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ABSTRACT 

The application of Bayesian networks within the field of institutional research is explored 

through the development of a Bayesian network used to predict first- to second-year retention of 

undergraduates.  A hybrid approach to model development is employed, in which formal 

elicitation of subject-matter expertise is combined with machine learning in designing model 

structure and specification of model parameters.  Subject-matter experts include two academic 

advisors at a small, private liberal arts college in the southeast, and the data used in machine 

learning include six years of historical student-related information (i.e., demographic, 

admissions, academic, and financial) on 1,438 first-year students.  Netica 5.12, a software 

package designed for constructing Bayesian networks, is used for building and validating the 

 
 



model.  Evaluation of the resulting model’s predictive capabilities is examined, as well as 

analyses of sensitivity, internal validity, and model complexity.  Additionally, the utility of using 

Bayesian networks within institutional research and higher education is discussed.  

The importance of comprehensive evaluation is highlighted, due to the study’s inclusion 

of an unbalanced data set.  Best practices and experiences with expert elicitation are also noted, 

including recommendations for use of formal elicitation frameworks and careful consideration of 

operating definitions.  Academic preparation and financial need risk profile are identified as key 

variables related to retention, and the need for enhanced data collection surrounding such 

variables is also revealed.  For example, the experts emphasize study skills as an important 

predictor of retention while noting the absence of collection of quantitative data related to 

measuring students’ study skills.  Finally, the importance and value of the model development 

process is stressed, as stakeholders are required to articulate, define, discuss, and evaluate model 

components, assumptions, and results.   
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1 A BAYESIAN APPROACH, EXPERT ELICITATION, AND BAYESIAN 

NETWORKS AS APPLICABLE TO INSTITUTIONAL RESEARCH:  A REVIEW OF 

THE LITERATURE 

While applications of a Bayesian approach to statistics are commonly practiced in a 

number of fields, examples of studies addressing and incorporating Bayesian statistics in 

educational research are less common.  Narrowing the field of interest to institutional research, 

defined by Saupe (1990) as “research conducted within an institution of higher education to 

provide information that supports institutional planning, policy formation and decision making” 

(p.1), a Bayesian approach to research offers a tool box rich in resources for handling and 

modeling the uncertainty, complexity, and uniqueness of institutional data while also providing a 

formal mechanism for incorporating institutional memory, expertise, and prior data into analysis.  

With an eye towards the completion of a Bayesian research study within the field of institutional 

research, this manuscript provides a comprehensive review of the literature surrounding a 

Bayesian approach to institutional research.  Beginning with a background of general Bayesian 

statistics, the review also discusses the elicitation of subjective probabilities and development 

and use of Bayesian networks.   

Guiding Questions 

The guiding questions shaping this review are as follows:  How is a Bayesian approach 

relevant to institutional research?  How can an institutional researcher leverage and incorporate 

expert information and experience into data analysis and modeling?  How can Bayesian 

networks be used in institutional research, particularly those that predict an outcome of interest? 
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Introduction to Bayesian Statistics 

A Bayesian approach to statistics is one in which statisticians attempt to describe a true 

state or event in probabilistic terms.  Contrary to the classical or frequentist approach in which 

probability is defined as the proportion of successful outcomes to number of attempts, Bayesian 

statistics views probability as degree of belief.  In other words, Bayesian probability is a measure 

of the degree of belief in the probability of specific outcome.  This degree of belief represents 

prior knowledge pertaining to the likelihood of an event, which is then updated with data 

relevant to this event in order to form a new, or posterior, belief in the probability of the same 

event occurring.  As Gill (2009) wrote, “Bayesians generally interpret probability as ‘degree of 

belief,’ meaning that prior distributions are descriptions of relative likelihoods of events based on 

the researcher’s past experience, personal intuition, or expert opinion, and posterior distributions 

are those prior distributions updated by conditioning on new observed data” (p.135). 

The following sections address the core tenets of Bayesian inferential methods, including 

an explanation of Bayes’ theorem and its role in the function of combining observed data with 

prior knowledge, a discussion of the prior distribution and how it is formed, and consideration of 

model fit.  Discussion of arguments surrounding the subjectivity of the Bayesian approach is also 

included, as well as a summary of the advantages and limitations of Bayesian methods, 

particularly within the context of social sciences, and educational and institutional research.   

Bayes’ Theorem 

Fundamentally, Bayesian methods provide a way to revise probabilities by incorporating 

new data.  Equation 1.1 demonstrates Bayes’ theorem, in which the probability of event B given 

event A (the new data) is modeled as a function of the probability of event A given event B 

multiplied by the probability of event B alone and divided by the probability of event A.   
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𝑝𝑝(𝐵𝐵|𝐴𝐴) =

𝑝𝑝(𝐴𝐴|𝐵𝐵)𝑝𝑝(𝐵𝐵)
𝑝𝑝(𝐴𝐴)

 
(1.1) 

Medical testing is commonly used as an illustrative tool when describing Bayes’ theorem.  

Consider an example provided by Gigerenzer (2002) concerning the efficacy of mammogram 

testing for breast cancer.  Within Gigerenzer’s example, it is presented that .8% of women in the 

general population have breast cancer.  The probability that a woman with breast cancer receives 

a positive mammogram is 90%, while the probability that a woman without breast cancer 

receives a positive mammogram is 7%.  An accurate calculation of the probability that a woman 

with a positive mammogram actually has cancer necessitates the inclusion of all of the 

information presented:  The incidence of breast cancer in the study’s population (.8%), the 

probability of a correct mammogram test (90%), and the probability of an incorrect test (7%).  

For simplicity, first consider the given information in terms of frequencies (rather than 

probabilities and percentages) as presented in Table 1.1:   

Table 1.1 
Mammogram/Breast Cancer Frequency Table 

 Cancer? Total 
Yes No  

Mammogram Result Positive 7 70 77 
Negative 1 922 923 

Total 8 992 1000 
 

As Table 1.1 shows, .8% (8/1000) of women in the population actually have cancer.  Of 

those eight women, 88% (7/8) will receive a positive mammogram.  Seven percent of the 

remaining women in the population (70/992) will also receive a positive mammogram even 

though they don’t have cancer.  Therefore, a total of 77 women (seven of the women who 

actually do have cancer and 70 of the women who do not have cancer) will receive a positive 

mammogram.  Importantly, only seven of these 77 women actually have cancer, meaning that 
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the probability of actually having breast cancer after receiving a positive mammogram is only 

9% (7/77). 

This information is easily transferred into the variables presented in Bayes’ theorem.  

Consider p(B│A) to represent the probability of breast cancer given a positive mammogram.  

Bayes’ theorem requires that in order to determine the probability of breast cancer given a 

positive mammogram, the overall probability of breast cancer within the population, p(B) or 

.8%, be multiplied against the probability of a positive mammogram given the presence of breast 

cancer, p(A│B) or 90%, and divided by the overall probability of a positive mammogram, p(A) 

or 8%.  Substitution of these values into Bayes’ theorem results in a 9% chance that a woman 

receiving a positive mammogram actually has breast cancer.  Essentially, Bayes’ incorporation 

of the known prevalence of cancer within the given population along with test accuracy and 

sensitivity act to produce a probability of cancer given a positive mammogram.  In order words, 

a Bayesian approach investigates how the probability of one event is affected by the probability 

of another – conditional probability. 

This incorporation of conditional probability is a critical factor in Bayesian methods.  

Using the same mammogram example for illustration, there are two conditional probabilities – 

the probability of breast cancer given a positive mammogram, p(B│A), and the probability of a 

positive mammogram given the presence of breast cancer, p(A│B).  The known prevalence of 

breast cancer in the general population, p (B), is termed a “prior” probability.  The conditional 

probability of a positive mammogram given the presence of cancer, p(A│B), is termed 

“likelihood” and introduces the incorporation of new information (a positive mammogram) into 

consideration.  In other words, the likelihood portion of Bayes’ theorem estimates the effect of a 

positive mammogram on a prior belief that a person has breast cancer.  However, the 

4 
 



mammogram’s test sensitivity and accuracy are also considered in the equation, as reflected in 

the divisor.  The overall probability of receiving a positive mammogram, p (A), is a function of 

the test’s accuracy (in terms of the probability of false positive) and the test’s sensitivity (in 

terms of probability of cancer detection given the presence of cancer), both of which are 

tempered by the known prevalence (prior) of breast cancer.  The product of the prior and 

likelihood is considered the “posterior probability.”  Using Gigerenzer’s (2002) mammogram 

example, Table 1.2 illustrates the components used in Bayes’ theorem to estimate the posterior 

probability of breast cancer given a positive mammogram.    

Table 1.2 
Components of Bayes Theorem, Using Gigerenzer’s (2002) Mammogram Example 
Posterior 
Probability 

Prior Probability Likelihood 

p(B│A) 
 
Probability of 
breast cancer 
given positive 
mammogram 
 
= 
𝑝𝑝(𝐴𝐴|𝐵𝐵)𝑝𝑝(𝐵𝐵)

𝑝𝑝(𝐴𝐴)
 

 
 
=90%∗.8%

8%
 

 

p (B) 
 
Breast 
cancer 
prevalence 
in 
population  

p (Bno cancer ) 
 
Probability of 
not having 
breast cancer in 
general 
population 

p(A│B) 
 
Probability 
of positive 
mammogram 
given breast 
cancer 

p(A│Bno cancer) 
 
Probability of 
positive 
mammogram 
given no breast 
cancer (false 
positive) 

p(A) 
 
Probability of 
receiving 
positive 
mammogram:   
= (90% * .8%) + 
(99.2% * 7%) 

9% .8% 99.2% 90% 7% 8% 

 

Without the information provided by the mammogram, and holding all other risk factors 

constant, the only way to estimate the probability of breast cancer is to simply quote the 

prevalence within the general population.  Bayes’ theorem allows for the introduction of the new 

mammogram information (including allowances for the mammogram’s sensitivity and accuracy, 
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in terms of false negatives and false positives) to adjust the prior belief and form a more accurate 

understanding of the probability of breast cancer given a positive mammogram.  Understanding 

of the theorem and its components also allows for a more accurate assessment of what a positive 

mammogram really implies – without considering the actual prevalence of breast cancer in the 

general population, as well as the test’s sensitivity and accuracy, one would mistakenly interpret 

a positive mammogram as a 90% chance that the patient has cancer.  Incorporating all the 

information available reveals only a 9% chance that a patient with a positive mammogram has 

breast cancer.  The incorporation of new information is a major factor of what sets the Bayesian 

approach apart from frequentist techniques.   

Bayesian Priors 

Another major difference between Bayesian and frequentist approaches involves the use 

of Bayesian priors.  Put most simply, a Bayesian prior is a quantification of the researcher’s a 

priori beliefs.  In the previous example, the incidence of breast cancer in the population served as 

the prior probability.  Although there is much variation in the literature regarding nomenclature, 

Bayesian priors can be broadly categorized as uninformative or informative.  Within these 

categories are a number of subcategories, often depending on the weight assigned and source of 

the prior knowledge.  The following sections provide a general discussion of these two broad 

categories of priors.  More in depth discussion of the philosophical interpretations of 

probabilities that form the foundation of these priors follows. 

Uninformative priors.  Uninformative priors (also termed “objective,” 

“noninformative,” “flat,” “vague,” “diffuse,” and “reference,” among others, in the literature) 

provide little additional information or explanatory power, and are often employed to reflect 

objectivity (Gill, 2009).  Gelman, Carlin, Stern, and Rubin (2004) suggested that the use of 

6 
 



uninformative prior distributions is a way “to let the data speak for themselves” (p. 62), thereby 

limiting, or even eliminating any influence of prior information on current data and posterior 

distributions.  Uninformative priors are also used in the case when more subjective prior 

distributions are unavailable or when resources involved with gathering prior information is 

deemed prohibitive (Ghosh, 2011).   

The uninformative prior employed by the earliest Bayesians is the uniform prior, in 

which all possible outcomes are equally likely (Bayes, 1763; Laplace, 1825/1902; Syversveen, 

1998).  In response to the uniform distribution’s problems with lack of invariance (variation in 

posterior distributions resulting from non-linear transformations of the same uniform 

distribution), Jeffreys (1961) proposed a prior that is invariant under reparameterization and 

incorporates Fisher’s information (Data & Ghosh, 1996).  Box and Tiao (1973), Lindley (1965), 

Press (1972), and Zellner (1971) expanded on Jeffrey’s work, demonstrated Bayesian methods’ 

ability to more efficiently address statistical problems, and set the stage for an extensive amount 

of literature exploring uninformative or objective priors (Bernardo, 2005).   

The concept of a “reference prior,” or a prior whose influence is subjugated to 

information provided by the data, is an important form of uninformative prior that emerged from 

these discussions (Berger & Bernardo, 1992).  Importantly, reference priors are understood to 

represent formal, consensus-driven functions developed among a scientific community, ensuring 

“that the information provided by the data will not be overshadowed by the scientist’s prior 

beliefs” (Bernardo, 2005, p. 3).  This understanding of uninformative priors as providing 

minimal impact is also an important distinction from earlier ideas that uninformative priors are 

attempts to represent or express ignorance (Kass & Wasserman, 1996).  One special case of 

uninformative priors, and one that results in posterior probabilities requiring careful 
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interpretation, is an “improper” prior, or one which the sum of all possible values specified by 

the prior distribution does not result in a finite value (Gelman at al., 2004).   

In the past fifty years, discussion of uninformative priors has dramatically expanded 

beyond uniform and Jeffrey’s priors.  Yang and Berger (1997) provided a catalog of 

uninformative priors, while Kass and Wasserman (1996) offered a comprehensive guide to the 

selection of the many types of uninformative priors.  The large amount of literature focused on 

the methods behind and selection of uninformative priors points toward a search for a default or 

generally agreed-upon uninformative prior that will address concerns of objectivity. 

Informative priors.  Informative priors intentionally include knowledge designed to 

influence posterior probabilities and, ultimately, statistical inference.  Press (2003) outlined the 

advantages of informative priors as follows:  Such priors are proper, act as supplementary data, 

capitalize on expert knowledge, and present an avenue for analysis when other information 

(“objective” Bayesian priors, or even a frequentist approach) is unavailable.   

Informative priors can be derived from a number of sources, often including previous 

studies and results, researcher expertise, subject-matter expertise, and mathematical convenience 

(Gill, 2009; Gelman et al., 2004).  For example, Ibrahim and Chen’s (2000) “Power Prior” is a 

form of informative prior built from historical data, in which the influence of the historical data 

is weighted based on the researcher’s belief in how closely the historical data can be tied to 

current data and inferences.  This type of informative prior is most popular in clinical settings, as 

there are often large amounts of historical data available.  A conjugate prior is an informative 

prior chosen due to its conjugacy (same distribution families) with the likelihood function, the 

use of which simplifies the calculations necessary to compute a posterior (Raiffa & Schlaifer, 

1961).  Note that the development of Markov chain Monte Carlo (MCMC) techniques has eased 
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the computational burden on statisticians when dealing with non-conjugate priors (Hahn, 2006).  

In following sections, this manuscript will address the formal elicitation of subject-matter 

expertise in order to develop informative priors. 

Other priors.  The literature include a number of other prior forms that do not fall neatly 

into the “informative” or “uninformative” categories, most of which were developed in the 

interest of increasing flexibility and applicability.  For example, hybrid priors combine 

informative and uninformative priors for use in hierarchical Bayesian models (Gill, 2009).  

Jaynes (1980) developed maximum entropy priors in an effort to increase flexibility in 

describing comparative levels of uncertainty.  Nonparametric-priors were developed to respond 

to problems of determining appropriate model complexity (Gershman & Blei, 2012). 

Prior Evaluation 

Although the sources of priors often depend on a researcher’s judgment, they should not 

be chosen cavalierly.  Gill (2009) encouraged explicit explanations of prior choice and 

specification, as well as analyses of a resulting model’s sensitivity to changes in the chosen prior.  

Reimherr, Meng, and Nicolae (2014) further emphasized the importance of evaluating the impact 

of an informative prior on the posterior distribution.  In other words, it is important to measure 

how much prior knowledge influences inferences and conclusions.  Additionally, the literature 

has suggested model checking (comparing observed data with model-generated data) regardless 

of informative or uninformative prior (Evans & Moshonov, 2006; Gelman, Meng, & Stern, 1996; 

Kelly & Smith, 2011; Rubin, 1984).  For example, as Rubin pointed out, the sensitivity of 

conclusions to how a Bayesian model is set up exposes scientific uncertainty – if inferences 

change based on model specifications, researchers can conclude that more information and study 

is necessary to address the uncertainty revealed.  In another form of sensitivity analysis, Berger 
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(2006) recommended a comparison of conclusions drawn from a subjective Bayesian analysis 

against those of an objective prior analysis, noting that large differences due to choice of priors 

should be discussed and further investigated and justified.  Speigelhalter and Rice (2009), 

succinctly summarized the evaluative process:  “In particular, audiences should ideally fully 

understand the contribution of the prior distribution to the conclusions, the reasonableness of the 

prior assumptions, the robustness to alternative models and priors, and the adequacy of the 

computational methods” (p.  5230). 

The incorporation of prior knowledge is a critical advantage of Bayesian methodology.  

As Gill (2009) wrote, “priors are a means of systematically incorporating existing human 

knowledge, quantitative or qualitative, into the statistical specification” (p. 138).  Ultimately, the 

selection of prior is based on a number of factors, including research question, availability of 

data, and the researcher’s experience.  More broadly, the decision of a researcher to employ 

Bayesian methodology has much to do with her interpretation of probability.  A frequentist 

interpretation of probability concludes that the results of long-run, controlled, and repeated 

experiments can eventually be interpreted as representative of the short term as well.  However, 

these types of experiments can be cost prohibitive and time consuming, and are typically 

unrealistic within behavioral and social sciences.  The Bayesian approach to probability offers an 

alternative in which probability represents a degree of belief, and prior probabilities reflect this 

degree of belief a priori to any new evidence.  As discussed in depth below, this degree of belief 

is also termed “subjective probability.” 

Subjective Probability 

At the root of any discussion regarding the use of Bayesian inferential techniques lies the 

idea of subjective probability.  In their discussions of the philosophical foundations of 
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probability, both Weatherford’s (1982) and Gillies’ (2000) definitions of subjective probability 

are remarkably similar: Weatherford defined subjective probability as “the degree of belief of a 

given person at a given time” (p. 220), and Gillies stated that subjective probability theory 

“identifies probability with the degree of belief of a particular individual” (p. 1).  These 

definitions are mostly based on the work of subjective theorist Bruno de Finetti, who provided 

the philosophical and mathematical groundwork for subjective probability with his definition of 

probability as “a measure of a degree of belief attributed to the various possible alternatives” (de 

Finetti, 1972, p. 147-148).  Further, de Finetti proposed the modification of degree of belief 

should be the result of observation of prior events – in short, learning from experience (Cifarelli 

& Regazzini, 1996).  Subjective probability was further explored through the work of Kyburg 

and Smokler (1964), Luce and Suppes (1965), Ramsey (1931), Savage (1954), and Savage, 

Hacking, and Shimony (1967).   

It is important to note that de Finetti’s and others’ concept of subjective probability was 

not without limits.  de Finetti likened the limitation of degree of belief to a gambling situation – 

“…the degree of probability attributed by an individual to a given event is revealed by the 

conditions under which he would be disposed to bet on that event” (de Finetti, 1937/1964, p. 

101).  Additionally, de Finetti included discussion of the necessary conditions under which 

degrees of belief could serve as probabilities:  Degrees of belief are measurable and coherent, or 

rational, ensuring a grounding in reality (Weatherford, 1982).  Other philosophers have 

expounded on the circumstances necessary for, and influencing, degrees of belief.  Like de 

Finetti, Ramsey (1931) employed gambling allusions (avoidance of falling victim to a Dutch 

Book, in which a better irrationally agrees to a bet in which he is guaranteed to lose) to illustrate 

how adherence to the axioms of probability is critical in determining and acting on degree of 
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belief.  Bonjour (1985), Dawid (1982), and Lewis (1946) put forth that, in the instance of two or 

more pieces of information being used to form a belief, confidence in that belief increases 

according the congruence, or coherence, of the pieces of information.  In their discussion of the 

epistemology underlying the use of probabilities in Bayesian methods, Bovens and Hartmann 

(2003) proposed three conditions thought to influence degree of belief:  The degree to which the 

information forming the belief was expected, the reliability of the information, and the coherence 

of the information.  In summary, while emphasizing the personalistic and subjective properties of 

probability, subjective theorists recognize the necessity of coherency and consistency in the 

formation of belief.   

Within the realm of Bayesian statistical methods of inference, subjective probability is 

important when considering the initial probability assigned to a hypothesis (the Bayesian prior).  

As discussed in earlier sections of this manuscript, a researcher using Bayesian inference first 

establishes a belief surrounding the probability of an event occurring, and then uses available 

data to update that prior probability and form a posterior probability.  Recall that there are 

generally two types of priors – uninformative and informative – and that uninformative priors are 

typically considered “objective.”  It can be argued that an informative prior can be considered 

fundamentally subjective, as it represents a degree of belief given current and situational 

knowledge, experience, reasoning, and logic.  The subjective properties of the prior belief sound 

very similar to the ideas behind constructivism and phenomenology, such as the understanding 

that reality is constructed and meaning is made through individuals’ first-person experiences and 

interactions with others (Bogdan & Biklen, 2007).  Curlette (2006) suggested that this places 

Bayesian methods incorporating a subjective prior belief within a phenomenological framework.  
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This use of subjective priors introduces a controversial aspect of Bayesian methodology – the 

conflict over subjectivity. 

Objectivity vs. Subjectivity 

Arguments concerning the roles of objectivity and subjectivity within scientific research 

are not uncommon – for example, consider the qualitative versus quantitative “Paradigm Wars” 

in educational research (Eisner & Peshkin, 1990; Gage, 1989; Guba, 1990).  A criticism of 

Bayesians’ acceptance of subjective probability is that it defies the fundamental objectivity 

embraced by the mainstream understanding of the scientific method.  In his article, The Case for 

Objective Bayesian Analysis (2006), Berger acknowledged the fact that statistical methods are 

understood to be a tool for producing unbiased, objective validation of scientific results, and 

proposes that wider acceptance and valuation of Bayesian methods is predicated on the 

appearance of objectivity, particularly within a regulatory climate.  The vast amount of literature 

and studies addressing the choices of uninformative priors (see “Background – Uninformative 

Priors”) speaks to this drive to legitimate Bayesian methodology through a focus on “objective” 

priors.  There are even attempts to propose more objective informative priors.  For example, 

Berger and Sun (2008) recommended a set of informative priors that, based on parameters of 

interest, can be used as default priors – prescriptive/standardized priors given the research 

question.  Some would suggest that these prescriptive priors remove any researcher bias or 

subjectivity in the actual choice of prior (Lenk & Orme, 2009).    

However, it can also be argued that, regardless of approach, there is no such thing as pure 

objectivity – researchers’ choices regarding research questions, methodologies, and analysis 

techniques could all be considered subjective choices influenced by experience, habit, etc. 

(Berger, 2006; Gill, 2009; Hennig, 2009; Press & Tanur, 2001; Stevens & O’Hagan, 2002; 
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Weatherford, 1982).  D’Agostini (2001) elaborated on this idea by referencing Bayesians’ 

requirement for coherence in subjective probabilities:   

Once coherence is included in the subjective Bayesian theory, it becomes evident that 

'subjective' cannot be confused with 'arbitrary', since all ingredients for assessing 

probability must be taken into account, including the knowledge that somebody else 

might assess different odds for the same events.  Indeed, the coherent subjectivist is far 

more responsible (and more ‘objective’, in the sense that ordinary parlance gives to this 

word) than those who blindly use standard 'objective' methods.  (p. 25) 

In other words, the process of appropriately incorporating subjective Bayesian priors – ensuring 

coherence and adherence to the laws of probability, as well as accounting for the conditions 

affecting degree of belief – introduces even greater levels transparency and thoughtfulness than 

typical frequentist methods.  

In summary, an important aspect of Bayesian inference is the idea that the prior belief in 

the probability of an event occurring is often subjective, as it reflects degree of belief based on 

specific, often individual, circumstances.  This subjectivity is not only accepted, but valued in 

eliciting expert opinions to form prior probabilities.  A Bayesian approach such as this serves 

two purposes:  It accepts that the ideal of purely objective scientific research is unrealistic, and it 

does not waste any available, and potentially enlightening, information.  Following a 

summarizing discussion contrasting and comparing Bayesian versus frequentist approaches, the 

process of formally eliciting informative, subjective prior probabilities for use in Bayesian 

inference will be described and reviewed.   
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Comparing Bayesian and Frequentist Approaches 

In his address to a group of statisticians, particle physicists, astrophysicists, and 

cosmologists, Bradley Efron (2003), former President of the American Statistical Association, 

addressed the conflict between Bayesian and frequentist factions as follows: 

The Bayesian-frequentist argument is certainly a long-lived one, even by the standards of 

philosophy.  It reflects, I believe, two quite different attitudes toward the scientific 

process:  the cautious frequentist desire for objectivity and consensus, versus the 

individual scientist trying aggressively to make the best sense of past data and the best 

choice for future direction.  (p. 1) 

While Efron’s summation was profound and cogent, there are a number of differences 

between the two methodologies influencing their different approaches to the scientific process.  

