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IDENTIFYING INFLAMMATORY BOWEL DISEASE PATIENTS IN TCGA
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by

REGINA CHANG

Under the Direction of Yi Jiang, PhD

ABSTRACT

Chronic inflammation increases the risk of developing cancer. We aim to investigate

the molecular pathway of inflammation induced cancer by comparing gene expression in

colorectal (CRC) tumors of patients with inflammatory bowel disease (IBD) to sporatic

colorectal tumors. Since mRNA microarray data of IBD induced CRC is not readily available,

we attempt to isolate IBD patients in a public database based on their gene expression

signatures.

INDEX WORDS: TCGA, microarray, Cancer, Inflammation, CRC, Colon Rectal Cancer,
IBD.
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Chapter 1

INTRODUCTION

1.1 Cancer-Related Inflammation

There is a strong link between cancer and chronic inflammation [1]. We propose an

approach to understanding the role of chronic inflammation in cancer by comparing the gene

expression of one particular cancer that can be subdivided into two groups: sporadic and

inflammation-driven. The sporadic subtype will be cancer patients who have no prior history

of an inflammatory disease. The inflammation-driven subtype will be cancer patients who

have a pre-existing inflammatory disease associated with increased risk of developing that

paticular subtype of cancer.

Inflammatory bowel disease (IBD), inclusive of ulcerative colitis (UC) and Crohn’s dis-

ease (CD), is associated with an increased risk for developing colorectal cancer (CRC) [2].

Even though IBD patients account for less than 2% of CRC cases, the risk of developing

either a cancer precursor or cancer of the colon over 30 years increases from 2% to 18% for

those with chronic inflammation [2].

1.2 Description of Data

The data was collected from two databases. The databases were chosen based on

their open access and large data sets. The first is from Gene Expression Omnibus (GEO)

at (http://www.ncbi.nlm.nih.gov/geo/) [3]. Data consisted of gene expression analysis of

colon biopsies of CRC (n=15) and IBD (n=14) patients along with healthy normal controls

(n=8) using high-density oligonucleotide microarray (series accession number GSE4183) [4].

Genome-wide gene expression profile was evaluated by HGU133 Plus 2.0 microarrays which

measured the expression of 54,675 genes. According to the methods section of the research

paper, pre-processing quality control and normalization of the data were preformed prior to
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publishing on GEO. We hereafter refer to this data set as GEO data.

The second data set is from The Cancer Genome Atlas Research Network (http://cancergenome.nih.gov/).

The Biospecimen Core Resource did not exclude colon or rectal cases for IBD, nor do the

standard clinical forms allow mention of IBD. Thus, we can not use the clinical data to filter

for IBD patients in the TCGA database. Some papers have used the TCGA data under the

assumption that all samples originate from sporadic cases of colorectal cancer [9]. The R

package RTCGA was used to download mRNA data from colon adenocarcinoma (COAD)

samples consisting of 172 patients and 17,815 genes.

1.3 Purpose of the Thesis

The purpose of this study is two-fold. First, repeat and validate the classification

procedure described in the Inflammation, adenoma and cancer: objective classification of

colon biopsy specimens with gene expression signature paper published in 2008 using their

publicly available data. Second, apply the analysis on TCGA data to classify any IBD

patients present in the database. This study aims to objectively identify any IBD patients in a

large database based on gene expression when traditional histological diagnosis is unavailable.
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Chapter 2

METHODOLOGIES

2.1 Preliminary Data Analysis

The R code used in this analysis can be found in Appendix B. TCGA data was uploaded

to R using RTCGA.data packages [5]. The matrix contained expression levels of 17,815 genes

of 172 patients. GSE4183 series matrix was uploaded on to R using the GEOquery package

provided by GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) [6]. Preliminary analysis

of expression levels were conducted using GEO2R code provided by the website. KEGG

analysis was done using the Pathview package [7]. TCGA and GEO data sets were cross-

referenced for gene names contained in both data-sets. Unfortunately, none of the genes

found to be significant (p ¡ 0.01) in the GEO2R analysis are present in the TCGA gene

name list. The remaining analysis was limited to only genes profiled in both TCGA and

GEO.

2.2 PAM Classification

Prediction analysis for Microarrays (PAM) uses soft thresholding to produce a shrunken

centroid, which allows the selection of genes with high predictive potential [8]. Both data

sets were normalized before training the classifier. The classifier was trained on the GEO set

with only Normal (n=8) and IBD (n=15) patient data. The trainer was cross-validated, and

the cross-validated errors were plotted. A threshold of 3 was chosen to minimize non zero

errors. Cross-validated class probabilities by class, class centroids, and gene plot of most

significant genes were computed. TCGA data (n=172) were then classified using the trainer.

