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CLUSTERING OF TIME SERIES DATA: MEASURES, METHODS, AND APPLICATIONS

by

RUIZHE MA

Under the Direction of Rafal Angryk, PhD

ABSTRACT
Clustering is an essential branch of data mining and statistical analysis that could help

us explore the distribution of data and extract knowledge. With the broad accumulation

and application of time series data, the study of its clustering is a natural extension of

existing unsupervised learning heuristics. We discuss the components which configure

the clustering of time series data, specifically, the similarity measure, the clustering

heuristic, the evaluation of cluster quality, and the applications of said heuristics. Being

the groundwork for the task of data analysis, we propose a scalable and efficient

time series similarity measure: segmented-Dynamic Time Warping. For time series

clustering, we formulate the Distance Density Clustering heuristic, a deterministic

clustering algorithm that adopts concepts from both density and distance separation. In

addition, we explored the characteristics and discussed the limitations of existing cluster

evaluation methods. Finally, all components lead to the goal of real-world applications.
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1 INTRODUCTION

Supervised learning and unsupervised learning are the two main types of tasks in the

field of machine learning. Supervised learning is usually performed in the context of

classification, where prior knowledge is used to obtain a classification standard that

approximates the relationship between the input and the output data. Unsupervised

learning, on the other hand, does not need labels to process and is used to discover

natural structures within a dataset. A common method for unsupervised learning is

clustering; it is an important part of exploratory data mining and can be regarded as a

form of learning activity, where certain features of data are learned and generalized.

Clustering analysis is a well-studied topic in the data mining community [2]. Essentially,

clustering is the task of grouping objects together where high intra-cluster similarity

and low inter-cluster similarity are achieved. Clustering originated in anthropology [3],

and was later introduced to psychology [4, 5]. Now clustering is widely used in biology,

medicine, business, criminology, and many other fields where the natural distribution of

data can help us gain insight and obtain knowledge. In addition to being a stand-alone

exploratory method, clustering can also be applied as a pre-processing step or subroutine

to many data mining tasks, such as rule discovery, indexing, summarization, anomaly

detection, and classification [6].

With the advancement of data collection and storage, time series data is now widely

acquired in many disciplines. Typically, time series data is a succession of measurements

equally spaced in time that can describe the course of events, which leads to shape-based

comparisons. Fig. 1.1 (a) is the distribution of summarized averaged time series in discrete

form, described using parameters A and B. Here, events 1 and 2 have the same label, and

1



events 3 and 4 have the same label. Fig. 1.1 (b) and (c) shows the time series sequence of

parameters A and B, respectively. While the data distribution is more brief and direct

in Fig. 1.1 (a), the natural grouping or separation based on the summarized values in

the Euclidean space, may not convey the true event labels. In contrast, the time series

representation, shown in Fig. 1.1 (b), and (c) are ample in detail, and as a result, the

separation between groups of event data is much more distinct.
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Figure 1.1: (a) The discrete averaged time series distributed in the Euclidean space, (b) original
time series for parameter A, and (c) original time series for parameter B.

This thesis presents a pipeline for time series clustering. We will focus on the similarity

measurement, clustering heuristic, and cluster quality assessment for the specific and

increasingly widely applied data type, time series. As the groundwork for time series

comparison, we present our contribution of utilizing segmentation as a means of improv-

ing the traditional Dynamic Time Warping algorithm. Being the core of unsupervised

learning, we include the exploration of the existing clustering and evaluation techniques

in addition to introducing our novel time series clustering approach and its subsequent

evaluation.

2



1.1 Motivation

Essentially, time series are sequences of measurements and are therefore innately high

dimensional, which presents both challenges and opportunities with unsupervised learn-

ing. On the one hand, time series data can describe an event in much more detail than a

discrete summarized statistical figure, such as the mean or median. Conversely, much

of the previous work on machine learning was not carried out with time series data in

mind. In practice, the time and space complexity for time series processing is always a

bottle-neck for efficient problem solving.

The emerging usage of time series data injects additional interest in machine learning.

Clustering is a prevalent data exploratory branch of machine learning; its fascination

lies in ubiquitous applications and endless possibilities. Based on the data and goal,

the clustering procedure could be broad or specific. Clustering is effective in extracting

information and knowledge from data, which is one of the primary goals of data mining.

Over the years, various clustering algorithms have been proposed, targeting different

data types and different data spaces. Although the clustering of discrete datasets can

be considered a fairly solved problem, with numerous well-established methodologies,

existing clustering approaches often do not perform well when applied to time series

data, especially in the multidimensional case [7]. With the emerging applications of

time series data, the study of time series clustering and its supporting mechanisms are

imperative.

1.2 Challenges

A clustering process consists of three main steps: the similarity measure, the clustering

methodology, and the quality assessment; all of which presents its own unique predica-

3



ments. When dealing with time series clustering, there are usually two routes. The first is

trying to lower the dimensionality of the data, the merit of this method is the efficiency,

while the elimination of too many details negates the incentive to use time series data.

The other direction of time series clustering is to use more adaptive similarity measures,

which could maximally retain data details. However, due to the high dimensionality, this

type of method is typically time-consuming. Furthermore, the similarity of time series is

not a true distance and does not satisfy the triangle inequality theorem. Which means the

clustering heuristic and evaluation methods of time series cluster is different from that of

discrete data.

Depending on the data type and amount, clustering can range from naive to rigorous.

Simple datasets such as the famous Iris dataset is 4.4 kilobyte [8], and takes very little

time to process. While one day of ECG (electrocardiogram) data of one patient is over

1 gigabyte [9], and the SDO (Solar Dynamics Observatory) returns over 1 terabyte per

day [10]. With improved storage and processing power, the accumulation and usage

of time series data have become a possibility, and there is no shortage of valuable

data sources. Due to the size and details of time series datasets, effective and efficient

analysis has become the core of the issue. Since most real-world application datasets

are not labeled, clustering would be a useful approach to convert the collected data into

knowledge.

What adds to the adversity is that the notion of clustering is not a single specific

algorithm, but rather a general task of minimizing intra-cluster differences and maxi-

mizing inter-cluster differences. The possible combinations of cluster configuration are

computationally prohibitive [11, 12], meaning most clustering algorithms are user and

data-dependent. Given the imprecise definition, there is no shortage of cluster heuristics

or the evaluation of said heuristics.
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1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2, we introduce the background

on elastic similarity measures, cluster heuristics, cluster representation, cluster evaluation,

and the associated datasets. This serves as the basis of further discussion of our work

regarding time series clustering. In Chapter 3, we present our intuitive, scalable, and

highly efficient elastic similarity measure: segmented-Dynamic Time Warping (segDTW).

Based on significant features, we are able to add a layer of global similarity identification

before the more detailed mapping. In addition to generating more intuitive results,

segDTW also improves the efficiency of similarity comparisons. Then in Chapter 4,

we explain Distance Density Clustering (DDC), a deterministic clustering method we

developed for time series data. The idea is to identify virtual sparse regions within a

time series dataset, and further re-balance clusters with similarity information. Chapter 5

discuss how variance can be used to evaluate time series clusters.

In Chapter 6, we first discuss the correlation and distinction between different hi-

erarchical clustering methods. Then presents the usage of decision trees to aggregate

shape-based univariate clustering results, which can be used to make multivariate deci-

sions. Furthermore, we discuss how we used normalization to emphasize shape similarity

and how cluster profiles can be used in real-time classification. Finally, in Chapter 7, we

conclude this thesis with a summary of our findings and discuss some future directions

of our work.
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2 BACKGROUND

In this chapter, we introduce the necessary background information associated with

time series clustering. When analyzing time series data, one of the essential issues

is the similarity measure. In Section 2.1, we introduce the basics of Dynamic Time

Warping [13], a widely used elastic measure that has shown to be effective for sequence

data comparisons. In addition to the original DTW algorithm, we also discuss several

DTW improvement methods as well as time series normalization techniques. Then in

Section 2.2, we discuss some commonly used clustering heuristics, which will serve as

a precursor to the later introduction of our shape-based clustering algorithm. Another

obstacle for time series clustering is the representation of time series clusters. In Section

2.3, we review the Dynamic Time Warping Barycenter Averaging [14] technique, which is

a global averaging technique specifically geared toward time series data. The final step

of cluster analysis is its evaluation; Section 2.4 briefly discusses some commonly used

internal and external indices, as well as methods to compare dendrograms for hierarchical

clustering. Lastly, in Section 2.5, we review the datasets that are used in the experiments

supporting our work.

2.1 Similarity Measure

Time series data is widely applied in a variety of domains, such as voice recognition, the

stock market, solar activities, medical research, and many other scientific and engineering

fields where analysis of real-valued, continuous data are more important than the gen-
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eralization of an event. Time series data enjoys its popularity because it records details

that are commonly overlooked by the summarization of data. Since similarity measure is

specific to data type and applications, a suitable similarity measure needs to be applied

for time series data.

Generally, similarity measures can be categorized as either lock-step or elastic. Lock-

step measure refers to the Minkowsky distance, or Lp norm, meaning that the i-th element

from one sequence is always mapped to the i-th element in the compared sequence.

Realistically, real-world data are rarely pristine, meaning even if two sequences describing

the same class of events are of the same duration, misalignment due to the temporal

discrepancies can be very common. When the mapping between two sequences is fixed,

lock-step measures are sensitive to noise and misalignments [15]. Thus, while Euclidean

distance is commonly applied in everyday life and various domains, it is generally

inadequate for sequential data comparisons.

In contrast to the lock-step measure, elastic measures allow one-to-many or even

one-to-none mappings [16]. A popular elastic measure algorithm is the Dynamic Time

Warping (DTW). DTW can evaluate the similarity between two temporal sequences,

which may vary in time or speed and has been widely accepted as an efficient measure

for time series data [17–20]. Generally, this is a method that can allow computers to find

an optimal match between two given sequences under certain restrictions. Its advantage

is that it allows flexible one-to-many mappings; in other words, DTW allows one point

from the query sequence to be mapped to multiple points in a candidate sequence or visa

versa. Originally, DTW was used in speech recognition; later, it was adapted to various

real-world data mining problems. Fig. 2.1 shows the mapping of Euclidean distance and

the Dynamic Time Warping measure.

Equations 2.1 and 2.2 are the Euclidean and Dynamic Time Warping [13] distances

respectively, where given two time series sequences Q and C, withQ = {q1,q2, ...,qi, ...,qn}

and C = {c1, c2, ..., cj, ..., cm}. When calculating the Euclidean distance, the total distance is
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(a) Euclidean Distance
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(b) Dynamic Time Warping

Figure 2.1: The mappings of lock-step and elastic similarity measures: (a) Euclidean distance and
(b) Dynamic Time Warping.

the sum of the distance between each of the corresponding one-to-one mappings between

qi and ci. In the case of DTW distance, a n-by-m distance matrix is first constructed

containing the distance information between all the elements from both query and

candidate sequences. The warping path is denoted as W = {w1,w2, ...,wk, ...,wK}, and

while there are exponentially many warping paths, only the path minimizing Dist(DTW)

is of interest [21]. DTW works by mimicking shape matching, its effectiveness in finding

similar shapes in data is due to the algorithm’s ability to look within a certain range for a

local optimum mapping. Various step patterns are used as a means to introduce weight

to the warping path. Eq. 2.3 can be considered a standard step pattern.

Dist(Euclidean) =

√√√√ n∑
i=1

(qi − ci)2 (2.1)

Dist(DTW) = min{wk(Q,C)} (2.2)
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D(Ai,Bj) = δ(ai,bj) +min


D(Ai−1,Bj−1)

D(Ai,Bj−1)

D(Ai−1,Bj)

 (2.3)

Another way to visualize the effect of DTW is shown in Fig. 2.2 using the same time

series from Fig. 2.1. The DTW warping path is shown in a bold black line, which shows

how a warping path traverse through the similarity matrix and demonstrates how one-

to-many mapping works. In comparison, the diagonal dotted gray line is the one-to-one

mapping that corresponds to the Euclidean distance.

1 n
1

m

C

Q

Figure 2.2: The Dynamic Time Warping warping path between time series Q and C.

In order for DTW to effectively map and calculate the similarity between any given

sequences, certain restrictions need to be met. Fig. 2.3 shows the violation of the three basic

conditions for the DTW algorithm: the boundary condition, monotonicity, and continuity [22].

The boundary condition means that the first and last components from two compared

sequences are always mapped, and because DTW only allows one-to-many mapping and

not one-to-none mappings, every element has to have a mapping component. Mapping

within a pair of time series can not cross, as it would not make sense on the time scale.
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Monotonicity means time can only proceed in one direction and that the warping path

cannot go back in time. The continuity constraint is also known as the step pattern

constraint; it is where the warping path can only follow the predetermined steps patterns

and cannot make any jumps. The continuity constraint is also a form of eliminating

one-to-none mapping and implies monotonicity.

(a) Boundary (b) Monotonicity (c) Continuity

Figure 2.3: Violation of the three basic conditions for DTW algorithm: (a) the boundary condition,
(b) the monotonicity condition and (c) the continuity condition

The major bottleneck of DTW computation is the time and space complexity. Calcu-

lation of the cost matrix requires n ·m operations that can be done in constant time,

hence O(N2), where N = n = m. With many datasets, the sequences of interest could

be relatively lengthy, meaning the quadratic time complexity is nontrivial. In addition,

since DTW requires the entire cost matrix to construct the optimal warping path, the

space complexity of the algorithm is also quadratic, O(N2). This high complexity is

particularly important since time series are high-dimensional data and the polynomial

space complexity would quickly exhaust gigabytes and even terabytes of memory [23].

Before DTW in more details, we first propose three key elements of time series similarity,

which are range value similarity, duration similarity, and shape similarity. Individually, none

of these three elements can guarantee similarity for time series. Time series need to

achieve high similarity in all these three aspects to be considered truly similar. In

particular:
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• Range value similarity refers to the absolute value range of time series. Range value

similarity can be considered as vertical similarity; however, it does not promise actual

similarity, but rather a comparable range. This can serve as a rough categorization,

or threshold to differentiate large amount of data.

• Duration similarity can be considered a horizontal range value, referring to the

time series measurement duration. Two events may have similar range values and

shapes; however, if one lasted only seconds while the other lasted decades, then in

most circumstances, they are not considered similar, unless a specific task calls for

such usage.

• Shape similarity refers to the contour or shape of the time series. The shape

similarity is an important part of the similarity elements; while used alone, it cannot

guarantee similarity, there is most likely no similarity between time series when

shape similarity is not present. In practice, shape similarity can be paired with

range value similarity or duration similarity or both.

When all the elements of similarities mentioned above are high, we can conclude that

the examined time series are highly similar. This is not to say that they have to occur

simultaneously to be meaningful: each aspect of similarity could be individually signifi-

cant under certain contexts. For example, when credit card companies analyze customer

spending, both a big spender and an average spender would likely have higher spending

in the holiday season, which could generate similar spending trends. While the shape

can be useful when identifying seasonal spending trends, if the credit card company is

interested in the customers’ spending power, then the range value is of higher priority

than the shape of the spending trend.
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2.1.1 DTW Improvement Techniques

Although widely applied with time series data today, DTW is by no means a new

similarity measure. It was originally applied to the obvious sequential data of speech

recognition decades ago. By allowing elastic mapping, DTW provides more intuitive

alignment between sequential data such as time series. Despite its general success,

DTW often attempts to explain the variability on the y-axis of the similarity matrix by

warping on the x-axis. This compensation is the cause of the undesirable phenomenon of

singularity and could lead to pathological warpings [24]. When pathological warpings

occur, the DTW algorithm can no longer provide us with sensible or reliable results.

For DTW algorithm improvement, both quality-wise and efficiency-wise, many methods

have been proposed. Overall, time series data analysis can be categorized as complete

sequence analysis or sub-sequence analysis. Complete sequence analysis improvement

techniques can be further categorized as global constraints and approximations. The

goal of global constraints is the attempt to place restraints of global influence on the

warping path, which could eliminate computations and therefore shorten the processing

time. Time series data are high-dimensional data, and approximations are the attempt to

manipulate the input time series as a means to lower data dimensionality and cut-down

on the number of comparison computations. In the extreme case, one time series sequence

can be abstracted to one number, such as the mean or median of the sequence; this type of

statistical summarization is commonly used in traditional non-time series data analysis.

Here we discuss some of the more commonly applied DTW improvement methods for

complete sequence analysis.

Windowing is a global constraint, and has been used by different researchers before

it was formally summarized by Berndt and Clifford [25]. Windowing effectively prunes

the corners of the distance matrix, where the warping path is not allowed to venture

to, meaning the potential warping path is restrained to a fixed region. This method
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(a) Sakoe-Chiba Band (b) Itakura Parallelogram

Figure 2.4: DTW windows: (a) Sakoe-Chiba Band and (b) Itakura Parallelogram, only the col-
ored cells will be computed, thus improving efficiency. Since the warping path is
constrained, pathological warpings can be prevented to a certain degree.

can alleviate some of the singularity problems, but cannot prevent it [26]. Two of the

well-known global windowing constraints are shown in Fig. 2.4, which are the Sakoe-Chiba

Band [27], which is a slanted diagonal window, and Itakura parallelogram [28], which is

a parallelogram-shaped window. The window sizes can be adjusted according to user

requirements. When the windows are minimum in size where only the straight diagonal

path is allowed, and DTW becomes Euclidean distance.

