The Representation of the Archaic Record at Traversant, Troup County, Georgia

Ethan Gilbert

Follow this and additional works at: https://scholarworks.gsu.edu/anthro_theses

Recommended Citation
doi: https://doi.org/10.57709/18775698

This Thesis is brought to you for free and open access by the Department of Anthropology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Anthropology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
THE REPRESENTATION OF THE ARCHAIC RECORD AT TRAVERSANT, TROUP COUNTY, GEORGIA

by

ETHAN GILBERT

Under the Direction of Jeffrey Glover, PhD

ABSTRACT

Traversant is a well stratified archaeological site in Troup County, Georgia. This thesis focuses on the Archaic period (10,000-3,000 B.P.) deposits at the site to better understand what life was like for people in this area during these millennia. The location was close to an array of natural resources that were exploited by its inhabitants. Determining the role that lithic materials played is one of the most important aspects of this project, especially the projectile points/knives (PPKs). The PPKs at Traversant are key chronological markers. The excavations revealed features and other artifact types like soapstone bowl fragments and Stallings pottery that provide data on the activities happening at the site. Models of Archaic period lifeways (Primary Forest Efficiency, Band/Macroband, Riverine-Interriverine and Adaptive Flexibility) are tested against these data.
INDEX WORDS: Human Environment Interaction, Archaic Period, Archaeology, Lithics
THE REPRESENTATION OF THE ARCHAIC RECORD AT TRAVERSANT, TROUP COUNTY, GEORGIA

by

ETHAN GILBERT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Arts

in the College of Arts and Sciences

Georgia State University

2020
THE REPRESENTATION OF THE ARCHAIC RECORD AT TRAVERSANT, TROUP COUNTY, GEORGIA

by

ETHAN GILBERT

Committee Chair: Jeffrey B. Glover

Committee: Nicola Sharratt

Terry Powis

Electronic Version Approved:

Office of Graduate Services
College of Arts and Sciences
Georgia State University
August 2020
DEDICATION

I would like to take a moment to thank my family and friends for helping me when I have been in graduate school and encouraging me along the way, because this process has been a very eventful experience. There have been lots of highs from receiving good grades on exams, papers, projects, and lots of lows when the stress levels were very high during many days in a row, or at times many weeks in a row. They always believed in me throughout the entire process, from the first semester to the final semester.

Other people I would like to thank are Patrick Severts and his wife Nancy, who are the landowners of the excavation site. They allowed me to continue working at the excavation site, and in addition with Dr. Powis, to help this be a one of a kind archaeological experience where I was able to learn how the history of Pine Mountain, Georgia has changed over thousands of years. Patrick and Nancy allowed me to come down to the excavation site a few times in the summer and fall, and once during the winter, (in addition to once last spring) to continue working on the fieldwork. They also opened up their home (and a cabin across the street) for me so I can lodge there while working at the site. I also appreciate them letting the other students who came to help excavate to camp out on their property.

Some other people I want to thank are all of the Georgia State University and Kennesaw State University students who were either in the lab helping me wash the artifacts or down at the excavation site working. I really do appreciate all of their hard work and I’m very glad they were able to experience some archaeology in a Southeastern setting. Lastly, I would like to thank the volunteers, whether they were local or nonlocal, for coming down to excavate at the site.
ACKNOWLEDGEMENTS

I would like to take time to recognize the following people for helping me in my anthropological academic career: Dr. Terry Powis, Dr. Jeffrey Glover, and Dr. Nicola Sharratt. They have helped to get the word out to anthropology students to help excavate, and for coming down to Traversant to help excavate. I am very grateful for all their help.

Dr. Powis has been instructing me in the anthropological and archaeological world since the Fall 2013 Semester when I was enrolled at Kennesaw State University for my bachelor’s degree. He also was my advisor when I was at KSU. Almost all of my archaeology classes at KSU were taught by him, ranging prehistoric to historic to field methods to laboratory. In his classes I was taught the proper way to conduct archaeological field work and the field methods class is where I learned hands on experience and how to properly excavate, which still to this day was the best archaeology class I have ever taken. Dr. Powis is also one of the contacts on my CV, and I appreciate the good word that he has put in when companies have contacted him about me for the hiring process for archaeology projects. I also appreciate Dr. Powis for allowing me to work with him on this project when I was first formulating ideas for the thesis.

Dr. Jeffrey Glover has been instructing me at Georgia State University since the Fall 2018 Semester. He is my advisor at the university and has been extremely helpful when I was taking his Archaeology Methods course and throughout the entire process of writing this thesis. There have been multiple revisions made during the course of the Fall 2019 and Spring 2020 Semesters for the Thesis Prospectus and the Thesis itself, which has helped me to narrow down on what are the most significant aspects that I need to focus on for the thesis. I am very grateful for all his assistance with this process. He also has provided a vast amount of aid for the construction of the artifact catalogue that I have in an Excel spreadsheet.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. V

LIST OF TABLES .. 5

LIST OF FIGURES .. 7

1 INTRODUCTION.. 9

1.1 Site Description ... 9

1.2 Project Background ... 11

1.3 Research Questions .. 12

1.4 Thesis Outline ... 13

2 CULTURAL AND NATURAL HISTORY .. 14

2.1 Natural History .. 15

2.2 General Overview of the Archaic Period in Georgia ... 18

2.2.1 The Early Archaic .. 19

2.2.2 The Middle Archaic .. 22

2.2.3 The Late Archaic .. 26

2.3 Theory .. 28

2.4 Types of Sites and Models ... 29

2.4.1 The Band-Macroband Model .. 32

2.4.2 Primary Forest Efficiency Model .. 33

2.4.3 The Riverine-Interriverine Model ... 34
2.4.4 The Adaptive Flexibility Model

2.5 Conclusions

3 METHODS

3.1 Archaeological Investigations Under the Direction of Kennesaw State University

3.2 Laboratory Investigations at Kennesaw State University

3.3 Archaeological Investigations Under the Direction of Georgia State University

3.4 Laboratory Investigations at Georgia State University

3.5 Conclusions

4 THE DATA OF TRAVERSANT

4.1 Test Unit 202

4.2 Test Unit 204

4.3 Test Unit 206

4.4 Test Unit 208

4.5 Test Unit 210 North Half

4.6 Test Unit 212

4.7 Test Unit 214

4.8 Test Unit 216

4.9 Test Unit 218

4.10 Conclusions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ANALYSIS OF THE ARTIFACTS</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Traversant PPKs</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Profile Data with Strata</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Early Archaic Artifact Assemblage</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Middle Archaic Artifact Assemblage</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>Late Archaic Artifact Assemblage</td>
<td>70</td>
</tr>
<tr>
<td>5.6</td>
<td>Traversant Features</td>
<td>71</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusions</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>INTERPRETATIONS AND TESTING THE ARCHAIC MODELS</td>
<td>72</td>
</tr>
<tr>
<td>6.1</td>
<td>Types of Sites</td>
<td>73</td>
</tr>
<tr>
<td>6.2</td>
<td>Traversant and the Primary Forest Efficiency Model</td>
<td>74</td>
</tr>
<tr>
<td>6.3</td>
<td>Traversant and the Band/Macroband Model</td>
<td>75</td>
</tr>
<tr>
<td>6.4</td>
<td>Traversant and the Riverine-Interriverine Model</td>
<td>76</td>
</tr>
<tr>
<td>6.5</td>
<td>Traversant and the Adaptive Flexibility Model</td>
<td>77</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusion</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Appendix A.1 Test Unit 208 Northeast Quadrant</td>
<td>87</td>
</tr>
</tbody>
</table>
Appendix A.2 Test Unit 208 Northwest Quadrant .. 87

Appendix A.3 Test Unit 208 Southeast Quadrant ... 88

Appendix A.4 Test Unit 208 Southwest Quadrant .. 88

Appendix A.5 Test Unit 210 .. 89

Appendix A.6 Test Unit 212 .. 89

Appendix A.7 Test Unit 218 .. 89

Appendix A.8 Test Unit 214 .. 90

Appendix A.9 Test Unit 216 .. 90

Appendix B Soapstone and Stallings Ceramics ... 91

Appendix C Traversant PPKs by Test Unit .. 93
LIST OF TABLES

Table 2.1 Early Archaic Sites ... 18
Table 2.2 Middle Archaic Sites .. 19
Table 2.3 Late Archaic Sites ... 19
Table 4.1 Test Units 202/204 West Profile... 47
Table 4.2 Test Unit 202 Artifact Count Per Level.. 48
Table 4.3 Test Unit 204 Artifact Count Per Level.. 48
Table 4.4 Test Units 202-206 South Profile ... 50
Table 4.5 Test Unit 206 Artifact Count Per Level.. 50
Table 4.6 Test Units 208/210 North Profile.. 51
Table 4.7 Test Unit 208 NE Quad Artifact Count Per Level .. 52
Table 4.8 Test Unit 208 NW Quad Artifact Count Per Level .. 52
Table 4.9 Test Unit 208 SE Quad Artifact Count Per Level .. 53
Table 4.10 Test Unit 208 SW Quad Artifact Count Per Level ... 53
Table 4.11 Test Unit 210 North Half Artifact Count Per Level ... 55
Table 4.12 Test Unit 212 Artifact Count Per Level .. 57
Table 4.13 Test Unit 214 Artifact Count Per Level... 59
Table 4.14 Test Unit 216 Total Artifact Count Per Level .. 62
Table 4.15 Test Unit 218 Total Artifact Count Per Level .. 63
Table 5.1 West Profile 202-204:Strat Numbers, Levels, and Time Periods 66
Table 5.2 South Profile 202-206: Strata Numbers, Levels and Time Periods 66
Table 5.3 North Profile 208-210: Strata, Levels and Time Periods .. 67
Table 5.4 East Profile Test Unit 216: Strata, Levels and Time Periods .. 68
Table 5.5 South Profile Test Unit 216: Strata, Levels and Time Periods.. 68
LIST OF FIGURES

Figure 1.1 Traversant Site Location in Troup County with the Fall Line Shown (Smart et al. 2020:14) .. 10

Figure 1.2 Traversant Site Location from Google Earth with Flat Shoal Creek north of the site (Google Earth 2020) ... 11

Figure 2.1 Physiographic Provinces of Georgia (ArcGIS 2020) .. 15

Figure 2.2 Early Archaic Projectile Points (Stanyard 2003:21) ... 21

Figure 2.3 Middle Archaic Projectile Point Types (Stanyard 2003:39) ... 24

Figure 2.4 Late Archaic Projectile Points (Stanyard 2003:53).. 27

Figure 3.1 Traversant Plan View & Surrounding Areas (Smart et al. 2020:16) .. 38

Figure 4.1 Photo of Test Units 202/204 West Profile. Image Courtesy of Terry G. Powis 47

Figure 4.2 West Profile Test Units 202-204 (Smart et al. 2020:17) ... 48

Figure 4.3 Photo of Test Units 202-206 South Profile. Image courtesy of Terry G. Powis........ 49

Figure 4.4 South Profile of Test Units 202-206 ... 49

Figure 4.5 Photo of Test Unit 208 SW Quad Level 10, Feature 6. Nut Stone. Image courtesy of Terry G. Powis ... 52

Figure 4.6 North Profile of Test Units 208 and 210 ... 53

Figure 4.7 Photo of Test Unit 210 Level 5. Image courtesy of Terry G. Powis................................. 54

Figure 4.8 Photo of Test Unit 212 Level 3. Image courtesy of Terry G. Powis................................. 56

Figure 4.9 Photo of Test Unit 212, Feature 1 .. 56

Figure 4.10 Photo of Test Unit 214 Feature 10 ... 58

Figure 4.11 Photo of Test Unit 214 Feature 15 ... 58

Figure 4.12 Photo of South Profile Test Unit 216 ... 59
Figure 4.13 South Profile of Test Unit 216... 60
Figure 4.14 Photo of East Profile Test Unit 216... 60
Figure 4.15 East Profile of Test Unit 216... 61
Figure 4.16 Test Unit 216 Feature 11... 61
Figure 4.17 Test Unit 216 Feature 12... 62
1 INTRODUCTION

For the archaeology of the Southeastern United States there have been numerous excavated sites dating to five major time periods (Paleoindian, Archaic, Woodland, Mississippian, and/or Historic), which have provided valuable data on the individuals that lived there. One time period that is not as well known in the scholarly literature is the Archaic period. This is particularly true for the archaeology of Georgia. There needs to be more data that can be produced and disseminated about Archaic sites for the entirety of Georgia. If that can happen, there will be a better understanding of the Archaic period as a whole. The Archaic, lasting from 10,000 to 3,000 B.P., was a time period when populations were adjusting to the changing environments in the early Holocene (Anderson and Hanson 1988:262).

To better understand what went on at the Traversant site, I test the Primary Forest Efficiency model, the Band/Macroband model, the Riverine-Interriverine model, and the Adaptive Flexibility model. These models have been developed by scholars to understand how Archaic period societies moved across the landscape and to help interpret how sites were being used by Archaic peoples. With the results from the excavations conducted at the Traversant site, I can assess whether the site was used in the same manner throughout time, or if the utilization of the site changes between the Early, Middle, and Late Archaic periods.

1.1 Site Description

Traversant is seven miles north of Pine Mountain, Ga and 12 miles southwest of La Grange in Troup County Georgia (Smart et al. 2020:1) (Figure 1.1). The dimensions of the site are 9 meters (north-south) x 10.7 meters (east-west) or 96.88 square feet (north-south) x 115.17 square feet (east-west). Nancy Williams (the current landowner), gave the name Traversant to
the site because that means “path” or “crossing” in French. The shoals nearby were utilized by past peoples to cross over the creek, until 1885 when a dam was built (Davidson 1971).

![Figure 1.1 Traversant Site Location in Troup County with the Fall Line Shown (Smart et al. 2020:14)](image)

The dam was associated with the historic factory that is also found on the property. First built in the 1800s as a grist mill (known originally as The Troup Factory) (Moats et al. 2010:104-118), it was changed to a textile mill in 1847. In 1906, the mill was relocated to La Grange, Georgia and since then the mill has fallen into disrepair. In the last two centuries, due to the farming in the area, clay has eroded off the hillside and created a cap of that clay, which has helped to preserve the site and the stratigraphy of the prehistoric contexts, although the raceway of the mill cuts through the site.
Figure 1.2 Traversant Site Location from Google Earth with Flat Shoal Creek north of the site (Google Earth 2020)

The site is located in the Piedmont Province of Georgia (Smart et al. 2020:4). Traversant is roughly 135 meters north of the historic Troup County Factory Mill site and on the first terrace of Flat Shoal Creek (Smart et al. 2020:1) (Figure 1.2). The forests around the site consist of hardwood and softwood trees (like pine) (Brooks 1980:51). The topography of Pine Mountain has been characterized as rolling, with the elevation for the area being between 180-300 meters (Smart et al. 2020:4). Due to the average amount of rainfall that Pine Mountain gets, which is roughly 50.1 inches per year (Sperling’s Best Places 2020) (or roughly 127 cm per year), the site is impacted by flooding, most typically in spring.

1.2 Project Background

The Traversant site (9TP1081B) is a multi-component site, with artifacts ranging from the Archaic period to the Historic period. There is a high level of stratigraphic integrity at the site. With the array of artifacts recovered, the stratigraphy has been dated from the Early Archaic through the Mississippian periods. Dr. Terry Powis, a professor at KSU, and Mr. Patrick Severts, a semi-retired archaeologist, have been investigating the site since 2012. Many different types of
people have worked at the site, from university students to professors to volunteers. Dr. Powis has been bringing students down a few times each year, for a few days at a time, to excavate the site. I began working at the site in the Spring of 2019, and my fieldwork at Traversant continued into Summer/Fall 2019, Winter 2020, and Summer 2020. Similar to other sites, Traversant was found accidentally. Lain Graham, a former Georgia State University M.A. student, was conducting Phase I shovel testing at the historic Troup Factory Mill site and found prehistoric artifacts (being lithics and ceramics). The shovel tests were 15 meters apart. Greg Smart, Gary Owenby, and Evan Talmadge, three KSU alumni, also worked at the site focusing on the Archaic, Woodland, and Mississippian periods, respectively. Phase II Testing began at the site (based on Phase I Testing) and Test Unit 202 (the first test unit) was set up and excavated (Smart et al. 2020:3). Traversant has nine total test units in total.

1.3 Research Questions

Not much detailed evidence exists of the Archaic period in the west, central portion of Georgia where Traversant is located; therefore, the main goal of this thesis is to understand what life was like for the inhabitants of the site during the Archaic period and how the site relates to our broader understanding of shifting Archaic period lifeways in Georgia. With the different models that have been put forth for the Archaic period, it is important to understand what they are and how they can be tested against the Traversant site. These models have been applied to the Early, Middle, and/or Late Archaic periods. There are different types of sites that can be paired with the models, to understand what the behavioral aspects were of the people. The two main questions of this thesis are focused on: comparing what the lithic assemblage is to other Archaic sites and attempting to determine what the activities were for the site. This is accomplished by examining the artifacts and features at Traversant.
1.4 Thesis Outline

The cultural and natural history of Georgia are the focus of Chapter 2. Understanding the natural history of Georgia is key because it can shed light on what material resources were available to those societies. Moving on to the culture history of the region, I describe the basic attributes of the Early, Middle, and Late Archaic periods and how they are identified archaeologically. I then discuss the various models that scholars have developed to understand the lifeways of Archaic peoples in the Southeast. I discuss different site types and the artifact assemblages associated with these models. As stated, these models serve as the basis for testable hypotheses about different settlement types that I test against the Traversant data.

Chapter 3 focuses on the methods used during this project. I lay out what the field and lab methods were for Kennesaw State University first, and then Georgia State University. In particular I focus on the descriptive attributes that were recorded for each projectile point / knife (PPK). The PPKs are particularly important because they can be dated based on their morphology, and because of that they serve as the key artifact for examining the stratigraphic integrity of the Traversant site.

The Traversant data are presented in Chapter 4 organized by test unit. There is a detailed description of each test unit, how they were excavated, including pictures (of profiles and features), tables (of the stratigraphic levels), tables that show the counts of artifact types that were recovered in each level, and the features associated with each test unit. The detailed information on the projectile points is organized by the test unit but is placed in Appendix C to aggregate the data and make it more accessible.
Chapter 5 is concerned with analyzing the artifact assemblage in greater depth and detail. In this chapter I investigate the distinct artifact assemblages associated with the Early, Middle, and Late Archaic periods, respectively. It also includes analysis of the projectile points from the site. Chapter 6 is where the materials of Traversant are tested against the different models that have been applied to the Archaic period. Also, based upon the artifact assemblage, Traversant is tested against the different types of sites. There also is information regarding how the different types of sites can be paired with the different models. This interpretation provides a clearer picture of what life was like at Traversant.

