific novelty 

and explorative research. 
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Fig. 1. Impact profile of novel research.  (A) Estimated dispersion of citations (13-year), using 

a generalized negative binomial model and controlling for field differences, international 

collaboration, and the number of authors and references.  Estimated values are for an average 

paper (fixing all other covariates at their means) with different novel classes.  The vertical bars 

represent the 95% confidence interval.  Dispersion = (variance – mean) / mean
2
.  Note that novel 

papers have both a higher mean and dispersion and therefore also have a much higher variance 

(variance = mean + dispersion * mean
2
).  (B) Estimated probability of being a big hit, defined as 

the top 1% most cited articles in each WoS subject category.  Results are based on a logistic 

model.  (C) Estimated probability of cited by big hits.  The citing big hits are identified as the top 

1% highly cited articles with the same WoS subject category and publication year, based on their 

cumulative citations up to 2013.  Citing big hits published between 2001 and 2009 are analyzed, 

and later years are not analyzed because their available time windows are too short to identify 

big hits reliably.  Results are based on a logistic model.  All regressions underlying this figure 

are reported in Table 3.  Data consist of 1,056,936 WoS articles (no reviews or other document 

types) published in 2001 and are sourced from Thomson Reuters Web of Science Core 

Collection. 
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Fig. 2.  Journal Impact Factor and novelty.  This figure reports the estimated Journal Impact 

Factor for an average paper with different novelty classes, using a Poisson model and controlling 

for field differences, international collaboration, and the number of authors and references.   

Regression outputs in Table 4.  Data consist of 1,056,936 WoS articles (no reviews or other 

document types) published in 2001 and are sourced from Thomson Reuters Web of Science Core 

Collection. 
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Fig. 3. Citation dynamics and novelty.  (A) Estimated probability of being a big hit, using 13 

consecutive time windows to dynamically identify big hits.  As an example, big hits in year 3 are 

identified as the top 1% highly cited papers based on their cumulative citations in a 3-year time 

window, i.e., from 2001 to 2003.  Results are based on 13 logistic models reported in Table 5.  

(B) Estimated probability of being a big hit by year, for papers in different novelty classes and 

Journal Impact Factor groups.  Estimations are based on a set of logistic models additionally 

incorporating interaction effects between novelty classes and whether a journal has an Impact 

Factor among the top 10% in its field.  Solid lines are estimated probability for papers in low 

90% journals with different novelty classes and with all other covariates fixed at their means, and 

broken lines are for papers in the high 10% journals.  Regression outputs are reported in Table 6.  

Data consist of 1,056,936 WoS articles (no reviews or other document types) published in 2001 

and are sourced from Thomson Reuters Web of Science Core Collection. 
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Table 1.  The occurrence of novelty 

 (1) 

Number of 

papers 

(2) 

% of all 

papers 

(3) 

Avg (avg 

cos) 

(4) 

Avg(min 

cos) 

(5) 

avg # new 

pairs 

(6) 

median # 

new pairs 

non-novel 942850 89% / / / / 

moderately novel 103418 10% 0.0015 0.0013 1.7055 1 

highly novel 10668 1% 0.0009 0.0004 7.9499 7 

Data sourced from Thomson Reuters Web of Science Core Collection. 

 

We expect our measure to identify only a small minority of papers as novel.  Indeed we find that 

only relatively few papers make new referenced journal combinations.  To be more specific, 89% 

of all papers in our sample do not make any new combinations of referenced journal and 

therefore do not score on the novelty measure.  Of the 11% that make new journal combinations, 

most (55%) make only one new combination, and only 7% have more than 5 new combinations. 

Overall, our measure of novelty displays a highly skewed phenomenon of novelty in scientific 

publications.  To further work with this skewedness in the analysis, we construct a categorical 

novelty variable NOV CAT: (i) non-novel, if a paper has no new journal combinations, (ii) 

moderately novel, if a paper makes at least one new combination but has a novelty score lower 

than the top 1% of its subject category, and (iii) highly novel, if a paper has a novelty score 

among the top 1% of its subject category. 