Slope weighting encourages the warping path to progress in a certain direction,

typically to remain close to the diagonal. Shown in Eq. 2.4, when a weighting factor W

is generally applied to the whole sequence, it is a global constraint. Depending on the

specific weighting factor, it reduces the frequency of singularities [29]. The weight factor

would need to be specified a priori, depending on user specifications.

D(Ai,Bj) = δ(ai,bj) +min


D(Ai−1,Bj−1)

WD(Ai,Bj−1)

D(Ai−1,Bj)

 (2.4)

Step pattern is a global constraint approach that encourages changes to the warping

path to avoid pathological warpings. Fig. 2.5 shows the four commonly used step patterns.

13



1

11

(a)

1

12

(b)

1

1

1

(c)

1

1

1

1

1 1

1

1

(d)

Figure 2.5: Step Patterns: (a) symmetric1 is the basic step pattern, (b) symmetric2 favors the
diagonal warping path, (c) asymmetric limits time expansion to a factor of two, and (d)
rabinerJuangStepPattern has attributes local continuity constraint type, slope weighting,
and the state of smoothed or not.

Based on symmetry and slope bounds, Sakoe and Chiba proposed symmetric1, symmetric2

[27], and asymmetric [30] approaches. The first is a basic step pattern. The second favors

the diagonal warping path similar to slope weighting, and the third limits time expansion

to a factor of two. Rabiner and Juang introduced rabinerJuangStepPattern [31] based on

the continuity constraint, slope weighting, and the state of being smooth or Boolean. We

will be using the symmetric1 step pattern for segDTW and all the experiments supporting

this work.

Lower bounding is another global constraint for improving the DTW algorithm. By

defining tight and fast lower bounding functions, sequences that cannot provide a better

match in the process of finding the warping path are pruned. The idea is to favor the

execution time needed for calculating the similarity matrices on large datasets. While Yi

et al. [32] gave an approximation for indexing, the lower bounding function introduced

in LB_Kim [33] was the first to define an exact indexing. Compared to the earlier works,

LB_Keogh [19] had an overall greater pruning power and could also give tighter bounding

measures. Their lower bounding function is defined based on U and L, the two new

time series generated from the reference time series Q, such that Ui = max(qi−r,qi+r)

and Li = min(qi−r,qi+r). Where j− r 6 i 6 j+ r, and r is used to define the allowed

warping range. Having the bounding envelope defined by U and L, the lower bounding

function is defined as “the squared sum of the distances from every part of the candidate
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sequence C not falling within the bounding envelope, to the nearest orthogonal edge of

the bounding envelope” [19].

Among other variants of the DTW method, PDTW (piece-wise DTW) [34], DDTW

(derivative DTW) [24], and shapeDTW [35] are some of the more popular methods which

attempt to manipulate the input time series to improve either the warping path quality or

the processing time. The primary achievement of PDTW is to increase the speed factor

by one to two orders of magnitude on average, while maintaining the accuracy of DTW,

by utilizing a piece-wise approximated representation of the time series instead of the

raw data. Similarly, DDTW utilizes an approximated derivative of the time series to

work on a higher level of similarity between two time series. A similar approach is also

used in shapeDTW. Zhao et al. [35], where each temporal point qi of a time series Q is

represented by a shape descriptor that encodes the structural information of a fixed-width

neighborhood of qi. The choice of the descriptor depends on the general structure of the

time series and the user requirements. Some of the widely used descriptors are the slope,

piece-wise aggregate approximation (PAA), discrete wavelet transform (DWT), and the

histogram of oriented gradient for 1-D time series (HOG1D).

The methods discussed so far are based on either global constraints, data abstraction,

or indexing [36]. Windowing, slope weighting, and step pattern approaches fall into the

constraint category, whereas heuristics such as DDTW, shapeDTW, and pDTW, belong

to the data abstraction category. The idea behind the constraints category is to avoid

pathological warpings by trying to encourage the warping path to stay close to the

diagonal rather than to stray excessively vertical or horizontal. The abstraction family of

methods uses coarsely granulated data to avoid detailed pitfalls that could potentially

cause pathological warpings. The third category that revolves around lower bounding

is also referred to as indexing. The methods which utilize indexing are different from

the other two in the sense that they are mainly focused on speeding up the algorithm.

It is important to note that constraints and data abstraction improve the time and space
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complexity only by a constant factor since they still have to deal with the cost matrix,

which results in both the time and space complexity remaining quadratic. However, the

third category made a significant contribution in this aspect by bringing the computation

time and space down to O(N) using different indexing methods [19, 33].

2.1.2 Normalization

In the context of data mining, normalization refers to the scaling of data attributes so that

the data are restricted to a smaller vertical range. Normalization is generally required

when we work on attributes with different scales. For example, when the magnitude

differences are significant, the progression of events, or the shape of measurements, can

often be overlooked. In actuality, the shape of certain past behaviors could be a good

indication of certain future behaviors or events. By using normalization on time series

data, we could focus on the shapes of physical parameters without the interference of

value differences.

In addition to the scale adjustment, time series normalization also refers to the shifting

and scaling of data to eliminate the effect of gross value influences. The four most

commonly applied normalization techniques for time series data are Offset Translation,

Amplitude Scaling, Trend Removal, and Smoothing [37].

Offset Translation

Offset translation means the shifting of time series. Offset is a signal processing term,

used when sequences are similar in shape but are within different ranges. Shown in

Eq. 2.5, offset translation means subtracting the mean from the original time series,

namely,

ts = ts−mean(ts) (2.5)
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Here the mean value is computed for each time series individually and is simply the

average over all the values in that specific time series. The translation of the offset can be

useful for similarity comparisons. However, an immediate drawback of this operation

is that the range values would be overlooked since the value differences are removed.

For stored (not real-time) time series, the offset can be removed by subtracting the mean

amplitude from each sample. An example of an offset translation operation on a time

series is shown in Fig. 2.6.

(a) Before offset translation (b) After offset translation

Figure 2.6: Offset translation shifts the range of time series to focus on the shape similarities. (a)
Shows the original time series, (b) shows the normalized result after offset translation
is applied.

Amplitude Scaling

Amplitude is also a term borrowed from signal processing. It measures how far, and

in which direction, does a variable differ from a defined baseline. Scaling of a signal’s

amplitude means changing the strength of the signal. With time series data, we remove the

different amplitudes in hopes of finding similarity by excluding the physical parameter’s

strength.

ts = (ts−mean(ts))/std(ts) (2.6)

Shown in Eq. 2.6 and illustrated in Fig. 2.7, amplitude scaling is achieved by first moving

time series by its mean and normalizing the amplitude by the standard deviation. Which
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means that in a way, offset translation is included in amplitude scaling. In fact, when

std(ts) = 1, the two methods are identical.

(a) Before amplitude scaling (b) After amplitude scaling

Figure 2.7: Amplitude scaling changes the strength of the signal (time series) to make shape
similarities easier to identify. (a) Shows the original time series, (b) shows the time
series after amplitude removal.

Trend Removal

Trend removal is regularly used in prediction. Trends represent long-term movements in

sequences. In identifying patterns in sequence data, trends may become distracting, and

therefore, it is often justified to remove them for revealing possible oscillations. To this

end, the regression line of the time series needs to be identified and then subtracted from

the time series. An example of linear trend removal is shown in Fig. 2.8. However, unlike

offset translation and amplitude scaling, trend removal is not a straightforward operation.

There can be different types of trends or even multiple trends. In our experiments, we

only consider linear and logarithmic trends.

Smoothing

Smoothing is usually performed with a moving window on the time series to obtain

the average values of each data point with those of its neighbors. Shown in Fig. 2.9,

smoothing can eliminate some irregular movements, but is sensitive to outliers and also

invalidates data at the beginning and end of the time series.
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(a) Before trend removal (b) After trend removal

Figure 2.8: Trend removal removes the patterns, or trends, from time series data in the hope of
focusing on the value changes without the long-term trend distraction. (a) Shows the
original time series with a linear trend, and (b) is where the trend is removed to reveal
the similarity between the time series.

When time series are relatively short in length, smoothing is typically unsuitable. On

the account that an effective smoothing window could shorten the time series excessively,

rendering the result ineffective.

(a) Before smoothing (b) After smoothing

Figure 2.9: Smoothing can produce time series with less irregular movements. (a) Shows the
original time series and (b) is where the time series after smoothing.

2.2 Clustering

Clustering analysis is an exploratory data mining task and therefore does not refer to a

specific algorithm. The appropriate choice for a clustering algorithm and its corresponding

parameter settings would depend on the data and intended application. Since there are
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multiple notions of clustering, there are various ways to classify clustering algorithms,

some of which overlaps.

First and foremost, based on separation, clustering can be categorized as crisp clustering

or fuzzy clustering. Crisp clustering is also referred to as exclusive clustering, meaning an

observation either belongs to a cluster or not. Fuzzy clustering is also referred to as non-

exclusive clustering, in which case each observation can belong to a cluster to a certain

degree. Additionally, clustering can be roughly categorized as hierarchical, partitioning,

density-based, grid-based, model-based, and multi-step clustering algorithms [38].

Based on the partitioning criteria, clustering can be categorized as single level clus-

tering or hierarchical clustering. Single level clustering refers to noninclusive cluster

results, whereas hierarchical clustering produces nested clusters. Examples of hierarchical

clustering includes Hierarchical Agglomerative Clustering [39], Hierarchical Divisive

Clustering [39], and OPTICS [40]. Hierarchical clustering is known for its strong visualiza-

tion capabilities, as well as not requiring the number of clusters to be preset. Additionally,

it is straightforward to adapt different similarity measures as well as different data types

to hierarchical clustering.

Based on similarity measure, clustering can be categorized as partitioning or density-

based. One of the most widely used partitioning algorithms is k-means [41], which

can also be categorized as distance-based clustering. K-means uses a cluster center to

represent a cluster and operates with the goal of minimizing intra-cluster distances.

Depending on the representation of cluster center and cluster center selection, k-means

have variations such as k-medoid [42] and k-means++ [43]. A good representation of

a density-based model is DBSCAN [44] and OPTICS [40], which are also known as

connectivity-based.

Grid-based clustering is related to density-based clustering, and it works by partitioning

data space into a finite number of cells that form a grid structure. Then clusters are

formed based on the regions where data points are denser than its surroundings [45].
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However, with grid-based clustering, the cell sizes, borders, and density threshold are

all predefined. Furthermore, because the grid sizes are uniform, it can be difficult and

inefficient when handling irregular data distributions. The idea of grids were originally

proposed by Warnekar and Krishna [46], some popular grid-based clustering methods

include STING [47], CLIQUE [48], and WaveCluster [49].

Unlike hierarchical and k-means, where the distribution of data is not based on existing

models. Model-based clustering assumes the distribution is a mixture of two or more

clusters, and attempt to optimize the fit between data and some probabilistic model [45].

Model-based clustering uses crisp/fuzzy cluster assignment [50].

With the goal of improving clustering performance, attempts of combining existing

models to form multi-step clustering models were made. Multi-step models either

incorporate different clustering algorithms during different stages of clustering or use

multiple data resolution for a tiered clustering structure.

Different clustering approaches are suited for different types of data, and for any

clustering algorithm, there are always counter-examples where the method does not

work. Clusters are, in large part, in the eye of the beholder [51], and one person’s

noise could be another person’s signal [52]. This also complies with the No Free Lunch

theorem [53]. Here we will briefly discuss some of the most widely applied cluster

heuristics.

2.2.1 Hierarchical Clustering

Hierarchical clustering tries to separate data into different levels that have a top to

bottom ordering and builds corresponding tree structures called dendrograms. Shown

in Fig. 2.10, there are two types of hierarchical clustering, agglomerative, also known

as Agglomerative Nesting (AGNES), and divisive, also known as Divisive Analysis

(DIANA). AGNES is a bottom-up approach, where each event is assigned as its own
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cluster, and are aggregated into larger clusters based on the similarity between each

cluster. This process is repeated until all events form one single cluster containing the

entire dataset. DIANA is a top-down approach, where all events originate as one cluster

and are then partitioned to form two least similar clusters. This process is repeated

until each event forms its own cluster. Due to its simplicity, AGNES is more commonly

applied.
A
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Figure 2.10: Dendrogram for hierarchical clustering.

The similarity measurement in both AGNES and DIANA is traditionally depicted using

distance. Whereas OPTICS (ordering points to identify the clustering structure) [54] is

a density-based hierarchical clustering method. OPTICS is an extension of DBSCAN

(density-based spatial clustering of applications with noise), and it has a structure similar

to AGNES. A major advantage of the hierarchical structure is its intuitiveness and great

visualization power.

In an agglomerative structure, clusters are joint based on the similarity between ele-

ments or clusters. When comparing the similarity of clusters, various measures can be

adopted. The cluster merging method in AGNES is called linkage. The most commonly

used linkage measures are nearest, furthest, and average distance. Which corresponds to

single link, complete link, and two types of average links, which are Unweighted Pair

Group Method with Arithmetic mean (UPGMA) and Weighted Pair Group Method using

Arithmetic mean (WPGMA). The results from hierarchical clusterings are not partitions,

but rather a set of nested clusters that can be easily visualized as a dendrogram, which

shows the merge of clusters at each step.
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• Single link: shown in Eq. 2.7, the distance between two clusters is defined as the

distance between the two nearest elements in each cluster. Clusters are usually

longer and thinner, creating more chain-like clusters. Which means clusters of more

arbitrary shapes could be identified.

dsingle(Ai,Bj) = min
x∈Ai,z∈Bj

dist(x, z) (2.7)

• Complete link: shown in Eq. 2.8 the distance between two clusters is defined as the

distance between two furthest elements in each cluster. Clusters are usually more

spherical in shape, with relatively more compact borders.

dcomplete(Ai,Bj) = max
x∈Ai,z∈Bj

dist(x, z) (2.8)

• Unweighted Pair Group Method with Arithmetic mean (UPGMA) [55]: shown in

Eq. 2.9 the distance between two clusters is the average distance between all pairs

of elements. Shown in Eq. 2.10, at each clustering step, the distance between a

previously merged cluster A∪B with a new cluster C is the proportional averaging

of the distance between A,C and B,C. More arbitrary shaped clusters can be

identified, and clusters are usually more generally compact.

davg(Ai,Bj) =
1

|Ai||Bj|

∑
x∈Ai

∑
z∈Bj

dist(x, z) (2.9)

d(A∪B),C =
|A| · dist(A,C) + |B| · dist(B,C)

|A||B|
(2.10)

• Weighted Pair Group Method using Arithmetic mean (WPGMA) [55]: is a modified

version of UPGMA, the distance between clusters is the simple average. Shown in
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Eq. 2.11 at each clustering step, the distance between a previously merged cluster

A∪B with a new cluster C is simply the arithmetic mean of the distances between

C and elements in A∪B.

d(A∪B),C =
dist(A,C) + dist(B,C)

2
(2.11)

2.2.2 K-means Clustering

K-means clustering was first introduced 50 years ago [2]. A simple example of the

k-means algorithm is shown in Fig. 2.11. The aim is to minimize the intra-cluster sum of

squares, by using the proximity of objects to the medoids of the clusters [56]. Drawbacks

of k-means include its poor performance in the presence of outliers, and unsatisfactory

results when clustering non-globular data. Based on the original k-means, k-medoid

clustering was introduced by Kaufman and Rousseeuw [42], where instead of using the

mean value, which could very likely be an artificial data point, it uses existing data points

as clustering centers.

kmeans

Figure 2.11: K-means clustering with k = 2.

As k-means is an NP-hard problem [57], finding the exact solution for large datasets

is near impossible. The common approach is using Lloyd’s algorithm, which finds

the approximate solution. The largest issue with this approach is that it achieves a

local optimum, meaning the seed initialization heavily influences the end result. With

randomly chosen initial seeds, the quality of clustering could fluctuate. Therefore any

meaningful help with initialization is better than random. Even though sometimes
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random initialization can result in higher accuracy, deterministic clustering can provide a

stable algorithm with comparable results. This is especially important in applications,

where stability and reproducibility are just as important as accuracy. To overcome the

fluctuation of results due to random initialization, k-means++ was proposed [58], it is

an approximation algorithm that can help to avoid some poor clustering for the original

k-means. The idea behind the k-means++ algorithm is to initialize centroids (medoids) far

away from each other, this speeds up the algorithm and provide better cluster results [58].

2.2.3 DBSCAN

Like the name suggests, DBSCAN (density-based spatial clustering of applications with

noise) [44] is a well known density-based clustering method. A neighborhood is defined

using parameters (ε, MinPts). Given dataset D = x1, x2, ..., xm, we have the definitions:

• ε-neighborhood: for xj ∈ D, its ε-neighborhood include points less than distance

of ε, which is denoted as Nε(xj) = {xi ∈ D|dist(xi, xj) 6 ε}.

• core object: xj is a core object if the ε neighborhood of xj has at least MinPts points,

denoted as |Nε(xj)| >MinPts.

• directly density-reachable: if xj is within the ε-neighborhood of xi, and xi is a core

object, then xj is directly density-reachable from xi.

• density-reachable: for xi and xj, if exist sequences p1,p2, ...,pn, of which p1 = xi,

pn = xj, and pi+1 is directly density-reachable from pi, then xj is density-reachable

from xi.

• density-connected: if there exist xk that is density-reachable for both xi and xj, then

xi and xj are density-connected.
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x1

x2
x3

x4

x5

Figure 2.12: DBSCAN with MinPts = 4, dashed circles denote ε-neighborhoods, x1 is a core
object; x2 is directly density-reachable from x1; x3 is density-reachable from x1; x3
and x4 are density-connected; and x5 is an outlier.

