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METHODS FOR IMPROVING TIME AND ACCURACY IN DEEP LEARNING AND

ITS APPLICATIONS

by

XUELI XIAO

Under the Direction of Yi Pan, Ph.D.

ABSTRACT

Deep learning has achieved great performance in various areas, such as computer vision,

natural language processing, and speech recognition. In this research, we design methods to

improve the prediction performance and decrease training time of deep learning models. We

first propose an efficient evolutionary algorithm (EA) to automatically tune hyperparameters

in a deep learning model in Chapter 2. We use a variable length genetic algorithm (GA) to

systematically and automatically tune the hyperparameters of a Convolutional Neural Net-



work (CNN) to improve its performance. Experiment results show that our algorithm can

find good CNN model hyperparameters efficiently. In Chapter 3, we propose a method to

intelligently freeze layers during the training process to decrease training time. Our method

involves designing a formula to calculate normalized gradient differences for all layers with

weights in the model and then use the calculated values to decide how many layers should

be frozen. We implemented our method on top of stochastic gradient descent (SGD) and

performed experiments on standard image classification dataset CIFAR-10. Results show

that our method can accelerate training on VGG nets, ResNets, and DenseNets while hav-

ing similar test accuracy. Next, in Chapter 4, we propose to incorporate prior knowledge

into the training process to improve classification accuracy. We incorporate class similarity

knowledge into CNN models using a graph convolution layer. We evaluate our method on

two benchmark image datasets: MNIST and CIFAR-10 and analyze the results on different

data and model sizes. Experimental results show that our model can improve classification

accuracy, especially when the amount of available data is small. In Chapter 5, we map

Electronic Health Records (EHRs) to images and feed them to CNNs for feature relation-

ship learning. The relationships between EHR features are quantitatively measured before

mapping to images. We add this relationship-learning part as a boosting module on the

original machine learning model. Experimental results show that our proposed models have

better performance compared with the baseline models. In summary, this research proposes

various methods to improve the training time and performance of deep learning models.

INDEX WORDS: Deep Learning, Convolutional Neural Networks, Hyperparameter Opti-
mization, Training Speed, Prior Knowledge, Electronic Health Records
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1

PART 1

INTRODUCTION

Deep learning has achieved great performance in various areas, such as computer vision

[28][99], natural language processing [33], speech recognition [32], and Covid-19 data analysis

[44][104][109]. Neural network models are constructed and trained to map the data to the

corresponding solutions. Researchers have been working on various methods to improve the

accuracy of deep learning models. However, improving accuracies is not an easy task: it

takes expert knowledge and trials and errors. One way of improving model performance

without human experience is by using automatic hyperparameter optimization. Another

problem with deep learning models is that the training time is very long. In this research,

we focus on methods to improve deep learning model accuracies and decrease training time.

CNNs have achieved great performance in the area of computer vision. Designing the

architecture of CNNs so that it produces good results on a task is challenging. It involves

decisions on various hyperparameters of the network, such as how many layers are in the

network, how many filters are in a layer, what are the sizes of convolutional windows, and

so on. All the different combinations of the hyperparameters create a huge number of

possibilities for CNN models. Traditionally, the selection of hyperparameters is done by

hand tuning, i.e., manually testing different sets of parameters that may work well. This

requires a certain level of knowledge and expertise in deep learning, and the process of trial

and error is tedious, time-consuming, and maybe discouraging to the novices. It is thus

beneficial to automatically search for a CNN architecture that suits the needs of the task.

Searching for a good deep learning model is challenging, very computationally intensive, and

time consuming. The lengthy search time is caused by many factors: the evaluation time

for a single deep learning model is long, the search space grows exponentially large as the

model depth increases, and the access to GPU resources is limited – many researchers only



2

have access to one or a few GPUs. Given the above mentioned reasons, it is certainly not

practical to traverse every single possibility to find the best model. Thus we use an efficient

EA to automatically and systematically tune hyperparameters to find models that give good

accuracy.

Deep learning models are often optimized using SGD [62] or other optimization algo-

rithms. One drawback of these algorithms is that the training time is very long. Depending

on the task and available hardware, this time could be hours or even weeks. Even with

the availability of high-performance computing systems, some deep neural networks require

several days for training. For example, it takes six days to train AlexNet [48] on two GTX

580 3GB GPUs. As a solution for this, SGD is usually implemented with learning rate decay.

A higher learning rate helps speed up training but may miss the optima or fail to converge.

A lower learning rate is more reliable but makes the training speed suffer. Usually, in the

earlier epochs of training, higher learning rates are used to make training faster. Then as the

training goes on and the model weights get closer to the optimum, the learning rate decreases

to help with convergence. There are many kinds of research on training time saving, and in

our work, we intelligently freeze layers to save training time.

In multi-class image classification, image features are extracted and learned through

convolutional kernels and eventually mapped to one class among some other classes. Typi-

cally during this process, CNNs learn from the information contained within the images only,

and no prior knowledge is considered into the training. We first do a preliminary study that

excludes classes that are not similar to the target class during training. Then we incorporate

class similarity knowledge into deep learning training by using a graph convolutional layer.

The performance of classifications can greatly be impacted by the similarity between classes.

For example, a cat would have a larger chance of being misidentified as a dog, than as an

airplane. By learning the similarity among classes and incorporating them in our models,

we could potentially improve classification performances. We propose to incorporate class

similarity knowledge into deep learning models to improve multi-class classification perfor-

mance. Specifically, we experiment on image classification using CNNs. Our method is not
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task specific, and has the potential of being applied to the classification on other types of

data besides images. There are some prior works that take class similarity into considera-

tion. Lee et al. proposed Dropmax [51], a method which randomly drops classes adaptively,

to improve the accuracy of deep learning models. During the class dropping, classes that

are more similar to the input data have larger chances of being kept. Chen et al. [13] used

word semantic similarity to calculate the underlying structures between labels and used a

graph convolutional network (GCN) augmented classifier to do classification. Their method

needs external information to define a label graph and initiate node representations. Using

external information can have issues. For example, in many cases, labels’ word semantic sim-

ilarity cannot reflect the real similarity of the data. And to get the embeddings for classes,

we need to rely on other machine learning models. Inspired by Chen et al.’s method [13],

we propose our method that does not rely on any external information and can be applied

to much wider ranges of classification problems. A misclassification graph derived from the

validation data set can be used for class similarity, and class embeddings can be extracted

from model weights. The goal of our work is not to beat the state-of-arts on the benchmark

image classification dataset. Instead, we use the datasets to evaluate the effect of our method

on various data and model sizes and analyze under which scenarios does our method work

the best.

My research focuses on improving the accuracy and training time of deep learning mod-

els, especially in four categories: using automatic hyperparameter optimization to improve

model accuracies, freeze layers to increase training time, incorporate prior knowledge in the

training process to improve model performance, and mapping non-image data to images for

local feature similarity learning. The contributions of my research are as follows:

• Our hyperparameter optimization method can efficiently discover deep learning mod-

els with variable depths. It makes hyperparameter optimization more feasible for

researchers with limited computing resources.

• Our algorithm does not have a constraint on the depth of deep learning models, which

means our method can handle problems of different sizes.
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• We incorporated crossover operation in our model evolution process along with efficient

model evaluation techniques to make the model discovering process more effective.

• Our intelligent freezing method opens a new way of accelerating the training of deep

learning models while having similar model accuracy. With further exploration and

experiments on this method, there is more room for improvement.

• A formula is designed to calculate freezing rates for layers in the model. Then the

maximum subarray sum is calculated on the array of freezing rates to decide how

many layers from the beginning layer should be frozen. This paves the way for the

future design of intelligent freezing.

• In order to reduce the computation time overhead, we selectively and periodically

calculate the gradient information during the training process.

• Our prior knowledge incorporation method adds class similarity knowledge into deep

learning models to improve classification accuracy.

• We use a novel way of defining class similarities using misclassification graphs on the

validation dataset. In our definition, similarities have directions.

• We propose a novel two-stage training model. The first stage training obtains class sim-

ilarity knowledge, and the second training stage combines the original model’s output

with the convoluted class similarity graph outputs and improves classification perfor-

mance.

• Our method does not require extra external information. Class similarity knowledge

is extracted through the dataset itself. Class and data embeddings are both obtained

from trained network weights.

• We analyze the effect of adding class similarity knowledge with different model and

dataset sizes.
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• We use a CNN to learn the relationship among medical entities in EHR data and

perform a supervised prediction task.

• We propose a novel method that maps EHR patient journeys (diagnosis, procedures,

and prescribed drugs) to images. The underlying structure: relations among the med-

ical entities are taken into consideration.

• Deep learning models require balances among classes. In the actual data, the number

of actual positives is small. We design a novel EHR data augmentation method that

upsamples the positive class.

• We utilize a hybrid machine learning model architecture that includes a base machine

learning model and a CNN boosting model. The base machine model can learn addi-

tional features that are not mapped to images.

The details of my research progress are described in the following chapters ,and the

future works are listed at the end of this research.
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PART 2

EFFICIENT EVOLUTION OF HYPERPARAMETERS

2.1 Background

There are various methods for hyperparameter optimization. We focus on methods

based on EAs. EAs have been used in hyperparameter optimization of deep learning models.

Young et al. [97] used a GA to optimize the hyperparameter of a 3-layer CNN. The algorithm

is not suitable for situations where we do not know how many layers are needed there. Real

et al. [61] used a mutation only EA and gradually grows the deep learning model to find a

good set of combinations. The evolutionary process is slow due to the mutation only nature.

Inspired by the work of Young et al. [97] and Real et al. [61], we propose a vari-

able length GA to efficiently optimize the hyperparameters in CNNs. Models of various

hyperparameters settings are first created and evolved using the algorithm. We do not put

a constraint on the model depth, and various techniques such as crossover operation in

the evolving process make the algorithm more efficient. Experiment results show that our

method can efficiently find good hyperparameter combinations even when the search space

becomes exponentially large. Hyperparameter optimization is itself a time-consuming pro-

cess. Having an efficient algorithm is especially helpful when the access to GPU hardware

is limited, and the search space is very large.

2.1.1 Convolutional Neural Networks

A CNN is a type of deep artificial neural network, and it is assumed to be used for

images. Classical CNNs contain convolutional layers, pooling layers, ReLU activations, and

fully connected layers. Convolutional layers have convolutional windows that can extract

features from images. These windows are usually called filters or kernels. The kernels move

through the images, performing convolutions on local image data and produce feature maps.
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Pooling is used to reduce the number of parameters in a CNN. It is also called down-

sampling or subsampling. It can help reduce computation complexity. If a feature map is of

size 2020, using pooling of size 22 and step of size 2, the dimension can be reduced to 1010.

