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This paper uses non-experimental data to evaluate curricular effectiveness.  We 

show that non-experimental methods can be used to obtain causal estimates of 

curricular effects at just a fraction of what it would cost to produce analogous 

experimental estimates.  Furthermore, external validity concerns that are 

particularly cogent in the context of curricular evaluations suggest that a non-

experimental approach may be preferred.  Our results provide important 

insights for educational administrators and policymakers.  In the short term, we 

find large differences in effectiveness across some math curricula.  However, 

like many educational inputs, the effects of math curricula do not persist over 

time, a result that would be quite costly to attain using experimental data.  

Across curricula adoption cycles, publishers that produce less effective 

curricula in one cycle do not lose market share in the next cycle.  One 

explanation for this result is the dearth of information available to 

administrators about curricular effectiveness. 
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I. Introduction 

Curricular effectiveness has received much attention in the education literature, and 

justifiably so (see, for example, Slavin and Lake, 2008; National Research Board, 2004).  The 

majority of instructional time and homework assignments are textbook oriented, and a 

substantial amount of school expenditures are devoted to curricula purchases. According to a 

2002 survey sponsored by the National Education Association and the American Association of 

Publishers, 80% of teachers use textbooks in the classroom, and over half of students’ in-class 

instructional time involves textbook use (Finn, 2004).
1
  In 2006 alone, expenditures on K-12 

instructional materials totaled close to $8.1 billion dollars.
2
  Different curricula are developed 

using different theories for how students learn - this results in different content, organization and 

structure across curricula for the same subject and grade group. Given the central role that 

curricula play for students and schools, it is of interest to determine the extent to which different 

curricula differentially affect student achievement. 

Although there have been many hundreds of studies evaluating the curricular alternatives 

facing school administrators, there are concerns about the reliability of the findings in the 

existing literature.  For example, the What Works Clearinghouse (WWC), which was established 

in 2002 by the Institute for Education Sciences (IES) to serve as a filter for education research, 

evaluated over 200 studies of curricular effectiveness in elementary mathematics in 2007 and 

found that over 96 percent of these studies did not meet reasonable quality standards (WWC, 

2007).
3
  Likely in response to the dearth of reliable evidence in the literature, recent research has 

                                                 
1
 Textbooks are just one component of the curricula purchased by schools from publishers. Other aspects include 

teacher instructional support services and supplementary materials such as student workbooks, flashcards, and 

solution manuals.  
2
 See http://www.aapschool.org/vp_funding.html 

3
 The WWC reviews the literature on a variety of topics in education, including the effects of curricula adoptions, 

and classifies studies as either (1) meets evidence standards, (2) meets evidence standards with reservations or (3) 

does not meet evidence standards.  Generally speaking, studies in category (1) use randomized controlled trials 

(RCTs) or quasi-experiments (e.g., regression discontinuity designs).  Studies in category (2) may employ non-

experimental techniques, but must be deemed by the principal investigator at WWC to have employed appropriate 

statistical tools such that causal inference is reasonable.  Of the 237 studies on elementary math curricula reviewed 
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turned to randomized controlled trials (RCTs) to evaluate curricular effectiveness (see, for 

example, Agodini et al., 2009; Borman et al., 2008; Resendez and Azin, 2007).  RCTs randomly 

assign curricula across schools (and/or classrooms) and will produce causal estimates of 

curricular effects that are internally valid – that is, valid within the context of the experiment.  

However, a general drawback of RCTs that is particularly cogent in the case of curricular 

evaluation is that the estimates may not extrapolate well outside of the experimental setting.   

We highlight two concerns with RCTs in the context of curricular evaluation that will 

potentially limit the external validity of the results.
4
  First, RCTs require voluntary participation 

by schools and curricula publishers.  If the schools that select into the experiment differ from the 

general population of schools, then Manski’s (1996) “experimentation on a subpopulation” 

concern is relevant, and the experimental results will not necessarily reveal anything about 

curricular effectiveness at schools not represented in the study.  Equally importantly, there is also 

a selection problem with respect to publishers.  With voluntary publisher participation, only 

publishers that expect their curricula to be successful in the setting of the RCT will agree to 

participate.  Overall, the requirements of voluntary school and publisher participation limit the 

extent to which experimental designs can be used to evaluate the full curricular landscape. 

A second threat to the external validity of RCTs is publisher responsiveness to 

evaluation, commonly referred to as Hawthorne effects.  In the general evaluation literature, 

Hawthorne effects refer to the subjects of the experiment.  In the case of curricular evaluation, 

the active role of publishers suggests that in addition to schools and students, they are subjects.  

Because curricula are generally packaged with teacher development and implementation 

services, publisher responses to evaluation along these margins can contaminate findings.  

Furthermore, given that experimental evaluations of curricula are high-stakes competitions for 

publishers, there is no reason to expect them to take a “business-as-usual” approach.  Publisher 

                                                                                                                                                             
by the WWC as of July, 2007, just nine were deemed to be of sufficient quality by WWC to be included in 

categories (1) and (2) (WWC, 2007). 
4
 See Heckman and Smith (1995) and Manski (1996) for general discussions about the strengths and weaknesses of 

experimental research designs. 
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Hawthorne effects raise questions about how well the results from RCTs will extrapolate to 

lower-stakes environments for publishers.  

In addition to these threats to external validity, the costs associated with RCTs limit the 

amount of information that they can provide. For example, because RCTs are expensive to 

operate, they generally focus on just one or two curricula evaluated at small numbers of schools 

and districts.
5
  The expenses associated with RCTs also limit their usefulness in evaluating long-

term impacts because it is costly to maintain the validity of the experiment over time.   

 As an alternative to experimental analyses, we contribute to the literature by using non-

experimental data from the entire state of Indiana to evaluate curricular effectiveness.  We rely 

on data from Indiana because Indiana provides the most detailed information about curricula 

adoptions over time of any of the 50 states, and also provides thorough school- and district-level 

data about achievement, student demographics and school finances. With the exception of the 

information about curricula adoptions, the data used for our study are available in other states, 

suggesting that it would be straightforward to replicate our analysis elsewhere.
6
   

We use school-level matching estimators in our evaluation.  Drawing on the extensive 

methodological literature on matching, we show that the data conditions in Indiana are generally 

favorable to such an approach.  Furthermore, because our dataset is particularly long and 

detailed, we are able to perform a series of falsification tests to evaluate the potential for bias in 

our non-experimental estimates.  Overwhelmingly, our falsification tests confirm that our 

estimated curricula effects are not biased.  In addition to producing causal estimates of curricula 

effects that are likely to extrapolate much more broadly than experimental estimates, our non-

experimental analysis is performed at just a fraction of what an analogous experimental study 

would cost.  

                                                 
5
 In what is a relatively large-scale RCT, Agodini et al. (2009) evaluate four different curricula (more than the usual 

one or two curricula in other studies), but still only evaluate four school districts and 39 schools (in the first wave of 

their study).  More typical RCTs are even more narrowly focused.  Borman et al. (2008) and Resendez and Azin 

(2007) each evaluate just a single curriculum, looking across only five and four schools, respectively. 
6
 It would not be expensive for states to track curricula adoptions, particularly when compared to the costs of 

tracking some of the other information that is commonly collected. 
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We highlight three primary findings from our analysis: (1) differences across some math 

curricula have large short-term effects on student achievement, (2) as has been found with other 

educational inputs (e.g., Jacob et al., 2008; Garces et al., 2002), math-curricula effects do not 

persist over time, and (3) curricula publishers that are relatively less effective in one adoption 

cycle do not lose market share in future adoption cycles.  This latter result shares a common 

theme with prior research suggesting that educational administrators do not make optimal 

choices (Ballou, 1996).  In this case, one explanation is the limited availability of reliable 

evidence on curricular effectiveness. 

II. The Curricula Selection Process 

We evaluate math curricular effectiveness in the state of Indiana.  Curricula are adopted 

in Indiana for one subject in each year across the entire state, and rotate in six-year cycles by 

subject.  For example, Indiana’s districts adopted new math curricula in 1998 and 2004, with an 

upcoming adoption in 2010.  Similarly, recent reading adoptions occurred in 1994, 2000 and 

2006.  We focus our attention primarily on the math adoption cycle from 1998 to 2004. 

The curricula selection process in Indiana has centralized and decentralized components.  

The process begins with the state of Indiana’s Department of Education (DOE) approving a list 

of selected curricula for use in the state.  Upon receiving this list from the DOE, districts have 

three choices.  First, and most commonly, they can adopt one or more of the state-approved 

curricula.  At the elementary level in particular, the overwhelming majority of districts choose 

only a single curriculum for each grade, although there are no restrictions requiring them to do 

so.
7
  Second, districts may choose to apply for alternate curricula that are not on the state-

approved list, but this option is almost never used (e.g., no more than one out of the roughly 300 

districts chooses this option during the adoption cycle that we study).  Third, districts can apply 

for “continued use” where they continue to use the curricula that were adopted in the prior 

                                                 
7
 Further, most districts choose a single curriculum for all elementary grades, although again, there is nothing to 

preclude a district for choosing one curriculum for, say, grades one and two, and another for grades three, four and 

five. 
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adoption cycle in that subject.  Overall, over 98 percent of the districts adopted new math 

curricula from the approved list during the 1998 adoption cycle in each grade.   

We treat the DOE’s approval process as exogenous to the districts, and focus our analysis 

on identifying differential curricular effects among the curricula that are included on the DOE’s 

approved list.  The centralized approval process adds a constraint to the environment whereby 

we cannot (feasibly) evaluate curricula that are not approved by the state.  However, it is not 

clear that the DOE’s constraint is binding for districts in any meaningful way.  For example, 

although districts can apply to use curricula outside the state-approved list, this rarely happens in 

practice, suggesting that most districts are content to choose among the available options.  

Perhaps more telling, the majority of the curricula market share belongs to just a handful of 

publishers.  Specifically, 86 percent of all curricula adoptions in the grades that we study involve 

just three of the ten state-approved curricula during the adoption cycle of interest.
8
  

III. Data 

We use a 17-year data panel of schools in Indiana to evaluate the effects of math 

curricula adoptions in grades one, two and three on grade-3 test scores in math (grade-3 is the 

first time that students are tested in Indiana).  Among the 50 states, Indiana is the only state 

where curricula-adoption information is available at the district level for multiple statewide 

adoption cycles.
9
  Upon request, Indiana also provides detailed school-level information on test 

scores (from the Indiana state test, the ISTEP), attendance rates and enrollment demographics 

(including language minorities and students on free and reduced price lunch – some of these data 

are readily available online).  Indiana also collects district-level data for these same variables, 

                                                 
8
 Indiana is one of 22 states that have a state-level component to the adoption process. Tulley (1989) finds that in 

states where there is not a centralized component to the adoption process, the curriculum review processes and 

lengths of use are similar despite the lack of a formal process dictating textbook choice.  In conjunction with the 

limited practical importance of the centralized constraint, this suggests that the centralized component to Indiana’s 

curricula adoptions should not affect the generalizability of the results. 
9
 In fact, in many states, the state department of education does not even have a readily available centralized 

database indicating which curricula are adopted by districts within the state during the current adoption cycle, let 

alone historical information. 
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along with financial information.  Details on the district- and school-level information used in 

our analysis are provided in Table 1.   