We are particularly interested in papers which are highly (top 1%) novel.  These papers make not 

only more but also more distant new combinations.  The median number of new referenced 

journal pairs they make is 7 (column 6).  The new pairs they make are on average more distant, 

as suggested by the average smaller cosine of their average pairs (column 3), and their most 

distant pairs have a much higher distance than those made by moderately novel paper, as 

reflected in the average smaller cosine of the pair with the lowest cosine they make (column 4).  
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Table 2. List of variables 

Variable Description 

Novelty Combinatorial novelty score. 

NOV CAT1 Novelty class dummy: 1 if non-novel, and 0 otherwise. 

NOV CAT2 Novelty class dummy: 1 if moderately novel, and 0 otherwise. 

NOV CAT3 Novelty class dummy: 1 if highly novel, and 0 otherwise. 

JIF Impact Factor of the journal where the focal paper is published in. 

JIF TOP10% Dummy: 1 if the journal has an Impact Factor among the top 10% in its field. 

International Dummy: 1 if internationally co-authored, and 0 otherwise. 

Authors The number of authors. 

Refs The number of references. 

Ct Cumulative number of citations in year t, i.e., 2001-t, where t ϵ [2001, 2013]. 

Big hit in year t Dummy: 1 if among the top 1% highly cited in year t, based on Ct, in the 

same WoS subject category and publication year.  t ϵ [2001, 2013]. 

Cited by big hits Dummy: 1 if cited by a big hit published between 2001 and 2009.  The citing 

big hits are identified as the top 1% highly cited article in the same WoS 

subject category and publication year, based on their cumulative citations in 

2013.  Only big hits published between 2001 and 2009 are identified, so that 

each citing article has at least five years to accumulate citations, for a reliable 

identification of citing big hit articles. 
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Table 3. “High risk/high gain” nature of novel research 

 Citations (13-year) 

 

 

generalized negative binomial 

Least 10% 

cited (13-

year) 

logit 

Top 1% cited 

(13-year) 

 

logit 

Cited by big 

hits (‘01-‘09) 

 

logit 

 mean 

(1) 

dispersion 

(2) 

 

(3) 

 

(4) 

 

(5) 

NOV CAT2 0.0241*** 

(0.0036) 

0.0009 

(0.0047) 

-0.0664*** 

(0.0163) 

0.1171*** 

(0.0286) 

0.0356** 

(0.0110) 

NOV CAT3 0.1116*** 

(0.0108) 

0.1421*** 

(0.0132) 

0.1102* 

(0.0559) 

0.3557*** 

(0.0602) 

0.2620*** 

(0.0292) 

9-year 

citations (ln) 

    1.8363*** 

(0.0051) 

International 0.0755*** 

(0.0028) 

-0.0680*** 

(0.0036) 

-0.2357*** 

(0.0127) 

0.0593* 

(0.0240) 

0.0037 

(0.0089) 

Authors (ln) 0.2755*** 

(0.0020) 

-0.1437*** 

(0.0024) 

-0.6315*** 

(0.0076) 

0.5754*** 

(0.0181) 

-0.0648*** 

(0.0066) 

Refs (ln) 0.6331*** 

(0.0020) 

-0.2559*** 

(0.0024) 

-1.1328*** 

(0.0067) 

1.2209*** 

(0.0207) 

-0.1143*** 

(0.0071) 

N 1020561 866544 1056895 1056565 

Log lik -4114822 -218464 -56275 -266709 

Chi2 223598*** 42288*** 5543*** 145503*** 

Data consist of all WoS articles published in 2001 and are sourced from Thomson Reuters Web 

of Science Core Collection. 

Field (WoS subject category) fixed effects incorporated. 

Clustered-robust standard errors in parentheses. 

*** p<.001, ** p<.01, * p<.05, + p<.10. 

 

For the generalized negative binomial model (column 1-2), WoS subject categories with fewer 

than 1000 papers are excluded for reliable estimates of the dispersion parameter.  While the 

original sample has 1,056,936 articles of 251 subject categories, regressions reported here use 

1,020,561 articles of 170 subject categories. 