There are different types of pooling layers: max pooling, average pooling, fractional max

pooling, and so on. Max pooling takes the pixel of the biggest value in the pooling window,

whereas average pooling calculates the average of all the pixels in the window. These are

the two commonly used pooling methods in CNNs. Activation function ReLU stands for

Rectified Linear Unit. It introduces nonlinearity into the network. ReLU activation keeps

all positive input and makes negative input to be zero: f(x)=Max(0,x). Some of the other

types of activation functions include tanh, Exponential Linear Unit (ELU) [19], Scaled Ex-

ponential Linear Unit (SELU) [47], and so on. A fully connected layer has full connections

to neurons in the previous layer.

2.1.2 Genetic Algorithms

GAs are biologically inspired. It learns from Darwin’s evolutionary theory. In Darwin’s

theory of natural selection, the fittest individuals are selected, and they produce offsprings.

The characteristics of these individuals are passed to the next generations. If the parents

have higher fitness, their offsprings tend to be fitter and have more chances of survival.

GAs learn from this idea. They can be used to solve optimization and search problems.

In GAs, candidate solutions are evolved to generate better ones. A set of solutions form a

search space, and the goal is to find the best ones among them. This is similar to finding

the fittest individual in a population. GAs start with a population that contains random

solutions within the search space.

Each solution has a chromosome, which contains properties of the solution. These

chromosomes can be altered. A typical GA has three bio-inspired operators that can be used

on a chromosome: selection, crossover, and mutation. Selection means to select a portion

of the population as candidates to produce offsprings and generate more solutions. Usually,

the fitter individuals are selected. The fitness of a solution can be calculated using a fitness
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function, and it reflects how good the solution is. The crossover combines the chromosomes

of two parents and produces a chromosome for the offspring. The offspring’s chromosome

inherits the properties of both parents. The Mutation operator is like a biological mutation:

it changes one or more values in the chromosome. This introduces more diversity in the

population.

GAs are simple yet effective. They have been applied on various research problems

such as vehicle routing problem [3], neuroscience search problems [88][89], deep learning hy-

perparameter optimizations [61][97], neural network weight optimizations [26][58], dynamic

channel assignment [25], and so on. GAs with variable chromosome length have also been

applied to many problems [60][71].

2.1.3 Hyperparameter Optimization Algorithms

Grid search and random search [9] are two popular methods for hyperparameter op-

timization. Grid search selects the best model among many models built on predefined

hyperparameter settings. It evaluates all the models to guarantee the best one is found. As

the number of hyperparameters grow and search space gets increasingly larger, the amount of

time it takes for grid search grows exponentially, making it impractical to be used. Random

search [9] takes less time than grid search because unlike grid search, it does not search for

all possibilities exhaustively. Instead of trying out all possibilities, it randomly selects mod-

els with different hyperparameter combinations. There is a trade-off between search time

and the quality of discovered models. It is not guaranteed that the optimal hyperparameter

combination within the search space will be found. It turns out random search can achieve

similar results compared with grid search while being more efficient.

Besides grid search and random search, there are other approaches, such as Bayesian

optimization, gradient-based methods, reinforcement learning based methods, and EAs.

Bayesian optimization methods [65][70][76] use an acquisition function to smartly decide

where the algorithm should explore next in the search space. A probabilistic model is built

to balance exploration and exploitation. Gradient-based methods can be used if the hy-
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perparameters are continuous. Luketina et al. [54] and Fu et al. [24] use gradient descent

to optimize hyperparameters. Reinforcement learning based methods are used to automat-

ically discover CNN architectures. Zoph et al. [111] used a Recurrent Neural Network to

generate CNN model structures and applied reinforcement learning to improve the generated

architecture. Baker et al. [4] used a Q-learning agent to discover a network layer by layer.

Another large category of hyperparameter optimization method is based on EAs. Re-

search work under this category differs in their EAs used, the search space, the encoding

scheme for CNN model architecture, ways of reducing computational cost, and so on. Young

et al. [97] performed GAs to optimize hyperparameters in CNNs. A three-layer fixed-

architecture CNN is used, and only six hyperparameters are tuned. The problem with a

fixed layer architecture is that the models may be too small to fit the problem, leading to a

high bias. Real et al. [61] evolved complex CNN architectures from very simple individuals

by applying different kinds of mutation operations. Model structures are encoded as graphs

in [61]. While the method by Real et al. [61] can find accurate models for challenging

tasks, the computational cost is very high: 250 workers are used, and the searching time

is over 250 hours. A mutation only algorithm can contribute to high computational cost

since the evolutionary process is very slow. Many hyperparameter optimization methods

use the model’s accuracy on the held-out validation dataset as an evaluation of the model.

Albelwi et al. [1] took a different approach to evaluate how good a CNN model is. Images

are reconstructed from the learned filters using Deconvnet, and the similarity between the

original image and the reconstructed image is used as the fitness of a CNN architecture.

There are various ways of defining models’ structures too. Suganuma et al. [74] used a

cartesian genetic programming encoding scheme to define CNN models. It enables them to

incorporate modules such as tensor concatenation into the model architecture. Baldominos

et al. [5] used the backus-naur form to define a grammar for model topologies, allowing more

flexible representations of CNN architectures.
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2.2 Method

EAs are inspired by the process of natural selection. They are commonly used to produce

high-quality solutions when the search space is large. The idea of EA is to produce an initial

population that is made up of diverse solutions and evolve them for many generations to

produce better ones. The genes of the better solutions will survive and pass on to further

generations, whereas the worse solutions die off.

Both Young et al. [97] and Real et al. [61] use EA, and their methods have limitations.

For the purpose of optimizing hyperparameters for deep learning models, no constraints

should be put on the network layers. Limiting the number of layers could make the network

size too small for the problem, leading to underfitting. Young et al. [97] used a classical

fixed length GA, the most popular type of GA, to optimize a CNN model for the CIFAR-10

dataset [48]. A fixed length GA means the CNN model has a predefined fixed number of

layers. However, for a given problem, one never knows how many layers are enough before

experiments are done. Having a too large network, on the other hand, can lead to overfitting.

Thus it makes sense to start from a small network and gradually grow it as needed. Real et

al. [61] does so by using a mutation only EA. Although high accuracies are obtained on the

CIFAR-10, and CIFAR-100 dataset, the computational cost of their method is very high.

The whole process takes 250 parallel computers and over 250 hours to complete. Those

who rely on automatic hyperparameter optimization tools usually do not have that kind of

computational resource.

Because of the above-mentioned limitations, we propose a variable length GA for deep

learning hyperparameter optimization. It starts from a small network model and gradually

builds on top of it. Crossover operation, along with other techniques, are used in this EA to

accelerate the optimization process, making it affordable for those with limited resources.
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2.2.1 Variable Length Genetic Algorithms

Classical GA requires fixed chromosome length. Since the number of convolutional

layers varies in different CNN models, and more hyperparameters are involved as the model

grows deeper, a variable length GA is more suitable for the purpose of our task.

A chromosome in the variable length GA contains parameters that define a solution, in

this case, a hyperparameter configuration for a network model. How the solution is encoded

in the chromosome is discussed in Section 2.2.2.

Figure 2.1 describes the overall procedure for the variable length GA. The initial pop-

ulation with two convolutional layers is first produced, and the individuals/solutions are

initialized with random hyperparameters. The individuals are then evaluated and sorted

based on how fit they are. The fitness of an individual is made to be the corresponding

CNN model’s accuracy on the validation dataset. Then the fitter individuals get directly

picked and survive into the next generation. The rest of the next generation is produced by

individuals from the current generation using crossovers and mutations, common operations

of a GA. In the crossover, two individuals are selected as parents to produce a child that in-

herits the parents’ properties. In mutation, some properties of the individual are changed to

other values. After the 2-layer models have been evolved for some generations, the algorithm

enters the next phase that enables more layers and hyperparameters.

A new phase in the algorithm simply means the chromosome length increases, bringing

more hyperparameters in, and the corresponding CNN models have more layers.

The steps of our hyperparameter optimization method are as follows:

1. Initialize the number of populations p and generations g according to user input.

2. Create the initial population. Each individual in the population has randomized hy-

perparameters. The size of the population is p as specified by the user.

3. Evaluate the fitness of each individual in the current generation. The fitness is the

accuracy of the individual on the validation dataset.
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4. Sort each individual according to their fitness value, from high to low.

5. Select the fittest individuals. Select a portion of the population that has the highest

fitness values, and let them survive into the next generation. The percentage of this

survival rate can be set manually.

6. Allow some less fit individuals to survive. For the rest of the individuals in the cur-

rent population, give them a small chance to survive into the next generation. This

probability is set manually.

7. Randomly mutate some individuals in the next generation. The mutation rate is

manually configured. If an individual is chosen to mutate, one of its hyperparameter’s

value will be changed.

8. Produce new individuals. Randomly select two individuals from the next population

to serve as parents, and perform crossover operation to produce a child. Each hy-

perparameter in the child is randomly set to be one of its parent’s hyperparameter

value. Repeat the crossover operation on different random individuals many times un-

til the next generation has p individuals. Now the next generation becomes the current

generation.

9. Repeat Step 3 - 8 until the number of generations has reached g.

10. Select the best individual from the current population.

11. Produce population with longer chromosome length. For each individual of the pop-

ulation, one part of the chromosome is from the best individual in Step 10; the other

part is randomly generated.

12. Repeat Step 9 - 11 until convergence.

13. Select the best individual and train for more epochs until convergence.
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Figure (2.1) The hyperparameter optimization steps using our variable length GA.

2.2.2 Encoding Scheme

The hyperparameter information of each individual, or CNN model, is encoded into

what’s called a chromosome in GA. The chromosome may have different representations, such

as a bit string that contains 1’s and 0’s. For the purpose of hyperparameter optimization, the

chromosome of our experiments has many fields that contain different values. It defines the

hyperparameters of a CNN architecture, such as the number of neurons, activation function

type, and so on. Once a chromosome is known, a CNN model can be built according to the

chromosome.

In the initial phase (Phase 0) of the algorithm, there are two convolutional layers, a and

b. Relevant hyperparameters are encoded in the chromosome, as shown in Figure 2.2. For

each convolutional layer, the hyperparameters include the number of output feature maps,

the size of the convolutional windows, and whether or not to include batch normalization. For

this two-layer block, there are three additional hyperparameters: whether to include pooling

in this block, what is the pooling type, and whether or not to include a skip connection. If

there is a pooling layer for this block, it is going to be added after the first convolutional

layer. If a skip connection exists, it is going to have a 1x1 convolution, and its output is
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Figure (2.2) The initial chromosome (Phase 0). In the chromosome, what type of activation
function to be used for the whole model is encoded. It also includes hyperparameter infor-
mation for the first two convolutional layers: the size of the convolutional windows, number
of output channels, and whether or not to include batch normalization for the layer. For the
whole two-layer block, there are three additional hyperparameters: whether to add a pooling
layer after the first convolutional layer, what is the pooling type, and if a skip connection
should be included.

going to be added with the output of the whole block. Figure 2.3 is an example of the skip

connection. There is an additional “activation type” field in the chromosome for Phase 0.

This defines what type of activation function is going to be used for the whole model. Figure

2.2 is the encoding scheme of Phase 0, the initial phase that represents a model with two

convolutional layers.