We estimate curricula effects for the three curricula that dominated the market during the 

adoption cycle of interest (1998-2004).  These curricula were published by Saxon, Silver-Burdett 

Ginn and Scott-Foresman, and they accounted for 48, 23 and 15 percent of observed curricula 

adoptions, respectively, or 86 percent of adoptions overall.  In the analysis below, we denote the 

Saxon curriculum as curriculum A, the Silver-Burdett Ginn curriculum as curriculum B, and the 

Scott-Foresman curriculum as curriculum C. 

Because we first observe student outcomes in grade three, our estimates of curricular 

effects characterize the impacts of sequences of treatments.  That is, grade-three test scores are 

presumably a function of the curricula to which students are exposed in grades one, two and 

three.  To allow for cleanly identified curricula effects, we focus our analysis on districts that we 

refer to as “uniform curriculum adopters”.  These districts choose the same curriculum publisher 

in grades one, two and three in the relevant adoption cycle.  To illustrate the assignment problem 

for non-uniform adopters, consider a district that adopted curriculum A in grade one and 

curriculum B in grades two and three.  In identifying the effect of curriculum A relative to 

curriculum B, the schools in this district are not well-defined as either treatments or controls.  

Similarly, we also exclude districts that adopted multiple curricula in any given grade 

because the data do not indicate which schools within each district used which curricula.  Only in 

cases where a district used a single curriculum at all schools can we be sure that our treatment 

and comparison schools are properly identified.   

Imposing the uniform-curriculum-adoption restriction ultimately reduces our district 

sample size by approximately eight percent and the analogous school sample size by seven 

percent.  That is, most districts are “uniform adopters”.  Overall, our analysis includes data from 

213 districts and 716 schools.  Contrasted with the experimental literature, where studies often 

focus on just a handful of schools and districts, our non-experimental analysis allows for a much 
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broader evaluation of curricular effectiveness.  Details on how we arrived at our final data 

sample are provided in Appendix Table A.1.   

Table 1 reports differences in means across the schools and districts that adopted the 

different curricula, using pre-adoption information from 1997.  There are only mild differences 

in test score performance and attendance outcomes across different curricula adopters, 

suggesting that selection bias may be mild.  However, there are noticeable differences across 

adopters of the different curricula in terms of school demographics, district size and revenue, and 

to some extent, median household income (measured at the district-level from the US Census).  

Among other things, Table 1 indicates that Saxon adopters are disproportionately rural districts, 

as evidenced by their much smaller district sizes (and corresponding revenues) and their larger 

shares of white students.   

It is unclear how selection into the different curricula might bias our estimates, which are 

conditioned on all the information detailed in Table 1. Clearly, any unobserved differences 

across observationally similar schools would generate bias, although we do not know what types 

of unobserved differences to expect given that our estimates depend on comparisons across large 

groups of students (i.e., schools).
10

  One possibility is that differences in administrator quality 

may bias our results.  For example, some administrators could choose better curricula and make 

other decisions that positively affect achievement.  However, the complex curriculum adoption 

process, which involves many actors, likely limits any such bias.  Although we cannot rule out 

the potential for bias in our estimates a priori, the falsification tests in Section X confirm that our 

results are not biased by observed or unobserved differences across curricula adopters.   

IV. Curricula Descriptions 

Are differences across math curricula important? Anecdotal evidence suggests that they 

are. For example, a 2002 story on charter schools in the Chicago Tribune reported that three 

elementary charter schools in Chicago were significantly outperforming local traditional schools, 

                                                 
10

 In results omitted for brevity we verify that students do not move across districts in response to curricula 

decisions.  
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and that school officials “suggest(ed) it may have to do with the Saxon Math program used at all 

of (these charter schools).” Parents also have strong opinions about curricula. On the Illinois 

Loop website (the Illinois Loop is an advocacy group of parents and teachers), parents can post 

comments about curricula.  In reference to one math curriculum a parent wrote: 

We dealt with (this curriculum’s) nightly visual assault of colors, graphics, 

fonts, and wildly irrelevant detail…(this curriculum) played a significant 

role in a terrible second grade experience. 

 

Another parent was clearly upset about the lack of difficulty in the same curriculum: 

On page 2, as an intro to their fourth grade, students are asked to solve 

problems like 5+7 and 13-8, and are told, “You may use the [conveniently 

printed] number line to help.”  This is the fourth grade, yet kids are being 

told it’s OK to count on a number line to solve simple problems! 

  

In 1998, Mathematically Correct (MC), a national organization of mathematicians, 

scientists and engineers, qualitatively evaluated eight grade-2 math curricula, including the three 

curricula that we evaluate here.  The MC evaluations were sponsored by the Texas Public Policy 

Foundation, a non-profit, non-partisan research institute. We briefly highlight the key differences 

between the Saxon, Silver-Burdett Ginn and Scott-Foresman curricula as indicated by MC.  We 

also report the MC rating of each curriculum, which was based on a 5-point scale (all three 

curricula received a similar rating from MC). 

 

Curriculum A: Saxon Math (overall rating: 3.6) 

The program design is “easily implemented by teachers”, and instructions to teachers are 

“clear and direct”.  In fact, the teacher’s manual even includes scripted statements and questions 

for the teacher to ask to the class. The worksheets that students use are not necessarily related to 

the daily lesson, and contain a mixture of topics from prior lessons. One side of the worksheet is 

completed in class and checked, and the other side is assigned for homework. Oral assessments 

are given to individual students every 10 lessons, and are conducted while other students work 

on written work.  Written assessments occur after every five lessons.   
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Saxon Math is very thorough in the topics that are covered, but more advanced topics are 

generally not covered.  That is, this program supports learning effectively to a certain level but 

beyond that, achievement will be “very limited”.  As one example, of the three curricula of 

interest here, Saxon math is the only curriculum that does not cover addition and subtraction with 

three-digit numbers in the second grade.  Overall, the MC evaluation suggests that Saxon Math 

may be the most effective curriculum for low-achieving students given its thorough coverage of 

the topics it covers, but will be less effective for high-achieving students.   

 

Curriculum B: Silver-Burdett Ginn Math (overall rating: 3.4) 

 The teacher’s manual provides guidance to teachers, although the guidance is not as 

direct as in Saxon Math.  The teacher is given some discretion over how to present the material.   

In the example from the MC review, the teacher has two presentation choices for the lesson that 

are described as “visual/spatial learning” and one presentation choice that is described as 

“kinesthetic learning”.  In some cases, there is also a technology-based alternative.  Student 

worksheets are tied to the daily lesson.  No information is given about the regularity of 

assessments or homework assignments.  

The MC review highlights that this curriculum relies heavily on “models” as teaching 

tools.  Models provide an alternative way of teaching mathematics, using graphics to aid in the 

calculations.  In teaching addition and subtraction, this curriculum relies heavily on models first, 

then models give way to pictures, and finally models become optional in later chapters.  MC 

identifies the reliance of this curriculum on models as a weakness.  

The level of this curriculum appears to be higher than that of Saxon Math – MC reports 

that students using this program have a “reasonable chance of moderate achievement levels” but 

also that the program is “not seen as supporting high achievement levels”.  

 



10 

 

Curriculum C: Scott-Foresman Addison Wesley Math (overall rating: 3.8) 

The teacher’s edition receives mixed reviews within the MC evaluation.  At one point, 

the evaluation indicates that it provides slightly more support to teachers than some of the other 

programs.  At another, it indicates that the teacher’s manual is “a bit thin in terms of aiding a 

teacher in actually teaching the lesson at hand”.  Like the Silver-Burdett Ginn curriculum, the 

lessons also involve some discretion for teachers in terms of the activities that they use to teach 

each lesson (although there appear to be fewer teacher choices).  Vocabulary development is an 

important part of this curriculum – new vocabulary words are introduced at the beginning of 

each lesson, and a verbal skills assessment occurs after each lesson.  A one page homework sheet 

is also attached to each lesson.  

The level of this program appears to be somewhere in between the levels in the prior two 

curricula.  On the one hand, the MC review indicates that “the level is low in a few topics” and 

“at the top level of students…some topics should be augmented”.  On the other hand, the review 

also notes that “some areas are very well taught and at an excellent level”.   

 

It is important to note that while the MC reviews provide useful insights, they are not 

based on empirical evidence. We present the descriptions simply to highlight the differences that 

can exist in organization, content, and presentation across math curricula.  These differences 

have received considerable attention from parents, educators and other interested parties.  

Although qualitative curricular evaluation is outside of our area of expertise, we expect our 

quantitative analysis to provide useful insights to individuals who are interested in identifying 

the key components of effective math curricula.
11

 

V. Methodology 

We use school-level matching estimators to identify curricula effects.  Matching is an 

increasingly common technique employed in empirical work, and the conditions under which 

                                                 
11

 Despite their limitations, the MC evaluations are the only independent reviews of the curricula of interest that we 

were able to obtain. 
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matching will identify causal estimates of treatment effects have been well-documented (see, for 

example, Rosenbaum and Rubin, 1983; Heckman, Ichimura and Todd, 1997).  The key benefits 

of matching relative to simple regression analysis are (1) matching imposes weaker functional 

form restrictions and (2) matching resolves any “extrapolation” problems that may arise in 

regression analysis by limiting the influence of non-comparable treatment and control units in 

the data (Black and Smith, 2004).   

Briefly, the key assumption under which matching will return causal estimates of 

treatment effects is the conditional independence assumption (CIA).  The CIA requires that 

outcomes are independent of the curriculum uptake decision conditional on observable 

information.  Defining Y as an outcome, T as the curriculum treatment and X as a vector of 

observable school- and district-level information, the CIA in our multi-treatment context can be 

written as: 

|Y T X       (1) 

The CIA is actually a stronger assumption than is required to identify causal treatment effects, 

although it is difficult to imagine an environment where only the weaker but necessary condition 

of conditional mean independence is satisfied (Heckman et al., 1997, Imbens, 2003). 

The most common source of failure of conditional independence in non-experimental 

settings is the existence of unobserved information that influences both treatment and outcomes.  

For example, if districts have access to information that is unobserved to the econometrician, Z, 

such that P( | , ) P( | ),T k X Z T k X    and the additional information in Z also determines 

outcomes, matching will produce biased estimates of curricular effects. 

 The CIA is plausible here because curricula adoptions are determined on behalf of large 

groups of students (by district) for which we have detailed achievement and demographic 

information. Further, there is no evidence that students move across districts in response to 

curricula adoptions, suggesting that unobserved characteristics of students that might affect 

achievement are not likely to be correlated with curriculum exposure (these results are omitted 
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for brevity but available upon request).  A common limitation of matching analyses is that even 

when the CIA is expected to hold, the data are generally insufficient to verify this to be the case.  

However, beyond simply asserting conditional independence, we use our data panel to provide 

evidence that conditional independence is satisfied in the form of a series of falsification 

estimates.  That is, we estimate curricula effects for multiple cohorts of students who should not 

be affected by the curricula that we study.  Our falsification tests overwhelmingly show that 

unobservables are not biasing our results. 

 Given conditional independence, we use matching to estimate causal curricula effects.  