Cited by big hit (column 5) means cited by an article, which is published in between 2001 and 

2009 and among the top 1% highly cited articles within the same WoS subject category and 

publication year, based on their cumulative citations up to 2013.  Big hits published after 2009 

are not analysed because their available time windows are too short to identify big hits reliably. 
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Table 4. Journal Impact Factor and novelty 

 JIF 

Poisson 

JIF 

Poisson 

JIF 

Poisson 

NOV CAT2 -0.1055*** 

(0.0031) 

-0.1033*** 

(0.0031) 

-0.0839*** 

(0.0031) 

NOV CAT3 -0.1811*** 

(0.0092) 

-0.1744*** 

(0.0091) 

-0.1352*** 

(0.0088) 

Journal age < 4  -0.3421*** 

(0.0048) 

 

Journal age (ln)   0.2211*** 

(0.0013) 

International 0.0737*** 

(0.0024) 

0.0724*** 

(0.0023) 

0.0651*** 

(0.0023) 

Authors (ln) 0.1735*** 

(0.0018) 

0.1712*** 

(0.0018) 

0.1602*** 

(0.0017) 

Refs (ln) 0.3519*** 

(0.0017) 

0.3496*** 

(0.0017) 

0.3250*** 

(0.0016) 

N 1056936 1056936 1056936 

Log pseudo-likelihood -1716396 -1711208 -1680856 

Chi2 942910*** 966429*** 1169732*** 

Data consist of all WoS articles published in 2001 and are sourced from Thomson Reuters Web 

of Science Core Collection. 

Field (WoS subject category) fixed effects incorporated. 

Clustered-robust standard errors in parentheses. 

*** p<.001, ** p<.01, * p<.05, + p<.10. 

 

Results of Poisson models are reported here, an alternative specification, using the OLS model 

and the log of JIF as the dependent variable yields consistent results. 
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Table 5. Big hits and novelty 
 Big hit 

’01-‘01 
logit 

Big hit 

’01-‘02 
logit 

Big hit 

’01-‘03 
logit 

Big hit 

’01-‘04 
logit 

Big hit 

’01-‘05 
logit 

Big hit 

’01-‘06 
logit 

Big hit 

’01-‘07 
logit 

Big hit 

’01-‘08 
logit 

Big hit 

’01-‘09 
logit 

Big hit 

’01-‘10 
logit 

Big hit 

’01-‘11 
logit 

Big hit 

’01-‘12 
logit 

Big hit 

’01-‘13 
logit 

NOV 

CAT2 

-0.2754*** 

(0.0398) 

-0.1919*** 

(0.0332) 

-0.1196*** 

(0.0314) 

-0.0790* 

(0.0306) 

-0.0412 

(0.0299) 

-0.0147 

(0.0296) 

0.0051 

(0.0294) 

0.0358 

(0.0292) 

0.0613* 

(0.0289) 

0.0916** 

(0.0287) 

0.1021*** 

(0.0287) 

0.0908** 

(0.0288) 

0.1171*** 

(0.0286) 

NOV 
CAT3 

-0.3709*** 
(0.1043) 

-0.2682** 
(0.0828) 

-0.0405 
(0.0715) 

0.1366* 
(0.0655) 

0.1607* 
(0.0641) 

0.2133** 
(0.0626) 

0.2572*** 
(0.0619) 

0.2510*** 
(0.0623) 

0.3048*** 
(0.0609) 

0.3136*** 
(0.0610) 

0.3315*** 
(0.0606) 

0.3397*** 
(0.0604) 

0.3557*** 
(0.0602) 

Internat

ional 

0.2324*** 

(0.0280) 

0.1973*** 

(0.0245) 

0.1400*** 

(0.0240) 

0.1181*** 

(0.0239) 

0.1002*** 

(0.0237) 

0.1036*** 

(0.0237) 

0.0992*** 

(0.0237) 

0.0913*** 

(0.0238) 

0.0927*** 

(0.0238) 

0.0946*** 

(0.0238) 

0.0877*** 

(0.0238) 

0.0674** 

(0.0240) 

0.0593* 

(0.0240) 

Authors 

(ln) 

0.6041*** 

(0.0209) 

0.7648*** 

(0.0192) 

0.8207*** 

(0.0187) 

0.7973*** 

(0.0185) 