For plot aesthetics, only samples that changed in classification as threshold changed were

shown. All other samples were classified as IBD regardless of threshold.
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Chapter 3

RESULTS AND DISCUSSION

3.1 Preliminary Analysis of GEO data

Preliminary analysis of GEO data was done to gauge the expression profiles of ”treat-

ment” (IBD) versus ”control” (normal). Further detail on the top 50 differentially expressed

genes in IBD compared to normal can be found in Appendix A. Figure 3.1 is a heatmap of

the difference in expression for each IBD sample. We can see a mix of upregulated and down

regulated genes. No gene is uniformly up or down regulated across all samples. Figure 3.2

shows the KEGG pathway for IBD, entry hsa05321, of one IBD sample with up or down

regulation of displayed genes colored red or green, respectively.
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Figure (3.1) Heatmap of difference in expression of IBD patients compared to normal. Top

50 genes shown.
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Figure (3.2) KEGG pathway hsa05321 of patient colon IBD 939.
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3.2 PAM Classification

The GEO dataset consisting of 14,554 genes of 53 columns was used to train the classifier,

shown in table 3.1. As threshold increases, the number of genes used in the classifier decreases

and the number of normal samples misclassified as IBD are shown under errors.

The cross-validated error curves the nearest shrunken centroid classifier are shown in

figure 3.3. The error bars shown are confidence interval for misclassifcation (for example

misclassifying 1 IBD sample out of 15 will result in an overall error rate of 0.043). Optimal

threshold will be around 3.1 since it minimizes both number of genes used in the classifying

and misclassification error. The classier has a bias towards misclassifying samples as IBD

until threshold passes 3.1, then misclasification drastically increases towards normal samples.

Cross-validated class probabilities for each sample (n=23) are shown in figure 3.4. The x

axis indicates sample number with the first 15 samples catagorized under IBD (red) and the

last 8 categorized under normal (green). Each sample has two different color dots to indicate

the probability of being categorized as either IBD or normal, y axis. The points are mirrored

along the 0.5 probability line because there are only two categories for classification.

Table 3.2 and figure 3.5 shows the 25 genes used to classify the the samples. IBD/NOR-

score are the raw gene expression for genes that survive the specified threshold of 3.1. The

y axis on figure 3.5 is the raw gene expression value for each sample along the x axis. Red

circles indicate IBD samples and green circles indicate normal samples. Plot is stratified by

class. All genes except TMEM67A and STIP1 have higher expression in normal samples.

Finally, TCGA samples (n=172) were fed into the classifier at varying thresholds (min

of 2.4 and max of 3.3). Majority of samples were classified as IBD (not shown) for all

thresholds. The samples that changed classification as a function of threshold are shown in

figure 3.6. Each row (y axis) indicates a different sample from the TCGA database. Each

column is the classification of that sample as either normal (blue) or IBD (purple) based on

the threshold (x axis). Most samples were reclassified from normal to IBD with the exception

of two samples, which were reclassified twice.
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threshold genes errors
1 0.000 14554 1
2 0.125 13005 1
3 0.250 11455 1
4 0.374 9952 1
5 0.499 8547 1
6 0.624 7299 1
7 0.749 6168 1
8 0.874 5106 1
9 0.999 4174 1

10 1.123 3352 1
11 1.248 2694 1
12 1.373 2140 1
13 1.498 1656 1
14 1.623 1237 1
15 1.747 930 1
16 1.872 709 1
17 1.997 544 1
18 2.122 409 1
19 2.247 292 1
20 2.372 192 1
21 2.496 136 1
22 2.621 98 1
23 2.746 70 0
24 2.871 39 0
25 2.996 25 0
26 3.121 21 0
27 3.245 12 1
28 3.370 10 6
29 3.495 4 8
30 3.620 0 8

Table (3.1) PAM classifier output.

Figure (3.3) Cross-validated error curves of PAM for classification of IBD vs Normal.
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Figure (3.4) Cross-validated class probabilities of PAM for classification of IBD vs Normal.

Gene Name IBD-score NOR-score
1 SLC6A12 -0.0944 0.177
2 PLA2G12B -0.0942 0.1766
3 PAQR9 -0.0895 0.1678
4 EGFLAM -0.0785 0.1472
5 YIPF1 -0.0695 0.1304
6 PADI2 -0.0675 0.1265
7 PIGL -0.0663 0.1242
8 OLFM2 -0.0642 0.1204
9 KRT27 -0.0632 0.1185

10 C9orf69 -0.0629 0.118
11 CASP6 -0.0458 0.086
12 POU4F1 -0.0439 0.0823
13 FNDC4 -0.0324 0.0607
14 JPH3 -0.029 0.0544
15 C17orf59 -0.0259 0.0486
16 PHOSPHO1 -0.0238 0.0446
17 MASTL -0.023 0.0431
18 DYNLT1 -0.0228 0.0427
19 PRDX6 -0.0209 0.0392
20 TMEM87A 0.0208 -0.039
21 POM121 -0.0203 0.038
22 YIPF2 -0.0183 0.0343
23 SLC5A7 -0.0172 0.0323
24 TACC3 -0.0089 0.0167
25 STIP1 0.0075 -0.0141