To illustrate, consider a world with two possible curricula – j and m.  In the data we observe only 

a simple difference in means, which estimates: 

( | , ) ( | , )j mE Y T j X E Y T m X  
    

(2)
 

Under the assumption of conditional independence we can write: 

( | , ) ( | , )m mE Y T m X E Y T j X  
    

(3) 

Substituting into (2) with (3), we can use the data to estimate: 

( | , ) ( | , )j mE Y T j X E Y T j X  
    

(4)
 

Equation (4) can be written as the average effect of treatment on the treated (ATTE), where 

treatment is defined as curriculum j: 

, : ( | , )j m j mATTE E Y Y T j X 
    

(5)
 

Finally, treatment can be re-defined as curriculum m, and the same approach can be used 

to generate the corresponding ATTEm,j, which need not equal ATTEj,m: 

, : ( | , )m j m jATTE E Y Y T m X 
    

(6)
 

 We estimate treatment effects in our multi-treatment setting following this basic 

pairwise-comparison approach, suggested by Lechner (2002), where schools are matched using 

an estimated propensity score (Rosenbaum and Rubin, 1983).  Defining Pj as the probability of 

choosing option j, we match schools in the comparison of curricula j and m by ( )
j

j m

P

P P
, where 
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Pj and Pm are estimated from a multinomial probit that simultaneously models all k 

heterogeneous treatment options (Lechner, 2002). 

 We use kernel and local linear regression (LLR) matching estimators.
12

  These estimators 

construct the match for each treated school using a weighted average over multiple control 

schools.  They take the general form (for ATTEj,m): 

    
1 0

,

1

1ˆ [ ( , ) ]
j

j m j m

j I m I

Y W j m Y
N


 

      (7) 

In (7), N1 is the number of treatments on the common support, I1 indicates the set of these 

treated observations, I0j the set of control observations in the neighborhood of observation j 

(determined by a bandwidth parameter – see Appendix B), Yj and Ym are outcomes for treated 

and control schools, respectively, and W(j,m) weights each control school outcome depending on 

the distance between Pj and Pm.  We omit a more detailed discussion of these matching 

estimators for brevity.  For more information, see Heckman, Ichimura and Todd (1997, 1998), 

and Fan (1993). 

We estimate relative ATTE’s for the three math curricula in our data.  As noted above, 

ATTEm,j need not equal ATTEj,m.  Nonetheless, in practice, we uncover little additional insight by 

estimating both.  Therefore, we present treatment-effect estimates only in one direction, defining 

the most-adopted curriculum in each pairwise-comparison as the control curriculum (we briefly 

discuss our estimates from alternately defining treatment and control schools in Section IX).  

Letting Nx denote the number of schools adopting curriculum x, in the data A B CN N N   (see 

Table 1).  Therefore, we report estimates for ATTEB,A, ATTEC,A and ATTEC,B.  

VI. Timing and Treatment Definition 

Timing is an important issue in our analysis.  Our data panel spans 17 years, starting with 

the 1991-1992 school year and ending with the 2007-2008 school year.  The curricula of interest 

were adopted in the fall of 1998, and replaced with new curricula in the fall of 2004.  We 

observe seven cohorts of grade-3 students who were never exposed to the curricula of interest 

                                                 
12

 Our results are robust to alternative estimators, see Section IX. 
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during the pre-period (1991-1992 through 1997-1998), one cohort that was exposed to the 

curricula in grade three only (1998-1999), one cohort that was exposed in grades two and three 

only (1999-2000), four cohorts that used the curricula in grades one, two and three and were thus 

“fully exposed” (2000-2001 through 2003-2004), one cohort that was exposed in grades one and 

two only (2004-2005), one cohort that was exposed in grade one only (2005-2006), and two 

additional cohorts that were never exposed to the curricula in the post-period (2006-2007 and 

2007-2008).  

Recall that the estimated curricula effects are based on grade-3 test scores, and as such 

represent the effects of sequences of treatments ( 1 2 3, ,g g gT T T ).  For the fully-exposed cohorts, the 

sequences for treatment and control schools are fully observed and as such these cohorts provide 

our cleanest estimates of curricular effectiveness.  For the partially-exposed cohorts (the cohorts 

that were exposed to the curricula for at least one year, but less than three years), we can still 

estimate treatment effects because part of the curricula sequence is observed.  For example, for 

the 1999-2000 cohort, we know with what curricula each school was treated in grade three.  

However, the full sequences of treatments are not observed for this cohort and before grade 

three, the treatment and control schools likely used heterogeneous curricula from the previous 

adoption cycle.  A similar concern regarding out-of-cycle curricula adoptions is relevant for our 

falsification tests (using cohorts prior to 1998-1999, and after 2005-2006).  This issue will be 

addressed in more detail in Sections IX and X when we present our results. 

An additional concern related to timing in our study is that the exposure levels of the 

different cohorts overlap with “curricula experience” at schools.  For example, the 1999-2000 

cohort was exposed to the curricula for just one year, which was the year when the curricula 

were first introduced at districts, and perhaps most importantly, to teachers.  Intertwined with the 

different levels of curricula exposure by cohort, therefore, are any effects of teachers’ curricular 

familiarity.  Only across the four fully exposed cohorts will any familiarity effects be separately 

distinguishable (e.g., if familiarity effects exacerbate differences in curricula, the latter two fully-

exposed cohorts should experience larger differential curricula effects than the former two). 
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Finally, a third timing issue involves district restructuring over the course of the 17 years 

of our data panel.  Specifically, there is a pattern of school consolidations in the data such that 

the number of individual elementary schools decreases over time.  As will be discussed in the 

following section, we match schools based on their static characteristics from the 1996-1997 and 

1997-1998 school years.  School consolidations suggest that the populations of students served 

by the schools that remain in operation will change over time.  This will reduce the quality of our 

matches, and potentially introduce bias into our estimates. 

In order for the school consolidations to bias our estimates they must be correlated with 

curricula adoptions.  However, this does not appear to be the case.  Using a 
2  test for 

independence, we fail to reject the null hypothesis that curricula adoptions are independent of 

whether a district experiences a school closing (p-value ≈ 0.40).  As additional evidence that our 

results are unlikely to be biased by school consolidations, in the next section we evaluate the 

balance of the covariates across matched treatment and control schools over the entire course of 

the data panel.  If the schools that drop out of our sample over time systematically adopted 

specific curricula, we should find that our treatment and control samples become less balanced as 

we move away from the matching years (1996-97 and 1997-98).  However, this is not the case, 

which further supports our contention that school closings are not correlated with curricula 

adoptions (see Table 2). 

Although we do not expect the school consolidations to bias our results, they will reduce 

the quality of our matches as we move away from the 1996-1997 and 1997-1998 school years in 

the data panel.  This will add noise to our estimates.  Ultimately, we simply report this issue as a 

caveat, and caution the reader to interpret results that are estimated far away from the matching 

years more liberally.  In an omitted analysis, we also considered a more direct solution to this 

problem – at any point where a school closing was observed in a district, we dropped all school-

level observations from that district for the remainder of the data panel.
13

  This alternative 

                                                 
13

 We also performed an analogous procedure for schools that existed in 1996-1997, but came into existence 

between 1991-1992 and 1996-1997.  If school closings re-shuffle student populations within districts, such an 
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approach produces estimates that are qualitatively similar to what we report below, although the 

efficiency costs associated with discarding data from entire districts may be higher than those 

from allowing the less accurate matches to occur.
14

 

VII. Estimating the Propensity Score 

We use a multinomial probit (MNP) specification to estimate the pairwise propensity 

scores.  The covariates that we include in the MNP are documented in Table 1, and contain both 

school and district level information.  At the school level, the propensity-score model includes 

controls for enrollment, demographics (race, free lunch, reduced lunch, language status) and 

outcomes (i.e., grade-three test scores in math and language, and attendance) from the 1996-1997 

school year, and controls for enrollment and demographics from the 1997-1998 school year (for 

brevity, differences in means are not reported in the table for the 1998 information).  At the 

district level, the model includes enrollment, outcome and finance controls from 1996-1997, and 

enrollment and finance controls from 1997-1998.  We also use district-level zip codes to assign 

Census measures of local-area socioeconomic status to each school.  Namely, we include 

controls in the model for median household income and the share of the adult population who do 

not have a high-school diploma, both obtained from the year-2000 census.  We treat these census 

variables as fixed area characteristics.  

The covariates in our MNP specification were selected based on the process by which the 

curricula were adopted, with the objective of replicating the relevant information set available to 

schools and districts at the time of the curricula-adoption decision (note that the curricula-

adoption process in Indiana lasts approximately 18 months, and for the 1998 adoption this 

                                                                                                                                                             
approach will reduce the number of bad matches in the data.  There is enough natural variation in the enrollment 

data that we cannot always identify which specific schools are affected by a school closing, particularly when the 

closing school is small.  As such, the most straightforward solution is to drop all schools in the district where the 

school closing is observed. 
14

 An additional problem with this alternative strategy is that when a school closes we cannot be certain that the only 

other schools that are affected are within the same district.  For example, if the closing school is on the border of 

another district, its students may change districts, in which case the district-dropping procedure would be doubly 

harmful – it would retain the schools in the new district into which the students from the closed school were infused, 

and drop the schools from the district where the school closed, where the student populations at these schools were 

not actually affected by the closure.   
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process culminated with a final decision in the summer of 1998).
15

  However, our findings are 

not qualitatively sensitive to reasonable adjustments to the MNP specification.
16

   

 In each comparison we match treatment and control schools based on the estimated 

pairwise propensity scores, and test for balance in the covariates among the treated and control 

samples used for estimation.
17

  Balancing tests are motivated by Rosenbaum and Rubin (1983).  

The tests determine whether | ( | )X T P T k X  , a necessary condition if the propensity score is 

to be used to reduce the dimensionality of the matching problem to one.  The results from our 

balancing tests are reported in Table 2 by comparison and year.   

Our MNP specification uses 32 school and district-level covariates.  As a rough summary 

statistic, we report average p-values from difference-in-means tests across the covariates for the 

schools that report test scores in each year.  Additionally, we report the number of covariates for 

which we reject balance across treated and control units at the 10 percent level or better.  As 

discussed in the previous section, we observe attrition from our sample of schools.  If the 

attrition that we observe in the data is correlated with curricula adoptions, the balancing tests will 

highlight such a problem.  The balancing properties of the covariates are roughly time invariant, 

suggesting this is not a concern.  

For the most part, our treatment and control samples are balanced in our three 

comparisons.  Only in our comparison between C and A do the balancing tests raise some 

concerns.  In this comparison as many as three out of the thirty-two covariates are not balanced 

in any given year.  When sufficiently large samples of treatment and control observations are 

available, researchers typically resolve imbalance by re-defining the propensity-score 

                                                 
15

 For example, we omit information about spring-1998 test scores and annual attendance rates because they were 

unlikely to be available to decision makers prior to the adoption decision for the fall of 1998.  The timeline for the 

current math-curriculum adoption cycle is available at 

http://www.doe.in.gov/olr/docs/CHRONOLOGYFORTHE2009MATHEMATICSADOPTIONApr09.pdf. 
16

 We also considered models that include 1997-1998 test scores and attendance rates for districts and schools, 

models that omit controls from the 1997-1998 school year altogether, and models that include a longer history of test 

scores.  In all cases, the estimated curricula effects are very similar to what we report in the text. 
17

 For brevity we do not report the results from the propensity-score specification, although we note that curricula 

adoption decisions are non-negligibly correlated with school and district-level observables.  The estimates from the 

MNP specification are available upon request. 
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specification. Specifically, higher-order and interaction terms are added to the model and the 

balancing tests are repeated, and this process continues until balance is achieved.  In our analysis, 

with relatively few treatment and control units (compared to the general matching literature), 

such an approach comes at the expense of valuable degrees of freedom.   