0.7659*** 

(0.0181) 

0.7485*** 

(0.0181) 

0.7249*** 

(0.0180) 

0.6932*** 

(0.0179) 

0.6613*** 

(0.0179) 

0.6363*** 

(0.0180) 

0.6139*** 

(0.0180) 

0.5877*** 

(0.0181) 

0.5754*** 

(0.0181) 

Refs 
(ln) 

0.9759*** 
(0.0241) 

1.2277*** 
(0.0220) 

1.2835*** 
(0.0215) 

1.2977*** 
(0.0213) 

1.3013*** 
(0.0208) 

1.2958*** 
(0.0208) 

1.2779*** 
(0.0208) 

1.2583*** 
(0.0207) 

1.2491*** 
(0.0206) 

1.2380*** 
(0.0207) 

1.2282*** 
(0.0206) 

1.2259*** 
(0.0207) 

1.2209*** 
(0.0207) 

N 1052801 1055915 1056516 1056757 1056778 1056574 1056703 1056803 1056895 1056781 1056813 1056902 1056895 

Log lik -41211 -50133 -52495 -53555 -54675 -55026 -55249 -55582 -55858 -55849 -56074 -56209 -56275 

Chi2 3753*** 5871*** 6745*** 6815*** 6919*** 6858*** 6604*** 6300*** 6195*** 5967*** 5780*** 5613*** 5543*** 

Data consist of all WoS articles published in 2001 and are sourced from Thomson Reuters Web of Science Core Collection.  Field 

(WoS subject category) fixed effects incorporated.  Clustered-robust standard errors in parentheses.  *** p<.001, ** p<.01, * p<.05, + 

p<.10. 

 

Big hits in year t are identified as the top 1% highly cited papers within the same WoS subject category, based on their citations 

received between 2001 and t.  Identifying big hits using annual citation counts instead of cumulative citation counts yields similar 

results. 
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Table 6. Big hits, novelty interacts with JIF 
 Big hit 

’01-‘01 
logit 

Big hit 

’01-‘02 
logit 

Big hit 

’01-‘03 
logit 

Big hit 

’01-‘04 
logit 

Big hit 

’01-‘05 
logit 

Big hit 

’01-‘06 
logit 

Big hit 

’01-‘07 
logit 

Big hit 

’01-‘08 
logit 

Big hit 

’01-‘09 
logit 

Big hit 

’01-‘10 
logit 

Big hit 

’01-‘11 
logit 

Big hit 

’01-‘12 
logit 

Big hit 

’01-‘13 
logit 

NOV 

CAT2 

-0.1436** 

(0.0550) 

0.0021 

(0.0495) 

0.0765 

(0.0479) 

0.1255** 

(0.0463) 

0.2129*** 

(0.0443) 

0.2310*** 

(0.0435) 

0.2382*** 

(0.0429) 

0.2540*** 

(0.0423) 

0.2993*** 

(0.0412) 

0.3354*** 

(0.0406) 

0.3315*** 

(0.0403) 

0.3068*** 

(0.0403) 

0.3502*** 

(0.0396) 

NOV 
CAT3 

-0.1364 
(0.1438) 

0.1931+ 
(0.1138) 

0.4661*** 
(0.0989) 

0.6375*** 
(0.0899) 

0.6671*** 
(0.0877) 

0.6769*** 
(0.0859) 

0.7210*** 
(0.0837) 

0.7068*** 
(0.0836) 

0.7489*** 
(0.0814) 

0.7463*** 
(0.0814) 

0.7449*** 
(0.0807) 

0.7654*** 
(0.0793) 

0.7781*** 
(0.0787) 

JIF 

TOP10% 

1.5661*** 

(0.0274) 

1.9481*** 

(0.0252) 

2.0416*** 

(0.0249) 

2.0346*** 

(0.0247) 

2.0388*** 

(0.0245) 

1.9851*** 

(0.0243) 

1.9432*** 

(0.0242) 

1.9035*** 

(0.0241) 

1.8743*** 

(0.0240) 

1.8537*** 

(0.0240) 

1.8140*** 

(0.0239) 

1.7846*** 

(0.0238) 