Fig. 2.12 shows an example of DBSCAN, the cardinality of a neighborhood of radius ε

has to exceed the minimum threshold number of points MinPts = 4. x1 is a core object,

x2 is directly density-reachable from x1, x3 is density-reachable from x1, x3 and x4 are

density-connected, and x5 is an outlier.

In a DBSCAN cluster, objects are density-reachable from any core object of that cluster.

Density connected objects are identified by iteratively collecting directly density-reachable

objects. The ε-neighborhood is scanned for each object; if there exist more than MinPts

objects, then a new cluster is formed. This process is repeated until all points have been

checked, and no new objects can be added to this cluster.

2.2.4 OPTICS

Using a density network, DBSCAN is able to identify arbitrary shaped clusters; however,

there is a drawback. Shown in Fig, 2.13, clusters A, B, and C can be easily found, but there

are three visually distinct clusters A1, A2, and A3 that are overlooked. DBSCAN cannot

identify clusters of varying densities because there does not exist a global parameter

setting for DBSCAN to accurately identify the cluster structures [40], which means that

DBSCAN can only produce a single layered clustering result. In addition, DBSCAN
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shares a common issue with many clustering algorithms, which is that the parameters

involved with clustering are determine a priori.

A

B
A1

A2 A3

Figure 2.13: The global parameter for DBSCAN cannot identify varying densities within a cluster.

OPTICS is an extension of the DBSCAN; it mainly deals with varying densities, of

which DBSCAN could not identify. OPTICS is where an infinite number of density

parameters are processed at the same time. The events in a dataset are ordered so that the

most spatially similar events become neighbors in order. OPTICS can be represented with

a reachability-plot, which is a special type of dendrogram, and it can also be visualized

as a traditional dendrogram.

Similar to DBSCAN, OPTICS also has two parameters (ε, MinPts). The difference is

that the parameters are only used to improve the performance of the clustering process if

the user has certain insight into the data beforehand, but they are not required.

Unlike DBSCAN, OPTICS does not assign cluster memberships. Instead, OPTICS

uses core-distance and reachability-distance to store the processing order, which reflects

object density; in this aspect, OPTICS is similar to AGNES, and the produced result is a

hierarchical structure. Given objects o, p in dataset D, and Nε(o) is the corresponding

neighborhood:

• core-distance: the minimum neighborhood distance ε ′ for a point o to qualify as a

core point. Otherwise, the core-distance is not defined.
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• reachability-distance: the minimum distance for p to be directly density-reachable

from o, when o is a core-object. If o is not a core-object, the reachability distance

between o and p is not defined.

Figure 2.14: OPTICS example with MinPts = 4, core-distance is ε ′, and reachability-distances
marked with arrows.

Fig. 2.14 shows the core-distance and reachability-distance, with core-object as o,

MinPts = 4. Simply put, the core-distance ε ′ of o is the distance to the furthest MinPts

neighbor. The reachability-distance is shown in arrows, which is the greater value between

the core-distance and the distance between two objects.

In essence, OPTICS is DBSCAN with a broad range of operated parameter settings.

For the clustering results to be consistent, the algorithm processes a dataset in a specific

order. Higher density is finished first by selecting objects that are density-reachable with

the lowest ε. The order in which OPTICS sorts through elements in a dataset is similar

to the single link AGNES process. Compared to DBSCAN, OPTICS has more relaxed

parameter settings, as well as the ability to identify different densities. However, OPTICS

has higher memory cost, as it maintains a priority queue to determine the next closest

element to include in the current cluster.
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2.3 Cluster Representation

Another important part of clustering is the representation of clusters. The mean or

medoid is commonly used in this aspect. However, when dealing with time series data,

it can be difficult to compute the mean or medoid, especially with lock-step measures.

Without a proper time series averaging mechanism, even cluster algorithms used in

conjunction with DTW does not guarantee accurate results for time series clustering [59].

Generally, averaging can be categorized as local averaging and global averaging. Here we

discuss some of the time series averaging techniques.

Niennattrakul et al. [59] discussed the result using k-means with DTW. They claimed

the bottleneck of clustering time series to be a lack of good averaging method for time

series data. While commonly used for statistical analysis, finding the average of a time

series dataset is not a trivial task. Because DTW has no triangular inequality property,

calculating an average time series with the traditional Euclidean mean, even for equal

length time series, would usually end with unrepresentative averaged time series.

The Non-Linear Alignment and Averaging Filters (NLAAF) [60] is where averaging

is applied N times for N number of sequences. The average sequence is calculated

using the center of each association, and the length can grow substantially. Prioritized

Shape Averaging (PSA) [61] was proposed to deal with the shortcomings of NLAAF,

PSA averages two sequences whose DTW distance is minimal to other sequences, and

where each connected component is associated with a coordinate of the resulting mean.

However, both NLAAF and PSA are local averaging strategies, and local averaging

strategies are sensitive to order, meaning the results may change if the averaging process

is repeated. It is also possible for any initial error to propagate through the entire

averaging process.

A technique for robust averaging template selection called the Crossword Reference

Template (CWRT) was developed to improve recognition accuracy [62]. The CWRT
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technique extracts a few examples from the dataset, find the sequence whose length is

closest to the average length as the initial reference template. Then other templates are

aligned with the template using DTW, and the final reference template is obtained by

averaging the time-aligned templates across each frame. This method is invariant to the

order of sequence processing; however, extracting the examples and using the closest-

to-average length sequence as the initial reference template may lead to inconsistent

results.

Petitjean et al. [14] proposed a global method to calculate the average of time series

data, the DTW Barycenter Averaging (DBA). An initial averaging template is first chosen,

then each time series sequence can be considered as a mass, with the averaging template

as the orbiting center. This orbiting center is refined with DTW between each time series

and initial average template by minimizing the Within Group Sum of Squares (WGSS).

Given a time series set S = {S1,S2, ...,Sn}, the time series C = {c1, c2, ..., ct} is considered

an average of S if it minimizes:

WGSS(C) =

n∑
k=1

dtw(C,Sn)2 (2.12)

DBA is a global averaging method, which means it has no sensitivity to the order of

calculation. If we could make the initialization process deterministic, then each DBA

process can be repeated with no change to the result. The advantage of using DBA

with DTW is that it can stretch or compress time series in an intuitive way. This is

useful because it allows us to look for patterns otherwise easily missed. The two major

steps in DBA computation are initialization and convergence. The initialization is where

an element is chosen as a template and is a randomized choice in the original DBA

algorithm. Convergence is not always smooth because DTW makes nonlinear distortions,

but at each iteration, the inertia can only decrease [14]. The process ends when either
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the algorithm converges, or the maximum number of iterations is reached. The resulting

average sequence is the same length as the initial template.

(a) (b) (c)

Figure 2.15: (a) Three similar, but unaligned time series, (b) average time series with Euclidean
sum divided by the number of sequences, (c) averaged time series with DBA method
with the second (peaking) time series as the initial template.

The effectiveness of DBA is shown in Fig. 2.15, (a) shows three similar shaped, but

slightly out of phase and misaligned time series; (b) shows the average time series with

Euclidean sum divided by the total number of sequences, the result is a two-peaked, flat

sequence, not representative of any of the original sequences; when using the second

peaking time series as the initial template, the average of the three sequences with DBA is

shown in (c). Evidently, DBA provided an intuitive averaging result for time series data.

2.4 Clustering Evaluation

Being an unsupervised learning method, clustering validation is an important part

of evaluating the quality of a clustering methodology. Without effective evaluation,

clustering results would be difficult to be trusted or used. Generally, clustering validation

indices can be categorized as internal validation and external validation. The validation

indices can provide an objective measurement of clustering results. In this section, we

will discuss a few commonly used evaluation indices.
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2.4.1 Internal Indices

Internal validation is based on the internal information generated from the clustering

process to evaluate the quality of clustering. Usually, internal validation is some form

of inter-cluster and intra-cluster combination evaluation, which is used without ground

truth information (data labels). Internal indices are commonly used to determine the

optimum number of clusters when no such information can be obtained in prior.

Using the degree of separation and compactness, there is an abundant amount of

cluster evaluation indices. The general internal validation equation is shown in Eq.2.13, it

is based on a certain degree of separation compared to a certain degree of compactness

of clusters. Compactness signifies intra-cluster tightness, whereas separation signifies

inter-cluster differences. Here we will briefly discuss three commonly used internal

indices, the Silhouette index, Dunn Index, and Davies-Bouldin index.

Index =
α ∗ separation
β ∗ compactness

(2.13)

Shown in Eq. 2.14, the Silhouette index (SI) has a range of [-1,1], with 1 being a perfect

cluster, 0 means the observation could belong to either cluster, and negative values signify

the wrong cluster. Silhouette value measures how similar an observation is to its own

cluster when compared to other clusters. A SI is computed for each data element, and

therefore could be expensive for larger datasets.

SI =
b(i) − a(i)

max{a(i),b(i)}
(2.14)

Shown in Eq. 2.15, the Dunn Index (DI) is the ratio of the smallest distance between

observations belonging to different clusters to the largest intra-cluster distance. The DI
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value has the range between 0 and infinity; a larger DI value signifies more compact

clusters. However, DI does not perform well for ring distributions.

DI =
min{separation}

max{diameter}
(2.15)

Shown in Eq. 2.16, the Davies-Bouldin index (DBI) is also an internal evaluation scheme.

Essentially, it is the average of the ratio between intra-cluster distance and the inter-cluster

distance. DBI has a positive value, and a smaller value signifies better clustering.

DBI = (
1

Ti

Ti∑
j=1

|Xj −Ai|
p)1/p (2.16)

2.4.2 External Indices

External validation utilizes results known externally, which typically refers to the ground

truth. The cluster results are compared against known labels to determine cluster quality.

Some commonly used external indexes include Accuracy, F-measure, RAND index, etc.

Most external indexes are derived from the confusion matrix, as shown in Table 2.1.

Table 2.1: Confusion Matrix

Actual
Positive Negative

Prediction Positive TP FP
Negative FN TN

Accuracy performance is judged by the number of true positives and true negatives

(Eq. 2.17). F-score (Eq. 2.18) is the harmonic mean of recall and precision. F-score is more

resilient to class imbalance and is a better measure than accuracy when false positives and
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false negatives have different costs and consequences. Rand index (Eq. 2.19) measures the

agreements between two data clusters.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(2.17)

FScore = 2 ∗ precision ∗ recall
precision+ recall

(2.18)

RAND =
a+ b

a+ b+ c+ d
(2.19)

Another way to evaluate the quality of clustering is by visualization. This is a quali-

tative method that is subjective and should only be used as an addition to other more

concrete evaluation methods. Although both internal and external indexes are quantita-

tive measures, there is no consensus on which is superior. Again, both clustering and its

evaluation are relative and not absolute; it is much dependent on the data, the task on

hand, and the beholder.

2.4.3 Dendrogram Evaluation

Density-based and distance-based hierarchical clustering algorithms have different con-

cepts of similarity partitions; we want to understand their performance with time series

data. The ideology behind AGNES and OPTICS are highly similar, by grouping closest

objects together first and moving upwards; they are both agglomerative in structure.

What makes the two clustering algorithms extremely versatile and suitable for time series

34



data clustering, is that both can use a dataset of data elements as well as a pre-computed

distance/similarity matrix. This means the user is free to incorporate any suitable similar-

ity measure to obtain a similarity matrix that can be used for further clustering. Another

advantage of the two clustering algorithms is that both have minimal parameters; this

can be a great advantage when prior knowledge of a dataset is minimal. Neither AGNES

nor OPTICS has an output cluster assignment, but rather a nested order of objects, which

is useful in exploratory data mining.

The Cophenetic correlation coefficient (CP) [63] is commonly used in biostatistics to

evaluate the quality of dendrograms. Shown in Eq. 2.20, CP is a Pearson correlation

between the original distance matrix and the cophenetic distances matrix of a dendrogram.

The cophenetic correlation for a dendrogram is defined as the linear correlation coefficient

between the cophenetic distances obtained from the tree, and the original distances used

to construct the dendrogram. Thus, it is a measure of how faithfully the tree represents the

similarities among observations [64]. The cophenetic distance between two observations

is represented in a dendrogram by the height of the link at which those two observations

are first joined. That height is the distance between the two sub-clusters that are merged

by the previous link. Therefore, CP can be used for single dendrogram evaluation, as

well as comparing several dendrograms, and a higher value typically signifies better

clustering.

CP =

∑
i<j(x(i, j) − x)(t(i, j) − t)√

[
∑
i<j(x(i, j) − x)2][

∑
i<j(t(i, j) − t)2]

(2.20)

Goodman and Kruskal’s gamma measure is used in statistics for rank correlation tests

for association between data points, as well as signifying how close two pairs of data

points match. The Goodman and Kruskal’s gamma coefficient ranges between −1 and 1,

where 1 is a perfect positive correlation, 0 suggests no association, and −1 is a perfect
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inverse correlation. The computation is given in Eq. 2.21, Nc is the total number of

concordant pairs, and Nd is the total number of discordant pairs.

γ =
Nc −Nd
Nc +Nd

(2.21)

2.5 Datasets

In this section, we introduce three datasets associated with our experiments. The UCR

Archive [21] is a general time series archive, containing distinct datasets from various

fields. Whereas the ICME (Interplanetary Coronal Mass Ejections) and Solar Flare datasets

are more domain-specific. The experiments show the effectiveness of our methods, and

in turn, the datasets can demonstrate the wide applicability of cluster analysis.

2.5.1 UCR Archive

Most of our univariate time series work was initially tested using the UCR dataset

archive [21]. At the time of this report, there are a total of 128 time series datasets in

the UCR archive, including synthetic data and real-world data from various domains,

ranging in class numbers as well as sizes. Each dataset consists of training and testing,

and it is important to note that the training to testing ratio in the original dataset is

not uniform, and the labels in training and testing portions are not always balanced.

This means in application, the UCR repository is more geared towards kNN (k Nearest

Neighbor) experiments, where there is no training process, and the imbalance of datasets

is not a critical issue. On the other hand, the ratio of train to test, as well as the balance of

labels, would greatly affect the final results for cluster analysis. Therefore, for clustering
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experiments, we re-sample the data by stratified sampling with five-fold cross-validation

on all the datasets and only used the original split when running 1NN experiments.

2.5.2 ICME Data

Space Weather is of rising importance in scientific discipline that describes the way in

which the Sun and space impact a myriad of activities down on Earth as well as the safety

of the space crew members on board of the space stations. Consequently, it is imperative

to better quantify the risk of future space weather events. Most solar prediction models in

literature use physical parameters of the potential active regions during a limited interval

to gain insights on whether an event will happen or not. This limits our perception of

how an event evolves for an extended duration across multiple parameters. We approach

this problem from a data-driven perspective and address the problem of prediction from

a multivariate time series analysis perspective.

Different types of space weather events may have different impacts on Earth as well

as to the space crew members and satellites that are in the magnetosphere [65]. For

example, Solar Energetic Particles (SEP) can penetrate instruments on satellites and may

be a possible threat of magnetic saturation, which can eventually lead to electrical failures.

ICMEs (Interplanetary Coronal Mass Ejections) can induce extra currents in the ground,

which can deteriorate power grid operations down on the Earth. Additionally, X-rays

heat the Earth’s outer atmosphere, causing it to expand, which can be a disturbance to

satellites. As a chain effect, space weather will also impact people who rely on those

technologies. In the past ICMEs (Interplanetary Coronal Mass Ejections) were believed to

be caused by solar flares, later this was found to be untrue, not every flare is accompanied

with ICMEs, and not every ICME happens during a flare. Due to the potential damage

from solar flares and ICMEs, they are both actively studied by researchers.
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Most of the studies on ICMEs published in the past primarily focused on expert-

proposed parameters that are summarized from the original time series [66]. In our

work, we go back to the original data recorded by the Ulysses spacecraft and focus on

long-term trends in the raw time series data. We combined two datasets: (1) a list of 181

individual ICME events ranging from 1991 to 2007 [67], with labels indicating magnetic

clouds (MC) and non-magnetic clouds (NMC), as shown in Fig. 2.16, the ICME events

are plotted on two parameters describing the events; and (2) a multivariate time series

dataset that corresponds to each event in the aforementioned event list. The labels of

ICME events were provided by domain experts [67] and will serve as a benchmark for

our evaluation. The multivariate time series dataset is obtained from NASA’s Goddard

Space Flight Center (GSFC) and contains a detailed recording from the spacecraft Ulysses

that can describe the in-situ features of the ICME events in more detail. Since its launch

in 1990, Ulysses has made three “fast latitude scans” of the Sun in 1994/1995, 2000/2001,

and 2007/2008, exploring the three-dimensional structure of the Sun’s heliosphere.
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Figure 2.16: Proton Speed (ICME Speed) plotted against Plasma-Beta of the 181 ICME events
used in this dataset.

The time series data from Ulysses at NASA/GSFC [68] provide us with Heliographic

Inertial (HGI) coordinates, B field magnitudes, proton flow speed, proton flow elevation
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angle, proton flow azimuth angle, proton density, alpha density, maximum proton

temperature, and minimum proton temperature. Br, Bt, Bn, and B field magnitude

describe the magnetic field in the Radial-Tangential-Normal (RTN) coordinate system,

and represent the in-situ magnetic field magnitude where Br is the measurement in the

radial direction oriented from Sun to satellite; Bt is the measurement of the cross product

of the solar rotation axis and Br; Bn is the measurement of the cross product of Br and Bt,

and B is the overall magnetic field magnitude.