Table (3.2) PAM classification list of significant genes.
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Figure (3.5) A gene plot of the most significant genes. Red indicates IBD classification and

Green indicates Normal classification.
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Figure (3.6) Heatmap of TCGA samples that changed sorting values with threshold. A value

of 2 (blue) indicates Normal and a value of 1 (purple) indicates IBD.
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Chapter 4

CONCLUSION

High throughput gene analysis databases such as TCGA and GEO are complicated

and require years of bioinformatics expertise to master. Even the open source tools used to

streamline the analysis of such databases can be hard to operate without proper training

by an expert. There are many variables that go into genetics data and not all those are

immediately visible even after careful consideration of the data available.

Initial analysis of the GEO data do not reveal any consistent expression patterns among

all samples in the top 50 genes. Non of the genes are consistently up regulated or down reg-

ulated among all samples, posing a difficult task to track samples based on their signature

expression differences. Pathway analysis has shown that not all genes present in the IBD

pathway hsa05321 are significantly deferentially expressed compared to healthy normal sub-

jects.

The PAM classifier has identified 25 genes used to sort between IBD and normal samples

at a optimal threshold of 3.1. Surprisingly, these genes are not in the top 250 significantly

differentially expressed genes. The results of the PAM classification of TCGA data indicate

that a majority of samples can be classified as IBD. This may be because expression patterns

of CRC are more similar to IBD than normal tissue samples.

Possible errors made in this analysis include matching gene names between the two

databases and normalizing expression values. It is unclear how the TCGA samples were

normalized, and thus difficult to repeat the normalization procedure on GEO samples. If

normalization for TCGA samples were from same patient tissue samples of non-disease tissue,

or a housekeeping gene not present in the GEO array, then it would be impossible to match

the GEO samples to TCGA. This will result in errors with the sorting algorithm since the

two samples are not consistent. Further direction in categorizing TCGA data may include
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Principal Component Analysis or Discriminant Analysis.
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Appendix A

TOP 50 GENES
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ID adj.P.Val P.Value t B logFC Gene.symbol Gene.title
209396 s at 2.56e-10 4.69e-15 -17.586 22.526 -6.966 CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39)
209395 at 2.74e-09 1e-13 -15.275 20.132 -6.270 CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39)
202134 s at 2.82e-07 1.74e-11 -11.947 15.799 -2.322 WWTR1 WW domain containing transcription regulator 1
215014 at 2.82e-07 2.06e-11 -11.847 15.649 -3.018 KCND3 potassium voltage-gated channel, Shal-related subfam-

ily, member 3
202357 s at 6.12e-07 6.33e-11 -11.206 14.662 -2.712 CFB complement factor B
212203 x at 6.12e-07 7.5e-11 -11.111 14.511 -1.768 IFITM3 interferon induced transmembrane protein 3
219270 at 6.12e-07 7.83e-11 -11.087 14.472 -3.331 CHAC1 ChaC, cation transport regulator homolog 1 (E. coli)
205828 at 1.1e-06 1.73e-10 -10.651 13.764 -5.202 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase)
204470 at 1.1e-06 1.85e-10 -10.614 13.703 -4.298 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth

stimulating activity, alpha)
206336 at 1.1e-06 2.02e-10 -10.568 13.626 -4.338 CXCL6 chemokine (C-X-C motif) ligand 6
205890 s at 1.34e-06 2.7e-10 -10.412 13.365 -3.671 UBD///

GABBR1
ubiquitin D/// gamma-aminobutyric acid (GABA) B
receptor, 1

202628 s at 1.36e-06 2.99e-10 -10.358 13.273 -4.080 SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen
activator inhibitor type 1), member 1

201315 x at 1.43e-06 3.66e-10 -10.250 13.090 -1.960 IFITM2 interferon induced transmembrane protein 2
1554530 at 1.43e-06 3.67e-10 10.249 13.088 3.928 VSTM2A V-set and transmembrane domain containing 2A
204279 at 1.43e-06 3.93e-10 -10.213 13.026 -1.988 PSMB9 proteasome (prosome, macropain) subunit, beta type, 9
214022 s at 1.56e-06 4.58e-10 -10.133 12.889 -1.393 IFITM1 interferon induced transmembrane protein 1
201649 at 1.61e-06 5e-10 -10.087 12.809 -1.701 UBE2L6 ubiquitin-conjugating enzyme E2L 6
202917 s at 2.17e-06 7.14e-10 -9.902 12.486 -5.078 S100A8 S100 calcium binding protein A8
214974 x at 2.64e-06 9.18e-10 -9.773 12.258 -5.488 CXCL5 chemokine (C-X-C motif) ligand 5
202625 at 7.18e-06 2.63e-09 -9.244 11.295 -1.506 LYN LYN proto-oncogene, Src family tyrosine kinase
201818 at 7.38e-06 2.83e-09 -9.206 11.225 -3.138 LPCAT1 lysophosphatidylcholine acyltransferase 1
231078 at 9.91e-06 3.99e-09 -9.039 10.911 -2.914
219181 at 1.02e-05 4.28e-09 -9.004 10.846 -1.400 LIPG lipase, endothelial
201601 x at 1.22e-05 5.35e-09 -8.895 10.639 -1.760 IFITM1 interferon induced transmembrane protein 1
200629 at 1.35e-05 6.36e-09 -8.812 10.480 -2.208 WARS tryptophanyl-tRNA synthetase
231577 s at 1.35e-05 6.4e-09 -8.809 10.474 -2.629 GBP1 guanylate binding protein 1, interferon-inducible
209546 s at 1.46e-05 7.25e-09 -8.749 10.359 -2.748 APOL1 apolipoprotein L, 1
213832 at 1.46e-05 7.49e-09 -8.734 10.329 -2.064 KCND3 potassium voltage-gated channel, Shal-related subfam-