 Because of this limitation we present our primary results using the simple MNP 

specification, ignoring the mild imbalance in our comparison between C and A.  In an omitted 

analysis, we constructed a separate propensity score model that balances the treatment and 

control schools in this comparison by adding interaction and higher-order terms.  Ultimately, our 

estimates of ATTEC,A using this alternative propensity-score specification are noisier but 

qualitatively similar to the estimates reported in the text using the simple MNP. 

VIII. Matching Performance 

Taking the satisfaction of conditional independence as a starting point, a substantial body 

of recent research has evaluated the performance of matching estimators.  This research 

considers the extent to which various data environments will be conducive to matching, and the 

efficiency properties of different estimators, both in general and given different data conditions.
18

  

We take two insights from the matching-performance literature that, based on evidence from 

simulation studies, should improve inference from our analysis.  First, intuitively, research 

suggests that the distance between the densities of the propensity-score distributions for treated 

and control units will affect the precision of the estimates obtained from matching.  Density-

distance has been discussed in numerous studies, including Frölich (2004), who measures density 

distance using the Kullback-Leibler (KL) information criterion.
19

  We follow his approach here 

to measure density-distance across each of our curricular comparisons.   

We start by estimating kernel-density plots based on the Epanechnikov Kernel for the 

distributions of the propensity scores among treated and control units for each curricula 

                                                 
18

 See for instance: Caliendo and Kopeinig, 2005; Frölich, 2004; Imbens and Wooldridge, 2009; Lechner, 2002; 

Zhao, 2004. 
19

 The KL information criterion is not technically a distance measure because it is not symmetric.  More precisely, it 

is a density divergence measure.   
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comparison.  We then measure the distance between the treatment and control densities.  For 

example, using 
21 ( )B

B A

P

P P
 


 to denote the probability of choosing B over A, we estimate: 
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In (8), | 21( )p T Bf   is the probability density function of 21  among schools treated with 

B, and | 21( )p T Af   is the analogous probability density function for schools that used curriculum 

A.  A KL-information-criterion measure of zero suggests that the densities are identical, and the 

measure increases with density distance.   

 Figure 1 plots the estimated kernel-density functions for treatment and control schools 

for each pairwise comparison, and Table 3 reports the corresponding KL information criteria.
20

  

The density comparisons provide interesting insights.  First, note the atypical density function for 

schools that choose B over A – although there is a heavier weight in the upper tail of the 

distribution of propensity scores for these schools relative to the “untreated” Saxon schools, there 

is not an upper-tail peak in the distribution as is commonly observed.  The KL-information-

criterion value of 0.25 for this comparison is similar to the most favorable density design 

considered by Frölich (2004), suggesting that matching will perform relatively well in this 

comparison.  The estimated KL-information-criterion for the comparison between B and C is 

also reasonable, and corresponds closely to Frölich’s (2004) middle density design.  However, 

the density comparison is less-favorable for the analysis of C relative to A, which is consistent 

with the balancing problems that we encounter in Table 2.
21

  Frölich’s (2004) work suggests that 

matching will perform relatively poorly in this comparison, which may limit inference.   

The second insight we take from the matching literature is that improved bandwidth 

selection can improve estimation precision when using kernel and local linear regression 

matching algorithms.  In the analysis below, we initially use conventional cross-validation to 

                                                 
20

 Our calculations here are somewhat coarse because the distributions are only estimated at 50 points. 
21

 Coincidentally, the three density scenarios here are very similar to the three density designs constructed by Frölich 

(2004), which is useful for inference.  
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obtain fixed bandwidths for our matching estimators (Frolich, 2004; Li and Racine, 2007). 

However, because the cross-validation approach selects the bandwidth using only the distribution 

of control units, a variable bandwidth that varies in response to the location of the treatments in 

the propensity-score density function may improve estimation (Galdo, Black and Smith, 2007; 

Ham et al., 2006).  Galdo, Black and Smith (2007) suggest multiplying the fixed-bandwidth 

obtained via cross-validation by the ratio 1/5( )
1

i

i




 to obtain locally-varying bandwidths, where 

i  is the estimated (pairwise) propensity score for treatment i.  This approach uses wider 

bandwidths for treatments with higher propensity-score values, which generally correspond to 

points in the density function where there are fewer control observations, and is shown to 

improve efficiency by Galdo, Black and Smith (2007). Of course, a tradeoff is that the local 

varying bandwidths will introduce bias if the wider bandwidths for high-ρ observations pull in 

comparison units that are of limited comparability. 

The efficiency gains from employing the locally-varying bandwidths should be largest 

when there is the least overlap in the propensity-score distributions between the treatment and 

control samples.  Judging from Figure 1, our estimates from the comparisons between C and A, 

and C and B, should benefit most by moving from the fixed bandwidths to the locally-varying 

bandwidths, and in fact this is what we find (see Tables 4 and 5 below). Overall, our results do 

not differ qualitatively regardless of whether we use fixed or locally-varying bandwidths in any 

of our comparisons.    

IX. Estimates of Curricular Effectiveness in Math 

Rather than overwhelm the reader with estimates using the numerous matching 

algorithms available in the literature, we instead present estimates using kernel and local-linear 

regression (LLR) matching only (for details on these and other matching estimators, see, for 

example, Heckman Ichimura and Todd, 1997, 1998; Mueser, Troske and Gorislavsky, 2007).  

Frölich’s (2004) analysis indicates that kernel matching in particular should perform well in our 
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context.
22

  As for LLR matching, the evidence in the literature is mixed.
23

  Although our 

estimates using LLR matching are less precise than the kernel-matching estimates, they are 

generally very similar.  We present results using the Epanechnikov kernel for both types of 

matching estimators.  In omitted analyses available upon request we show that our results are 

robust to alternative estimators, including kernel and LLR matching estimators that use the 

Gaussian kernel, other matching estimators like simple pair matching or radius matching using 

various radii, and regression-adjusted matching estimators.   

Table 4 presents results for all grade-three cohorts who were ever exposed to the 

curricula of interest using fixed-bandwidth matching estimators where the bandwidths are 

obtained via conventional cross-validation (see Appendix B).
24

  Table 5 reports analogous results 

using the locally-varying bandwidths suggested by Galdo, Black and Smith (2007).  All of our 

matching estimators impose the common support condition.  We also report OLS estimates 

where we regress test score outcomes on the covariates used in the propensity score model and 

indicator variables for curricula adoptions, retaining our pairwise comparisons (that is, when we 

compare B  to A, we drop all schools at districts that adopted C).  The standard errors for our 

matching and OLS estimates are clustered at the district level and our matching-estimator 

standard errors are bootstrapped using 250 repetitions.  We obtain the optimal numbers of 

bootstrap repetitions to use for our standard error calculations following Ham et al. (2006), who 

use a special case of Andrews and Buchinsky (2001).
25

   

                                                 
22

 Frölich’s (2004) study also suggests that ridge matching should perform well, but the ridge parameter will lead to 

bias in the case of multiple covariates (Frölich focuses on a single-covariate settting).  See Heckman, Ichimura and 

Todd (1998) for details. 
23

For instance, Fan (1993) indicates that local linear regression is a more efficient estimator than the standard kernel 

estimator, and Caliendo and Koepinig (2005) suggest LLR is particularly useful when controls are distributed 

asymmetrically around treated observations. Frölich (2004) concludes that kernel regression is more robust to 

bandwidth misspecification than LLR in finite samples, but Ham et al. (2006) suggest this issue with LLR can be 

greatly improved by using a variable bandwidth.  
24

 In some cases the cross-validation estimates of the loss function are fairly flat. In these cases, we combine “visual 

inspection” with cross-validation to choose the optimal bandwidth.  See Appendix B for details.  
25

 For our estimators, the optimal number of bootstrap repetitions is consistently near 200.  We use 250 repetitions 

to insure that we meet or exceed the optimal repetition count in each year. 
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Each cohort is labeled in the tables according to the year of its spring test score (i.e., the 

1998-1999 cohort is labeled “1999”).  Recall that the 1999, 2000, 2005, and 2006 cohorts were 

only partially exposed to the curricula, while the cohorts from 2001 through 2004 were exposed 

for all three years.  All of the curricula effects in the table are standardized using the distribution 

of school-level test scores.  For example, the estimate in Table 4 for ATTEB,A in 2002 indicates 

that schools that selected B over A moved up 0.369 standard deviations in the distribution of 

school-level math test scores.  More typically, researchers report effects that are standardized 

based on the distribution of individual-level scores rather than school-level scores, but we do not 

have access to the distributions of individual-level scores over the entire course of the data panel 

(specifically, we do not have these distributions for the years prior to 1999-2000).  In Appendix 

Table A.2, for each year where we have access to the individual-level distribution of test scores 

(such that we could compute the standard deviation), we provide the scaling factors that convert 

the estimates in Tables 4 and 5 into the more common metric.  Roughly speaking, dividing the 

estimates by three returns estimates approximately in the metric of standard deviations of the 

individual-level distribution of scores. 

Focusing first on our largest comparison between B and A, and the estimates for the fully-

exposed cohorts (2001 – 2004), B consistently outperforms A.  The exception is 2004, where we 

find no statistically distinguishable differences in curricular effectiveness in that year.  One of 

the most likely explanations for this finding is that the testing instrument in 2004 differed from 

the instruments in prior years in some unobservable way.  For the other comparisons, C also 

generally outperforms A for the fully-exposed cohorts, and there is limited statistical evidence 

suggesting that B outperforms C.   

The magnitudes of the curricula effects for the fully-exposed cohorts are economically 

meaningful, particularly when weighed against the marginal costs associated with choosing one 

curriculum over another. Fryer and Levitt (2006) find that between grades one and three, the 

black-white achievement gap grows at a rate of approximately 0.10 standard deviations per 
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year.
26

  Our estimates suggest that the effect on student learning of using curriculum B instead of 

A is on the order of 0.11 standard deviations of the test over three years (averaging the point 

estimates across the four fully-exposed cohorts and using the scaling factors in Appendix Table 

A.2).  That is, the effect is on the order of one year’s worth of expansion of the black-white 

achievement gap. Given that the curricula are very similarly priced (the texts from A, B and C 

were, averaged over grades 1-3, $23.08, $24.80 and $25.34 each, respectively), our estimates 

imply that selecting a better curriculum is a cost-effective way to improve student achievement.  

Recall that our ATTE estimates define the most-used curriculum as the control 

curriculum in each pairwise comparison.  In omitted results where we reverse the treatment and 

control definitions within each pair, our findings are very similar to those reported in Tables 4 

and 5.  Specifically, curricula B and C continue to outperform curriculum A, with the 

qualification that the differential effect between curriculum C and curriculum A is smaller when 

we estimate ATTEA,C instead of ATTEC,A.  This suggests that although curriculum A 

underperforms relative to curriculum C in all schools, the degree of underperformance is smaller 

at schools that actually chose curriculum A relative to what would have happened at schools that 

actually chose C, had they instead chosen A.  