For every phase after Phase 0, we allow the algorithm to still add two convolutional layers

(Layer a and Layer b) in each phase, but we give the flexibility and let the algorithm decide

whether to add one or two convolutional layers in the phase. The chromosome encoding

for a Phase after Phase 0 is as shown in Figure 2.4. New fields are concatenated to the

chromosome of the previous phase. The new part is very similar to the encoding for Phase

0, except that it does not have an “Activation Type” field and has a new field, “Include

Layer?” that can take two values: 0 or 1. If the value is 1, there will be two convolutional

layers in this phase, and if 0, there will be only one.

Going into a new phase means that the chromosomes are longer, and models being

discovered by the algorithm grow deeper. And part of the hyperparameters in the deeper

model comes from the best model in the previous phase. An example can be found in

Figure 2.5. Assume to the left is the best model discovered in Phase 0. The part in the

dashboard box is encoded in Phase 0 chromosome. When the algorithm enters Phase 1,

the chromosomes grow longer, and the corresponding CNN models are deeper. The deeper
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Figure (2.3) An example of a skip connection. This block contains two convolutional layers:
Layer a and Layer b. The skip connection performs a 1x1 convolution on the input, and its
output is added with the output of Layer b. Stride size and number of filters of the skip
connection is setup such that its output tensor has the same shape as that of Layer b.

models share some common properties: part of their hyperparameter settings come from the

best model in Phase 0. See the right part in Figure 2.5 for an example of Phase 1 model.

The part bounded by the dashed box is being searched in Phase 1, and the gray part above

is from Phase 0. Figure 2.6 shows the corresponding chromosomes for the two models in

Figure 2.5. In Figure 2.6, the yellow fields indicate hyperparameters that are being searched

in that phase, and gray fields indicate hyperparameters from previous phases.

2.2.3 Fitness of individuals

The fitness of an individual is its accuracy on the validation dataset. One way is to

train the models to converge and then compare. While this is more accurate in terms of

comparing the models’ performance on the test set, this process takes very long time and

needs a great amount of computing power. To save time, models can be trained for just a

few epochs to compare their relative fitness with each other. Models that are fitter in the

first few training epochs tend to also perform better later. In the experiments, the number
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Figure (2.4) Encoding for Phases after Phase 0. Chromosome in the current phase is an
extension of the one from the previous phase plus some new fields. Chromosomes are longer,
and the represented models have more layers. The field with gray background indicate the
chromosome from the previous phase. The rest defines the properties of new layers in the
current phase. In the current, two convolutional layers can be added, with the flexibility of
letting the algorithm to decide whether to add one or two. This is achieved by adding a
“Include Layer b?” field, the one with yellow background, in the chromosome.

of training epochs for comparing relative fitness is set to be 5.

This way of evaluation is unfair when the size of the model differs greatly. A deeper

model might have similar or even worse test accuracy compared with a shallower model when

both are only trained for a small number of epochs, such as five. To solve this problem, we

introduce weight transfer from shallow models to deeper ones. In Figure 2.7, when the

algorithm enters a new phase, it searches for deeper models (the right part). New layers are

added to the best model from the previous phase (the left part). Instead of initializing all the

weights randomly in the new models, some of their weights are transferred from the previous

best model, and some are done through random initialization. This takes advantage of the

previously trained models and saves some training time. To evaluate its fitness, the deeper

model is simply trained for five epochs since part of it already received some training.

2.3 Experiments and Results

2.3.1 Datasets

Experiments were done on the CIFAR-10 dataset [48]. This dataset contains 60,000

color images of size 32X32 in 10 classes: each class has 6,000 images. There are 50,000

images for training and 10,000 images for testing.
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Figure (2.5) The model grows deeper when a new phase begins. The models in the new
phase are built based on the best model in the previous phase. To the left is an example of
the best model found in Phase 0, and to the right is a model in Phase 1.

2.3.2 Search Space

The search space defines all the possible solutions that can be searched. A relatively

small search space may take the algorithm less time to find a satisfying CNN model, but

may be constrictive due to the limited number of possible models included in this space.

A larger one, on the other hand, is more time-consuming and requires more computational

power.

In our experiments, the search space includes the number of output feature maps in each

convolutional layer, convolutional filter size, activation function type, pooling type, whether

to have a skip connection, whether to include batch normalization in a layer, and the total
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Figure (2.6) The corresponding chromosomes for models in Figure 2.5. Chromosomes grows
longer when a new phase is entered. The chromosome in the new phase is extended from
the best chromsome in the previous phase.

number of layers. Most of the hyperparameters, such as the number of output feature maps

and convolutional filter sizes, need to be decided in every convolutional layer. Thus as the

model grows deeper, the search space becomes exponentially larger and the searching more

difficult. Most of the previous works do not include pooling types in their search space. In

our work, however, various pooling layers can exist in a single model. Table 2.1 describes the

default search space of our experiments. The left column is the types of hyperparameters,

and the right column is their choices. Unless otherwise noted, our variable length GA uses

this space. Figure 2.8 shows how the search space of the algorithm grows as the number

of layer increases. Initially, models have two layers and the search space contains 156,800

different combinations of hyperparameters. When the number of layers increases to 14, the

search space grows to about 1035.

The possible options for each hyperparameter type are carefully chosen. ReLU, Tanh,

ELU, and SELU are possible choices for the activation functions. Tanh is chosen in favor of

Sigmoid because it is zero centered.
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Figure (2.7) Weight initialization scheme for deeper models. A deeper model of the current
phase is built on top of the best model from the previous phase. Part of its weights is
transferred from the previous best model, part is initialized randomly.

2.3.3 Experiment Setup

Our proposed method is implemented in Python, and the CNN models are created using

Keras. Experiments were run on a single GPU. To save time, the fitness of each individual is

made to be the test accuracy after five training epochs. Weight transfer is also used to save

the experiment running time. If a model survives into a new generation, it does not need

to be trained again because all of its weights are saved. If the algorithm enters a new phase

where the new population with longer chromosomes is built on top of the previous stage’s

best individuals, the old best model’s trained weights are transferred into the new models,

and the new ones are trained for another five epochs to get their fitness value.
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Figure (2.8) The size of the search space grows exponentially as the number of layers in the
deep learning model increases. In the initial phase of our algorithm, models have two layers
and the search space is 156,800. As the model goes deeper, this number grows exponentially.
When the number of layers reaches 14, the search space grows to about 1035.

2.3.4 Genetic Algorithm Settings

There are parameters that need to be set up in our variable length GA: the size of the

population, number of generations, number of phases, mutation rate, and survival chance of

less fit individuals. In the experiments, 50% of the fittest individual survive into the next

generation, the survival rate of less fit individuals is set to be 0.2, and the mutation rate

is set to be 0.2. We do not set a predefined number of phases in our method. Instead, a

stopping condition is set to stop the algorithm. Section 2.3.5 discusses the stopping condition

in details.

2.3.5 Stopping Condition

The evolutionary process stops when there is no more improvement in validation ac-

curacy when more layers are added. A threshold value is set for the stopping condition:

when the best fitness in the new phase is smaller than the best fitness in the previous phases
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Table (2.1) The default search space used by our variable length GA.

Hyperparameter Choices
Number of 8, 16, 32, 64, 128, 256, 512

Output Channels
Convolutional 1x1, 3x3, 5x5, 7x7, 9x9

Filter Size
Activation Function ReLU, Tanh, ELU, SELU

Type
Pooling Max pooling, Average pooling
Type
Skip Yes, No

Connection
Batch Yes, No

Normalization
Number of ≥ 2

Layers

by more than 0.01, the evolving process stops, and the individual with the best fitness is

returned. This individual then receives further training. In Figure 2.9, the evolutionary

process stops at the 14th phase. The best individual fitness at Phase 14 is 0.8070, whereas

the best in the previous phases is 0.8233 (at Phase 13). The evolutionary process thus stops,

and the best individual at Phase 13 is picked to receive further training.

2.3.6 Results

Figure 2.10 shows the result of 20 individuals evolved for 5 generations in each phase.

Each individual is trained for 5 epochs to evaluate the fitness. The evolution stops at Phase

14 when the stopping condition is met. The number of convolutional layers increases in each

phase. Initially, when the algorithm enters a new phase, there is a great improvement in

the accuracy of the individuals. This improvement gradually declines in the later phases.

This shows the increase of convolutional layers can have a great influence on the model

performance, especially when the model is relatively shallow. When the network is shallow,

its size could be too small to fit the problem. As the number of layers increases, the size of
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Figure (2.9) The evolutionary process stops when the stopping condition is met. In this
example the algorithm stops at Phase 14 because the fitness drop is larger than the threshold.
The best individual, in this case at Phase 13, is picked to receive further training.

the network grows, and so is the capability of the network.

We compare the results of our variable length GA with random search, classical GA

[97], and large scale evolution [61].

Unlike our method that allows for a dynamic search space that grows as the number of

layers increases, random search requires that the search space to be fixed, which means the

maximum number of layers need to be specified. We make the number of layers for random

search in the range [2, 10]. Other search space settings are similar to our method.

We implemented classical GA [97] with the same GA settings mentioned in the paper,

except that instead of using a population of size 500, we use much smaller population sizes.

Because the fitness score is the model’s test accuracy after being trained for 4,000 iterations,

it takes a very long time to evaluate one model. Evaluating the initial 500 models would go
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Figure (2.10) The fitness of 20 individuals evolved for 5 generations in each phase. The
algorithm stops at Phase 14 when the stopping condition is met. The best individual found
in this evolutionary process is chosen to receive more training. The overall evolution time is
less than 25 hours.

far beyond 30 hours. If a 30-hour limit is enforced, the final result would simply be one of

the models from the initial population, without any evolution involved. Figure 2.11 shows

the results produced by the classical GA. A 30-hour time constraint only allows evaluation

for around 75 models. Thus the more individuals in a population, the fewer generations the

population will evolve. If there are 50 individuals in the population, the algorithm will stop

in the middle of the second generation, and we do not have many benefits from evolution.

We implemented large scale evolution [61] on top of a publicly available implementation

[55]. We ran the implementation with different population sizes: 30, 50, and 80. The fitness

of discovered individuals is shown in Figure 2.12. Large scale evolution can produce good

models when given a great amount of computing hardware and time. However, when there

is limited time and computational hardware available, it is not an ideal algorithm to use. As

can be told from Figure 2.12(a), when time is restricted to 1 GPU and 30 hours, the fitness of

discovered individuals are relatively low. When the population size is 30, the fitness starts to
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plateau. This could be due to the lack of variety in the chromosome because the population

size is small. When the population size is 80, there is still room for the fitness to improve,

but because of a mutation only evolution, it does not grow as fast as our variable length GA

shown in Figure 2.10.