1.7683*** 

(0.0239) 

JIF TOP 

* NOV 

CAT2 

-0.1441+ 

(0.0780) 

-0.2263** 

(0.0658) 

-0.2189*** 

(0.0626) 

-0.2386*** 

(0.0609) 

-0.3294*** 

(0.0592) 

-0.3228*** 

(0.0584) 

-0.3052*** 

(0.0579) 

-0.2834*** 

(0.0573) 

-0.3278*** 

(0.0568) 

-0.3437*** 

(0.0563) 

-0.3232*** 

(0.0561) 

-0.3016*** 

(0.0563) 

-0.3411*** 

(0.0558) 

JIF TOP 

* NOV 
CAT3 

-0.2052 

(0.2072) 

-0.5628** 

(0.1631) 

-0.6241*** 

(0.1409) 

-0.6226*** 

(0.1288) 

-0.6392*** 

(0.1262) 

-0.5684*** 

(0.1233) 

-0.5894*** 

(0.1219) 

-0.5909*** 

(0.1228) 

-0.5779*** 

(0.1203) 

-0.5627*** 

(0.1204) 

-0.5374*** 

(0.1197) 

-0.5791*** 

(0.1196) 

-0.5816*** 

(0.1193) 

Internati

onal 

0.1901*** 

(0.0280) 

0.1488*** 

(0.0246) 

0.0907*** 

(0.0241) 

0.0707** 

(0.0240) 

0.0535* 

(0.0238) 

0.0586* 

(0.0238) 

0.0554* 

(0.0239) 

0.0489* 

(0.0239) 

0.0515* 

(0.0239) 

0.0543* 

(0.0239) 

0.0484* 

(0.0240) 

0.0289 

(0.0241) 

0.0216 

(0.0241) 

Authors 

(ln) 

0.4802*** 

(0.0216) 

0.6222*** 

(0.0199) 

0.6751*** 

(0.0195) 

0.6507*** 

(0.0193) 

0.6193*** 

(0.0190) 

0.6033*** 

(0.0189) 

0.5813*** 

(0.0188) 

0.5501*** 

(0.0188) 

0.5190*** 

(0.0188) 

0.4942*** 

(0.0188) 

0.4737*** 

(0.0189) 

0.4481*** 

(0.0189) 

0.4366*** 

(0.0189) 

Refs (ln) 0.7393*** 
(0.0257) 

0.9478*** 
(0.0242) 

0.9939*** 
(0.0239) 

1.0154*** 
(0.0237) 

1.0211*** 
(0.0232) 

1.0235*** 
(0.0231) 

1.0117*** 
(0.0230) 

0.9960*** 
(0.0229) 

0.9924*** 
(0.0228) 

0.9846*** 
(0.0228) 

0.9803*** 
(0.0227) 

0.9821*** 
(0.0227) 

0.9806*** 
(0.0227) 

N 1052801 1055915 1056516 1056757 1056778 1056574 1056703 1056803 1056895 1056781 1056813 1056902 1056895 

Log lik -39508 -46753 -48568 -49580 -50638 -51165 -51537 -51998 -52395 -52481 -52831 -53062 -53209 

Chi2 8514*** 14380*** 16198*** 16406*** 16649*** 16089*** 15574*** 15093*** 14746*** 14305*** 13933*** 13624*** 13310*** 

Data consist of all WoS articles published in 2001 and are sourced from Thomson Reuters Web of Science Core Collection.  Field 

(WoS subject category) fixed effects incorporated.  Clustered-robust standard errors in parentheses.  *** p<.001, ** p<.01, * p<.05, + 

p<.10.   

 

Journals are classified into two groups: the top 10% in the same WoS subject category and others.  Using a different classification, the 

top 25% versus the rest yields consistent results.  
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Appendix I.  Novelty measure 

We develop the following procedure to operationalize the combinatorial novelty measure.  

 For each focal paper, we retrieve all of its co-cited journal pairs (J1-J2, J1-J3, J1-J4 …) 

 We check each journal pair to see if it is new, i.e., never appeared since 1980.  The 1980 

cut off is because of data-availability reasons.  It assumes a window of 20 years before 

obsolescence. 