ily, member 3
224701 at 1.86e-05 9.89e-09 -8.601 10.071 -1.571 PARP14 poly (ADP-ribose) polymerase family, member 14
1554385 a at 2.14e-05 1.18e-08 8.519 9.910 1.844 PADI2 peptidyl arginine deiminase, type II
202626 s at 2.16e-05 1.23e-08 -8.499 9.872 -1.486 LYN LYN proto-oncogene, Src family tyrosine kinase
203548 s at 2.2e-05 1.29e-08 -8.477 9.828 -3.370 LPL lipoprotein lipase
40687 at 2.26e-05 1.37e-08 -8.447 9.768 -2.496 GJA4 gap junction protein, alpha 4, 37kDa
205844 at 2.26e-05 1.45e-08 -8.420 9.716 -4.317 VNN1 vanin 1
203854 at 2.26e-05 1.45e-08 -8.420 9.716 -3.026 CFI complement factor I
236308 at 2.29e-05 1.51e-08 8.401 9.678 2.039 VSTM2A V-set and transmembrane domain containing 2A
223539 s at 2.68e-05 1.81e-08 8.315 9.506 1.563 SERF1B///

SERF1A
small EDRK-rich factor 1B (centromeric)/// small
EDRK-rich factor 1A (telomeric)

201061 s at 2.68e-05 1.91e-08 -8.291 9.458 -1.663 STOM stomatin
211122 s at 2.68e-05 1.91e-08 -8.291 9.458 -3.865 CXCL11 chemokine (C-X-C motif) ligand 11
201925 s at 2.81e-05 2.06e-08 -8.257 9.389 -2.917 CD55 CD55 molecule, decay accelerating factor for comple-

ment (Cromer blood group)
201042 at 2.86e-05 2.14e-08 -8.237 9.351 -1.877 TGM2 transglutaminase 2
202743 at 3.01e-05 2.32e-08 -8.202 9.279 -1.390 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3

(gamma)
227051 at 3.22e-05 2.54e-08 -8.160 9.194 -2.123 BACE2 beta-site APP-cleaving enzyme 2
205866 at 3.46e-05 2.84e-08 -8.107 9.089 -2.726 FCN3 ficolin (collagen/fibrinogen domain containing) 3
210164 at 3.46e-05 2.85e-08 -8.106 9.085 -3.013 GZMB granzyme B (granzyme 2, cytotoxic T-lymphocyte-

associated serine esterase 1)
211959 at 3.54e-05 2.98e-08 -8.085 9.043 -2.464 IGFBP5 insulin-like growth factor binding protein 5
209425 at 3.62e-05 3.13e-08 8.063 8.998 1.655 AMACR alpha-methylacyl-CoA racemase
236351 at 3.62e-05 3.3e-08 8.039 8.949 2.915 DPP10-

AS1
DPP10 antisense RNA 1

203535 at 3.62e-05 3.3e-08 -8.038 8.948 -4.701 S100A9 S100 calcium binding protein A9
AFFX-
HUMISGF3A/M97935 3 at

3.62e-05 3.31e-08 -8.037 8.945 -1.304 STAT1 signal transducer and activator of transcription 1, 91kDa

Table (A.1) Top 50 genes differentially expressed in IBD compared to normal.
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Appendix B

R CODE

#### Load TCGA Data ####

#https://rtcga.github.io/RTCGA/

# source("https://bioconductor.org/biocLite.R")

# biocLite("RTCGA.mRNA")

library(’RTCGA.mRNA’)

COAD.data=COAD.mRNA

#### Load GEO Data ####

#http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4183

#Download GSE4183_series_matrix1.txt this is a modified version of the Series Matrix File

datadir <- "/home/gina/Downloads/" #change this to your directory

GSE4183.data <- read.table(file.path(datadir, "GSE4183_series_matrix1.txt"), fill = TRUE,header = TRUE, sep = "\t", row.names = 1)

colnames(GSE4183.data)=c("colon_normal_1024", "colon_normal_1081","colon_normal_1114","colon_normal_1122","colon_normal_1357","colon_normal_1431","colon_normal_1440","colon_normal_1456",