Chapter 7 is the summary chapter where the entire thesis is summed up. There are also remarks on future research that can be done to better understand some artifact types that have been found, such as nutting stones.

2 CULTURAL AND NATURAL HISTORY

This chapter begins with a discussion of the natural history of Georgia. If we are to understand the relationship between Archaic peoples and their environment, we must have a good working knowledge of what that environment was like and how it changed over time. The next section gives an overview of the Archaic sites in Georgia. Based on other scholars' work, I provide an overview of the number of sites identified in each province of Georgia, including the Pine Mountain region, for the Early, Middle, and Late Archaic periods. The Early Archaic dates from 10,000-8,000 B.P., the Middle Archaic from 8,000-5,000 B.P., and the Late Archaic lasted from 5,000-3,000 B.P. I discuss the settlement and subsistence patterns, and archaeological data associated with each of these periods. I discuss the most influential models that have been
developed by scholars to understand Archaic period lifeways. These models provide archaeological correlates for different types of settlement that I test against the Traversant data.

2.1 Natural History

When discussing Georgia’s environment, I focus on its five physiographic regions and their geology, ecology, and hydrology (Stanyard 2003:8-16). All of these factors influence the resources that would have been available to past peoples. The five physiographic provinces are the Coastal Plain, the Appalachian Plateau, the Piedmont, the Ridge and Valley, and the Blue Ridge (Figure 2.1)
The Coastal Plain is the largest province which comprises 60 percent of the entire state, stretching from the Fall Line to the Atlantic Ocean (New Georgia Encyclopedia 2020) while the Piedmont is the second largest, at 19,000 km². The Piedmont has many different river drainages. At 4,300 km² the Ridge and Valley is the third largest, which has high ridges and elongated valleys in the northwest of the state. The Blue Ridge province is 3000 km² and consists of mountain plateaus and mountain valleys. The smallest province is the Appalachian Plateau at 40 km² which comprises mountain ranges and valleys in the far northwest corner of the state (Stanyard 2003:8).

For the bedrock geology, there are characteristics which can help to break up the different provinces of Georgia. Shale and limestone make up the Appalachian Plateau, while the Ridge and Valley is composed of shale, sandstone, chert, limestone, dolomite, and quartzite. For the Blue Ridge province, the main components are made of mica schist and biotite gneiss/schist, while other rock forms (quartzite, mafic, ultramafic) exist in certain regions. For the Piedmont, schist and biotite gneiss are the most common rock types. The other types of rock which occur in the Piedmont are: quartzite, mica schist, mafic and ultramafic, granite gneiss, granite, and metavolcanics (examples are slate, rhyolite, andesite, dacite, and argillite) (Stanyard 2003:9-12).

Of particular interest to past peoples in Georgia was the location of chert resources (Goad 1979:8). In Georgia, chert is found in the Ridge and Valley, Coastal Plain, and Piedmont provinces. Coastal Plain and Ridge and Valley are the two most common types found and were utilized the most by Archaic societies (Ledbetter et al. 2009:16). For Ridge and Valley, the locations of the resources were inside sandstone (plus limestone) rock formations. The different types of chert sources in the Ridge and Valley include: Fort Payne chert, Armuchee chert, Newala limestone, Conasauga formation chert, and the Knox group chert. Past peoples used the
Knox group and Fort Payne cherts the most. The Newala limestone was sought after to make stone tools (including the Armuchee chert) since the quality was very high (Stanyard 2003:10-11). In the Conasauga formation, chert was not used very often, but there are reports that it was easy to use (Stanyard 2003:10-11).

For the Coastal Plain province, there are not large outcrops of chert around, but it was still an important resource for people. For the societies that were south of the Fall Line in Georgia, the two locations for this type of chert were in the Barnwell formation and along the Flint River. The chert would be located in boulders, nodules, cobbles, and blocks. For the Piedmont chert, it has been recognized many times as Coastal Plain Chert, because of its appearance. This particular type of chert is found mainly in the Oconee River Drainage (Stanyard 2003:10-11).

Soapstone was a highly sought-after material, especially during the Late Archaic (Ledbetter et al. 2009:21). Soapstone is made up of metamorphosed talc, which was used to create a variety of objects. Bowls, cooking slabs, pendants, and pipes are some of the objects that were created from soapstone. For the Piedmont Province there are 19 soapstone outcrops, with 24 total in Georgia (Stanyard 2003:12).

Other heavily used lithic resources are quartz and quartzite, which could be attained to create different types of stone tools, such as projectile points (PPK’s), knives, scrapers, bifaces and unifaces (Ledbetter et al. 2009:20; Stanyard 2003:12). River cobbles and angular blocks (plus veins) are how quartz appears in the Blue Ridge and Piedmont provinces. One of the major stone tools for people living in the Piedmont was quartz. Grinding, hammering, heating were other ways that the cobbles of quartz could be used in the past (Stanyard 2003:12). The different
waterways of Georgia were vital resources for past societies. The waterways were like a network of trails, which prehistoric peoples would use for travel. Something else that is equally important is the network of trade that existed between different parts of the state, as well as thoughts and ideas which were able to spread. Inside Georgia there are ten main river drainages, with a divide between those that flow to the Gulf of Mexico and those that flow to the Atlantic Ocean. The Coosa, Flint, Chattahoochee, and Tallapoosa drainages flow into the Gulf of Mexico. The Savannah, Ocmulgee, Oconee, Altamaha, Satilla, and Ogeechee drainages flow into the Atlantic Ocean (Stanyard 2003:13).

2.2 General Overview of the Archaic Period in Georgia

There are thousands of sites that date to the Early, Middle, and Late Archaic periods in the Piedmont and Coastal Plain provinces of Georgia (Williams et al. 2010:67). Only 82 sites can be dated to the Archaic period for the Pine Mountain region, or 14 percent of the total number of sites (Williams et al. 2010:74). The following three tables (Table 2.1, Table 2.2, Table 2.3) below shows a breakdown of archaeology sites in Georgia that can be dated to the Early, Middle, and Late Archaic periods.

<table>
<thead>
<tr>
<th>Province/Region Name</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian Plateau</td>
<td>3</td>
</tr>
<tr>
<td>Ridge and Valley</td>
<td>89</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>64</td>
</tr>
<tr>
<td>Piedmont</td>
<td>979</td>
</tr>
<tr>
<td>Coastal Plain</td>
<td>730</td>
</tr>
<tr>
<td>Pine Mountain</td>
<td>10</td>
</tr>
<tr>
<td>Grand Total for Provinces</td>
<td>1865</td>
</tr>
</tbody>
</table>
Table 2.2 Middle Archaic Sites

<table>
<thead>
<tr>
<th>Province/Region Name</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian Plateau</td>
<td>0</td>
</tr>
<tr>
<td>Ridge and Valley</td>
<td>74</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>102</td>
</tr>
<tr>
<td>Piedmont</td>
<td>2046</td>
</tr>
<tr>
<td>Coastal Plain</td>
<td>422</td>
</tr>
<tr>
<td>Pine Mountain</td>
<td>29</td>
</tr>
<tr>
<td>Total for Provinces</td>
<td>2644</td>
</tr>
</tbody>
</table>

Table 2.3 Late Archaic Sites

<table>
<thead>
<tr>
<th>Province/Region Name</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian Plateau</td>
<td>2</td>
</tr>
<tr>
<td>Ridge and Valley</td>
<td>131</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>111</td>
</tr>
<tr>
<td>Piedmont</td>
<td>1739</td>
</tr>
<tr>
<td>Coastal Plain</td>
<td>1809</td>
</tr>
<tr>
<td>Pine Mountain</td>
<td>43</td>
</tr>
<tr>
<td>Total for Provinces</td>
<td>3792</td>
</tr>
</tbody>
</table>

These tables have been included to reflect that most of the Archaic sites, through the different periods, have been found in the Piedmont and Coastal Plain Province, as would be expected given their size. Also, they show a steady increase in the number of sites from the Early Archaic through the Late Archaic across the state. Since people were becoming more sedentary, it does make sense that more sites dating to the Middle and Late Archaic periods have been found.

2.2.1 The Early Archaic

The Early Archaic in Georgia lasted from 10,000-8,000 B.P. (Anderson et al. 1994:66). The resources that would have been gathered were abundant but had to be gathered depending on the seasons. The environment would have been similar to that of the Paleoindian period. The Pleistocene was during the Paleoindian period, and the start of the Early Archaic marked the Holocene (Stanyard 2003:17). The groups of people would need to travel around to adapt to their
surrounding environments, in order to survive. Hardwood forests were not as common as the later Middle and Late Archaic periods (Stanyard 2003:20). The rivers could have been used by the people to travel around to other environments. When it comes to understanding how societies would operate and adapt, there were four limiting factors:

(1) environmental structure, specifically as it relates to seasonal and geographic variation in food, lithic raw materials, and other resources; (2) biological interaction, manifest in mating network regulation; (3) information exchange, notably formatting network maintenance and subsistence resource regulation; and (4) demographic structure, evidence in population size and spacing [Anderson et al. 1994:68].

During the Early Archaic people were highly mobile, traveling around based upon the seasonal abundance of resources and then relocating to newer areas once those resources were depleted. Since agriculture had yet to be developed, hunting, and gathering was the main source of food procurement. It was more common to travel around more frequently than trying to set up longer and more permanent settlement areas. The river systems were thought to be critical for travel and habitation. In particular, the lithic outcrops, which were critical to Early Archaic peoples, were often located near rivers and streams. The lithic toolkit of the Early Archaic period includes Projectile Points/Knives (PPKs), scrapers, perforators, and spear points. The technological characteristics used to create these tools were few in number (Stanyard 2003:20). Specific types of PPKs (especially hafted bifaces) are what dominate the Early Archaic artifact assemblages. It is, of course, critical to understand how lithics changed and were used by individuals in their societies over time. There was a clear-cut change going from the common lanceolate shape of the Paleoindian period (Dalton, Clovis) to corner and side notched PPKs, with bifurcated bases, in the Early Archaic period (Anderson 1995:152). End scrapers and
unifacial knives were also utilized (Anderson 1995:152). Hardin, LeCroy, MacCorkle, and St. Albans are some of the well-known point types (Figure 2.2). For the side notching, it most likely began around 10,000 B.P. and ended c. 9,500 B.P. and the Big Sandy, Taylor, and Bolen are the main side notched types. The technology used to create similar point type characteristics resulted in a number of points looking similar to each other. The raw materials used to create them depended, in large part, on what was around the people. The Coastal Plain chert was collected when the people would be situated around the inner portions of the Coastal Plain province and Fall Zone (in late fall and the winter). In the Piedmont Province, when the Coastal Plain chert resources would get lower, quartz was used (Stanyard 2003:20-22).

![Figure 2.2 Early Archaic Projectile Points (Stanyard 2003:21)](image)

The change from side to corner notching took place around 9,500 B.P. The Kirk and Palmer point types are the most well-known for this notching type and are joined together stylistically (Anderson and Hanson 1988:266). The Kirk projectile points are seen as being larger versions of Palmer points that lacked basal grinding. For the Palmer, they have been described as smaller points, with serrated blade edges and bases that are straight and are grinded. Trying to differentiate between the Kirk and Palmer projectile points is tough due to their morphology,
because of their similarities. There can be Palmer points which have Kirk morphology standards, and vice versa (Stanyard 2003:22).

These are some of the key sites that have been used to understand what was going on during the Early Archaic period. Theriault (in Georgia), Gregg Shoals (9EB259 in Georgia), Cal Smoak (in South Carolina), Pen Point (in South Carolina), and Rucker’s Bottom (9EB91 in Georgia) (Anderson and Hanson 1988:272).

2.2.2 The Middle Archaic

The Middle Archaic dates from 8,000-5,000 B.P. (Stanyard 2003:35) and is associated with a major change in the environment. Just 500 years before the Middle Archaic began, the Mid-Holocene began. The climate was getting warmer, and precipitation was decreasing. Over the few thousand years that this time period was occurring, streams that were once very well connected were transforming into rivers that became more meandering. In the Piedmont Province, there was a change in the aquatic environments as well. With that change, the environment was dry, but short seasons of precipitation occurred (Shah and Whitley 2009: 10-11). In the Piedmont, oak and hickory forests were much more prevalent and the masts those trees and other plants provided were critical for Middle Archaic peoples. The environments were not changing as much compared to the Coastal Plain, and the habitats seemed to be more normalized, with resources that became predictable to gather. For the Coastal Plain, the oak and pine trees were being replaced by lakes and swamps. For the Piedmont Province, the shapes of rivers began to shift, which allowed for newer types of aquatic resources to appear, which then could be collected (Shah and Whitley 2009:11).

For the lifeways of the Middle Archaic, the people were still mobile but not nearly as much as during the Early Archaic. Since the changes in these environments were occurring very
rapidly, the region of mobility for people became more restricted, which might have been why people started to settle down more and become more permanent. People would have also been constructing what archaeologists identify as hearths, to help either provide heat and/or cook their food.

The increase in plant-based processed foods as a result of the environmental changes happening during this time period led people to develop new technologies to take advantage of those new resources. Nuts (hickory, oak, walnut, and chestnut) were the most obtainable plant foods in the Middle Archaic and the key to understanding the impact of bulk processing (Moore and Dekle 2010:597-598). People would seek out the areas in the forests where the nut resources could be gathered. Once gathered, people could process and consume them. The change to eating more nuts changed the individual’s diets, but it was not the only type of food consumed. Meat and shellfish (found in rivers) are other food staples that altered their diets (Moore and Dekle 2010:597-598). More specifically for the meat, deer was one animal type exploited. In general, after resources were depleted or no longer available, groups would relocate to other areas searching for more resources, creating the seasonal round (Shah and Whitley 2009:49).

Possibly around 7,000 B.P. is when the first evidence of the Eastern Agricultural Complex appears, because the role that plants played in people’s diets changed when the plants were seen as staples of food, and not just supplements to their diet, but this shift took a long time (Moore and Dekle 2010:595-596). There was a shift in the strategies employed by the individuals caused by the transition of eating those smaller animals and more plants, which gave them a better-balanced diet (Moore and Dekle 2010:595-596). Even though there was a shift in strategies, the people were still gathering and hunting. There are many different types of birds, sea animals (by the coast), and mammals have been discovered at archaeology sites dating to this
time period. As people’s familiarity with plants increased, they began manipulating the growth of plants, such as sunflower, chenopod, and marshelder, which were the foundation of the Eastern Agricultural Complex (Stanyard 2003:53).

Figure 2.3 Middle Archaic Projectile Point Types (Stanyard 2003:39)

The toolkit of the Middle Archaic period was very similar to that of the Early Archaic period, with similar tools being used such as: drills, perforators, PPKs, and formal scrapers (Stanyard 2003:43). For the projectile points and how they were placed in chronological order it is as follows: Kirk Stemmed, Stanly, Morrow Mountain, Guilford, Sykes/White Springs, Benton, Allendale, and Brier Creek Lanceolate (Stanyard 2003:35) (Figure 2.3).

A change in the toolkit that occurred included tools like: soapstone, anvil stones, nutting stones, metates, and manos. (Stanyard 2003:43-44). With the soapstone, there might have been other tools in use such as: pitted nodules, perforated slabs, nodules, and perforated nodules. A
new technology that was beginning to be adapted to the projectile points was for them to be more stemmed and lanceolate shaped. Just because there was a shift in technology, that does not mean that corner/side notched projectile points were completely discontinued into the Middle Archaic. More specifically, the Morrow Mountain point type is very commonly found, with the Guilford and Stanley point types being recovered at lower frequencies (Anderson 1995:152).

To break down the specific point types even further, the Kirk Stemmed were made until around 7,750 B.P. The Kirk Stemmed was made before Stanly projectile points, and the Stanly projectile points tended to be triangular shaped, with a vertical stem and narrower (Shah and Whitley 2009:51). The edges of the Kirk Stemmed sometimes were serrated, with the base being straight and small. But with these more general characteristic types, there are many other projectile point types that have the same characteristics of the Kirk Stemmed. So sometimes the distinction of determining if a projectile point is actually a Kirk Stemmed can be difficult at times (Stanyard 2003:35-36).

With the help of radiocarbon dating, it can assist in getting better dates to tie in with projectile points. One of the type names that has benefitted from this was the Morrow Mountain, which has produced the date of around 7,500 B.P. The date that it was still being manufactured in Georgia is 5,700 B.P. Morrow Mountain I and Morrow Mountain II are the two different types of the projectile point. For Type I the bases are either round or pointy and short, while the blade margins are either excurved or straight. The differences in Type II are blades which are thinner and more elongated, while the stems are also more elongated (Stanyard 2003:38).
A few of the key sites that can be dated to this time period are McCalla Bottoms (38AB22) and Harper’s Ferry (in South Carolina), and Lake Springs (9CB22) in Georgia (Anderson and Joseph 1988:138-147).

2.2.3 The Late Archaic

In Georgia, the Late Archaic dates from 5,000 to 3,000 B.P. (Anderson 1995:152). When this time period began, the temperature was getting cooler. The hickory and oak forests still would have been dominant. Since so much of the Late Archaic people were settling along the coastline, the marshes were an important area for people to learn to navigate. In terms of the settlement patterns, the population sizes are increasing, and when new technologies are created, these technologies can be tied in with the population sizes. With the increase in labor, that meant newer technologies to create items were able to take place, such as soapstone bowls, ceramics, maybe bannerstones, and slabs for cooking. These items were highly sought after, and they were used to trade with neighboring societies, thus creating beneficial alliances between the groups (Stanyard 2003:51).

The Stallings ceramic tradition was able to spread throughout parts of the Southeast, and it had a strong impact on Georgia (Ledbetter et al. 2009:4-6). How these lifeways can be different from the Middle Archaic can be seen in the shell rings that people were building around the coastlines. These shell mounds are also where they would dump their refuse, and over time the shell mounds would be formed into shell rings, with houses built around and/or directly on top of them (Thompson et al. 2004:192). People were becoming more settled and stayed in more permanent locations, since archaeologists discover features at many sites dating to this time period.
Of the projectile points of the Late Archaic, the Savannah River is one of the most dominant and the characteristics of these points can vary slightly; but, mostly, the stems are either straight or slightly contracted. The bases are either straight or at times having inward indentations. Quartz was used more than chert. The Savannah River points are thought to first be seen around 4,200 B.P. Based upon the morphology of the Savannah Rivers, other PPKs which are similar include the Kiokee Creek and Ottare (Stanyard 2003:53). Savannah River, Paris Island, and Kiokee Creek are just some of the common PPKs dating to this period (Figure 2.4).