Spiegelhalter and Rice (2009) wrote that the main difference between frequentist and Bayesian 

approaches to inference is that “Bayesians make statements about the relative evidence for 

parameter values given a dataset, while frequentists compare the relative chance of datasets 

given a parameter value” (p. 5230).  More concisely, Bayesians consider the probability of a 

hypothesis given data, while frequentists consider the data, given a hypothesis.  In other words, 

Bayesians consider all information or evidence available to draw conclusions about a certain 

parameter, while frequentists evaluate how well certain data sets conform to a hypothesized 

parameter.  Encompassed within this overall distinction are a number of other differences 

described below. 

Interpretations of Probability 

As discussed earlier, Bayesian methods employ an understanding of probability as a 

degree of belief.  In the frequentist approach, probability represents the likelihood that an event 

15 
 



will occur in a large number of repeated trials – as Gill (2009) wrote, “…frequentists see 

probability measure as a property of the outside world and Bayesians view probability as a 

personal internalization of observed uncertainty” (p. 27).  This differing interpretation is 

particularly notable due to the use of prior probabilities in Bayesian approaches – the inclusion 

of prior probability distributions to represent a state of knowledge prior to the introduction of 

new data is in direct contrast to the frequentist idea that there is some fixed, unchanging 

probability of events that can be calculated through frequency counts of long-run experiments. 

Hypothesis Testing/Inference 

Frequentist hypothesis testing centers around the work of Neyman and Pearson (1933), in 

which researchers choose between a null and alternative hypothesis based on the calculation and 

acceptance or rejection of false-positive or false-error rates.  Neyman and Pearson posited that a 

greater amount of objectivity is achieved by limiting error through replication and deductive 

reasoning, and alluded to a trade-off between objectivity and drawing conclusions from a single 

experiment when they wrote: 

…no test based upon a theory of probability can by itself provide any valuable evidence 

of the truth or falsehood of a hypothesis.  But we may look at the purpose of tests from 

another viewpoint.  Without hoping to know whether each separate hypothesis is true or 

false, we may search for rules to govern our behavior with regard to them, in following 

which we insure that, in the long run of experience, we shall not often be wrong.  (p. 291) 

Offered as a measure of evidence against the null, and not originally intended to be used 

in inference, Fisher’s p value is often incorporated into classical hypothesis testing (Fisher 1925; 

Fisher 1935; Fisher 1956).  There is a large body of literature addressing the problems with the 

widespread misinterpretation of p values in significance testing, in which the authors point out 

16 
 



that incorrect use of p values often involves the conflation of p values with Type 1 error rates, or 

conceptual errors in which p values serve as probability statements describing the likelihood of a 

hypothesis (Carver, 1978; Cohen, 1994; Dixon, 2003; Gelman & Loken, 2014; Gigerenzer, 

1993; Hubbard & Lindsey, 2008; Johansson, 2011; Royall, 2000; Wagenmakers, 2007, etc.).  

More relevant to this discussion, however, is why p values and hypothesis testing have been 

combined into this widespread hybrid method.  Both hypothesis testing and p values were 

proposed in response to a culture valuing increased objectivity and rigorous quantitative methods 

(Marks, 1997; Matthews, 1995; Porter, 1995).  However, with Neyman-Pearson hypothesis 

testing’s focus on controlling error rates over the long-run and the limitation of Fisher’s p value 

to only indicating evidence against a null hypotheses, Goodman (1999a) suggested that the 

coupling of the two approaches is the result of researchers’ understandable desire to be able to 

draw conclusions from a single experiment using “objective” methodology.  In other words, the 

combination of hypothesis testing and p values presents researchers with a seemingly viable, 

although often conceptually incorrect, platform for “evidenced-based” research.   

Contrastingly, Bayesian methods do offer a formal avenue towards quantifying statistical 

evidence for or against a hypothesis.  Unlike null hypothesis significance testing, a Bayesian 

approach can be used to calculate the probability that, given data or evidence, a hypothesis is true 

or untrue.  This is done using the “Bayes factor,” the likelihood ratio included in Bayes’ theorem 

(Jeffreys, 1961; Robert, 2007).  The Bayes factor is a ratio comparing the probability of data 

given one hypothesis (D|H1) with the probability of data given an alternative hypothesis (D|H2), 

As shown in Equation 1.2, the Bayes Factor essentially indicates the weight of the data in 

altering prior odds of a hypothesis into posterior odds.   
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  

𝑝𝑝(𝐷𝐷|𝐻𝐻1)
𝑝𝑝(𝐷𝐷|𝐻𝐻2)

 
(1.2) 

How closely the prior resembles observed data will determine support or rejection of hypothesis 

being tested. 

Using the familiar parlance of null hypothesis significance testing, the Bayes factor can 

be used to compute how much evidence (in the form of data) revises the probability that a null 

hypothesis is true – in essence, the Bayes factor evaluates the predictive accuracy of the null and 

alternative hypotheses.  This is an important distinction between frequentist and Bayesian 

hypothesis testing:  While the objective of frequentist hypothesis testing is to consider the 

probability of data given a null hypothesis (and accept or reject that null hypothesis based on a 

pre-determined threshold of acceptable risk that the observed data are due to chance alone), 

Bayesian hypothesis testing aims to evaluate a hypothesis given data (Kass & Raftery, 1995).  

Kass and Raftery (1995) offered a comprehensive summation of the uses for, 

interpretations of, and advantages and disadvantages of Bayes factors in hypothesis testing.  For 

examples of studies incorporating Bayesian hypothesis testing for comparing models see 

Goodman (199b), Li, Zeng, & Yu (2014), Morey & Rouder (2011), and Ranganathan, Spaiser, 

Mann, & Sumpter, (2014).  Note that there is also substantial literature surrounding 

inconsistencies between conclusions drawn from Bayesian and frequentist hypothesis testing on 

similar data (Berger & Berry, 1988; Berger & Sellke, 1987; Casella & Berger, 1987; Moreno & 

Girón, 2006, Rocha, Loschi, & Franco, 2011; Samaniego & Reneau, 1994).   

A final note on the differences in hypothesis testing using frequentist and Bayesian 

approaches:  The oft mentioned argument against Bayesian’s incorporation of subjective 

probabilities is highlighted when considering hypothesis testing.  As Berger and Berry (1988) 

emphasized, there are a number of subjective choices made in hypothesis testing – on the 
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frequentist side, acceptability of error rates, p values and statistical power are all  subjective 

choices.  Further, both Bayesians and frequentists make subjective choices regarding the 

alternative hypotheses with which to compare the null.  However, as both Wagenmakers, Lee, 

Lodewyckx, and Iverson (2008) and Rouder, Speckman, Sun, Morey, and Iverson (2009) argued, 

at least these subjective qualities of hypothesis testing are openly acknowledged, and thus 

discussed and critiqued, within a Bayesian approach.   

Treatment of Prior Information 

As discussed earlier, a fundamental property of Bayesian methodology is the formal 

incorporation of prior information.  Within the frequentist context, the influence of prior 

information is avoided in the interest of ensuring objectivity.  Reviews of literature often cite the 

methodologies and conclusions of similar studies, and perhaps inform a priori hypotheses, 

methodology choice, and model design.  Meta-analysis synthesizes information from multiple 

sources (Borenstein, Hedges, Higgins, & Rothstein, 2009), and there are information theory 

techniques (Akaike, 1992; Burnham and Anderson, 2001) that allow for the comparison and 

combination of a number of different models.  However, these frequentist approaches do not 

allow for the explicit introduction of any prior information into analysis of any new data.  

A large component of frequentist angst over Bayesian methodology is centered on the 

idea that there is no guarantee that the prior information used by separate researchers examining 

the same question is going to be identical or even similar.  This is especially true within more 

“subjective” Bayesian analysis, as it allows for the incorporation of prior data that is not easily or 

universally quantifiable from actual prior experience.  As Efron (2013) wrote, “the 

Bayesian/frequentist controversy centers on the use of Bayes’ rule in the absence of genuine 

prior experience” (p. 133).  The resulting threat to replicability and generalizability is contrary to 
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frequentist approaches focusing on repeated tests over time in controlled environments.  

However, it could be argued that such controlled environments are often unrealistic and that 

there is as much subjectivity involved in the design of frequentist studies as there is in the use of 

Bayesian priors.  As Poirer (1988) pointed out, it is the formal quantification and incorporation 

of prior beliefs that brings about increased levels of transparency:   

…I believe subjective prior beliefs should play a formal role so that it is easier to 

investigate their impact on the results of the analysis.  Bayesians must live with such 

honesty whereas those who introduce such beliefs informally need not.  (p. 130) 

Additionally, recall that a number of Bayesian scholars recommend evaluation of the influence 

of prior information as a critical step in Bayesian methodology (Berger, 1994; Berger, 2006; 

Gelman, Meng, & Stern, 1996; Gill, 2009; Reimeherr et al., 2014; Rubin, 1984; Spiegelhalter & 

Rice, 2009).  Through the analysis of the sensitivity to and robustness of Bayesian inference to 

the prior, valuable conversation is added to the literature surrounding a problem that is otherwise 

ignored in frequentist methods.   

Even given the increased attention to and discussion of the Bayesian approach to 

statistics, frequentist approaches remain the dominant techniques first taught to students of 

statistics.  In addition to the controversies over the interpretation of probability, prioritization and 

understanding of objectivity, and treatment of prior information, Oakes (1986), Schmidt (1996), 

and Tversky and Kahneman (1971) suggested additional reasons for the tenacity of researcher 

attachment to frequentist techniques like null hypothesis significance testing even in light of 

well-documented criticisms.  The reliance on significance testing is particularly true within the 

social sciences (Gigerenzer, 2004; Harlow, Mulaik, & Steiger, 1997; Hoekstra, Finch, Kiers, & 

Johnson, 2012; Kline, 2004).  While there does appear to be a general movement away from 
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significance testing and p values in the more recent literature, the alternatives often offered are 

still based within the frequentist framework.  For example, the latest version of the authority in 

social science research publication, the American Psychological Association’s Publication 

Manual (2013) , encouraged authors to view null hypothesis statistical testing as “but a starting 

point” (p. 33) and to seek out and report other frequentist results such as effect sizes and 

confidence intervals.  A number of authors have extolled the use of alternatives such as 

confidence intervals to null hypothesis significance testing within the social sciences (Cumming, 

2014; Fidler & Loftus, 2009; Hoekstra, Morey, Rouder & Wagenmakers, 2014), and Gigerenzer 

(2004) and Finch et al. (2004) suggested that editorial support of alternatives to null hypothesis 

statistical testing is a necessary but insufficient environment to foster alternatives.  The editors of 

the Journal of Advanced Academics recently revealed new editorial policies expressing 

preference for effect sizes and confidence intervals, as well as encouragement of replication of 

other studies, over significance testing (McBee & Matthews, 2014).  Once again, these are all 

frequentist alternatives. 

However, Bayes’ popularity is growing in increasing numbers of disciplines – as 

Andrews and Baguley (2013) pointed out, Bayesian methods were present in 20% of articles in 

the most highly respected statistics journals.  As its popularity grows, Bayesian methodology 

will face increased attention, scrutiny, and inevitable disagreements among its own practitioners.  

For example, within the current overall Bayesian camp, there are ongoing dialogs and 

philosophical conflicts surrounding “practical Bayesianism,” the practice of using Bayesian 

techniques without a commitment to or adoption of the Bayesian philosophy of science 

(Boorsboom & Haig, 2013; Gelman & Shalizi, 2013; Kruschke, 2013; Morey, Romeijn & 

Rouder, 2013).  Authors like Dennis (1996), while acknowledging advantages in Bayesian 
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techniques, expressed reluctance in adopting an approach until more discipline-specific 

researchers analyze, discuss and test Bayesian methodologies.  Further, the widespread 

consideration and discussions of articles like Gorard’s (2014) and Ioannidis’ (2005) indictments 

of research methodologies and publication bias hints that the scientific community is open to a 

diversity ideas and approaches.  This openness, along with increased external and internal 

examinations of Bayesian methodology, can only help to improve and move forward scientific 

inquiry. 

Bayesian Methods and Social Science/Educational Research 

Bolstad (2007) succinctly summarized the advantages of a Bayesian approach, noting the 

following benefits:  The formal consideration of prior information, easily interpretable results in 

the form of probability statements, and one universal tool (Bayes’ theorem) that is applicable to 

every question or situation.  As noted throughout earlier discussion, hypothesis testing and the 

use of p values is commonly misunderstood and misused.  Additionally, hypothesis testing 

requires of researchers a number of judgments and decisions surrounding rejection/acceptance 

thresholds, model design, statistic used, etc.  In contrast, Bayesian methods require only one 

decision in the choice of a prior.  Outside of these advantages of simplicity and universality, 

however, Bayesian methods are particularly amenable to social science research.  Gill (2009) 

extolled the suitability of Bayesian methods to social and behavioral research by noting that 

many of the overarching questions and topics within the field of human behavior simply don’t fit 

within the frequentist (long run probability and replicability) paradigm:  “Ideas like ‘personal 

utility,’ ‘legislative ideals points,’ ‘cultural influence,’ ‘mental states,’ ‘personality types,’ and 

‘principal-agent goal discrepancy’ do not exist as parametrically uniform phenomena in some 

physically tangible manner” (p. 26).  These questions of human behavior are difficult to 
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generalize and measure at the individual level, thus there is a unique amount of uncertainty 

within social science research.  As Montgomery and Nyhan (2010), Raftery (1996), Rubin 

(1984), and Western (1999) explained, Bayesian methods are well-adapted for handling and 

expressing uncertainty.  Gill further pointed out that the influence of social norms is particularly 

important within social science research, especially in terms of biases, judgments and 

assumptions brought to the research by researchers, and that Bayesian’s use of subjective 

probability and a formal prior is particularly suited to transparently addressing this influence.  

Among his arguments in favor of using Bayesian methods for social science research, Raftery 

(1995) noted that social science often uses large data sets especially sensitive to p values and 

subsequent rejection of null hypotheses, and Western (1999) highlighted Bayesian’s handling of 

accounting for uncertainty as a fundamental reason of its compatibility to social science research.  

Berk, Western, and Weiss (1995) and Gorard (2014) pointed out that the underlying assumptions 

required for significance testing, particularly that of selecting and comparing truly random 

samples against a known population, are typically unmet by social science data.  Further, due to 

ethical and logistical complications, generating random samples (and ultimately using analytical 

techniques assuming random sampling) within social science research is often impossible.  

Ranganathan, Spaiser, Mann, and Sumpter (2014) highlighted the efficiency in comparing Bayes 

factors in model selection in the social sciences, and numerous other authors (Bolstad, 2007; 

Gelman, 2008a; Gelman et al., 2004; Gill, 2009) discussed how Bayesian methods are suited for 

the types of hierarchical modeling often  encountered in the social sciences.   

Bayesian Methods and Institutional Research 

Chapter Two of this manuscript involves the development of a predictive retention model 

using a Bayesian approach.  In addition to being considered social science and educational 
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research, this type of activity is more specifically categorized as “Institutional Research,” a 

specialized type of educational research performed within educational institutions used to inform 

decision- and policy-making within that specific institution or system of institutions.  

Institutional Research often deals with large sets of population data, as analysts have access to 

current and historical information databases, and while experimental designs are not unheard of 

within institutional research, the aforementioned difficulties of random selection and controlled 

trials within educational research make them difficult and rare.  Additionally, the data available 

to institutional researchers often simply do not meet the assumptions required in the frequentist 

paradigm – as Luan and Zhao (2006) wrote, “Institutional researchers often feel frustrated as 

assumptions for valid statistical inferences are often violated with dealing with real institutional 

research problems and when messy, ambiguous, and incomplete data are present” (p. 117).  

Bayes’ comfort with uncertainty and the explicit use of formal priors within Bayesian methods 

provide an alternative avenue for institutional researchers – calling on the expertise and 

experience of teachers, administrators and others, institutional researchers can incorporate this 

knowledge into formal priors that can then be combined with institutional data to generate a 

posteriori conclusions.  Additionally, the use of formal priors requires institutional researchers to 

unambiguously address and justify potential bias and assumptions.  

A major function of institutional research is providing decision-support to administrators, 

and as Bernardo and Smith (2000) and Robert (2007) pointed out, Bayesian methods are 

particularly helpful in decision-making.  Bayesian approaches towards decision-making and 

decision support, mostly through the use of Bayesian networks, have been widely employed in 

medical and engineering fields – see Berner (2006), Greenes (2014), Lucas, van der Gaag, Abu-

Hanna (2004), and for examples of medical uses and Li, Han and Kang (2013), Rezaee, Raie, 
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Nadi, and Ghidary (2011), Swiler, (2006), and Zhu and Deshmukh (2003) for examples within 

engineering.  However, such approaches to institutional, and even more broadly, educational, 

research are less common in the literature.  Bekele and Menzel (2005) used Bayesian networks to 

predict student performance, noting that they chose a Bayesian approach due to its specialized 

skill in handling and expressing uncertainty.  Loeb (2003) incorporated Bayesian estimation in 

hierarchical linear modeling to explore gender equity in faculty salaries, and Laru, Naykki & 

Jarvela (2012) used Bayesian methods to identify predictors of learning outcomes.  In the larger 

field of educational research, Vomlel (2004), Wainer, Wang, Skorupski and Bradlow (2005), and 

Ricketts and Moyeed (2011) incorporated Bayesian methods in the evaluation and improvement 

of educational testing, and a number of authors have explored the role of Bayesian methods in 

Item Response Theory (Gao and Chen, 2005; Johnson, 2013; May, 2006; Almond, Mislevy 

Steinberg, Yan, & Williamson, 2015).  A more extensive review of Bayesian networks in 

institutional research is included in subsequent sections.   

In summary, a Bayesian approach is particularly suited to institutional research for a 

number of reasons.  The use of formal priors allows for the incorporation of additional sources of 

knowledge or experience, as well as the transparent acknowledgement and discussion of biases, 

subjectivity, and assumptions involved in the research process.  Additionally, a Bayesian 

approach embraces the high levels of uncertainty and unmet frequentist assumptions frequently 

encountered in institutional research topics.  Finally, the qualitative and social science research 

skills of institutional researchers are featured during the process of formal elicitation of Bayesian 

priors.  Chapter Two will incorporate Bayesian methods through the creation and use of a 

Bayesian network using formal elicitation, and the following sections will provide a background 

and literature review of these two subjects, with a focus on applicability to institutional research. 
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Elicitation of Subjective Probabilities from Experts in Order to Form Bayesian Priors 

Often, we want to make use of the opinion of a person whom we regard as an expert.  

Does the weatherman think it will rain, the doctor that we shall soon get well, the lawyer 

that it would be better to settle out of court, or the geologist that there might be lots of oil 

at the bottom of a deep hole?  (Savage, 1971, p. 795) 

The main idea behind the Bayesian approach to statistics is that researchers revise their 

understands or beliefs of certain outcomes in light of new evidence – Bayesian statisticians 

combine both prior information and new data through the use of Bayes’ theorem in order to 

estimate the probability of an outcome (Bolstad, 2007).  One of the most exciting aspects of 

employing Bayesian methodology in institutional research is the use of experts’ beliefs to 

quantify and use prior information.  The elicitation of experts’ beliefs introduces a qualitative 

aspect to research design, often in the form of interviewing, and the information gathered is then 

quantified and used in computing the probability of studied events occurring.  Not only does this 

methodology enhance potential for increased insight into current educational and institutional 

research questions, but it also introduces an opportunity to further explore and realize the 

benefits of mixed-methods research.  This section focuses on the gathering of experts’ opinions 

using various elicitation techniques, including a discussion of the types of probabilities being 

elicited, elicitation best practices and challenges, and the role of subjective probability elicitation 

within institutional research.  

Examples of expert elicitations used to form Bayesian priors can be found in a number of 

fields, including business (Bajari & Ye, 2003; Gustafson et al., 2003; Lagerstrӧm, Johnson, 

Hӧӧk, & Kӧnig, 2009), clinical settings (Johnson, Tomlinson, Hawker, Granton, & Feldman, 

2010; Prajna et al., 2013; Spiegelhalter, Abrams, & Myles, 2004; White, Carpenter, Evans, & 
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Schroter, 2007), engineering (Dogan, 2012; Jorgensen, Teigen, & Molokken, 2004; Kaplan, 

1992), communications (Vogelgesang & Scharkow, 2009), information security (Ryan, 

Mazzuchi, Ryan, de la Cruz, & Cooke, 2012), politics (Buckley, 2004), public policy (Morgan, 

2014), and, most commonly, ecology (Choy, O’Leary, & Mengersen, 2009; Kuhnert, Martin, 

Mengersen, & Possingham, 2005; Murray et al., 2009; O’Neil, Osborn, Hulme, Lorenzoni, & 

Watkinson, 2008).  While less common, the literature does include expert elicitations within the 

educational field.  For example, Bosworth, Gingiss, Porthoff and Roberts-Gray (1999), asked 

health education experts to estimate the likelihood of a program’s successful implementation.  In 

the narrower field of institutional research, Subbiah, Srinivasan, and Shanthi (2011) discussed 

the potential advantages of using expert-elicited Bayesian priors in enrollment management.  

However, the majority of educational research studies incorporating Bayesian methodologies do 

not include elicitation.   

Elicitation and Uncertainty 

Expert elicitation involves the quantification and transformation of experts’ opinions into 

subjective probabilities used to inform a prior probability distribution which is then updated with 

new data using Bayesian techniques.  Just as discussion of definitions of probability is 

fundamental to the differences between frequentist and Bayesian approaches, distinguishing 

between a frequentist and Bayesian definition of probability is important in elicitation.  As a 

main goal of expert elicitation is to quantify uncertainty regarding some particular event or 

variable over which an expert can provide better information than any other source, it is 

understood that the expert is providing personal, or subjective, probabilities.  Expert elicitation 

involves the gathering of experts’ degrees of belief in some uncertain event or value.  O’Hagan et 

al. (2006) explained this further by placing expert elicitation within the context of uncertainty: In 
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contrast to aleatory, or random, uncertainty, expert elicitation deals with epistemic (imperfect 

knowledge) uncertainty, in that experts are asked to weigh in on the uncertainty related to a 

unique or specific event on which there is imperfect knowledge.  In other words, experts are 

asked to make judgments or decisions under conditions of uncertainty.  Ideally, these judgments 

and decisions under uncertainty adhere to normative theories of decision making as described by 

de Finetti (1973), DeGroot (1970), and Savage (1954), which basically state that an expert’s 

degree of belief is a function of rationality, maximizing rewards, and adherence to the axioms of 

probability.  Normative decision theory also states that probabilities are an adequate, or even 

ideal, avenue towards expressing uncertainty (Cooke, 1991).  In short, the probabilities elicited 

in an expert elicitation are assumed to be a rational, coherent representation of an expert’s 

uncertainty.  However, as discussed in the upcoming discussion of best practices in elicitation, 

the assumption that elicited probabilities are actually those described by the normative theories 

of decision making is often challenged.   

Elicitation Best Practices 

Kadane and Wolfson’s “Experiences in Elicitation” (1998) is used by many researchers 

incorporating expert elicited Bayesian priors as a guide to “best practices” (Garthwaite, Kadane, 

& O’Hagan, 2005; Gill, 2009; O’Hagan et al., 2006).  The authors defined a successful 

elicitation as one in which the researcher assures the process is “as easy as possible for subject-

matter experts to tell us what they believe, in probabilistic terms, while reducing how much they 

need to know about probability theory to do so” (p. 4).  Other authors who have provided step-

by-step guidance in the elicitation process in numerous settings include Clemen and Reilly 

(2001), Cooke and Goossens (2004), Garthwaite et al. (2005), Meyer and Booker (2001), Phillips 

(1999), Shephard and Kirkwood (1994), and Walls and Quigley (2001).  A review of these works 
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highlights the following major stages of the elicitation process:  Preparation of the 

researcher/elicitor, selection of expert(s), training of expert(s), confirmed understanding or 

acceptance of the model for which judgments are being elicited, and the actual elicitation, 

including assessment and feedback.  These practices serve to provide the expert ample 

opportunity to adequately express her beliefs while also allowing the researcher to gather as 

much helpful information as possible and verify her own understanding of what the expert is 

trying to communicate.  Chapter Two of this manuscript will incorporate the guidance of Kadane 

and Wolfson and the later work of O’Hagan et al. (2006) in a formal elicitation of undergraduate 

retention experts. 