We also look at two additional parameters that are considered significant for event

distinction [66]: (1) Plasma-Beta is a derived parameter that can be calculated with

Eq. 2.22, and (2) oxygen ion charge state ratio O7/O6, which is from the “SWICS”

instrument from “Ulysses” [69]. O7/O6 is a three hour averaged measurement, and all

the other parameters are one hour averaged measurements. This is not an issue since all

parameters are clustered independently.

PlasmaBeta =
2npkBTp

B2

µ0

(2.22)

Table 2.2: ICME Parameters

ID Name Description (Unit)
P01 Heliocentric Dist Heliocentric Distance (start of data interval), AU
P02 HGI Latitude HelioGraphic Inertial (HGI) Latitude, deg.
P03 HGI Longitude HelioGraphic Inertial (HGI) Longitude, deg.
P04 Br IMF Br in RTN, nT
P05 Bt IMF Bt in RTN, nT
P06 Bn IMF Bn in RTN, nT
P07 B B Field Magnitude, nT
P08 Proton Speed Proton Flow Speed, km/sec
P09 Flow Elevation Proton Flow Elevation Angle/Latitude, (RTN), deg.
P10 Flow Azimuth Proton Flow Azimuth Angle/Longitude (RTN), deg.
P11 Proton Density Proton Density, n/cc
P12 Alpha Density Alpha Density, n/cc
P13 Max Temp Maximum Proton Temperature, K
P14 Min Temp Minimum Proton Temperature,K
P15 Plasma Beta Ratio of Plasma Pressure to Magnetic Pressure
P16 O7/O6 Charge State Oxygen Ratio
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The 16 parameters are listed in Table 2.2, which includes the parameter name, and

the description of each parameter. In this particular dataset, there is a small portion of

invalid data in some of the earlier measurements. The longest of which only takes up a

fraction of a particular event, and therefore only the invalid entries are revised, not the

whole event. The domain-specific terms only refer to certain measurements and should

not hinder non-solar physicists from understanding the derived results.

2.5.3 Solar Flare Data

A number of physics-based models exist for the prediction of solar flares; we took a

data-driven perspective. Similar to Bobra et al. [70], we use past observations of an active

region that were detected and tracked by the Space-weather HMI (Helioseismic and

Magnetic Imager) Active Region Patches (SHARP) in an attempt to categorize and predict

its future flaring activity.

Initial Solar Flare Data

Active regions (AR) are systematically detected and reported by the HMI team that

developed a high-level data pipeline that performs this task [71]; the pipeline uses the

Solar Dynamics Observatory (SDO) images shown in Fig. 2.17. Fig. 2.17 (a) is taken

by the HMI instrument, which is used to detect an active region in the full-disk image

data, also known as HMI Active Region Patches (HARPs), shown in Fig. 2.17 (b). A

HARP is a bounding rectangle structure at the size scale of the containing solar active

region. The last step corresponds to extracting the vector magnetic field maps from the

HARP bitmaps, as shown in Fig. 2.17 (c). The latter maps along with other magnetic field

physical properties, and are called Space-weather HMI Active Region Patches (SHARP).

The 16 parameters are shown in Table 2.3. The HMI data repository is made accessible

by the Joint Science Operations Center, which provides continuous measurements of the
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magnetic field taken from space. Here, the non-flare class is made of active regions that

never led to any flare with intensity class greater than class B.

(a) (b) (c)

Figure 2.17: Illustration of the feature extraction phases steps. (a) Shows an illustration of an
image taken on board of the SDO which shows the vector magnetic field that is
further used to detect the active regions in (b) that are masked in (c) before computing
the magnetic field related features. [1]

Our goal is to determine which active regions would lead to a solar flare (flare class),

and which active regions did not lead to any flares (non-flare class). The flare catalog

by NOAA is consulted to find the parent active regions where the flare was initiated.

As soon as a solar flare is detected from the GOES X-ray Sensor instrument (XRS), it

is reported to the flare catalog and is usually paired with its parent active region. The

NOAA flare catalog is a widely accepted catalog due to the continuity of the GOES

missions, which started in 1974 with the launch of SMS-1 satellite and continued to today

with the GOES-15. There are five categories of flares that are detected by the GOES

satellites. The less invasive ones are class A and B, whose X-ray flux values are lesser than

10−6. The non-flare class is active regions that did not lead to any flares during its lifetime

to a class C or higher. Class C, M and X flares are the ones whose X-ray flux values

are greater than 10−6, 10−5 and 10−4 Watts/m2, respectively [70], and are considered as

flares in our analysis.

We extracted six datasets that correspond to different observation periods and prior

periods. The prior signifies the number of hours prior to the flare event occurrence.

The prior can be thought of as being an interval of time in the future when our model
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Table 2.3: Active Region Parameters

ID Tag Description
P01 USFLUX Total unsigned flux
P02 MEANGAM Mean angle of field from radial
P03 MEANGBT Mean gradient of total field
P04 MEANGBZ Mean gradient of vertical field
P05 MEANGBH Mean gradient of horizontal field
P06 MEANJZD Mean vertical current density
P07 TOTUSJZ Total unsigned vertical current
P08 MEANALP Mean characteristic twist parameter α
P09 MEANJZH Mean current helicity (Bz contribution)
P10 TOTUSJH Total unsigned current helicity
P11 ABSNJZH Absolute value of the net current helicity
P12 SAVNCPP Sum of the modulus of the net current per polarity
P13 MEANPOT Mean photospheric magnetic free energy
P14 TOTPOT Total photospheric magnetic free energy density
P15 MEANSHR Mean shear angle
P16 SHRGT45 Fraction of Area with Shear > 45 deg

should be able to predict the occurrence or non-occurrence of a flare. We considered two

categories of prior periods, which are 12 and 24 hours. In other words, we investigated

the possibility of predicting a flare from an active region’s physical characteristics 12 or

24 hours before their potential occurrence. The span signifies the observation period; in

other words, the number of hours we observe the said active region. There is a direct

correlation between the span duration and the length of the time series. Here, we selected

three different spans: 6, 12, and 24 hours and two different priors: 12 and 24, as shown in

Table 2.4.

Table 2.4: Solar flare datasets with prior ∈ {12, 24} and span ∈ {6, 12, 24}

Dataset Type Time Period
Data

Span 6 Span 12 Span 24

Prior 12

Train 2011,2012,2013,2014 6924 6446 5683

Test 2015,2016 2383 2185 1818

Prior 24

Train 2011,2012,2013,2014 6743 6279 5553

Test 2015,2016 2283 2056 1741
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In order to validate our model, splitting the data into a training set and a testing set

is required. The most common sampling methodologies include holdout and k-fold

cross-validation. Here, we used a temporal split since we are dealing with solar flares

where the temporal dimension is important due to the fluctuation of Sun activity, which

depends on the solar cycle. The goal of the temporal split is to ensure the robustness of the

model by making sure there is no dependency on the Sun’s activity level in a particular

time period. To ensure the validity and applicability, when using this dataset, not only

are we testing on never-seen data but also data that is temporally non-overlapping with

the training data time.

Extended Solar Flare Data

For time series cluster profiling, we use the Space Weather ANalytics for Solar Flares

(SWAN-SF) [72], which is a benchmark dataset of multivariate time series (MVTS),

spanning over the 9-year period (2010-2018) within the solar cycle 24. The SWAN-SF solar

flare dataset is more comprehensive than the initial solar flare dataset. The time series in

the data, as illustrated in Fig. 2.18, are the result of a sliding temporal window spanning

over 12 hours of observation prior to the occurrence of an event. The sliding window

extracts a list of physical (magnetic field) parameters from regions of interest (RoI) and

produces an MVTS. The label assigned to each MVTS corresponds to the strongest flare

in the temporal observation window, among the multiple flares that may co-occur. Of

course, the presence of multiple flares in an observation window impacts the general

flares’ profiles. However, an operation-ready forecast system also needs to predict based

on the characteristics of flare clusters, and not singled-out flares. This is simply a design

choice in SWAN-SF, made to closely mimic the data that any real-time forecasting model

should eventually base their predictions on. If no flares were reported during that period,

the corresponding MVTS would be labeled as flare-quiet (FQ). Note that each MVTS

is unique to a particular active region. However, due to the use of a sliding window
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for slicing time series, multiple observation windows may be attributed to a single flare

occurring in that region. This behavior is reflected in Fig. 2.18 by the top-tree blue bars,

representing three different MVTS, all corresponding to one flare of magnitude M1.0.

0-12 +12 +24

Sliding Prediction WindowsSliding Observation WindowsLabels

time

Flare Intersection of flare and pred. window

C1.7 C1.0

M1.0
C3.0

| | |

M1.0
M1.0
M1.0
C3.0
C3.0
C3.0
C1.0

|

Intersection of Flare and Prediction Window

Figure 2.18: The slicing process for the SWAN-SF benchmark dataset. For a given active region,
each observation window (blue bars) is labeled (on the left, in green) according to the
intersection (black circles) of its prediction window (red bars) with the magnitude of
the largest flare reported for this active region in that time window. Note that each
observation window produces one MVTS.

This data benchmark comprises of five partitions in such a way that there is approx-

imately an equal number of strong (GOES M- and X-class) flares, distributed in each

partition. The partitions are temporally separated. This provides an easy way for users to

split the data into training, validation, and testing sets, without having to worry about

unwanted biases that their sampling methodology may impose on the problem. Table. 2.5

shows the number of instances (pre-flare time series) labeled in compliance with the

settings of Fig. 2.18: a 12-hour observation window and a 24-hour forecast window, with

zero latency.

Our analysis is based on the notion that flare data do not only differ in value but also

in the development process, and it is the latter that is our emphasis. As this dataset is

imbalanced and our clustering requires balanced datasets, we did not want to emphasize

the quantity of experimental data. Instead, we selected 100 unique C- and M-class

instances from Partitions 4 and 5, respectively. Moreover, because X-class instances are
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Table 2.5: Labeled flare instances as per flare class for the five partitions of the SWAN-SF
benchmark dataset. Also shown is the approximate class imbalance ratio between
labels corresponding to M- and X-class flares and all the other labels.

Partition X M C B FQ Ratio
1 172 1130 6250 4999 64222 1:58

2 48 1279 8444 4194 78517 1:69

3 160 1152 3350 108 22236 1:20

4 165 1153 6487 832 52689 1:51

5 21 1071 6419 832 89400 1:95

rare events, and it is important to have balanced datasets for cluster analysis, we selected

X-class instances from across all five Partitions. For obtaining 100 X-class flare instances,

if they have similar active region id, we limited our sample space to time series that are

as spread out as possible. This is to avoid the impact of auto-correlation caused by the

time series coming from the same active regions.
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3 SEGMENTED DYNAMIC TIME WARPING (SEGDTW)

As introduced in Section 2.1, while DTW is useful in comparing sequential data, it has two

major flaws: high computational cost and the possibility of pathological warping paths.

The origin of the two flaws is the linear calculation of mapping of two sequences [73]. The

warping path, or shortest global route, for DTW is identified based on the computation

and comparisons of several options at each step. While this contributes to the general

success of the DTW algorithm’s performance with time series data, the large-scale

computations make DTW a very time-consuming algorithm. The other issue with DTW

is the occurrence of pathological warping path, which happens when the warping path

tries to compensate for small value differences. In other words, pathological warping

paths exist because the decision at each step does not take significant global similarities

into consideration. When the path is found in a greedy manner and never readjusted, the

optimal warping path could be permanently missed.

In application, we can often observe cases where the warping path between two time

series does not match the expected intuitive mapping, to solve this problem, different

constraints are applied. However, the tightness of global constraints for DTW is an issue

not often discussed. For efficiency improvements, when the window constraint becomes

too tight, the overall performance can be reduced, and in the most extreme case, DTW

becomes Euclidean distance. When dimension of time series is reduced to much to speed

up time series computation, the significance of using time series data could be dissipated.

We approach this problem in a two-step approach, global similarity can be identified

by adding a layer of significant feature identification, which acts as a form of restraints;
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then the local similarity can be identified by focusing on each corresponding segments

individually [74].

Fig. 3.1 shows the mapping comparison between the standard DTW algorithm and

an example of segDTW with peaks. In this example, the standard DTW mapping is not

matching our intuitive expectations and is showing signs of pathological warpings. In

contrast, by identifying two peaks and segmenting the two time series into three paired

segments, the segDTW mapping provides more intuitive results. When features are

identified and paired, not only do we obtain a more intuitive mapping, but also makes

it possible and exceptionally easy to parallelize DTW computation within a time series

sequence. Given enough computing resources, we can greatly improve the time cost

of distance matrix computation, the segmentation makes our method scalable and sets

segDTW apart from other DTW improvement heuristics.

(a) Standard DTW mapping (b) segDTW mapping

Figure 3.1: A comparison between the standard DTW and segDTW, (a) is the mapping of standard
DTW, which is computed linearly and is showing signs of a pathological warping
path, (b) shows the mapping results of segDTW with peak identification, here each
segment can be simultaneously computed. Hence, segDTW can generate faster and
more intuitive results.

This chapter presents Segmented Dynamic Time Warping (segDTW), which differs

from previous DTW improvement works in the sense that it is designed to break the

linear barrier and take the DTW computation to parallel. Section 3.1 discuss how

global identifying features are established, and Section 3.2 explains how the features are

paired. Through detecting features of time series data and segmenting accordingly, a
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layer of approximation is added prior to DTW distance computation. While this idea is

straightforward, it is extremely effective in providing scalability and improving speed.

3.1 Feature Selection

For feature selection, any meaningful and easy to identify features can be used, in our

work we proposed a simple yet flexible peak/valley detection heuristic. The naïve

definition of a peak can be formulated as follows: the temporal index i corresponds to

the peak ci, if ci > ci−1 and ci > ci+1, and ci is referred to as candidate peaks. Similarly, a

valley can be formulated as the temporal index i corresponds to the valley ci, if ci < ci−1

and ci < ci+1, and ci is referred to as candidate valley. This simple definition equipped

with peak/valley selection parameters t, d, and n form a peak/valley detection method

that provides the criteria necessary to distinguish a set of selected peak/valley used in

segDTW referred to as significant peaks/valleys.

• t: threshold on the frequency domain. Any candidate peaks below t will not

be considered for peak detection, and any candidate valley above t will not be

considered for valley detection.

• d: the minimum peak/valley radius. For any identified peak/valley, any adjacent

peak/valley within a radius of d will be considered as either noise or insignificant.

• n: the maximum number of features to be taken into account. Since the values of

features are sorted before being analyzed, only the top n features that have met the

other criteria will be considered.

Being a variant of DTW, the basic conditions of boundary, monotonicity, and continuity

are also applicable for segDTW. As an effect of the boundary condition for segDTW

computation, the end points for each segment are specifically mapped. Next, the optimal
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DTW mapping is found for each sub-sequence, and the distances of all the sub-sequences

are aggregated to obtain the overall distance between two time series sequences. This

method can alleviate singularities, minimize mismatches, and avoid pathological warping

paths.

For simplicity, Algorithm 3.1 only shows the selection for feature peaks, but the

conditions can be simply changed according to the previous description for valley

detection. Initially, all candidate peaks are found and sorted based on their values

(Algorithm 3.1 lines 3-7). Then, the threshold t on the frequency domain is applied, and

all the candidate peaks below the threshold will be removed from the list (lines 8-13). For

the remaining peaks, the neighboring peaks within the radius of d temporal indices will

then be removed (lines 15-21). The algorithm processes the peaks in a top-down fashion,

as this can guarantee that the presence of a smaller peak will never justify the removal

of a more significant peak. Finally, the top n peaks can be optionally picked among the

remaining peaks on the list.

3.2 Feature Pairing

Once the features are identified, we need to pair the detected features. The mapping

method in such a situation plays a crucial role in achieving sensible results. A prerequisite

condition for segDTW is that it has to satisfy all the basic requirements of DTW, namely

boundary, monotonicity, and continuity conditions. This can be extended to the condition

that no set of paired features in segDTW could cross another pair of features, as this

would be a violation of the monotonicity requirement of DTW. Since segDTW consists of

standard DTW, when boundary and continuity requirements are satisfied for each time

series segment, they are automatically satisfied as a whole.

49



Algorithm 3.1 Time Series Peak Selection
Input: c = {c1, · · · , cm} time series data,
t: the minimum threshold on the frequency domain below which all peaks are ignored,
d: the minimum radius from a selected peak within which all other peaks are ignored,
n: the maximum number of peaks to be detected.
Output:
the list of peaks with both their indices and values.

1: procedure Find Peaks

2: significant.peaks, candidates← list()
3: for all ci ∈ C do
4: if ((ci > ci+1) & (ci > ci−1)) then
5: candidates.add((i, ci))
6: end if
7: end for
8: peaks← sortByValue(candidates)
9: for all (i, ci) ∈ peaks do

10: if ci < t then
11: peaks.remove((i, ci))
12: end if
13: end for
14: indices← peaks.getIndices()
15: for all i ∈ indices do
16: for all j ∈ {i− d, · · · , i+ d} \ i do
17: if peaks.hasIndex(j) then
18: peaks.remove((j, cj))
19: end if
20: end for
21: end for
22: significant.peaks← peaks.getNFirstElements(n)
23: return significant.peaks;
24: end procedure

The mapping of features, in many situations, is a subjective task, and it is not always

possible to agree on any ground truth even when visually analyzing the time series.