Figure 2.4 Late Archaic Projectile Points (Stanyard 2003:53)

Some of the key sites have been excavated, dating to the Late Archaic include: 9RO13, 9RO111, 9RO20, 9RO24, and 9RO53 (Stanyard 2003:64). All of these sites are located in Georgia.
2.3 Theory

There have been different models put forth that have been applied to the Archaic period. These models were created by different people and have been associated with the different time periods. The theoretical frameworks of archaeology have dramatically changed in the last century. One of the individuals responsible for these changes was Lewis Binford, who played a key role in stating that archaeology must be anthropology (Binford 1962:217). Binford, along with other processual archaeologists, argued that archaeologists need to examine how people used their environments, and how people were able to alter them. Binford and others developed problem-oriented research projects to study what artifact assemblages can tell us about how past peoples interacted with their environment (e.g., Binford 1965:203). Beginning in the 1960s and 1970s, there was a shift for archaeologists in understanding how humans would interact with their environment, although understanding what the relationship was between the environment and the people living there needs to be foundational for understanding the past.

Binford was particularly interested in hunter-gatherers, and he is well known for the ethnoarchaeological work he did with the Nunamuit peoples of the Canadian Arctic (e.g., Binford 1978; see also Schiffer 1985:191). For a collection of hunter gatherer societies (339 total), he placed them into seven different systems that were able to describe them based upon their “culture” (Johnson 2014:8). These seven systems included: 1) generic hunter gatherers, 2) mounted hunters, 3) forest product specialists/mutualists, 4) horticulturalists, 5) internally ranked hunter gatherers, 6) generic hunter gatherers who have leadership ranking, and 7) hunter gatherers that set themselves apart by their wealth. Some of the designs to understand how the variation existed in these systems is based upon how dense the populations were and their environmental characteristics (Johnson 2014:5-8).
Examining artifacts from sites allow archaeologists to understand which materials were being extracted from their resource locations, because resources were only available during certain times of the year. Once those resources were gathered, it caused the people to relocate to newer areas to extract newer resources. A way to understand this better is by examining the hunting grounds that the Inuit people used in Binford’s archaeological work. That group of people would construct their hunting stands in areas where they believed the deer would be traveling around in. Then areas around the hunting stands would be established to ambush and surprise the deer. These hunting stands would be used during certain times of the year. An example is the Mask site, located around the Anaktuvuk people, when they would occupy the hunting stand from May through June (Binford 1978:330-332).

2.4 Types of Sites and Models

Understanding types of sites can point to behavioral aspects that would be shown by the people. Those types of sites are known as domestic, aggregation, and special activity. Sites that can be classified as aggregation sites, there are five possible characteristics that correlate with this type of site for when groups of people would gather. They are 1) to form and continue partnership in alliances, 2) to engage in subsistence activities, 3) to complete any obligations needed between people and their social needs, 4) to work with other in the production that does not deal with subsistence activities, and 5) to engage in a form of ritual for one or more of the previous characteristics listed (Stanyard 2003:80). There are differences in opinions between scholars when people would gather at these aggregation sites, based upon the seasons. There are some who believe it was during the Fall, while others believe it to be in the Spring (Anderson and Hanson 1988:288; Stanyard 2003:80).
For the domestic site type, it can be broken up into two different types. One of those is titled as multi-seasonal, and this is where many families would live. There needs to have been many structures present and their shape should be sub-rectangular or oval. With this many structures, and their sizes, the family types would be one big extended family or perhaps smaller families that share the residency. For the other type, that is where people would settle down depending upon the seasons. Another key characteristic is that just a single structure would have been built. For the sizes, they have the same shapes as the ones for the multi-seasonal. The families that lived there were just a single extended family or perhaps two families living together (Stanyard 2003:85).

For the domestic site type and its artifact assemblages, there was the multi seasonal (multiple houses) and single season (single house) type. Site 9R07 has been interpreted as a single season type of settlement based on its artifact assemblage. In terms of the lithics, it included two cruciform drills (that mostly were made from metavolcanics, but chert was also used in the area) and 20 hafted bifaces. To understand the hafted bifaces better, they were given the type name Savannah River, with 80% being metavolcanics, 5% being quartz, and 10% being chert. Other artifact types recovered were four soapstone bowl fragments and one fragment of a bannerstone (Stanyard 2003:67,74,85).

For the multi seasonal type, the artifact assemblage of site 9RI86 (known as Lover’s Lane), close to Augusta, Georgia, serves as a good example. There were two structures present (but perhaps closer to 5), with a grouping of people being perhaps 15 to 20. The four different examples of technological manufacturing that was occurring here was perforated soapstone, hafted bifaces, bannerstones and atlatls. All of the artifact types that can be connected with that manufacturing was recovered in large quantities. For the hafted bifaces, there were Savannah
River ones (broken) and debitage of Coastal Plain chert and metacolamics. A total of 82 drill bits and cruciform drills were found, including 272 fiber tempered ceramics (Stanyard 2003:83-84). It can be difficult when just going by the lithic materials to tell the difference between these domestic types and the aggregation site type.

One site that has been used to understand the aggregation site type, based upon the artifact assemblages, is the Stallings Island site. It has been dated to the Late Archaic and assumed that people would congregate there and engage in activities listed above. Fishing was evidently key for the people, based on the big fish midden on the island. Other artifact types recovered included soapstone slabs and bifaces, meaning that lithic production was an important aspect of the site, along with processing and cooking food. The 20 hearths found also correlates with what is known about the Late Archaic, that people would gather around for longer periods of time to live in communal areas (Stanyard 2003:80-82).

For the special activity sites, they can also be broken up into two types (Stanyard 2003:85-86). For my thesis, I will use Type A and Type B, to better distinguish them. Overall, these sites vary from one another based on length of occupation and vary from the other sites listed above by being associated with more temporary encampments. Type A is focused on shorter period encampments at the site, and many of the characteristics of each site are similar. There is a very small percentage of tools found, if any. For the debitage recovered, it exists in small to medium quantities, and is metavolcanic. When I say metavolcanic debitage, I am referring to two of the different types here in Georgia being mica schist and quartz (see Chapter 2). A possible thought is for the shorter encampment periods, it was perhaps during the deer hunting seasons. Type B has many qualifications that have been tied to it. One is represented with the debitage recovered at sites, being very large quantities and classified as metavolcanic.
Having a widespread use to hafted bifaces was also vital. Quartz industries are very heavily sought after and used extensively, with some cryptocrystalline being present. Another qualification that can be present at the site are soapstone (typically bowls), and zero evidence of permanent structures (Stanyard 2003:85-86). At Traversant, quartz artifacts were found in higher quantities that chert artifacts (see Chapter 5 for the artifact assemblages and their totals). There also has been zero remains of permanent structures found. In terms of the hafted bifaces, 55 projectile points were recovered (see Chapter 5 and Appendix C).

2.4.1 The Band-Macroband Model

The Band-Macroband Model is about understanding the mobility of societies traveling around exploiting various food resources, based upon their seasonal availability. This model has been used to understand the movement of Early Archaic peoples. The archaeological data used to create this model came from the Savannah River Valley drainage. Soon after, the model was used to examine other river drainage areas ranging across the whole South Atlantic Slope including North Carolina, South Carolina, and Georgia. In the bands (which is the local level), the societies would be between 50-150 people (Anderson and Hanson 1988:267). The macrobands, which operate at the regional level, are assumed to have between 500-1,500 people coming together at aggregation sites (Anderson et al. 1994:68; Anderson and Hanson 1988:267; Stanyard 2003:26-27).

The macrobands would break up into bands because the people would spread out to search for more resources, depending on which season it was. For the band part of this model, during the winter is when the plant types would have been scarce. While few plant resources were available, the main source of meat came from the deer, which in the winter, would be
gathered in herds. For these reasons, it was more difficult to successfully exploit the natural environment. Once the weather began to get warmer, more types of plants could be gathered in larger areas, and the deer would disperse. So, in the summer, fall, and spring, the resources possibly were fairly regular and more abundant, with the people grouped into smaller groups that tended to be more evenly spaced out (Anderson and Hanson 1988:267-271).

2.4.2 Primary Forest Efficiency Model

Joseph Caldwell created this model, which was published in 1958. Caldwell focused on what settlement patterns in the eastern United States were like, understanding the mobility patterns for the southern Piedmont, knowing the cycles of hunting and gathering, figuring out what the patterns for hunting wild game, determining how the economies needed to be specialized, and recognizing how the ideals of the Archaic period were disseminated across cultures (Caldwell 1958:6-18). One of the most important factors about this model is that it was designed to show change over time.

His model is different from the others presented because he was trying to understand social change over the entire Archaic period. As time went on, Caldwell argued that we would see an increase in complexity of societies, that in turn would also show an increase in technology. This can be tied in with the people adapting to resources around them, thus making them more efficient. Also, what is different with this model when compared to the others, is that it does not lay our clear expectations for different types of sites but is more focused on technological change in the archaeological record.
2.4.3 The Riverine-Interriverine Model

The Riverine-Interriverine is the original name for this model for the Middle Archaic period (Stanyard 2003:48). This model was created by David L. Ballenger and John H. House in the 1970’s (Stanyard 2003:48) and then later tested by archaeologists shortly after it was established. Initially it was first created for the Middle Archaic in the Piedmont region and has been expanded to the Late Archaic. It was originally understood that people would settle near the main rivers (the riverine part) in the spring and summer, then in the fall they would travel to the uplands (the interriverine part), and in the winter return back to the main river areas. Archaeology sites that can be associated with the interriverine part of the model would be small but plentiful and represent a lesser extent of the technological variability. With these smaller archaeology sites, they appear to have been settled to gather the local materials, that in turn were used for the bigger sites closer to the bigger rivers (the riverine part). With sites that can be connected with the riverine part of the model, people would have stayed there for longer periods of time. The evidence being the much larger extent of these sites and the increase variety in the technology used to create their everyday objects (Stanyard 2003:48).

McCalla Bottoms (38AB288) in South Carolina is one site which was used to understand the artifact assemblages of the Riverine-Interriverine model. This site is on the major channel of the Savannah River, accessing other waterways around the site would have been very possible to accomplish. Those other waterways that would possibly have been traveled through are shoals (which were south of the site), and a smaller tributary of the Savannah River past the levee. When the water levels were higher for the tributary, that part would be marshland. When one combines all of these waterway access points, traveling to the different areas around the site would have been possible, to seek out the resources needed by the people of the South Carolina
Piedmont, and it makes sense of why this site was occupied by people over a span of thousands of years (Anderson and Joseph 1988:134).

This site had smaller amounts of Woodland and Mississippian artifacts on top of the Middle and Late Archaic deposits, which were more than 1 meter in depth. The excavations took place over a few years, resulting in different artifact assemblages. The first assemblage included large volumes of artifacts, including 1 Savannah River PPK, 2 Morrow Mountain PPKs, 1 Otarre Stemmed PPK. With those projectile points being able to be given a point type name, it was determined that more fieldwork should be conducted at the site. The 1979 Middle Archaic excavations included: some flake tools but zero diagnostic artifacts. The 1980 Middle Archaic excavations produced Morrow Mountain PPKs, expedient tools, debitage of quartz, three features, and reasonable amounts of cracked rock. The 1981 Middle and Late Archaic excavations resulted in four features, 40,000 total pieces of debitage. The Late Archaic assemblage consisted of chert and metavolcanics. The Middle Archaic assemblage was mainly quartz for the debitage and every tool (more than 80 percent to the total), a lower number of tools (1 hammerstone, 2 Morrow Mountain Type I PPKs, and 2 bifaces) (Anderson and Joseph 1988:143-145).

To understand the McCalla Bottoms site in another way (i.e. about the site connection to its artifacts and the model), it shows that lithic reduction was a key aspect for the individuals living there based on the amounts of debitage, tools, and projectile points recovered. The people had to understand where they could collect the natural resources they needed in order to survive in their environments. The additions of the features in both the Middle and Late Archaic periods signals a more permanent use of the site. It could be possible that these features have cracked rock in them (or FCR as they are also known), to either help cook food and/or provide heat for
the people. The data hints at people staying at this site for longer than just a brief amount of time, but it was difficult to pinpoint just how exactly long the people would stay at McCalla Bottoms (Anderson and Joseph 1988:145).

2.4.4 The Adaptive Flexibility Model

The name of the Riverine-Interriverine Model was changed to the Adaptive Flexibility Model, and it was used to examine Archaic sites in the Piedmont region (Stanyard 2003:49). Kenneth Sassaman (Stanyard 2003:48) argued for the change (Sassaman 1983) since his research demonstrated that the Riverine-Interriverine model did not fit the archaeological record for the Middle Archaic. Thus, that is how the change of the name was made. The archaeological correlates of the model are that sites will have a lower amount of tool diversity, and there would be redundancy between the sites that point towards mobile populations, which will produce a larger number of sites the Piedmont. The residential bases would be stayed at, over and over again, by very small groups. Since the settlements moved around more frequently, there tended to be greater flexibility in the societies, since inhabitants could move to another area and join a new group (Shah and Whitley 2009:50). There are other strategies that have been put forth in other scholarly sources (Sassaman 1993). Permanent base camps would be set up first, then smaller camps would be established, closer to the resources. Once the resources were gathered, they would be taken back to the main base camp. For these other strategies, the groups of people tended to be very mobile and smaller in numbers, which would result in many similar sites in areas that can then be compared and contrasted (Stanyard 2003:49).
2.5 Conclusions

To sum up, the breakdown of the natural history of Georgia provides insight into the distribution of key resources for Archaic peoples, since the inhabitants of the archaeology sites listed above had to gather those resources in order for their societies to survive. Over the span of the entire Archaic period, there were environmental changes occurring. As humans adapted to those changes, we find shifts in the ways in which people organized themselves on the landscape. These changes that occurred between the Early, Middle, and Late Archaic periods are evidenced in settlement patterns, technological changes in tools, and/or technology for cooking meals.

With the models that were put forth, I am testing each of them against the data for Traversant. For the Primary Forest Efficiency Model, if that model is accurate, then the archaeological data at Traversant should show an increase in the site complexity throughout the entire Archaic. For the Band/Macroband Model, which applies to the Early Archaic, then the data should show a small band moving around during the seasons, with an extended family, and being there for shorter time periods. Also given the larger territories people supposedly occupied, I would expect greater diversity in the sources of the lithic artifacts at the site, such as coastal plain chert. The Riverine/Interriverine Model for the Middle to Late Archaic periods predicts that the Traversant site would have been a small Interrivine site on Flat Shoal Creek with the Flint and Chattahoochee Rivers serving as the major river valleys that would correspond to the Riverine part of the model. If the Adaptive Flexibility Model is accurate, then the data from Traversant should reveal a series of short-term occupations, with very similar artifact assemblages that are not diverse.
This chapter describes the methods employed both in the field and in the laboratory. This project has been overseen by Dr. Powis from Kennesaw State University and myself during my graduate studies at Georgia State University. I did the best to make sure the methodological approaches were coherent when I took over the site excavations and the analysis of the Archaic artifacts.

At Traversant, a total of nine excavation units have been excavated (Figure 3.1), with five of them (Test Units 208, 210, 212, 214, and 216) still open for future research. Flooding has caused damage to some of the test units, but not compromised the archaeological data reported here. The map below is an adaption of the plan view from the Smart (2020) article that has already been sent off for publication.

Figure 3.1 Traversant Plan View & Surrounding Areas (Smart et al. 2020:16)
3.1 Archaeological Investigations Under the Direction of Kennesaw State University

KSU was in charge of the excavations at the Traversant site from 2015 to 2019, and even once I began overseeing the excavations at the site for this thesis, Dr. Powis was still very much involved with the fieldwork. Test Units 202-204-206 had already been excavated and backfilled once I started working at the site. The other test units that were started by the KSU team included: 208, 210, 212, and 218. Not all of the test units were the exact same size, although Test Units 204 and 206 were. It was normal for the test units to be excavated in 20 cm arbitrary levels, but 10 cm levels were excavated at times. If any features were located, they were excavated separately. All of the dirt that was taken out in the levels was then put through a quarter-inch screen and then bagged. After this the artifact bags were taken for lab analysis.

3.2 Laboratory Investigations at Kennesaw State University

Following the KSU fieldwork, the artifacts were taken to the Anthropology Lab on KSU’s campus. Washing, sorting, cataloguing, and categorizing the artifacts was accomplished in the lab, although not every artifact was washed. The ground stones, which have depressions in them from being used, were not washed. The reason is many of them have been sent off for residue analysis testing. The lithic tools, when possible, were assigned point type names and time periods and these strategies were later continued in the GSU lab. Greg Smart won the award of Georgia Student Archaeological Research Grant (GSARG) in 2016. The funds from that award were used to assist in the excavations (Smart et al. 2020:9).

The formal tools and Projectile Points/Knife (PPK) were split up from the other artifacts and the website ProjectilePoints.net was very helpful along with an Early Georgia article (Whatley 2002:7-128). The different morphological characteristics that were assigned to the
tools included: material type, shape, blade shape, cross section, flaking patterns, length and width at different parts, and stem and/or notch type. These characteristics allowed the students to assign point type names to many of the PPKs. With the PPKs and the artifacts around them, the relative dating technique was most useful (Smart et al. 2020:5-10).

Chert artifacts were organized and categorized in these ways: primary, secondary, and tertiary flakes; how these categories were assigned was dependent upon the amount of cortex on the flakes. The three characteristics of the complete flakes was the bulb of percussion, striking platform, and terminal edges on the other side from the striking platform. If those three characteristics were not present on the flakes, then they were placed into the flake fragment category. The flakes placed into the broken flake category did not have a terminal edge that was still undamaged but did have bulbs of percussion and striking platforms. Finally, for the shatter category, these pieces did not resemble a flake or could not be sorted into a correct size, with many of them being angular in their shape (Smart et al. 2020:5-10).