"colon_adenoma_1115","colon_adenoma_1138","colon_adenoma_1141","colon_adenoma_1154","colon_adenoma_1187","colon_adenoma_1312","colon_adenoma_1419","colon_adenoma_1700","colon_adenoma_1748","colon_adenoma_1830","colon_adenoma_1832","colon_adenoma_956","colon_adenoma_980","colon_adenoma_983","colon_adenoma_995",

"colon_CRC_1146","colon_CRC_1158","colon_CRC_1293","colon_CRC_1316","colon_CRC_1377","colon_CRC_1479","colon_CRC_1486","colon_CRC_1494","colon_CRC_1499","colon_CRC_1556","colon_CRC_1651","colon_CRC_1708","colon_CRC_1739","colon_CRC_1761","colon_CRC_1883",

"colon_IBD_1110","colon_IBD_1118","colon_IBD_1537","colon_IBD_1670","colon_IBD_1802","colon_IBD_923","colon_IBD_1017","colon_IBD_1060","colon_IBD_1156","colon_IBD_1175","colon_IBD_1368","colon_IBD_1533","colon_IBD_1606","colon_IBD_1665","colon_IBD_939")

#But oh no! The gene names are probe-IDs of Affymetrix Human Genome U133 Plus 2.0 Array

#How do we get the correct gene names to match this expression data with TCGA?

#Don your hazmat suits, cause we bout to crawl thru some shit

#### Alternative Method of Loading GEO Data: GEO2R####

#Make sure your R is version 3.0 or higher

#load required libraries from Bioconductor (This may require tears and more understanding of R repositories than you ever wanted to know in this lifetime)
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source("http://bioconductor.org/biocLite.R")

biocLite("GEOquery")

# Version info: R 3.2.3, Biobase 2.30.0, GEOquery 2.36.0, limma 3.26.8

# R scripts generated Mon May 23 19:13:44 EDT 2016

# load series and platform data from GEO

gset <- getGEO("GSE4183", GSEMatrix =TRUE) #don’t panic this will take a while

if (length(gset) > 1) idx <- grep("GPL570", attr(gset, "names")) else idx <- 1

gset <- gset[[idx]]

# make proper column names to match toptable

fvarLabels(gset) <- make.names(fvarLabels(gset))

# group names for all samples

gsms <- "11111111XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX000000000000000"

sml <- c()

for (i in 1:nchar(gsms)) { sml[i] <- substr(gsms,i,i) }

# eliminate samples marked as "X"

sel <- which(sml != "X")

sml <- sml[sel]

gset <- gset[ ,sel]

# log2 transform

ex <- exprs(gset)

qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))

LogC <- (qx[5] > 100) ||
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(qx[6]-qx[1] > 50 && qx[2] > 0) ||

(qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)

if (LogC) { ex[which(ex <= 0)] <- NaN

exprs(gset) <- log2(ex) }

# set up the data and proceed with analysis

sml <- paste("G", sml, sep="") # set group names

fl <- as.factor(sml)

gset$description <- fl

design <- model.matrix(~ description + 0, gset)

colnames(design) <- levels(fl)

fit <- lmFit(gset, design)

cont.matrix <- makeContrasts(G1-G0, levels=design)

fit2 <- contrasts.fit(fit, cont.matrix)

fit2 <- eBayes(fit2, 0.01)

tT <- topTable(fit2, adjust="fdr", sort.by="B", number=250)

#tT.all <- topTable(fit2, adjust="fdr", sort.by="B", number=3082)

# load NCBI platform annotation

gpl <- annotation(gset)

platf <- getGEO(gpl, AnnotGPL=TRUE)

ncbifd <- data.frame(attr(dataTable(platf), "table"))

# replace original platform annotation

tT <- tT[setdiff(colnames(tT), setdiff(fvarLabels(gset), "ID"))]

tT <- merge(tT, ncbifd, by="ID")

tT <- tT[order(tT$P.Value), ] # restore correct order
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tT <- subset(tT, select=c("ID","adj.P.Val","P.Value","t","B","logFC","Gene.symbol","Gene.title"))

write.table(tT, file=stdout(), row.names=F, sep="\t")

#NOW we can name GEO data

rownames(GSE4183.data)=make.names(ncbifd$Gene.symbol, unique=TRUE)

#Make GEO data the same format as TCGA

GEO.data=data.frame(t(GSE4183.data))

##### KEGG pathway analysis #####

source("http://bioconductor.org/biocLite.R")

biocLite("pathview")

biocLite(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db"))

library(pathview)