Table 2.2 shows the comparison between our method and random search, traditional

GA [97], and large scale evolution [61]. In our method, we sample 20 individuals from the

initial search space and evolve for 5 generations in each phase. The best model discovered has

88.92% test accuracy, and the total time is around 25 hours. We ran random search, classical

GA [97], and large scale evolution [61] with the 30-hour constraint and reported the best

result found. When we have limited GPU resources, within a similar amount of time, large

scale evolution gives a model with the lowest accuracy. This is because large scale evolution

starts with very small models, and there are only mutation operations on chromosomes.

Without crossover, the evolution process is much slower. Large scale evolution gives very

good results when hardware and time is not a problem. However, it is not practical for

the average research lab. Classical GA gives a model with relatively high accuracy. This

is because the defined search space is much smaller: the number of convolutional layers is

fixed to be three, according to the paper. It is necessary to fix the layer number because

classical GA has fixed length chromosomes. Setting a predefined number of layers is not very

practical when we encounter a new problem because we usually do not have much idea of

how many layers would be a good fit for the problem. Our method can find better models

compared with the other three when there are limited computational resources available.

2.4 Summary and Future Work

In this work, we propose to use a variable length GA to efficiently find good hyperpa-

rameter settings for deep CNNs. Experiments were performed on CIFAR-10 dataset, and

results are compared with random search [9], classical GA [97], and large scale evolution

[61]. Experimental results show that our algorithm can find much better models within a

time constraint.
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Table (2.2) Accuracy Comparison of Discovered models when using similar time (less than
30 hours).

Method Accuracy and Time Comparison
Name Accuracy Time(hrs)

Random 58.66% 30
Search

Classical 80.75% 30
GA

Large Scale 51.90% 30
Evolution

Variable Length 88.92% 24.55
GA (Ours)

One limitation of our approach is that our method searches a sequential deep learning

architecture and can only produce sequential models. Sequential architectures are among

the most popular and work really well. Optimizing hyperparameters for these kinds of

models is already a hard problem. There exist novel deep learning models with more flexible

architectures. And using our current chromosome encoding and evolutionary strategies, we

cannot discover those models.

There are ways of making our algorithm more efficient. For example, right now, in

each phase, all models are trained for 5 epochs for fitness evaluation, even if a model has

poor hyperparameter configurations. In the future, we can detect these bad configurations

in the early stage of fitness evaluation, so we do not spend more computational resources in

training them. Other EAs such as ant colony can also be applied to this problem [83][84].

We have used fuzzy set theory and evolutionary computing to design a genetic fuzzy routing

algorithm in wireless networks [53]. We have also designed a deep fuzzy neural network for

cancer detection [6]. In the future, we plan to extend our method to more deep learning

areas such as optimizing the architectures of deep fuzzy models.
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Figure (2.11) We implemented classical GA and ran the experiment with various population
sizes and 30-hour time constraint. We sort the fitness of individuals in each generation and
plot their fitness. (a)(b)(c) are plots for 50, 20, and 10 population respectively.
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Figure (2.12) We implemented large scale evolution on top of a public repository, and ran
the experiment with different population setting for 30 hours. (a)(b)(c) are plots for 30, 50,
and 80 population respectively. The fitness of the best discovered individuals are slightly
above 0.5 when time is restricted to 30 hours on 1 Nvidia Tesla V100 GPU.
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PART 3

FAST DEEP LEARNING TRAINING THROUGH INTELLIGENTLY

FREEZING LAYERS

3.1 Background

One problem with deep learning models is that the training time is very long. This

work attempts to shorten the training time of deep learning models while having similar

test accuracy. It is known that layers in a deep neural network learn at different speeds

[93][105], and it is unnecessary to have all parameters participate in training at all times

[10]. This inspired us to intelligently freeze layers to accelerate training. Freezing a layer

avoids modifying its weights. It means that if we do not want to modify the weights of a

layer, backward passes to that layer can be avoided, and speedups can be gained. This is

achieved by identifying the layers which require less training using a mathematical formula.

Our method is different compared with other simple freezing based on a schedule [10]. Time

is reduced by intelligently freezing certain layers in the training processes. The contribution

of our work is as follows:

• Our method opens a new way of accelerating the training of deep learning models

while having similar model accuracy. With further exploration and experiments on

this method, there is more room for improvement.

• A formula is designed to calculate freezing rates for layers in the model. Then the

maximum subarray sum is calculated on the array of freezing rates to decide how

many layers from the beginning layer should be frozen. This paves the way for the

future design of intelligent freezing.

• In order to reduce the computation time overhead, we selectively and periodically

calculate the gradient information during the training process.
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3.1.1 Deep Learning Models

Deep CNN is a class of deep learning models that specifically deals with images. A

typical CNN consists of convolutional layers, pooling layers, fully connected layers, and ReLU

activation layers. The convolutional layers are the core components of a CNN. They act as

feature extractors and can preserve the local connectivity information of an image. Pooling

layers help reduce the number of parameters in the network and also control overfitting. A

fully connected layer has full connections to the activations in the previous layer. And ReLU

adds non-linearity to the model. Many recent deep learning models have batch normalization

layers [41] to help with training speed. One difficulty of training deep models is that the

distribution of the inputs to layers is not fixed, and it may change with weights updates in

each batch. To further clarify, the weights of the model are updated layer-wise in backward

using an estimate of error. This error estimate, such as gradient, tells how to update each

weight in a layer under the assumption that input to this layer is the same as the previous.

That means weights are updated with the expectation that the output of the previous layer

has the same distribution. This slows down the learning process by requiring smaller learning

rates and may require more epochs to converge. Batch normalization standardizes the inputs

of a layer for each batch, so the input distribution will not be much varied. Thus it will

stabilize the learning and reduce the time and number of epochs required.

There are many different CNN architectures. The VGGNet [68] is a deep CNN archi-

tecture that involves linearly stacking various components/layers. More recent architectures

tend to have more complicated structures. Deep Residual Networks (ResNets) by He et al.

[28] features skip connections in the network architecture. This allows feeding the output of

a layer to another layer by skipping a few layers in between. Dense CNN (DenseNet) [37]

is an extension of the ResNets with more skip connections involved. All the above models

are with millions of parameters, and the basic units are non-linear units. This makes the

progression in optimization very slow, as millions of parameters on multiple non-linear units

need to be tuned in order to get good performance. On the other hand, training requires

some hyperparameters to be set up, such as the learning rate and its decay, mini-batch size,
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and so on. These hyperparameters are difficult to decide, and their effect is critically im-

portant for the convergence. The above-mentioned training process always demands heavy

computations and a great amount of time.

3.1.2 Optimizing Deep Neural Networks

SGD is one of the most popular optimization algorithms used for training deep archi-

tectures. Gradients of the loss function are calculated with respect to all the weights in the

network. A learning rate is specified by the user, and the weights are updated using the

gradient information and the learning rate. To help with the convergence of the network,

an update rule is usually used to decrease the learning rate over time. SGD is usually used

together with backpropagation, an efficient method for computing gradients for expressions.

It involves iterative applications of the chain rule. On the high level, an error is calculated

at the loss function, and then this information is propagated backward through the network

layers. Gradients are calculated, and weights are updated along the way.

3.1.3 Time Reduction Methods

There are various researches on how to reduce training time for deep learning models,

for example, adjusting the learning rate, parallelizing the training, reducing the model size,

modifying the computations for convolutions, using batch normalizations, and so on.

Working on the learning rate can help accelerate the training or improve accuracy.

Instead of being manually set, learning rates can be dynamically computed. Also, parameters

in the network can have different learning rates. Our freezing method also falls into this

category. For the details of learning rate related prior art, refer to Section 3.1.2 - 3.1.6.

Training can be parallelized in order to gain speedups. Miranda et al. [57] partitioned

the training task into multiple training subtasks with multiple sub-models, which can be

performed independently and in parallel. After training, sub-models are then merged to

provide a pre-trained initial set of weights for the original model. Harlap et al. [27] pro-

posed PipeDream, a training system that parallelizes computations by pipelining executions.
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Experiments were performed on five different deep learning models using various numbers

and types of machines. Results show that it is 5x faster in time-to-accuracy compared with

data-parallel training. Zlateski et al. [110] introduced ZNN, a software package for CNN

training on multi-core and many-core CPU machines. You et al. [96] implemented averaged

SGD, an algorithm with fast convergence, in an asynchronous manner. The goal is to further

reduce training time compared with distributed algorithms on traditional SGD. Landola et

al. [39] presented FireCaffe, which parallelizes training of deep learning across a cluster of

GPUs. Hardware with high bandwidth is selected, efficient communication algorithms are

used, and batch size is increased to make communication more efficient. Results show that

FireCaffe can achieve a near-linear speedup on popular deep learning models.

Speedups can also be achieved by reducing the size of the model. Kim et al. [45]

proposed an effective method to compress CNN networks and evaluated their method on

smartphones. Significant time and energy reduction can be obtained with a small loss in

model accuracy. He et al. [29] proposed an algorithm to prune channels in deep neural

networks. Compelling speedups can be achieved with some accuracy loss.

Faster implementations can be used to accelerate the convolution computations. Math-

ieu et al. [56] presented a method for the training and inference of CNNs in the Fourier

domain. Their method greatly outperforms two spatial domain-based convolution imple-

mentations, the state-of-the-art at the time, in terms of speed. Lebedev et al. [50] used a

group-wise brain damage method to speed up CNNs. The method reduces the computation

of convolutions to thinned matrix multiplications. Lavin et al. [49] presented fast algorithms

to compute convolutions for small filters and small batch sizes.

There are many other time-reducing methods. For example, momentum [75], a widely

applied technique used with SGD, helps the algorithm to move quickly towards the minima

by using the accumulation of past gradients. Batch normalization [41] normalizes the input

for each batch in each layer to help speeding up convergence. Salimans et al. [64] introduced

weight normalization, a method that reparameterizes weights in a neural network, to speed

up the convergence of SGD. Wang et al. [82] accelerated deep learning training by using
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inconsistent SGD to dynamically adjust training efforts on batches. Van Grinsven et al. [80]

decreased the training time of CNNs on medical analysis tasks by dynamically focusing on

training samples with greater difficulty. Transfer learning [94] can reduce the time to train

a model on a new problem by reusing components of readily trained models on a different

but similar problem.

3.1.4 Layer-wise and Parameter-wise Learning Rate

In the typical SGD, a global learning rate is specified, which means all layers update

using the same step size. However, it is observed that layers in deep learning models learn at

different speeds [93][105]. Instead of using a universal learning rate for all network parame-

ters, Singh et al. [69] proposed to have different learning rates for different layers to speed up

convergence. A function was designed to calculate the learning rate adaptively according to

the two-norm of the gradient vector of a layer. Learning rates for layers with small gradients

are scaled up so as to escape low curvature points. Experiments were performed on relatively

simple networks such as AlexNet [48]. It is unclear how the algorithm performs on deeper

and more complicated models and whether it could hurt accuracy on such models. You et al.