Therefore, we set our goal to minimize the total distances of the pairs. To this end,

we employ the Hungarian algorithm [75] in order to achieve a global optimum feature

pairing. This is a generalized choice, depending on the situation, this choice can be

alternated with any other user-preferred method that potentially suits the dataset or task

at hand.
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The Hungarian algorithm is a well-known assignment problem which is regarded as a

relative of the traveling salesman problem. The assignment problem can be formulated as

follows: given an n by n matrix R = (rij) of non-negative integers, the objective is to find

the permutation {j1, j2, · · · , jn} of the integers {1, 2, · · · ,n} such that it minimizes the sum

rij1 + rij2 + · · ·+ rijn . The Hungarian method utilizes linear programming to tackle this

problem. Although the assignment problem can always be reduced to the case where R

takes only ones and zeros, representing paired and non-paired integers, it is not limited

to this binary case. Also, the problem can be easily extended to the non-square matrices.

Thus, this approach is a natural choice and is well suited for our feature-pairing problem.

The sequence of the integers, in this context, is the temporal indices of the features in the

two time series, Q, and C, and the permutation of interest is the mapping between the

features from one time series to the other. The entries of the assignment matrix R for our

problem can be defined as follows:

rij = temporal distance between q̂i and ĉj

where q̂i and ĉj are the i-th and j-th feature in the time series Q and C, respectively. The

objective here is to find a permutation that minimizes the total temporal distance of the

features.

Two important adjustments to the original Hungarian algorithm need to be made to

fully customize this solution to fit the task of pairing significant features. Our main

objective here in adjusting the feature pairing method is to mimic the human decision-

making process. First, the algorithm must avoid situations where two pairs of features are

mapped in a reverse temporal order. The mapping of one pair crossing the mapping of

another pair of features is never allowed, as this would be a violation of the monotonicity

requirement of DTW. Coincidentally, this also ensures the algorithm to drop the more

costly feature mappings. Second, When the number of significant features is different
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in the two time series, which occurs more often than not, only those contributing to the

global optimum are selected. The pairing of features is high-level decisions that must be

made even when a practitioner is assigned to tackle subjective tasks of this kind. In most

cases, the most optimal decision is the one that aligns with our intuition.
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c
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(a)
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c
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(b)

Figure 3.2: (a) Standard DTW mapping with three pairs of peaks identified. (b) Dissimilarity
matrix used for segDTW with identified peaks, the warping path can only traverse
through the colored dynamic sub-windows.

Another way to understand segDTW is to consider it as a form of dynamic windows [23].

Shown in Fig. 3.2 (a), when the three identified peaks a, b, and c are mapped to a ′,

b ′, and c ′ respectively, they correspond to the three dots in Fig. 3.2 (b). The paired

peaks define the colored squares, which can be treated as dynamic sub-windows for

DTW. The warping path would have to traverse through the points of mapped peaks.

Any mappings outside of these sub-windows do not need to be computed, and this is

extremely important since this not only speed up the computation, but also provides

more intuitive results. The computations pruned off by the segDTW model is not done

for the sole purpose of achieving a lower computational cost, but more importantly, the

choice is justified by intuitive mapping. Based on the behavior of time series sequences,

the detected global similarities place a coarse constraint on the overall warping path.
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Compared to global constraints, segDTW allows more freedom for a warping path to

develop within each sub-window (segment pair).

In the worst scenario, the time complexity of segDTW, if implemented as described, is

max{O((p · (p+ 1))/2), s)} where p is the number of candidate peaks/valleys and s is the

time bound of the utilized sorting algorithm. The worst case refers to the situation where

d = 0, n = ∞, and t = min(C). However, by taking the order of the indices into account,

in addition to the order of the values, the time complexity would only be determined by

the sorting step. Hence, the worst-case running time would be decreased to O(n · log(n)),

which reflects the complexity of a sort algorithm such as merge sort or heap sort.

3.3 segDTW Performance

We demonstrate our findings with datasets from the UCR time series archive [21]. The

original train-test split is used with this 1NN classification. Although the time series

length is uniform across each dataset, segDTW can be applied toward time series of

different lengths just as DTW can. All the measurements, DTW, DDTW, as well as

segDTW, are used as is, meaning no further optimization methods applied. This holdback

means we purposefully slowed down the experiments to ensure fair comparisons. There

is no parallelization on the time series event level for any of our experiments. When

using any similarity measurements, the computation between each training and each

testing event can always be distributed to different cores. In other words, the parallel

computation of time series events can be done for any DTW based method. Therefore,

we take away the common factor and utilize multiple processor cores for computation

only when time series are segmented. Parallelization occurs only within sequences, and

never between sequences. In short, our experiments are overall slowed to a controlled

state of having one single variable: segmentation.
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3.3.1 Feature Type

We first explore the importance of significant features by comparing global features

peak and valley with equal window segmentation. Instinctively, by segmenting one

computation into several pieces and processing each piece simultaneously should improve

the overall time cost. However, in order to obtain meaningful results in sequential

comparison, the segmentation would also have to be meaningful. While meaningful

cannot be precisely defined, it does insinuate that the segmentation corresponds to

intuitive human interpretation.

Fig. 3.3 shows the segDTW with peaks as features, valleys as features, and also the

same number of equal-width segments. The two time series in Fig. 3.3 (a) are divided

into three segments based on the two peaks identified as significant features, and the

accumulated segDTW distance is 16.16. One significant valley and one miniature valley

are found in Fig. 3.3 (b), and the accumulated segDTW distance is 18.75. When time series

are segmented into equal-width segments, as is the case in Fig. 3.3 (c), the accumulated

segDTW distance is 22.14. Although the processing time is approximately the same for

the three cases, the segmentation for the equal-width window does not have any actual

meaning. This situation could be worsened as the number of equal-width segments

grows, and in the extreme case for equal length time series, when each window has a

width of 1, segDTW with equal-width segment degenerates to the Lp-norm Euclidean

distance.

(a) Peak as feature (b) Valley as feature (c) Equal-width window

Figure 3.3: Two time series computed with segDTW with (a) peak, with distance 16.16 (b) valley,
with distance 18.75, and (c) equal-window, with distance 22.14, respectively.
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Both peaks and valleys are easily distinguished and can be used for sequence segmen-

tation; either could be more effective depending on the dataset and application. For our

experiments, we are solely using peaks as it is easy to recognize, simple to implement,

and is not seemingly performing worse than using valleys.

3.3.2 Peak Selection Parameter Effect on Performance

Generally, when the peak selection radius d is large or when the peak threshold t is large,

fewer peaks are identified, which means fewer sub-sequences. In the extreme case, when

no peaks are detected, and no segmentation is imposed, segDTW simply becomes the

standard DTW. In contrast, when the peak detection radius is small or when the peak

threshold is low, there are more peaks and sub-sequences, which leads to more segments

and potentially shorter processing time. However, more segments in time series sequences

introduce risks of identifying false peaks, which could lead to poor performance.

While any segmentation of time series would improve computation efficiency, it is the

quality of segmentation and its associated mapping that is our focus. Although general

parameters can help us gain some insight into the data, for optimum performance,

specialized parameter settings should be applied for specific datasets.

The number of identified features change when different segmentation parameters

are applied, and it is not necessarily a linear change. Fig. 3.4 shows how the number of

peaks and its corresponding accuracy change with different peak selection parameter

settings. The horizontal axis is the permutations of parameter settings d=12 , 14 , 18 , 1
16 , 1

32 ,

1
64 and 1

128 of data length L, and t with values of first quantile (Q1), median (M) and

the third quantile (Q3); here no n imposed. For simplicity, parameter d is labeled with

the denominator in Fig. 3.4. The left-y-axis is the accuracy, and the right-y-axis is the

average number of paired peaks. The orange line corresponds to the accuracy, and the

blue line corresponds to the number of peaks. In order to show the detailed accuracy
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Figure 3.4: The relationship between the number of peaks with accuracy for 16 datasets.

fluctuation, we did not use a uniform accuracy range, and the accuracy range for each

dataset is varied. While the results are distinct from dataset to dataset, there are some

identifiable trends. For datasets shown in (d), (k), (l), and (p), accuracy does not fluctuate

significantly in relation to the number of peaks. The relationship between accuracy and

number of peaks is positive in ratio for datasets (b), (c), and (g). While the relationship

between accuracy and the number of peaks is inverse in ratio for datasets (i) and (n). For

some datasets, the maximum accuracy occurs for a low number of paired peaks, while
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others occur specifically for a high number of paired peaks. In short, harmonious to the

no free lunch (NFL) theorem, parameter setting, and the quality of paired features differ

depending on the dataset.

3.3.3 segDTW Efficiency

For efficiency and accuracy performance, we used 38 datasets from the UCR archive and

compared three similarity measurements using 1NN. Fig. 3.5 (a) shows the computation

time, and (b) shows the accuracy for standard DTW, DDTW, and segDTW, with datasets

on the horizontal-axis ordered by their length in ascending order. The general processing

time varies drastically from dataset to dataset caused by the difference in data length;

therefore, the time-scale is depicted on the logarithmic scale. Generally, DDTW is more

efficient than standard DTW, and segDTW is more efficient than DDTW. Out of the 38

datasets, there is only 1 case where segDTW did not outperform the standard DTW

and 2 cases where segDTW did not outperform DDTW, all of which occurred for the

three datasets with the shortest data length. There are also 19 cases where compared

to the standard DTW, segDTW had over ten-times increase in processing time. Since

the scalability of segDTW is segment dependent, it makes sense for this advantage to

be more apparent for datasets with longer time series sequences; when the overhead of

the time spent on segmentation becomes less relevant compared to the linear calculation

time spent on an entire sequence pair. Among the datasets with the longest sequences,

we saw an increase of over 40-times in computation speed for 2 datasets. In the optimal

situation, segDTW performed the same or better in accuracy for 31 out of 38 datasets,

without using any other DTW improvement methods.
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DTW
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(a) Time cost in logarithmic scale.

(b) Corresponding accuracy performance

Figure 3.5: Datasets are in ascending order of time series length, (a) shows the processing time for
standard DTW, DDTW, and segDTW on the logarithmic scale, with segDTW speedup
becoming more apparent as time series length increases; (b) shows the corresponding
accuracy performance.

3.3.4 segDTW Application

Another advantage of segDTW is that it does not have to be a stand-alone heuristic. Due

to its unique divide-and-compute structure, segDTW can be combined with almost any

existing DTW improvement approach. Here we will demonstrate segDTW combined with

a global warping window. Table 3.1 shows the performance of segDTW with the Itakura

warping window compared to the standard DTW and segDTW. In general, segDTW

combined with an additional warping window is more efficient than the segDTW alone.
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However, there is a slight decrease in the accuracy of the stacked procedure; this can be

attributed to the tightness of constraint, as there is always a rist of over-contraining the

warping path when we pursue efficiency.

Table 3.1: Time and Accuracy for DTW, segDTW, and the Combination of segDTW with the
Itakura Window

Dataset
DTW
Time

DTW
Accu-
racy

segDTW
Time

segDTW
Accu-
racy

segDTW
& Itakura
Time

segDTW
& Itakura
Accuracy

DiatomSizeRed 2851.152 0.967 209.814 1.000 200.943 0.938

FaceFour 2184.636 0.830 150.442 0.773 140.988 0.761

Ham 9517.044 0.467 755.781 0.581 755.268 0.543

Lighting7 2313.384 0.726 348.706 0.712 324.118 0.721

Meat 4426.224 0.933 148.530 0.933 133.588 0.933

ToeSeg2 1606.704 0.838 211.372 0.877 215.616 0.631

(a) Standard DTW. (b) segDTW. (c) segDTW with window.

Figure 3.6: Warping path of (a) standard DTW, (b) segDTW, and (c) segDTW combined with the
Itakura warping window

For a more visual understanding, the warping path for the standard DTW is shown

in Fig. 3.6 (a), segDTW is shown in Fig. 3.6 (b), and segDTW combined with the Itakura

warping window is shown in Fig. 3.6 (c). Each orange cell corresponds to a pairwise

computation. In this example, segDTW identifies two peaks, and the white area outside

the dynamic sub-windows are pruned. segDTW with the Itakura warping window has the

least amount of computation. The warping paths are drawn in red, and compared to the

standard DTW, segDTW avoided some pathological warpings. While segDTW combined

with the Itakura warping window provides a very tight constraint for the warping path.
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In practice, segDTW would also work with methods such as slope weighting, step-pattern,

lower bounding, approximation, shape descriptor, early abandonment, and more.

The trade-off between efficiency and performance can be observed with many DTW

improvement methods. With little or no restraints, the warping path may stray pathologi-

cally, which also adds to the computation cost of the similarity matrix. When the restraints

are too tight, we risk missing the optimal warping path, threatening on Euclidean distance,

and possibly negating the advantages of time series data usage.
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4 DISTANCE DENSITY CLUSTERING

Distance Density Clustering algorithm [76, 77] is a medoid-based clustering algorithm

combined with virtual density regions that constitute natural splits within a dataset. We

use Dynamic Time Warping and DTW Barycenter Averaging as a means to compare and

represent time series data. Our cluster heuristic is formulated as a divisive hierarchical

structure, which is useful for visualization and incremental clustering. Section 4.1 intro-

duces how DDC identifies the initial clustering seed, and by deterministic initialization,

we can guarantee good and stable clustering result that is reproducible. Section 4.2

demonstrates how the clustering is conducted with each iteration. By considering the

distribution of the data, we are able to incorporate the ideologies of both distance-based

clustering as well as density-based clustering.

4.1 Clustering Initialization

Cluster initialization is generally the very first step for a partitioning clustering algorithm.

Initialization is important as it determines if the clustering algorithm is reproducible as

well as affecting the convergence and performance. Since we should only expect local

optimum results, we explore the impact of deterministic initialization. This issue has

been addressed with k-means++ [58]. The intuition behind k-means++ is the belief that

spreading out the initial seeds is good, and in the case of outliers, the algorithm would

readjust the clustering seeds.
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Inspired by the k-means++ algorithm, we approached the initialization process from

two perspectives, starting from the perimeter (less dense) region and moving in, and

starting from a dense region and moving out. In other words, we use the nearest and

furthest point as the initial seed and would also compare to the case with randomly

selected seed. By selecting the first seed as a specific point, the clustering process would

become a deterministic and reproducible process. In order to select the furthest or nearest

point, we apply a majority voting system.

Table 4.1: Similarity Matrix for Five Time Series

a b c d e

a 0 66.2 96.0 81.6 55.2

b 66.2 0 72.4 69.2 63.3

c 96.0 72.4 0 37.9 90.2

d 81.6 69.2 37.9 0 75.9

e 55.2 63.3 90.2 75.9 0

Nearest 1 0 1 1 2

Furthest 2 0 3 0 0

Table 4.1 shows an example of a distance matrix of five time series, from top to bottom

and left to right, the time series are referred to as a, b, c, d, and e. From the original

dataset class label, there are two classes within the five time series data, which are {c,d}

and {a,b, e}. Our majority voting strategy is simple, the nearest seed is identified as the

time series that is the most similar to the most number of other time series, whereas

the furthest seed is the time series that is the most dissimilar to the most number of

other time series. In this example, the nearest time series is event e with 2 votes, and the

furthest is c with 3 votes.
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After obtaining the initial seed, we need to identify a good place to separate the dataset

and to also search for the next seed. We do this by plotting a similarity plot of the seed

we have to all the other time series sequences within that dataset/cluster. The elbow

point, meaning where the plot shows the strongest bend, corresponds to a virtually

sparse region in the group of time series events, which provides a good place to split

the dataset/cluster. This process is similar to finding the ε value (maximum radius of

the neighborhood from cluster seed) in DBSCAN. Fig.4.1 shows the distance plot for

(a) the nearest time series seed e, and (b) the furthest time series seed c. The difference

is that while we can easily visualize a dense or sparse region within a discrete dataset

with DBSCAN, it is near impossible to visualize the density within a time series dataset;

therefore, we use time series similarity separation to mimic virtual sparsity.
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Figure 4.1: Similarity plot of (a) nearest time series seed and (b) furthest time series seed. Visually,
the strongest bend is the steepest slope, which occurs between time series ‘d’ and ‘c’
in (a), and between time series ‘d’ and ‘b’ in (b). This bend is conceptually a virtually
sparse region, and a suitable space to partition the dataset/cluster.

By definition, clustering is where within-cluster distances are minimized and between

cluster distances maximized; or in other words, locating the regions of high density that

are separated from one another by regions of low density. Therefore, by plotting time

series based on their similarity to the seed in ascending order and identifying the region

in the plot where the bend is the strongest, we can identify a more natural separation.

Essentially, a strong bend in a similarity plot signifies a virtual sparse region within the

time series dataset. In the case of the given example, the separation region in Fig.4.1 (a) is
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between time series d and c, and in Fig.4.1 (b) the separation region is between time series

d and b. Therefore the clustering result while using the nearest seed is {e,a,b,d} and {c};

while using the furthest time series seed produces clusters of {d, c} an {b, e,a}. In this

simple example, we are able to identify the intuitive and correct clustering result in one

run using the furthest initialization. In contrast, the nearest initialization did not cluster

time series d correctly. As this is only an example and therefore not sufficient enough

to indicate that furthest initialization is always better than the nearest, we will perform

more extensive experiments later on. With larger datasets, the situation could be more

complicated, we cannot expect to get the final result with one split, and the clustering is

typically further adjusted with DBA and iterated multiple times.

4.2 Cluster Update

As shown in Algorithm 4.1, Distance Density clustering is a definitive clustering method

and is initialized by finding the time series that has the most number of either the furthest

or nearest neighbors. Once the initial seed and clusters are obtained, the dataset is split,

and two new seeds are selected by identifying the medoid of the DBA of that particular

cluster. Then each time series are reassigned to the new seeds based on their DTW

similarities.