#name genes as KEGG names

rownames(ex)=ncbifd$Gene.ID

#use IBD pathway

#http://www.genome.jp/dbget-bin/www_bget?pathway+hsa05321

pv.out <- pathview(gene.data = scale(ex[, 23]), pathway.id = "05321",

species = "hsa", out.suffix = "gse4183", kegg.native = T)

#look for a file called hsa05321.gse4183.png

### Create a heatmap of top 50 expressed genes ###

heatmap.data=GEO.data[c(1:8,39:53),tT$Gene.symbol[1:50]]

m=as.vector(apply(heatmap.data[1:8,],2,mean))

heatmap.normalized=as.matrix(heatmap.data[-c(1:8),])-matrix(t(replicate(15,m)),nrow=15,ncol=50)

colnames(heatmap.normalized)=tT$Gene.symbol[1:50]

library(lattice)
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col.l <- colorRampPalette(c(’green’, ’red’))(30)

levelplot(scale(heatmap.normalized),xlab="Sample ID",ylab="Gene Symbol",

col.regions=col.l, scales=list(x=list(rot=90, cex=0.75),y=list(cex=0.6)))

#### Determining Overlap b/w TCGA and GEO gene expression ####

genenames.TCGA=names(COAD.data[-1])

genenames.GEO=ncbifd$Gene.symbol

#Oh, btw, there’s another problem with GEO data (actually there’s a lot of problems with the gene names, make a text file and take a peak)

sum(duplicated(genenames.GEO))

#TCGA does not have duplicated gene names

#Find which genes are present in both TCGA and GEO w/o duplicates (using first instance for duplicated genes)

samegenes.idx=match(genenames.TCGA,genenames.GEO)

sum(is.na(samegenes.idx)) #some TCGA genes not in GEO

samegenes.names=genenames.GEO[samegenes.idx]

samegenes.names=samegenes.names[!is.na(samegenes.names)]

length(samegenes.names) #number of genes to be used in our analysis

samegenes.idx=match(names(COAD.data),names(GEO.data))

sum(is.na(samegenes.idx)) #some TCGA genes not in GEO

genenames.GEO=names(GEO.data)

samegenes.names=genenames.GEO[samegenes.idx]

samegenes.names=samegenes.names[!is.na(samegenes.names)]

length(samegenes.names) #number of genes to be used in our analysis

#Truncate TCGA and GEO data to only include same genes

#COAD.short=COAD.data[as.character(samegenes.names)]

b=match(samegenes.names,names(COAD.data))
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COAD.short=COAD.data[b]

d=match(samegenes.names,names(GEO.data))

GEO.short=GEO.data[d]

#Normalize both data sets

COAD.norm=as.data.frame(scale(COAD.short))

GEO.norm=as.data.frame(scale(GEO.short))

#### PAMR analysis ####

#http://statweb.stanford.edu/~tibs/PAM/Rdist/doc/readme.html

library(’pamr’)

##PAM expects the data in an object (class=list) with

##components x (the expression matrix of genes by samples) and

##y, a vector of class labels.

x=as.matrix(GEO.norm)

x=unname(x, force = TRUE)

#Only look into Normal and IBD patients

GEO.pamr=list(x=t(x[c(1:8,39:53),]),

y=c(rep(’NOR’,8),rep(’IBD’,15)),

geneid=samegenes.names,

samplelables=c(rownames(GEO.norm)[1:8],rownames(GEO.norm)[39:53]))

TCGA.pamr=list(x=unname(t(as.matrix(COAD.norm)),force = TRUE),

y=rep(’NOR’,172), #assume TCGA samples are all normal?

geneid=samegenes.names,

samplelables=COAD.data$bcr_patient_barcode)

## Train the classifier
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GEO.train <- pamr.train(GEO.pamr)

## Type name of object to see the results

GEO.train

## Cross-validate the classifier

GEO.results<- pamr.cv(GEO.train, GEO.pamr)

GEO.results #min nonzeros and errors?

## Plot the cross-validated error curves

pamr.plotcv(GEO.results)

## Compute the confusion matrix for a particular model

threshold=3.1

pamr.confusion(GEO.results, threshold)

## Plot the cross-validated class probabilities by class

pamr.plotcvprob(GEO.results, GEO.data, threshold)

## Plot the class centroids

pamr.plotcen(GEO.train, GEO.data, threshold)

## Make a gene plot of the most significant genes

pamr.geneplot(GEO.train, GEO.pamr, threshold)

# Estimate false discovery rates and plot them

fdr.obj<- pamr.fdr(GEO.train, GEO.pamr)
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pamr.plotfdr(fdr.obj) #NULL

## List the significant genes

x=pamr.listgenes(GEO.train, GEO.pamr, threshold)

xtable(x)

## prediction information, from a nearest shrunken centroid fit

pamr.predict(GEO.train, TCGA.pamr$x, threshold=3.1)

prob=pamr.predict(GEO.train, TCGA.pamr$x, threshold=2.5, type="posterior")