Quartz artifacts were catalogued in a comparable manner as the chert, and one additional category was added being unidentifiable worked. The characteristics that defined this category were pieces of quartz that couldn’t be placed into one of the categories similar to chert but they have gone through lithic production or they were pieces of a projectile point that did not have a base to help give a point type name to it. Since it was difficult to examine the cortex on the quartz pieces, the categories of primary, secondary, and tertiary were not assigned (Smart et al. 2020:5-10).

If there were other lithic artifacts or Fire Cracked Rock (FCR), they were put into the category of UID, which stood for unidentifiable. The ceramic artifacts were separated based
upon the presence or absence of surface decoration. These ceramic pieces, once cleaned and
catalogued, were then placed back into the artifact bags, so they could be examined to gather the
specific type names of them (Smart et al. 2020:5-10).

3.3 Archaeological Investigations Under the Direction of Georgia State University

The excavations continued in Test Unit 208, Test Unit 210, and Test Unit 212, while Test
Unit 214 and Test Unit 216 were established. Those other two test units were established to the
west of Test Units 202-204-206, and they were both set up as the same sizes. For Test Unit 214
and Test Unit 216, the excavation on them will need to continue into 2020, since artifacts are still
being recovered in the levels. It was common to dig these levels in 10 cm arbitrary ones. If any
features were located, they were excavated properly. All of the dirt that was taken out in the
levels was screened and then bagged. After this the artifact bags were taken for lab analysis to be
conducted on them. Feature fill soil for Feature 10 (in Test Unit 214) and Feature 1 (in Test Unit
212) was collected and immediately placed into their own large artifact bags. These bags can be
sent off for future research.

3.4 Laboratory Investigations at Georgia State University

Due to the volume of artifacts that were analyzed by myself in the lab, I chose to use the
gathered the weights and counts for the artifacts, including more specific characteristics for the
projectile points. I created an excel spreadsheet with multiple tabs, focusing on: a general
overview of the contextual data written on the artifact bags (site name, test unit level number,
depths, and date), a breakdown of all projectile points found, the artifact totals for the levels
based upon the test units, and an all artifacts tab that shows all the artifacts types found in every
single bag. I also assigned catalogue numbers to all of the artifacts and the first number is the test
unit. The second number is the level and the final number was assigned based on a sequential count of artifacts in each level. The lab analysis that was conducted for the flakes and shatter was done to determine the size of the flakes and shatter. The chert/quartz/quartzite/rhyolite flakes and shatter were not sorted based on their lithic reduction (primary/secondary/tertiary) or other characteristics (broken, complete, fragmented) or color because of time constraints.

When I was dividing up the flakes for the quartz/quartzite/rhyolite, everything that was roughly the size of a penny (or 1.9 centimeters) or larger I deemed a flake, and everything smaller is what I called shatter (Crook 1985:39). For the core pieces (of quartz/quartzite/chert/mica schist), everything that was roughly the size of a standard round marble I called a core and everything which was smaller I called shatter. When I was splitting up the chert flakes and shatter, everything that was about the size of a dime or larger (or 1.8 centimeters) is what I called a flake, and everything smaller was labeled as shatter (Crook 1985:39). There were artifact bags labeled as UID (unidentifiable) or UID rocks before I began working at the Traversant site. I sorted out those artifacts to determine which artifact type (keeping in mind what the material was made out of) so they could be placed into proper categories (such as cores, shatter, flakes, river rocks, etc.). Since the Flat Shoal Creek is nearby, and the site does flood, it could be possible that these river rocks were brought in during a flooding episode.

For the ceramics, they were divided into the categories of decorated and undecorated with special attention given to Stallings pottery sherds. The same was true for any soapstone/steatite artifacts. The Stallings and Soapstone artifacts when identified were immediately placed into their own artifact bags, and then placed with the other artifact bags from the level. Most of my time was spent recording the PPK data. The different characteristics that were assigned to each projectile point included: material type, point type, point classification, time period, era, location
of point, length (cm), width (cm), weight (grams), base type, haft base type, haft width (cm), haft length (cm), barb type, distal end type, blade edge feature, shoulder nomenclature, flaking pattern, and cross section. The hafting strategies employed for the different time periods can be broken up into: Paleo-Early Archaic (concave), Early Archaic (expanding, expanding stem, concave, convex, slight convex, notched), Middle Archaic (straight, convex, rounded), Middle to Late Archaic (straight, rounded, expanding stem), Late Archaic (straight), and Late Archaic-Early Woodland (straight, convex). Not every single characteristic was able to be assigned to every single projectile point and these characteristics are defined in detail below. If the dates for the projectile points are calibrated ones, then they will be stated as calibrated B.P. Otherwise, I am not sure if they are calibrated or not. The detailed information for each PPK is in Appendix C.

Catalogue Number: The number assigned is based upon the test unit (the first number), the level (the second number), and a sequential count of numbers within each test unit for each PPK.

Rock Material: The type of material that the PPK was made of (chert, quartz, or can’t determine).

Point Classification: This was determined by the shape of the PPK (stemmed, side notched, lanceolate, triangular notched, corner notched, expanding stemmed).

Point Type: The specific name for the PPK that was found via projectile point databases.

Time Period: The time periods dated ranged from Early Archaic to Woodland.
Date Range: The number of years Before Present (B.P.) when these point types were typically used. If calibrated years B.P. is used then it will be stated. Otherwise, I am not sure if the years have been calibrated or not.

Weight: Artifact weight in grams.

Length: Length of the PPK in cm from the distal tip to base. This measurement was also taken for broken PPKs.

Width: Width of the PPK in cm taken at the widest point (this also includes the broken PPKs).

Base Type: The shape of the very bottom of the PPK (straight, expanding stem, concave, convex, slight convex, expanding).

Haft Base Type: This describes the shape of where the PPK was hafted (with sinew or twine) to the organic shaft. Examples included: contracting stem, flat/straight, notched, rounded, slight concave).

Haft Width: The width of the hafted section in cm.

Haft Length: The length of the hafted section in cm.

Barb Type: The barb is the part of the PPK that extends from the shoulder on some PPKs. The only type assigned to the collection was rounded.

Distal End Type: This describes the shape of the top part of the PPK.

Blade Edge Feature: The edge morphology is what the edges of the projectile points appear to be such as: excurved, serrated, straight, slight serrated, and incurvated.
Shoulder Nomenclature: The shoulders are the wide part of the PPK just before the stem begins and they can take different shapes which are: barbed, acute, horizontal, rounded, expanded (Gumbus 2009).

Flaking Pattern: what is the pattern that appears on the PPK when the flakes were flaked off from the artifact. The examples of a flaking pattern are random, traverse, and collateral (Larsen and Larsen 2008).

Cross Section: The cross section describes the shape of the PPK when holding it level.

3.5 Conclusions

While there were changes made in the field and lab settings between the KSU and GSU portions of the project, those changes were minor and made to help me gain a better knowledge of Traversant. With the continuation of the field and lab methods starting with KSU, then moving to GSU, it has provided more research that was conducted at Traversant. With this research, it can provide a better understanding of the site throughout the entirety of the Archaic.

4 THE DATA OF TRAVERSANT

This chapter provides an overview of the data collected during the excavations at Traversant and is organized by test unit. Please refer to Figure 3.1 for the location of the test units in relation to one another. The description of each test unit includes its size, the excavation dates, the number of levels and their thickness, and the number of strats (with descriptions). After that there are tables that show how many artifacts for the different types were recovered. For some of the test units there are profile tables (which show the different strat numbers, the
Munsell information, and soil texture descriptions) and profile pictures, to see how the site’s stratigraphy changed through time.

4.1 Test Unit 202

The work began on Test Unit 202 in Fall 2015. The unit was excavated in 20-centimeter, arbitrary levels. Test Unit 202 is 2x2 meters originally, which was broken up into north and south half sections in early levels (3 through 6) and then four quads in later levels (7 through 9). Those four quads were the SE, SW, NE, NW, and were excavated separately. The depth of the excavation unit went to 200 centimeters below the ground surface and the excavation was terminated because the soils at that point were sterile. The changes in the dimensions based upon levels, halves, and quads are as follows: Level 1-2 (2x2), Levels 3-6 (1x2) North Half, Levels 3-5 (1x2) South Half, Levels 6-8 (1x1) SE and SW Quad, Levels 7-8 (1x1) NE and NW Quad. Please refer to Figure 4.1 and 4.2 and Table 4.1 for the profile picture and Munsell and soil texture information, respectively. Please refer to Table 4.2 for the artifact count per level.

4.2 Test Unit 204

Test Unit 204 was 1x2 meters and excavated in 10 levels. The levels were excavated in 20-centimeters arbitrary levels. Like Test Unit 202, the excavation terminated at 200 centimeters below the ground surface because the soils at that point were sterile. Please refer to Figures 4.1 and 4.2 and Table 4.1 for the profile picture and Munsell and soil texture information, respectively. This profile map (Figure 4.1) is a different style than the other ones, because the above profile was made by Smart and colleagues before I started working at Traversant. As mentioned above, their work has been submitted to Early Georgia for publication, which is why I am using this profile drawing. Please refer to Table 4.3 for the artifact count per level.
Table 4.1 Test Units 202/204 West Profile

<table>
<thead>
<tr>
<th>Stratigraphic Levels</th>
<th>Munsell Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strat I</td>
<td>2.5YR 3/3</td>
<td>Dark Reddish Brown Clay</td>
</tr>
<tr>
<td>Strat II</td>
<td>2.5YR 4/8</td>
<td>Red Clay</td>
</tr>
<tr>
<td>Strat III</td>
<td>2.5YR 4/4</td>
<td>Reddish Brown Clay</td>
</tr>
<tr>
<td>Strat IV</td>
<td>2.5YR 4/6</td>
<td>Red Sandy Loam</td>
</tr>
<tr>
<td>Strat V</td>
<td>5YR 4/6</td>
<td>Yellowish Red Sandy Loam</td>
</tr>
<tr>
<td>Strat VI</td>
<td>10YR 6/6</td>
<td>Brownish Yellow Sandy Loam</td>
</tr>
<tr>
<td>Strat VII</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>Strat VIII</td>
<td>5YR 4/6</td>
<td>Yellowish Red Sandy Loam</td>
</tr>
<tr>
<td>Strat IX</td>
<td>2.5YR 4/6</td>
<td>Red Sandy Loam</td>
</tr>
<tr>
<td>Strat X</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>Strat XI</td>
<td>2.5YR 4/8</td>
<td>Red Sandy Loam</td>
</tr>
<tr>
<td>Strat XII</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>Strat XIII</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
</tbody>
</table>
4.3 Test Unit 206

Test Unit 206 measured 1 x 2 meters and was excavated in eight levels, each 20 cm. The test unit depth was ended at 160 cmbd. Fourteen different stratigraphic layers were established in the profile. Please refer to Figure 4.3 for the photo of the profile, Figure 4.4 for the profile.
drawing, Table 4.4 for the Munsell and soils texture information, Table 4.5 for the artifact count per level.

Figure 4.3 Photo of Test Units 202-206 South Profile. Image courtesy of Terry G. Powis

Figure 4.4 South Profile of Test Units 202-206
Table 4.4 Test Units 202-206 South Profile

<table>
<thead>
<tr>
<th>Stratigraphic Levels</th>
<th>Munsell Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5YR 4/6</td>
<td>Yellowish Red Clay</td>
</tr>
<tr>
<td>II</td>
<td>7.5YR 3/4</td>
<td>Dark Brown Clay</td>
</tr>
<tr>
<td>III</td>
<td>7.5YR 5/8</td>
<td>Strong Brown Clay</td>
</tr>
<tr>
<td>IV</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>V</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>VI</td>
<td>5YR 3/4</td>
<td>Dark Reddish-Brown Sandy Loam</td>
</tr>
<tr>
<td>VII</td>
<td>7.5YR 3/2</td>
<td>Dark Brown Sandy Loam</td>
</tr>
<tr>
<td>VIII</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>VIII</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>IX</td>
<td>7.5YR 4/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>X</td>
<td>7.5 YR 5/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>XI</td>
<td>7.5 YR 5/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
<tr>
<td>XII</td>
<td>5YR 5/6</td>
<td>Yellowish Red Sandy Loam</td>
</tr>
<tr>
<td>XIII</td>
<td>5YR 5/8</td>
<td>Yellowish Red Sandy Loam</td>
</tr>
<tr>
<td>XIV</td>
<td>7.5 YR 5/6</td>
<td>Strong Brown Sandy Loam</td>
</tr>
</tbody>
</table>

Table 4.5 Test Unit 206 Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit #</th>
<th>Quartz Debitage</th>
<th>Chert Debitage</th>
<th>PPKS</th>
<th>Features</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shatter Flakes</td>
<td>Shatter Flakes</td>
<td>Cores</td>
<td>Groundstone</td>
<td>Soapstone</td>
</tr>
<tr>
<td>Level</td>
<td>206 Shatter Flakes</td>
<td>Cores</td>
<td>ID</td>
<td>No ID</td>
<td>Nutting Stones</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>7</td>
<td>17</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

4.4 Test Unit 208

The dimensions of Test Unit 208 were 3 x 2.9 meters, the largest at the site, and it was broken up into four quads: NE, NW, SE, SW. The horizontal dimensions of each were 1.5x1.5 meters. Parts of this excavation unit have had walls damaged due to flooding. Please refer to Table 4.6 for the Munsell information and soils textures of this test unit (and Test Unit 210). Please refer to Figure 4.5 for Feature 6, Figure 4.6 for the profile drawing of this test unit (and Test Unit 210). Please refer to Tables 4.7, Table 4.8, Table 4.9, and Table 4.10 for the artifact count per level.
The fieldwork began on November 4, 2017 on the NE Quad. All the levels were excavated arbitrarily. Levels 1 through 5 were excavated in 10 centimeters per level. There was one feature located but the feature number was not recorded. The feature was an oval shaped stained feature that started to appear in Level 5. For the NW Quadrant, the fieldwork began April 22, 2017 and finished March 18, 2018. Four levels were excavated. Levels 1 and 2 were excavated in 20-centimeter arbitrary levels and Levels 3 and 4 in 10-centimeter levels. The excavations for the SE Quadrant began November 4, 2017 and the last level (12) was excavated in March of 2018. Each level was 10-centimeters in depth. The fieldwork for the SW Quadrant Began February 19, 2017 and ended on March 17, 2018 for KSU. Levels 1-8 were excavated in 20-centimeter arbitrary levels while Levels 9-11 were excavated in 10-centimeter arbitrary levels.

<table>
<thead>
<tr>
<th>Stratigraphic Levels</th>
<th>Munsell Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strat I</td>
<td>5YR 4/6</td>
<td>Yellowish red clay</td>
</tr>
<tr>
<td>Strat II</td>
<td>5YR 3/4</td>
<td>Dark reddish-brown clay</td>
</tr>
<tr>
<td>Strat III</td>
<td>5YR 4/6</td>
<td>Yellowish red clay</td>
</tr>
<tr>
<td>Strat IV</td>
<td>2.5YR 3/3</td>
<td>Dark reddish-brown clay/sandy loam</td>
</tr>
<tr>
<td>Strat V</td>
<td>7.5 YR 4/6</td>
<td>Strong brown sandy loam</td>
</tr>
<tr>
<td>Strat VI</td>
<td>7.5YR 4/6</td>
<td>Strong brown sandy loam</td>
</tr>
</tbody>
</table>

Feature 1 was recorded in Level 3, but no description was recorded. The artifacts recovered included: 2 chert flakes, 5 quartz shatter, 3 quartz cores, 1 FCR, 1 rhyolite flake, and 1 mica schist shatter. Feature 6 was encountered in the Southwest Quadrant. It was present in levels 7 through 10. It consisted of four nutting stones.
Figure 4.5 Photo of Test Unit 208 SW Quad Level 10, Feature 6. Nut Stone. Image courtesy of Terry G. Powis

Table 4.7 Test Unit 208 NE Quad Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit # 208 NE Quad Level</th>
<th>Quartz Debitage Shatter</th>
<th>Flakes</th>
<th>Chert Debitage Shatter</th>
<th>Flakes</th>
<th>PPKS ID</th>
<th>No ID</th>
<th>Features</th>
<th>Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>107</td>
<td>6</td>
<td>28</td>
<td>17</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>86</td>
<td>3</td>
<td>21</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>4</td>
<td>17</td>
<td>27</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.8 Test Unit 208 NW Quad Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit # 208 NW Quad Level</th>
<th>Quartz Debitage Shatter</th>
<th>Flakes</th>
<th>Chert Debitage Shatter</th>
<th>Flakes</th>
<th>PPKS ID</th>
<th>No ID</th>
<th>Features</th>
<th>Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>86</td>
<td>12</td>
<td>20</td>
<td>83</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.9 Test Unit 208 SE Quad Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit #</th>
<th>Shatter Flakes</th>
<th>Chert Debitage</th>
<th>PPKS</th>
<th>Features</th>
<th>Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>208 SE Quad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Shatter Flakes</td>
<td>Chert Debitage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>7</td>
<td>7</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>5</td>
<td>24</td>
<td>13</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>107</td>
<td>14</td>
<td>17</td>
<td>34</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>56</td>
<td>4</td>
<td>26</td>
<td>36</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.10 Test Unit 208 SW Quad Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit #</th>
<th>Shatter Flakes</th>
<th>Chert Debitage</th>
<th>PPKS</th>
<th>Features</th>
<th>Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>208 SW Quad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Shatter Flakes</td>
<td>Chert Debitage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td>10</td>
<td>31</td>
<td>61</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>55</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7&8</td>
<td>20</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>128</td>
<td>26</td>
<td>14</td>
<td>23</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>11</td>
<td>22</td>
<td>20</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>127</td>
<td>10</td>
<td>36</td>
<td>31</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4.6 North Profile of Test Units 208 and 210
4.5 Test Unit 210 North Half

Fieldwork began March 2, 2018 for Test Unit 210, which is to the left of Test Unit 208. Five levels were excavated, with each level being arbitrary 10 centimeters in depth. For Test Unit 210, the dimensions of the test unit were 1.5 N/S X 1.25 E/W meters for Levels 1 through 5, with the ending date being March 3, 2019. Then on February 2, 2020, the work continued, and the name of the unit was changed to Test Unit 210 North Half. The dimensions were changed because of damage done when the tarp was taken off the unit. Those new dimensions were 2.0 E/W X 1.5 N/S meters. The artifact bags from Level 5 and down to Level 14 contained the Archaic artifacts (see Figure 4.6 for the stratigraphic profile and Figure 4.7 for the Level 5 photo and Table 4.11 for the artifact count per level).