In terms of the actual information being elicited, best practices center around the research 

question, the type of prior desired, and the expert(s).  There exists a large amount of literature 

discussing individuals’ ability (and, more often, lack thereof) to estimate or judge statistical 

quantities – see Beach and Swenson (1966), Erlick (1964), and Shuford (1961) as examples – 

that speaks to the necessity of careful consideration paid to the types of summary statistics being 

elicited.  Findings reported by Wallsten, Budescu, Rapoport, Zwick, & Forsyth (1986) and 

Wardekker, van der Sluijs, Janssen, Kloprogge, & Petersen (2008) suggested that elicitations 

cannot simply rely on experts using words like “likely” or “unlikely” to qualify uncertainty – 

elicitations typically involve quantification.  Elicitations involving the gathering of a single 

probability (see Spetzler & Staël von Holstein, 1975) can be enhanced by asking the experts to 

consider probability judgments within the context of gambling (Clemen & Reilly, 2001; Renooij, 

2001), relative frequency (Price, 1998), and probability scales (Wang, Dash & Druzdel, 2002).  

Winkler (1967) provided an introduction to eliciting probability distributions, although 

elicitations within the social sciences seeking probability distributions more often use indirect 
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methods (Gill, 2009).  For example, Bedrick, Christensen, and Johnson (1997), Higgins, Huxley, 

Wapenaar, and Green (2014), and O’Hagan et al. (2006) asked experts to express their beliefs 

through quantiles or intervals which were retroactively fitted to probability distributions.  

Chaloner and Duncan (1987) discussed the elicitation of multinomial distributions, and 

Garthwaite and Dickey (1992) and Garthwaite, Al-Awadhi, Elfadaly, and Jenkinson (2013) 

addressed the elicitation of summary statistics related to regression.  Garthwaite et al. (2005) 

provided recommendations for multivariate elicitations, noting that the joint probability 

distribution required in such situations is particularly challenging, while Goldstein (2004) and 

Oakley and O’Hagan (2007) explored nonparametric approaches to incorporating expert 

elicitations as Bayesian priors.   

In many cases, information from multiple experts will be used to form a Bayesian prior, 

and a number of authors have addressed and evaluated methods of combining expert opinions in 

prior elicitation – see Clemen and Winkler (1999) and Hammitt and Zhang (2013) as examples.  

The aggregation of expert opinions is completed mathematically or behaviorally.  For example, 

the mathematical combination of expert judgments can be accomplished through the use of 

averaging (Burgman et al., 2011; Cooke, 1991), pooling (French, 1985; Genest & Zidek, 1986) 

or even using Bayesian approaches (Albert et al., 2012; Roback & Givens, 2001).  Behavioral 

approaches to combining expert judgments involve interaction and consensus building among 

the experts.  Practices like the Delphi method (Dalkey, 1969) and Nominal Group Technique 

(Delbecq, Van De Ven, & Gustafson, 1975) are often used in an effort to counteract challenges 

of bullying and “group think” often encountered in group interactions (Clemen & Winkler, 

1999).  Each approach has drawbacks and challenges, which, as with many of the best practices 
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related to expert elicitation, have much to do with the research question or topic and choice of 

expert.   

A final best practice related to expert elicitation involves testing the elicited information’s 

accuracy in terms of the extent to which it matches experts’ true knowledge or beliefs as well as 

reality.  Garthwaite et al. (2005) recommended examination of the coherence of elicited 

probabilities, as well as offering feedback to the experts in an effort to clarify or correct for 

inconsistencies.  The authors also suggested analyses of the sensitivity of elicited probabilities or 

distributions to changes in assumptions or other model parameters.  In cases where data 

reflecting actual events are available, scoring rules, in which experts are awarded a score based 

on the quality of calibration of their judgments with reality, can be used to judge and even 

improve the accuracy of elicited probabilities (Gneiting & Raftery, 2007; Matheson & Winkler, 

1976; Savage, 1971).  Building on the use of scoring rules, Cooke (1991) recommended 

gathering multiple expert opinions, weighting each expert’s assessment based on the 

performance scores, and then producing a weighted synthesized score.   

Challenges of Expert Elicitation 

There are a number of challenges related to expert elicitation, the majority of which stem 

from the design of the elicitation protocol.  As a goal of elicitation is to allow the expert to 

communicate her most accurate degree of belief, it is important to design an elicitation protocol 

that strives to minimize the introduction of bias or other confounding influences on an expert’s 

true degree of belief.  Articles designed to serve as guides to designing and carrying out 

elicitations (Choy et al., 2009; Jenkinson, 2005) emphasized the importance of carefully 

considering and articulating a research question and elicitation protocol as critical parts of the 

elicitation process.  This is similar to the advice found in texts directed towards standard 
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qualitative research (see Denzin & Lincoln, 2000, and Kvale & Brinkmann, 2009), and it is 

recommended that thoughtful and measured attention to the various considerations (costs, 

timing, expert statistical background, etc.) is given in the design of the elicitation protocol. 

Authors studying calibration report that the quality of correspondence between elicited 

subjective probabilities and actual occurrences has much to do with the way the elicitation is 

conducted (Beach & Braun, 1994; Lichtenstein, Fischhoff, & Phillips, 1982; Ronis & Yates, 

1987).  Therefore, consideration of the findings of the larger field of calibration research into the 

design of an elicitation protocol is one helpful way to increase the likelihood of superior 

elicitation.  For example, Gigerenzer, Hoffrage, and Kleinbӧlting (1991), Gigerenzer (1996) and 

Thomson, Ӧnkal-Atay, Pollock, and Macaulay (2003) found that task characteristics, or how 

experts are asked to respond, can influence the extremity and over/under-confidence of elicited 

probabilities.  Carlson (1993) and Wright and Ayton (1992) suggested that the timing of the 

event for which probabilities are being sought affects calibration, while Bornstein and 

Zickafoose (1999), and Jonsson and Allwood (2003), and West and Stanovich (1997) found that 

the knowledge domain of an elicitation influences judgment.  Additionally, the definition of 

“expertise” is not always universal (Caley et al., 2013; Martin et al., 2012), and researchers 

should recognize that subject-matter expertise does not guarantee skill in expressing probabilistic 

beliefs.  In their guide to expert elicitation, Kuhnert, Martin, and Griffiths (2010) differentiated 

between two styles of elicitation activities – direct, in which experts are asked to provide 

opinions in probabilistic terms, and indirect, in which experts are asked to provide opinions in 

less technical terms that may be more amenable to their field of expertise – and recommended 

that the choice of styles be dependent upon the experts’ background.  Fischhoff (1989), Murphy 

and Winkler (1984), and O’Hagan et al. (2006) offered strategies for avoiding or mitigating 
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potential biases, including expert training, careful facilitation and feedback provided by the 

researcher, and paying attention to experts’ coherence of beliefs.  Additionally, the introduction 

of computer software used to elicit expert belief that can also quickly recognize incoherent, 

irrational, or contradictory information, mitigating some of the challenges associated with expert 

elicitation (Garthwaite & Dickey, 1992; James, Choy & Mengersen, 2010; Lau & Leong, 1999; 

Morris, Oakley, & Crowe, 2014). 

Many of the aforementioned challenges to calibration stem from the use of heuristics in 

the formation of probability judgements.  Hogarth (1987) and Kadane and Wolfson (1998), 

expanding on the work of Tversky and Kahneman (1974), provided a list of the common 

heuristics that can introduce unhelpful bias into experts’ opinions:  Availability bias (an easier-

to- recall occurrence may incorrectly be deemed more important or likely), anchoring (experts 

may calculate probability based on an initial value), overconfidence, and hindsight (experts who 

have seen sample data may update their opinion).  Heuristics are a particular threat to the 

assumption that elicited probabilities are those that can be described under the normative theory 

of decision making – the use of heuristics can interfere with the rationality and logic required 

under the normative theories.  Kynn (2008) warned that psychological research concerning the 

bias introduced when experts use heuristics to make probability judgments has not kept up with 

the heightened attention paid to Bayesian methods.  As Kynn wrote, “…we should be equally 

concerned with not only what we ask experts to assess, but how we ask it” (p. 240).   

An equally important challenge to expert elicitation deals with bias on the part of the 

researcher.  Expert elicitations (including the elicitation carried out in Chapter Two) commonly 

take the form of an interview, and references to and discussions of researchers’ subjectivity and 

bias are common in the interviewing literature.  For example, Scheurich (1995) termed the 
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potential influences on a qualitative researcher (socioeconomic background, experience, 

expertise, funding sources, power) as “baggage,” and recommended that interviewers 

thoughtfully consider and disclose these types of baggage.  Kvale & Brinkmann (2009) pointed 

out that these subjective influences can even be found in the actual transcription of interviews, 

thus affecting the subsequent analysis.  

Qualitative Research Lessons for Expert Elicitations 

These issues of bias and calibration underscore the importance of a well-designed 

elicitation in which the expert(s) are carefully chosen and the questions are designed in a way to 

minimize the overuse of heuristics and other potential sources of bias affecting experts’ 

confidence in their judgments.  However, formal and informal review of the studies 

incorporating expert elicitation of subjective probabilities, including those cited in this 

manuscript, reveals little discussion of the psychological theories surrounding probability 

judgments or the potential for bias on the part of the experts or the researchers.  Additional 

research regarding the use of heuristics and mitigation of resulting bias will be necessary as 

elicitations to form Bayesian priors become more common.  As Hogarth (1975) wrote, elicitation 

of subjective probabilities “should be designed both to be compatible with man’s abilities and to 

counteract his deficiencies” (p. 284).  Additionally, knowledge about the basics of interviewing 

techniques is also recommended, as the majority of researchers employing Bayesian 

methodology appear to have little to no experience with qualitative techniques such as the 

responsive interviewing model described by Rubin & Rubin (2012).  In the interest of exposing 

and exploring one’s own baggage, as well as that of the experts, researchers using expert 

elicitation and Bayesian inference might consider adopting the type of discussion and disclosure 

often practiced by more qualitative-leaning peers.   
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Expert Elicitations and Institutional Research 

As first pointed out by Gill and Walker (2005), a review of the literature reveals that 

expert elicitation is much more common within life and engineering sciences than in the social 

sciences.  However, at least in the studies included as examples in this manuscript, the full 

advantages of expert elicitations are not as readily extoled in the sciences.  For example, a few of 

the clinical and engineering studies reviewed reveal minimal information about the elicitation 

process, and even dismiss its value.  Dogan (2012) simply mentioned that elicitation was used 

without providing any other detail, and White et al. (2007) used language painting the expert 

elicitation as a sort of consolation prize to use when other data are unavailable.   

Two of the social sciences studies included here as examples addressed the idea that, due 

to its relative familiarity and experience with qualitative methods, social science research should 

be particularly responsive to the expert elicitation/Bayesian approach (Buckley, 2004; 

Vogelgesang & Scharkow, 2009).  Buckley further pointed out that the adoption of Bayesian 

methodology within the social sciences will only catch on after clear and relevant guidance 

regarding the transformation of expert opinion into quantitative data is provided.  Buckley’s 

sentiment is echoed in Moyé’s (2008) critique of Bayesian clinical research, where he called for 

researchers to “take a strong stand for disciplined research methodology” (p. 477) that rivals the 

well-articulated and accepted frequentist version. 

The social science complexities and nuances of institutional research render the discipline 

an excellent candidate for Bayesian methods and expert elicitation.  While large amounts of 

quantitative data are collected and available, there is also a legacy of qualitative approaches that 

can be leveraged and applied towards expert elicitation.  In addition to an institutional 

researcher’s familiarity with qualitative methods, consider the fact that a large number of experts 
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stand at the ready.  Based on their experiences, educators and administrators are experts within 

their individual classrooms and institutions.  Expert elicitation provides an avenue from which 

the expertise of these individuals can be mined and combined with other types of data to produce 

informed and comprehensive conclusions.  Furthermore, expert elicitation is often used to aid 

decision making or prediction under conditions of uncertainty, such as instances in which there 

are not empirical data available, or the introduction of unfamiliar or new situations or problems.  

Additionally, information provided by experts is a viable alternative source of information when 

resources are limited (Kuhnert et al., 2010).  The ideas of uncertainty and limited resources are 

particularly relevant to institutional research, as the field typically operates within tightly 

managed budget and calendar situations with varying amounts of access to data and among 

unique and changing student populations.   

However, before incorporating expert elicitations into institutional research, researchers 

should carefully select elicitation techniques that are appropriate to the specific research 

questions, experts’ abilities, and the researchers’ own capacity.  The researcher should be 

knowledgeable in the benefits and challenges of qualitative methods and be prepared to evaluate 

and discuss heuristics and bias.  Additionally, researchers should have a confident understanding 

of and justification for quantification of the elicited prior.  As Buckley (2004) pointed out, the 

likelihood that the employment of expert elicitation and Bayesian inference in qualitative or 

mixed-method social science research will become commonplace is directly related to whether or 

not Bayesian scholars can effectively equip researchers to correctly gather, analyze and apply 

expert elicitations.  In summary, through careful selection of prior type and application of formal 

elicitation best practices, institutional researchers can leverage and incorporate expert 

information into data analysis and modeling.   
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Elicitation Conclusions 

Eliciting Bayesian priors serves as an excellent way to explore and better answer 

questions for which empirical data are either unavailable or insufficient.  As Gill (2009) wrote: 

The core of this argument is the idea that if the prior contains more information that 

pertains to the estimation problem, then we are foolish to ignore it simply because it does 

not neatly fit into some familiar statistical process.  (p. 28) 

The anxiety introduced by the subjective nature of elicited priors can have benefits 

outside increased information and explanatory power.  For example, research can only benefit 

from increased discussion and disclosure of underlying theories, assumptions, and subjectivities.  

Additionally, the elicitation of priors allows for greater communication and collaboration 

between researchers and experts, ultimately producing a feedback loop of knowledge 

(Garthwaite et al., 2005).  The complexity and nuance inherent in institutional research, abundant 

experts, and a legacy of effective qualitative research methods highlight the discipline’s 

suitability for expert elicitation and Bayesian methodology.   

Bayesian Networks 

Chapter Two of this manuscript describes a study using a Bayesian approach, in which 

expert judgment is elicited and used to design a model that predicts retention.  The practice of 

modeling processes or systems in order to better understand them is not uncommon.  However, 

when reasoning or trying to make decisions under conditions of uncertainty, such models need to 

account for this uncertainty.  Probabilistic networks offer an approach to producing models that 

incorporate uncertainty through the use of probabilistic inference.  These networks typically 

represent causality, illustrate the strength of relationships between variables using conditional 

probabilities, incorporate the numerical quantification of choices or preferences, and solve for 
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maximum expected utility (Kjӕrulff & Madsen, 2008).  Introductions to probabilistic networks 

typically involve medical diagnosis examples where a physician is tasked with making a medical 

diagnosis given symptoms and other information.  In such cases, a probabilistic network is a 

formal way of representing the diagnosis process and conclusions, using probabilistic inference 

and graphical representations of relationships between and among symptoms, other information, 

and the presence of a medical condition.  The following sections discuss Bayesian networks, a 

specific form of probabilistic networks, including such networks’ development, applications, and 

role in educational and institutional research.  

Very simply, a Bayesian network is a graph that models the probabilistic relationships 

between and among variables.  Kjӕrulff and Madsen (2008, p. 3-9) presented a technical 

definition of Bayesian networks, describing the two main elements:  A directed acyclic graph 

(DAG) forming the structure of the model where variables included in the model are represented 

by nodes (often squares, ovals, etc.), and the relationships of independence and dependence 

between and among the variables, which are represented by directed edges (arrow-ended lines) 

and are quantified by conditional probability distributions.  Together, these two elements form a 

Bayesian network that models a joint probability distribution that is equal to the product of the 

conditional distributions of each node.  Equation 1.3 describes this joint distribution: 

 
𝑃𝑃𝑎𝑎(𝑥𝑥1, … 𝑥𝑥𝑛𝑛) =  �𝑃𝑃𝑎𝑎(𝑥𝑥𝑖𝑖|�𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 
(1.3) 

Figure 1.1 is an example of a very simple, hypothetical Bayesian network modeling the 

retention of an undergraduate student from one year to the next.  The simplified Bayesian 

network implies that retention is dependent on whether or not the student is engaged in student 

life and whether or not the student’s financial need is met.  In this example, based on the 

relationships indicated by the directed links, “Student Engagement” and “Financial Aid Need 
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Met” are “parent” nodes of the “child node,” “Student Retained.”  The lack of a link between 

“Student Engagement” and “Financial Aid Need Met” implies independence between these two 

variables.  The Conditional Probability Table (CPT) (Table 1.3) summarizes the probability of 

retention given the states, or conditions, of the parent nodes.  For example, the probability that a 

student will be retained if she is engaged and has her financial need met is 90%, compared to a 

35% probability of retention given a lack of engagement and unmet financial need.  Note that the 

parent nodes (Student Engagement and Financial Need Met) are not conditioned on other nodes, 

and thus do not have conditional probabilities – the probabilities associated with these nodes are 

considered the prior probabilities. 

 

Figure 1.1  Simplified BN modeling student retention as dependent on student engagement and 
financial need met.  “Student Engagement” and “Financial Need Met” represent parent nodes.   
The directed links represent the parent nodes’ influence on the child node, “Student Retention.” 

 

Table 1.3 
Conditional Probability Table (CPT) – Simple Retention BN 

Parent nodes Child node (Student Retained) 

Student Engagement Financial Need Met Retained (%) Not Retained 
(%) 

Engaged Met 90 10 
Engaged Not Met 70 30 
Not Engaged Met 60 40 
Not Engaged Not Met 35 65 
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First defined by Kim and Pearl (1983), Pearl (2000) noted that the descriptor “Bayesian 

networks” was adopted in order to highlight the following defining characteristics: “(1) the 

subjective nature of the input information; (2) the reliance on Bayes’ conditioning as the basis 

for updating information; and (3), the distinction between causal and evidential modes of 

reasoning…” (p. 12).  Note that multiple terms describing probabilistic networks with Bayesian 

applications exist in the literature, including “influence diagrams,” “belief networks,” “relevance 

diagrams,” and “knowledge maps,” but the term “Bayesian network” or “BN” will be used 

throughout this manuscript. 

BNs were developed in response to other rule-based systems that failed to consistently 

represent and perform under conditions of uncertainty (Pearl, 1988).  In short, Bayesian networks 

use probability to describe and incorporate uncertainty in a causal situation.  Causality is a key 

property of BNs, and is addressed and explored in Druzdzel and Simon (1993), Heckerman and 

Shachter (1995), and Pearl and Verma (1991).  Heckerman (1997) noted that as conditional 

dependence can be viewed in terms of causality, the directed links between variables in a BN 

typically imply cause and effect relationship between variables.  In other words, direct influences 

on variables within a BN are represented by a directed edge or arrow between two of the 

variables.  Through the representation of independence of variables in the DAG (unconnected 

nodes), a BN models conditional independence and allows for the “explaining away” (inter-

causal inference) of less likely events using conditional probability.  It is this incorporation of 

conditional probabilities that set BNs apart from other graphical models – using conditional 

probabilities and Bayes’ theorem (Equation 1.1), a BN models the change in probability of one 

event occurring given, or conditioned by, another event occurring (Pearl, 2000).  The graphical 

representation of these conditional independencies in probabilistic terms provides users with a 
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clear representation of the relationships between and among variables within a system or 

network.   

BNs perform probabilistic inference to estimate an outcome on one or more variables 

given the state of other variables.  Such inference is completed using applications of Bayes’ 

theorem (Equation 1.1), where a prior distribution is updated via conditional probabilities 

represented in the model to form a posterior distribution.  Although Cooper (1990) and Dagum 

and Luby (1993) concluded that probabilistic inference within Bayesian networks is an NP-hard 

undertaking, a number of researchers have developed inference algorithms to ease computation.  

Heckerman (1997) provided an overview of techniques for probabilistic inference in BNs, 

highlighting an algorithm endorsed by Howard and Matheson (1984), Olmstead (1983), and 

Shachter (1988), which applies Bayes’ theorem to reversals in the directed links between 

variables, as well as the algorithm developed by Dawid (1992), Jensen, Lauritzen and Olesen 

(1990), and Lauritzen and Spiegelhalter (1988), which employs message passing in a tree 

structure.  With the development of computing power, the ability to complete inference in 

increasingly complex BNs using these and other algorithms has grown (Jensen & Nielsen, 2007).   

Kjærulff and Madsen (2008) highlighted the advantages of Bayesian networks, noting the 

efficiency in which these networks conduct inference and convey causal relationships, the ease in 

which the graphical representations can be understood by numerous audiences, and a firm 

foundation in decision theory.  Speigelhalter, Dawid, Lauritzen and Cowell (1993) cited the 

ability of BNs to simultaneously “…be forgiving of limitations in the data but also exploit the 

accumulated data” (p. 221), and Heckerman (1997) acknowledges the ability of BNs to operate 

with incomplete data.  Additionally, due to the use of Bayesian statistics, a BN can flexibly and 

efficiently incorporate additional information as it is gathered.  Chapter Two of this manuscript 
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will include a Bayesian network used for describing, and ultimately predicting, the likelihood of 

retention given certain demographic, academic and affinity variables.  BNs are not without their 

limitations, however.  Niedermeyer (2008) pointed out that novel events may threaten the 

predictive validity of BNs, and cautioned that, even with computing advances, a network with a 

large number of variables may require unreasonable computing and computational power.  

Pourret, Naim, and Marcot (2008) considered the requirement that BNs be acyclic to be a 

limitation as feedback loops are often found in reality.  Additionally, the reliability and quality of 

prior information included in BNs affects a model’s usefulness, although this can be explored 

through adequate model evaluation (Cowell, Dawid, & Spiegelhalter, 1993; Pitchforth & 

Mengerson, 2013). 

Applications - General 

Charniak (1991) and Henrion, Breese and Horvitz (1991) offered introductory overviews 

of BNs, while Darwiche (2009), Jensen and Nielsen (2007), and Koller and Friedman (2009) 

provided detail and instruction on the fundamental theories and applications of BNs.  Kjærulff 

and Madsen (2008), Korb and Nicholson (2010), and Pourrett, Naim and Marcot (2008) included 

applied instruction and real-world examples.  A number of applications of BNs in specific fields 

can be found throughout the literature.  Spiegelhalter et al. (1993) illustrated the use of BNs in 

medical and other types of diagnosis, and Donald et al. (2012), Gao, Madden, Chambers, and 

Lyons (2005), and Neapolitan (2009) provided illustrations of the use of BNs within 

bioinformatics.  Other fields employing BNs include marketing (Baesens, Viaene, van den Peol, 

Vanthienen, & Dedene, 2002; Cui, Wong, & Lui, 2006; Neapolitan, 2007), space flight (Horvitz 

& Barry, 1995), ecology (Landuyt et al., 2013; Marcot, 2008; Shenton, Hart, & Chan, 2014), and 

risk assessment in various disciplines such as business (Phillipson, Matthijssen, & Attema, 
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2014), engineering and construction (Leu & Chang, 2013; Zhang, Wu, Skibniewski, Zhong, & 

Lu, 2014), and health (Aussem, de Morais, Rodrigues, & Corbex, 2012).    

Applications - Prediction 

As Chapter Two of this manuscript will focus on the development of a BN used for 

prediction, particular attention is paid to the application of BNs for that purpose.  In their 

discussion of the role of causality in BNs, Heckerman, Geiger, and Chickering (1995) wrote the 

following of authors supporting the development of causal formalisms within Bayesian 

networks: 

They argue that the representation of causal knowledge is important not only for 

assessment, but for prediction as well.  In particular, they argue that causal knowledge – 

unlike knowledge of correlation – allows one to derive beliefs about a domain after 

intervention.  (p. 213) 

The key to using a BN for predictive purposes lies in the interpretation of the links 

between variables – within a causal Bayesian network, the nodes from which arrows descend are 

considered parent nodes and direct, immediate causes of the nodes at which they point.  

Friedman, Linial, Nachman, and Pe’er (2000) explained this idea further by pointing out that the 

directionality and causal interpretation of the links between nodes allows for observation of 

intervention effects – if a parent node is a direct cause of a child node, then a change 

(intervention) in the value of the parent node will effect change in the value of its child node.  

This causal interpretation of a BN also requires acceptance of the Causal Markov Assumption, 

which basically states that a variable is independent of all variables outside of its direct causes 

and effects (Hausman & Woodward, 1999; Spirtes, Glymour and Scheines, 2000).  Pearl (2000) 

provided a comprehensive explanation of causal Bayesian networks. 
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Instances of BNs used for prediction are found throughout the literature.  Axelrad, Sticha, 

Brdiczka, and Shen (2013) and Venkatesh, Cherurveettil, and Sivashanmugam (2014) employed 

BNs to predict risks to cybersecurity.  Fenton, Neil, and Marquez (2008) built a BN to predict 

software defects, Stahlschmidt, Tausendteufel and Härdle (2013) used a BN to predict offender 

profiles, and Sun and Shenoy (2007) attempted to predict bankruptcy using BNs.  Predictive BNs 

are also commonly used in the study of biological networks (Friedman, et al., 2000; Jansen et al., 

2003), medicine (Cho, Park, Kim, Lee & Bates, 2013; Sandri, Berchialla, Baldi, Gregori and De 

Blasi, 2014; Jiang, Xue, Brufsky, Khan, & Neapolitan, 2014) and weather forecasting (Cano, 

Sordo & Gutiérrez, 2004). 