With the initial seed, we obtain two clusters; we treat each cluster separately and repeat

the sparse region split within each cluster. To avoid doubling the number of clusters with

each iteration, we only cut at the stronger bend from the two similarity plots and identify

one new cluster seed. The clusters would then be rebalanced based on the similarity

between all the time series and the updated cluster seeds, and the algorithm would then

go into the next iteration. This process is repeated until it has either reached a user set

threshold, or no more clusters can be identified. Because DDC is an incremental process,
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the results can be interpreted as forming a divisive hierarchy, making the results more

interpretable as well as not being constrained to the initial parameter settings, as is the

case with k-means or k-medoids.

Although we use DBA, which is a global time series average, it is still sensitive to the

computation template. For a completely deterministic clustering technique, we use the

time series with the most nearest neighbors as the initial DBA template. The intuition

behind this is based on the idea that time series averaged sequence is more likely to come

from a denser region of the dataset. Similar to k-means or k-medoids, any meaningful

help toward initialization is better than pure random. Not only will the DBA results be

reproducible, but it could also potentially speed up DBA convergence.

Algorithm 4.1 Distance Density Clustering Algorithm

Input: E = {e1, ..., en} time series events to be clustered
Input: Ck−1 = {c1, ..., ck−1} set of cluster seeds
Input: number of seeds k
Input: Lk is the cluster set of events based on the number of groups

1: for dol ∈ Lk−1
2: Lk−1 ← Cluster(Ck−1)
3: ar[1, 2, ...,k− 1] = DistSort(Lk−1)
4: value[i]← max(arr[2] − ar[1], ...,ar[k− 1] − ar[k− 2])
5: if ar[n] − ar[n− 1] == max(value[i]) then
6: location[i] = n
7: end if
8: end for
9: if theni← max(value[1, ...,k− 1])

10: l(i1, i2)← l(i), (ci1 , ci2)← ci
11: end if
12: return Ln = {1, 2, ..., i1, i2, ...,n}← Ck{(c1, c2, ..., ci1 , ci2 , ..., cn)}
13: for ei ∈ E do
14: (c ′1, c

′
2, ..., c ′k)← DBA(c1, c2, ..., ci1 , ci2 , ..., ck−1)

15: UpdateClusterDBA(Ck)
16: end for
17: return C ′k = {c ′1, ..., c ′k} as set of cluster seeds
18: return Ln = {l(e) |= 1, 2, ...,n} set of cluster labels of E

As we have previously mentioned, the DDC method is divisive in structure; therefore,

when more clusters are obtained, the performance would naturally increase. In the
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extreme case, when each event forms its own cluster, the clustering results would degen-

erate to a kNN (k=1) case. While this would increase the training accuracy dramatically,

it is not useful in real-world applications to test every new piece of data to the entire

existing dataset. The overwhelming amount of comparisons would also defy the purpose

of clustering since users are unable to obtain a generalized understanding of the dataset.

Therefore, in many cases, accuracy is not the goal of clustering.

4.3 DDC Performance

The performance of different initialization techniques are shown in Fig. 4.2 using (a)

accuracy, (b) F score, and (c) rand index. The 50 datasets are labeled on the x-axis, and

the y-axis is the measurement values. The boxed region shows the performance range

for k-means with 100 runs of random initialization. The orange dots in each figure show

the performance of furthest seed initialization, and the blue dots show the performance

of the nearest seed initialization. Overall furthest seed initialization shows the best

performance, while the nearest seed initialization usually falls somewhere within the

random initialization performances. There are some patterns where certain datasets have

higher performance regardless of the initialization method or the evaluation measure; it is

possible that some datasets show more substantially inherent similarity and dissimilarity,

and are merely easier to cluster.
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Figure 4.2: The Accuracy, F-score, and Rand Index of 50 datasets from the UCR repository.
Using Distance Density clustering, the orange dot is the performance of furthest seed
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box region is the performance range of k-means with random initialization.
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5 CLUSTER QUALITY EVALUATION

As introduced in Chapter 2, most internal indices such as the Silhouette Coefficient,

Dunn Index, Davies-Bouldin Index, etc. utilize some combination of inter-cluster distance

and intra-cluster distance. This may become a potential problem with time series data.

By nature, time series is high-dimensional, and therefore the distribution of time series

clusters is challenging to visualize. The complex combination of inter-cluster distance

and intra-cluster distance of high-dimensional data means the expressiveness of internal

indices could be greatly reduced.

Traditionally, when internal indices are applied for discrete data, the utilized inter- and

intra-distances in the Euclidean space conforms with the triangle inequality theorem. As

is shown in Fig. 5.1, given a proper triangle with positive side lengths a, b, and c, without

considering the case where the triangle area is zero, the sum of any two sides is greater

than the remaining side. This can be extended to include the case where the triangle area

is zero, in which case the sum of any two sides is greater than or equal to the remaining

side. In other words, the distance between any two points in a two-dimensional plane is

less than or equal to the summed distance from the two points to a third point.

A

B C

Figure 5.1: Triangle inequality theorem: given a proper triangle with side lengths a, b, and c that
are all positive and excludes the degenerate case of zero area, the sum of any two
sides is greater than the remaining side.
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5.1 Data Analysis

Many of the UCR archive datasets are real-world data, and therefore, the given labels are

regarded as the ground truth. Based on this assumption, we first analyze the datasets.

When handling real-world data, very often, the datasets are human-labeled. Meaning

there is the possibility of mislabeling. Additionally, even with correct labeling, different

datasets also have different innate quality. In many instances, we find that some datasets

have very high clustering/classification accuracy regardless of the applied heuristic, while

other datasets could have low accuracy despite the applied heuristic.

Although time series is a very different data format from discrete data, the idea

of clustering is identical. Therefore, to analyze the effectiveness of cluster evaluation

indices, we assume that with a suitable similarity measure, both internal and external

indices should work for time series data cluster evaluation. For a naive comparison,

we use the given ground truth labels as cluster assignment and compare that with the

minimal clustering produced by DDC, which was introduced in Chapter 4. For the

minimal clustering, we generate the same cluster of numbers as the number of class

labels, meaning regardless of the dataset size, if there are three class labels, we generate

three clusters. Unless we are processing an extremely ideal dataset, minimal clustering

should have inferior performance; therefore, this serves as a baseline for comparison.

Fig. 5.2 shows the Silhouette Coefficient, the Dunn Index, and the Davies-Bouldin Index

of 71 datasets, the x-axis is the five groups from the five-fold cross-validation, and y-axis

is the corresponding index value. Boxplots are labeled as MinClust and Train, which

corresponds to the minimal cluster case and the class label assignment case. With all

three indices, minimal clustering demonstrated better performance, which suggests the

complex distribution of the tested time series datasets.

As demonstrated in Fig. 5.3, for any dataset there are three possible distributions; firstly,

in the worst circumstance, each natural cluster is a mix of class events; the second case is
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Figure 5.2: A comparison between minimal DDC and class label assignment, here minimal
clustering refers to producing the same number of clusters as there are class labels, (a)
shows the Silhouette Coefficient, (b) shows the Dunn Index, and (c) shows the Davies-
Bouldin Index. For all three indices, minimal clustering showed better performance
than the ground truth class label assignment.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5.3: Three types of distribution, (a) multiple classes belonging to the same natural cluster,
(b) class label coincide with natural clusters, (c) multiple natural clusters forming the
same class.

where the number of natural clusters coincides with the number of class labels; the last

case is where multiple natural clusters exist for the same class label. In the case that there

are multiple classes within one cluster, we should expect to see a worse performance from

naive clustering than from original class label separation, due to the clustering algorithm

can not discern any natural separations. From the poor performance of using class label

assignment, we can deduce that each labeled class is likely made up of several clusters.

This situation is not unique to, but it is rather harder to identify for time series data. The

results also confirm our assumption that the distribution of time series data is complex.

When the data is high-dimensional, the distribution is high-dimensional.
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5.2 Clustering Validation with Internal and External Indices

Clustering analysis serves the purpose of identifying groups of similar objects and

patterns. Through clustering time series datasets, we aim to discover correlations and

distributions. Internal indices were developed to help identify a good number of clusters

when no labels are available. For internal cluster evaluation, we used five-fold cross-

validation for each dataset. Because no labeled ground truth is considered for internal

validation, only four-sections of each partition is used for clustering. Here we assess the

performance of the internal indices with time series clusters.

As is shown in Fig. 5.4, the internal indices of clustering validation performs poorly

for time series clusters, and it is difficult to identify a suitable cluster number for cluster

termination. This phenomenon could be explained by the high-dimensionality of time

series data. The internal indices that are shown here are commonly used indices for

crisp discrete data clustering and are known to provide satisfactory results for well-

separated clusters. However, the way in which internal indices computes the values

is not compatible with the complex structure of time series data. When the data is

high-dimensional, the distribution is high-dimensional, and considering that neither time

series nor DTW has triangle inequality, the clustering distribution cannot be evaluated

with measures that combine intra-cluster and inter-cluster distances.

External evaluation involves a priori knowledge of the data. Meaning we will incorpo-

rate the ground truth label from the datasets to evaluate the formed clusters. The external

measurement of accuracy is used here as a guideline to interpret the values of internal

indices. Although the trend of accuracy increase with cluster numbers, it is not a linear

process. A cluster number increase may result in worse distribution of data clusters,

which we can observe as a decrease in accuracy. We can observe from Fig. 5.4 that internal

index values demonstrate much more dramatic changes than that of the accuracy. This

could be due to the nature of two index categories; the internal index represents the
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Figure 5.4: Evaluation of clustering with internal indices values and the corresponding accuracy.

structure of clusters more closely, whereas the external index relies on given class labels.

When natural clusters do not strictly correspond to given labels, the response of external

indexes improvement could be postponed. In other words, sometimes, the qualitative

change of cluster structure needs to accumulate before leading to the quantitative change

for accuracy improvement.

The goal of clustering is to find natural groupings of high homogeneity, with many

datasets, especially real-world datasets, it is very rare to have neatly separated clusters. In

72



Number of clusters

AccuracyDescriptive power

1 Size of dataset

Figure 5.5: Accuracy and descriptive power in relation to the number of clusters.

application, there is a trade-off between the descriptive power of clusters and achieving

high accuracy. This relationship is approximated in Fig. 5.5. When all objects belong to

the same cluster, there is no descriptive meaning and very low accuracy. Generally, the

more clusters there are, the higher the training accuracy. In the extreme case, when each

object is its own cluster, the training accuracy is 100%. However, clustering ceases to be a

learning procedure and becomes a memorization process; in other words, it is no longer

descriptive and becomes 1NN.

5.3 Cluster Variance Evaluation

Most existing internal indices work under the assumption that all points exist in a

two-dimensional plane. However, time series, along with the DTW algorithm, does

not conform with the triangle inequality. As such, it would seem irrational to expect

evaluation measures adapted to triangle inequality theorem to work for high dimensional

time series data clusters. Therefore, we propose the use of a variance-based evaluation

method for time series cluster evaluation. Despite its unpredictable distribution, we stay

close to the basic definition of clusters, as time series clusters would still comply with the

basic characteristics of clustering, which is high association with intra-clusters and low

association with inter-clusters.

When using variance as a measurement for clustering we utilize between cluster

variance SSb (Eq. 5.1) and within cluster variance SSw (Eq. 5.2), with the cluster mean
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computed with DBA. In order to emphasize the separation of inter-cluster and intra-

cluster measurements, the total variance SSt = SSw + SSb is not utilized, as SSt suggests

the establishment of the triangle inequality. We could evaluate the cluster quality with

two measurements; however, for simplicity, we use the quotient Q to combine the two

variances. Shown in Eq. 5.3, Q combines the two variances SSb and SSw only after the

two values are computed separately, and it is not a combination of inter-cluster and

intra-cluster similarities, but rather a simple measurement figure. Based on the definition

of clustering, a large value of SSb and a small value of SSw is preferred, meaning a larger

Q indicates clearer distinction among clusters.

SSb =

m∑
i=1

ni∑
j=1

(Xi −X)
2 (5.1)

SSw =

m∑
i=1

ni∑
j=1

(Xij −Xi)
2 (5.2)

Q = SSb/SSw (5.3)

Fig. 5.6 shows the variance values for 9 datasets. As a general trend, SSb increases,

and SSw decreases as the number of clusters increases. Ideally, the maximum SSb and

minimum SSw coincide at the same cluster assignment; in less ideal situations, we look

for a balance between the two values. We use Q to find the point where the ratio of a

large SSb and a small SSw becomes significant, the largest value or the knee point. Here

the compactness and separation are expressed with within cluster variance and between
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Figure 5.6: Evaluation of clustering with variance values.

cluster variance. When they are independently considered before merging the final value,

we can observe a separate indication of cluster quality.

For some datasets, there is one significant maximum Q that indicates a suitable place

to stop clustering, whereas for other datasets, there are multiple choices. Considering

the cost of clustering as well as the possibility of losing the descriptive power of clusters,

when having similar performance, a smaller number of clusters is more often preferred.
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6 EXPERIMENTS AND APPLICATIONS

In this chapter, we present our applicational experiments. First, a comparison study

between AGNES and OPTICS is conducted in Section 6.1, where the hierarchical structure

correlation is explored. Then we discuss the extension and applications of time series

clustering. With an effective distance measure and an adequate averaging technique, we

can achieve fairly good clustering on univariate time series data. However, in application,

when we need to generate predictions, it is usually not enough to perform univariate

clustering on high dimensional data. Here high dimension refers to multivariate datasets.

Decision trees are often used with high dimensional data for decision processes. However,

traditional decision trees are usually implemented with categorical or numeric data, and

not time series data. Section 6.2 briefly discuss the decision tree heuristic. A cluster based

decision tree for ICME and solar flare data are presented in Sections 6.3 and 6.4. Finally,

Section 6.5 shows how we use normalization to identify time series trends, which can be

used to create event class profiles and has the potential for real-time prediction.

6.1 Hierarchical Structure Comparisons

For hierarchical structure analysis, we use datasets from the UCR repository [21]. Because

cluster analysis requires balanced datasets, we used the re-sampled datasets. Due to

the computation costs as well as the difficulty to sensibly visualize large datasets, our

experiments are limited to small to medium-sized datasets, i.e., hierarchical clustering is

not suited for larger datasets.
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Our goal is to comprehend how different hierarchical structure performs with time

series data. Because of the structural similarity, we compare AGNES with single, complete,

UPGMA and WPGMA linkage, and OPTICS with ε = Inf and minPts = {1, 5, 10}.

Specifically, we evaluate the dendrogram quality when compared to the original dataset

similarities. Then the dendrograms from different implementations of AGNES and

OPTICS are compared for similarity. Finally, we use class labels to evaluate the quality of

cluster partitions, as well as the robustness of different clustering algorithms.

6.1.1 Internal Evaluation

First and foremost, we look at the dendrograms produced by each implementation of

AGNES and OPTICS. Although we cannot accurately compare dendrograms, they do

provide a visually intuitive understanding. Due to the space limitation and the massive

quantities of dendrograms, we only use one dataset as an example, dataset “Coffee” from

UCR. Fig. 6.1 show AGNES with single, complete, UPGMA, and WPGMA linkage, as

well as OPTICS with ε = Inf and minPts = {1, 5, 10}. Visually, we can observe certain

similarities between the OPTICS dendrograms. With slight differences, the elements in

the OPTICS dendrograms are more concentrated, with more noticeable outliers and less

distinct dissimilarity between larger clusters. Also, we can observe the similarity between

AGNES complete, UPGMA, and WPGMA, in the sense that there are more distinct and

balanced larger clusters. The AGNES single dendrogram is visually more similar to

the OPTICS dendrograms, upon further inspection, the dendrogram AGNES single is

identical to OPTICS with minPts = 1, just with a different ordering of presentation. We

observed the identical dendrograms between AGNES single and OPTICS minPts = 1 for

all the datasets we tested and will discuss the cause for this phenomenon later on.

Table 6.1 contains the cophenetic coefficient of the corresponding dendrogram com-

pared to the similarity matrix of 25 datasets. This is a simple evaluation of the preservation

77



0
5

10
15

50 48 16 20 14 25 15 54 49 26 28 56 18 44 17 24 52 22 51 2 12 7 40 9 32 13 42 41 34 39 43 5 33 1 3 11 37 21 8 31 6 35 23 45

(a) AGNES single

0
10

20
30

14 11 37 1 3 7 5 33 12 34 9 39 43 40 41 32 13 42 23 45 25 52 22 51 28 56 18 44 26 49 17 24 48 16 20 2 15 54 50 31 6 35 8 21

(b) AGNES complete

0
5

10
15

20

23 45 50 21 8 31 6 35 25 52 22 51 28 56 26 49 18 44 17 24 48 16 20 2 15 54 1 3 7 5 33 40 41 32 13 42 12 34 9 39 43 14 11 37

(c) AGNES UPGMA
0

5
10

15
20

25

14 11 37 1 3 7 5 33 12 34 40 41 9 39 43 32 13 42 48 16 20 2 15 54 50 21 8 31 6 35 25 52 22 51 28 56 26 49 18 44 17 24 23 45

(d) AGNES WPGMA

0
5

10
15

1 3 33 5 32 42 13 41 39 43 34 9 40 7 12 2 11 37 54 15 26 24 17 18 44 56 28 49 22 51 52 25 14 31 35 6 8 21 20 16 48 23 45 50

(e) OPTICS minPts=1

0
5

10
15

1 40 33 39 43 41 34 13 9 32 5 7 42 12 3 2 11 54 51 52 28 56 24 18 17 26 22 44 49 15 25 37 14 31 35 8 6 20 48 16 21 23 45 50

(f) OPTICS minPts=5

0
5

10
15

1 41 43 42 40 39 34 33 32 13 9 7 12 5 3 54 37 14 11 2 15 52 56 51 49 28 26 24 22 18 17 44 25 48 20 16 35 31 8 6 21 23 50 45

(g) OPTICS minPts=10

Figure 6.1: Dendrogram of four implementations of AGNES, and three implementations of
OPTICS.

of similarity in the respective dendrograms. From the CP evaluation, we can see overall

better similarity preservation with UPGMA, WPGMA, and complete linkage. Of course,

depending on the specific dataset, we do observe exceptions. The similarity preservation

of different OPTICS setting is comparable with no apparent leader. We can observe that

OPTICS with minPts = 1 has the same CP values as AGNES with single linkage.