Figure 4.7 Photo of Test Unit 210 Level 5. Image courtesy of Terry G. Powis
4.6 Test Unit 212

For Test Unit 212, the fieldwork began on March 3, 2019 and the dimensions of the test unit are 1.5 (north-south) X 1.25 (east-west) meters. The levels were excavated in 10-centimeter arbitrary levels. A total of 7 levels were excavated. There was one feature in Test Unit 212 when the excavation was continued on February 2, 2020. Level 7 (180-190 cmbd) is when the feature was excavated and these are the artifacts found within the feature: 1 quartz core, 9 quartz shatter, 4 mica schist shatter, and 4 mica schist cores. For the rest of that level, the artifacts consisted of: 1 Savannah River PPK, 49 quartz shatter, 4 quartz cores, 1 mica schist core, 4 quartz flakes, 1 chert flake, and 9 chert shatter. The soils were excavated underneath the feature and was given the name of Feature 1 More Exposed. The artifacts that were recovered in this more exposed section were: 3 quartz cores, 4 quartz shatter, 2 chert shatter, 4 mica schist shatter, 14 mica schist cores. Then, on June 22, 2020, the excavations continued once more, ending at a depth of 203 cmbd, with the south half being taken out of the soils. The artifacts found included: 3 mica schist cores, 1 chert shatter, 1 chert flake, 1 Archaic ceramic, 2 quartz cores, and 5 quartz shatter. The reason why this feature is being thought of as an earth oven is due to the reason that earth ovens are built of multi-layered construction (Black and Thoms 2004:204-205). Please refer to Figure 4.8 for the photo of Level 3, Figure 4.9 for the photo of Feature 1, and Table 4.12 for the artifact count per level.
Figure 4.8 Photo of Test Unit 212 Level 3. Image courtesy of Terry G. Powis

Figure 4.9 Photo of Test Unit 212, Feature 1
4.7 Test Unit 214

The excavations began on August 14, 2019 and the dimensions of the test unit were 1.5 x 1.5 meters. The test unit was excavated in 10-centimeter arbitrary levels. A total of five levels were excavated. The western wall of this test unit collapsed, the soils were screened separately from the rest of the level, and artifacts placed into their own artifact bag. Please refer to Figure 4.10 for the Feature 10 photo, Figure 4.11 for the Feature 15 photo, and Table 4.13 for the artifact count per level.

Levels 2 and 3 is when Feature 10 was recorded. An irregularly shaped sediment discoloration was present. It was bisected east to west, with the east side being excavated. The feature was not a uniform shape. Level 4 was when a rock concentration began to appear, and it was labeled as FCR/hearth/earth oven. Once the artifacts were examined the name changed to just an earth oven. The highest rock top depth was 138 centimeters below the datum, while the lowest rock bottom depth was 150 cmbd. Moving onto Level 5, that is when the feature was excavated. This feature was broken up into three different sections when it was being excavated, each titled: Feature, the Feature Square Section, and Below the Feature. The Feature section artifacts consisted of: 2 FCR, 1 mica schist shatter, and 8 mica schist cores. The Feature Square Section consisted of: 1 chert flake, 1 quartz core, 19 quartz shatter, 1 FCR, 2 unidentifiable rocks, 10 river rocks, 16 mica schist shatter, and 7 mica schist cores. The Below the Feature section artifacts were made up of: 4 quartz cores, 11 mica schist shatter, and 1 FCR.
For Feature 15, it was in Level 4. For the nutting stone depths: top is 139 cmbd, bottom is 148 cmbd. For the rock concentration the depths are: top rock is 138 cmbd, the bottom rock is 150 cmbd (Figure 4.10).
Table 4.13 Test Unit 214 Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit #</th>
<th>Quartz Debitage Core</th>
<th>Chert Debitage Flakes</th>
<th>PKS Core</th>
<th>Features: Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>214 Shatter</td>
<td>1 1 6 2</td>
<td>0 0 0 0</td>
<td>1 2 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>4</td>
<td>26 2 5 0</td>
<td>0 0 0 0</td>
<td>1 2 1</td>
<td>0 0</td>
<td>0 3 0</td>
</tr>
<tr>
<td>6</td>
<td>1 1 2 17</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

4.8 Test Unit 216

The excavations began on August 15, 2019 and have not been completed. The test unit measures 1.5 x 1.5 meters. So far, nine levels have been excavated. Level 1 was excavated in 5 centimeters, to get to an even depth of 110 cmbd in all areas of the test unit, to then move forward in a simpler manner, excavating in 10-centimeter levels. Please refer to Figure 4.12 for the photo of the south profile, Figure 4.13 for the south profile drawing, Figure 4.14 for the photo of the east profile, Figure 4.15 for the drawing of the east profile, Figure 4.16 for Feature 11, Figure 4.17 for the drawing of Feature 12, and Table 4.14 for the artifact count per level.
Figure 4.13 South Profile of Test Unit 216

Figure 4.14 Photo of East Profile Test Unit 216
Figure 4.15 East Profile of Test Unit 216

Feature 11 was located in the southeast corner of the test unit. It extended from Level 4 through Level 6, between 150-160 cmbd. The feature consisted of 2 quartz shatter, 4 mica schist cores, and 3 FCR. This feature has been termed a hearth, since they are known as being smaller in size (Black and Thoms 2014:204).

Figure 4.16 Test Unit 216 Feature 11
Feature 12 was encountered in Levels 7 and 8, between 159 and 165 cmbd. This feature was excavated in Level 8. The feature consisted of 7 quartz shatter, 1 quartz flake, 2 quartz cores, 1 FCR, 1 river rock, and 4 mica schist core. It has been termed a hearth, due to its small size. In level nine, there is a stain appearing in the southwest corner with charcoal flecking. This potential feature will be investigated in future field seasons.

Figure 4.17 Test Unit 216 Feature 12

Table 4.14 Test Unit 216 Total Artifact Count Per Level
4.9 Test Unit 218

The fieldwork for Test Unit 218 began and ended on April 27, 2019. Dimensions of this test unit were 1 m (north/south) x 2 m (east/west). A total of nine levels were excavated, all in 10 cm arbitrary depths; however, only three levels produced artifacts. Please refer to Table 4.15 for the artifact count per level.

Table 4.15 Test Unit 218 Total Artifact Count Per Level

<table>
<thead>
<tr>
<th>Test Unit #</th>
<th>Quartz Debitage</th>
<th>Chert Debitage</th>
<th>PPKS</th>
<th>Features</th>
<th>Groundstone</th>
<th>Pottery</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level</td>
<td>Shatter Flakes</td>
<td>Shatter Flakes</td>
<td>ID</td>
<td>No ID</td>
<td>Nutting Stones</td>
<td>Soapstone</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.10 Conclusions

To sum up, knowing how excavation units are set up and how many levels have been excavated is vital to properly interpret the data. At Traversant, while nine total test units have been excavated, the work in three of them have continued into 2020. Test Unit 214 and Test Unit 216 will be continued in future field seasons. Features were recorded in four test units. Some of the features also have charcoal flecking in them. This is a common theme for the site and many of the features have FCR and mica schist in them. For the entire site, the total quartz flakes were higher (512), than the total chert flakes (326).

5 ANALYSIS OF THE ARTIFACTS

As stated before, Traversant appears to have good stratigraphic integrity based on the sediments. This of course must be verified by the investigation of the artifacts associated with these different strata across the site. In this chapter, I begin by examining the stratigraphic integrity before delving into my interpretation of the site’s use over time in Chapter 6.
For the profile maps, the Archaic period soils began around 117 cm around the site, and if a PPK was not found at that depth, then the letters LA (meaning Late Archaic) was slotted in to include those soils, since they were deemed Archaic. At Traversant, there are some mixing of the strats based on the co-occurrence of Middle or Late Archaic point types with Early Archaic ones. Some mixing is not surprising given the impact bioturbation can have on open sites like Traversant. When taken overall, I argue that the integrity of the stratigraphic layers is very good. The dates of the PPKs have been inserted to determine the Early, Middle, and Late Archaic stratigraphy. There can be issues with this because the site was not able to be dug in natural or cultural levels, so some of the levels can have multiple stratigraphic layers. That said in Test Units 202-204-206-216, if one just examines the levels with identifiable PPK types, then there is a clear pattern of Late to Middle to Early Archaic strata. In addition to Test Unit 208 and Test Unit 210 having some mixed strata when the stratigraphic layers were examined in Test Unit 202 and Test Unit 204 (from the West Profile), there was some mixing as well based on the PPKs. My best educated guess is that the Middle Archaic projectile points is intrusive into the Early Archaic deposits. An example of that is in Test Unit 210 North Half, I consider Level 14 as Early Archaic and not Middle Archaic. The reasons are because the two levels above it is Early Archaic and contains intact Early Archaic PPKs.

First, I discuss information that breaks down the projectile points found at Traversant. Then there are tables that show how the time periods based on PPKs, match up with the levels and stratigraphic numbers. Next, examined the Early, Middle, and Late Archaic artifact assemblages. After that there is information on the features from Traversant.
5.1 Traversant PPKs

Of the 55 PPKs analyzed for this thesis, 43 of them were made of quartz, 10 were chert, and two were of a material type that was not identified. This is further evidence that quartz was used much more frequently than chert by the people of the site, throughout the Early, Middle, and Late Archaic period. The different point classifications (which was determined by their shape) that could be assigned included: stemmed (5), triangular stemmed (6), side notched (2), triangular notched (2), lanceolate (6), notched (2), stemmed and lanceolate (1), triangular corner notched (5), corner notched (1), expanding stemmed (1), triangular (2), pentagonal (2). For the hafting strategies employed, the morphological characteristics of the entire projectile point collection can be classified into these types: flat/straight, contracting stem, slight expanded, notched, rounded, slight concave, and slight convex. Of the 55 PPKs recovered, 31 could be dated based on their morphology. Those periods are the: Paleoindian to Early Archaic (1), Early Archaic (12), Middle Archaic (9), Middle to Late Archaic (6), Late Archaic (1), Late Archaic to Early Woodland (2) (see Appendix C).

The different projectile points which can be assigned point type names with their according time periods and counts are presented as follows: the count and type name with the time period in parenthesis. 1 Hardaway Blade (Paleoindian to Early Archaic), 1 Kirk Side Notch (Early Archaic), 2 Palmer (Early Archaic), 1 Bolen Rocker Base (Early Archaic), 2 Kirk Corner Notched (Early Archaic), 1 Crawford Creek (Early Archaic), 5 Palmer aka Small Kirk Corner Notch (Early Archaic), 2 Morrow Mountain Round Base (Middle Archaic), 2 Morrow Mountain Type II (Middle Archaic), 1 Guilford Round Base (Middle Archaic), 2 Guilford Stemmed (Middle Archaic), 1 Brunswick (Middle Archaic), 5 Savannah River (Middle to Late Archaic), 1
Karnak (Middle to Late Archaic), 1 Bradley Spike (Late Archaic to Early Woodland), 1 Rheems Creek (Late Archaic to Early Woodland).

5.2 Profile Data with Strata

The tables below show the breakdown of the stratigraphy of the different test units and the association between the excavated levels and the strata and the time periods. There are levels that have multiple stratigraphic layers in them. For the time periods, projectile points that were dated to the different Archaic periods (that could also be assigned a point type name) were used to show the progression of the entirety of the Archaic at Traversant. The initials for the time period are used: NA = Not Applicable; MISS = Mississippian; MID-MISS = Middle Mississippian; EW = Early Woodland; LA = Late Archaic; MA = Middle Archaic; EA = Early Archaic. If multiple initials are used that means that PPKs from different time periods were found in the same level. Please refer to Table 5.1, Table 5.2, Table 5.3, Table 5.4, and Table 5.5 for the different profiles and which stratigraphic layers can be connected with levels and time periods.

Table 5.1 West Profile 202-204: Strat Numbers, Levels, and Time Periods

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>West 202-204</td>
<td>1: Silted deposits.</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>1,3,11</td>
<td>2</td>
<td>LA-MID MISS</td>
</tr>
<tr>
<td></td>
<td>2,5,8,11,12</td>
<td>3</td>
<td>MISS</td>
</tr>
<tr>
<td></td>
<td>4,12,13</td>
<td>4</td>
<td>LA</td>
</tr>
<tr>
<td></td>
<td>4,13</td>
<td>5</td>
<td>LA-MA</td>
</tr>
<tr>
<td></td>
<td>4,6,7,10,13</td>
<td>6</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>6,7,10,13</td>
<td>7</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>EA</td>
</tr>
</tbody>
</table>

Table 5.2 South Profile 202-206: Strata Numbers, Levels and Time Periods

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods 202</th>
<th>Time Periods 2006</th>
</tr>
</thead>
</table>
Table 5.3 North Profile 208-210: Strata, Levels and Time Periods

<table>
<thead>
<tr>
<th>South 202-206</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods 208</th>
<th>Time Periods 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>202:1. 206:6</td>
<td>1</td>
<td>MISS</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>202:1,3,5. 206:4,6,8,13.</td>
<td>2</td>
<td>MISS</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>202:1,5,7,9,12. 206:2,4,8,12,13</td>
<td>3</td>
<td>MISS</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>202:4,9,11,14. 206:2,10,14.</td>
<td>4</td>
<td>LA</td>
<td>LA</td>
<td></td>
</tr>
<tr>
<td>202:11,14. 206:2,10,14.</td>
<td>5</td>
<td>LA-MA</td>
<td>LA</td>
<td></td>
</tr>
<tr>
<td>202:11,14. 206:2,10,14.</td>
<td>6</td>
<td>EA</td>
<td>MA</td>
<td></td>
</tr>
<tr>
<td>202:11,14. 206:2,10,14.</td>
<td>7</td>
<td>EA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202:11,14. 206:14.</td>
<td>8</td>
<td>EA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202: NA. 206:14.</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202: NA. 206:14.</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202: NA. 206:14.</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3 North Profile 208-210: Strata, Levels and Time Periods

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods 208</th>
<th>Time Periods 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>North 208-210</td>
<td>208:NA=Silted deposits. 210: Silted deposits.</td>
<td>1</td>
<td>MISS</td>
<td>MISS</td>
</tr>
<tr>
<td></td>
<td>208:NA=Silted deposits. 210: Silted deposits.</td>
<td>2</td>
<td>LA</td>
<td>MISS</td>
</tr>
<tr>
<td></td>
<td>208:1. 210:1.</td>
<td>3</td>
<td>LA</td>
<td>MISS</td>
</tr>
<tr>
<td></td>
<td>208:1,2. 210:1,2.</td>
<td>4</td>
<td>LA</td>
<td>LA</td>
</tr>
<tr>
<td></td>
<td>208:1,2. 210:2,3.</td>
<td>5</td>
<td>MA</td>
<td>LA</td>
</tr>
<tr>
<td></td>
<td>208:2,3. 210:3.</td>
<td>6</td>
<td>MA</td>
<td>LA</td>
</tr>
<tr>
<td></td>
<td>208:3,4. 210:3,4,5.</td>
<td>7</td>
<td>MA</td>
<td>LA-MA</td>
</tr>
<tr>
<td></td>
<td>208:3,4. 210:4,5,6.</td>
<td>8</td>
<td>MA</td>
<td>LA-MA</td>
</tr>
<tr>
<td></td>
<td>208:5,6. 210:6.</td>
<td>9</td>
<td>MA</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td>208:5,6. 210:6.</td>
<td>10</td>
<td>MA</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td>208:5,6. 210:6.</td>
<td>11</td>
<td>MA</td>
<td>MA</td>
</tr>
</tbody>
</table>
Table 5.4 East Profile Test Unit 216: Strata, Levels and Time Periods

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>East 216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>3</td>
<td>EW-LA</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.5 South Profile Test Unit 216: Strata, Levels and Time Periods

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Strat Numbers</th>
<th>Levels</th>
<th>Time Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>South 216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MISS</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>3</td>
<td>EW-LA</td>
<td></td>
</tr>
<tr>
<td>1,2,3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3 Early Archaic Artifact Assemblage

There were 19 different artifact types that came out of the levels dated to the Early Archaic. These types were: mica schist cores (19), mica schist shatter (9), chert flakes (67), chert shatter (125), chert core (1), quartz flakes (44), quartz shatter (471), quartz cores (148), quartz...
Debitage (flakes and shatter combined in all three time periods) was the most commonly found artifact type, with more quartz than chert (515 quartz and 192 chert). That signals the people at Traversant were actively seeking the outcrops of quartz more so than chert, along the rivers, creeks, and streams. Although, the use of chert for flakes (67 total) was higher during this occupation than quartz (44 total). Of the twelve projectile points that can be dated to this time period, 5 of them were made of chert, or 42 percent. This assemblage did have a number of tools and worked artifacts (12 total), pointing to the use of lithics. The mica schist artifacts could have been used in a similar manner as the Middle and Late Archaic assemblages as well. There were zero features associated with this assemblage.

5.4 Middle Archaic Artifact Assemblage

In the assemblage for this period, a total of 17 artifact types which were recovered from the test units. The totals are in parentheses. They are: mica schist cores (7), mica schist shatter (3), chert flakes (54), chert cores (4), chert shatter (92), quartz flakes (54), quartz shatter (427), quartz cores (77), quartz worked (19), quartz tools (4), unidentifiable rock (1), rhyolite flake (1), river rock (4), undecorated ceramic (6), PPKs (9), preserved wood pieces (3). The river rocks seemed natural and were possibly brought in when Traversant floods.

For this assemblage, using lithics was common, just like the Early Archaic above. There was a greater reliance on quartz more so than chert (for the total debitage of chert being 146 and quartz being 481). That was similar to the Early Archaic assemblage above and the Late Archaic
assemblage below, in terms of having more total quartz debitage than chert debitage. The
presence of mica schist dropped fairly significantly during this time period when compared to the
Late Archaic. Although, since there was some presence of these artifacts (7 cores and 3 shatter),
that means there was some evidence of making fire that I associate with sedentism.

5.5 Late Archaic Artifact Assemblage

For the assemblage that can be dated to this sub time period, there were 21 artifact
categories. Those categories included: daub pieces (5), mica schist cores (20), mica schist shatter
(21), chert flakes (32), chert shatter (38), quartz flakes (46), quartz cores (83), quartz shatter
(250), soapstone pieces (3), Stallings ceramics (1), unidentifiable rock (2), rhyolite flakes (2),
charcoal pieces (10), bone pieces (1), residue sample pieces (1), seeds (2), river rocks (20),
undecorated ceramics (7), FCR (1), PPKs (1). The reason the daub was included is because it
was found in Level 2 of Test Unit 208 NE quad, and with the level depths on the profile maps,
that level was dated to Late Archaic. The river rocks seemed natural and were possibly brought
in when Traversant floods.