Model Development 

A review of the literature concerning best practices in network modeling reveals 

consensus on a number of steps that should take place, including comprehensive description of 

the model’s principal function and assumptions, careful construction of the network’s structure 

and underlying probabilities, assessment of the model’s functionality, and discussion of the 

entire model development process (Chen & Pollino, 2012; Crout et al., 2008; Marcot, Steventon, 

Sutherland, & McCann, 2006). 

Structure and relationships.  Spiegelhalter et al. (1993) listed three stages of 

constructing a Bayesian network:  A qualitative stage in which the author defines the 

relationships among and between variables in terms of conditional independence and develops a 

graphical model that reflects these relationships, a probabilistic stage in which the author 

considers the model’s joint distribution, and a quantitative stage in which the author assigns 

values to the underlying conditional probability tables (CPTs).  Approaches to each stage can be 

manual (theory- and expert-driven) or automatic (data-driven), or even a combination of both.  
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The decision regarding approach to model construction often depends on the field on which the 

model is based (Chen & Pollino, 2012; Uusitalo, 2007) or the availability of data (Pitchforth & 

Mengersen, 2013). 

Manual approaches to the construction of a BN require expertise and advanced 

familiarity with the system being modeled – manual construction of Bayesian networks will 

almost certainly require domain knowledge input from experts or previous research.  Neil, 

Fenton, and Nielsen (2000) described the manual process of designing the structure of a BN as 

“knowledge engineering,” and offered a step-by-step approach to the manual construction of a 

BN structure that encourages developers to first focus on the relationships between smaller 

groups of variables before considering the relationships among variables in the entire network.  

The authors proposed five “natural and reusable patterns in reasoning” (p. 13), termed “idioms,” 

that can be used as guidance in modeling directionality, causality, measurement accuracy, 

induction, and reconciliation of two competing factors or explanations.  See Fenton, Neil, and 

Lagnado (2013) as an example of the use of the idioms in the design of network structure.  In the 

same vein of beginning with the building blocks of networks, Helsper and van der Gaag (2002) 

and Fenz (2012) proposed an approach for manual BN development based on ontology, in which 

the anticipated model’s operational definitions and assumptions are clearly defined, and 

recommended collaboration between the knowledge engineering and domain expert(s) in the 

creation of the ontology.  More basic approaches to determining the BN’s structure involve 

identification of the types of variables within the network (background, problem, mediating, or 

symptom) and recognition of the each variable type’s role in a causal network (Kjӕrulff & 

Madsen, 2008).  Edwards (1999), Blodgett and Anderson (2000), Fenton et al., (2013), Laskey 
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and Mahoney (2000), and Xu, Liao and Li (2008) provided examples of the diversity of 

approaches to manual construction of a BN. 

In cases where data are available, it is possible to learn a BN structure and parameters 

from such data.  A number of algorithms have been developed to accomplish structure learning, 

most of which are either score-based (BN iterations are scored based on data fit) or constraint-

based (incorporates a priori understandings of independence among variables) (Margaritis, 

2003).  Examples of score-based techniques include Naïve Bayes’ (Duda & Hart, 1973), 

evolutionary programming (Larrañaga, Karshenas, Bielza, & Santana, 2013), and Tree 

Augmented Naïve Bayes’ (TAN) learning (Friedman, Geiger, & Goldszmidt, 1997), while 

constraint-based approaches include the PC and SGS algorithms (Spirtes et al., 2000), the 

inductive causation (IC) algorithm (Pearl, 2000), and Necessary Path Condition (NPC) (Steck & 

Tresp, 1999).  Algorithms such as Maximum likelihood (ML), the Expectation-Maximization 

(EM) algorithm (Lauritzen, 1995), and Active Learning (Tong & Koller, 2002) are used for 

parameter/CPT estimation in BNs.  Kjӕrulff and Madsen (2008) and Neapolitan (2004) 

presented an in-depth discussion of the steps involved in structure and parameter learning from 

data, and Aitkenhead and Aalders (2009) and Cui et al. (2006) provided real-world examples of 

purely data-driven learning of BN structure and parameters. 

Note that structure learning from data has been criticized for resulting in over-fitting of 

data (Clark, 2003), and difficulties in finding and training domain experts for manual 

construction are not uncommon.  A hybrid approach to constructing BNs in which both expert 

guidance and data are incorporated in the determination of structure and parameterization is a 

potential solution.  For example, Heckerman et al. (1995) proposed that an expert-generated BN 

can be subsequently updated and improved upon by observed data.  Other hybrid approaches 
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involve employing expert knowledge in identifying the presence and type of relationships 

between variables and subsequently introducing related constraints in the structure and parameter 

learning process – see de Campos and Castellano (2007), Flores, Nicholson, Bruskill, Korb, and 

Mascaro (2011), and Niculescu, Mitchell, and Rao (2006) as examples of use of a priori expert 

knowledge in combination with data to construct a BN.  Masegosa and Moral (2013) proposed 

incorporating expert knowledge after the structure is learned from data, providing guidance on 

any questionable links identified in the learned structure.  Woodberry, Nicholson, Korb, and 

Pollino (2005) developed a technique for combining elicited expert knowledge and data to 

parameterize a model.  In their discussion of the general development of statistical models, 

Kjӕrulff and Madsen (2008) noted the importance of a shift from developing a model designed 

to replicate the human decision process to developing models to support the human decision 

process.  The recognition of the value of human expertise in model designing addressed by 

Kjӕrulff and Madsen is reflected in the popularity of using a hybrid process to construct a BN. 

Chapter two of this manuscript proposes such a hybrid approach to model development, 

in which expert opinion is combined with statistical data to predict retention.  This proposed 

methodology must be considered within the context of over sixty years of discussion of the 

clinical-statistical controversy, or the argument regarding the inferiority/superiority of 

clinical/statistical prediction.  Meehl’s seminal Clinical Versus Statistical Prediction:  A 

Theoretical Analysis and a Review of the Evidence (1954/1996) articulated the distinction 

between statistical/actuarial/formal prediction and clinical/informal/impressionistic prediction, 

where the “clinical” method of prediction involves an expert human judge relying on informal 

decision-making procedures (experience, intuition, etc.) and the “statistical” method of 

prediction involves some formal decision-making rules or formula (statistical regression, 
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actuarial tables, etc.) in order to classify or predict.  Noting that predictions using these two 

methods often differ, Meehl further proposed that statistical prediction is generally at least as or 

more accurate and less costly than clinical prediction, rendering it the preferable method of 

prediction.  A number of authors further explored this clinical vs. statistical issue (Dawes, 1988; 

Dawes, Faust, & Meehl, 1989, 1993; Faust, 1991; Goldberg, 1991; Grove & Meehl, 1996; Holt, 

1986; Kleinmuntz, 1990; Marchese, 1992; Meehl, 1956, 1957, 1967, 1973, 1986; Sarbin, 1986), 

and consistently affirmed the superiority of statistical prediction over clinical prediction.  

Extensive meta-analyses performed by Grove, Zald, Lebow, Snitz, and Nelson (2000) and 

Ægisdóttir et al. (2006), further confirmed this idea.  Both meta-analyses incorporated numerous 

studies that included comparisons of clinical and statistical prediction of some type of human 

behavior or medical/psychological diagnosis, and both found statistical prediction to be superior 

to clinical in most cases.  Such conclusions uphold Meehl’s original thesis and argue that, when 

available and possible, statistical prediction should be favored over clinical prediction – not only 

due to higher likelihood of predictive accuracy, but also because it is generally less costly. 

However, Meehl, Grove, and other authors do not completely discount the value of 

clinical prediction.  For example, in the large meta-analysis by Grove et al. (2000), the authors 

pointed out that clinical prediction was found to be on par with statistical prediction in half of the 

included studies.  The authors attributed inferiority of clinical prediction to commonly cited 

heuristics, bias, and lack of feedback (see Dawes, Faust, and Meehl, 1986; Garb, 1989; Hogarth, 

1987, Kadane and Wlofson, 1998; Tversky and Kahneman, 1974), leaving open the possibility 

that attempts to alleviate these causes of error could result in improved, and even superior, 

clinical prediction.  Additional authors have addressed the role of clinical or expert judgment 

within context of its assumed inferiority to statistical prediction.  Meehl (1954/1996) recognized 
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“special powers of the clinician,” (p.24) particularly in noting clinicians’ ability to identify or 

recognize special or unique circumstances that may render statistical predictions inaccurate on a 

case-by-case basis, but not in a more general, widespread basis.  Dana and Thomas (2006) 

further examined the role of clinician in prediction, presenting examples in which more accurate 

prediction results from the incorporation of clinician-identified influential factors into statistical 

predictive models rather than holistic clinician judgment.  The authors suggested that a 

clinician’s expertise and valuable experience and input is best realized through “use of a formal, 

explicit procedure” (p. 425) – in other words, formal, systematic modeling of clinician decision-

making incorporates the best of both worlds in the clinical-statistical controversy.  As Dana and 

Thomas wrote, “Hopefully, the clinical-statistical controversy can move beyond whether we can 

deny or replace the talents of human judges to determining how we can use the special 

knowledge of human judges in a more rigorous manner” (p. 425).  This study in Chapter Two 

proposes to do just that – formally and rigorously include the opinions and unique experience of 

undergraduate student retention experts into a statistical predictive model.   

Model evaluation.  Assessment of a BN’s functionality is critical regardless of whether 

the model was built for description, classification, or prediction.  BNs designed using structure or 

parameter learning are often evaluated using measures of fit.  The Minimum Description-Length 

(MDL) metric, described by Lam and Bacchus (1994) and Rissanen (1978), is commonly 

employed as a measure of fit among learned-structure BNs as it reflects model simplicity against 

model accuracy.  The Bayesian Information Criterion (BIC) is another metric used to evaluate 

model fit that also considers model parsimony (Kass & Wasserman, 1995).  

 It is generally recommended that a final BN reflect parsimony in the number of nodes 

and the size of the CPTs for each node (Chen & Pollino, 2012; Adkison, 2009).  Model 
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parsimony is accomplished when there is a balance between the number of nodes and model 

sensitivity – fewer parent modes simplify the CPTs, but fewer nodes also may result in omitted 

information.  An approach to simplifying models recommended by Olesen et al. (1989) and Neil 

et al. (2000) is “parent divorcing,” in which related parent nodes are combined into one node that 

effectively describes the influence of the individual nodes thus reducing the number of nodes and 

subsequent complexity of the associated CPTs.  Heckerman & Breese (1994) proposed temporal 

transformation as an approach to model simplification in which a temporal element is introduced 

in the analysis and representation of causal relationships, and Kjӕrulff and Madsen (2008) 

recommended a technique involving the creation of a new variable that represents structural and 

functional uncertainty in a model. 

Models built using expert knowledge require different approaches to model validation.  

The experts participating in the elicitation should be asked to provide opinions of the final 

network’s accuracy, and if data are available against which to compare, a BN can be evaluated 

using measures of predictive accuracy, deviations from expected value, and the extent to which 

predictions are calibrated (information reward) (Korb & Nicholson, 2010).  Pollino, Woodberry, 

Nicholson, Korb, and Hart (2006) recommended evaluating BNs through sensitivity analyses, in 

which the magnitude of the effects of changes in a network’s structure or parameters are 

measured.  Pitchforth and Mengersen (2013) proposed that, as a BN’s performance is a function 

of the both its structure and parameters, each of these dimensions should be evaluated for 

validity separately in addition to the performance of the model as a whole.  Pitchforth and 

Mengersen further recommended using psychometric approaches to validity such as those 

described in Zumbo and Chan (2014) in evaluating an expert-elicited BN.   
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As Chapter Two of this manuscript will detail the creation and use of a predictive BN, 

particular attention is paid to the evaluation of a BN’s predictive validity.  Cowell, Dawid, and 

Spiegelhalter (1993) proposed that, in addition to overall fit, the predictive accuracy for 

individual nodes (node fit) and the quality of the modeled relationship between parent and child 

node (edge fit) should be evaluated.  When data are available, comparing predicted values with 

actual values is the most straightforward way to discern a model’s predictive accuracy.  In a BN 

with learned structure, the original data set is typically divided into subsets, where one is used for 

training/calibration and one is used for testing.  In addition to comparing a BN’s predictions with 

observed data and previously collected data, Pollino et al. (2006) called upon experts to review 

and evaluate a proposed BN.  Lalande, Bourguignon, Carlier, and Ducher (2013) evaluated 

prediction accuracy using Receiver Operating Characteristics curves (ROC) that compare 

sensitivity against specificity, while Gutierrez, Plant, and Theiler (2011) used modified 

confusion tables to identify thresholds of acceptable risk of error prediction.  In addition to these 

examples found in the literature, Marcot (2012) provided a review of metrics related to 

predictive accuracy, including error rates and confusion tables, ROC curves, k-Fold cross-

validation, Schwarz’ BIC, the true skill statistic, and Cohen’s kappa.   

It was earlier noted that one of the major benefits of the Bayesian approach, particularly 

when subjective probabilities and judgments are involved, is the increased transparency and 

discussion generated.  This benefit can be extended into the design and evaluation of BNs.  For 

example, Jakeman, Letcher, & Norton (2006) recommended a holistic evaluation of the model 

including thorough discussion of the development of the model, the model’s sensitivity to 

changes in structure, parameters, or assumptions, and whether or not the model is actually useful 

in applied settings.  As these authors wrote, “….model accuracy (the traditional modeller’s [sic] 
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criterion) is only one of the criteria important in real applications” (p. 612).  In conclusion, by 

evaluating a model’s validity, a researcher is not only ensuring that the model actually describes 

the system of interest but is also perpetuating an ongoing, iterative process of critiquing and 

improving the model. 

Bayesian Networks in Educational and Institutional Research 

Chapter Two of this manuscript will describe the development and use of a BN modeling 

and predicting the first-year to second-year retention of undergraduate students.  As this study 

includes elements of educational research used for an institutional research objective, the 

following section reviews examples of BNs used in educational and institutional research 

throughout the literature.  

In their discussion of the development of a dynamic tutoring system powered by a BN, 

Conati, Gertner, and VanLehn (2002) wrote that BNs offer a “unifying framework to manage the 

uncertainty in student modeling” (p. 372).  BNs can be found in a broad array of educational 

research topics, including psychometrics and item response modeling (Albert, 1992; Desmarais 

& Pu, 2006; Mislevy, Almond, Yan, & Steinberg, 1999), Evidence-Centered Design assessment 

(Almond, Mislevy, Steinberg, Yan, & Williamson, 2015; Shute, Hansen, & Almond, 2008), 

educational psychology (Nussbaum, 2011), and most commonly, in the design and evaluation of 

intelligent tutoring systems (Bunt & Conati, 2003; Ley, Kump & Albert, 2010; VanLehn, 2008).  

Xu and Ishitani (2008) and Heckerman (1997) employed Bayesian networks in exploratory 

modeling of institutional data, and Xu (2012) used Bayesian networks to produce models of 

female faculty professional experiences. 

Of particular interest to institutional researchers is the use of BNs for prediction.  Meyer 

and Xu (2007) developed a BN predicting faculty technology use, and Bekele and Menzel (2005) 
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developed a BN correctly predicting performance in high school math nearly two-thirds of the 

time.  Käser et al. (2013) used a BN predicting students’ math knowledge to inform a 

computerized tutoring system, and Galbraith, Merrill, and Kline (2010) explored the predictive 

relationship between student evaluations and learning outcomes in college business courses.  

Sharabiani, Karim, Sharabiani, Atanasov, & Darabi (2014) predicted the end of course grades for 

students in engineering courses using a BN, and Torabi, Moradi, and Khantaimoori (2012) 

experimented with a variety of algorithms to build a BN that predicted student performance 

given teacher attributes.  Kotsiantis, Pierrakas, and Pintelas (2004) and Kotsiantis, Patriacheas, 

and Xenos (2010) explored the capabilities of BNs in predicting performance in distance 

education courses, ultimately determining that pairing the BN-predicted results with other 

classification approaches yielded the most accurate results.  Lykourentzou, Giannoukos, 

Nikolopoulos, Mpardis, and Loumos (2009) also addressed distance education, using a BN to 

model likelihood of course attrition.   

A number of authors compared the predictive performance of educational- and 

institutional research-related BNs to models developed with other techniques and report mixed 

results:  Bukralia, Deokar, Sarnikar, and Hawkes (2012) used the Naïve Bayes’ classifier to 

develop a BN that predicted attrition in online classes less accurately than other methods like 

artificial neural networks and decision trees.  Yukselturk, Ozekes, and Tűrel (2014) reported 

similar findings when predicting student dropout from an online program.  Osmanbegović and 

Suljić (2012) found that BN outperformed decision trees and neural networks in predicting 

student success in economics courses, while Taruna and Pandey (2014) reported opposite results 

for students in engineering courses.  In their comparison of BNs and decision trees in predicting 
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general academic performance in terms of GPA, Nghe, Janecek, and Haddawy (2007) found 

decision trees to be more accurate predictors.  

Recall that that one of the two main techniques in designing the structure and assigning 

the parameters to a BN involves learning from data.  Machine learning and data-mining are 

currently significant ideas in educational and institutional research:  Peña-Ayala (2014), Romero 

and Ventura (2007), and Suhirman, Zain, and Herawan (2014), provided summaries and reviews 

of recent educational research incorporating data-mining, with Peña-Ayala noting the popularity 

of BNs as frameworks for educational data-mining.  Institutional researchers cited machine-

learned BNs as tools for identifying previously unrecognized predictive variables (Antons & 

Maltz, 2006; Fernandez, Morales, Rodriguez, & Salmerón, 2011; Lykourentzou et al., 2009), and 

Heckerman (1997) presented a case study in which historical data concerning student 

demographics and college choices were used to build a BN depicting the causal influences on 

college plans as a tutorial on the role of data-mining in BNs.   

Examples of purely manual construction of BN are rare in the educational and 

institutional research literature.  In their development of a BN used to model learning 

progressions, West et al. (2010) employed experts’ input in addition to other techniques (latent 

class analysis) into the design of BN’s structure, but the authors do not comment on the 

methodology for specifying the model’s parameters.  Almond, Mislevy, Steinberg, Yan, & 

Williamson (2015) described the process of eliciting BN structure and parameters, while noting 

that models should be updated as data become available.  More often, educational and 

institutional researchers employ a hybrid process involving learning from data as well as expert 

input.  van Duijnhoven (2003) used a hybrid methodology in which expert knowledge and 

machine learning were applied in the development of a BN modeling student knowledge, and 
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subsequently confirmed the expert-elicited structure and parameters against data-generated 

models.  García, Amandi, Schiaffino, and Campo (2007) designed a BN for identifying learning 

styles using theory to manually specify the BN’s structure and a combination of Felder’s (1988) 

learning style definitions and data to assign conditional probabilities.  Similarly, Wang and Beck 

(2013) used a previously developed student skill model to design the structure of a BN, while 

using data to parameterize the model.  

In a discussion of the use of machine learning to develop a model used to predict 

retention, Delen (2010) highlighted how suited machine learning is for institution-specific 

settings – an institution’s issues are unique to its population and environment and mining 

historical data can provide patterns unique to the institution.  However, Delen also pointed out 

that data mining and theory-driven research can be used in tandem to identify important variables 

and any relationships among them.  Although the author did not use a Bayesian approach in 

modeling, this idea – the idea of leaving no data behind – echoes one of the most influential 

arguments for a Bayesian approach.  Extending this idea to the use of BNs in institutional 

research, capitalizing on accepted theory and expert input as well as accessibility to historical 

data seems an ideal approach to developing BNs to address institutional issues.  

In conclusion, the incorporation of BNs into educational and institutional research is an 

approach gaining in popularity and application.  While BNs related to intelligent tutoring 

systems are most popular, they are also found in psychometrics, educational assessment, data 

modeling, and, most relevant to this study, prediction of outcomes.  The literature reveals a 

number of approaches, although models developed through the use of data mining and machine 

learning are most common within institutional research.  BNs offer an excellent approach to 

dealing with the uncertainty inherent in educational research and are particularly suited to the 
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narrower field of institutional research, efficiently handling the type of research questions, data, 

and audiences addressed in higher education.  di Pietro, Mugion, Musella, Renzi, & Vicard 

(2015) advocated for the use BNs in the modeling complexities of higher education, noting that 

BNs represent a “holistic”, global approach to answering common institutional research 

questions.  In addressing the uncertainty inherent in systems of social science, as well as the 

complexity and unique nature of institutions, the compatibility of Bayesian approaches with 

institutional research is clear.  A BN handles the uncertainty in student-related data while also 

offering an intuitive, accessible modeling capability that supports the decision-making and 

policy-setting processes.    
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2 DESIGNING A BAYESIAN NETWORK TO PREDICT LIKELIHOOD OF 

RETENTION OF UNDERGRADUATE STUDENTS  

Ensuring that first-year, degree-seeking undergraduate students return for their 

subsequent academic year (“undergraduate first-to second-year retention”) is a high priority issue 

in higher education.  Nationally, 72.9% of all undergraduate students are retained at the same 

institution from their first to second year.  This number is higher for students at private nonprofit 

institutions (80.3%), slightly lower among public institutions (71.4%), and lowest among for-

profit institutions (62.8%)  (U.S. Department of Education, 2014).  In addition to nationwide 

calls to consider retention rates as an accountability measure of student progression and 

institutional success (Carey & Aldeman, 2008; Longden, 2006; Pike & Graunke, 2015), various 

higher education accreditation agencies and rankings organizations consider retention rates in 

assessments of institution quality (Wimshurst, Wortley, Bate, & Allard; 2006).  Students and 

other stakeholders are negatively affected by the increased time to graduation often resulting 

from attrition (Complete College America, 2011), and the costs of recruiting new and 

replacement students are high (Noel-Levitz, 2013).  Retention rates are particularly important 

among tuition-dependent institutions where even small fluctuations in year-over-year retention 

result in large impacts in revenue and budget management (Schuh & Gansemer-Topf, 2012). 

Due to the importance of retention in enrollment planning and financial management, 

developing a clear understanding of the factors that influence students’ decisions to return for a 

second year is critical.  Through identification of structure, relationships, and interactions in the 

retention-related data, it is possible to create a statistical model of current and prior student 

retention that can be used to predict future students’ retention decisions.  In addition to 

enhancing institutional knowledge as the process of development requires clear articulation and 
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exploration of aspects of retention, ideal models are easily used and understood by various 

stakeholders (institution administrators, researchers, academic advisors, admissions counselors) 

and contain the capacity to be updated as student populations change.  Additionally, a model that 

facilitates prediction of retention aids in the identification of students at risk for attrition, informs 

institutional intervention and student advising policy, and enables more precise enrollment 

planning. 

Research Questions 

This study addresses the following research questions: 

1.   Based on expert information and data, what are the greatest influences on first-to 

second-year undergraduate retention at a small, private liberal arts college in the 

southeast?  

2. Using this knowledge from both sources, can a graphical model employing Bayesian 

Networks be built that adequately predicts retention? 

Literature Review 

Undergraduate First- to Second-Year Retention 

The preeminent literature surrounding retention of U.S. college and university students 

suggests that retention is influenced by a combination of pre-college student characteristics and 

students’ social and academic experiences once at an institution (Astin, 1993; Bean, 1980, 1985; 

Cabrera, Nora, & Castaneda, 1993; Pascarella & Terenzini, 1980, 1991; Tinto, 1975, 1988, 

1993).  These authors cited student integration into and commitment to the educational and 

institutional environments, faculty-student interaction, and social engagement as key influences 

on student retention.  Tinto’s integration framework (1975, 1993), suggesting that students’ 

commitment to and likelihood of graduating from an institution grows as they are socially and 

98 
 



academically integrated, has been explored and modified by numerous authors over the years and 

formed the foundation for the study of undergraduate retention and graduation (Swail, 2004).  

Astin (1993) focused on the impact of student involvement in college as an influence on 

retention, and Bean (1980) emphasized the important role of pre-college characteristics such as 

high school performance and socioeconomic status.  Cabrera, Nora, and Castaneda (1993) and 

Pascarella and Terenzini (1991, 2005) explored the convergence of proposed retention models 

and theories and began to introduce and investigate different subpopulations of undergraduate 

students and their unique responses to retention predictors.  More recent retention literature 

indicates a shift towards the inclusion of non-cognitive variables such as motivation, self-

efficacy, and academic self-concept into theories of undergraduate retention (Covington, 2000; 

Demetriou & Schmitz-Sciborski, 2011; Eccles & Wigfield, 2002). 