 For those new journal pairs (e.g., J1-J2), we check how easy it is to make this new 

combination by looking at how many common “friends” they have.  More specifically, we 

compare the co-citation profiles of the two journals (J1 and J2) in the preceding three 

years (between year t-3 and t-1).  

o We use the following matrix where each row or column provides the co-citation 

profile for a journal.  The i,j-th element in this symmetric matrix is the number of 

times that Ji and Jj are co-cited, that is, the number of papers published between 

year t-3 and t-1 that cite them together.  For example, in the preceding three years, 

J1 and J2 have never been cited together by any papers, but J1 and J3 have been 

cited together by 3 papers. 

 J1 J2 J3 J4 J5 … 

J1 / 0 3 0 5 … 

J2 0 / 6 2 3 … 

J3 3 6 / 5 4 … 

J4 0 2 5 / 0 … 

J5 5 3 4 0 / … 

… … … … … … / 

 

o The ease of combining J1 and J2 is defined as the cosine similarity between their 

co-citation profiles: 

𝐶𝑂𝑆1,2 =
𝐽1 ∙ 𝐽2

‖𝐽1‖‖𝐽2‖
 

where J1 and J2 are row (or column) vectors.  Cosine similarity is a classic 

measure of similarity between two vectors, and is widely used in bibliometrics. 
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o Correspondingly, the difficulty of combining J1 and J2 is: 1 − COS1,2. 

 For each paper, we construct a continuous indicator of combinatorial novelty as the sum 

of all new combinations weighted by the cosine-based ease of making the new 

combination.  Papers without new combinations get 0 by definition. 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 = ∑ (1 − 𝐶𝑂𝑆𝑖,𝑗)
𝐽𝑖−𝐽𝑗 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑛𝑒𝑤

    

 To avoid trivial combinations, we focus only on the most important journal combinations, 

i.e., we exclude 50 percent of the least cited journals (as measured in the preceding three 

years).  To further reduce the likelihood of picking up trivial combinations, we impose as 

a condition that the new combination has to be reused at least once in the next three years.  

We check the robustness of the main results to these choices in Appendix II & III. 
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Appendix II.  Robustness: Scientific fields 

The inclusion of scientific field dummies in the econometric analysis corrects for field specific 

effects influencing impact but does not allow for any field specificity in the relationship between 

novelty and impact.  For example, are novel papers more likely to lead to big gains in some 

fields, while other fields are more averse to novel papers, hampering their impact? 

To examine this in more detail we perform an analysis of the main effects of novelty by scientific 

discipline.  We use 3 groups: LS (Life Sciences), PSE (Physical Sciences and Engineering), and 

SS (Social Sciences).  In LS, we distinguish LS2 (Medicine) from the rest (LS1).  In PSE we 

distinguish PSE2 (Computer Sciences; Engineering) from the rest.  Both LS2 and PSE2 are the 

more applied counterparts of LS1 and PSE1.  PSE2 and especially SS are relatively small fields 

compared with LS1, LS2 and PSE1, which may hamper significant effects for these fields. 

The results, available on request from the authors, show that the finding that novel papers are less 

likely to be published in high impact journals holds especially in LS1, LS2, and PSE1.  But in 

PSE2 and SS, the negative association between novel paper and the Journal Impact Factor is 

insignificant.  The result on the higher dispersion of citations for novel papers holds for all 

subfields, with the exception of the SS, where there is no significant difference in the dispersion 

of impact for novel and non-novel papers.  In all subfields, highly novel papers are more likely to 

be top 1% cited papers when using the long citation time window.  When using a shorter (3-year) 

citation time window, and not controlling for the Journal Impact Factor, in none of the scientific 

fields are novel papers significantly more likely to be top 1% highly cited.  Only when 

controlling for the Journal Impact Factor is there a significant positive effect for highly novel 

papers, but only in LS1 and PSE1. 