This assemblage points towards a higher degree of sedentism because of the mica schist
artifacts, many of which were recovered from the features. The chert debitage (of flakes and
shatter) was a total of 70, and the quartz debitage (of flakes and shatter) was 296. With those
totals, it points towards lithic reduction taking place in this period of occupation as well. But, the
introduction of ceramics (including the Stallings Island sherds), and soapstone pieces (See
Appendix B) signals a shift to technology to help store, process and/or cook foods.
5.6 Traversant Features

Many of the mica schist artifacts turned into a red color, since they heat treated. And when lithic materials get heated, they often turn a red color (Domanski and Webb 2007:154-156). Archaeologists call the rock formations of hearths or earth ovens the specific name of features (Black and Thoms 2004:204-205). At Traversant, many of the features were composed of the mica schist, but also included FCR.

Feature 1 from Test Unit 208 (SW Quad): This was excavated and then the artifacts analyzed in the lab. I am classifying this feature as a hearth. For the stratigraphy, it appears this feature dates to the Middle to Late Archaic.

Feature 1 from Test Unit 212:

This feature can be dated to the Middle to Late Archaic because a Savannah River PPK was found in the screen, where the dirt was taken out right beside the feature. While not directly associated with the feature, the feature started in the same level so it can be argued to date to the same time period as the rest of the level.

Feature 10 from Test Unit 214: I am calling this feature an earth oven. When examining the artifacts in the field and then the lab, this earth oven was built in a multi layered construction. This feature can be dated to the Late Archaic because a projectile point was in association with the feature, which was dated to the Late Archaic-Early Woodland.

Feature 15 from Test Unit 214: This feature is associated with what might have been a Late Archaic living surface. The evidence that supports this claim is because of what was found around it: a) Stallings Ceramics, b) an earth oven and c) a nutting stone. Which means that was
the ground level the people would have been walking on and living on, at Traversant. There also were some stains that appeared in the soils. The dark grey stain was outlined in a circular pattern, to identify the shape. The nutting stone was closest to the northeast part of the test unit.

Feature 11 from Test Unit 216: It was excavated and analyzed, and I am labeling it as a hearth. Based upon the stratigraphy, this feature dates to the Late Archaic.

Feature 12 from Test Unit 216: This feature can also be dated to the Late Archaic because of the stratigraphy.

5.7 Conclusions

When analyzing the artifacts from Traversant, it was clear that some mixing of some stratigraphic layers was occurring at the site, although bioturbation is common in archaeology. With the different projectile points found at the site, there is a good mixture of the time periods, with the highest counts from the Early and Middle Archaic. For the different assemblages put forth (Early, Middle, and Late), the breakdown showed the most commonly found artifact type to be of debitage, resulting from lithic reduction. Although, that was not the only activity we have evidence for. The features at Traversant were able to be dated to different time periods, based upon the artifacts found. Since many of the artifacts from the features (of mica schist and FCR) were a red color, it is clear that fires were used in them by the people who were living at Traversant.

6 INTERPRETATIONS AND TESTING THE ARCHAIC MODELS

Analyzing the artifacts stratigraphically and chronologically allows me to interpret how they relate to the different types of sites proposed by the various models. Determining the type of site is more than a mere typological exercise. The type of site provides a clearer understanding of
the lifeways of the people at Traversant during the Archaic period. Earlier in the thesis I hypothesized about connecting Traversant with the different Archaic models and the results of those different hypotheses are discussed here.

6.1 Types of Sites

There were some daub pieces (7 total) found at the site, which could point towards a domestic presence at Traversant, but there has been no evidence of permanent structures discovered at Traversant. Therefore, it would be unwise to examine the domestic site type and correlate Traversant's artifacts with this. The reason for that is at sites to be called domestic sites there must be the remains of a structure(s). So, just the aggregation and special activity site types remain to be examined. Traversant just does not sit in the right environment to be called an aggregation site. It is interesting that Traversant is right beside Flat Shoal Creek, with travel being possible to get to the other larger rivers to the west and east of the site. And it is possible that the Traversant people were traveling along the rivers, but perhaps if they did gather any fish or shellfish, the remains of that animal type were just discarded elsewhere, before the people would get back to Traversant. I argue that Traversant best fits the profile of a Special Activity B Site (see Chapter 2). I base this interpretation on the number of PPKs in the assemblage, the amount of debitage, and for the Middle and Late Archaic time periods, the presence of soapstone and pottery fragments.

The Adaptive Flexibility Model can be connected with the Special Activity Type A site. A reason is due to artifact amount and variation in the assemblages for both. With the Type A criteria, people would be at their camps for shorter intervals of time. In the Adaptive Flexibility model, there would be a constant relocating of the encampment. When one puts both of those together, it is understandable that the artifact counts could be fewer in numbers. For the variation
in the assemblages, Type A was low in tools, if any, while the Adaptive Flexibility model also had lower diversity in its toolkit.

The Riverine-Interriverine Model can be split into two different Special Activity Site Types, for the interriverine component. Special Activity Type A sites have small to medium debitage, low to medium tools, and a short encampment would be expected. Due to few tools, if any being found, that points towards a lower amount of different technologies available for the people to take advantage of. Special Activity Type B would be correlated with a more intense habitation of an interriverine settlement. As a short reminder, the Type B sites have hafted biface manufacture, larger amounts of debitage, some presence of soapstone being common, and a heavy reliance on quartz resources. With the impact of creating hafted bifaces and soapstone, that signals towards a greater reliance on understanding newer technologies. As ideas would spread, people would learn and master these newer technologies to become more successful at exploiting the resources around them. There would also be a higher degree of technological variability at these sites as well, due to the fact that people were staying in the same areas for longer periods of time.

6.2 Traversant and the Primary Forest Efficiency Model

To reiterate, the characteristics of this model include: increasingly complex hunter-gatherers that are using more and more specialized technologies to process larger amounts of food. This requires food storage and leads to increased sedentism over time. Caldwell also argues that you see greater levels of interactions between social groups (Terry Powis, personal communication 2020). When examining the different artifact types and features from the Traversant site, they do broadly correlate to the characteristics listed above. The presence of Stallings ceramics, soapstone, and ground stones at the site signals that the people had the
technology to create those objects to assist with their food storage and processing. The discovery of ground stones points to the specialization of mass harvesting nuts. Many of the different features consisted of mica schist, FCR, and quartz pieces that had turned red, since they were heat treated. These features also indicated that in the Middle and Late Archaic people had begun to spend more time at the site. It is also clear that lithic production was a major activity at the site, given the different projectile points and large amount of debitage being recovered. The variation that exists in the different point types (17 total) indicates that different technologies were being used in the Early, Middle, and Late Archaic periods. When the people would have needed to travel along the different waterways around the site, they would have come into contact with other groups of people. So, based upon the data above, when examining the artifacts from the site as a whole and applying it to this model, the Middle and Late Archaic components of Traversant do support this general trend of increased complexity. With the hypothesis tested earlier in Chapter 2 about how Traversant would show an increase in complexity with regards to this model, the hypothesis is accurate. However, this model does not really provide me the tools to understand the type of settlement Traversant was over time and how the site was connected to other sites as part of a seasonal round. For this, I must turn to the other models.

6.3 Traversant and the Band/Macroband Model

Since this model was applied to the Early Archaic, it makes sense to just examine the artifact assemblage that could be dated to the Early Archaic. With the lithic production occurring at the site, more chert flakes (67) that quartz flakes (44). The different types of specific lithic artifact types (worked, projectile points, preforms, and tools) signals that procuring those lithic resources along the different waterways would be crucial for the people. Of the 12 projectile points found that could be dated in this time period, only 5 of them were chert, which represents
half of the total chert PPKs recovered. Due to the location and size of Traversant, it makes sense that bands would occupy the area.

6.4 Traversant and the Riverine-Interriverine Model

The artifact assemblages from the Middle and Late Archaic are used to test this model. Artifact analysis indicates that, as time went on at the site, the amount of chert flakes and shatter decreases. What is interesting to note is the amount of quartz shatter also decreases going from the Middle Archaic (427 total) to the Late Archaic (250 total). Still with lithic reduction being important in these time periods, the people would still have needed to travel on the different waterways around the site, but possibly not as much as in the Early Archaic period. For the features found at this site, seven of them can be dated to the Middle and/or Late Archaic, because of either: nutting stones or projectile points found.

The Riverine-Interriverine part of this model was understood to have larger sites on major rivers (riverine), and smaller sites being located on the interriverine areas. Traversant was hypothesized that it would fit the interriverine part of this model, due to its location on Flat Shoal Creek, with other major rivers being to the east and west of the area. Other reasons of why it was hypothesized to fit this part of the model, was because of its small size, and that people could have stayed in encampments at the site during the Fall. During the Fall, people would have been gathering the resources needed from the area to survive. Then, once it was Winter, they would return back to the main river encampment.

The data at Traversant does correlate to this part of the model due as would be expected in a Special Activity Type B site. The projectile points alone had sixteen different type names assigned to them, with twelve types of point classifications, and seven types of hafting strategies. Nutting stones were also found at the site, which can point to the mass harvesting of local
resources and a specialized economy. Stallings ceramics and soapstone artifacts recovered means that people had the technology to create and use food storage systems. While the artifact assemblage in my option is more diverse than would be expected as a Special Activity Type A site, it does not compare to what was found at a large riverine site like McCalla Bottoms.

6.5 Traversant and the Adaptive Flexibility Model

For the Adaptive Flexibility model, it clearly stated that the artifact assemblage would signal a lower amount of diversity. Another characteristics includes sites that show a great deal of being redundant between them. With this redundancy, that correlates to groups being very mobile. At Traversant, in the previous chapter, it showed the breakdown of the artifact types and counts that were recovered, and there is a high degree of diversity in at Traversant. Unfortunately, due to time constraints, I could not fully test the Traversant assemblage against that of neighboring sites. But, the associated assemblage present at the site during the Middle and Late Archaic seem to indicate a more robust settlement than would be predicted by the Adaptive Flexibility Model.

6.6 Conclusion

With the testing of these different site types and models of the Archaic period, I argue that the data from Traversant best match what would be expected for a special activity site B. While the data broadly support Caldwell’s Primary Forest Efficiency model, that model does not truly help us understand how the site was being utilized during the different time periods. In the Early Archaic, the site seemed to be an encampment returned for generations by bands of hunter-gatherers exploiting the resources near the site, as would be predicted in the Band-Macroband model.
For the subsequent Middle and Late Archaic periods, the artifact assemblage is too diverse and too large for what would be expected given the Adaptive Flexibility Model (although see Smart et al. 2020) for a different interpretation. With the Riverine-Interriverine model, most of the characteristics could correlate to the earlier hypothesis about Taversant being well connected to the interriverine part, and other sites on the major rivers being the riverine part. As stated above, the diversity in the artifact assemblage correlate with a special activity type B site which I associate with an interriverine type of settlement.

7 CONCLUSIONS

For the Traversant site, these data help us understand the Archaic period in Georgia as a whole and it can really make a mark on the Archaic archaeological record. The reason is that most of what is known about the Archaic in Georgia is focused on the Savannah River Valley and along the coastline. In Georgia there are different provinces which the resources were extracted from and understanding when and where they were available was key to surviving the environment. With the lithic materials, ground/nutting stones and soapstone bowls, it shows just how important those resources were for the people. The soapstone bowls and Stallings ceramics could have been used to store, process, and cook food. Each community had to gather their resources from the different outcrops in Georgia, in order to survive and help future generations survive. The different technologies that the people employed and created were used generation after generation. The people had to exploit the natural resources like wild game, fish from rivers, and nuts from trees to help with food production, so they could have daily meals every day.

With the different models put forth (Primary Forest Efficiency, Band/Macroband, and Riverine-Interriverine, and Adaptive Flexibility), along with the types of sites, these were critical in understanding how the site was occupied throughout the entirety of the Archaic period, with
each focusing on their own respective time periods in the Archaic. Since the Primary Forest Efficiency Model was determined to broadly apply to Traversant across the whole Archaic, the artifacts from the site do point towards a more complex group of people occupying the site as time went on. The reason is the site characteristics shows an increase in the technological changes (whether adapting and/or creating) such as the different styles of projectile points, using the nutting stones in a specialized economy, and introducing types of everyday goods to use in food storage.

With the Band/Macroband Model, and by examining the Early Archaic artifacts from Traversant, the different lithic resources were vital to be gathered in the outcrops by the rivers and streams. With the mobility of the people, that signals the people would be traveling in the smaller bands, to stay at Traversant for shorter periods of time. Then in the changing of the seasons, these bands could travel into other areas of the Piedmont and Coastal Plain Provinces, to seek out new resources, and thus would come into contact with other bands to form macrobands. Once the seasons would change again, the larger macrobands would break up into the smaller bands, to travel back to Traversant and other sites in the Piedmont, for the shorter amount of time once again.

In the Riverine-Interriverine Model, an important factor to remember about the riverine-interriverine part deals with Flat Shoal Creek and understanding the larger rivers (Chattahoochee and Flint) that are closest to Traversant. Flat Shoal Creek, being a smaller body of water, could have been occupied for shorter periods of time when people left the settlements of the bigger rivers. The reason this model does correlate with Traversant is due to the fact that Special ActivityType B sites can occur in an interriverine context.
With the Adaptive Flexibility Model, the settlements were based in the Piedmont Province, and many of them should be located. The reason for the settlement in the Piedmont Province was the groups of people would occupy their areas for timed intervals. There needs to be a great deal in the redundancy between sites. That can correlate to a population which is very mobile. Also, for this model, the variation in the toolkit would show a limited diversity. As discussed above, this is not what we found at Traversant. However, due to time constraints, this model was unable to be fully tested as I not able to fully investigate whether the sites in Pine Mountain are redundant or not. This is an avenue for future research pursue.

For the PPKs that were found at Traversant, they were used to help give a better representation of what was happening at the site for the Early, Middle, and Late Archaic. With them being placed into the profile maps, that was to understand which stratigraphic layers could be dated to the Early, Middle, and Late Archaic, to determine the artifact assemblages that also could be dated to those individual time periods. Although, since there has been some bioturbation at Traversant, and mixing of stratigraphic layers, it does make sense that some Middle Archaic projectile points were found in with the Early Archaic projectile points. Since 43 of them were made out of quartz, with just 10 being chert, it supports the conclusions that the quartz outcrops were utilized more frequently and for longer periods of time than the chert. Since there are outcrops of quartz just to the north and south of Traversant, that makes sense why these resources would be utilized more heavily than others. The different types of morphological differences employed for the PPKs shows that the inhabitants were able to adapt and create new technologies that would best suit them.

Many of the features at Traversant meant that the people would use them to gather around for light, heat and to help cook meals. Mica schist and Fire Cracked Rock (consisting of
quartz) were stacked up for the features (being hearths or earth ovens). Just carbonized seeds have been found at Traversant, but with the presence of nutting stones (and the testing being led by Dr. Powis), that can provide data on which nuts were being consumed by the inhabitants. Then that data can be used to compare to the other Georgia sites where nut remains of artifacts were found.

The artifact assemblages for the Early, Middle, and Late Archaic have shown that Traversant is able to be classified as a Special Activity Type B site. There was a greater reliance of quartz than chert for overall debitage, and especially for the total amount of quartz versus chert. A reason of why that has to be is due to 78 percent of the total projectile points in the collection being quartz, while 18 percent were chert. The soapstone artifacts recovered at the site signals that the people had the technology to create objects that were used to store, process and/or cook their foods in, which could have been placed inside the hearths or earth ovens.

This thesis has provided a glimpse of what life was like at Traversant for thousands of years. Being that the majority of the artifacts can be dated to the Archaic period, it can help to bridge the gap about the Archaic period in Georgia and the Southeast. The reason is because more knowledge needs to be understood about the inhabitants and societies, so a better representation can be stated about it. This work has helped to demonstrate what the lifeways were like for the people living in their respective societies during the Archaic. These people faced trials and tribulations in their lives, just like people still do, to this day.
REFERENCES

Anderson, David G.

Anderson, David G. and Glenn T. Hanson

Anderson, David G. and J.W. Joseph

Anderson, David G, Jerald Ledbetter, Lisa O’Steen, Dennis Blanton, Glenn T. Hanson, Frankie Snow

Andrefsky, William Jr.

ArcGIS

2020 Geology of Georgia: A Story Map. Electronic Document,
Binford, Lewis R.

Binford, Lewis R.

Binford, Lewis R.

Black, Stephen L. and Alston V. Thoms

Bradbury, Andrew P. and Philip J. Carr

Brooks, John F.

Caldwell, Joseph R.

Crook, Morgan R. Jr

Davidson, William H.

1971 *Brooks of Honey and Butter, Plantations and People of Meriwether County, Georgia*. Outlook Publishing Company, Alexander City, AL.

Google Earth Pro

Gumbus, Art

Johnson, Amber L.

Larsen, Brandon, and Rachel Larsen

Ledbetter, Jerald, Lisa D. O’Steen, Scott Jones, and David S. Leigh

2009 *The Late Archaic to Early Woodland Transition in Northwest Georgia*. Occasional Papers in Cultural Resource Management No. 14, Georgia Department of Transportation, Atlanta, Georgia.

Moats, Lindsey, Greg J. Hanson, Patrick Severts, and Terry Powis

Moore, Christopher R. and Victoria G. Dekle

New Georgia Encyclopedia

Sassaman, Kenneth E.

1983 Middle and Late Archaic Settlement in the South Carolina Piedmont, M.A. Thesis, Department of Anthropology, University of South Carolina, Columbia, South Carolina.

Sassaman, Kenneth E.

Schiffer, Michael B.

Shah, Sudha A., and Thomas G. Whitley

2009 *An Overview of and Analysis of the Middle Archaic in Georgia*. Occasional Papers in Cultural Resource Management No. 16. Georgia Department of Transportation, Atlanta, Georgia.

Smart, Greg, Evan Talmadge, Patrick Severts, Terry Powis

2020 Archaic Habitation at the Traversant Site, Troup County, Georgia. (Manuscript in Position of Author).

Sperling’s Best Places

Stanyard, William F.

2003 *Archaic Period Archaeology on North Georgia*. Georgia Archaeological Research Design Paper No. 13 and University of Georgia Laboratory of Archaeology Series Report No. 38. Athens, Georgia.