Additional studies discuss and evaluate specific predictors of retention, and a review of 

the most recent of these reveal that retention predictors tend to fall within the following broad 

categories:  Pre-college student characteristics, pre-college academic preparation, student 

characteristics in college, and institutional characteristics.  Pre-college student characteristics 

include demographic variables such as race-ethnicity, gender, and socioeconomic and first-

generation status, and the literature points to a trend in which students in underrepresented 

minority groups, student with financial challenges, and students who are the first in their family 

to attend college are less likely to retain and graduate (The Education Trust, 2004).  Pre-college 

academic preparation is reflected in students’ high school GPAs, class ranks, and standardized 

achievement test scores, and unsurprisingly, are generally positively correlated with retention 

within the literature (ACT, 2010; Adelman, 1999; Astin & Oseguera, 2005; Lotkowski, Robbins, 

& Noeth, 2004).  A large amount of retention literature addressing specific predictors focuses on 
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student characteristics during college, including financial support, distance from home, social 

support and engagement, socioeconomic status, academic engagement and participation, and 

other non-cognitive attributes.  These factors are well summarized by Pascarella and Terenzini 

(2005), and tend to predict retention in the direction that one would intuitively expect.  For 

example, students with less financial support and further distance from home are less likely to 

retain compared to students with more financial support and attending college closer to home 

(Bista & Foster, 2011; Titus, 2006), and students with superior study skills and psychosocial 

attributes tend to retain at higher rates than those without (Robbins et al., 2004).  Researchers 

have also addressed the role of institutional characteristics such as institutional control, 

selectivity, mission, and size in influencing retention (see Astin & Oseguera, 2012; Pike, 2013; 

Ryan, 2004; Titus, 2004).  The extent to which an institution focuses on retention has also been 

found to have impact (Howard, 2013; Oseguera & Rhee, 2009; Porter & Swing, 2006).  A 

comprehensive listing of commonly named predictors of retention, along with examples found in 

the literature, is presented in Appendix A. 

As this study focuses on retention within a liberal arts setting, particular attention is paid 

to findings of the few authors addressing retention specifically within the liberal arts.  Nesler 

(1999) focused on retention at a liberal arts college that offered courses exclusively through 

distance education to nontraditional students, finding that retention was influenced by a 

combination of student and environmental characteristics.  Howard (2013) explored the influence 

of first-year programming on student retention at rural liberal arts colleges, finding its impact 

negligible.  Employing analysis of students’ social networks, Eckles and Stradley (2011) 

identified the importance of students’ friends on influencing retention at a small liberal arts 

college, building upon Thomas’ (2000) findings of the significance of students’ social integration 
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on retention at liberal arts colleges.  Finally, Gansemer-Topf, Zhang, Beatty, and Paja (2014) 

highlighted college transition success, realistic academic expectations, and social integration as 

important influences on retention at a small, highly selective liberal arts college, while also 

pointing out that unique campus populations can produce unique retention predictor conclusions.  

Given smaller liberal arts institutions’ unique populations and the aforementioned reliance on 

enrollment and net tuition revenue, the need for a clear understanding of the forces of retention 

and the ability to accurately predict the likelihood of retention for individuals or groups of 

students becomes apparent.   

A Bayesian Approach 

This study presents the development of a probabilistic network that models and predicts 

first-to second-year undergraduate retention.  The network employs a Bayesian approach, where, 

through the use of conditional probability rules expressed in Bayes’ theorem (Equation 2.1), 

current knowledge or beliefs about the probability of an event occurring (“prior probability”) are 

updated with new information in order to form a more accurate prediction (“posterior 

probability”).  Bolstad (2007) and Gelman, Carlin, Stern, and Rubin (2004) provided 

comprehensive introductions to Bayesian statistics and data analysis, while Gill (2009) offered a 

guide to the approach within the context of social and behavioral sciences.  Gigerenzer (2002) 

illustrated the use of Bayes’ theorem with applied examples.   

 
𝑝𝑝(𝐵𝐵|𝐴𝐴) =  

𝑝𝑝(𝐴𝐴|𝐵𝐵)𝑝𝑝(𝐵𝐵)
𝑝𝑝(𝐴𝐴)  

(2.1) 

The use of the word “beliefs” in describing the probability updating in Bayesian 

methodology is important.  A Bayesian approach to probability is in direct contrast to a 

frequentist approach in that Bayesian statistics interprets probability as a degree of belief rather 

than as the long-term proportion of successful outcomes to number of attempts.  This degree of 

101 
 



belief represents prior knowledge pertaining to the likelihood of an event, which is then updated 

with data relevant to this event in order to form a new, or posterior, belief in the probability of 

the same event occurring.  Within the larger field of Bayesian statistics, the use and definition of 

a priori knowledge and beliefs (“priors”) is an ongoing discussion, and the choice and use of 

prior type is often driven by the weight assigned to and source of the prior knowledge.  

Uninformative priors are those that provide little additional information or explanatory power 

(Gill, 2009), and Kass and Wasserman (1996) and Yang and Berger (1997) provided a catalog 

and review of such priors.  Priors that intentionally include knowledge designed to influence 

posterior probabilities are termed “informative,” and can be derived from a number of sources 

such as previous studies and results or researcher expertise (Gelman et al., 2004; Gill, 2009).  

Press (2003) outlined the advantages of informative priors, noting that they capitalize on expert 

knowledge and present an avenue for analysis when other information (“objective” Bayesian 

priors, or even a frequentist approach) is unavailable.   

It is this use of informative priors that prompts the common criticism that Bayesian 

statistics employs subjective probability, and thus contradicts the objectivity valued in the 

modern scientific method.  A number of authors have addressed this criticism by pointing out 

that, regardless of approach, an expectation of pure objectivity is unreasonable.  Researchers’ 

choices regarding research questions, methodologies, and analysis techniques could all be 

considered subjective choices (Berger, 2006; Gill, 2009; Hennig, 2009; Press & Tanur; 2001; 

Stevens & O’Hagan, 2002; Weatherford, 1982).  Additionally, requirements of coherence and 

adherence to the laws of probability limit the use of arbitrary and unrealistic informative priors 

(Bovens & Hartmann, 2003), and, as D’Agostini (2001) describes, the process through which 

subjective Bayesians consider and account for the conditions affecting their degrees of belief and 
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choice of priors leads to a  conclusion that “the coherent subjectivist is far more responsible (and 

more "objective", in the sense that ordinary parlance gives to this word) than those who blindly 

use standard 'objective' methods” (p. 25). 

Bayesian networks.  A goal of this study is the construction of a predictive graphical 

model that employs Bayesian methodology.  A Bayesian network (BN) is a graphical network 

that, using Bayes’ theorem to calculate conditional and joint probabilities, models the 

probabilistic relationship between and among variables.  A BN consists of two main elements:  A 

directed acyclic graph (DAG) forming the structure of the model, and the independent/dependent 

relationships between the variables that are quantified by conditional probability distributions 

(Kjӕrulff & Madsen, 2008).  Each variable included in the network has a finite set of mutually 

exclusive states, and variables with directed edges pointing towards other variables are 

considered “parent” nodes of “children” nodes – variables not sharing a directed edge are 

considered independent of each other.  Conditional probability tables (CPTs) are attached to each 

variable, in which the conditional probabilities of each variable given the state of other variables 

are presented, and the entire set of probability tables expresses the full model’s parameter set 

(Equation 2.2).  BNs are unique from other graphical models in that, through the use of Bayesian 

probabilistic inferences, users are provided with a clear representation of independencies, 

dependencies, and uncertainty.  Pearl (1988) and Lauritzen (1996) offered comprehensive 

introductions to graphical models and BNs, and Pearl and Verma (1991), Druzdzel and Simon 

(1993), and Heckerman (1997) explored the capability of BNs to illustrate conditional 

dependence and causal influence.  There are a number of techniques for probabilistic inference 

within BNs, and different algorithms often used are discussed by Dawid (1992), Jensen, 

Lauritzen, and Olesen (1988), and Heckerman (1997).  With the development of computing 
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power, the ability to complete inference in increasingly complex BNs using algorithms has 

increased (Jensen & Nielsen, 2007). 

 
𝑃𝑃𝑎𝑎(𝑥𝑥1, … 𝑥𝑥𝑛𝑛) =  �𝑃𝑃𝑎𝑎(𝑥𝑥𝑖𝑖|�𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 
(2.2) 

Kjærulff and Madsen (2008) highlighted the advantages of Bayesian networks, noting the 

efficiency in which these networks conduct inference and convey causal relationships, the ease in 

which the graphical representations can be understood by numerous audiences, and the 

methodology’s firm foundation in decision theory.  Speigelhalter, Dawid, Lauritzen, and Cowell 

(1993) cited the ability of BNs to simultaneously “…be forgiving of limitations in the data but 

also exploit the accumulated data” (p. 221), and Heckerman (1997) acknowledged the ability of 

BNs to operate with incomplete data.  Additionally, due to the use of Bayesian statistics, a BN 

can flexibly and efficiently incorporate additional information as it is gathered.  BNs are not 

without their limitations, however.  Neidermeyer (2008) pointed out that novel events may 

threaten the predictive validity of BNs, and cautioned that, even with computing advances, a 

network with a large number of variables may require unreasonable computing and 

computational power.  Pourret, Naim, and Marcot (2008) considered the requirement that BNs be 

acyclic to be a limitation as feedback loops are often found in reality.  Additionally, poor 

reliability and quality of prior information included in BNs negatively affects a model’s 

usefulness, although this can be mitigated through adequate model evaluation (Cowell, Dawid, & 

Spiegelhalter, 1993; Pitchforth & Mengerson, 2013). 

Bayesian networks are often developed and used for prediction because BNs can be 

considered predictive due to the interpretation of the links between variables as causal.  For 

example, if a parent node is a direct cause of a child node, then a change (intervention) in the 

value of the parent node will change the value of the child mode – the effect can be predicted 
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based on the intervention.  Pearl (2000) and Friedman, Linial, Nachman, and Pe’er (2000) 

provided explanations of causal BNs, and Spirtes, Glymour and Scheines (2000) provided a 

background of the Causal Markov Assumption, upon which a causal/predictive interpretation of 

BNs is predicated.  In this study, a BN is used to predict the likelihood of first-to second-year 

undergraduate retention given certain conditions of other variables.   

Bayesian network development.  Spiegelhalter et al. (1993) named three stages of 

constructing a Bayesian network: A qualitative stage in which the author defines the 

relationships among and between variables in terms of conditional independence and develops a 

graphical model that reflects these relationships, a probabilistic stage in which the author 

considers the model’s joint distribution, and a quantitative stage in which the author assigns 

values to the underlying CPTs.  Approaches to each stage can be manual (theory- and expert-

driven) or automatic (data-driven), or even a combination of both.  The decision regarding 

approach to model construction often depends on the field on which the model is based (Chen & 

Pollino, 2012; Uusitalo, 2007) or the availability of data (Pitchforth & Mengersen, 2013).   

Manual construction of a model involves input from experts or previous research.  

Approaches to manually determining the structure and relationships of a BN range from complex 

use of idioms and ontology (Fenton, Neil, & Lagnado, 2013; Fenz, 2012) to more simple 

methods involving identification of each variable and their causal influences/influencers 

(Kjӕrulff & Madsen, 2008).  Commonly cited authors such as Garthwaite, Kadane, and O’Hagan 

(2005), Gill (2009), Kadane and Wolfson (1998), and O’Hagan et al. (2006) provided a list of 

“best practices” related to elicitation of expert knowledge, and review of these works highlights 

the major stages of a successful elicitation process:  Preparation of the researcher/elicitor, 

selection of expert(s), training of expert(s), confirmed understanding or acceptance of the model 
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for which judgments are being elicited, and the actual elicitation, including assessment and 

feedback.  These practices serve to provide the expert ample opportunity to adequately express 

her beliefs while also allowing the researcher to gather as much helpful information as possible 

and verify her own understanding of what the expert is trying to communicate. 

The structure and parameters of a BN can also be developed automatically, using 

machine learning from data.  Algorithms that enable learning from data are either score-based, 

where successive iterations are scored based on data fit, or constraint-based, where a priori 

understandings of independence among variables are incorporated (Margaritis, 2003).  Although 

there are a number of approaches involving these two types of algorithms, many of which are 

described in Neapolitan (2004) and Kjӕrulff and Madsen (2008), this study employs Tree 

Augmented Naïve Bayes’ (TAN) learning as described by Friedman, Geiger, and Goldszmidt 

(1997) as part of the model development process.   

Both aforementioned approaches to model development face challenges.  Within the 

manual approach, experts’ potential use of heuristics in the formation of probability judgements 

(see Tversky & Kahneman, 1974) threatens the reliability and accuracy of information elicited.  

Learning BNs from data has been criticized for over-fitting (Clark, 2003).  In response to these 

difficulties, a hybrid manual/data-driven approach developed.  Heckerman, Geiger, and 

Chickering (1995) first proposed that an expert-generated BN can be subsequently updated and 

improved upon by observed data, and numerous authors paired expert knowledge with machine 

learning to build BNs (de Campos & Castellano, 2007; Flores, Nicholson, Bruskill, Korb, & 

Mascaro, 2011; Masegosa & Moral, 2013; Niculescu, Mitchell, & Rao, 2006; Woodberry, 

Nicholson, Korb, & Pollino, 2005).   
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This study engages a hybrid approach to model development, in which formal elicitation 

of expert opinion is combined with statistical data to predict retention.  Note that this hybrid 

approach to building a predictive model is applicable in larger discussions of clinical and 

statistical prediction, where the “clinical” method of prediction involves an expert human judge 

relying on informal decision-making procedures while the “statistical” method of prediction 

involves some formal decision-making rules or formula (actuarial tables, for example) in order to 

classify or predict.  First discussed by Meehl (1954/1996), the superiority of statistical prediction 

over clinical prediction within the realms of social sciences, human behavior, and medicine is 

confirmed by numerous other studies, particularly within terms of accuracy and cost (Ægisdóttir 

et al., 2006; Dawes, 1988; Dawes, Faust, & Meehl, 1989, 1993; Grove & Meehl, 1996; Grove, 

Zald, Lebow, Snitz, & Nelson, 2000; Meehl, 1956, 1957, 1967, 1973, 1986).  However, these 

authors did not suggest that clinical, or expert, prediction should simply be ignored.  Instead, 

many authors attributed the overall inferiority of clinical prediction to common heuristics, 

leaving open the possibility that carefully conducted elicitations designed to minimize bias and 

error could improve clinical prediction.  Dana and Thomas (2006), explored situations in which 

clinicians’ predictions could improve model accuracy, noting that the “use of a formal, explicit 

procedure” (p. 425) is critical in best eliciting and incorporating clinicians’ expertise and 

valuable experience into models.  This study proposes to formally and rigorously include the 

opinions and unique experience of undergraduate student retention experts into a statistically-

designed predictive model. 

Implications for Current Study 

This study focuses on the hybrid development of a predictive Bayesian network that will 

be used to model and predict the likelihood of first-to second-year undergraduate retention.  
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Retention is a topic within the larger realm of institutional research, and a review of the literature 

reveals that the use of BNs for prediction in institutional research is not rare.  See the following 

as examples of such research:  Bekele & Menzel (2005), Galbraith, Merrill, and Kline (2010), 

Käser et al. (2013), Kotsiantis, Patriacheas, and Xenos (2010), Meyer and Xu (2007), Sharabiani, 

Karim, Sharabiani, Atanasov, and Darabi (2014), and Torabi, Moradi, and Khantaimoori (2012).  

However, none of these authors employed a hybrid expert/data approach to model construction, 

or, when applicable to the research design, provided details concerning the elicitation of expert 

knowledge.  The choice of using a BN to model and predict retention is based on a number of 

factors – the intuitive nature of a graphical model is appropriate for a range of audiences, the 

ease in which the model updates when presented with new cases and information, and the ability 

to incorporate both expert and data-learned information into the model.  This hybrid design 

method incorporates the work of other scholars, unobserved patterns and trends in historical data, 

and the specific and unique experience and knowledge of campus experts.  Such an approach 

follows the very “Bayesian” idea of leaving no relevant information behind. 

Methodology 

Data/Population 

This study involves the construction of a Bayesian network (BN) that models and 

predicts the likelihood of a first-year undergraduate student returning for her second academic 

year at a small, private women’s college in the southeast with an annual undergraduate degree-

seeking enrollment of approximately 830 students.  First-to second-year retention rates from 

2009 to 2014 averaged 83%, meaning that, on average, 17% of first-year students have not 

returned for their second year.  Retention rates are calculated using cohorts of students.  For 

example, a student entering as part of the fall 2014 cohort of first-year students is considered 
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retained if she is still enrolled as of an enrollment census date in early fall 2015, and an overall 

retention rate represents the percentage of cohort students still enrolled in the following fall 

semester.  Student-related quantitative data (admissions, demographic, financial, and academic 

information) used in the model development process was sourced from institutional databases 

and includes information on 1,438 degree-seeking first-time students entering the institution 

from fall 2009 until fall 2014.   

Model Development 

Development of the BN retention model took place in four major stages:  

1. The construction and comparison of two initial BNs, one learned solely by existing 

data and incorporating variables identified in the literature (“straw man” model), and 

one designed through the elicitation of expert opinions regarding model structure and 

important variables to include (“expert-elicited structural” model). 

2. The construction of an interim BN incorporating the structural insights provided by 

the experts and machine-learned parameters for variables on which data were 

available (“interim” model). 

3. The presentation of this interim model to retention experts for review and formal 

elicitation of prior probabilities on model variables for which no data were available 

or learned parameters were suspect. 

4. The development of a final BN (“final” model), reflecting a hybrid method of 

construction where the BN’s structure and parameters were determined through a 

combination of expert information and machine learning. 
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Each iteration of models were evaluated on a number of measures, including predictive 

validity, internal validity, model complexity, and analysis of sensitivity.  The following sections 

describe these major stages of model development in detail. 

Initial data-learned model.  Using scholarly literature, the researcher identified 

variables commonly understood to influence retention.  These variables are discussed in detail in 

the included literature review and are also presented in Appendix A.  In addition to compiling 

quantitative information for the identified variables on which the institution has collected and 

stored data, the researcher noted literature-identified variables not currently available in 

institutional databases for future presentation to experts for insight and opinion.  

Incorporating the literature-identified variables and compiled data from the 2009 through 

2011 cohorts (data from more recent cohorts were reserved for later model iterations), the 

researcher used Netica 5.2 to develop a “straw man” BN.  The BN’s structure was learned 

through Netica’s Tree Augmented Naïve Bayes (TAN) structure learning, a maximum posterior 

probability score-based technique that examines correlations and includes more relaxed 

independence assumptions over Naïve Bayes (Friedman, Geiger, & Goldszmidt, 1997), and 

parameters were learned using an expectation–maximization (EM) algorithm.  It was understood 

that the resulting model was only to be used as a guide or “first-pass” at developing a retention 

model, as the researcher recognized a lack of non-cognitive data and institution-specific insight 

that would ultimately be incorporated through the elicitation of expert information.  The “straw 

man” BN is presented in Figure 2.1.  
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Figure 2.1.  Initial data- and structure-learned “Straw-Man” BN.   

Network interpretation and use.  Without imposing a new student retention scenario and 

its related properties on the “straw-man” BN, each of the network’s nodes show the current-state 

percentage distribution of all prior cases on each variable.  For example, all other conditions held 

constant, the BN demonstrates 81.7% of first-year students from 2009-2011 are retained to their 

second year.  Just over one-half (52.2%) of students included in the model are eligible to receive 

Pell grants, less than one-fifth (17.6%) are first-generation students, and 43.6% of students are 

more than three hours from their home.  Netica automatically discretizes continuous variables 

using existing distributions found in the data – nodes depicting measures of students’ academic 

preparedness (HS GPA, HS Rank, SAT and ACT scores) were thus discretized into three 

approximately equal bins.  Note that all variable classes/categories will ultimately be reviewed 

and potentially modified by experts.   
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In addition to demonstrating the current state of retention and each of the variables 

thought to influence retention, the machine-learned structure of the model reveals that a number 

of the variables are related to each other in some way through the placement of directed edges 

(arrows) between different variables.  For instance “Citz URM,” a node describing whether or 

not a student is an under-represented minority (“URM”), not an under-represented minority 

(“NON-URM”), or international student (“INT”), appears to have a relationship with a student’s 

SAT Math score (“SATM”) and Pell-eligibility (“Pell”).  Unsurprisingly, a student’s high school 

GPA is related to her high school rank percentile (“HS Rank”), and ACT Composite scores 

(“ACTCO”) are related to SAT scores (“SATM,” “SATV,” and “SATW”).  More surprisingly, 

ACT Composite scores also appear to have a relationship with a student’s distance from home 

(“Hours from Home”), perhaps due to geographic ACT/SAT preferences.  The relationships 

presented in the “straw man” model were ultimately explored in further model iterations, using 

insights provided by experts.   

The predictive application of this type of model is demonstrated through the addition of 

findings, or “cases.”  In other words, updating the predictor nodes with the properties of a 

specific retention case will allow a user to view an updated likelihood of retention.  When 

interpreting the results of the model, it is important to consider that adding a finding on one node 

tells the network that a new case has been added where information is only known on that one 

variable – the network will estimate the case’s standings on all other variables based on existing 

data.  For example, if interested in the change in likelihood of enrollment based on first-

generation status, an update of the “First Generation” node to reflect a student is indeed first-

generation decreases the likelihood of retention from 81.7% to 78.7%, given that all other 

retention-related variables are held steady.  If a case’s status on other variables are known, then 
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these can be entered as well and predicted retention will be updated accordingly using Bayesian 

inference.  This quick updating and dynamic presentation is one of the prime advantages to 

Netica’s BN software.  Figures 2.2 and 2.3 show the difference in predicted retention of two 

different cases where each case’s status on one or more of the retention-related variables are 

known.  

 

Figure 2.2.  “Straw Man” BN Scenario 1.  A student is known to be First Generation (coded as 
“1”).  Note that probability of retention decreased from 81.7% to 78.7%. 
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Figure 2.3.  “Straw Man” BN Scenario 2.  A student is known to be Pell-ineligible (coded “0”), 
is more than 3.4 hours from home, was ranked within the top 10% of their high school class, and 
scored at least a 620 on the SAT English component.  Note that probability of retention increased 
from 81.7% to 89.5%. 
 

Model evaluation.  As part of the structure and parameter learning process, the data used 

in the initial “straw man” BN were split into subsets for cross-validation.  Cross-validation is 

often used to evaluate the predictive accuracy of models, and is built upon the premise of 

partitioning data so that a model can be learned from one data set (the training set) and the 

resulting derived model’s predictive accuracy be evaluated against the remaining data (the 

testing set) (Geisser, 1975; Stone, 1974).  Many approaches to cross-validation appear in the 

literature, with general advice that the method chosen best represent the research goals and data 

characteristics while minimizing the trade-off between complexity and performance (Hastie, 

Tibshirani, & Friedman, 2009; Morrison, Bryant, Terejanu, & Miki, 2013).  Given this study’s 

context and objectives, the researcher employed the guidance of other studies incorporating 

machine-learning and Bayesian networks (see Alqallaf & Gustafson, 2001; Fienen & Plant, 
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2014; May, Maier, & Dandy, 2010 as examples) and used k-fold cross-validation for this model 

and all future models.  K-fold cross-validation involves randomly splitting cases into k equally-

sized partitions, cross-validating each partitioned sample across the remaining partitions, and 

then averaging predictive performance across all partitions.  A main advantage of k-fold cross 

validation is that it allows for the use of as much training data as possible while protecting 

against model overfit and providing measurements of predictive performance.  Additionally, 

when k is greater than two but also not too large, k-fold cross-validation at least partially 

addresses the “bias/variance” dilemma described by Geman, Bienestock, and Doursat (1992), in 

which minimization of potential bias and prediction error created by an inappropriate data split 

competes with the minimization of variance that is created by using a number of training sets to 

estimate a model’s parameters.  Citing Breiman and Spector (1992) and Kohavi (1995), Hastie et 

al. (2009) recommended five- to ten-fold cross-validation as a bias/variance dilemma 

“compromise” (p. 243), and due to a somewhat limited amount of cases (n=729 in cohorts 2009-

2011 and n=709 in cohorts 2012-2014), this study employs five-fold cross-validation in the 

“straw man” BN and all future BNs.   

Methods for averaging confusion matrices resulting from each fold as described by 

Marcot (2012) and Boyce, Vernier, Nielsen, & Schmiegelow (2002) were used to estimate 

overall model predictive performance using a Confusion Matrix as presented in Table 2.1.  In 

terms of accuracy, the “straw man” model predicted likelihood of retention correctly in 79.7% 

(570/715) of cases.  In terms of misclassification, the model incorrectly predicted retention one-

fifth (20.3%) of the time. 
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Table 2.1 
Confusion Matrix and Error Rate – “Straw Man” BN 

                      Predicted 
Retained 

 
Not Retained 

 
Actual 

566 19 Retained 
126 4 Not Retained 

 

A Receiver Operating Characteristic curve (ROC) is another way to gather information 

about the predictive capability of the “straw man” BN.  Figure 2.4 presents a ROC curve related 

to the “straw man” BN, where the model’s percent of true positive predictions (a measure of 

sensitivity) is plotted against the percent of false positive predictions (a measure of specificity) at 

different threshold values.  The area between the BN curve and the straight dashed line (a ROC 

curve representing a completely uninformative model) represents the difference in an 

uninformative model and the more predictive “straw man” BN at different thresholds.  From 

shape alone, it is clear that the “straw man” BN is more predictively accurate at lower thresholds.  