We do not find any evidence of curricular-familiarity effects for the fully-exposed 

cohorts.  If curricula familiarity is important for teachers, we might expect the 2001 and 2002 

cohorts, for example, to be less affected by curricula differences than the cohorts in 2003 and 

2004 (under the assumption that when familiarity is low, curricula implementation by teachers 

reverts toward a common mean).  However, there is no distinguishable evidence of such a trend 

in curricular effectiveness across cohorts. 

We also do not find any statistically significant curricula effects for the cohorts of 

students who were not fully exposed.  This result may be partly explained by heterogeneity in 

out-of-cycle curricula adoptions within the treatment and control samples, which will attenuate 

                                                 
26

 Fryer and Levitt (2006) analyze a different testing instrument; however, similar estimates of the black-white 

achievement gap spread are available elsewhere (see, for example, Chubb and Loveless, 2002).  
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our estimates for the partially-exposed cohorts.  That is, regardless of whether curricula quality is 

uncorrelated, (imperfectly) positively correlated, or negatively correlated for schools across 

adoption cycles, the estimates for the partially-exposed cohorts will be pushed toward zero. 

We explore the correlations in curricula adoptions in Indiana across the 1998 and 2004 

adoption cycles in Table 6 (recall that we do not have data for the prior cycle from 1992).  The 

table takes our initial sample of districts that uniformly adopted one of the three primary 

curricula during the 1998 adoption cycle and reports average curricula adoptions in 2004.  For 

brevity, the table only shows adoption shares in 2004 for the four most popular curricula from 

that adoption cycle (published by Saxon, Harcourt, Houghton-Mifflin and Scott-Foresman).   

For students in the 2005 and 2006 cohorts, Table 6 provides direct information about the 

heterogeneity in the sequences of treatments at treatment and control schools.  For students in the 

1999 and 2000 cohorts, it is merely suggestive about the extent to which curricula adoptions are 

correlated across cycles more generally.  The table shows that while Saxon adopters in 1998 

were much more likely to be Saxon adopters in 2004, adopters of the other two curricula are 

quite dispersed across alternative options during the 2004 adoption cycle.  Without knowing the 

respective qualities of the different curricula adopted outside of the 1998 adoption cycle, 

including those from the same publishers (there is no evidence that we are aware of on the 

persistence of publisher quality), it is difficult to form expectations based on the correlations in 

Table 6.
27

  Ultimately, given the sizes of our point estimates and standard errors for the partially-

exposed cohorts, we cannot rule out the possibility that there are partial-exposure curricula 

effects despite our inability to statistically distinguish such effects.   

Table 6 is also informative about the changing market shares of curricula publishers over 

time.  The publisher of curriculum A, despite its relative underperformance, slightly increased its 

                                                 
27

 Evidence on the persistence of publisher quality would be difficult to obtain without the availability of consistent 

comparisons over time.  For example, because Silver-Burdett Ginn did not offer a curriculum in Indiana during the 

2004 adoption, our most reliable comparisons (per Section VIII) cannot be replicated in the later adoption cycle.  

Even more, we cannot reliably compare Saxon and Scott-Foresman in 2004 because of the large decline in Scott-

Foresman’s market share across adoption cycles.  Even in cases where curricula publishers are consistently 

represented across adoption cycles, the cycle durations imply that long data panels will be required to identify the 

persistence of publisher quality. 
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near-50-percent market share from the 1998 adoption cycle to the 2004 adoption cycle.  

Although curriculum B was the most effective curriculum during the 1998 adoption cycle, it did 

not appear in 2004.  The publisher of curriculum B was bought out by Pearson Publishing during 

the 1998 cycle and Pearson phased out curriculum B in favor of curriculum C, which it also 

publishes. Curriculum C’s market share fell from fifteen to nine percent despite the evidence 

here that it outperformed curriculum A during the 1998 adoption cycle. 

Overall, our most reliable estimates of curricula effectiveness come from the four cohorts 

of “fully-exposed” students who used the curricula of interest in grades one, two and three.  Our 

estimates based on these cohorts indicate that curriculum A underperformed relative to curricula 

B and C, although this did not impact its market share in the next adoption cycle.  The 

magnitudes of the effects estimated in Tables 4 and 5 are non-negligible, suggesting that 

curricula are important determinants of student achievement.
28

   

X. Falsification Tests 

Perhaps the biggest weakness in many matching analyses is that it is difficult to 

empirically verify that the conditional independence assumption is satisfied.  Our particularly 

long data panel from Indiana, which includes test scores in math and reading for students in 

multiple grade levels, allows us to overcome this limitation by providing a series of falsification 

tests for our primary results.  For brevity, we only report falsification estimates using kernel 

matching with the Epanechnikov kernel and fixed bandwidths.
29

 

 We perform two types of falsification tests.  First, we estimate curricula “effects” for 

cohorts of students who were never exposed to the curricula of interest.  Examples include 

cohorts of grade-three, grade-six and grade-eight students from the mid 1990’s (and later for the 

later grades).  We expect to estimate curricula “effects” for these cohorts that are statistically 

                                                 
28

 We also note that our inability to follow individual students over time implies some downward bias in our 

estimates to the extent that students switch curricula between grades one and three.  That is, across-district movers 

who are tested in grade-three may only be partially exposed to the “treatment” curricula.  Because we have no way 

of identifying these students, we cannot exclude them from the analysis and they will bias our estimates toward zero. 
29

 In unreported results we verify that our findings are robust to using the Gaussian kernel instead of the 

Epanechnikov kernel and to alternative matching estimators such as radius or nearest-neighbor matching. 
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indistinguishable from zero.  We also estimate curricula effects for students who were exposed to 

the math curricula of interest, but we estimate the effects on reading test scores.  For these latter 

estimates timing does not rule out the possibility of causal effects; however, at most, we would 

anticipate only small cross-subject spillover effects. 

Potentially confounding both types of falsification estimates are correlations in curricula 

adoptions across grades, subjects, and adoption cycles.  Recall from Table 6 that there are non-

zero correlations in math-curricula adoptions across adoption cycles. Not surprisingly, in 

unreported results (omitted for brevity and available upon request) we also find that math 

curricula adoptions are correlated across grades within adoption cycles, and to a lesser extent, 

with curricula adoptions in other subjects (where the adoptions overlap imperfectly with the 

math adoptions – see Section II). The correlations between the curricula of interest and the other 

curricula to which the falsification cohorts were exposed could potentially confound the 

falsification tests.  For example, if curricula quality is correlated across adoption cycles for 

districts, the falsification estimates will capture more than just bias, making them difficult to 

interpret.  However, in practice, none of the correlations in curricular quality across adoption 

cycles appear to be strong enough to limit inference from our falsification exercise - almost all of 

our estimates are statistically indistinguishable from zero. 

We present 117 falsification estimates in Tables 7 through 10, or 39 estimates for each 

comparison (although these tests are not independent).  In summary, the pattern of the 

falsification estimates offers little suggestion of bias in our primary results.  For our comparisons 

between B and A, and C and B, none of the falsification estimates are statistically significant at 

the 10 percent level.  For our comparison between C and A, three estimates are statistically 

significant at the 10 percent level or better.
30

  

We first estimate curricula “effects” on grade-three math test scores for cohorts of 

students from 1992 through 1996, and 2007 and 2008 (recall that we use data from 1997 and 

                                                 
30

 If the falsification tests were independent we would expect roughly four “false positives” in each comparison by 

chance.  However, because treatment and control schools are uniformly defined over time the tests are not 

independent, making it unclear how many false positives to expect.  
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1998 to match schools).  None of these cohorts were ever directly exposed to the curricula of 

interest.  Our results are reported in Table 7, and as expected, the estimated curricula “effects” 

are statistically indistinguishable from zero (with the exception of the “effect” estimated in 1992 

for the comparison between C and A).  

Next we produce estimates using cohorts of grade-six students who were never exposed 

to the curricula of interest (cohorts from 1993-2001). Note that because many districts teach 

grades three and six in different buildings (i.e., elementary and middle schools), and multiple 

elementary schools generally feed into a single middle school, these falsification tests use 

samples of schools that only partly overlap with the grade-three samples and are much smaller.
31

  

We use the same basic matching approach to predict the same treatments (the uniform adoption 

of curriculum A, B or C in grades one, two and three), only we match schools that have a sixth 

grade class and estimate the effects of curricula on sixth grade achievement.  Our results are 

reported in Table 8, and like Table 7, the estimates are again statistically indistinguishable from 

zero with the exception of two significant “effects” (at the 10-percent level) in our most tenuous 

comparison.  

In Table 9 we replicate the analysis from Table 8 for cohorts of grade-eight students who 

were never exposed to the curricula of interest.  All of the falsification estimates in Table 9 are 

statistically indistinguishable from zero.
32

 

 In Table 10 we estimate curricula effects for grade-3 cohorts in all years of the data 

panel, but change the outcome from math test scores to reading test scores.  Students in the 

grade-three cohorts in 1992 through 1996, and 2007 and 2008, were never exposed to the 

curricula of interest.  The other cohorts of students were exposed, and it is unclear a priori 

whether we should expect any cross-subject spillover effects.  We suggest three possible 

mechanisms that may generate non-zero spillover effects.  First, math curricula may directly 

                                                 
31

 As a consequence of observing fewer schools with grade-6 (and grade-8) classrooms, these estimates are noisier 

than the estimates using the cohorts of grade-3 students.  In unreported results we also pooled the grade-6 and grade-

8 falsification estimates across years to improve power – as is the case for the results reported below, the pooled 

falsification estimates are indistinguishable from zero. 
32

 Note that data were unavailable for grade-8 test scores in 1996. 
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affect reading performance.  As an example, math curricula may differentially use word 

problems, which could lead to differential effects on reading comprehension.  Second, a better 

math curriculum may afford teachers more time to spend on reading instruction.  Third, a better 

math curriculum may increase the return to math instruction and encourage teachers to substitute 

out of reading instruction and into math instruction.  These latter two possibilities are analogous 

to income and substitution effects from basic microeconomic theory.  The direction of the cross-

subject spillover will depend on which effect dominates. 

 Although we do not have a strong prior about whether math curricula affect reading 

outcomes, one straightforward expectation is that the effects of math curricula on math test 

scores should be larger in magnitude than their analogous effects on reading test scores.  Thus, at 

its most basic level, this final test should confirm this result.  Table 10 presents estimates for the 

effects of math curricula on reading test scores throughout our data panel, and indeed, there are 

no statistically significant reading effects. 

 While all of the estimates in Table 10 are statistically indistinguishable from zero, note 

that the point estimates follow a pattern similar to what we find in our primary results (Tables 4 

and 5) - they nominally peak for the fully-exposed cohorts.  If we were to take these statistically 

insignificant point estimates at face value, one explanation for this pattern is that the more 

effective math curricula also improve reading scores.  Alternatively, one could argue that the 

reading results are evidence of bias in our estimates.  However, if estimation bias explains the 

pattern of estimates in Table 10, the source of bias would have to be unique in timing such that it 

is aligned with our fully exposed cohorts. 