We conclude that the main results are more or less robust by field, especially for the larger fields 

LS and PSE.  The result on the higher variance in impact for novel papers and the higher 

likelihood to be top 1% cited with a longer time window are robust across all fields.  The effect 

of the lower Journal Impact Factor is less robust in the smaller fields. 
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Appendix III.  Robustness: Indicator variations 

The novelty indicator used in the analysis excluded the 50% least cited journals and required 

reuse of the new combination in the next three years.  To check the sensitivity of the analysis to 

these choices, we replicate the analysis without these restrictions.  Although most new journals 

are already not included in the analysis because they are typically among the lower cited journals, 

we also checked the results excluding new and/or young journals for the calculation of novelty.  

In addition, Boyack and Klavans (2014) warned that the atypicality measure in (Uzzi et al., 2013) 

is confounded with citing star journals, such as Science, Nature, and PNAS, although they did not 

directly test whether such confounding effect would change the findings of (Uzzi et al., 2013).  

Our novelty measure is unlikely to be confounded with citing star journals, which are so highly 

cited that combining them with any other journals is less likely to be new.  Nevertheless, we 

check results excluding top 10% highly cited journals and multidisciplinary journals.   

We test robustness of our findings using the following variations of the novelty measure: 

V1. Only exclude 50% least cited journals 

V2. Only require reuse in 3 years 

V3. Exclude new journals 

V4. Exclude journals younger than 3 years 

V5. Exclude 50% least cited journals, require reuse in 3 years, and exclude top 10% highly 

cited journals 

V6. Exclude 50% least cited journals, require reuse in 3 years, exclude top 10% highly cited 

journals, and exclude multidisciplinary journals 

The result on the significantly lower journal impact factor for novel papers is found across all 

specifications.  The result on novelty being associated with a significantly higher dispersion of 

citations is robust and similar in size across all specifications.  The higher probability of being in 

the top 1% highly cited papers, when taking a long citation time window (13 years) is also robust 

across specifications. 
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If we include all cited journals and only impose the reuse requirement, we find a higher 

probability for highly novel papers to be in the top 1% highly cited papers when using a 3-year 

window, even without correcting for the JIF.  This is likely because the inherent association 

between reuse and citations is more visible when not excluding least cited journals.  In contrast, if 

we do not impose the reuse requirement but only exclude the least cited or youngest journals, we 

get a negative association between novelty and being top 1% cited when taking the short 3-year 

citation window and ignoring the JIF effect.  Even correcting for the JIF effect we find no 

significant positive associations. 

  



26 

 

Appendix IV.  Relationship with the Uzzi measure for atypical combinations 

We compare our novelty measure with the Uzzi (Uzzi et al., 2013) measure.  Following (Uzzi et 

al., 2013), we construct an atypicality measure (using their terminology) for a paper based on its 

left tail of the distributions of referenced-journal-pairs typicality values.  Specifically, we follow 

the adapted version in (Lee et al., 2015).  The commonness for each referenced journal pair is 

first calculated and sorted, and then the 10
th

 percentile of this distribution of commonness value 

at the journal-pair level gives the atypicality score at the paper level.  In a similar manner to our 

categorical NOV CAT measure, we define a categorical atypicality measure UZZ ATYP, which 

takes a score of 3 for papers which are among the top 1% of their subject category on Uzzi’s 

atypicality measure, a score of 1 for papers without any atypical journal combinations (i.e., the 

observed number of co-citations is smaller than the expected).  We assign a score of 2 for 

everything else.  Table A1 reports the two-way table between NOV CAT and UZZ ATYP. 

Table A1:  Co-occurrence between novelty and atypicality 

 NOV CAT=1 (89%) NOV CAT=2 (10%) NOV CAT=3 (1%) 

UZZ ATYP=1 (52%) 1.06 0.49 0.34 

 94.9% 4.7% 0.4% 

 54.8% 25.1% 17.6% 

UZZ ATYP=2 (47%) 0.94 1.52 1.61 

 83.5% 14.9% 1.6% 

 44.4% 72.2% 76.6% 

UZZ ATYP=3 (1%) 0.75 2.75 5.75 

 67.3% 26.9% 5.8% 

 0.8% 2.8% 5.8% 

For each contingency, we report in black the ratio of observed to expected frequency (expected in 

the case of independency between novelty and atypicality), in blue the row percentages (i.e., the 

distribution across NOV CAT by UZZ ATYP), and in red the column percentage (i.e., the 

distribution across UZZ ATYP by NOV CAT).  Data sourced from Thomson Reuters Web of 

Science Core Collection. 