Thompson, Victor D., Matthew D. Reynolds, Bryan Haley, Richard Jeffries, Jay K. Johnson, and Laura Humphries

Whatley, John S.

Williams, Mark, John A. Turck, and John F. Chamblee

APPENDICES

Appendix A

Appendix A.1 Test Unit 208 Northeast Quadrant

<table>
<thead>
<tr>
<th></th>
<th>Northwest</th>
<th>Northeast</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>100-112</td>
<td>100-114</td>
<td>100-114</td>
<td>100-113</td>
<td>100-110</td>
</tr>
<tr>
<td>Level 2</td>
<td>112-120</td>
<td>114-121</td>
<td>114-122</td>
<td>113-123</td>
<td>110-119</td>
</tr>
<tr>
<td>Level 3</td>
<td>120-130</td>
<td>121-133</td>
<td>122-130</td>
<td>123-131</td>
<td>119-130</td>
</tr>
<tr>
<td>Level 4</td>
<td>130-140</td>
<td>133-139</td>
<td>130-137</td>
<td>131-139</td>
<td>130-140</td>
</tr>
<tr>
<td>Level 5</td>
<td>140-149</td>
<td>139-150</td>
<td>137-150</td>
<td>139-148</td>
<td>140-151</td>
</tr>
<tr>
<td>Level 6</td>
<td>149-155</td>
<td>150-155</td>
<td>150-155</td>
<td>148-155</td>
<td>151-155</td>
</tr>
<tr>
<td>Level 8</td>
<td>160-170</td>
<td>160-170</td>
<td>160-170</td>
<td>160-170</td>
<td>162-170</td>
</tr>
<tr>
<td>Level 9</td>
<td>170-180</td>
<td>170-180</td>
<td>170-180</td>
<td>170-180</td>
<td>170-180</td>
</tr>
<tr>
<td>Level 10</td>
<td>180-190</td>
<td>180-190</td>
<td>180-190</td>
<td>180-190</td>
<td>181-190</td>
</tr>
<tr>
<td>Level 11</td>
<td>190-200</td>
<td>190-200</td>
<td>190-200</td>
<td>190-200</td>
<td>190-200</td>
</tr>
<tr>
<td>Level 12</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
</tr>
<tr>
<td>Level 13</td>
<td>210-228</td>
<td>210-225</td>
<td>210-225</td>
<td>210-220</td>
<td>210-220</td>
</tr>
<tr>
<td>Level 14</td>
<td>228-238</td>
<td>228-233</td>
<td>229-231</td>
<td>220-230</td>
<td>220-231</td>
</tr>
<tr>
<td>Level 15</td>
<td>238-244</td>
<td>233-245</td>
<td>231-244</td>
<td>230-240</td>
<td>231-242</td>
</tr>
<tr>
<td>Level 16</td>
<td>244-250</td>
<td>245-250</td>
<td>244-256</td>
<td>240-249</td>
<td>242-250</td>
</tr>
</tbody>
</table>

Appendix A.2 Test Unit 208 Northwest Quadrant

<table>
<thead>
<tr>
<th></th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>101-120</td>
<td>98-123</td>
<td>98-123</td>
<td>98-121</td>
<td>90-121</td>
</tr>
<tr>
<td>Level 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Level 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Level 4</td>
<td>152-160</td>
<td>150-160</td>
<td>149-160</td>
<td>149-160</td>
<td>150-160</td>
</tr>
</tbody>
</table>
Appendix A.3 Test Unit 208 Southeast Quadrant

<table>
<thead>
<tr>
<th>Level</th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 3</td>
<td>120-128</td>
<td>120-127</td>
<td>124-128</td>
<td>124-128</td>
<td>124-127</td>
</tr>
<tr>
<td>Level 4</td>
<td>128-143</td>
<td>127-140</td>
<td>128-140</td>
<td>128-148</td>
<td>127-140</td>
</tr>
<tr>
<td>Level 5</td>
<td>143-150</td>
<td>140-147</td>
<td>140-149</td>
<td>148-149</td>
<td>140-148</td>
</tr>
<tr>
<td>Level 6</td>
<td>150-163</td>
<td>147-164</td>
<td>149-160</td>
<td>149-162</td>
<td>148-161</td>
</tr>
<tr>
<td>Level 7</td>
<td>163-173</td>
<td>164-172</td>
<td>160-173</td>
<td>162-171</td>
<td>161-172</td>
</tr>
<tr>
<td>Level 8</td>
<td>173-180</td>
<td>172-180</td>
<td>173-181</td>
<td>171-180</td>
<td>172-180</td>
</tr>
<tr>
<td>Level 9</td>
<td>180-190</td>
<td>190-190</td>
<td>180-190</td>
<td>180-189</td>
<td>180-187</td>
</tr>
<tr>
<td>Level 10</td>
<td>190-200</td>
<td>190-200</td>
<td>190-200</td>
<td>189-200</td>
<td>187-200</td>
</tr>
<tr>
<td>Level 11</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
<td>200-210</td>
</tr>
<tr>
<td>Level 12</td>
<td>210-218</td>
<td>210-218</td>
<td>210-210</td>
<td>210-210</td>
<td>210-218</td>
</tr>
</tbody>
</table>

Appendix A.4 Test Unit 208 Southwest Quadrant

<table>
<thead>
<tr>
<th>Level</th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>109-129</td>
<td>109-130</td>
<td>109-130</td>
<td>109-130</td>
<td>110-130</td>
</tr>
<tr>
<td>Level 2</td>
<td>129-149</td>
<td>130-150</td>
<td>130-150</td>
<td>130-148</td>
<td>131-151</td>
</tr>
<tr>
<td>Level 3</td>
<td>149-170</td>
<td>150-166</td>
<td>150-165</td>
<td>148-163</td>
<td>151-163</td>
</tr>
<tr>
<td>Level 7 + 8</td>
<td>165-180</td>
<td>162-180</td>
<td>163-180</td>
<td>162-180</td>
<td>161-175</td>
</tr>
<tr>
<td>Level 9</td>
<td>180-188</td>
<td>180-191</td>
<td>180-193</td>
<td>180-191</td>
<td>180-191</td>
</tr>
<tr>
<td>Level 10</td>
<td>188-198</td>
<td>191-203</td>
<td>193-199</td>
<td>191-202</td>
<td>191-203</td>
</tr>
<tr>
<td>Level 12</td>
<td>210-218</td>
<td>210-219</td>
<td>210-220</td>
<td>210-221</td>
<td>210-220</td>
</tr>
<tr>
<td>Level 13</td>
<td>218-225</td>
<td>219-227</td>
<td>220-225</td>
<td>221-227</td>
<td>220-226</td>
</tr>
</tbody>
</table>
Appendix A.5 Test Unit 210

<table>
<thead>
<tr>
<th></th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>120-126</td>
<td>120-128</td>
<td>120-133</td>
<td>119-127</td>
<td>120-130</td>
</tr>
<tr>
<td>Level 2</td>
<td>130-136</td>
<td>130-129</td>
<td>130-140</td>
<td>130-141</td>
<td>130-139</td>
</tr>
<tr>
<td>Level 3</td>
<td>140-147</td>
<td>140-148</td>
<td>140-147</td>
<td>140-147</td>
<td>140-150</td>
</tr>
<tr>
<td>Level 4</td>
<td>147-158</td>
<td>148-156</td>
<td>147-159</td>
<td>147-159</td>
<td>150-157</td>
</tr>
<tr>
<td>Level 5</td>
<td>158-</td>
<td>156-</td>
<td>159-</td>
<td>157-</td>
<td>157-</td>
</tr>
</tbody>
</table>

Appendix A.6 Test Unit 212

<table>
<thead>
<tr>
<th></th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>123-130</td>
<td>119-129</td>
<td>121-129</td>
<td>120-129</td>
<td>119-132</td>
</tr>
<tr>
<td>Level 2</td>
<td>130-140</td>
<td>129-137</td>
<td>129-138</td>
<td>129-139</td>
<td>132-139</td>
</tr>
<tr>
<td>Level 3</td>
<td>140-148</td>
<td>137-148</td>
<td>138-150</td>
<td>139-150</td>
<td>139-150</td>
</tr>
<tr>
<td>Level 4</td>
<td>148-152</td>
<td>148-154</td>
<td>150-155</td>
<td>150-153</td>
<td>150-157</td>
</tr>
<tr>
<td>Level 5</td>
<td>152-</td>
<td>154-</td>
<td>-</td>
<td>153-</td>
<td>157-</td>
</tr>
</tbody>
</table>

Appendix A.7 Test Unit 218

<table>
<thead>
<tr>
<th></th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>114-118</td>
<td>107-114</td>
<td>115-117</td>
<td>107-118</td>
<td>111-114</td>
</tr>
<tr>
<td>Level 2</td>
<td>118-129</td>
<td>114-127</td>
<td>117-125</td>
<td>118-127</td>
<td>114-127</td>
</tr>
<tr>
<td>Level 3</td>
<td>129-143</td>
<td>127-143</td>
<td>125-142</td>
<td>127-144</td>
<td>127-145</td>
</tr>
<tr>
<td>Level 4</td>
<td>143-146</td>
<td>143-145</td>
<td>142-150</td>
<td>144-140</td>
<td>145-145</td>
</tr>
<tr>
<td>Level 5</td>
<td>146-155</td>
<td>145-159</td>
<td>150-157</td>
<td>140-156</td>
<td>145-150</td>
</tr>
<tr>
<td>Level 6</td>
<td>155-169</td>
<td>159-165</td>
<td>157-167</td>
<td>156-165</td>
<td>150-165</td>
</tr>
<tr>
<td>Level</td>
<td>Northeast</td>
<td>Northwest</td>
<td>Center</td>
<td>Southeast</td>
<td>Southwest</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>7</td>
<td>169-177</td>
<td>165-177</td>
<td>167-178</td>
<td>165-177</td>
<td>165-178</td>
</tr>
<tr>
<td>8</td>
<td>177-188</td>
<td>177-188</td>
<td>178-188</td>
<td>177-186</td>
<td>178-189</td>
</tr>
<tr>
<td>9</td>
<td>189-198</td>
<td>188-197</td>
<td>188-197</td>
<td>186-198</td>
<td>189-197</td>
</tr>
</tbody>
</table>

Appendix A.8 Test Unit 214

<table>
<thead>
<tr>
<th>Level</th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>119-130</td>
<td>119-128</td>
<td>120-128</td>
<td>119-130</td>
<td>120-129</td>
</tr>
<tr>
<td>3</td>
<td>130-140</td>
<td>128-139</td>
<td>128-140</td>
<td>130-139</td>
<td>129-140</td>
</tr>
<tr>
<td>4</td>
<td>140-150</td>
<td>139-150</td>
<td>140-149</td>
<td>139-150</td>
<td>140-150</td>
</tr>
<tr>
<td>5</td>
<td>150-160</td>
<td>150-160</td>
<td>149-159</td>
<td>150-160</td>
<td>150-158</td>
</tr>
</tbody>
</table>

Appendix A.9 Test Unit 216

<table>
<thead>
<tr>
<th>Level</th>
<th>Northeast</th>
<th>Northwest</th>
<th>Center</th>
<th>Southeast</th>
<th>Southwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105-110</td>
<td>106-110</td>
<td>105-110</td>
<td>107-110</td>
<td>105-110</td>
</tr>
<tr>
<td>2</td>
<td>110-121</td>
<td>110-120</td>
<td>110-122</td>
<td>110-120</td>
<td>110-120</td>
</tr>
<tr>
<td>3</td>
<td>121-130</td>
<td>120-130</td>
<td>122-130</td>
<td>120-130</td>
<td>120-130</td>
</tr>
<tr>
<td>4</td>
<td>130-140</td>
<td>130-141</td>
<td>130-140</td>
<td>130-140</td>
<td>130-139</td>
</tr>
<tr>
<td>5</td>
<td>140-150</td>
<td>141-150</td>
<td>140-150</td>
<td>140-150</td>
<td>139-150</td>
</tr>
<tr>
<td>6</td>
<td>148-160</td>
<td>150-160</td>
<td>150-160</td>
<td>150-160</td>
<td>150-160</td>
</tr>
<tr>
<td>7</td>
<td>160-167</td>
<td>160-164</td>
<td>160-172</td>
<td>160-167</td>
<td>160-165</td>
</tr>
<tr>
<td>8</td>
<td>167-169</td>
<td>164-169</td>
<td>172-172</td>
<td>167-169</td>
<td>165-169</td>
</tr>
</tbody>
</table>
Appendix B Soapstone and Stallings Ceramics

Test Unit 202 Soapstone Bowl Fragment

Test Unit 210 Soapstone Bowl Fragments

Test Unit 210 Stallings Ceramics
Appendix C Traversant PPKs by Test Unit

Test Unit 202 PPKs

1. **Catalogue Number** 202.5.1

Material Type: Not Identified

Point Type Name: N/A

Complete or Broken PPK: Broken.

Point Classification: N/A

Time Period: N/A

Date Range: N/A

Weight: 11.56 g

Length: 2.6 cm

Width: 2.5 cm

Base Type: N/A
Haft Base Type: N/A
Haft Width: N/A
Haft Length: N/A
Barb Type: N/A
Distal End Type: N/A
Blade Edge Feature: Straight edge
Shoulder Nomenclature: N/A
Flaking Pattern: Random
Cross Section: Biconvex

2. Catalogue Number 202.5.2

Material Type: Quartz
Point Type Name: Savannah River
Complete or Broken PPK: Complete

Point Classification: Stemmed

Time Period: Late Archaic

Date Range: 5000-3000 BP

Weight: 23.65 g

Length: 6 cm

Width: 2.9 cm

Base Type: Straight

Haft Base Type: Contracting Stem

Haft Width: 1.8 cm

Haft Length: 1.2 cm

Barb Type: N/A

Distal End Type: Rounded

Blade Edge Feature: Excurvated

Shoulder Nomenclature: Sloping Upwards

Flaking Pattern: Random

Cross Section: Elliptical
3. **Catalogue Number**: 202.6.3

Material Type: Chert

Point Type Name: Kirk Side Notch

Complete or Broken PPK: Complete

Point Classification: Side Notched

Time Period: Early Archaic

Date Range: 9500-8500 BP

Weight: 13.72 g

Length: 4 cm

Width: 3.7 cm

Base Type: Expanding

Haft Base Type: Flat/Straight
Haft Width: 3.1 cm
Haft Length: 1.4 cm
Barb Type: Rounded
Distal End Type: Acute
Blade Edge Feature: Excurvate Edge
Shoulder Nomenclature: Barbed
Flaking Pattern: Random
Cross Section: Flat

4. Catalogue Number 202.6.4
Material Type: Chert
Point Type Name: Palmer
Complete or Broken PPK: Broken
Point Classification: Triangular Stemmed
Time Period: Middle Archaic
Date Range: 5500-5000 BP
Weight: 14 g
Length: 4.4 cm
Width: 2.5 cm
Base Type: Expanding Stem
Haft Base Type: Flat/Straight
Haft Width: 2.2 cm
Haft Length: 1 cm
Barb Type: Rounded
Distal End Type: Broken at End
Blade Edge Feature: Excurvate Edge
Shoulder Nomenclature: Barbed
Flaking Pattern: Random
Cross Section: Flat

5. Catalogue Number 202.6.5

Material Type: Quartz
Point Type Name: NA
Complete or Broken PPK: Broken
Point Classification: Triangular
Time Period: NA
Date Range: NA
Weight: 9 g
Length: 4.2 cm
Width: 2 cm
Base Type: Straight
Haft Base Type: Flat/Straight
Haft Width: 1.8 cm
Haft Length: 1.1 cm
Barb Type: NA
Distal End Type: Acute
Blade Edge Feature: Straight Edge
Shoulder Nomenclature: Sloping Upwards
Flaking Pattern: Random
Cross Section: Flat
6. **Catalogue Number** 202.6.6

Material Type: Can’t Determine

Point Type Name: Palmer

Complete or Broken PPK: Broken

Point Classification: Triangular Notched

Time Period: Late Archaic to Early Woodland

Date Range: 3500-2500 BP

Weight: 1.96 g

Length: 2.2 cm

Width: 1.8 cm

Base Type: Concave

Haft Base Type: Slight Expanded

Haft Width: 0.9 cm
Haft Length: 0.6 cm

Barb Type: Rounded

Distal End Type: Broken at End

Blade Edge Feature: Straight Edge

Shoulder Nomenclature: Sloping Upwards

Flaking Pattern: Random

Cross Section: Flat

7. Catalogue Number 202.8.7

Material Type: Quartz.

Point Type Name: Kirk Corner Notch.

Complete or Broken PPK: Complete.

Point Classification: Triangular.
Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 4 g.

Length: 3.6 cm.

Width: 1.7 cm.

Base Type: Convex.

Haft Base Type: Notched.

Haft Width: 1.6 cm.

Haft Length: 0.5 cm.

Barb Type: Rounded.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.
8. **Catalogue Number** 202.7.8

Material Type: Quartz.

Point Type Name: NA.

Complete or Broken PPK: Broken.

Point Classification: NA.

Time Period: NA.

Date Range: NA.

Weight: 1.49 g.

Length: 2 cm.

Width: 1 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: NA.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: NA.

Flaking Pattern: NA.

Cross Section: Flat.
1. **Catalogue Number:** 204.6.1

Material Type: Chert Ridge and Valley.

Point Type Name: Elora.

Complete or Broken PPK: Complete.

Point Classification: Triangular Stemmed.

Time Period: Late Archaic.

Date Range: 4800-4300 BP.

Weight: 19 g.

Length: 5.24 cm.

Width: 3.85 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.
Haft Width: 1.76 cm.

Haft Length: 1.76 cm.

Barb Type: Rounded.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Barbed.

Flaking Pattern: Random.

Cross Section: Biconvex.

2. Catalogue Number: 204.6.2

Material Type: Quartz.

Point Type: Morrow Mountain Type II.

Point Classification: Triangular Stemmed.

Time Period: Middle Archaic.

Date Range: 6800-6000 BP.
Weight: 26 g.

Length: 6.3 cm.

Width: 3.49 cm.

Base Type: Convex.

Haft Base Type: Flat/Straight.

Haft Width: 1.64 cm.

Haft Length: 1.43 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Barbed.

Flaking Pattern: Random.

Cross Section: Elliptical.
Test Unit 206 PPKs

1. **Catalogue Number:** 206.3.1

Material Type: Chert.