 We briefly consider how a pure-bias interpretation of the reading estimates impacts our 

results.  Under the assumption that math curricula have no causal relationship with reading 

achievement, we estimate math-curricula effects on de-trended math test scores. These de-

trended scores were obtained by separately standardizing each school’s math and reading test 

score, and subtracting the reading score from the math score. We omit the estimates for brevity, 

but note that they are in line with what would be expected by subtracting the stand-alone reading 
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estimates from the stand-alone math estimates.  Specifically, for the fully-exposed cohorts in 

2001, 2002 and 2003, the estimates decline in magnitude (by roughly half in most cases), but 

remain statistically significant in our comparisons between B and A, and C and A (at the 10 

percent level or better).  For our comparison between C and B, the de-trended results to not 

indicate any statistically significant curricula differences.  We treat these de-trended results as 

lower-bound estimates because they assume that cross-subject spillover effects are zero. 

 Overall, the falsification exercise provides overwhelming evidence that our primary 

results are not biased, particularly for our comparisons between B and A, and C and B.  

Furthermore, even in our comparison between C and A, where the conditions are less favorable 

to the matching approach, the falsification estimates suggest that estimation bias is unlikely to 

significantly affect our findings. 

XI. Persistence 

Finally, we use the extended data panel in Indiana to evaluate the persistence of curricula 

effects over time.  Specifically, we ask whether the cohorts of students who were exposed to the 

more-effective curricula in grades one, two and three perform better by grade six and grade 

eight.  To estimate persistence effects we look at test score outcomes for cohorts of grade-six 

students between 2002 and 2008, and cohorts of grade-eight students between 2004 and 2008.  

Note that these cohorts correspond to the cohorts of grade-three students who were exposed to 

the curricula of interest in our primary analysis – for example, the 2005 cohort of grade-six 

students is also the 2002 cohort of grade-three students.  The fully exposed cohorts were in grade 

six between 2004 and 2007, and in grade eight between 2006 and 2009 (recall that our data panel 

ends in 2008).   

Two issues merit attention in our persistence analysis.  First, if there are test-score 

ceilings in higher grades on the Indiana test, it will be difficult to detect persistence effects 

because the tests in later grades may not adequately differentiate student learning.  We test for 

ceiling effects following Koedel and Betts (forthcoming) and find that the testing instruments 

should be sufficient to detect any persistence effects should such effects exist.  A second concern 
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is that we cannot track individual students over time in the data, and as a consequence our 

assignment to curriculum treatment during grades 1-3 may not be accurate for all students in any 

given cohort. That is, because every school that contains a grade-6 or grade-8 classroom is 

attached to a district, we can identify the curriculum to which students would have been exposed 

in grades 1-3 if they attended a school in that same district.  However, some students may have 

moved districts between grades 1-6 or 1-8.  This churning implies that at least some of the 

students who contribute to a school’s grade-6 or grade-8 test score were not actually treated with 

the district’s curriculum in the early grades. In practice, this will add noise to our treatment 

classifications, attenuating any estimated persistence effects.
33

  

Table 11 presents our persistence analysis. Leaving aside the concern that our results will 

be biased toward zero per the previous discussion, the estimates in the table provide little 

indication that curricular effects persist over time.  For the estimates in the table to be driven by 

downward bias from student movement across districts, the amount of student movement would 

need to be inordinately large.  Put differently, under the assumption that most students do not 

transfer districts during elementary school, the results in Table 11 indicate that math curricula 

effects do not persist over time.   This result is consistent with a large body of evidence pointing 

to a general lack of persistence in the effects of educational inputs (see, for example, Jacob et al., 

2008; Garces et al., 2002), and raises doubts about the extent to which administrators can 

improve student performance in the long run by choosing more effective curricula.
34

   

XII. Conclusion 

Our non-experimental analysis of curricular effectiveness offers both methodological and 

policy-oriented insights.  Methodologically, we show that non-experimental methods can be used 

to identify causal curricular effects at just a fraction of the cost of experimental designs.  

Furthermore, particularly in the case of curricula, concerns about the external validity of 

                                                 
33

 Student churning across districts is also a problem in our primary analysis, although less so.  For example, if a 

student changes districts in grade-2, she may change curricula.  As such, all of our estimates will be biased toward 

zero to some extent. 
34

 Also, as with the falsification tests involving grade-6 and grade-8 schools, in unreported results we pool across 

years to improve power.  Similarly to our reported results, the pooled estimates provide no evidence of persistence. 
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experimental estimates suggest that non-experimental results may be preferred when the data 

conditions are favorable.  We also provide useful insights for policymakers facing curriculum 

uptake decisions.  While our results indicate that some curricula are more effective than others in 

the short run, they also show that curricula effects do not persist over time.  

That a non-experimental approach to curricular evaluation can produce verifiably causal 

estimates is an important contribution to the literature. Non-experimental methods bypass some 

of the limitations inherent to experimental designs, including the experimentation on a 

subpopulation problem (Manski, 1996), and the possibility of publisher Hawthorne effects.  

Furthermore, the non-experimental analysis outlined here is not only feasible to replicate in other 

environments methodologically, but also fiscally.  In contrast to the ongoing project by Agodini 

et al. (2009), a particularly well-designed RCT that is funded by the Institute for Education 

Sciences for roughly 21 million dollars over five years, our study was performed using publicly 

available data at only a small fraction of this cost. 

Although our study is preferable to experimental designs along some dimensions, it also 

has weaknesses.  First, we do not have enough data, or the right kind of data (i.e., student level), 

to evaluate the extent to which curricula differentially affect different types of students (e.g., 

high and low-achieving, English-proficient and ESL, etc.).  This deficiency in our analysis is 

likely to be less problematic in the future because districts and states are continuing to develop 

longitudinal databases that track individual students.  We also depend critically on the 

standardized test administered by the state of Indiana as our outcome measure (the ISTEP).  

While we expect our results to extrapolate well to other states or districts that use similar tests, 

they may not carry over into states or districts where the testing instrument differs greatly in 

content.
35

  

Our analysis shows that students in Indiana who were exposed to curricula B or C 

outperformed students who were exposed to curriculum A.  In our most compelling comparison, 

                                                 
35

 As we do not have any expertise in evaluating testing content, we do not make any judgments as to the validity of 

the Indiana test, or as to which other prominent tests in the United States are similar or different. 
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between curricula B and A, the effect of exposure to the better curriculum for three consecutive 

years is roughly 0.11 standard deviations of the grade-3 ISTEP test.
36

  This effect is equivalent in 

magnitude to one year’s growth of the black-white achievement gap over these grades (Fryer and 

Levitt, 2006).  Interestingly, despite the consistent underperformance of curriculum A in our 

analysis, the publisher of curriculum A slightly increased its market share during the next 

adoption cycle in Indiana.  There are many possible explanations for this finding, ranging from a 

lack of reliable information available to administrators about curricular quality (WWC, 2007), to 

poor decision making by educational administrators (also see Ballou, 1996). 

Overall, our results are encouraging because choosing a better curriculum can non-

negligibly improve student performance.  Further, the near-zero marginal cost of choosing one 

curriculum over another suggests that implementing a better curriculum will be quite cost-

effective.  However, the lack of persistence of curricula effects (although not unique to curricula 

in education) dampens enthusiasm about the potential benefits of improved curricula.   By grades 

six and eight, the benefits of the better curricula are no longer distinguishable. 
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Figure 1.  Probability Density Functions for Estimated Propensity Scores for Treatment and Control Units in Each Comparison Using 

2001 Data, Reported Where the Control Densities are Non-Zero (Solid Lines are Treatment Densities, Dashed Lines are Control 

Densities). 
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Table 1. Average Characteristics of Schools and Districts, by Adopted Curriculum (1997 values) 

 All Saxon (A) Silver (B) Scott (C) 

School-Level Outcomes     

Attendance Rate  96.2 96.3
a
 96.1

a
 96.3 

Grade-3 Math Test Score 496.6 496.5 494.2
c
 499.7

c
 

Grade-3 Language Test Score 496.7 496.1 495.8 498.7 

     

School-Level Demographics     

Percent Free Lunch 27.4 24.7
a,b

 28.5
a
 30.5

b
 

Percent Reduced Lunch 6.7 7.1
a
 6.3

a
 6.6 

Percent Not Fluent in English 1.2 0.7
a
 1.7

a
 1.2 

Percent Language Minority 2.6 1.8
a
 3.9

a
 2.6 

Percent White 91.3 95.4
a,b

 88.0
a
 88.4

b
 

Percent Black 5.6 2.3
a,b

 7.2
a,c

 9.2
b,c

 

Percent Asian 0.7 0.4
a,b

 0.9
a
 1.1

b
 

Percent Hispanic 2.2 1.8
a,b

 3.7
a,c

 1.1
b,c

 

Percent American Indian 0.2 0.1 0.2 0.2 

Enrollment (logs) 5.95 5.92 5.97 5.96 

N (Schools) 716 311 221 184 

     

District-Level Outcomes     

Attendance Rate  95.8 95.72
b
 95.82 96.12

b
 

Grade-3 Math Test Score 498.1 495.79
b
 498.12

a,c
 506.9

b
 

Grade-3 Language Test Score 498.9 496.47
a,b

 500.60
a
 505.6

b
 

     

District-Level Demographics     

Enrollment (logs) 7.72 7.56
a,b

 7.83
a,c

 8.17
b,c

 

Total Revenue (logs) 16.55 16.37
a,b

 16.67
a,c

 17.03
b,c

 

Local Revenue (logs) 14.96 14.73
a,b

 15.07
a,c

 15.64
b,c

 

     

Census Information (District Level)     

Median Household Income (logs) 10.81 10.78
a,b

 10.82
a,c

 10.90
b,c

 

Share of Population with Low Education 18.2 18.8
b
 19.2

c
 14.25

b,c
 

N (Districts) 213 124 56 33 
a
 Indicates statistically significant difference at the 10% level between Saxon and Silver-Burdett Ginn adopters. 

b
 Indicates statistically significant difference at the 10% level between Saxon and Scott-Foresman adopters. 

c
 Indicates statistically significant difference at the 10% level between Silver-Burdett Ginn and Scott-Foresman 

adopters. 

Note: The propensity-score specification also uses italicized information from 1998 – differences in means for these 

years are not reported for brevity. 
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Table 2.  Balancing details for the 32 covariates included in the multinomial probit specification. 
 1992 1993 1994 1995 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Silver (B) to Saxon (A)                

# of unbalanced covariates  

(ten percent level or better) 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Average p-value from 

balancing test, all covariates 0.65 0.62 0.59 0.56 0.57 0.56 0.60 0.55 0.54 0.54 0.57 0.54 0.54 0.55 0.56 

                

Scott (C) to Saxon (A)                

# of unbalanced covariates  

(ten percent level or better) 

 

1 3 3 3 3 3 1 3 3 3 3 3 1 1 0 

Average p-value from 

balancing test, all covariates 0.55 0.57 0.52 0.53 0.53 0.48 0.52 0.54 0.49 0.42 0.49 0.41 0.41 0.40 0.46 

                

Scott (C) to Silver (B)                

# of unbalanced covariates  

(ten percent level or better) 

 

0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 

Average p-value from 

balancing test, all covariates 0.49 0.49 0.46 0.46 0.49 0.47 0.49 0.49 0.51 0.48 0.51 0.51 0.49 0.50 0.56 

Note: Columns in italics are for years that are contiguous to the years from which the matching criteria are drawn. 