## A function to classify samples, allowing for an indeterminate (doubt) category

pamr.indeterminate(prob,mingap=.75)

x=matrix(nrow=10,ncol=172)

for (i in 1:10){

x[i,]=pamr.predict(GEO.train, TCGA.pamr$x, threshold=(2.3+i*0.1))

#1 is IBD and 2 is NOR

}

rownames(x) <- 2.3+0.1*c(1:10)

colnames(x)=t(COAD.data[1])

remov=0

for (i in 1:172){

if(all(x[,i]==rep(1,10))){remov=append(remov,i)}

}

x=x[,-remov]

library(lattice)

levelplot(x)
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Appendix C

PAMR CLASSIFICATION OF TCGA

Figure (C.1) Plot the cross-validated error curves with all 4 categories present in GEO data.

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.3)

[1] IBD IBD IBD IBD IBD ADE IBD CRC CRC CRC CRC CRC IBD CRC ADE CRC IBD

[18] IBD CRC IBD IBD IBD CRC CRC ADE CRC IBD CRC CRC CRC ADE CRC IBD CRC

[35] CRC IBD CRC IBD CRC ADE ADE CRC ADE CRC CRC ADE IBD CRC CRC IBD IBD

[52] IBD ADE IBD IBD ADE ADE ADE IBD IBD CRC IBD IBD ADE CRC ADE IBD IBD

[69] ADE ADE ADE IBD IBD ADE CRC ADE ADE CRC IBD ADE IBD CRC IBD ADE ADE

[86] CRC ADE IBD ADE IBD IBD ADE CRC ADE ADE ADE IBD IBD ADE ADE ADE IBD
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[103] CRC ADE IBD IBD IBD IBD IBD IBD IBD ADE IBD IBD IBD CRC IBD IBD IBD

[120] IBD IBD ADE IBD ADE ADE ADE CRC ADE ADE IBD IBD CRC ADE IBD IBD ADE

[137] ADE IBD ADE CRC ADE IBD ADE CRC ADE ADE IBD ADE ADE IBD ADE ADE ADE

[154] ADE CRC ADE IBD ADE ADE CRC ADE ADE ADE ADE CRC CRC ADE ADE IBD ADE

[171] CRC ADE

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.4)

[1] IBD CRC IBD IBD IBD ADE IBD CRC IBD CRC CRC CRC IBD CRC CRC CRC IBD

[18] IBD CRC IBD IBD IBD CRC CRC ADE IBD IBD CRC CRC CRC ADE CRC IBD CRC

[35] CRC IBD CRC IBD CRC ADE ADE CRC ADE CRC CRC ADE IBD CRC CRC IBD ADE

[52] IBD ADE ADE IBD ADE ADE ADE IBD IBD ADE IBD IBD ADE CRC ADE IBD IBD

[69] ADE ADE ADE IBD IBD ADE ADE ADE ADE CRC IBD ADE IBD CRC IBD ADE ADE

[86] CRC ADE IBD IBD IBD IBD ADE CRC ADE ADE ADE IBD IBD ADE ADE ADE ADE

[103] IBD ADE IBD IBD IBD IBD IBD IBD IBD ADE IBD IBD IBD CRC IBD IBD IBD

[120] IBD ADE ADE IBD ADE ADE ADE CRC ADE ADE ADE IBD CRC IBD IBD IBD ADE

[137] ADE IBD ADE CRC ADE CRC ADE CRC ADE ADE IBD ADE ADE IBD ADE ADE ADE

[154] ADE CRC ADE IBD ADE ADE CRC ADE ADE ADE ADE ADE ADE ADE ADE IBD ADE

[171] CRC ADE

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.5)

[1] IBD CRC IBD IBD IBD ADE IBD ADE IBD CRC IBD IBD IBD CRC CRC CRC IBD

[18] IBD CRC IBD IBD IBD CRC CRC ADE IBD CRC CRC CRC CRC ADE CRC IBD CRC

[35] CRC IBD CRC IBD ADE ADE ADE CRC ADE ADE CRC ADE IBD IBD CRC IBD ADE

[52] IBD ADE ADE IBD ADE ADE ADE IBD ADE ADE IBD IBD ADE CRC ADE IBD IBD

[69] ADE ADE ADE IBD IBD ADE IBD ADE ADE CRC IBD CRC IBD CRC IBD ADE ADE

[86] CRC ADE IBD ADE IBD IBD ADE IBD ADE ADE ADE IBD ADE ADE ADE ADE ADE

[103] IBD ADE IBD IBD IBD IBD IBD IBD IBD ADE IBD IBD IBD CRC IBD IBD IBD

[120] IBD ADE ADE IBD ADE ADE ADE ADE ADE ADE ADE IBD ADE IBD IBD IBD ADE
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[137] ADE IBD ADE CRC ADE CRC ADE CRC ADE ADE IBD ADE ADE IBD ADE ADE ADE