Further, the area under the “straw man” BN ROC curve (AUC) is calculated to be .55089, a 

value that is considered a poor measure of model prediction performance (Hand, 1997).   

116 
 



 

Figure 2.4.  “Straw Man” BN ROC Curve.  This figure illustrates the model’s predictive 
accuracy at different thresholds (solid line), as compared to an uninformative model (dashed 
line), as well as the AUC. 

 

The 20% error rate and the small AUC hint at the fact that there is a large amount of 

uncertainty due to influences unaccounted for in the network.  The sensitivity analysis presented 

in Table 2.2 supports this suggestion, in that it demonstrates the degree to which variation in 

retention likelihood is explained by the other included variables (Marcot, Steventon, Sutherland, 

& McCann, 2006).  The Mutual Info column demonstrates the expected decrease in uncertainty 

(as expressed by entropy) in retention likelihood given a state of another variable included in the 

model.  The most influential variable on likelihood of retention is a student’s SAT Reading 

score, but even knowing this score will only decrease uncertainty by 3%.    
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Table 2.2 
Sensitivity Analysis of "Retained" to Other Variables Included in “Straw Man” BN 

Variable Mutual Info Percent Variance of Beliefs 
SATV .0206 2.99 .0046 
SATW .0179 2.59 .0037 
SATM .0158 2.27 .0033 
Citz URM .0116 1.68 .0025 
HS Rank .0093 1.36 .0018 
ACTCO .0068 .99 .0015 
HS GPA .0038 .56 .0008 
Hours from Home .0028 .40 .0006 
First Generation .0011 .15 .0002 
Pell .0003 .04 .0001 

 
In addition to evaluating a model’s predictive performance and sensitivity, a final 

evaluative measure involves considering model complexity.  Complexity can be measured by the 

number of variables, links, and node states, and is typically used for comparing different models 

(Marcot, 2012).  However, it is also helpful to consider model complexity as part of a holistic 

evaluation of single models in an effort to examine variable connectivity and dependence.  

Additionally, complexity is not a necessary condition for reliability or additional insight, so 

parsimony should receive priority (Jakeman & Hornberger, 1993).  The “straw man” BN’s 

complexity measures are summarized in Table 2.3, and indicate a not particularly complex 

model. 

Table 2.3 
“Straw Man” BN Model Complexity Metrics 

Metric Count 
Nodes 11 
Links 19 
Node States 30 

 

In summary, although the “straw man” BN can be described as parsimonious based on 

measures of complexity, evaluating the “straw man” BN in terms of predictive performance and 

sensitivity reveals a weak model.  This was not entirely unexpected for a number of reasons:  1) 
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due to a lack of available non-cognitive quantitative data available, the model incorporated very 

few of the variables often cited in literature, 2) the model was allowed to be machine-learned 

with essentially no supervision (e.g. automatic discretization of continuous variable node states), 

and, 3) the model excludes institution-specific or contextual variables and constraints 

recommended by retention experts.  However, the machine-learned “straw-man” model does 

provide a starting place for comparison and insight for future model iterations. 

Structure elicitation.  An important aspect of this research is the combination of 

machine-learning and expert opinion in order to build a BN that accurately and efficiently 

predicts retention.  The first step in incorporating expert opinion was to query retention experts 

regarding their beliefs about the structure of a graphical network that predicts retention, which 

was then compared to the machine-learned structure of the “straw man” BN in the creation of an 

interim model.  The following section outlines this process of structure elicitation from the 

experts, and incorporates the recommendations of Fenz (2012) to emphasize consistent operating 

definitions and O’Hagan et al. (2006) in the design of the structure elicitation protocol.   

Experts.  The experts participating in the session have a combined twenty-five years of 

experience at the institution working directly with students.  Expert A is an Assistant Dean of the 

College and Director of Academic Advising who has been with the institution for fifteen years, 

and Expert B is an Associate Director of Academic Advising who has been at the institution for 

ten years.  Both individuals have extensive personal experience with the reasons first-year 

students leave the institution, as well as domain knowledge regarding industry-wide retention 

issues.   

Variable elicitation.  As a first step in elicitation of the expert-elicited structural BN, the 

researcher presented the experts with a list of variables identified in the literature as related to 
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undergraduate retention.  The experts were also provided with proposed operating definitions 

and variable classes.  An example of what the experts were asked to review is provided in 

Appendix B.  After providing insight on the inclusion or exclusion of certain variables based on 

relevance to the institution, the experts offered revisions to operating definitions and the 

groupings (variable classes) of states of variables.  The experts also proposed new variables that, 

in the experts’ experience through working with and counseling students at risk of attrition, are 

important predictors of retention that were not identified in the literature.   

Table 2.4 summarizes the list of variables agreed upon by the experts.  In their discussion 

of race/ethnicity or first-generation status as predictors of retention, the experts noted that while 

there is nothing about race/ethnicity or fist-generation status alone that influences retention 

alone, it is highly related to stereotype threat.  For example, the experts agreed that women of 

color are more likely to succumb to stereotype threat, and are therefore less likely to seek and 

access academic support and tutoring.  This idea is also supported in the literature – see Steele 

(1997) and Aronson & Steele (2005) as examples.  The experts also proposed two variables 

related to academic support as influences of retention, while emphasizing that institutional 

emphasis on academic support (as measured by spending or resource allocation to academic 

support programming) is separate and distinct from whether or not a student actually accessed 

such academic support programming.  Institutional emphasis on increasing retention was also 

noted as an influence on retention, and the experts identified a shift in institutional focus on 

retention occurring in the year 2011 as evidenced by the hiring of personnel charged with 

addressing retention issues.  Experts noted that students’ study skills (time management, 

academic discipline, etc.) and course attendance patterns, while potentially related to each other, 

should also be included as exclusive variables in the retention model.  See Allen, Robbins, 
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Casillas, and Oh (2008), Kennett and Reed (2009), and Seo (2012) for discussions of these 

variables and their influence on retention in the literature.  Note that the experts first 

recommended that the study skills and attendance variables should be used in place of other 

commonly employed academic preparedness variables (standardized test scores, high school 

academic records), opining that the institution’s students are typically prepared intellectually and 

academically, but may lack the confidence or study skills necessary for academic success.  After 

extensive discussion, the experts agreed that a composite variable representing academic 

preparation should be employed – the “Academic Rank” variable in Table 2.4 is such a 

composite variable and incorporates high school quality, high school academic record, and 

standardized test scores.  In terms of social support and its influence on retention, the experts 

cited Eckles’ and Stradley’s (2011) analysis of social networks on student retention and affirmed 

the relevance of the study’s conclusions that the negative feelings of one student act as a 

contagion towards others while students’ positive feelings can act as an inoculation against 

negativity, albeit in a weaker capacity.  The experts discussed the need for including variables 

addressing students’ financial need, noting that financial issues and a lack of financial aid 

literacy are more likely to influence retention when other factors, such as academic struggle, are 

present as well.  Additionally, the experts argued that Pell-eligibility, a commonly cited influence 

on retention, is not an appropriate proxy for students with financial issues at the institution as 

one-half of the institution’s students typically receive Pell.  Anticipating that students who may 

struggle academically and have high levels of unmet financial need have very little “wiggle 

room” for financial or academic shortfalls, the experts concluded a financial variable should be 

included that addresses students with high unmet need, while also encompassing academic risk, 

an overall need profile, and evidence of financial aid literacy.  In a finding contradictory to much 
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of the literature, the experts expressed an opinion that students with homes closer to the 

institution (particularly within the institution’s metro area) are less likely to retain.  Additionally, 

noting a commonly expressed reason for leaving during student exit interviews, the experts also 

recommended a variable capturing mismatch between a student’s first-year academic advisor and 

the student’s expressed program of study interest.   

Table 2.4  
List of Variables Proposed and Approved by Experts in Structure Elicitation (Elicitation 
Session I) 
Variable Operating 

Definition 
Variable Classes Weight 

1=Highest 
10=Lowest 

Quantitative Data 
Availability/Measure 

Study Skills Whether or not a 
student 
demonstrates 
good study skills 
– successful time 
management, 
minimal 
procrastination, 
adequate note-
taking and 
review, course 
engagement, etc. 

Developed 
UnderDeveloped 

1 Data proxy:  Hours 
reported spent 
studying on 
institutional survey 
(2011 and later 
cohorts only) 

Financial Need 
& Risk Profile 

Encompasses 
students’ 
academic 
preparedness, 
high financial 
need, unmet 
need, and 
understanding of 
financial aid 
literacy.   

High (High 
Need/High Risk 
Profile) 
Low (Low 
Need/Low Risk 
Profile) 
 

2 Data available.   

Social Support The extent to 
which a student 
is exposed to 
negative or 
positive attitudes 
towards retention 
within their 
social network.   

Positive social 
support 
Negative social 
support 

3 Data proxy:  First-
year housing 
placement within a 
dorm floor with 
unusually high first- 
to second-year 
attrition. 
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Academic 
Support – 
Student Access 

Whether or not a 
student accessed 
academic 
support 
programming.   

Accessed 
Not Accessed 

4 Data Not Available. 

Academic 
Support – 
Institutional 

Whether or not 
an institution 
provides more 
than a nominal 
amount of 
academic 
support 
programming. 

Very Present 
Less Present 

5 Data Proxy:  Receipt 
of grant funding 
development of 
academic resource 
center in 2011. 

Attendance 
Patterns 

Whether or not a 
student 
consistently 
attends 
scheduled course 
meetings. 

Consistent - 
attends > 80% of 
course meetings 
Inconsistent - 
attends < 80% of 
course meetings 

6 Data not available. 

Academic Rank Composite index 
value to 
represent 
student’s 
academic 
preparedness.  
Incorporates 
high school 
quality, 
curriculum 
quality, high 
school academic 
record (GPA and 
rank) and 
standardized test 
scores. 

Lowest 
Low 
Medium 
High 
Highest 

7 Data available. 

Race/Ethnicity Self-reported, 
federally-defined 
race/ethnicity 
categories.   

Underrepresented 
minority 
International  
Other 

8 Data available. 
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Institutional 
Focus on 
Retention 

Institution-wide 
implementation 
of programs, 
services, and 
resources 
designed to 
address 
retention. 

Very Present  
Less Present 

9 Data proxy:  “Less 
Present” if student 
enrolled before 2011.  
“Very Present” if 
student enrolled in 
2011 or after.   

Distance from 
Home 

Distance, in 
hours, of 
institution from 
student’s 
permanent home 
address 

Within one hour 
More than one 
hour 

10 Data available. 

Advisor/Major 
Mismatch 

Assignment of 
academic advisor 
belonging to an 
academic 
department 
outside the 
student’s 
expressed 
program of 
student interest.   

Advisor/Major 
match 
Advisor/Major 
mismatch 

11 Data available. 

 

Structure elicitation.  In preparation for drafting a basic structural model of a retention 

BN, experts were next asked to discuss the relationships between and among the chosen list of 

variables.  Experts were first asked to weight each of the variables in terms of influence on 

retention, beginning with strongest and weakest and moving inward from there (see Kjærulff & 

Madsen, 2008).  These ranks are included in Table 2.4, and were elicited in an effort to introduce 

the idea of causal influence to the experts and ultimately be incorporated in the specification of 

model parameters and CPTs in development of a final model (Netica allows for the inclusion of 

uncertainty using a special case file format).  Using the weightings as reference, the researcher 

prompted the experts to discuss which variables could be considered direct causes of retention, 

and which variables actually influence other variables and should be considered indirect causes 

124 
 



of retention.  The discussions of causal influence were included to provide insight as to the 

model’s appropriate structure and variables’ relationships to each other.  The researcher also 

facilitated discussion of conditional independence, asking experts to consider if a student’s state 

on one variable reveals a large amount of information on how this same student might appear in 

another variable.  Examination of variable dependencies were included in order to aid the 

researcher and experts in identifying redundant variables, assure conditional independence 

among included variables, and ultimately contribute to model parsimony.  As the representation 

of uncertainty is a unique feature of BNs, experts were continuously encouraged to express their 

uncertainty in any of these discussions.  Any instances of high uncertainty were ultimately 

included in the specification and evaluation of the final model.   

The literature consistently includes training experts as a best practice in expert elicitation, 

and in order to provide context and demonstrate the basic components and function of a 

predictive BN, the researcher presented the experts with a BN that predicts the likelihood of 

coronary artery disease based on a number of symptoms (Figure 2.5).  The training BN was used 

to provide examples of parent/child nodes, leaf nodes, and conditional independence.  Experts 

were encouraged to consider the variables influencing retention similarly to the symptoms or 

conditions modeled to influence risk of coronary artery disease, and to note the direct and 

indirect relationships between symptoms and disease.  Additionally, the researcher demonstrated 

the dynamic updating capability of a Netica BN, providing an example of the utility and ease in 

which a BN can be used to predict retention given certain conditions or new cases.   
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Figure 2.5.  Training BN:  Coronary Artery Disease Risk Estimator, Norsys Software Corp. 
Bayes Net Library, http://www.norsys.com/netlibrary/index.htm .  Copyright 2004 by 
Assessment Technologies, Inc.   

 
Finally, the experts were asked to draft a basic structural model of retention incorporating 

the variables and the relationships between and among the variables and retention.  The 

researcher reminded the experts of earlier discussions and decisions regarding causal influence, 

conditional independence, and weight in the formation of the structure, and allowed the experts 

to collaborate in the design although they ultimately drafted their own versions.  Throughout the 

drafting process, the researcher verbally articulated scenarios depicted in the structure in order to 

ensure that the structure accurately represented the experts’ judgments.  A composite of the 

experts’ structure designs is provided in Figure 2.6.    
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Figure 2.6.  Expert-elicited structural model. 

In summary, the expert-elicited structural BN includes twelve nodes.  All but one 

(“Race/Ethnicity”) are portrayed as direct influences on retention, although five (“Study Skills,” 

“Race/Ethnicity”, “Distance from Home,” “Institutional Focus on Retention,” and “Financial 

Need & Risk Profile”) are also thought to be influences on other included variables.  Table 2.5 

summarizes the model’s complexity, which is very similar to the “straw man” BN. 

Table 2.5 
Expert Elicited Structural Model Complexity Metrics 
Metric Count 
Nodes 12 
Links 18 
Node States 28 

 

Development of interim model.  Development of an interim model designed to 

incorporate the insights gathered from the original “straw man” data- and structure-learned 

model as well as the expert-elicited model involved the comparison and examination of these 
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models’ structures, variables, and data-learned parameters.  Ultimately, this second model was 

designed as an interim stage in preparation of creation of a final model that includes a hybrid of 

expert-elicited and data-learned parameters and structure. 

Comparison of “straw man” and expert-elicited structural model.  Cursory comparison 

of the data- and structure-learned “straw man” model and the expert-elicited structural model 

revealed few commonalities in included nodes.  For example, the experts dismissed the 

importance of including distinct nodes for generally accepted proxies for academic preparedness 

(high school academic records and standardized test scores) in a model, opining that while the 

institution’s students are academically and intellectually prepared, academic success and 

retention at the institution is much more dependent on students’ study skills.  However, the 

experts did endorse the inclusion of a composite variable that incorporates a number of indicators 

of academic preparedness (“Academic Rank”), noting that, in addition to having a direct 

influence on retention, it is also influenced by study skills.  Examination of the links learned in 

the “straw man” model support the inclusion of the composite “Academic Rank” variable in a 

second model– many of the academic preparedness variables were learned to be related to each 

other in the “straw man” model and the combination of them into one variable creates a more 

parsimonious model.  Expert discussion of demographic variables included in the “straw man” 

model revealed experts’ uncertainty of any direct role played by race/ethnicity on retention while 

highlighting their belief that race/ethnicity is involved in other important causes of retention.  

Hence, this variable was still included in a second model but was not shown to have a direct 

influence on retention.  Additionally, the “straw man” model included a variable depicting 

students’ socioeconomic status as determined by eligibility for Pell grants, and indicated that 

socioeconomic status is closely linked with other demographic variables.  The experts’ opinion 
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that the role of finances is much more complicated than simple socioeconomic status and 

ultimate suggestion of a composite financial risk/need variable addresses the confounding and 

redundant influence of demographics on retention expressed in the “straw man” model.  Finally, 

as evaluation of the “straw man” model revealed a relatively weak predictive model with 

unaccounted for influences, all other variables suggested by the experts were included in the 

interim model under the expectation that the experts’ familiarity with institution-specific factors 

is superior to the literature-identified variables on which quantitative data were available that 

were used to build the “straw man” model. 

Parameterizing interim model.  Using Netica, the researcher prepared a second, interim 

BN that incorporated the structural insights provided by experts and was parameterized by 

available existing data (2009-2011 first-year cohort data).  Two of the variables included did not 

have associated existing data (“Attendance Patterns” and “Academic Support-Student Access”) 

and other variables included numerous missing data.  For example, data indicating whether or 

not a student exhibits study skills (as measured by responses on an institutional questionnaire) 

were only available for students in the 2011 cohort.  In order to address these incomplete data, 

Netica allows parameter learning via an expectation-maximization (EM) algorithm where 

maximum a posteriori parameter estimates are computed using maximization of the expected 

log-likelihoods of parameters after a number of iterations (see Dempster, Laird, & Rubin, 1977).  

In other words, the EM algorithm is used to maximize the probability of data given the BN’s 

structure and CPTs.  The resulting model reflected the current state of each of the variables for 

which data were available and showed the two unknown variables (“Attendance Patterns” and 

“Academic Support – Student Access”) as having uniform prior probability distributions, or 

equally likely states.  The model also included the data-learned CPTs for each variable when data 
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were available.  As part of design of a final model, the parameters and associated CPTs were 

ultimately presented to the experts in a second elicitation session for review, critique, and 

elicitation of the unknown parameters.   

Development of final model.  Development of the final model included the following 

stages:  Expert review of the interim model, formal elicitation of unknown parameters, 

parameterization of the final model, and evaluation of final model performance.   

Expert review of interim model.  Expert review of the interim model began with 

evaluation of the included variables’ operating definitions.  Noting that the two institutional 

variables (“Academic Support-Institutional” and “Institutional Focus on Retention”) are 

irrelevant for any post-2011 cohorts as both variables served as indicators of a shift in 

institutional priority to increasing retention beginning in 2011 and continuing forward, the 

experts recommended exclusion of these two variables from any final model.  The experts also 

discussed the quantification of “consistent” and “inconsistent” attendance patterns, confirming 

that attending 80% or more course meetings is appropriately considered “consistent.”  

Additionally, the experts considered the “Academic Support-Student Access” variable, focusing 

on what activities should be considered “academic support programming” and the frequency at 

which student access of such programming would begin to influence retention likelihood.  

The researcher next introduced a comparison of the variable influence rankings 

established by the experts in the first elicitation session against the rankings suggested by 

sensitivity analysis of the data-learned parameters in the second/interim model.  The only major 

difference in the relative importance suggested by the experts and reflected in the data-learned 

parameters of the interim model was the influence of “Academic Rank,” with the data-learned 

parameters suggesting retention was more sensitive to academic preparedness than the experts 
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anticipated.  Discussion of the ranks was included in an effort to gage experts’ uncertainty with 

specific variables that would be incorporated into the final model.  For example, a conflict 

between expert-understood rank and data-learned rank could be addressed and mitigated by 

using Netica’s uncertain case file format in development of the final model.  The final list of 

included variables and their related operating definitions, ranks, variable classes and data sources 

are summarized in Table 2.6.  

Table 2.6  
List of Variables Operationalized and Approved by Experts in Model Review and Parameter 
Elicitation Session (Elicitation Session II) 
Variable Operating 

Definition 
Variable Classes Weight 

1=Highest 
10=Lowest 

Quantitative Data 
Availability/Measure 

Study Skills Whether or not a 
student 
demonstrates 
good study skills 
– successful time 
management, 
minimal 
procrastination, 
adequate note-
taking and 
review, course 
engagement, etc. 

Developed 
UnderDeveloped 

1 Expert estimations. 

Academic 
Rank 

Composite index 
value to 
represent 
student’s 
academic 
preparedness.  
Incorporates 
high school 
quality, 
curriculum 
quality, high 
school academic 
record (GPA and 
rank) and 
standardized test 
scores. 

Lowest 
Low 
Medium 
High 
Highest 

2 Data available. 
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Social Support The extent to 
which a student 
is exposed to 
negative or 
positive attitudes 
towards 
retention within 
their social 
network.   

Positive social 
support 
Negative social 
support 

3 Data proxy:  First-
year housing 
placement within a 
dorm floor with 
unusually high first- 
to second-year 
attrition. 

Financial 
Need & Risk 
Profile 

Encompasses 
students’ 
academic 
preparedness, 
high financial 
need, unmet 
need, and 
understanding of 
financial aid 
literacy.   

High (High 
Need/High Risk 
Profile) 
Low (Low 
Need/Low Risk 
Profile) 
 

4 Data available.   

Academic 
Support  

Whether or not a 
student accessed 
academic 
support 
programming.  
Academic 
support 
programming 
includes student-
initiated 
meetings with 
instructors or 
attendance at 
academic 
resource center 
programming. 

None  
Low – Student 
attended at least 
one and less than 
five self-initiated 
meetings with 
instructor or other 
academic support 
programming.   
High – Student 
attended five or 
more self-initiated 
meeting with 
instructor or 
academic support 
programming. 

5 Expert estimation. 

Attendance 
Patterns 

Whether or not a 
student 
consistently 
attends 
scheduled course 
meetings. 

Consistent - attends 
> 80% of course 
meetings 
Inconsistent - 
attends < 80% of 
course meetings 

6 Expert estimation. 
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Distance from 
Home 

Distance, in 
hours, of 
institution from 
student’s 
permanent home 
address 

Within one hour 
More than one hour 

7 Data available. 

Advisor/Major 
Mismatch 

Assignment of 
academic 
advisor 
belonging to an 
academic 
department 
outside the 
student’s 
expressed 
program of 
student interest.   

Advisor/Major 
match 
Advisor/Major 
mismatch 

8 Data available. 

Race/Ethnicity Self-reported, 
federally-defined 
race/ethnicity 
categories.   

Underrepresented 
minority 
International  
Other 

N/A (no 
direct 
influence 
on 
retention) 

Data available. 

 

Formal elicitation of conditional probabilities.  As noted earlier, two of the variables 

included in the interim model did not have associated available quantitative data (“Attendance 

Patterns” and “Academic Support”) and one variable deemed particularly important by previous 

models and experts (“Study Skills”) contained substantial missing data.  Consequently, the 

parameters associated with these variables (their conditional probabilities) were elicited from the 

two experts using formal and rigorous methodology designed to accurately represent the experts’ 

knowledge and minimize bias.  Elicitation techniques followed the best-practice guidelines 

outlined in Kadane and Wolfson (2008) and O’Hagan et al. (2006), and utilized materials and 

software from an expert elicitation framework (SHELF:  the Sheffield Elicitation Framework 

version 2.0) designed by Oakley and O’Hagan (2010).  Kadane and Wolfson described a 

successful elicitation as one in which the researcher assures the process is “as easy as possible 
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for subject-matter experts to tell us what they believe, in probabilistic terms, while reducing how 

much they need to know about probability theory to do so” (p. 4), and this idea was used as a 

guiding principle throughout the session with the experts. 

Prior to the session, the experts were provided with pre-elicitation materials describing 

the purpose and objectives of the upcoming elicitation session, as well as a basic probability 

review and summary of common causes of bias.  The pre-elicitation materials also emphasized 

the important role of uncertainty throughout the process.  The session began with expert review 

of the interim model and its included variables and related operating definitions and rankings 

(see earlier discussion), but the majority of the session focused on the elicitation of probabilities.  

In order to set the stage for the session’s discussions and ensure experts’ proper understandings 

of basic probability theory, the researcher first posed a practice elicitation where a known 

probability was elicited (the retention rate for the 2014 cohort) and the experts were asked to 

describe what that known probability meant in terms of how many students stay, how many 

leave, etc.  The expert also posed a known retention scenario involving conditional probability 

(the likelihood of retention given Pell-eligibility) to gauge and prompt discussion of experts’ 

understanding of conditional probabilities.  Based on expert responses and explanations, the 

researcher determined the experts were prepared to provide estimations of conditional 

probabilities for the three variables in question.   

In accordance with the SHELF materials and guidance, experts were first asked to 

estimate the extreme lower and upper bounds of an overall retention rate, and move inward to 

more likely rates from there.  Oakley and O’Hagan (2010) posited that this technique mitigates 

experts’ overconfidence and encourages experts to consider models outside of what they’re most 

familiar.  In addition to these extreme lower and upper bounds of overall retention rates, the 
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experts provided “medium”, “high,” and “low” estimations of an overall retention rate on which 

they would base their judgements throughout the rest of the session.  As with all estimations 

during the session, the researcher consistently provided feedback (“…given Z, you’re suggesting 

that out of X students, Y wouldn’t return the following fall semester…”) and encouraged experts 

to express their level of confidence and uncertainty in their conclusions.  Additionally, the 

researcher remained mindful of incoherence of judgements, and was prepared to ask experts to 

account for any such incoherence.   