Furthermore, we use both the CP coefficient and the Goodman Kruskal’s gamma to

quantitatively compare the dendrograms from different clustering methods for dataset

“Coffee”. Shown in Fig. 6.2 and Fig. 6.3 are the CP matrix and the Goodman Kruskal’s
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Table 6.1: Cophenetics Values for Variations of OPTICS and AGNES.

DataSet
OPTICS AGNES

minPts = 1 minPts = 5 minPts = 10 Single Complete UPGMA WPGMA
ArrowHead 0.7777 0.7849 0.8097 0.7777 0.2092 0.8538 0.6935

Beef 0.8664 0.8511 0.8535 0.8664 0.8835 0.8951 0.8827

BeetleFly 0.4126 0.4483 0.2517 0.4126 0.4147 0.6021 0.5784

BirdChicken 0.6239 0.5774 0.4883 0.6239 0.5682 0.7105 0.6231

Car 0.2751 0.3765 0.4039 0.2751 0.4170 0.6841 0.6280

Coffee 0.7008 0.6523 0.6398 0.7008 0.6311 0.7360 0.6519

DiatomSizeReduction 0.9486 0.9489 0.9492 0.9486 0.9573 0.9767 0.9765

Earthquakes 0.4120 0.4157 0.4204 0.4120 0.6832 0.7212 0.6847

ECG200 0.6185 0.6535 0.6657 0.6185 0.7038 0.8145 0.6685

FaceFour 0.7603 0.7682 0.7552 0.7603 0.6091 0.8321 0.8110

FISH 0.0227 0.0222 0.0223 0.0227 0.4956 0.4980 0.4751

Gun_Point 0.7917 0.8112 0.8507 0.7917 0.8333 0.8677 0.8130

Ham 0.6120 0.6125 0.6145 0.6120 0.4196 0.7128 0.6403

Herring 0.0624 0.0414 0.0743 0.0624 0.5383 0.5649 0.5646

Lighting2 0.3157 0.3643 0.3846 0.3157 0.4755 0.5621 0.5466

Lighting7 0.3737 0.3664 0.4406 0.3737 0.6302 0.6903 0.6815

Meat 0.8368 0.8157 0.8209 0.8368 0.8270 0.8863 0.8785

OliveOil 0.8983 0.8925 0.8669 0.8983 0.8836 0.9325 0.9116

OSULeaf 0.2668 0.2882 0.2860 0.2668 0.3994 0.5093 0.3656

Plane 0.7666 0.7669 0.7673 0.7666 0.4457 0.8972 0.6710

ShapeletSim 0.1546 0.1456 0.1818 0.1546 0.2806 0.3944 0.3350

ToeSegmentation1 0.4023 0.4060 0.4213 0.4023 0.2867 0.5782 0.3826

ToeSegmentation2 0.3420 0.3643 0.3732 0.3420 0.3464 0.4968 0.4849

Trace 0.7918 0.7913 0.7897 0.7918 0.8063 0.8890 0.8846

Wine 0.7234 0.7015 0.7021 0.7234 0.7313 0.8374 0.7945

gamma matrix illustrating the similarity between different hierarchical clustering meth-

ods. Again, we can observe that OPTICS with minPts = 1 and AGNES with single

linkage are identical. Also, AGNES with complete and WPGMA linkage is the least simi-

lar to other dendrograms. Note that this comparison is between the similarity of different

clustering dendrograms, and is not a measurement of the quality of the dendrograms.

From the internal evaluation of dendrograms for different implementations of AGNES

and OPTICS, we observed several characteristics in the context of the time series data that

we experimented with. As the minPts value in OPTICS approach the value of 1, OPTICS

becomes more similar to AGNES with single linkage. One of the characteristics of AGNES

single link is the chaining effect. When the most dense elements within a dataset are

79



O1 O5 O10 S C U W



OPT1 1.00
OPT5 0.96 1.00
OPT10 0.88 0.93 1.00
Single 1.00 0.96 0.88 1.00

Complete 0.41 0.31 0.32 0.41 1.00
UPGMA 0.77 0.71 0.72 0.77 0.76 1.00
WPGMA 0.50 0.41 0.45 0.50 0.77 0.75 1.00

Figure 6.2: Cophenetic coefficient matrix showing the similarity between dendrograms from
different hierarchical clustering methods for dataset “Coffee”.

O1 O5 O10 S C U W



OPT1 1.00
OPT5 0.96 1.00
OPT10 0.80 0.83 1.00
Single 1.00 0.96 0.80 1.00

Complete 0.36 0.31 0.36 0.36 1.00
UPGMA 0.75 0.74 0.81 0.75 0.58 1.00
WPGMA 0.42 0.39 0.47 0.42 0.69 0.58 1.00

Figure 6.3: Goodman and Kruskal’s gamma matrix showing the similarity between dendrograms
from different hierarchical clustering methods for dataset “Coffee”.

joint first in OPTICS, and minPts value is low, the cluster growth is similar to joining

clusters based on the nearest elements in those clusters. This characteristic contributes

to OPTICS and AGNES single linkage algorithms to identify arbitrarily shaped clusters.

As the minPts threshold is raised, the reachability structure is altered. This can also be

observed as larger minPts values produce smoother reachability plots.

Overall, AGNES UPGMA, WPGMA, and complete linkage have the best overall ability

to maintain dendrogram similarity in comparison to the original similarity matrix. For

dendrogram similarity, we can observe OPTICS minPts = 1 being identical to AGNES

single linkage. As theminPts value is increased, the similarity to AGNES single linkage is

decreased. AGNES UPGMA linkage has some similarities to all the other tested methods,

while the complete and WPGMA linkage produced the most distinct dendrograms.
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6.1.2 External Evaluation

So far, we evaluated the performance of different hierarchical clustering methods based

solely on dendrograms. Another way to evaluate cluster quality is external evaluation,

where a priori knowledge is considered. In this section, we utilize the given class labels to

compare the cluster quality from different cluster heuristics. As space is limited, three

datasets’ visualizations are shown as a representation, as there are definite trends among

different datasets, and the visualization can benefit the understanding of the performance

of different clustering methods.

For accuracy evaluation, we first generate a dendrogram from the training portion of

the data. Then the dendrogram tree is cut at different heights to generate the respective

number of clusters. For each different cluster partition, a time series average DBA is

generated to represent each training cluster. In order to reasonably evaluate the clustering

performance, the testing portion of data is invisible to the training process. Testing data

is compared against each of the cluster averages and assigned the label of the cluster

it is most similar to. The compliance between the assigned label and the actual label

determines the testing performance.

During the training cluster generating process, it is observed that not all numbers

of clusters exist. For example, we can obtain 4 clusters and 6 clusters from a certain

dendrogram, but not 5 clusters. This can be explained by the incredibly dense cluster

formations generated by OPTICS dendrograms. As suggested in the previous dendrogram

visualization results, some branches have multiple elements joint at the same height,

meaning certain numbers of cluster cuts simply do not exist. In which case, the accuracy

of the previous number of clusters is used for accuracy curve visualization.

We generate accuracy curves for both the training process and the testing process.

Fig. 6.4 shows the accuracy curves for three datasets. On a local scale, the accuracy curves

do not necessarily grow monotonously. Although the global scale performance improves
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Figure 6.4: The training and testing accuracy curves for datasets: “BirdChicken”, “Coffee”, and
“Meat”, for the different number of clusters.

with the increase of cluster numbers, there are situations where an increase in cluster

number does not guarantee an increase in accuracy. The small local decrease in accuracy

is mostly created when a previous minority becomes the current majority only slightly

at that particular partition and causes the current minority or testing elements to be

wrongfully labeled. We can observe that AGNES with complete, UPGMA, and WPGMA

linkage have an overall better performance; and that the performance of OPTICS and

AGNES single linkage is relatively weaker. Consistent with previous results, the training

and testing accuracy curve of OPTICS with minPts = 1 is identical to and overlaps

with, the AGNES single linkage accuracy curves. The performance of testing remains

comparable to the training portion, meaning hierarchical clustering of time series is, for

the most part, robust in performance.

We can observe the similarity between dendrograms of under-performing clustering

methods, namely AGNES single link, and OPTICS. One explanation for the poor perfor-
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mance from density based hierarchical clustering could be attributed to the underlying

way in which OPTICS form clusters. Both OPTICS and DBSCAN form clusters through

reachability, which can be visualized as a linked chain of data elements. When it comes

to time series, a linked chain of similarity may not be a suitable representation, as there is

the possibility of varying shapes linked together through transitive similarity. In which

case, both ends of the linked time series chain may actually be distinct from each other.

The overall best performing clustering methods, in the sense of accuracy, are AGNES

complete, UPGMA, and WPGMA linkage. All of which produce relatively distinct

dendrograms in terms of CP and Goodman Kruskal’s gamma coefficients.

6.2 Decision Trees

Decision trees are tree-like structures, which organize a decision process used for data

predictions. Objects are partitioned into groups where instances are similar. Typically, a

decision tree contains a root node, several internal nodes, and several leaf nodes. The

leaf nodes contain the decision results, and all other nodes contain conditional tests on

attribute values that split the instances among its child nodes. The path from the root

node to each leaf node is a sequence of tests (e.g., decisions) that determines where

each instance belongs. This is a divide-and-conquer process that usually ends when the

majority of the instances in each leaf node belongs to the same class.

In order to build an efficient decision tree, it is preferable for the instances at each node

to have the highest concentration of a certain group of data. This can be computed with

information entropy, which is also informally known as impurity. A smaller entropy

value suggests purer groups (e.g., subsets where the majority of events belong to a single

class), and a larger entropy value suggests more mixed groups.

83



However, entropy and information gain are mostly applied to discrete attributes and

not on sequential values. A common way around this problem is to translate sequential

data to the discrete case. However, instead of using statistical summarizations of event

parameters such as average and standard deviation, we believe clustering results contain

more information about the original time series data than a discrete summarization.

The significance of entropy is to differentiate the purity of a parameter, which could

also be represented by the clustering result. The advantage of this approach is that the

meaningful cluster results can be inherited and aggregated with a decision tree.

Although commonly used in data mining, decision trees are not well adapted for se-

quential data. Here, we implement a multivariate time series decision tree by aggregating

univariate clustering results. The clustering results can be used to mimic information

entropy and is also much more relevant to pass on to a decision tree than the average

value of each time series, which does little to differentiate each sequence. In other words,

a decision tree that uses clustering results is not a value-based decision tree, but rather a

shape-based decision tree. In this section, we show two cases where a decision tree is

used to aggregate univariate clustering results to form multivariate decisions; one is with

ICME data [78], and the second with solar flare data [79]. For visualization purposes, the

decision node splits are shown with DBAs.

6.3 ICME Decision Trees

In order to build the decision trees on multivariate time series data, we mimic entropy

with univariate time series clustering results. Using the significant parameters and their

corresponding knee points, the clustering results are summarized into a categorical table.

We are able to train decision trees using CART [80] for both AGNES and DDC.
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To avoid performance differences by chance, we applied 10-fold cross-validation with

stratified sampling in our experiments. From our previous works [76, 81], we found the

average link measure for AGNES and the furthest initialization technique for DDC are

the better choices for the two clustering methods. Therefore only results based on these

specifications will be presented. Fig. 6.5 and Fig. 6.7 show one of the 10-folds of the

accuracy curves of 16 parameters when using DDC and AGNES. The accuracy refers to

the matches between the clustering assignment to the original labels. For each accuracy

curve, the x-axis is the number of cluster numbers, the y-axis is the accuracy, and the title

includes the parameter name and the corresponding area under curve (AUC). Here we

refer to the area under the accuracy curve as AUC for simplicity and not the common

usage of referring to the area under the ROC curve.

The hierarchical clustering method is agglomerative and initializes with one event in

each cluster because there are 181 events; the accuracy would be 100% when the number

of subgroups is 181. The Distance Density approach is a divisive one, and each new

subgroup is identified by finding a new cluster seed. Therefore once a subgroup has only

two events left, or when there are three events left in a subgroup, and two of the events are

equal in distance to the clustering seed, the divisive clustering has no reason to produce

micro-clusters. This means the distance-density approach cannot reach 181 subgroups,

and therefore is not guaranteed to end with accuracy being 100%. Additionally, for

real-world applications, there is no reason to cluster to, or near 181 clusters. Therefore we

only show the accuracy results up to 100 clusters.

6.3.1 DDC Decision Tree

The accuracy curves of different parameters behave differently, as is shown in Fig. 6.5.

Parameters with a larger AUC suggest it is a better descriptor to separate magnetic cloud

and non magnetic cloud events. Since we clustered the events to 100 clusters and the
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Figure 6.5: Distance Density accuracy curve for 16 parameters with AUC labeled.

highest accuracy value is 1, the highest possible AUC is 100. While we could feed all the

parameters to a decision tree, this is generally avoided as it could result in complex trees

that could lead to overfitting. Therefore, the most often occurring top five parameters

with the largest AUC from each of the 10-fold splits are selected for decision tree training:

Bn, Bt, Alpha Density, B, and Br.

The knee points from the accuracy curves are the points showing the highest accuracy

increase by increasing one cluster. Only knee points with a cluster number less than 30

are considered because micro-clustering could lead to overfitting, and the most significant

accuracy increase typically happens with fewer clusters. Then the selected parameters
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with the number of clusters based on its corresponding knee points form a categorical

table shown in Table. 6.2, which is used to generate a decision tree.

Table 6.2: DDC categorical result table for building decision trees.

Parameter Bn Bt Alpha Density B Br Label
Event 1 Bn_4 Bt_3 AD_4 B_4 Br_1 MC
Event 2 Bn_3 Bt_2 AD_4 B_3 Br_6 MC
Event 3 Bn_2 Bt_3 AD_2 B_4 Br_6 MC
Event 4 Bn_2 Bt_3 AD_2 B_4 Br_4 MC
Event 5 Bn_1 Bt_3 AD_2 B_1 Br_1 NMC
... ... ... ... ... ... ...
Event 180 Bn_1 Bt_4 AD_3 B_1 Br_1 NMC
Event 181 Bn_2 Bt_1 AD_1 B_2 Br_2 MC
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Figure 6.6: Shape-based multivariate time series decision tree for DDC.

Using the same dataset fold shown in Fig. 6.5. The DDC decision tree is shown in

Fig. 6.6. Each non-leaf node is labeled with the parameter used for the split, the number

of events in that node, and the ratio of magnetic cloud and non-magnetic cloud events at

that node. Each leaf node has the number of magnetic cloud and non-magnetic cloud

events distributed to it and labeled by the majority event class labels. Each branch in

the decision tree is depicted with the DBA on the portion of events passed down to its

child node, shown with the parent node parameter. The DBA is accompanied by the time

series event sequences that are passed on the child node. The time series are matched to
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the group DBA using DTW to be stretched or compressed to a uniform length, which

can help us look for time series patterns of significant peaks and valleys. The DBAs

of magnetic clouds are colored orange, non-magnetic clouds are colored blue, and the

stretched time series from that cluster is gray. We can see the DBAs display characteristic

differences from branch to branch. This particular DDC decision tree has the training

accuracy of 77.30%, and testing accuracy of 88.89%.

6.3.2 AGNES Decision Tree

For comparison, we repeated the process and generated decision trees for AGNES. Using

the same fold of data for DDC, the parameter accuracy curves are shown in Fig. 6.7, and

the corresponding AGNES decision tree is shown in Fig. 6.8. For the AGNES decision

tree, the training accuracy is 80.37% and testing accuracy is 61.11%. This is a classic

case showing the occurrence of overtraining, where a high training accuracy does not

guarantee a comparable testing accuracy.

Overall, the DBAs depicting the non-magnetic cloud branches are more flat and straight

compared to the magnetic cloud branches. More specifically, the time series in the root

node split from the AGNES tree (Fig. 6.8) shows more difference to its DBA than the

root node split in the DDC tree (Fig. 6.6), suggesting it is less effective than the DDC

tree. Although appearing purer, three out of the five leaf nodes (the middle three) in

the AGNES tree contain very few events, which implies overfitting, and also making it

unreliable for testing or prediction usage.

In application, when new data comes in, only the corresponding parameters need to be

matched to the DBAs on the decision tree branches. This means that prediction would be

very efficient, since only a few of the parameters need to be checked, and computing the

match between two sequences is less time-consuming. This can be very useful for future

automatic magnetic cloud detection. For example, when the initial pattern or a significant
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Figure 6.7: AGNES accuracy curve for 16 parameters with AUC labeled.

feature is matched between the incoming time series and the average time series of the

parameters within a decision tree, the event could be labeled as a magnetic cloud event.