[154] ADE ADE ADE IBD ADE ADE ADE IBD ADE ADE ADE ADE ADE ADE ADE IBD ADE

[171] CRC CRC

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.6)

[1] IBD CRC IBD IBD CRC IBD IBD ADE IBD CRC IBD IBD IBD CRC CRC CRC IBD

[18] IBD CRC IBD IBD IBD CRC CRC ADE IBD CRC CRC CRC CRC ADE CRC IBD CRC

[35] CRC IBD CRC IBD ADE ADE ADE IBD ADE ADE CRC ADE IBD IBD CRC IBD ADE

[52] IBD ADE ADE IBD ADE ADE ADE IBD ADE ADE IBD IBD ADE CRC ADE IBD IBD

[69] IBD ADE ADE IBD IBD ADE IBD IBD ADE CRC IBD CRC IBD CRC IBD ADE IBD

[86] CRC ADE IBD ADE IBD IBD ADE IBD ADE ADE ADE IBD ADE ADE ADE ADE ADE

[103] IBD ADE IBD IBD IBD IBD IBD IBD IBD ADE IBD IBD IBD CRC IBD IBD IBD

[120] IBD ADE ADE IBD ADE IBD IBD ADE IBD ADE ADE IBD ADE IBD IBD IBD ADE

[137] ADE IBD ADE CRC ADE CRC ADE CRC ADE ADE IBD ADE ADE IBD ADE ADE ADE

[154] ADE ADE ADE IBD ADE ADE ADE IBD ADE ADE ADE ADE ADE ADE ADE IBD ADE

[171] CRC ADE

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.7)

[1] IBD CRC CRC IBD CRC IBD IBD IBD IBD CRC IBD IBD IBD IBD IBD CRC IBD

[18] ADE CRC IBD IBD CRC CRC CRC ADE IBD CRC CRC IBD IBD ADE IBD IBD CRC

[35] CRC IBD CRC CRC ADE ADE IBD IBD IBD ADE IBD ADE IBD IBD CRC IBD ADE

[52] IBD IBD ADE CRC ADE ADE ADE IBD ADE ADE IBD IBD ADE CRC ADE IBD IBD

[69] IBD ADE ADE IBD IBD IBD IBD IBD IBD CRC CRC CRC CRC CRC IBD ADE IBD

[86] CRC ADE IBD ADE IBD IBD ADE IBD ADE ADE ADE IBD ADE ADE ADE ADE IBD

[103] IBD ADE IBD ADE IBD IBD IBD IBD IBD ADE IBD IBD IBD CRC IBD IBD CRC

[120] IBD ADE ADE CRC ADE IBD IBD ADE IBD ADE ADE ADE ADE IBD CRC IBD ADE

[137] ADE IBD ADE CRC ADE CRC ADE CRC ADE ADE IBD ADE ADE CRC ADE ADE ADE

[154] ADE ADE ADE IBD ADE ADE ADE ADE ADE ADE ADE ADE IBD ADE ADE IBD ADE
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[171] CRC ADE

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.8)

[1] IBD ADE ADE ADE ADE IBD IBD ADE IBD ADE IBD IBD IBD IBD IBD ADE IBD

[18] ADE ADE IBD ADE IBD ADE IBD IBD IBD ADE ADE IBD IBD IBD IBD IBD ADE

[35] IBD IBD IBD ADE ADE ADE ADE IBD IBD ADE IBD ADE IBD ADE ADE IBD ADE

[52] IBD IBD ADE ADE ADE IBD ADE IBD ADE IBD IBD IBD IBD ADE IBD IBD IBD

[69] IBD IBD ADE ADE IBD IBD IBD IBD IBD ADE ADE ADE ADE ADE IBD ADE IBD

[86] ADE IBD IBD ADE IBD IBD ADE IBD IBD ADE IBD IBD ADE IBD IBD ADE IBD

[103] IBD IBD ADE ADE IBD IBD IBD IBD IBD IBD IBD IBD IBD ADE IBD IBD ADE

[120] IBD IBD IBD ADE IBD IBD IBD IBD IBD ADE ADE ADE ADE IBD IBD ADE IBD

[137] ADE IBD ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE IBD IBD ADE IBD ADE

[154] ADE ADE ADE IBD ADE ADE ADE IBD ADE IBD ADE ADE IBD IBD ADE IBD ADE

[171] ADE IBD

Levels: ADE CRC IBD NOR

> pamr.predict(GEO.train2, TCGA.pamr$x, threshold=3.9)

[1] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[18] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[35] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[52] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[69] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[86] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[103] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[120] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[137] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[154] ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE ADE

[171] ADE ADE

Levels: ADE CRC IBD NOR
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threshold ADE CRC IBD
3.3 38 42 65
3.4 44 38 63
3.5 50 30 65
3.6 44 29 72
3.7 40 33 72
3.8 51 94 0
3.9 145 0 0

Table (C.1) PAM classifier output. No samples classified as Normal.
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