 

 

 

Table 3.  Kullback-Leibler (KL) Information Criteria by Curricula Comparison. 

Comparison KL Information Criterion 

B to A 0.25 

C to A 0.77 

C to B 0.50 
Note:  Based on 2001 sample of schools. 
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Table 4.  Estimates of Math Curricular Effectiveness on Math Test Scores for Partially and 

Fully-Exposed Cohorts (Fixed-Bandwidth Matching Estimators). All Comparisons. 

 1999 2000 2001 2002 2003 2004 2005 2006 

 

Treatment: B   Control: A 
 

OLS 0.123 

(0.105) 

0.162 

(0.100) 
0.355 

(0.095)** 

0.357 

(0.087)** 

0.374 

(0.099)** 

0.269 

(0.131)* 

0.292 

(0.104)** 

0.248 

(0.110)* 

         

Kernel Matching 0.056 

(.164) 

0.055 

(.176) 
0.347 

(.145)* 

0.369 

(.117)**  

0.456 

(.175)** 

0.141 

 (.147) 

0.251 

(.163) 

0.145 

 (.154) 

         

LLR Matching 0.070 

(.196) 

-0.008 

(.207) 
0.343 

(.144)* 

0.317 

(.160)* 

0.430  

(.186)* 

0.075 

(.164) 

0.240 

(.182) 

0.168 

(.160) 

         

Treatment: C   Control: A 
OLS 0.132 

(0.120) 

-0.011 

(0.134) 
0.189 

(0.103)† 

0.263 

(0.096)* 

0.208 

(0.109)† 

0.015 

(0.118) 

0.108 

(0.104) 

0.181 

(0.119) 

         

Kernel Matching 0.171 

 (.263) 

-0.032 

 (.221) 
0.268 

(.179)  

0.419 

(.161)** 

0.453 

(.171)**  

-0.002 

(.158)  

0.190 

(.176)  

0.174 

(.176)  

         

LLR Matching 0.171 

(.276) 

0.260 

(.249)  
0.042  

(.216) 

0.277 

(.167)† 

0.495 

(.190)** 

0.030  

(.146)  

0.111 

(.175) 

0.126  

(.185) 

         

Treatment: C   Control: B 
OLS 0.008 

(0.100) 

-0.160 

(0.122) 
-0.100 

(0.117) 

-0.186 

(0.129) 

-0.284 

(0.166)† 

-0.271 

(0.161)† 

-0.181 

(0.129) 

-0.083 

(0.138) 

         

Kernel Matching -0.118 

 (.282) 

-0.236 

(.304)  
-0.172 

 (.318) 

-0.091 

 (.235) 

-0.398 

(.212)†   
-0.189 

 (.215) 

-0.117 

 (.242) 

-0.066 

(.269) 

         

LLR Matching -0.084 

(.291) 

-0.205 

(.335)   
-0.124 

(.290) 

-0.035 

(.278) 

-0.365   

(.315)  

-0.152 

(.204) 

-0.055 

(.252) 

-0.054 

(.280) 

         

N(A) 309 307 307 305 300 294 286 287 

N(B) 220 219 219 213 213 212 210 207 

N(C) 184 182 182 181 176 174 169 163 

Note: Bolded years are for fully-exposed cohorts.  Matching estimators impose the common support restriction.  

Standard errors are clustered at the district level and bootstrapped using 250 repetitions. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 
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Table 5.  Estimates of Math Curricular Effectiveness on Math Test Scores for Partially and 

Fully-Exposed Cohorts.  Locally-Varying Bandwidth Estimates. All Comparisons. 

 1999 2000 2001 2002 2003 2004 2005 2006 

 

Treatment: B   Control: A 
Kernel Matching 0.045 

(0.123) 

0.079 

(0.138) 
0.350 

(0.114)** 

0.361 

(0.090)** 

0.430 

(0.120)** 

0.163 

(0.118) 

0.259 

(0.123)* 

0.157 

(0.138) 

         

LLR Matching 0.067      

(.118) 

0.065 

 (.12 6 ) 
0.345 

(.116)** 

0.357   

(.094)** 

0.476    

(.143)** 

0.101   

(.121) 

0.254    

(.122)* 

0.176    

(.133 ) 

         

Treatment: C   Control: A 
Kernel Matching 0.165  

(0.141 ) 

-0.008  

(0.172)  
0.294 

(0.166)† 

0.420  

(0.158)** 

0.446  

(0.157)** 

0.016  

(0.120 ) 

0.208  

(0.147 ) 

0.207  

(0.174 ) 

         

LLR Matching 0.157 

(.137)   

0.051     

(.178 ) 
0.148    

(.158 ) 

0.386    

(.147)** 

0.537    

(.168)** 

0.081 

(.126)  

0.236     

(.157) 

 0.207   

(.182) 

         

Treatment: C   Control: B 
Kernel Matching -0.134  

(0.148 ) 

-0.246  

(0.171 ) 
-0.216  

(0.195 ) 

-0.131  

(0.151 ) 

-0.427  

(0.157)** 

-0.247  

(0.147)† 

-0.165  

(0.183 ) 

-0.114  

(0.171 ) 

         

LLR Matching -0.085    

(.136) 

-0.198    

(.178 ) 
-0.120   

(.198 ) 

-0.036    

(.161 ) 

-0.365   

(.154)** 

-0.154   

(.139 ) 

-0.059   

(.191 ) 

-0.024    

(.173 ) 

         

N(A) 309 307 307 305 300 294 286 287 

N(B) 220 219 219 213 213 212 210 207 

N(C) 184 182 182 181 176 174 169 163 

Note: Bolded years are for fully-exposed cohorts.  Matching estimators impose the common support restriction.  

Standard errors are clustered at the district level and bootstrapped using 250 repetitions. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 
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Table 6.  Average 2004 Curricula Adoptions for Uniform-Curricula Adopters (grades 1, 2 and 3) 

in Math in 1998 for the Four Most Common Curricula from the 2004 Adoption Cycle, by Grade.  
  1998 Uniform Math Adoptions – Grades 1 Through 3 

 Across-Sample 

Average 

Saxon (A) Silver-Burdett Ginn (B) Scott-Foresman (C) 

2004 Math Adoptions     

Grade 1     

Saxon 0.52 0.74 0.24 0.13 

Harcourt 0.18 0.08 0.31 0.33 

Houghton Mifflin 0.10 0.07 0.11 0.23 

Scott-Foresman 0.08 0.07 0.07 0.10 

Grade 2     

Saxon 0.52 0.75 0.24 0.10 

Harcourt 0.18 0.09 0.31 0.33 

Houghton Mifflin 0.10 0.07 0.11 0.23 

Scott-Foresman 0.07 0.06 0.07 0.13 

Grade 3     

Saxon 0.51 0.74 0.22 0.10 

Harcourt 0.18 0.09 0.31 0.33 

Houghton Mifflin 0.11 0.07 0.14 0.23 

Scott-Foresman 0.08 0.07 0.06 0.17 

Grade 4     

Saxon 0.49 0.71 0.20 0.13 

Harcourt 0.18 0.10 0.29 0.33 

Houghton Mifflin 0.12 0.09 0.13 0.20 

Scott-Foresman 0.09 0.07 0.11 0.17 

Grade 5     

Saxon 0.51 0.73 0.20 0.17 

Harcourt 0.17 0.09 0.30 0.30 

Houghton Mifflin 0.10 0.07 0.11 0.20 

Scott-Foresman 0.10 0.07 0.11 0.17 

Grade 6     

Saxon 0.31 0.45 0.14 0.07 

Glencoe 0.24 0.20 0.24 0.40 

McDougal 0.15 0.11 0.18 0.23 

Prentice Hall 0.10 0.11 0.04 0.17 

N* 207 122 55 30 

*N indicates the number districts in our primary sample for which we have data on adoptions for 2004.  
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Table 7.  Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test 

Scores for Grade-3 Cohorts Who Were Never Exposed to the Curricula of Interest (Fixed-

Bandwidth Matching Estimators). All Comparisons. 

 1992 1993 1994 1995 1996  2007 2008 

 

Treatment: B   Control: A 

Kernel Matching -0.207 

 (.144) 

-0.02 

 (.180) 

-0.014 

(171)  

0.046 

(.163)  

0.073 

 (.150) 

 0.026 

 (.159) 

0.163 

 (.134) 

 

Treatment: C   Control: A 

Kernel Matching -0.432 

(.165)**  

-0.135 

(.187) 

-0.009 

 (.163) 

0.050 

 (.158) 

-0.072 

 (.204) 
 0.065 

 (.162) 

0.025 

(.208) 

 

Treatment: C   Control: B 

Kernel Matching -0.105 

 (.294) 

0.122 

 (.325) 

0.145 

 (.325) 

0.018 

 (.310) 

-0.064 

 (.313) 
 -0.126 

(.244)  

-0.236 

 (.264) 

         

N(A) 301 304 304 306 308  284 280 

N(B) 209 210 213 216 220  205 201 

N(C) 179 179 182 182 182  163 162 

Notes: Matching estimators impose the common support restriction.  Standard errors are clustered at the district 

level and bootstrapped using 250 repetitions. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 

 

Table 8.  Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test 

Scores for Grade-6 Cohorts Who Were Never Exposed to the Curricula of Interest (Fixed-

Bandwidth Matching Estimators). All Comparisons. 

 1992 1993 1994 1995 1996  1999 2000 2001 

 

Treatment: B   Control: A 

Kernel Matching -0.211  

(0.192) 

-0.291  

(0.220) 

-0.058  

(0.193) 

-0.110  

(0.180) 

0.040  

(0.187) 

 -0.021 

(0.177) 

-0.259  

(0.185) 

-0.143  

(0.165) 

 

Treatment: C   Control: A 

Kernel Matching 0.195 

(0.216) 

0.106 

(0.283) 

0.243 

(0.207) 

0.397 

(0.209)† 

0.361 

(0.251) 
 0.019 

(0.246) 

-0.382 

(0.216)† 

-0.288 

(0.207) 

 

Treatment: C   Control: B 

Kernel Matching -0.081 

(.251) 

-0.040 

(.307) 

-0.143 

(.320) 

-0.150 

(.289) 

-0.235  

(.271)  
 -0.336 

(.318) 

-0.271 

(.307) 

-0.247    

(.309) 

          

N(A) 205 208 213 213 218  212 205 204 

N(B) 117 118 122 125 127  122 120 120 

N(C) 90 89 93 95 101  79 78 76 

Notes: Matching estimators impose the common support restriction.  Standard errors are clustered at the district 

level and bootstrapped using 250 repetitions.   

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 
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Table 9.  Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test Scores for Grade-8 Cohorts Who Were 

Never Exposed to the Curricula of Interest (Fixed-Bandwidth Matching Estimators). All Comparisons. 