For each variable on which elicitation took place, experts were first asked to estimate the 

current state of each variable given no other information.  For example, as no data were available 

regarding how many students attend courses consistently, experts were first asked to estimate the 

percentage of students consistently attending courses.  This information was entered into a pre-

designed spreadsheet containing conditional probability tables and would ultimately be used to 

simulate the underlying data distributions used in development of the final model.  Experts were 

next asked to provide judgements regarding the conditional probabilities for each variable in 

question.  This topic served as the most intensive in the session, as the number of conditional 

probabilities required grew as the relationships between variables grew.  For example, based on 

the interim model, a full CPT for “Attendance Patterns” involves “Study Skills” and “Retention,” 

while a full CPT for “Academic Support” involves “Race/Ethnicity,” “Study Skills,” and 

“Retention.”  Finally, experts were asked to provide predictions of the probability of retention 

given a number of hypothetical variable scenarios, and their responses were later used as a 

measure of the final model’s internal validity.   

Expert discussion during the conditional probability elicitations revealed a number of 

insights related to model.  For example, the experts expressed a large amount of uncertainty 
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regarding the actual amount of students accessing academic support, but were much more 

confident in estimating the role of accessing academic support on retention.  The experts also 

openly expressed difficulty avoiding availability bias, especially in terms of allowing particularly 

memorable student retention scenarios to overpower more typical situations.  Additionally, the 

experts identified certain probabilistic conditions that, while puzzling to an outside viewer, are 

specifically relevant and unique to the institution.  For example, given the experts’ conclusion 

that students’ study skills exact a heavier influence on likelihood of retention than students’ 

attendance patterns, once would expect a pattern of probability in which, no matter the level of 

attendance, a student with developed study skills is more likely to retain.  However, the experts 

provided a probability distribution in which students with developed study skills who 

inconsistently attend class are less likely to retain than students with underdeveloped study skills 

who do consistently attend (see Table 2.7).  The experts described this as a situation unique to 

the institution, noting that inconsistent course attendance of a student with developed study skills 

is an indicator of a larger, more significant problem that will ultimately lessen the likelihood of 

retention.  It is this type of expert-identified situation that speaks to the value of including expert 

opinion in model development.  If data surrounding these variables were available, this type of 

pattern might be viewed as an anomaly without the experts’ insights.  Without data or the 

experts’ opinions, this particular situation may never have been recognized or represented in a 

model.  See Appendix C for more detail concerning probability elicitation techniques and 

protocol. 
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Table 2.7  

 

Parameter estimation.  After elicitation and collection of conditional probabilities on the 

variables for which no or very little quantitative data were available, the researcher employed a 

hybrid approach to parameterization of the final BN’s nodes.  All variables and structure 

recommended by the experts were maintained in the final model as all of the most influential 

variables included in the original “straw man” model were also somehow represented in the 

expert-generated design (e.g., standardized test scores are incorporated into “Academic Rank” 

variable).  Further, the variables recommended by the experts were also found to have theoretical 

underpinnings in the larger retention literature.  Heretofore unused 2012-2014 cohort data were 

used to parameterize seven of the ten nodes for which data were available.  Following the 

guidance of Woodberry, Nicholson, Korb & Pollino (2005) and Pollino, Woodberry, Nicholson, 

Korb, & Hart (2007), data were simulated through Netica to mirror the conditional probabilities 

elicited from the experts for the unknown variables and then manually input into the CPTs using 

Netica.  The final BN incorporating expert-designed structure and a hybrid data-learned/expert-

learned approach to parameterization is shown in Figure 2.7.  Note that this figure only shows 

the current state of each variable – the dynamic and predictive nature of the model is viewed 

through Netica when adding new case information. 

Elicited Probability of “Retention” Given “Study Skills” and “Attendance Patterns:”  Example of 
Unanticipated Probability Patterns 
Study Skills Attendance Patterns p(Retained) p(Not Retained) 
Developed Consistent 86% 14% 
UnderDeveloped Consistent 83% 17% 
Developed Inconsistent 79% 21% 
UnderDeveloped Inconsistent 77% 23% 
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Figure 2.7.  Final Retention BN. Incorporates hybrid expert- and data-learned construction.   

For example, Figure 2.8 demonstrates the effect on predicted retention for a hypothetical 

student with low levels of social and academic integration.  The student’s degree of social 

integration is reflected by her negative standing on “Social Support” and her academic 

integration is reflected by inconsistent “Attendance Patterns” and no access of “Academic 

Support.”  Viewed within the context of Tinto’s model of retention (the degree to which a 

student is integrated into an institution’s social and academic framework is positively related to 

her likelihood of retention) (Tinto, 1975), this student reflects a high risk of attrition.  This is 

corroborated by the BN, as predicted retention drops from 83.5% to 74.4%.  Table 2.8 

summarizes the model’s retention prediction for a number of scenarios within Tinto’s 

framework.  The final BN suggests that the included population adheres to Tinto’s model in that 

higher degrees of academic and social integration lead to higher likelihood of retention.  

Additionally, reviewing the final BN’s performance in the context of a commonly accepted and 

cited theory of undergraduate retention illustrates the relevance of the model.   
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Figure 2.8.  Final Retention BN, Tinto high attrition risk.  Hypothetical student demonstrates low 
academic integration (inconsistent course attendance and no access to academic support) and low 
social integration (negative social support).  Under Tinto’s model of retention, this student 
represents a high risk of attrition.  Note that probability of retention has decreased from 83.5% to 
74.4%. 
 
 
Table 2.8  
Retention Effects of Variables Related to Tinto’s Model 

 

  

Academic Integration Social 
Integration p(Not Retained) p(Retained) Attendance 

Patterns 
Academic  
Support 

Social 
Support 

Consistent High Positive 11.0% 89.0% 
Inconsistent High Positive 16.8% 83.2% 
Consistent High Negative 13.3% 86.7% 
Inconsistent High Negative 20.1% 79.9% 
Consistent Low Positive 15.6% 84.4% 
Inconsistent Low Positive 25.3% 74.7% 
Consistent Low Negative 18.8% 81.2% 
Inconsistent Low Negative 29.6% 70.4% 
Consistent None Positive 14.9% 85.1% 
Inconsistent None Positive 21.7% 78.3% 
Consistent None Negative 17.9% 82.1% 
Inconsistent None Negative 25.6% 74.4% 
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Results 

As with the original “straw man” model, 5-fold cross-validation was employed in order to 

evaluate the predictive accuracy of the final model.  The confusion matrix for the model is 

presented in Table 2.9.  Over the five folds, the final model predicted likelihood of retention 

correctly in 83.5% (592/709) of cases.  The model misclassified cases 16.5% of the time.  This 

measure of overall model performance suggests a more accurate model than the original “straw 

man” network.  However, a closer look at some of the additional measures of performance that 

can be calculated using the confusion matrix (Table 2.10) reveals that the apparent success of the 

model is tempered by other factors.  For example, while the model’s sensitivity, or true positive 

rate, is high at 98% (when a student is actually retained, the model predicts retention 98% of the 

time), the model’s specificity or true negative rate (when a student is not actually retained and 

the model predicts attrition) suffers at merely 5% (6/116).  Similar issues with specificity and 

false positive rates were present in the original “straw man” model, and are most likely due to the 

highly imbalanced class distribution within the dataset.  Within this population, the vast majority 

of students typically retain – it is a “rare” event that students do not retain and such imbalanced 

datasets lead to model overfit and overstated predictive accuracy (Chawla, 2010).  While this 

doesn’t negate the usefulness of a model, it does require the consideration of other evaluative 

measures.   

Table 2.9 
Confusion Matrix and Error Rate – Final BN 
                Predicted  
Retained 

 
Not Retained 

 
Actual 

586 7 Retained 
110 6 Not Retained 
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Table 2.10 
Common Performance Metrics – Final BN and Original “Straw Man” BN 
Metric Calculation Final 

BN 
“straw 
man” BN 

Accuracy (TP + TN)/All Cases 83.5% 79.7% 
Misclassification 1-Accuracy 16.5% 20.3% 
Sensitivity/Recall/True Positive Rate TP/(TP+FN) 98.8% 96.8% 
Specificity/True Negative Rate TN/(FP+TN) 5.2% 3.1% 
Fall-out/False Positive Rate FP/(FP+TN) or 1-Specificity 94.8% 96.9% 
Precision/Positive Prediction Value TP/(TP+FP) 84.2% 81.8% 
F-value (combined measure of 
precision and recall using harmonic 
mean)a 

 
1 + 𝛽𝛽2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝛽𝛽2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 
90.9% 88.6% 

Note.  TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative 
aFor F-value, see Buckland & Gey (1994),  β represents the importance of precision relative to 
recall and is typically set to 1.   
 

One such measure is the ROC curve, as it presents transparent information about the 

model’s performance in predicting the minority class and is not dependent on class distributions 

(Kotsiantis, Kanellopoulos, Pintelas, 2006).  Figure 2.9 presents a ROC curve showing the final 

BN’s tradeoff between sensitivity and specificity.  While the AUC (.62446) is slightly higher 

than that found in the “straw man” model, it is still low enough to indicate that the model’s 

sensitivity, or ability to correctly predict retention, is only slightly larger than the model’s 

inability to correctly predict attrition.  In other words, the ROC shows that the model’s true 

positive rates are similar to its false positive rates, suggesting that the model is not necessarily 

discriminating between retention and non-retention and that it’s simply mirroring the high 

prevalence of retention within the underlying data.      
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Figure 2.9.  Final BN ROC Curve.  This figure illustrates the model’s relationship between 
sensitivity and specificity (solid line) at different thresholds as compared to an uninformative 
model (dashed line). 
 

This is further confirmed with examination of the model’s Cohen’s kappa coefficient (k), 

a calculation that incorporates the possibility of chance effects into the measure of agreement 

between a model’s prediction and actuality (Rosenfield & Fitzpatrick-Lins, 1986).  Cohen’s 

kappa coefficient is described Equation 2.3, where P(a) is the proportion of correctly predicted 

cases and P(e) represents the hypothetical probability of a chance agreement.    

 
𝑘𝑘 =

𝑃𝑃(𝑎𝑎) − 𝑃𝑃(𝑒𝑒)
1 − 𝑃𝑃(𝑒𝑒)

 
(2.3) 
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The final model’s kappa coefficient equals .062, indicating that classification agreement is most 

likely due to chance as there is only 6.2% agreement above what is expected by chance alone.  In 

other words, there is little difference between the model’s correct prediction and what might be 

predicted due to chance alone.  Again, this is most likely the result of imbalanced data with a 

high prevalence of retention.   

An analysis of sensitivity of the “Retained” node to the other predictive nodes (Table 

2.11) reveals a substantial amount of uncertainty still unexplained by the final BN.  While the 

two most influential variables (“Academic Rank” and “Financial Need & Risk Profile”) do 

explain away a slightly greater amount of the uncertainty of likelihood of retention (as expressed 

in the Mutual Info column) than found in the “straw man” model, it is notable that the total 

amount of retention uncertainty explained in the final BN (8.56%) is less than that in the original 

“straw man” model (13.04%).  However, as explained earlier, the particularly influential 

variables included in the “straw man” model (SAT scores) are incorporated into the composite 

“Academic Rank” variable in the final BN, suggesting that they are still represented in a 

parsimonious model while also allowing room for other variables deemed important by the 

experts.   

Table 2.11 
Sensitivity Analysis of "Retained" to Other Variables Included in Final BN 
Variable Mutual Info Percent Variance of Beliefs 
Academic Rank .0207 3.21 .0043 
Financial Need & Risk Profile .0180 2.80 .0037 
Study Skills .0059 .91 .0011 
Attendance Patterns .0041 .63 .0008 
Academic Support .0028 .44 .0005 
Distance from Home .0023 .36 .0004 
Social Support .0011 .17 .0002 
Advisor Match/Mismatch .0003 .04 .0000 
Race/Ethnicity .0000   
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Examining Table 2.11 also reveals consensus and conflict with the final influence ratings 

assigned to the variables by the experts.  The model confirms the importance of “Academic 

Rank” and “Study Skills” in predicting retention, but places other variables deemed important by 

the experts (“Social Support,” “Academic Support”) lower in the scale of influence.  Note that 

“Race/Ethnicity” was purposely not included as a direct influence on retention, and this is 

represented accordingly with zero mutual information.  A look at the sensitivity of each 

individual node with other nodes (see Appendix D) is also helpful in evaluating the experts’ 

recommended structure.  For example, “Academic Rank” is highly sensitive to “Financial Need 

& Risk Profile,” suggesting that the assumption of conditional independence among these two 

nodes may need to be further investigated.  In another example, while the experts opined that 

students’ race/ethnicity influenced both “Academic Support” and “Social Support,” sensitivity 

findings of “Race/Ethnicity” to other nodes find that it is merely related to “Academic Support.”   

Recommendations to review a model’s sensitivity to changes in informative priors are 

also included in the literature (Gill, 2009; Reimherr, Meng, & Nicolae, 2014).  Recall that three 

of the nodes included in the final model are comprised of expert-elicited probabilities that serve 

as the informative prior (“Study Skills,” “Attendance Patterns,” and “Academic Support”).  In 

order to evaluate the impact of these prior choices, each of these three nodes were set to uniform 

probability distributions (indicating equally likely states) and the resulting models were 

compared to the final BN in terms of inference.  Unsurprisingly, the expert-elicited priors do 

heavily influence outcomes predicted by the model.  For example, imposing the same Tinto high 

attrition scenario as described in Figure 2.8 on a model in which all of the expert-elicited priors 

are considered uniform results in predicted probability of retention of 82% compared to 74% 
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when using the informative priors.  Conceding the importance of these priors on conclusions that 

can be drawn from the final model further highlights the importance of careful elicitation. 

Table 2.12 summarizes the final model’s complexity measures.  The final model is 

slightly less complex than the original “straw man” model, and should be considered 

parsimonious and not overly complex.  This simplicity is advantageous for explaining and 

demonstrating the model’s use to various audiences. 

Table 2.12 
Final BN Model Complexity Metrics 
Metric Count 
Nodes 10 
Links 15 
Node States 25 

 
A final evaluative measure of the final model surrounds examination of its internal 

validity as measured by whether or not the model performs as expected by the experts.  The 

incorporation of expert information in the development of the final BN’s structure as well as 

select parameters requires that some evaluation of the model’s capacity to adequately reflect the 

experts’ expectations take place.  During the second elicitation session experts were asked to 

hypothesize the probability of retention given a number of scenarios.  The scenarios chosen for 

testing were done so based on discussions during both elicitation sessions and focused on expert 

indications of important and influential variables or situations unique to retention at the 

institution.  Comparison of the experts’ predicted retention rates with those resulting from 

imposition of the case scenarios on the final model reveals varied results and is summarized in 

Table 2.13.  Large differences between the experts’ and final BN predictions appear to be a result 

to two main factors:  Systematic under-prediction by the experts and disagreement between the 

variables deemed most influential by the experts and the model.  For example, the experts 

considered “Financial Need & Risk Profile” to be only mildly influential on retention, while the 
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model found it to be a top predictor.  The difference between expert and model prediction in 

scenario four is due to this disagreement – the model recognizes the large impact of a high 

“Financial Need & Risk Profile” on retention, while the experts discounted this influence.  

Similarly, differences in the predictions for scenario six reflects the experts’ expectation that 

negative “Social Support” heavily influences retention and the model’s estimation that any 

impact of negative “Social Support” is greatly outweighed by high “Academic Rank” and 

developed “Study Skills.”    

Table 2.13 
Comparison of Final BN Predictions and Expert-Elicited Predictions of Retention Given 
Different Scenarios 
Scenario:  What is the probability of retention, given: Expert 

Prediction 
Final BN 
Prediction 

1. Within an hour, strong academic background, developed study 
skills 

85% 89% 

2. More than an hour, strong academic background, developed 
study skills 

88% 92% 

3. Underdeveloped study skills, moderate academic background, 
consistent class attendance and positive social support 

84% 85.5% 

4. Underdeveloped study skills, low academic rank, high 
financial need/risk profile 

79% 74.5% 

5. Developed study skills, high academic rank, high financial 
need/risk profile 

85% 57%a 

6. Developed study skills, high academic rank, within an hour, 
low social support 

80% 90% 

7. Underdeveloped study skills, low academic rank, within an 
hour, low social support 

79% 80% 

aUnreliable result due to very few examples of this scenario found in underlying or simulated 
data  

 

In summary, cursory measures of predictive accuracy reveal a fairly strong final model.  

However, closer examination of other evaluative measures indicate challenges due to imbalanced 

training data with a strong prevalence of retention over attrition.  The model is particularly weak 

in classifying the “rare” cases of attrition, with a high rate of false positive classifications of 

retention.  In terms of sensitivity, very few of the included variables explain an adequate amount 
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of uncertainty in the model, but those that are most influential were also weighted heavily by the 

experts.  Issues of the model’s internal validity in terms of agreement with experts’ predictions 

center on these same disagreements in expert and model weightings, although some predictions 

were very close.   

Conclusion 

This study was designed to explore two main ideas:  Using the literature, data, and expert 

information to identify important causal influences on retention, and employing a hybrid data- 

and expert-learned approach to constructing a Bayesian network that adequately predicts 

retention.  While the predictive power of the final BN created using a combination of expert 

information and data suffers from imbalanced training data, the employment of experts in the 

identification, discussion, and quantification of influential retention variables can be considered 

successful.  Regardless of the research outcomes, both stages of the research revealed that the 

process of incorporating expert information into designing models adds a level of insight and 

institutional knowledge that might otherwise be unrecognized.   

Identification of Retention Variables 

The development of a Bayesian network incorporating both expert knowledge and prior 

data allows for an individualized model that is specific to the institution, reflecting its student 

population, culture, and other characteristics.  As Robbins et al. (2004) explained, relying solely 

on research literature to guide the choice of variables is limiting as “the research literature ranges 

across many psychological and educational content domains, which dampens efforts at 

integrating or evaluating the empirical literature…”  (p. 262).  Combining data and expert 

knowledge introduces insights that might otherwise be unrecognized or unacknowledged within 

the presence of only one of these sources of information.  The experts identified patterns that 
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were unique to the institutions (e.g. greater distance from home correlates with higher retention, 

students with highly developed study skills and inconsistent course attendance trigger more 

significant retention red flags than students with less developed study skills), and were able to 

parse among the numerous retention prediction variables found in the literature to suggest a 

simple and parsimonious model structure.  While data-mining procedures may have ultimately 

identified these unexpected patterns, preemptory knowledge of such institution-specific events 

allows for more directed and efficient modeling and evaluation.   

In future iterations or replications of this research, it is recommended that the elicitation 

facilitator be very familiar with the research topic and its coverage within the wider scholarly 

literature.  Extensive background knowledge on the part of the facilitator helps maintain focus 

during discussions with experts, and allows everyone involved in the discussion to speak the 

same topical language.  It is equally important to spend ample time on collaboratively 

developing and finalizing explicit operating definitions for the identified variables.  Recognition 

of the importance of this might have resulted in fewer changes in the variables’ definitions 

between elicitation sessions one and two and redirected valuable discussion time in elicitation 

session two from finalizing operating definitions to actual performance of the model (see the 

change in “Academic Support” as an example).  Finally, it is highly recommended that, given 

experts’ and researchers’ limited time and resources, all elicitation sessions be accompanied by 

pre-elicitation materials outlining the sessions’ expectations, goals, and even a timed agenda.  

Keeping the session on track and focused is critical in producing usable and relevant information 

within an often limited timeline.    
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Construction and Performance of BNs   

The process of model construction revealed a number of insights.  In terms of expert 

participation, discussions during both elicitation sessions confirmed a high amount of consensus 

and agreement among the two experts.  For example, comparison of the individually drafted 

structures that were ultimately transformed into the expert-elicited structural model exposed 

striking agreement between the experts’ understandings of the causal influences and 

relationships between retention variables.  Similar consensus was found during the probability 

elicitations, particularly in terms of expressions of uncertainty and concerns over bias.  While 

expert solidarity does not necessarily assure expert accuracy or precision, it does provide 

reassurance of consistent opinion.   

As addressed earlier, the final BN’s performance suffers in terms of identifying and 

predicting non-retention.  This is particularly troubling considering that it is this specific group 

of students, those at risk of not returning, in whom model stakeholders are most interested.  This 

finding highlights the importance of in-depth model evaluation outside of simple predictive 

accuracy.  Perhaps due to the capability of BNs to handle scarce data and uncertainty, thus 

making evaluation and validation more difficult, many studies involving BNs simply do not 

include quantitative model evaluation (Aguilera, Fernández, Fernández, Rumi, & Salmerón, 

2011).  Without evaluation of the additional metrics described in Table 2.9, the false positive 

classification issues resulting from imbalanced dataset would have gone unnoticed and an 

inadequate model would be adopted by stakeholders for use in decision-making and intervention.   

Finally, model construction confirmed the importance of carefully considering variable 

operating definitions and the assignment of underlying data to less-than-certainly defined 

variables.  For example, analysis of node sensitivity (Table 2.10) revealed conflict between data-
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learned and expert-anticipated importance of certain variables like “Social Support.”  This 

finding does not unilaterally negate the experts’ opinions that positive or negative social support 

plays an important role in influencing retention.  Rather, it could simply mean that the data used 

to parameterize this variable (whether or not a student lived on a dorm floor that had unusually 

high attrition) was not particularly descriptive of or relevant to what experts’ perceive as social 

support.  Again, this finding emphasizes the importance of comprehensive model evaluation, 

including analysis of sensitivity and unexpected results.   

Use of a formalized elicitation framework like SHELF proved invaluable to 

accomplishing the goals of the probability elicitation session within a limited timeframe.  

Additionally, use of a spreadsheet pre-populated with formulas that could be used to quickly 

demonstrate the conditional probabilistic impact of elicited distributions on the variables pleased 

the experts and allowed them additional opportunities for feedback and revision.  As a major 

goal of any elicitation of expert information is to assure that the opinions of experts are 

communicated and received clearly and accurately, it is recommended that preparation of such 

materials and tools be repeated in any future iterations or replications of this research.   

Importance of Process 

While the final BN includes major limitations concerning its current usefulness for 

predicting retention or acting as an early intervention tool, it is important to recognize that the 

process of model development can be considered as important as the final model itself.  Those 

involved in shaping the decisions and policies related to a predicted behavior are required to 

formally discuss and articulate influential factors.  These formal discussions result in a deeper 

understanding of the problem at hand, allowing decision-makers to set future priorities for 

resource allocation, data collection, and additional study.  In other words, the process of 
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reviewing the literature and shaping a model, especially in the first elicitation session, revealed a 

large number of variables that the experts think the institution should be tracking.  For example, 

the experts were confident that whether or not a student accessed academic support programming 

affects likelihood of retention.  However, the formal structural and probability elicitations 

required them to trouble this anecdotal and somewhat vague conclusion and operationally define 

and quantify student access to academic support programming and its implications.  Further, the 

elicitation revealed a lack of quantitative data surrounding an activity that the experts feel is an 

important factor in predicting retention.  Given their expressed uncertainty about the prevalence 

and definition of the “Academic Support” variable, it became clear that collection of quantitative 

data related to student access to academic support programming and retention should be initiated 

in order to support or negate the expert intuition.  Even variables for which data were available 

included concerns of whether or not they were the “correct” data for describing a condition (see 

earlier discussion of “Social Support”).  Any and all formal consideration and discussion of these 

types serves to only increase the knowledge-base and awareness of retention issues, thus setting 

the stage for even better model construction and utilization.   

Limitations and Future Study 

A major advantage of the use of BNs is their capacity to adapt to new information.  As 

cohorts mature and new data are gathered, these data can be added as new cases from which the 

model will learn.  Parameters can easily be updated given new insights from data or additional 

experts, and the model will reflect different predictions given a changing student body and other 

new information.  Given emphasis on non-cognitive influences found in the most recent retention 

literature, particular attention will be paid to inclusion of these types of variables.  Future 

versions of the model will be re-presented to experts for review and evaluation, as well as 
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elicitation of any structural and probabilistic shifts that may arise.  Maintaining an open feedback 

loop with the experts through model creation, evaluation and refinement is critical, and will be 

employed going forward.  As recommended by Pollino, Woodberry, Nicholson, Korb, & Hart 

(2007), an unaffiliated third party reviewer may be brought in to review and evaluate any future 

expert-elicited CPTs.   