With little to no human involvement, this automated magnetic cloud identification process

could improve efficiency and reduce human-errors.

For comparison purposes, we computed the average value of each parameter of each

event, and without clustering, generated a decision tree based on the numerical average

values. In Table 6.3, we show the averaged training and testing accuracy of the 10-fold

cross-validation process on the numeric decision trees, the AGNES decision trees, and the

DDC decision trees. In Fig. 6.9, we provide a set of boxplots showing all of the training
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Figure 6.8: Shape-based multivariate time series decision tree for AGNES.

and testing accuracies for the numeric representation, the clustering using AGNES, and

the clustering using DDC.

Table 6.3: Average Decision Tree Accuracy

Case Training Testing
Numeric Representation (No Clustering) 80.10% 71.87%

Agglomerative Hierarchical clustering 76.86% 73.98%
Distance Density Clustering 75.94% 75.12%

While the numeric data generated decision tree has the highest training accuracy, it

has the worst testing accuracy in terms of average and interquartile range (IQR) variance.

The AGNES decision tree is more stable than the discrete dataset tree, but also show

signs of overtraining when the training and testing accuracies are compared. The DDC

decision tree has the lowest training accuracy in average and median, but the highest

testing accuracy in average and median, as well as the smallest IQR variance. This

points to the stability and robustness of a DDC decision tree. Decision trees trained on

numeric datasets are easily overtrained because possible splits are exhaustively searched

without accounting for larger improvements by chance. This corroborates with work by

Loh et al. [82], where the validity of using numerical data with the decision tree model
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is addressed. Therefore, this result is to be expected as the numeric dataset trains on

averaged values, whereas AGNES and DDC use categorical data based on cluster results

for the decision tree model.
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Figure 6.9: 10-fold accuracy performance comparison boxplot for discrete data, AGNES, and
DDC.

Accuracy inherently depends on the data and task on hand. For a complex natural

phenomenon with small datasets, the clustering and classification can be challenging.

The most significant drawback in ICME classification is the lack of data; researchers are

more likely to draw accurate and exhaustive conclusions from large datasets, meaning

the corresponding accuracy is usually higher and the performance more stable. On top of

being a small dataset, the ICME dataset of magnetic clouds are human-labeled; this means

a few mislabeled samples could be affecting our results significantly. Our contribution

here is the aggregation of univariate time series clustering results into a multivariate time

series decision tree, which we can efficiently apply towards new data classification, while

at the same time being easily interpretable.
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6.4 Solar Flare Decision Tree

For solar flare decision tree experiments, we use the Prior 12 Span 06 dataset from the

initial solar flare dataset. In addition to achieving high accuracy, we also generate a

simple and easy to maneuver decision tree. While there are various flare classes, here

we are only doing binary clustering, where an event is labeled as either a flare or a

non-flare. Therefore to save training time as well as avoiding overtraining the model, we

only clustered each parameter to 20 clusters. Fig. 6.10 shows the accuracy curve of the

16 parameters in the Prior 12 Span 06 dataset, each parameter is individually clustered

using the DDC method. The training accuracy curve is a solid black line, and the testing

accuracy curve is a dotted blue line, the five chosen parameters are highlighted with a

red box. Each parameter name and the corresponding area under the accuracy curve is

labeled. Each accuracy curve shows the accuracy, which is labeled on the y-axis, and the

x-axis shows the corresponding cluster numbers from 2 to 20 clusters.

With testing data excluded from the training step, the consistent accuracy performance

between training and testing signifies that the DDC algorithm is effective and robust.

Among the top five performing parameters, parameter USFLUX, TOTUSJH, and SHRGT45

appeared in all six priors and spans, TOTUSJZ appeared in five priors and spans,

MEANPOT appeared three times, and TOTPOT and MEANSHR appeared two times.

Other than the MEANSHR, all the aforementioned parameters were also included in the

study by Bobra et al. [70]. From the accuracy curves, we can identify knee points, where

we see the most significant increase in accuracy when the cluster number is increased by

1. Since more clusters would lead to longer running time, finding the most significant

accuracy increase while keeping minimal cluster number is desirable. The knee point for

each corresponding parameter is the number of clusters we select to further build the

decision tree.
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Figure 6.10: Accuracy curve for 16 parameters on both training and testing datasets of Prior 12

Span 06, with AUC labeled, and top five AUCs highlighted in red boxes.

The decision tree uses the parameters that can best separate flare and non-flare data, the

nodes at the top of the tree is the parameter that can split the dataset most easily, which

means that parameters on the higher levels of the tree are in a way, more informative than

the parameters on the lower levels of the tree. Typically, simpler trees avoid overfitting

and ensure robustness. Fig. 6.11 shows the decision tree for Prior 12 Span 06 dataset.

Each leaf node has the parameter used for a split, the number of each class event at that

node. In all the decision trees as well as Fig. 6.11, the right-most and left-most leaf nodes
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Figure 6.11: Shape-based multivariate decision tree for Prior 12 Span 06 solar flare dataset.

have the purest separation of flares and non-flares. The other leaf nodes are lower in

purity, which may be a result of only performing binary clustering and not considering all

the flare classes. Leaf nodes are labeled as flare if there are more flare events at that node,

or labeled as non-flare if there are more non-flare events at that node. On each branch

of the decision tree is the DBA of the child node cluster on the parent node parameter,

providing the user with a more visual interpretation of how the shape of the time series

data corresponding to the parameter at that node is utilized.

Once the decision tree model is formulated using univariate time series clustering,

it is tested by trying to classify unseen flare data. During the testing process, the time

series of a new event is matched to the DBA of the corresponding parameter using DTW.

The purity and accuracy of each leaf node in the solar flare decision tree, as well as the

placement of the testing flare data is shown in Table 6.4. Since only the parameters in the

decision tree will be checked, event classification is highly efficient. This can be helpful

for future flare labeling, for example, when the initial pattern matching the average time

series (DBA) of the parameter within the decision tree is identified, the event would be

automatically classified as flare or non-flare. With little to no human involvement, this

could improve efficiency and reduce human-errors.
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Table 6.4: Leaf Node Purity and Accuracy for Solar Flare Decision Tree

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Train
Events: 52%
Accuracy: 97%

Events: 15%
Accuracy: 56%

Events: 7%
Accuracy: 65%

Events: 26%
Accuracy: 85%

Test
Events: 46%
Accuracy: 96%

Events: 14%
Accuracy: 63%

Events: 4%
Accuracy: 55%

Events: 35%
Accuracy: 86%

For all priors and spans, the root nodes are either parameter USFLUX or TOTUSJZ; this

corresponds to other studies on flare parameters [70]. Here either USFLUX or TOTUSJZ

is able to identify around half of the entire training dataset being flare events at a 97% to

100% accuracy.

Generally, prior window 12 outperforms prior window 24; this is expected since the

closer we are to a flare happening, the more likely it is to predict a flare. An accuracy of

85% for a simple structured decision tree on a large dataset is an acceptable accuracy at

this stage for binary flare clustering. The reason is that flares are classified according to

X-ray flux values, and therefore classes at the two ends of the spectrum, the M, X, and A,

B flares are easier to classify. Whereas C class is more borderline, and depending on the

specific event could be classified both ways, and would need additional effort for better

placement. Based on this, we decided to look further at the shape of each flare time series

through normalization.

6.5 Time Series Cluster Profile

In this section, we present our findings in clustering normalized pre-flare time series data

from the SWAN-SF dataset. In order to eliminate the randomness of performance, we

performed a balanced 5-fold cross-validation on the curated dataset of a total of 300 C-,

M-, and X-class instances. Again, for each fold, the testing data is never included in the

training process to avoid bias.
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Table 6.5: Nine Parameters Selected for Solar Pre-Flare Time Series Evaluation

Keyword Description
1 MEANJZD Mean vertical current density
2 MEANJZH Mean current helicity
3 R_VALUE Sum of flux near polarity inversion line
4 SAVNCPP Sum of the modulus of the net current per polarity
5 SHRGT45 Fraction of area with shear angle > 45°
6 TOTFZ Sum of z-component of Lorentz force
7 TOTUSJH Total unsigned current helicity
8 TOTUSJZ Total unsigned vertical current
9 USFLUX Total unsigned flux

The first step is to obtain and compare clustering results. Distance Density Clustering is

performed on the normalized time series of all the partitions on nine SHARP parameters:

MEANJZD, MEANJZH, R_VALUE, SAVNCPP, SHRGT45, TOTFZ, TOTUSJH, TOTUSJZ,

and USFLUX. Described briefly in Table 6.5, the nine parameters are selected by domain

experts from the list of parameters discussed by Bobra et al. [70]. The different parameters

are simply different measurements of solar flares, and should not hinder non-domain

experts from understanding the results.

Fig. 6.12 shows the boxplot of cluster accuracy on training and testing data. In each

partition for each normalization method, the data is clustered to 10 clusters. The label

of a cluster is determined by the majority event labels, and multiple clusters can have

the same flare class label. The x-axis shows the nine parameters, and the y-axis is the

accuracy value. The accuracy at cluster 10 is computed based on the number of matches

between predicted labels and actual labels for all five partitions. In other words, each

boxplot contains the accuracy information from all five partitions. For each parameter, the

left boxplot is the testing accuracy of each normalization method, and the right boxplot

is the training accuracy of the respective normalization methods. In the unnormalized

dataset, parameters R_VALUE, SAVNCPP, TOTUSJH, and TOTUSJZ have better accuracy

performance. Normalization accuracy is typically lower than the original data cluster

accuracy.
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Figure 6.12: Boxplots of cluster accuracy for (a) original data, (b) offset translation, (c) amplitude
scaling, (d) detrend with difference and (e) detrend with log.
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While some machine learning algorithms achieve better results from normalization,

this is not the case for pre-flare time series clustering. Although we are able to obtain

more shape details with normalization and generate more intuitive clusters, the resulting

accuracy often declines. This is caused by the fact that when normalization is applied,

only two out of three similarity elements are met, the duration and shape similarity,

whereas the range value similarity is lost, and this would have a negative impact on

clustering accuracy. Therefore, in our experiments, the accuracy values are only used as a

reference, not a quality indicator.
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Figure 6.13: The original 300 pre-flare time series of (a) 100 C-class, (b) 100 M-class, and (c) 100

X-class of parameter TOTUSJZ.

Due to space limitations, we only select one parameter to demonstrate the details of

further investigation. TOTUSJZ is selected as it generally has stable performance and clear

cut clusters. We first look at the original, unnormalized, pre-flare time series of GOES

class C, M, and X on parameter TOTUSJZ. Fig. 6.13 shows the C-, M-, and X-class pre-flare

time series, along with the time series average with DBA for each class (black lines). We

can observe more spikes at the beginning and end of the average time series, which is

likely due to the common spikes in various time series that are being averaged. Later on,

as the evens progress, there is more diversity in the time series events shapes (values),

and the generally flat shape of the average time series suggests the lack of patterns to

be identified. The value differences of the pre-flare time series for different classes can

be easily seen. However, the shape of different pre-flare classes is not apparent; this
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is because the shape differences are visually suppressed by the large value differences

within the same class.
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(a) Cluster 1
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(c) Cluster 3
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(d) Cluster 4

C:M:X=29:39:19

(e) Cluster 5

Figure 6.14: 5 clusters of parameter TOTUSJZ with offset translation.

Fig. 6.14 shows the result of 5 clusters for parameter TOTUSJZ normalized with offset

translation. The class ratio for each cluster is labeled above each figure, the cyan lines

represent C-class, yellow lines are M-class, and orange lines are X-class. The first three

clusters are smaller, and we could observe that the shape of events is highly similar within

each cluster despite having different class labels. The DBA for the first three clusters is

also characteristic of the cluster it is representing. For the last two clusters, the size is still

quite large, and we can observe less representative DBAs.

In regards to the three aspects of similarity, since we already have duration similarity

in place (i.e., all time series of SWAN-SF are of length 60), we try to emphasize shape

similarity while reducing range value similarities. Fig. 6.15 shows the third cluster from

Fig. 6.14. In Fig. 6.15 (a), the clustered data are all normalized with offset translation,

(b),(c), and (d) shows the normalized C-, M-, and X-class pre-flare time series plotted

separately. Fig. 6.15 (e) shows the original (unnormalized) time series which appear in

Fig. 6.15 (a), while (f), (g), and (h) are the original time series of C-, M-, and X-class

pre-flares plotted separately. Similar to Fig. 6.13, the unnormalized time series are flat,

lacking shape similarities or dissimilarities for identification.

When comparing the normalized and unnormalized time series of time series from the

same cluster, we can see similar shapes from different classes with a different value range.

The one C-class instance in this cluster has a small value compared to other time series;

99



−5e+12

0e+00

5e+12

1e+13

0 20 40 60

(a) Normalized cluster.

−5e+12

0e+00

5e+12

1e+13

0 20 40 60

(b) Normalized C.

−5e+12

0e+00

5e+12

1e+13

0 20 40 60

(c) Normalized M.

−5e+12

0e+00

5e+12

1e+13

0 20 40 60

(d) Normalized X.

5.0e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

0 20 40 60

(e) Unnormalized data.

5.0e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

0 20 40 60

(f) Unnormalized C.

5.0e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

0 20 40 60

(g) Unnormalized M.

5.0e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

0 20 40 60

(h) Unnormalized X.

Figure 6.15: Decomposed cluster from one of five clusters from parameter TOTUSJZ. In this
particular cluster, there are a total of 18 pre-flare time series, 1 C-class, 5 M-class, and
12 X-class. The normalized time series and their respective averages are in the top
row, (a) the entire time series cluster, (b) C-class pre-flare, (c) M-class pre-flares, (d)
X-class pre-flares. The time series in this particular cluster but in the unnormalized
form is shown on the bottom row, (e) the entire cluster of unnormalized time series,
(f) C-class pre-flare, (g) M-class pre-flare, (h) X-class pre-flare.

the M-class time series are all below the average line, and the X-class is demonstrating

two concentrations in time series value range distribution. This suggests that different

flare classes can demonstrate similar shapes, as well as the possibility of sub-classes

existing within what we currently understand as one class of flares.

All the solid lines in Fig. 6.15 show the DBA time series averages, and the red dotted

lines are the conventional averages. Conventional averages are simply the sum of all the

instances at one time point divided by the total number of instances. When the time

series are unnormalized, it is difficult for both the DBA and the conventional average to

identify an intuitive representation of the original time series. In the case of normalized

time series, it is still difficult for the conventional averaging technique to pick up the

characteristic shape of the time series. Therefore, DBAs from normalized data is more

useful in shape profile identification, and DBAs are more meaningful than conventional
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average generalization. It is important to note that the shape signatures we identify here

are insensitive to the parameter value ranges. When we normalize, we obtain shape

intensive information but miss value differences. Conversely, when we work with time

series that are unnormalized, we preserve the parameter values, but overlook shape

information. Therefore, the combination of both the shape information as well as the

value differences would be worth investigating in the future.
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7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis is a pipeline covering three main components of our current work relating to

time series clustering. Our contributions include a scalable and efficient elastic measure:

segDTW, which is also capable of producing intuitive mappings; a time series clustering

heuristic based on the density and distance information: Distance Density Clustering,

which has shown its effectiveness with datasets from various domains; and the variance

evaluation of time series clusters, which avoids the early combination of inter-cluster and

intra-cluster similarities. Other supporting work includes hierarchical cluster structure

comparison, internal and external indices observation, and applications.

The main components can be individually applied or work collectively to analyze

real-world data and provide tangible results. In application, the shape-based univariate

clustering results can be aggregated with a decision tree algorithm to provide multivariate

time series decisions. The shape-based decision trees are effective and robust when com-

bined with suitable similarity measures and appropriate clustering heuristics. Another

application of time series clustering is to use normalization to magnify the details of

shapes and trends that may be lost due to the value disparity. By generating cluster

profiles, we open the doors to the real-time classification and prediction of big data. With

time series normalization, it is also possible to discover hidden patterns or sub-classes.

Clustering is a broad aspect of exploratory data analysis, and therefore, much more work

could be done.

102



7.2 Future Work

The significance of unsupervised learning, or more specifically, clustering, is its ability

to analyze data with minimal given information. As such, we see clustering widely

applied in various aspects, including segment analysis, outlier detection, specific and

broad cluster applications. The next step for us is to advance further into time series

cluster evaluation. A key component to extending our research in cluster evaluation is to

perform an extensive evaluation of current evaluation methods. We are in the process of

adapting more internal indices for various time series cluster evaluations. In applications,

we are extending our cluster profiling work to establish a multi-level clustering heuristic

that could potentially provide users with the choice of clustering precision. A clustering

heuristic based on a multitude of resolutions may also provide more insight into the

structure of time series clusters.

Furthermore, identifying more ways to measure time series similarity would continue to

be part of our ongoing work, as any improvements, both generic or exclusive, can greatly

affect both supervised and unsupervised time series data learning. With many real-world

domains, the data is collected on a multi-dimensional scale, which worsens the existing

issues we face with time series learning. Thus a time series specific multivariate clustering

heuristic would be an invaluable addition to time series clustering. In our subsequent

work, we intend to make a comprehensive evaluation of existing multivariate clustering

heuristics and look into the possibility of specific and scalable multivariate time series

clustering heuristics. At the root of the many issues we face with time series analysis, is

the lack of understanding of time series distribution, and because time series are innately

high dimensional, this is no trivial matter. Therefore recognizing the distribution of time

series datasets could be the key to solving many of our problems. Although we are at the

end of this thesis, the possibilities for future data exploratory endeavors are endless.
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