[95] designed an algorithm to calculate the learning rate for each layer. Using the proposed

method, they can scale up the training batch size without losing accuracy. And this allows

more computational units to be added when using data-parallel synchronous SGD. Zhang et

al. [105] proposed to train feedforward neural networks with layer-wise learning rate by using

the approximation of back-matching propagation. Their method is tested on VGGNets of

different depths using CIFAR-10 and CIFAR-100 [48]. Experiment results show that their

method gets better accuracy compared with vanilla SGD and two other layer-wise learning

rate method. However, overhead information is not provided, and it is unclear how much

time tradeoff they have.

Instead of the whole layer sharing the same learning rate, individual parameters can

have their own learning rates too. AdaGrad and Adadelta both have learning rates specific

to each parameter in the network. A global learning rate is set, and a scaling factor is
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calculated for every parameter to obtain parameter-wise learning rates.

On the extreme, learning rates for some parameters can be zero. This has the same

effect as freezing – not participating in the backpropagation training process. Section 3.1.5

talks about parameters’ participation in training in detail.

3.1.5 Parameters’ Participation in Training

Previous work has shown that it is not necessary to have every parameter participated in

every training step. Srivastava et al. proposed dropout [72], a technique that randomly drops

units during the training process. This method greatly reduces overfitting. Huang et al. [36]

proposed stochastic depth, a method to randomly drop layers during training. It allows the

test error to be reduced furthermore by increasing model depth. Their method only works

on models with skip connections. Hettinger et al. [31] proposed FowardThinking, which

trains neural networks one layer at a time. The previously trained weights are frozen during

the training process. Brock et al. [10] proposed FreezeOut, which speeds up training by

progressively freezing out layers. Frozen layers are excluded from the backward propagation,

and weights are not updated for them. Different schedules have been experimented with on

the FreezeOut technique. Their method has no improvements with VGG models.

3.1.6 Gradient Information Used

Gradient information is usually used to decide the learning rate for a specific network

component, or the learning rate for the whole network at a certain training time. There

are various methods on how the gradient information is used. Nesterov [59] adopted a first-

order method to adjust the gradient of the current iteration based on the prediction of the

gradient on the next iteration. This method has a better convergence rate in some situations

compared with the vanilla gradient descent. Duchi et al. proposed AdaGrad [23], a method

that adapts the learning rate to each parameter in the network. To calculate the specific

learning rates, the l2 norm of all the gradients on all previous iterations is used. Zeiler

proposed Adadelta [101], an extension of AdaGrad. The exponential decaying average of
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squared gradients from previous iterations is used for the learning rate calculation. This

restriction prevents the gradients from becoming infinitesimally small, a problem that exists

in AdaGrad. Zhang et al. [105] used layer-wise adaptive learning rates calculated based on

the back-matching propagation, which basically gives a value that is the gradient scaled by

the inverse of a matrix. This helps get a scaling factor for the learning rate for each layer.

3.2 Method

In the typical training of deep neural networks models, all layers participate in the train-

ing process at all times. However, prior works [10][36][72] have shown that this may not be

necessary. Different layers learn at different speeds. From observing the gradient magnitude

for each layer, we can tell how fast it is learning. By using the gradient information, we can

also investigate whether a layer is doing much useful work. If not, it can be frozen in order

to save training time. The basic idea is to use a formula to calculate the freezing rates for

all layers and then obtain how many layers from the beginning should be frozen using the

maximum subarray sum on the array of standardized freezing rates. We then explore how

frequent layers should be frozen.

3.2.1 Layer Level Freezing

To freeze a layer means to exclude it from the backpropagation process. Since param-

eters do not need to be updated at all times during training, certain layers can be frozen

during some training epochs. Our freezing method works at the layer level because it is

observed that gradients have similar magnitudes in the same layer [69]. Meanwhile, the

inconsistency of gradients is mainly across layers [93]. Figure 3.1 shows the mean gradient

magnitude of a ResNet-18 model trained with SGD using step learning rate decay.

Mean gradient magnitude, however, may not be a good measurement for deciding how

much we want to freeze a layer. Intuition is that we want to freeze layers more when they

are close to the optimum. This means that the gradients for those layers are relatively small.

However, small gradients do not always indicate the closeness to optimum. The landscape
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of the function that we are trying to minimize can contain many saddle points and high loss

plateaus, and they can lead to small gradients too.
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Figure (3.1) Mean gradient magnitudes of ResNet-18 for different layers. The model is
trained for 350 epochs with step learning rate decay. The plot shows how the gradient
changes as the training progresses.

3.2.2 Layer Freezing Rate

Directly using gradients to indicate how much we want to freeze a layer may not be

a good idea based on the above-mentioned reasons. Instead, we consider the normalized

difference of gradients as an important measurement. If the weights update in both positive

directions and negative directions, and the updates eventually cancel each other, time is

wasted doing all the updates. These weights can therefore be frozen because the gradients



36

cancel each other anyway. This is the intuition behind using a normalized difference of

gradients.

To better explain how the normalized gradient difference is calculated in our method,

we introduce the concept of freezing rate in our framework. They will later be used to decide

which layers should be frozen during training. The freezing rate of a layer describes how

much we want to freeze it. The following formula defines the freezing rate for a layer:

F
(k)
l =


1 if gl = 0

1−

N∑
i=1
|
M∑
j=1

g
(k)
lij |

N∑
i=1

M∑
j=1
|g(k)lij |

otherwise
(3.1)

where F
(k)
l is the freezing rate of layer l at k-th epoch. N is the number of weights

in layer l, M is the number of iterations in the epoch, and g
(k)
lij is the gradient of the i-th

weight in layer l at j-th iteration in epoch k. According to Equation 3.1, if the gradients of

weight change signs a lot, and cancel each other across iterations, F
(k)
l will be large, which

means the layer has a high freezing rate at that epoch. If most of the gradients update in

the same direction across iterations, F
(k)
l will be small, and the layer has a low freezing rate.

The range of F
(k)
l is between 0 and 1:

0 6 F
(k)
l 6 1 (3.2)

When gradient updates are always in the same direction for every weight in the layer,

F
(k)
l is 0. On the other hand, when gradients completely cancel each other across iterations,

F
(k)
l becomes 1. Freezing rates indicate how much we want to freeze layers. Overall, we want

to let layers that have lower freezing rate values receive more training and those with higher

freezing rates more freezing.

Figure 3.2 shows the freezing rates for all the layers of a ResNet-18 model trained with

SGD. Step decay is used: the learning rate is set to 0.1 for the first 150 epochs and decays

to 0.01 for the next 100 epochs, and finally goes to 0.001 for the last epochs. As can be
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seen from Figure 3.2, different layers have different freezing rates. When the learning rate

becomes smaller, layers generally have lower freezing rates. It can also be observed that the

freezing rate for the last layer becomes very low towards the end of training compared with

other layers.

To better visualize the relative freezing rates between layers, Figure 3.3 shows the freez-

ing rates for all with the last layer removed.
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Figure (3.2) Freezing rates for all layers in ResNet-18. The model is trained for 350 epochs
with step learning rate decay. The plot describes how the freezing rates change as the
training goes on. We are going to use this information in our freezing process. To better see
the freezing rates for the first 17 layers, refer to Figure 3.3.
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Figure (3.3) To better illustrate the freezing rate values for the first 17 layers, we remove the
last layer in ResNet-18 in this plot, so that more details can be seen.
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3.2.3 Layers to Freeze

Freezing rates cannot be directly used to decide which layers to freeze. If there is an

input to a frozen layer that is not frozen, the gradients to the frozen layer are still calculated

in order to get the gradients for the previous unfrozen layers. This means for the purpose

of time reduction, freezing should start at the first layer and be consecutive, as shown in

Fig 3.4(a). If frozen layers are not consecutive, gradients will still be calculated for those

that have unfrozen layers before them. In Fig 3.4(b), Layer 1, Layer 3, and Layer n-1 are

frozen. Since Layer 2 is unfrozen, its weights are still updated. To obtain their gradients, all

of the following layers, including Layer 3 and Layer n-1, require gradient calculation. There

is not much time reduction in this case.

If freezing is simply done using layer freezing rates, it is very likely that the above

requirement cannot be satisfied. To handle this, we calculate the maximum subarray sum

for the freezing rates. First of all, freezing rates for all layers, except for the first layer and

last layer, are standardized to zero mean and unit variance using Equation 3.3:

F
′
=
F − F
σ

(3.3)

where F is the original freezing rates vector obtained using Equation 3.1, F is the mean of

vector F , and σ is its standard deviation. F
′

is the standardized freezing rate vector.

The standardized freezing rates now form an array that contains both positive and

negative numbers. Positive numbers indicate that we want to freeze these layers, and negative

means otherwise. The goal is to find the maximum subarray sum starting from the first array

element and return the end index.

The end index n is calculated using Equation 3.4:

n = arg max
k

k∑
l=1

F
′

l (3.4)

where F
′

l , obtained using Equation 3.1 and Equation 3.3, is the standardized freezing



40

(a)

(b)

Figure (3.4) For the purpose of time saving, frozen layers should always start at the first
layer and be consecutive. If there is an input to a frozen layer that is unfrozen, gradient
calculation is still required for the frozen layer. For example in (a), Layer 1, 2, 3 are frozen
and the rest are unfrozen. The frozen layers do not have inputs that requires gradients.
Thus we do not need to calculate gradients for Layer 1, 2, 3. In (b), Layer 1, 3 and Layer
n-1 are frozen. However, since Layer 2 is unfrozen, we still need to calculate gradients for
Layer 3 in order to know how to update weights in Layer 2. Similarly, gradient calculation
is required for Layer n-1. In this case, there will not be much time saving.
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rate for layer l. As a result, the layers that should be frozen will be from the first layer to

the layer with end index n.

3.2.4 Overhead

Due to the calculation of freezing rates, time overhead is introduced. Since the goal is

to reduce the training time, we want to keep the overhead small.

It is observed that the relative freezing rates for layers remain roughly the same per

learning rate decay step. For example, in Figure 3.2, Layer 1 has the largest freezing rate

compared with other layers in the first learning rate decay step (from epoch 0 to epoch 150).

It remains so until the learning rate is decayed in the next step. Based on this observation,

the layer-wise freezing rate can be calculated just once per learning rate decay step. Overhead

is reduced this way.

3.2.5 Freezing Scheme

Our goal is to find a freezing scheme that reduces training time while having similar

test accuracy. How many layers from the beginning should be frozen can be decided using

the method mentioned in Section 3.2.3. We still need to explore how frequently those layers

should be frozen.

To let things stabilize, layers are trained freely without freezing for some epochs before

the freezing starts. Here, we tested a freeze-and-unfreeze method for all layers. This method

requires several hyperparameters to be set up: how frequent are layers being frozen during

each learning rate stage. In our experiments, we find the layers to freeze using the maximum

subarray sum for the standardized freezing rates (3.4), and have them freeze using a specified

freezing frequency, for example, every other epoch. To allow for more flexibility, we also find

layers to freeze using the second maximum subarray sum and have these layers freeze at a

different but lower frequency, such as every six epochs. The details on more hyperparameter

setups are listed in Section 3.3.