 

One first observation from Table A1 is that a lower share of papers are defined as novel, using our 

measure, than are defined as atypical, using the Uzzi scoring method:  While only 11% of the 

papers in our sample score on novelty, 48% of papers score on the Uzzi atypicality measure, i.e., 

almost half of all papers are atypical.  Our measure therefore picks up a rarer novelty 

phenomenon, than does atypicality. 
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Table A1 confirms a significant positive association between atypicality and novelty.  The χ
2
 test 

of independence between row and column variables is highly significant (χ
2 

= 2491, p < 2.2e-16).  

Being non-novel but atypical (cells 4 & 7) and being non-atypical but novel (cells 2 & 3) occur 

less frequently than expected, while being non-novel and non-atypical (cell 1) and being novel 

and atypical (cells 5, 6, 8 and 9) occur more frequently than expected.  Especially noteworthy is 

that scoring in the top 1% range on both atypicality and novelty occurs 5.75 times more often 

than expected.  Despite this positive association, Table A1 also shows that the off-diagonal cases 

of non-overlap are substantial in numbers: 

 45.2% of all papers with no novel combinations (i.e., NOV CAT = 1) score positively on 

atypicality (cells 4&7 in column 1).  Their atypical combinations are, however, not novel.   

 Of the top 1% atypical papers (i.e., UZZ ATYP = 3), two thirds do not make new 

combinations (cells 8 & 9 in row 3);  

 Although 82.4% of the highly novel papers (i.e., NOV CAT = 3) also make on average 

atypical combinations (cells 6&9 in column 3), only 5.8% of them score in the top 1% on 

atypicality,  meaning that although they are making substantially new combinations,  the 

profile of all the combinations they make is only moderately atypical. 

The comparison confirms that although novelty and atypicality are related, they are nevertheless 

distinct concepts.  Novelty may be one of the drivers for atypicality of combinations, but 

atypicality is not a direct measure of novelty, capturing a less skewed phenomenon. 

We further run regressions, adding the Uzzi measure and compare its effects against our novelty 

measure.  UZZ ATYP and NOV CAT have different distributions across their three categories, 

which might influence the comparison results.  Therefore, in addition to UZZ ATYP, we construct 

an alternative categorization for Uzzi’s atypicality, with the same proportion of papers in each 

category as our novelty categories.  Specifically, UZZ CAT = 3 if top 1% in the same WoS 

subject category and publication year, 2 if below top 1% but above top 10%, and 1 all others.  In 

addition, we also compare Uzzi’s atypicality and our novelty score, both continuous variables.  

We find that: 
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 Both novelty and atypicality have positive effects on the dispersion of 13-year citations, 

but novelty has a more pronounced effect. 

 Both novelty and atypicality have positive effects on the probability of big hits when 

using a 13-year citation time window.  Atypicality seems to have a larger effect than 

novelty.  However, when we correct the disadvantage of novel papers being published in 

lower Impact Factor journals (additionally control for the Journal Impact Factor the 

regressions), novelty has a larger effect than atypicality. 

 Both novelty and atypicality have positive effects on the probability of cited by big hits, 

but novelty has a more pronounced effect. 

 UZZ CAT has a negative effect on JIF, but this negative effect disappears after adding 

NOV CAT into the regression. On the other hand, UZZ ATYP and atypicality (ln) do not 

have negative effects on JIF.  

 While novelty has a negative effect on the probability of big hits using a three-year time 

window, atypicality does not. 

 In all cases, the effects of novelty remains consistent, with or without having atypicality in 

the regression at the same time. 

We conclude that our novelty measure captures a rarer phenomenon than Uzzi’s atypicality 

measure.  While both measures are significantly correlated, they are also sufficiently distinct.  

The impact analysis of our novelty measure is robust when we additionally control for 

atypicality.  Furthermore,  the impact profile for NOV CAT shows more pronounced effects with 

respect to higher risk and delayed impact compared with the atypicality, dimensions which are 

more closely associated with novel research.  
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