However, as attrition is already a “rare” event, and may grow even rarer as additional 

focus and resources are allocated towards increasing retention, the problems created by such 

imbalanced data will not be alleviated.  In order to create a more adequate predictive BN, it is 

necessary to explore alternatives to traditional training/testing data sets for parameterizing the 

variables for which data are available.  Future proposed study involves the investigation of 

sampling strategies that are designed to mitigate the influences of imbalanced data.  A number of 

authors review and recommend strategies for handling imbalanced data sets within the context of 

classification, ranging from simple over/under-sampling to more complex algorithmic 

approaches (Chawla, 2010; Kotsiantis, Kannellopoulos, Pintelas, 2006; Weiss & Provost, 2003), 

as well as quantification of the costs of misclassification (Japkowicz & Stephen, 2002; Monard 

& Batista, 2002).  Comparison of these approaches based on model performance metrics like 

those summarized in Table 2.9 are planned for future study.  

Additionally, future study will include more model comparison in general.  As more data 

become available, a comparison of the performance, complexity, and sensitivity of strictly data-

learned, strictly expert-informed, and even hybrid constructed models would offer additional 

insights into the understanding and reliability of experts, the quality of retention-related data, and 

the interaction between both these sources.  Metrics of model comparison include Bayesian 
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Information Criterion (BIC) (Schwarz, 1978) and Minimum Description Length (MDL) 

(Rissanen, 1996).   

A further option for future study involves contrasting BN performance and advantages 

against those of logistic regression and other forms of discriminant analysis.  While logistic 

regression is often used as a technique for prediction and classification, the inclusion of experts 

without extensive experience in statistical methodology, the transparent depiction of uncertainty, 

and the user-friendly graphical and dynamic representation of variable relationships in a BN 

called for the exploration of its usefulness in this research.  Depending on the type and nature of 

the predicted variable, the performance of BNs versus logistic regression is mixed (Ducher et al., 

2013; Schmeits & Kok, 2010).  However, simply the act of comparing performance and other 

aspects of predictive BNs to logistic regression models offers an opportunity for insights related 

to overfitting, missing data, and variable importance that can be helpful in selecting and 

defending model choice (Roos, Wettig, Grünwald, Myllmäki, & Tirri, 2005; Tu, 1996). 

While the limitations introduced by imbalanced and unavailable training/testing data are 

important and encourage further study, it is important to consider that a major contribution of 

this study lies within the lessons learned through the process of combining expert and 

quantitative data.  Initiating and maintaining formal elicitation practices that reinforce focus and 

discipline during sessions, allowing experts to quickly view their judgements’ implications, and 

prioritizing the development of clear and detailed operating definitions are recommendations 

generalizable to other studies formally incorporating expert judgements of any subject-matter.  

Additionally, this research stresses importance of complete model evaluation in any context as a 

critical step, the exclusion of which could lead to seriously flawed conclusions.  Most 

importantly, the flexibility and usefulness of a Bayesian networks in the incorporation of unique 
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and valuable expert judgement, often minimized or ignored, is highlighted.  While data-mining 

has its advantages and place within predictive modeling, BNs allow for the combination of both 

sources while still transparently accounting for uncertainty in a format that is easily understood 

and employed by multiple audiences.    
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APPENDICES  

Appendix A 

Table A1 
Variables Commonly Cited as Influences on Retention and Examples in the Literature 
Broad Category Predictors Literature Examples 
Student 
Characteristics 
 (Pre-College) 

Race-Ethnicity Scott , Bailey, & Kienzl, 2006 
Webber & Ehrenberg, 2010 
Pike, Hansen, & Childress, 2014 

Gender Pike, 2013 
Scott , Bailey, & Kienzl, 2006 
Webber & Ehrenberg, 2010 

Socioeconomic 
Status/Pell Eligibility 

Hosch, 2008 
Webber & Ehrenberg, 2010 
Pike, Hansen, & Childress, 2014 

First Generation  Thayer, 2000 
Longwell-Grice & Longwell-Grice, 
2008 
Soria & Stebleton, 2012 

Pre-College  
Academic 
Records 

High School GPA Waugh, Micceri, & Takalkar, 1994 
Adelman, 1999 
Fredricks, Blumenfield, & Paris, 2004 
ACT, 2010 

Standardized Achievement 
Test Scores 

Kahn & Nauta, 2001 
Reason, 2003 
Lotkowski, Robbins, & Noeth, 2004 
Astin & Oseguera, 2005 

Class Rank Adelman, 1999 
Student 
Characteristics 
(College) 

Financial Support/Ability to 
Pay 

Titus, 2006 
Astin & Oseguera 

Socioeconomic Status/Pell 
Eligibility 

Hosch, 2008 
Webber & Ehrenberg, 2010 

Remediation/Remedial 
Courses 

Roska, Davis, Jaggars, Zeidenberg, &  
Cho, 2009 
Scott-Clayton & Rodriguez, 2015 

Academic Engagement  Beck & Davidson, 2001 
Bowen, Chingos, & McPherson, 2009 

Self-Efficacy/Personality Boulter, 2002 
Chemers, Hu, & Garcia, 2001 
Tross, Harper, Osher, & Kneidinger, 
2000 

Study Skills Robbins, Lauver, Le, Davis, Langley, & 
Carlstrom, 2004 

Attendance Patterns Harrington & Fogg, 2009 
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First-Year Academic 
Performance 

Makuakane-Drechsel & Hagedorn, 2000 
Kiser & Price, 2008 

Commuter/Boarder Ryan, 2004 
Scott , Bailey, & Kienzl, 2006 
Hosch, 2008 

Distance from Home Bista & Foster, 2011 
Full-Time/Part-Time Bean & Metzner, 1985 

Reason, 2003 
Social Support DeBerard, Spielmans, & Julka, 2004 

Wilcox, Winn, & Fyvie-Gauld, 2005 
Eckles & Stradley, 2011 

Social 
Involvement/Engagement 

Hurtado & Carter, 1997 
Winston & Zimmerman, 2004 
Hausmann, Schofield, & Woods, 2007 

Institutional 
Characteristics 

Institutional Control Ryan, 2004 
Astin & Oseguera, 2012 
Pike, 2013 

Institutional Selectivity Gansmer-Topf & Schuh, 2006 
Astin & Oseguera, 2012 

Academic Support Ryan, 2004 
Oseguera & Rhee, 2009 
Pike, 2013 

First-Year Programs Porter & Swing, 2006 
Howard, 2013 

Institutional Mission Titus, 2004 
Astin & Oseguera, 2012 
Seidman, 2012 
Pike & Graunke, 2015 

Institution Size Ryan, 2004 
Pike, 2013 

Organizational Behavior Berger, 2001-2002 
Kuh, 2001-2002 

Focus on Retention Bonous-Hammarth, 2000 
Longden, 2006 
Oseguera & Rhee, 2009 

Campus Climate Berger & Milem, 2000 
Titus, 2004 
Oseguera & Rhee, 2009 
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Appendix B 

Structure Elicitation Session Worksheet 

Variable General 
Variable  
Category 

Proposed Operating 
Definition 

Variable Classes Causal 
Influence 
(Retention) 

Causal 
Influence 
(Other 
Variables) 

Conditional 
Independence 

Variable Weight 

Which variables can be 
considered direct causes of 
retention/attrition?  Which 
variables are considered 
indirect causes of 
retention/attrition as they 
actually influence other 
included variables? 

Does a 
student’s state 
on variable X 
give you a lot 
of information 
about how they 
might be 
represented on 
(non-output) 
variable Y? 

Please rank the 
included 
variables in 
terms of 
ultimate 
influence on 
retention – 
identify the 
strongest and 
weakest and 
move inward 
from there. 

Gender Student 
Characteristics  
(Pre-College) 

Self-identified gender Male/Female    

Socioeconomic 
Status/Pell 
Eligibility 

Student 
Characteristics  
(Pre-College) 

Pell eligibility acts as 
a proxy for 
socioeconomic status.  
Students eligible for 
Federal Pell Grants 
are considered low 
income/high financial 
need.     

Pell eligible/Not 
Pell eligible 
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Race-Ethnicity Student 
Characteristics  
(Pre-College) 

Federally-defined 
race/ethnicity 
categories, as 
reported by student 
off Common 
Application.   

IPEDS 
Race/Ethnicity 
Categories 

   

First 
Generation 

Student 
Characteristics  
(Pre-College) 

Self-reported and 
defined in Common 
Application as an 
individual both of 
whose parents did not 
complete a 
baccalaureate degree, 
or, in the case of an 
individual who 
regularly resided with 
and received support 
from only one parent, 
an individual whose 
only such parent did 
not complete a 
baccalaureate degree. 

First Generation/ 
Not First 
Generation 

   

High School 
GPA 

Academic 
Preparation  
(Pre-College) 

High school GPA 
used to determine 
admission eligibility - 
this is calculated 
from a student's high 
school transcript, but 
only using certain 
courses of interest to 
admitting institution.  

0.0-.99 
1.0-1.99 
2.0-2.99 
3.0-4.0 
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Standardized 
Achievement 
Test Scores 

Academic 
Preparation  
(Pre-College) 

ACT or SAT scores 
typically used for 
admissions decisions.  
SAT Scores consist 
of Critical Reading, 
Math, and Writing 
Components.  ACT 
Composite score 
calculated from 
scores on English, 
Math, Reading, and 
Science tests. 

TBD     

Class Rank Academic 
Preparation  
(Pre-College) 

Rank among high 
school class - 
typically presented as 
percentile. 

TBD     

Financial 
Support/Ability 
to Pay 

Student 
Characteristics  
(College) 

Percent of FAFSA-
determined need met 
by institution 

0-50% 
51-75% 
76-100% 

   

Socioeconomic 
Status/Pell 
Eligibility 

Student 
Characteristics  
(College) 

Pell eligibility acts as 
a proxy for 
socioeconomic status.  
Students eligible for 
Federal Pell Grants 
are considered low 
income/high financial 
need.     

Pell eligible/Not 
Pell eligible 

   

Remediation/ 
Remedial 
Courses 

Student 
Characteristics  
(College) 

Elementary courses 
required as a 
prerequisite to 
college-level 
coursework. 

Participation/No
n-Participation 
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Academic 
Engagement 

Student 
Characteristics  
(College) 

Frequency of:  
student interaction 
with faculty, 
insightful, co-
curricular 
contribution to class 
discussions, synthesis 
of coursework. 

TBD     

Study Skills Student 
Characteristics  
(College) 

Activities necessary 
to organize and 
complete school work 
tasks, and prepare for 
and take tests, 
including time 
management, test 
taking skills, using 
information 
resources, taking 
notes in class and 
interacting with 
faculty. 

TBD     

Attendance 
Patterns 

Student 
Characteristics  
(College) 

Whether or not a 
student consistently 
attends scheduled 
classes. 

Yes = 75% of 
classes? 

   

First-Year 
Academic 
Performance 

Student 
Characteristics  
(College) 

Cumulative GPA at 
the end of first 
academic year.  Or 
first academic 
semester? 

0.0-.99 
1.0-1.99 
2.0-2.99 
3.0-4.0 

   

Commuter/ 
Boarder 

Student 
Characteristics  
(College) 

Whether or not a 
student resides in 
campus housing 
during first year.  

Yes/No    
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Distance from 
Home 

Student 
Characteristics  
(College) 

Distance from 
students main 
family/caregivers.   

0-1 hours 
More than 1 
hour, less than 2 
More than 2 
hours, less than 
4 
More than 4 
hours 

   

Full-Time/Part-
Time 

Student 
Characteristics  
(College) 

Full time enrollment 
indicated by twelve 
or more hours during 
both first-year 
semesters.   

Full-time/Part-
time 

   

Social Support Student 
Characteristics  
(College) 

Integration with, and 
emotional support 
received by, friends 
in the first year of 
college. 

TBD     

Social 
Involvement/ 
Engagement 

Student 
Characteristics  
(College) 

Integration into and 
participation in social 
activities (college-
wide and residential) 
that fosters a sense of 
belonging.   

TBD     

Institutional 
Control 

Institutional 
Characteristics 

Whether or not an 
institution is privately 
controlled or part of a 
public system. 

Private/Public    

Institutional 
Selectivity 

Institutional 
Characteristics 

The level at which 
applying students are 
typically  admitted.  
More selective 
institutions have 
lower admission rates 
and higher pre-

50-65% 
66-75% 
76-100% 
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college academic 
admissions 
requirements. 

Academic 
Support 

Institutional 
Characteristics 

The extent to which 
an institution 
provides and 
promotes academic 
support to first-year 
students.   

TBD    

First-Year 
Programs 

Institutional 
Characteristics 

Whether or not an 
institution provides 
programming aimed 
at first-year students, 
and the extent to 
which these are 
supported, promoted 
and sustained. 

Yes/No    

Institutional 
Mission 

Institutional 
Characteristics 

The educational 
mission of the 
institution, as 
measured by 
persistence goals.  
The persistence goals 
of a community 
college are very 
different than those 
of a four-year 
institution.   

Focus on 
Persistence/No 
Focus on 
Persistence 

   

Focus on 
Retention 

Institutional 
Characteristics 

The extent to which 
an institution has 
prioritized retention, 
as measured by 
staffing and 
programming geared 

Prioritized 
Retention/Not 
Prioritized 
Retention 
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towards increasing 
retention and 
graduation rates.   

Campus 
Climate 

Institutional 
Characteristics 

Culture in which 
students feel valued 
and empowered by 
campus peers, 
faculty, and 
administration 

Positive Campus 
Climate/ 
Negative 
Campus Climate 
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Appendix C 

Examples of Elicitation Session II Materials & Technique 

Appendix C.1 - Pre-Elicitation Materials (Provided One Week Prior to Elicitation Session II) 

Elicitation Date/Time:  Thursday, December 17, 2015, 9:00 – 11:00 am (Jenn’s Office) 

Participants:  Jennifer Cannady, Machamma Quinichett, Corey Dunn (facilitator) 

Objectives: 

1.  Review and critique interim model incorporating proposed structure and variables 

from first elicitation session 

2.  Obtain probability distributions that represent experts’ experience and uncertainty 

about specific variables related to retention (see highlighted variables in attached list 

of variables included in model) 

3.  Review resulting model specifications 

 

Elicitation of Probabilities Notes: 

• You will not be asked to provide single estimates of probabilities 

• You will be asked to discuss plausible ranges of probabilities for each uncertain 

variable, and whether or not some values are more likely than others 

• Uncertainty is part of the process – feel free to express your uncertainty 

 

Common Causes of Bias to Avoid: 

• Availability – easier-to-recall occurrence may incorrectly be deemed more 

important or likely.   
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o Example:  Notable exceptions, students to whom experts were more 

familiar, etc. 

• Representativeness - similarity doesn’t necessarily mean events are 

probabilistically related.  The conjunction of two events can’t be more probable 

than either event separately. 

o Example: expert suggesting that the likelihood that a student has unmet 

need and is retained is greater than the likelihood that a student has unmet 

need. 

o Particularly relevant to the elicitation of conditional probabilities 

• Adjustment & Anchoring – experts may calculate probability based on an initial 

value 

• Overconfidence 

• Hindsight Bias – experts who have seen sample data may let it influence their 

opinion 
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Appendix C.2 - Probability Review Provided to Experts (Provided One Week Prior to Elicitation 
Session II) 

 

Probability – measure of the likelihood of a random phenomenon or chance behavior.  
Describes the long-term proportion with which a certain outcome will occur in situations with 
short-term uncertainty. 

• Probabilities are numbers between zero and one – the closer it is to one, the more likely 
the event is to occur. 

• Computing Probability Using the Classical Method: 
 If an experiment has n equally likely outcomes and if the number of ways that an event E 

can occur is m, then the probability of E, P(E), is  

𝑃𝑃(𝐸𝐸) =  
number of ways that 𝐸𝐸 can occur

number of possible outcomes
=  

𝑚𝑚
𝑛𝑛

 

 
Subjective probability of an outcome is probability obtained on the basis of personal judgment.  

Experts will be asked to provide estimates of subjective probability. 
• Independence – two events E and F are independent if the occurrence of event E in a 

probability experiment does not affect the probability of event F.  
• Example – obtaining heads on first coin toss has no effect on the likelihood of 

obtaining heads on second toss. 
• Dependence – two events are dependent if the occurrence of event E in a probability 

experiment affects the probability of event F.   
• Example – the likelihood of higher career earnings is related to education level. 

 
Conditional Probability – the probability that event F occurs, given that the event E has 

occurred 
P(F|E) – the probability of event F given event E 

• Very important concept in our retention model 
 
Important Rules of Probability 

• The probability of any event must be between 0 and 1, inclusive. If we let E denote any 
event, then 0  ≤ P(E) ≤ 1. 

• The sum of the probabilities of all outcomes must equal 1. 
• If E and F are independent events, then P (E and F) = P(E) * P(F)  (Multiplication 

Rule) 
• If E and F are any two events, then 

𝑃𝑃(𝐹𝐹|𝐸𝐸) =  
𝑃𝑃(𝐸𝐸 and 𝐹𝐹)

𝑃𝑃(𝐸𝐸)
 

• The probability of event F occurring, given the occurrence of event E, is found by 
dividing the probability of E and F by the probability of E.   (Conditional Probability 
Rule) 

• Two events E and F are independent if P(E|F) = P(E) or, equivalently, if P(F|E) = P(F).  
(Conditional Independence) 
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Appendix C.3 - Probability Elicitation Protocol – “Attendance Patterns” Example 

 

In our earlier session, you indicated that Attendance Patterns are related to Retention, but 

are also affected by a student's Study Skills.  As of yet, we don't have any data or data proxy to 

quantify students' attendance patterns.  

 

First, let's talk about what you think about students’ attendance patterns, given no other 

information.  We’ve defined attendance of more than 80% of courses as "Consistent."  Let’s talk 

about how attendance is related to retention - given a student consistently attends courses, what 

is the likelihood that they'll retain (given no other knowledge at this point)?  What is your level 

of confidence in this? 

 

We also talked about how attendance patterns are influenced by study skills - now I'm 

going to ask you to think about attendance patterns as the effect and Study Skills as the cause.  

Given a student has Developed Study Skills, what is the probability that they will consistently 

attend class?  What is your confidence in this estimate?  Do you think that this influence is strong 

or weak? 

 

Now, we need to pull this whole line of influence together - let's talk about the 

probability of retention given SS and AP… 
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Questions:  

Given a student has Developed SS and Consistent AP, what is an estimate of a high/low/medium 

probability they'll retain? 

 

Given a student has UnderDeveloped SS and Consistent AP, what is an estimate of a 

high/low/medium probability they’ll retain? 

 

Given a student has Developed SS and Inconsistent AP, what is an estimate of a 

high/low/medium probability they’ll retain? 

  

Given a student has UnderDeveloped SS and Inconsistent AP, what is an estimate of a 

high/low/medium probability they'll retain? 

 

Remember your conclusions about the strong/weak influences on Retention - if you think 

that developed study skills are more influential on retention than consistent attendance patterns 

(as you indicated in initial session), make sure that the probabilities reflect this.   
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Appendix D 

Table D1 
Final BN Node Sensitivities 
 Node Mutual Info Percent Variance of 

Beliefs 

Sensitivity of 
“Retained” to a 
finding at 
another node: 

Academic Rank 
 

.02072 3.21 .0042552 

Financial Need 
& Risk Profile 

.01804 2.8 .0037342 

Study Skills 
 

.00585 .907 .0011329 

Attendance 
Patterns 

.00405 .628 .0008366 

Academic 
Support 

.00284 .44 .0005185 

Distance from 
Home 

.00234 .363 .0004477 

Social Support 
 

.00112 .174 .0002162 

Advisor/Major 
Mismatch 

.00028 .043 .0000524 

Race/Ethnicity 
 

.00000 0 .0000000 

Sensitivity of 
“Study Skills” to 
a finding at 
another node: 

Attendance 
Patterns 

.01431 1.47 .0048639 

Academic 
Support 

.01427 1.47 .0047703 

Retained 
 

.00585 .602 .0019775 

Academic Rank 
 

.00018 .0189 .0000612 

Financial Need 
& Risk Profile 

.00016 .0166 .0000537 

Distance from 
Home 

.00002 .00199 .0000064 

Social Support 
 

.00001 .000959 .0000031 

Advisor/Major 
Mismatch 
 

.00000 .000234 .0000008 

Race/Ethnicity 
 

.00000 0 .0000000 

Sensitivity of 
“Race/Ethnicity” 

Academic 
Support 

.01741 1.3 .0045111 

190 
 



 

to a finding at 
another node: 

Social Support 
 

.00000 0 .0000000 

Attendance 
Patterns 

.00000 0 .0000000 

Distance from 
Home 

.00000 0 .0000000 

Advisor/Major 
Mismatch 

.00000 0 .0000000 

Academic Rank 
 

.00000 0 .0000000 

Study Skills 
 

.00000 0 .0000000 

Financial Need 
& Risk Profile 

.00000 0 .0000000 

Retained 
 

.00000 0 .0000000 

Sensitivity of 
“Distance from 
Home” to a 
finding at 
another node: 

Retained 
 

.00234 .235 .0008069 

Academic Rank 
 

.00007 .00731 .0000250 

Social Support 
 

.00007 .00679 .0000232 

Financial Need 
& Risk Profile 

.00006 .00642 .0000219 

Study Skills 
 

.00002 .00195 .0000066 

Attendance 
Patterns 

.00001 .00144 .0000049 

Academic 
Support 

.00001 .000892 .0000030 

Advisor/Major 
Mismatch 

.00000 .00000 .0000003 

Race/Ethnicity 
 

.00000 0 .000000 

Sensitivity of 
“Attendance 
Patterns” to a 
finding at 
another node: 

Study Skills 
 

.01431 2.4 .0025088 

Retained 
 

.00405 .679 .0007532 

Academic 
Support 
 

.00025 .0415 .0000429 

Academic Rank 
 

.00013 .0226 .0000233 

Financial Need 
& Risk Profile 

.00012 .0198 .0000205 
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Distance from 
Home 

.00001 .0024 .0000025 

Social Support 
 

.00001 .00115 .0000012 

Advisor/Major 
Mismatch 

.00000 .000288 .0000003 

Race/Ethnicity 
 

.00000 0 .000000 

Sensitivity of 
“Academic 
Support” to a 
finding at 
another node: 

Race/Ethnicity 
 

.01741 1.13 .0031333 

Study Skills 
 

.01427 .93 .0025795 

Retained 
 

.00284 .185 .0003825 

Attendance 
Patterns 

.00025 .0161 .0000402 

Academic Rank 
 

.00008 .0055 .0000122 

Financial Need 
& Risk Profile 

.00007 .00483 .00000107 

Distance from 
Home 

.00001 .000578 .0000013 

Social Support 
 

.00000 .000274 .0000006 

Advisor/Major 
Mismatch 

.00000 .000000 .0000002 

Sensitivity of 
“Social Support” 
to a finding at 
another node: 

Retained 
 

.00112 .118 .0003647 

Distance from 
Home 

.00007 .00713 .0000217 

Academic Rank 
 

.00004 .0037 .0000113 

Financial Need 
& Risk Profile 

.00003 .00325 .0000099 

Study Skills 
 

.00001 .000996 .0000030 

Attendance 
Patterns 

.00001 .000728 .0000022 

Academic 
Support 

.0000 .000448 .0000014 

Advisor/Major 
Mismatch 

.0000 .000000 .0000001 

Race/Ethnicity 
 

.0000 0 .0000000 
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Sensitivity of 
“Academic 
Rank” to a 
finding at 
another node: 

Financial Need 
& Risk Profile 

.32327 14.1 .0214356 

Retained 
 

.02072 .904 .0021506 

Study Skills 
 

.00018 .00801 .0000130 

Attendance 
Patterns 

.00013 .00587 .0000098 

Academic 
Support 

.00008 .00369 .0000058 

Distance from 
Home 

.00007 .00317 .0000051 

Social Support 
 

.00004 .00153 .0000025 

Advisor/Major 
Mismatch 

.00001 .000373 .0000006 

Race/Ethnicity 
 

.0000 0 .0000000 

Sensitivity of 
“Financial Need 
& Risk Profile” 
to a finding at 
another node: 

Academic Rank 
 

.32327 39.6 .0734777 

Retained 
 

.01804 2.21 .0051425 

Study Skills 
 

.00016 .0197 .0000424 
 

Attendance 
Patterns 

.00012 .0145 .0000313 

Academic 
Support 

.00007 .00908 .0000194 

Distance from 
Home 

.00006 .0078 .0000167 

Social Support 
 

.00003 .00376 .0000081 

Advisor/Major 
Mismatch 

.00001 .000917 .0000020 

Race/Ethnicity 
 

.0000 0 .0000000 

Sensitivity of 
“Advisor/Major 
Mismatch” to a 
finding at 
another node: 

Retained 
 

.00028 .0302 .0000849 

Academic Rank 
 

.00001 .000926 .0000026 

Financial Need 
& Risk Profile 

.00001 .000815 .0000023 
 

Study Skills 
 

.00000 .000251 .0000007 

Attendance 
Patterns 

.00000 .000185 .0000005 
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Academic 
Support 

.00000 .000116 .0000003 

Distance from 
Home 

.00000 .000000 .0000003 

Social Support 
 

.00000 .000000 .0000001 

Race/Ethnicity 
 

.00000 0 .0000000 
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