Algorithm 1 describes the details of training deep models using SGD with intelligent
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freezing. For simplicity, a single fixed learning rate η is used in Algorithm 1. When training

using SGD with step decay, the steps in Algorithm 1 is simply repeated for each different

learning rate there is.

Algorithm 1: The training process with intelligent freezing using a fixed learning

rate η

ω is network parameters.

η is the learning rate.

e1 is the hyperparameter for the number of training epochs without freezing.

e2 is the number of training epochs with freezing.

Fr is the freezing rates for all layers.

L is the layers that should be frozen.

f = [f1,f2] is the hyperparameter for how frequent layers should be frozen.

begin

optimizer = sgd optimizer(ω, η)

for epoch = 0 to e1 do

train()

test()

end

Compute freezing rates for all layers according to equation 3.1.

Fr = get freezing rates(ω)

L = get layers to freeze(Fr)

for epoch = e1 + 1 to e2 do

optimizer = get optimizer(ω, L, f)

train()

test()

end

end
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3.3 Experiments and Results

We evaluate our method on a popular image classification dataset: CIFAR-10 [48]. The

dataset contains 60,000 color images, with 50,000 for training and 10,000 images for testing.

There are in total of 10 classes, and each class has 6,000 images.

Experiments were performed on various deep architectures: VGG models [68], ResNets

[28], and DenseNets [37]. Most tests were run on a high performance computing server,

with other programs running on it. For some tests, we were able to perform in a controlled

environment, where there are no other programs running on it. To make sure we have a fair

comparison, experiments were run multiple times, and the average is taken. Details can be

found in the following sections.

3.3.1 VGG Models

Experiments were performed on VGG models in an environment with no other programs

running. A computing node with a single NVIDIA Tesla K40 GPU was used. Both the vanilla

SGD and our method trains the model for 350 epochs. Learning rate decay is used during

training. The learning rate is 0.1 for the first 150 epochs, then 0.01 for the next 100 epochs,

and 0.001 for the last 100 epochs. Accuracy on the test set and running time of the two

algorithms are compared.

We first evaluate our method on a modified VGG-19 net. This model only has one fully

connected layer of size 512. Other settings are the same as the 19-layer VGG net mentioned

in [68]. Layers-to-freeze are obtained using the maximum subarray sum on standardized

freezing rates for all layers according to Equation 3.4, and they are made to freeze every

other epoch. We use the second maximum subarray sum to obtain another set of layers, and

they freeze once every six epochs. Both our freezing method and the vanilla SGD were run

three times for comparison. As shown in Table 3.1, for modified VGG-19, a 9.5% speedup

can be achieved.
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Table (3.1) The mean running time and test accuracy for VGG, ResNet, and DenseNet
architectures on CIFAR-10. Comparison is between the SGD and our freezing method on
top of SGD. The mean and standard deviation is calculated based on 3 runs. VGG-19
Experiments were done in a controlled environment on a single NVIDIA Tesla K40 GPU.
ResNet-18 and Resnet-50 experiments were run on a single NVIDIA Tesla V100 GPU on a
HPC cluster. ResNet-101 experiments were run on a single NVIDIA Tesla P100 GPU on a
HPC cluster.

Comparison Between SGD and Our Method
Network SGD SGD Ours Ours
Name Time Test Time Test

(hrs) Accuracy (hrs) Accuracy
Modified 6.21±0 93.72±0.26 5.62±0 93.73±0.16
VGG-19 (-9.5%)

ResNet-18 1.62±0.076 95.30±0.02 1.33±0.04 95.30±0.33
(-17.9%)

ResNet-50 5.40±0.13 95.35±0.17 5.03±0.01 95.27±0.09
(-7.1%)

DenseNet- 9.03±0.17 95.66±0.07 7.91±0.01 95.38±0.16
121 (-12.3%)

3.3.2 ResNets

We tested our method on ResNet architectures. Experiments were run on a high-

performance computing cluster. A computing node with a single NVIDIA GPU was used.

We made sure that the experiments for the same deep architecture are done on the same

GPU. The training setting is the same as in the VGG experiment.

ResNet-18 experiments were run on a single NVIDIA Tesla V100 GPU. As shown in

Table 3.1, for ResNet-18, a 17.9% speedup can be achieved. ResNet-50 experiments were

also conducted on a single NVIDIA Tesla V100 GPU. For ResNet-50, our method can reduce

the training time by 7.1%.

There is a slight decrease in test accuracy for freezing ResNet-50. In order to explore

the possible causes for this decrease, we plot the test accuracy for training ResNet-50 using

SGD with freezing and vanilla SGD. As shown in Figure 3.5, in the first and second learning

stage (when the learning rate is 0.1 and 0.01), SGD with freezing has similar or better test
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accuracy compared with vanilla SGD. However, in the last stage (when the learning rate is

0.001), the accuracy for SGD with freezing is not as good. This suggests that there might be

too much freezing during the second learning stage and this is having an impact on the third

stage. We thus lower the freezing frequency on the second stage, and observe how this affects

the test accuracy. Layers obtained using the maximum subarray sum of freezing rates are

frozen once every 4 epochs, and layers obtained using the second largest subarray sum are

frozen once every 8 epochs. Table 3.2 shows the results for SGD with freezing using reduced

freezing frequency. The test accuracy for ResNet-50 with reduced freezing frequency based

on three runs is higher than that of the vanilla SGD. A speedup of 8.2% can be achieved.

Table (3.2) We reduce the freezing frequency in the second learning state (the learning rate is
0.01) due to the observations made. Experiments were run three times for both the freezing
SGD and vanilla SGD. Mean and standard deviation for time and test accuracy is calculated.
Results show that the SGD with freezing now have slightly higher accuracy.

Comparison Between SGD and Our Method
Network SGD SGD Ours Ours
Name Time Test Time Test

(hrs) Accuracy (hrs) Accuracy
ResNet-50 5.40±0.13 95.35±0.17 4.96±0.11 95.45±0.11

(-8.2%)

3.3.3 DenseNets

For DenseNet, we also use the same freezing frequency hyperparameter as VGG nets

and ResNets. DenseNet-121 experients were run on a single NVIDIA Tesla P100 GPU. The

results for DenseNet-121 can be found in Table 3.1. Experiments were repeated three times

for both the vanilla SGD and SGD with freezing. A 12.3% time reduction can be achieved.

3.4 Summary and Future Work

In this work, we propose a method to intelligently freeze deep learning layers to reduce

training time. A formula to calculate the normalized difference of gradients is designed to
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Figure (3.5) We train ResNet-50 using SGD with freezing and vanilla SGD. The test accuracy
for SGD with freezing outperforms or is similar to vanilla SGD in the first two learning stages
(when the learning rate is 0.1 and 0.01). However, the accuracy is slightly lower when it
comes to the last stage (the learning rate is 0.001). This suggests that there might be too
much freezing in the second learning stage.
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calculate the freezing rates for all layers with weights. And the maximum subarray sum of

the freezing rates array is used to decide how many layers starting from the beginning should

be frozen. Experiments on VGG nets, ResNets, and DenseNets show that our method can

speed up the training process while having similar test accuracy.

There are still many different freezing schemes that remain to be explored, and there

is room for further time reduction. For example, instead of using freezing frequency as a

hyperparameter, a freezing probability can be calculated based on freezing rates. Also, in-

stead of freezing layers, it would be interesting to see how the method performs on individual

network parameters.
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PART 4

INCORPORATING PRIOR KNOWLEDGE IN DEEP LEARNING

4.1 Background

4.1.1 Classification Accuracy Improvement Methods

There are various ways of improving classification accuracy: tune model hyperparame-

ters [61][90][97], design novel architectures [92][99], find more data to train the model, data

augmentation [67], add more features [100], transfer learning [85], model ensemble [63], and

so on.

Model hyperparameters play an important role in model performances. The size of the

model decides how well the model can fit the data. Learning rates need to be tuned carefully

to help the model converge to a better optimum [7]. The convolution window decides how

much local information is examined at a time. And there are many more hyperparameters

that are essential to models’ performance. Deciding a good set of hyperparameters is difficult

work, and there are many research works in this area [4][5][9][61][74][90][97].

Deep learning models also rely on the abundance of data. And data augmentation, a

method that manufactures data with existing data, can greatly help with model performance.

Popular image augmentation methods include flipping, translating, and rotating images.

And there are novel image augmentation methods such as overlaying two images [40] and

masking part of the image [77].

A model ensemble takes advantage of multiple diverse models and combines the predic-

tions of various models on the task. It is a very powerful technique. In Kaggle competition,

it is common to see the top results utilizing ensemble learning [63]. Popular model regular-

ization technique, dropout [72], also behaves like training an ensemble of submodels.
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4.1.2 Knowledge incorporation in deep learning

Deep learning is mostly data-driven. We want to investigate ways of incorporating hu-

man knowledge into the training process and observe how that can help with the model.

Adding information/features could also improve model performances. Sometimes the infor-

mation does not come from the data itself but from other sources.

There are various ways of incorporating prior knowledge into deep learning. Our pre-

vious work [42] in infant cry classification uses prior knowledge to select the categories in

corresponding models to improve performance. Our previous work [42] in infant cry clas-

sification uses prior knowledge to select the categories in corresponding models to improve

performance. Diligenti et al. [21] used first-order logic rules and translated them to con-

straints, which are incorporated during the backpropagation process. Towell et al. [79]

proposed a hybrid training method: first translate logic rules into a neural network and then

use the neural network to train classified examples. Xu et al. [91] derived a semantic loss

function that bridges deep learning outputs and logic constraints. Hu et al. [35] proposed

a method that iteratively distills information in logic rules into weights of neural networks.

Ding et al. [22] integrated prior knowledge in indoor object recognition problems. Color

knowledge for indoor objects and object appearance frequencies are generated in the form

of vectors and used to modify deep learning model outputs. Jiang et al. [43] incorporated

semantic correlations between objects in a scene for object detection. Stewart et al. [73]

performed supervised learning to detect objects using domain knowledge instead of data

labels. This can be applied to problems where labels are scarce.

Lee et al. proposed Dropmax [51], a method that randomly drops classes adaptively, to

improve the accuracy of deep learning models. Learning from this idea, we investigated the

effect of incorporating prior knowledge into classification problems by reducing the problem

to a subset of classes. This was a preliminary study we did on knowledge incorporation.

Later on, we studied similarity knowledge among classes and incorporated that into CNNs

using a graph convolutional layer.

One kind of knowledge that can be incorporated is class similarity. In many works, label
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relations are incorporated into deep learning models. Word taxonomy can be used to improve

image object recognition [38]. Associated image captions can improve entry-level labels of

visual objects. Structured inferences can be made by incorporating label relations. GCN

augmented neural network classifiers can be used to incorporate underlying label structures.

4.1.3 Class Similarity

There are various ways to obtain similarity between classes. Label relations can be

used to define class similarities [20], where semantic similarity of labels can be computed.