Point Type: Partial PPK/Broken.

Point Classification: NA.

Time Period: NA.

Date Range: NA.

Weight: 1.79 g.

Length: 2.5 cm.

Width: 1.7 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.
Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Biconvex.

2. Catalogue Number: 206.4.2

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: NA.

Time Period: NA.

Date Range: NA.

Weight: 34.4 g.

Length: 4.6 cm.
Width: 4.2 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Rounded.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

3. Catalogue Number: 206.6.3

Material Type: Quartz.

Point Type: Guilford Round Base.

Point Classification: Lanceolate.

Time Period: Middle Archaic.
Date Range: 6200-5000 BP.

Weight: 10.31 g.

Length: 4.9 cm.

Width: 2.1 cm.

Base Type: Convex.

Haft Base Type: Rounded.

Haft Width: 1.3 cm.

Haft Length: 0.6 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Elliptical.

4. Catalogue Number: 206.6.4
Material Type: Quartz.

Point Type: Guilford Stemmed.

Point Classification: Lanceolate.

Time Period: Middle Archaic.

Date Range: 6200-5000 BP.

Weight: 14.12 g.

Length: 5.6 cm.

Width: 2.1 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 1.8 cm.

Haft Length: 0.4 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Rounded.
5. **Catalogue Number:** 206.6.5

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: NA.

Time Period: NA.

Date Range: NA.

Weight: 9.49 g.

Length: 4.1 cm.

Width: 2.4 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.
Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

6. **Catalogue Number:** 206.6.6

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Just the Base.

Time Period: NA.

Date Range: NA.

Weight: 5.44 g.

Length: 2 cm.

Width: 2.4 cm.
Base Type: Convex.

Haft Base Type: Flat/Straight.

Haft Width: 1 cm.

Haft Length: 1.8 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.
1. **Catalogue Number:** 208.5.1

Material Type: Chert Ridge and Valley.

Point Type: Guilford Stemmed.

Point Classification: Stemmed and Lanceolate.

Time Period: Middle Archaic.

Date Range: 6200-5000 BP.

Weight: 3.95 g.

Length: 3.8 cm.

Width: 0.6 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 0.9 cm.

Haft Length: 0.6 cm.
Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Elliptical.

2. Catalogue Number: 208.5.2

Material Type: Quartz.

Point Type: Brunswick.

Point Classification: Triangular Notched.

Time Period: Middle Archaic.

Date Range: 5000-4500 BP.
Weight: 6.14 g.

Length: 3.2 cm.

Width: 2 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 0.5 cm.

Haft Length: 0.9 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Elliptical.

3. **Catalogue Number:** 208.9.3
Material Type: Quartz.

Point Type: Morrow Mountain Type II.

Point Classification: Triangular Stemmed.

Time Period: Middle Archaic.

Date Range: 6800-6000 BP.

Weight: 15.09 g.

Length: 5 cm.

Width: 2.9 cm.

Base Type: Convex.

Haft Base Type: Flat/Straight.

Haft Width: 1.5 cm.

Haft Length: 1 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Elliptical.
4. **Catalogue Number:** 208.13.4

Material Type: Quartz.

Point Type: Palmer aka Small Kirk Corner Notch.

Point Classification: Triangular Corner Notch.

Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 5.15 g.

Length: 3 cm.

Width: 1.9 cm.

Base Type: Slight Convex.

Haft Base Type: Notched.

Haft Width: 0.5 cm.

Haft Length: 1.5 cm.

Barb Type: Rounded.
Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

Catalogue Number: 208.13.5

Material Type: Quartz.

Point Type: Palmer aka Small Kirk Corner Notch.

Point Classification: Triangular Corner Notch.

Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 2.9 g.

Length: 2.3 cm.
Width: 1.6 cm.

Base Type: Slight Convex.

Haft Base Type: Notched.

Haft Width: 0.6 cm.

Haft Length: 1.4 cm.

Barb Type: Rounded.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

6. Catalogue Number: 208.13.6

Material Type: Quartz.
Point Type: Savannah River.

Point Classification: Stemmed.

Time Period: Middle to Late Archaic.

Date Range: 5000-3000 BP.

Weight: 12.9 g.

Length: 3.9 cm.

Width: 3 cm.

Base Type: Expanding Stem.

Haft Base Type: Slight Convex.

Haft Width: 1.2 cm.

Haft Length: 1.9 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.
Catalogue Number: 208.15.7

Material Type: Quartz.

Point Type: Palmer aka Small Kirk Corner Notch.

Point Classification: Triangular Corner Notch.

Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 5.04 g.

Length: 3.5 cm.

Width: 2.3 cm.

Base Type: Slight Convex.

Haft Base Type: Notched.

Haft Width: 0.7 cm.

Haft Length: 2.4 cm.
Barb Type: Rounded.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

8. Catalogue Number: 208.15.8

Material Type: Quartz.

Point Type: Not Identified

Point Classification: Triangular Corner Notch.

Time Period: NA.

Date Range: NA.

Weight: 7.68 g.
Length: 4.7 cm.

Width: 2.3 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA cm.

Haft Length: NA cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA/Unidentifiable.

Shoulder Nomenclature: NA/Unidentifiable.

Flaking Pattern: NA/Unidentifiable.

Cross Section: NA/Unidentifiable
9. **Catalogue Number:** 208.8.9

Material Type: Quartz.

Point Type: Partial PPK/Broken

Point Classification: Corner Notched.

Time Period: NA.

Date Range: NA.

Weight: 6.31 g.

Length: 2.2 cm.

Width: 3.1 cm.

Base Type: NA.
Haft Base Type: Notched.

Haft Width: NA cm.

Haft Length: NA cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA.

Shoulder Nomenclature: NA.

Flaking Pattern: NA.

Cross Section: NA

10. **Catalogue Number:** 208.12.10

Material Type: Quartz.

Point Type: Savannah River.

Point Classification: Stemmed.
Time Period: Middle to Late Archaic.

Date Range: 5000-3000 BP.

Weight: 11.7 g.

Length: 5.6 cm.

Width: 2.5 cm.

Base Type: Expanding Stem.

Haft Base Type: Flat/Straight.

Haft Width: 1.4 cm.

Haft Length: 1.0 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Plano Convex.
11. **Catalogue Number:** 208.12.11

Material Type: Chert.

Point Type: Palmer aka Small Kirk Corner Notch.

Point Classification: Triangular Corner Notch.

Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 4.63 g.

Length: 3.2 cm.

Width: 2.0 cm.

Base Type: Notched.

Haft Base Type: Notched.
Haft Width: 0.6 cm.

Haft Length: 1.3 cm.

Barb Type: Rounded.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Plano Convex.

12. Catalogue Number: 208.7.12

Material Type: Chert.

Point Type: Partial PPK/Broken.

Point Classification: Just the Mid-Section.

Time Period: NA.

Date Range: NA.
Weight: 8.24 g.
Length: 1.8 cm.
Width: 3.0 cm.
Base Type: NA.
Haft Base Type: NA.
Haft Width: NA.
Haft Length: NA.
Barb Type: NA.
Distal End Type: Broken at End.
Blade Edge Feature: NA.
Shoulder Nomenclature: NA.
Flaking Pattern: NA.
Cross Section: Flat.
13. **Catalogue Number:** 208.9.13

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Base & Mid-Section.

Time Period: NA.

Date Range: NA.

Weight: 24.94 g.

Length: 5.0 cm.

Width: 3.9 cm.

Base Type: Straight.
Haft Base Type: Flat/Straight.

Haft Width: 2.0 cm.

Haft Length: 1.1 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Biconvex.

14. **Catalogue Number:** 208.9.14
Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Base & Mid-Section.

Time Period: NA.

Date Range: NA.

Weight: 32.62 g.

Length: 4.6 cm.

Width: 4.3 cm.

Base Type: Rounded.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Median Ridge.
15. **Catalogue Number:** 208.10.15

Material Type: Quartz.

Point Type: Savannah River.

Point Classification: Stemmed.

Time Period: Middle to Late Archaic.

Date Range: 5000-3000 BP.

Weight: 19.85 g.

Length: 6.5 cm.

Width: 3.6 cm.

Base Type: Expanding Stem.

Haft Base Type: Flat/Straight.

Haft Width: 1.6 cm.

Haft Length: 1.0 cm.
Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Incurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Plano Convex.
16. **Catalogue Number:** 208.3.16

Material Type: Quartz.

Point Type: Crawford Creek.

Point Classification: Expanding Stemmed.

Time Period: Early Archaic.

Date Range: 8000-7000 BP.

Weight: 6.29 g.

Length: 3.5 cm.

Width: 2.6 cm.

Base Type: Expanding Stem.

Haft Base Type: Flat/Straight.

Haft Width: 1.4 cm.

Haft Length: 1 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Slight Serrated.

Shoulder Nomenclature: Slight Barbed.

Flaking Pattern: Random.

Cross Section: Elliptical.
17. **Catalogue Number:** 208.13.17

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Triangular.

Time Period: NA.

Date Range: NA.

Weight: 52.33 g.

Length: 6.1 cm.

Width: 4.3 cm.

Base Type: NA.

Haft Base Type: NA

Haft Width: NA cm.
Haft Length: NA cm.
Barb Type: NA.
Distal End Type: Acute.
Blade Edge Feature: Slight Serrated.
Shoulder Nomenclature: NA.
Flaking Pattern: NA.
Cross Section: Flat.

18. Catalogue Number: 208.13.18
Material Type: Quartz.
Point Type: Partial PPK/Broken.
Point Classification: Unidentified (only mid-section)

Time Period: NA.

Date Range: NA.

Weight: 6.43 g.

Length: 2.6 cm.

Width: 2.8 cm.

Base Type: NA.

Haft Base Type: Notched.

Haft Width: NA cm.

Haft Length: NA cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA.

Shoulder Nomenclature: NA.

Flaking Pattern: NA.

Cross Section: Flat.
19. **Catalogue Number:** 208.8.19

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Just the Base.

Time Period: NA.

Date Range: NA.

Weight: 1.69 g.

Length: 1.4 cm.

Width: 1.9 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 1.9 cm.
Haft Length: 1.4 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA.

Shoulder Nomenclature: NA.

Flaking Pattern: NA.

Cross Section: Flat.
1. **Catalogue Number:** 210.7 N Half.1

Material Type: Quartz.

Point Type: Karnark

Point Classification: Lanceolate.

Time Period: Middle to Late Archaic.

Date Range: 5700-4000 BP.

Weight: 9.08 g.

Length: 5.0 cm

Width: 1.8 cm.

Base Type: Rounded.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.
Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.

2. Catalogue Number: 210.8 N. Half.2

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Partial PPK/Broken.

Time Period: NA.

Date Range: NA.

Weight: 7.0 g.

Length: 4.0 cm.
Width: 2.4 cm.
Base Type: NA.
Haft Base Type: NA.
Haft Width: NA.
Haft Length: NA.
Barb Type: NA.
Distal End Type: Acute.
Blade Edge Feature: Straight Edge.
Shoulder Nomenclature: NA.
Flaking Pattern: Random.
Cross Section: Plano Convex.

3. Catalogue Number: 210.8 N Half.3
Material Type: Quartz.
Point Type: Partial PPK/Broken.

Point Classification: Partial PPK/Broken.

Time Period: NA.

Date Range: NA.

Weight: 4.0 g.

Length: 3.0 cm.

Width: 1.6 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Serrated.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.
4. **Catalogue Number:** 210.8 N Half.4

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Partial PPK/Broken.

Time Period: NA.

Date Range: NA.

Weight: 2.8 g.

Length: 2.5 cm.

Width: 1.7 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.
Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.

5. Catalogue Number: 210.9 N Half.5

Material Type: Quartz.

Point Type: Morrow Mountain Round Base.

Point Classification: Pentagonal.

Time Period: Middle Archaic.

Date Range: 7100-6000 BP.

Weight: 7.24 g.
Length: 3.5 cm.

Width: 2.6 cm.

Base Type: Rounded.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.

6. **Catalogue Number:** 210.9 N Half.6
Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Lanceolate.

Time Period: NA.

Date Range: NA.

Weight: 5.92 g.

Length: 3.4 cm.

Width: 1.9 cm.

Base Type: NA

Haft Base Type: NA

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvate.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.
7. **Catalogue Number:** 210.12 N Half.7

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Just the Base.

Time Period: NA.

Date Range: NA.

Weight: 6.17 g.

Length: 2.3 cm.

Width: 2.7 cm.

Base Type: Notched.
Haft Base Type: Flat/Straight.

Haft Width: 1.7 cm.

Haft Length: 1.0 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.

8. Catalogue Number: 210.12 N Half.8

Material Type: Chert.

Point Type: Bolen Rocker Base.

Point Classification: Side Notched.
Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 5.48 g.

Length: 3.4 cm.

Width: 2.4 cm.

Base Type: Notched.

Haft Base Type: Notched.

Haft Width: 1.6 cm.

Haft Length: 0.8 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvate Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.
9. **Catalogue Number:** 210.13 N Half.9

Material Type: Quartz.

Point Type: Kirk Corner Notched.

Point Classification: Lanceolate.

Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 3.42 g.

Length: 3.6 cm.

Width: 1.5 cm.

Base Type: Notched.

Haft Base Type: Notched.

Haft Width: 1.7 cm.

Haft Length: 0.5 cm.

Barb Type: NA.
Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

Material Type: Chert.

Point Type: Palmer aka Small Kirk Corner Notched.

Point Classification: Just the Base.

Time Period: NA.

Date Range: NA.

Weight: 1.25 g.

Length: 0.9 cm.

Width: 2.4 cm.
Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 0.5 cm.

Haft Length: 1.8 cm.

Barb Type: NA.

Distal End Type: Broken at End.

Blade Edge Feature: NA.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Biconvex.

11. **Catalogue Number:** 210.13 N Half.11

Material Type: Quartz.

Point Type: Palmer aka Small Kirk Corner Notched.

Point Classification: Notched.
Time Period: Early Archaic.

Date Range: 9500-8500 BP.

Weight: 2.66 g.

Length: 2.4 cm.

Width: 1.8 cm.

Base Type: Notched.

Haft Base Type: Notched.

Haft Width: 1.9 cm.

Haft Length: 0.6 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.
12. **Catalogue Number**: 210.14 N Half.12

Material Type: Quartz.

Point Type: Morrow Mountain Round Base.

Point Classification: Pentagonal.

Time Period: Middle Archaic.

Date Range: 7100-6000 BP.

Weight: 11.81 g.

Length: 3.6 cm.

Width: 2.7 cm.

Base Type: Rounded.

Haft Base Type: NA.
Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: NA.

Flaking Pattern: Random.

Cross Section: Flat.
1. **Catalogue Number**: 212.6.1

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Mid & Top Section.

Time Period: NA.

Date Range: NA.

Weight: 22.9 g.

Length: 4.4 cm.

Width: 3.8 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.
Haft Length: NA.

Barb Type: NA.

Distal End Type: Rounded.

Blade Edge Feature: Excurvated Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Flat.

2. Catalogue Number: 212.7.2

Material Type: Quartz.

Point Type: Savannah River.

Point Classification: Stemmed.

Time Period: Middle to Late Archaic.

Date Range: 5000-3000 BP.
Weight: 18.87 g.

Length: 6.1 cm.

Width: 3.7 cm.

Base Type: Expanding Stem.

Haft Base Type: Flat/Straight.

Haft Width: 1.5 cm.

Haft Length: 1.4 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: Random.

Cross Section: Plano Convex.
1. **Catalogue Number:** 214.4.1

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Just the Mid-Section.

Time Period: NA.

Date Range: NA.

Weight: 14.35 g.

Length: 3.4 cm.

Width: 3.1 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.
Barb Type: NA.
Distal End Type: Broken at End.
Blade Edge Feature: NA.
Shoulder Nomenclature: NA.
Flaking Pattern: NA.
Cross Section: Flat.

2. Catalogue Number: 214.4.2
Material Type: Quartz.
Point Type: Rheems Creek.
Point Classification: Triangular Stemmed.
Time Period: Late Archaic to Woodland.
Date Range: 4000-2000 BP.
Weight: 7.22 g.
Length: 3 cm.
Width: 2.7 cm.

Base Type: Straight.

Haft Base Type: Flat/Straight.

Haft Width: 1.3 cm.

Haft Length: 0.7 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Slight Excurvate.

Shoulder Nomenclature: Slight Upwards.

Flaking Pattern: NA.

Cross Section: Elliptical.

3. **Catalogue Number:** 214.4.WC.3

WC means Wall Collapse

Material Type: Quartz
Point Type: Hardaway Blade

Point Classification: Lanceolate.

Time Period: Paleo to Early Archaic.

Date Range: 10500-9000 BP.

Weight: 18.71 g.

Length: 3.6 cm.

Width: 3.1 cm.

Base Type: Concave.

Haft Base Type: Slight Concave.

Haft Width: 2.6 cm.

Haft Length: 0.7 cm.

Barb Type: NA.

Distal End Type: Rounded.

Blade Edge Feature: Slight Excurvate.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: NA.

Cross Section: Flat.
Catalogue Number: 216.3.1

Material Type: Quartz.

Point Type: Bradley Spike.

Point Classification: Stemmed.

Time Period: Late Archaic to Early Woodland.

Date Range: 4000-1800 BP.

Weight: 4.54 g.

Length: 3.7 cm.

Width: 1.9 cm.

Base Type: Convex.

Haft Base Type: Slight Convex.

Haft Width: 1.5 cm.
Haft Length: 0.9 cm.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Excurvate.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: NA.

Cross Section: Elliptical.

2. Catalogue Number: 216.3.2

Material Type: Quartz.

Point Type: Partial PPK/Broken.

Point Classification: Partial PPK/Broken.

Time Period: NA.

Date Range: NA.

Weight: 10.06 g.
Length: 4.6 cm.
Width: 2.7 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: Straight Edge.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: NA.

Cross Section: Flat.
3. **Catalogue Number:** 216.4.3

Material Type: Quartz.

Point Type: Partial PPK/Broken

Point Classification: Partial PPK/Broken

Time Period: NA.

Date Range: NA.

Weight: 8.36 g.

Length: 2.7 cm.

Width: 2.1 cm.

Base Type: NA.

Haft Base Type: NA.

Haft Width: NA.

Haft Length: NA.

Barb Type: NA.

Distal End Type: Acute.

Blade Edge Feature: In/Excurvate.

Shoulder Nomenclature: Sloping Upwards.

Flaking Pattern: NA.

Cross Section: Elliptical.