 1992 1993 1994 1995 1996  1999 2000 2001 2002 2003 

 

Treatment: B   Control: A 

Kernel Matching 0.159    

(.181) 

0.005  

(.174) 

-0.064  

(.187) 

-0.046   

(.212) 

  0.135 

(.170) 

0.050    

(.172) 

0.022     

(.184) 

-0.022    

(.157) 

-0.026    

(.161) 

 

Treatment: C   Control: A 

Kernel Matching   0.100 

(.263 ) 

0.004 

(.221) 

0.071 

(.243) 

0.217 

(.227) 

  0.065 

(.246) 

0.046  

(.238) 

0.268   

(.244) 

0.148   

(.267) 
0.251 

(.298) 
 

Treatment: C   Control: B 

Kernel Matching 0.098  

(.271) 

0.027 

(.288) 

0.097  

(.233) 

0.008 

(.287) 

  0.103 

(.352) 

0.029 

(.365) 

-0.083  

(.308) 

-0.140 

(.286) 
-0.005 

(.342) 
            
N(A) 142 145 146 145   146 144 141 139 138 

N(B) 80 79 81 82   79 79 79 79 78 

N(C)      64 65 66 65   67 66 67 67 67 

Notes: Matching estimators impose the common support restriction.  Standard errors are clustered at the district level and bootstrapped using 250 repetitions. 

Information on grade-8 test scores in 1996 were not available. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 

  



43 

 

Table 10.  Estimates of Math Curricular Effectiveness, Estimated Using Reading Test Scores for all Grade-3 Cohorts (Fixed-

Bandwidth Matching Estimators). All Comparisons. 

 1992 1993 1994 1995 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

 

Treatment: B   Control: A 

Kernel Matching -0.238 

(0.145) 

-0.139 

(0.179) 

-0.087 

(0.175) 

0.026 

(0.166) 

0.161 

(0.157) 

0.107 

(0.165) 

0.104 

(0.191) 
0.170 

(0.175) 

0.205 

(0.136) 

0.219 

(0.177) 

0.007 

(0.188) 

0.032 

(0.190) 

0.036 

(0.157) 

-0.149 

(0.185) 

0.100 

(0.160) 

 

Treatment: C   Control: A 

Kernel Matching -0.212 

(0.172) 

-0.174 

(0.190) 

-0.178 

(0.181) 

-0.037 

(0.182) 

-0.12 

(0.217) 

-0.060 

(0.248) 

-0.015 

(0.260) 
0.097 

(0.225) 

0.078 

(0.216) 

0.196 

(0.213) 

0.065 

(0.211) 

-0.003 

(0.220) 

0.263 

(0.204) 

0.211 

(0.219) 

0.200 

(0.229) 

 

Treatment: C   Control: B 

Kernel Matching 0.016 

(0.303) 

0.167 

(0.333) 

0.262 

(0.354) 

-0.008 

(0.316) 

-0.122 

(0.351) 

-0.227 

(0.299) 

-0.131 

(0.318) 
-0.143 

(0.338) 

-0.181 

(0.287) 

-0.152 

(0.295) 

-0.123 

(0.290) 

0.027 

(0.276) 

0.134 

(0.297) 

0.063 

(0.299) 

-0.051 

(0.318) 

                

N(A) 301 304 304 306 308 309 307 307 305 300 294 286 287 284 280 

N(B) 209 210 213 216 220 220 219 219 213 213 212 210 207 205 201 

N(C) 179 179 182 182 182 184 182 182 181 176 174 169 163 163 162 

Notes: Matching estimators impose the common support restriction.  Standard errors are clustered at the district level and bootstrapped using 250 repetitions. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 

  



44 

 

 

Table 11.  Persistence Effects.  Estimated Curricular Effects for Cohorts of Grade-6 and Grade-8 Students that were Partially or Fully 

Exposed.  

 Grade-6 Cohorts  Grade-8 Cohorts 

 2002 2003 2004 2005 2006 2007 2008  2004 2005 2006 2007 2008 

 

Treatment: B   Control: A 

Kernel Matching -0.114  

(0.171) 

0.092  

(0.154) 
0.071 

(0.212) 

0.051 

(0.181) 

-0.020  

(0.191)   

-0.005  

(0.208)  

-0.002  

(0.194) 

 -0.083    

(0.203) 

-0.042   

(0.203) 
-0.126   

(0.181) 

0.048   

(0.224) 

-0.009    

(0.170) 

 

Treatment: C   Control: A 

Kernel Matching -0.236 

(0.197)  

0.030 

(0.250) 
0.130  

(0.251) 

-0.024 

(0.280)  

-0.014 

(0.229) 

0.103 

(0.218) 

-0.126 

(0.275) 

 0.180   

(0.289) 

0.323   

(0.252) 
0.372    

(0.304) 

0.186 

(0.220) 

0.409 

(0.268)  

 

Treatment: C   Control: B 

Kernel Matching -0.504 

(0.294)† 

-0.281 

(0.243 ) 
-0.114 

(0.285) 

-0.127  

(0.243) 

-0.153 

(0.239) 

-0.041  

(0.244) 

-0.279 

(0.224) 

 0.282 

(0.289) 

0.033 

(0.282) 
0.085 

(0.272) 

0.080  

(0.285) 

0.077 

(0.294) 

              

N(A) 200 189 174 165 163 160 156  135 135 132 131 131 

N(B) 118 115 105 101 97 94 93  75 75 75 73 71 

N(C) 75 73 72 72 72 72 67  67 66 42 66 66 

Notes: Matching estimators impose the common support restriction.  Standard errors are clustered at the district level and bootstrapped using 250 repetitions. 

** Denotes statistical significance at the 1 percent level or better 

*   Denotes statistical significance at the 5 percent level or better 

†   Denotes statistical significance at the 10 percent level or better 
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Appendix A 

Supplementary Tables 
 

 

 

Appendix Table A.1.  Data Sample Details. 

 Schools % of Universe  Districts % of Universe 

 

Universe*  1115   294  

      

Missing Information:      

District-reported curriculum adoption 3 0.3  3 1.0 

District outcome variables 2 0.2  2 0.7 

School outcome variables 23 2.2  1 0.3 

District finance or enrollment data 2 0.2  1 0.3 

School enrollment or demographic data 82 7.3  12 4.0 

      

Did not use one of the primary curricula in grade one, two or three 211 18.9  38 12.9 

Used only primary curricula, but did not uniformly adopt 76 6.8  24 8.2 

      

Remaining Sample 716 64.2  213 72.4 

* The universe consist of those schools and districts for which any information was reported in 1997, and at least one grade-3 math 

test score was reported for an exposed cohort (1999-2006). 
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Appendix Table A.2  Scaling Factors Used to Convert Estimation Metric from School-Level 

Distribution to Individual-Level Distribution for Grade-3 Math Scores. 

 

 

Year 

Standard Deviation 

of Distribution of 

School Scores 

Standard Deviation of 

Distribution of 

Individual Scores 

Approximate 

Scaling Factor 

1992 2.8 N/A N/A 

1993 2.9 N/A N/A 

1994 2.8 N/A N/A 

1995 2.8 N/A N/A 

1996 1.9 N/A N/A 

1999 21.3 N/A N/A 

2000 20.5 61.0 0.34 

2001 21.0 61.4 0.34 

2002 19.9 59.7 0.33 

2003 20.7 60.9 0.34 

2004 22.5 63.1 0.36 

2005 21.0 62.2 0.34 

2006 20.0 64.3 0.31 

2007 21.3 65.4 0.33 

2008 22.5 63.7 0.35 
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Appendix B 

Bandwidth Selection 
 

We use standard leave-one-out cross validation (C-V) to obtain fixed bandwidths for the kernel 

and LLR matching estimators (the locally-varying bandwidth selection is also based on the fixed 

bandwidths).  The grid search for kernel and LLR matching is over the range (0.005, 2.0).  Using 

Frölich’s (2004) notation, the C-V approach selects the optimal bandwidth, hCV, by solving the 

following minimization problem: 

 

2

1

ˆarg min( ) ( ( ))
Q

CV q q q

q

h h Y m p



   

 

where q indexes the sample of control units, Y is the outcome (test score) and ˆ ( )q qm p is the 

estimate of the mean outcome among the control observations, excluding observation q, 

conditional on the estimated propensity score for unit q.  

 

As has been reported in other contexts (see, for example, Ludwig and Miller, 2007), the loss 

function used to select the fixed bandwidth is fairly flat in most of our comparisons.  As such, we 

use a combination of conventional C-V and “visual inspection” to identify the appropriate fixed 

bandwidth for each of our matching estimators.  

 

First, Figure B.1 illustrates a case where cross-validation produces a clear bandwidth choice at 

the global minimum of the loss function, for our comparison between B and A in 2000 using the 

kernel matching estimator. In this case we use bandwidth at the global minimum, 0.048. 

 

 

 

Next, Figure B.2 illustrates a case where cross-validation suggests an optimal bandwidth at the 

edge of our grid search, for our comparison between B and A in 2005 using the kernel matching 

estimator.  For this comparison we use a bandwidth of 0.062, which occurs just prior to the 

narrowly upward sloping portion of the curve. 

Figure B.1
Loss Function: Silver-Burdett Ginn versus Saxon, 2000
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We describe our bandwidth selection procedure for the comparison in Figure B.2 as a 

combination of cross-validation and visual inspection.  Because the flat region of the curve has a 

mild negative slope, the mechanical application of the C-V procedure would produce a 

bandwidth of at the edge of our grid search, 2.0.  However, by visual inspection, we can see that 

there is very little difference in the loss function between the bandwidth determined 

mechanically by the C-V procedure and a much narrower bandwidth selected after the initial 

drop in the loss function. We ultimately use the narrower bandwidth in this and similar cases 

because the efficiency gains associated with the wider bandwidth will be minimal, and the 

narrower bandwidth should reduce bias in the estimates. 

 

Across our grade-3 comparisons spanning the entire data panel, our approach of combining C-V 

with visual inspection yields a bandwidth at the global minimum of the loss function 40 percent 

of the time.  In the remaining cases where the global minimum occurs at the edge of our grid 

search, the average increase in the loss function that we observe by choosing an interior 

bandwidth is 1.3 percent, with a maximum increase of 2.9 percent in one instance.  Details about 

our bandwidth selection process for each estimator in the paper are available upon request.   

 

Finally, that cross validation produces large flat regions in the loss function in most of our 

comparisons provides some indirect evidence that curriculum adoptions are not meaningfully 

correlated with other, unobservable determinants of school performance. The flat regions suggest 

that as increasingly non-comparable units (as measured by the propensity score) are used as 

comparisons for one another, there is minimal change in their measured outcomes. Such 

conditions will certainly be favorable to a non-experimental analysis.   

Figure B.2
Loss Function: Silver-Burdett Ginn versus Saxon, 2005


	A Non-Experimental Evaluation of Curricular Effectiveness in Math
	Recommended Citation

	tmp.1583778606.pdf.8gDKj

	Text2: This paper can be downloaded at: http://aysps.gsu.edu/usery/Papers.html


	Text3: Rachana Bhatt
Georgia State University

Cory Koedel
University of Missouri



	Title of Report: A Non-Experimental Evaluation of Curriculum Effectiveness in Math
	Text1: Working Paper 2009-10-2
October 2009