The problem is in many situations, label relations may not be able to fully capture the

similarities between the actual data. Sometimes label relations cannot represent meaningful

class similarities at all.

Class similarity knowledge does not necessarily need to come from external sources. It

may be extracted from the data itself. Arino et al. [2] proposed to use misclassification

ratios of trained deep neural networks to get class similarities. Their proposed method uses

symmetrical similarity between classes.

4.1.4 Graph Convolutional Networks

CNNs are successful in capturing the inner patterns of Euclidean data. However, lots

of data in real life scenarios exist in the form of graphs. For example, social networks

are graph-based: the nodes are people, and the edges are the connections between them.

Chemical molecules, atoms held together by chemical bonds, can naturally be modeled as

graphs. Analyzing their graphical structure can determine their chemical properties. In

traffic networks, points of intersections are linked together by roads, and we can predict the

traffic of these intersections in future times. Images can be thought of as a special kind of

graph, where adjacent pixels are connected together, forming a pixel grid. When images

are fed through a CNN model, the nearby pixels are being convoluted, and local spatial

information is retained. CNNs cannot learn from graph data with more complex relations.

Similarly, graph convolution can be performed on graph data, where each node can learn
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the weighted average of its neighbors’ information. A GCN [46] does the following graph

convolution operation:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (4.1)

Where Ã is the adjacency matrix with self-loops, D̃ is the node degree matrix, W is a layer-

specific trainable weight matrix and sigma is an activation function. H(l) is the output from

the lth layer and H(0) is input. During graph convolution, each node aggregates information

from its neighbors.

4.2 Preliminary Studies

In our preliminary study, we are inspired by the fact that classification problems are

easier when there are less classes to predict. We want to use knowledge to reduce the

complexity of a classification problem by excluding some unlikely classes and only make

predictions on a subset of more likely classes.

There are different forms of knowledge. In this work, we calculate the similarity between

the data and class templates to decide which classes are the more likely ones to be included

in the prediction. For shape recognition, we use the Fourier descriptor to obtain the shape

signatures for images, and then distances are calculated based on Fourier descriptors. Fourier

descriptor is chosen because it is rotational, translational, and scale invariant.

Using Fourier descriptor distances, we can decide on which subset of classes to do

classification on. First, we create templates for all classes and obtain Fourier descriptors

for all of them. To do classification for a candidate image, we first calculate its Fourier

descriptor and compare it with those of all the templates. This will give distance scores

that tell us how similar the candidate images are to the templates. If the distances to some

templates are far, it is unlikely that the candidate image belongs to that class. We can use

this information in the neural network classification process. Instead of making predictions

on all classes, we can just do so on a subset of classes. The Fourier descriptor distance scores

give us information on which subset of classes we should make our prediction on. While the
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Fourier descriptor distances may not tell us which class is the correct prediction directly, it

gives us some idea on which classes the candidate is more similar to. And the neural network

will then do the classification for us. In summary, compared with the original classification,

the prior knowledge helps us to eliminate some unlikely classes for the candidate image,

making the task easier.

4.2.1 Fourier Descriptor

Fourier descriptor is used a lot in shape recognition. They can encode shape signatures

of an image. Fourier Descriptor is a preferred method to capture shape information because

it is translational, scale, and rotational invariant.

Here is how a Fourier descriptor of an image is obtained:

• Apply threshold and convert the image into binary.

• Find contour based on the binary image.

• Find the coordinates of all the pixels on the boundary.

• Convert the coordinates into complex numbers.

• Take discrete Fourier Transform of the complex-valued vector

4.2.2 Matching with Templates

We match the candidate images with templates to get distance scores of an image to

each class. This knowledge will give us ideas on which subset of classes to make prediction

on.

For an initial attempt, we decided to use printed digits as templates for our dataset.

We consider printed digits to be like concepts for hand-written digits. Handwritten digits

are like variations of their concepts. For all images in the dataset and in the templates,

we first use Fourier descriptor to obtain their shape signature. The Fourier descriptors are

used for distance calculation between images. Then for each digit in the MNIST dataset, we
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calculate its distance with the 10 templates. Each digit will have a matching score with all

ten templates, which is a vector of length 10. The matching score informs us which templates

the digit is closer to and which templates it is further away from.

We evaluated how good are the templates when using one set of printed digits. As

shown in Figure 4.1, we calculate the distance between the candidate image and all 10

templates using the Fourier descriptors. The smaller the score, the more similar the two

images. The images with green scores in Figure 4.1 are 5 templates that the candidate

image is more similar to based on the Fourier descriptors. And the ones with red scores

are less similar to the candidate image. If the target class is within the top k most similar

templates, then we consider the templates to be good for the candidate image. We calculate

the distance scores between all images in the training dataset and the templates. And the

above-mentioned criteria is used to judge whether the templates are good for the candidate

images. We evaluate the quality of the current template and list the results in Table 4.1.

From Table 4.1, we can tell how much data the target class is within the included class for

different k values. For example, when k = 5, Only about 85% of the MNIST training set

satisfies the criteria, i.e., for about 15% of the handwritten digits, the target class is among

the templates that are less similar. This initial attempt does not give us good enough

knowledge.

Using printed digits is the first thought when it comes to choosing templates. There

are ways of improving the templates, such as use multiple templates for a single class and

aggregate the distance scores. One idea of choosing additional templates is to find templates

from the training dataset itself. For each class in the training set, we can do clustering to

find representative images and add those to the templates.

4.2.3 Incorporate knowledge into Training

We know that the classification problem is easier when there are fewer classes to predict.

The idea is to use prior knowledge to reduce the number of classes in classification.

We use prior knowledge to generate a knowledge mask that reduces the original classi-
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Figure (4.1) Fourier descriptor distance between the candidate image and the templates.

fication to a subset of classes. The knowledge mask tells which classes to be included and

which not for each image in the dataset. It is added into the deep learning model after the

softmax activation. Figure 4.2(a) shows the original softmax classification. Figure 4.2(b)

is a knowledge mask applied to the original classification. The knowledge mask contains

0’s and 1’s: 0 means the corresponding class is unlikely to be the target, and we exclude

it in classification; 1 means the class is likely to be the target class, and we include it in

classification. Equation 4.2 shows how we get the network output using the knowledge

mask. In Equation 4.2, ~O is the output generated by softmax, and ~M is the knowledge mask

which contains 0’s and 1’s. Operator � means element-wise multiplication. For example if

~a = {a1, ..., ai, ...aN} and ~b = {b1, ..., bi, ...bN}, then ~a � ~b = {a1b1, ..., aibi, ...aNbN}. ~K is

the results produced by the knowledge mask. It contains some zeros, which mean the cor-

responding classes are excluded, and no gradients are backpropagated. Only more probable

classes produce non-zero probabilities.

~K =
~O � ~M∑
iOiMi

(4.2)

Algorithm 2 shows the overall procedure of how to incorporate the extracted knowledge
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into the training process. Note that for now knowledge is only incorporated into the training

process because we do not want the target class to be excluded during testing time. If we

obtain good enough templates, we will include knowledge in the testing phase and see how

it affects the results.

Algorithm 2: Apply Knowledge Mask to Reduce Number of Classes in Classifi-

cation
k is the number of classes to keep in classification.

begin

distances = get distance(data, templates)

train(distances):

softmax output = model(train data)

mask = get knowledge mask(distances)

mask = include targets(mask, train targets)

output = mask output(softmax output, mask)

loss = cross entropy(output, train targets)

test():

softmax output = model(test data)

loss = cross entropy(softmax output, test targets)

end

We use two ways of excluding classes: deterministically and stochastically. This is

achieved by generating deterministic and stochastic knowledge masks respectively.

• Exclude classes deterministically

After the distances to the templates are calculated, we can directly use the ranking of

distance to decide which classes to keep during training. The k classes that are most

similar to the candidate image will be kept during training. For example in Figure

4.3, k is 5 and 1, 7, 8, 9, 0 are the five classes for the image to be classified. During

training, this classification of this specific image will always involve these five classes

only.

• Exclude classes stochastically
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Instead of excluding classes deterministically using the ranking of the distances scores,

we calculate the probability that each class will be excluded. For each candidate image,

the probability of the classes being excluded is defined in Equation 4.3:

~pi =
λ~di

max{~di}
� (~e− ~ti) (4.3)

where i is the index for the candidate image, ~di is the vector of distances of image i to

all templates, max{~di} returns the maximum number in ~di, λ is the scale factor, ~ti is

the one-hot encoded vector of the targets for image i, ~e is a vector of the same length

as ~ti and only contains 1’s, and � is the element-wise multiplication operator. Figure

4.4 shows an example of excluding probabilities for a candidate image. Note that the

exclusion probability of the target class is 0 because we do not want to exclude the

correct answer.

Based on the exclusion probability, at each iteration, the class dropped is different for

a specific image, as shown in Figure 4.5. The classes that have a larger distance from

the candidate image have a higher probability of being excluded, and similar classes

are more likely to be kept. Excluding the classes stochastically has a regularization

effect on the model similar to dropout.

Table (4.1) We evaluate the templates quality using the percentage of images for which the
target class is within the included classes.

k Value Templates Quality
5 85.0%
6 88.4%
7 90.9%
8 94.5%
9 98.7%
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4.3 Preliminary Results

We perform experiments on the standard MNIST dataset. As an initial attempt, we use

1,000 images for training and 1,000 images for testing. We first perform experiments using

the deterministic class excluding technique, and then the stochastic one.

4.3.1 Exclude classes deterministically

We perform deterministic class exclusion using different k values, where k is the number

of classes being kept. For each setting we repeat the experiment five times and report the

average and standard deviation in Table 4.2. Compared with the basic softmax activation,

deterministic exclusion, in this case, does not give any accuracy improvements, instead,

accuracies are lower. The fewer number of classes are kept, the lower the accuracies are.

The reason for the accuracy drop could be: templates are not good enough. Or training is

given a simpler task, but testing is more difficult. Thus testing has a lower score. We will

improve the quality of templates to see how that affects the results.

Table (4.2) Comparison between basic softmax and deterministic exclusion.

Test Accuracy
Softmax 94.98±0.11

Knowledge Mask k=5 92.66±0.67
Knowledge Mask k=6 93.06±0.38
Knowledge Mask k=7 93.94±0.47
Knowledge Mask k=8 94.52±0.47
Knowledge Mask k=9 94.98±0.43

4.3.2 Exclude classes stochastically

We perform stochastic class exclusion using different scale factors. The class exclusion

probabilities for each image is calculated based on Equation 4.3. For each setting, we repeat

the experiment five times and report the average and standard deviation in Table 4.3. We
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observe test accuracy improvements when stochastic class exclusion is used. Different scale

factor gives slightly different accuracies. However, at this point, we are not sure how much

effect does the scale factor has on the accuracies. We will need to do use statistical methods

to evaluate whether there are significant differences in the mean accuracy when different

scale factors are used.

Table (4.3) Test accuracy of stochastic exclusion with various scale factors

Scale Factor Test Accuracy
0.8 95.44±0.30
0.9 95.32±0.36
0.95 95.52±0.19
0.99 95.50±0.12

4.4 Incorporate Class Similarity Knowledge

From the preliminary study, we learned that using human predefined knowledge may

not work well. Next, we explore a data-driven way of defining knowledge.

In deep learning multiclass classification tasks, data are mapped to one of the predefined

classes. The model extracts features from data, and no inter-class relationship is considered.

Prior works have shown that incorporating class similarity knowledge can improve classifi-

cation performances [2][51]. We incorporate class similarity knowledge into deep learning

models using graph convolution to improve classification accuracy.

The class similarity knowledge is extracted directly through training from data, and no

additional external information is required. Information directly learned from data should

represent similarity more accurately than external ones. We train the model on the training

dataset and obtain the misclassification graph on the validation dataset. The misclassifica-

tion graph contains information about how often one class is misclassified as another class.

If data in one class is frequently misclassified as another class, we consider that the former

class is similar to the latter class.
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The vector representations of classes and data are extracted from learned model weights

and hidden layer outputs, respectively. Together with the class similarity graph, class and

data representations are sent to a graph convolution layer. The graph convolution adjusts

the results according to class similarity knowledge, and class scores are finally sent to the

Softmax activation function to get the final classification results.

4.4.1 Represent Class Similarities Using Misclassification Graph

We use misclassification graphs to represent class similarities. If data in one class is

often misclassified as another class, we consider the two classes have high similarity. Our

misclassification graph is directed, which means similarities can be directional. Class A can

be very similar to Class B, but not the other way around. This directional similarity can be

observed from the misclassification information. In experiments, we can observe one class

being frequently misclassified as another class, but not the reverse way.

The misclassification graph is built based on a trained model’s performance on the

validation dataset. Figure 4.6 is an example of a misclassification graph. A CNN model

is trained on a downsampled MNIST dataset. After the model is trained, we evaluate its

performance on the validation dataset. Mistakes made on the validation dataset are recorded

and plotted as a graph. Each node represents a class in the dataset, and edges denote how

frequent data from one class are being misclassified as another class. The thicker the edge

is, the more misclassification between the two classes. As shown in Figure 4.6, there are 10

classes in the MNIST dataset: 0 - 9. Edges between some classes are thicker, for example

Class 8 to Class 1. This means lots of images that are actually 8’s are mistaken as 1’s.

Note that edges have directions. While 8’s are easily mistaken as 1’s, barely any 1’s are

misclassified as 8’s.

4.4.2 Overall Model Architecture

Figure 4.7 shows the overall architecture of our model. There are two stages of training.

In Stage 1, we train an original CNN model without the graph convolution layer. In the
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illustration, we use a CNN model with two convolutional layers and a fully connected layer

as an example. The model is trained for enough epochs such that it has learned the training

data well. Then a misclassification graph is obtained by feeding the validation data through

the model. Data and class embeddings are also extracted from the CNN model to produce

vector representations for graph nodes. After we obtain the misclassification graph and node

representations, we can enter Stage 2 of training. In this stage, a graph convolution layer

is added after the fully connected layer. The graph convolution contains misclassification

information. This layer takes in the latent data representation and class embedding infor-

mation and does convolution among the classes, and outputs new data and class embeddings

with aggregated neighborhood information. The new data and class embeddings are further

used to calculate class scores and finally sent to the softmax activation function to produce

final results.

The graph convolution layer takes in data and class embeddings and outputs new vectors

that contain aggregated neighborhood information. Figure 4.8 shows a five-class graph

convolution example. The nodes in the graph represent individual classes. There are five

nodes in this example corresponding to five classes. The edges between nodes represent how

often one class is misclassified as another class. Edges have directions. Nodes are represented

using vectors of numbers. In our case, the vectors are concatenations of data embedding and

class embeddings.

Both data embedding and class embedding can be obtained from the original CNN

model. Data embeddings are obtained by getting the outputs from the layer right before the

Softmax classifier, as shown in Figure 4.9. Class embeddings are obtained from the weights

connecting the classifier and the layer before. Figure 4.10 shows how the class embeddings

are obtained. Notice that the data and class embeddings have the same dimensions. And

in the original CNN model, the inner products of data and class embeddings produce class

sores.

Data embedding and class embedding together form the graph node vector represen-

tations. After the node vector representations pass through the graph convolution layer,
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the graph convoluted outputs are further transformed to get class scores before sent to the

Softmax activation function. Vector representations for data and classes are extracted from

the original CNN model. The data embedding for data d is ~d = {d1, ...dk, ...dn}. The class

embedding for class i is ~ci = {ci1, ...cik, ...cin}. In the original CNN model, the dot product of

~d and ~ci produces the class i score of d. The vector representation for node i is the concate-

nation of ~d and ~ci: ~xi = {d1, ...dn, ...ci1, ...cin}. After graph convolution, the output for node

i is: ~hi = {h1, ...hn, hn+1, ...h2n}. We need to transform the outputs from graph convolution

to class scores before feeding them to softmax activation function.

We use two ways of transforming graph convoluted outputs to class scores. This will

give us two variants of the graph convolution assisted model: PK-GCN-1 and PK-GCN-2.

Figure 4.11 describes the difference between these two variants. In PK-GCN-1, the outputs

of the graph convolution layer are directly used for producing class scores. In PK-GCN-

2, a fully connected layer is added after the graph convolution layer. The fully connected

layer merges the inputs and outputs of the graph convolution layer. The input to the fully

connected layer is the input to the graph convolution layer concatenated with the output of

the graph convolution layer.

In PK-GCN-1, we produce class score si for class i according to the following formula:

si =
k=n∑
k=1

dkhi(n+k) +
k=n∑
k=1

cikhik (4.4)

where ~ci is the class representation vector for node i, ~d is the data representation vector

and ~hi is the output of the graph convolution layer for node i.

For PK-GCN-2, we add a fully connected layer after the graph convolution layer. This

layer merges the original data and class embeddings, and the graph convoluted output to-

gether. Let the dimension of the output of the fully connected layer be 2l. We use the

following formula to produce the class score si for class i:

si =
k=l∑
k=1

qkqk+l (4.5)
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where the output of the fully connected layer is ~q, and its dimension is 2l.

Our method can be summarized into the following steps:

1. Train a base CNN model until convergence. This is stage 1 training.

2. Feed the validation dataset through the CNN model to get the misclassification graph.

The graph is weighted and bidirectional.

3. Extract vector representation of each of the m classes ~c1, ~c2, . . . ~cm from trained model

weights. (Figure 4.10)

4. Obtain vector representations of data d from the last hidden layer outputs. (Figure

4.9)

5. Add a graph convolution layer to the base CNN model. Node i in the graph is rep-

resented by ~xi which is data representation (from step 4) concatenated with class i

representation (from step 5). ~xi = {~d, ~ci}.

6. (PK-GCN-2 Only) Add a fully connected layer after the convolution layer.

7. (PK-GCN-1 Only) Produce class scores using Equation 4.4.

8. (PK-GCN-2 Only) Produce class scores using Equation 4.5.

9. Continue training the model with the new layers until convergence. This is stage 2

training.

4.5 Experiments and Results

We perform our experiments on the MNIST dataset and CIFAR-10. In our experiment,

different CNN model sizes and different data sizes are experimented with to evaluate how

adding class similarity knowledge helps in different circumstances.
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4.5.1 Datasets

The MNIST dataset contains 10 classes of handwritten digits: 0-9. The dataset pro-

vides a train-test split, with 60,000 training and 10,000 testing. The CIFAR-10 [48] dataset

contains 60,000 color images of size 32X32 in 10 classes: each class has 6,000 images. There

are 50,000 images for training and 10,000 images for testing.

4.5.2 Baseline

We use a two-stage training method for our models. In stage one training, a base CNN

model is used to obtain the misclassification graph for class similarity. In stage two, a graph

convolution layer is added to incorporate class similarity knowledge. The baselines for our

method are the base CNN models we use in stage one training. We make sure the baseline

and our proposed model are trained for the same number of epochs using the same optimizer.

4.5.3 Results on MNIST Dataset

We evaluate our method on the MNIST dataset. We experimented with two CNN base

models. The first contains 1 convolution layer; the second contains two convolution layers.

We also experiment with different train and validation data sizes. The validation dataset

is obtained from the original MNIST training set. We make sure that the training and

validation dataset has a balanced number of data from each class. We report the accuracy

of the baseline and our models on the test dataset, which contains 10,000 images.

Table 4.4 shows the comparison of the results between our model and the original CNN.

When using base model 1, the original CNN model was trained for 200 epochs. PK-GCN-1

and PK-GCN-2 were trained for 40 epochs in the first training stage and 160 epochs in the

second. When we use base model 2, the original CNN model was trained for 200 epochs.

PK-GCN-1 and PK-GCN-2 were trained for 80 epochs in the first training stage and 120

epochs in the second. All training uses AdaDelta optimizer with the same setup. And all

models were trained for the same number of epochs for a fair comparison.

From the table, we can see that our model outperforms the base model by as much as
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1.56%. And generally, the improvements are bigger when the amount of available training

data is smaller.

4.5.4 Results on CIFAR-10 Dataset

We evaluate our method on the CIFAR-10 dataset. The base model we use is VGG-11.

We experiment with various data sizes, and the models are evaluated on a test dataset with

10,000 images. Table 4.5 shows the comparison of the results between our model and the

original CNN on CIFAR-10. The original CNN model is trained for 300 epochs. PK-GCN-1

and PK-GCN-2 were trained for 100 epochs in the first training stage and 200 epochs in the

second. All training uses AdaDelta optimizer with the same setup.

When using VGG-11 as the base model, we can see that our model outperforms the

baseline by as much as 2.55%.

4.6 Summary and Future Work

In our work, we define the similarity between classes using the misclassification graph

produced on the validation dataset and use a graph convolution layer to incorporate that

information into training. Experiment results on benchmark image classification datasets

show that incorporating class similarity knowledge can improve multi-class classification

accuracy, especially when the amount of available data is small.

Instead of obtaining the misclassification graph from validation data, rules can be used

to define class relations. The relationships between classes are fuzzy. In the future, we plan

to incorporate fuzzy logic [6][34][53] and rough set theories [106][107][108] into our work to

define class relations. A graph attention [81] layer can also be used in place of the graph

convolution layer. The advantage of graph attention is that we do not need to know the

edge information in the graph. The edges are learned through training. We could potentially

study the edges learned by graph attention to see if they correlate to class similarities.
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Table (4.4) Accuracy comparison on MNIST of the original CNN model and PK-GCN models
with various data sizes. ‘X’ Means no accuracy improvement is observed.

Data size 300| 500| 1,000| 1,500|
(Train|Validation) 300 500 1,000 1,500

Base model 1: Original CNN 85.30% 88.78% 93.07% 94.42%
1 conv layer

PK-GCN-1 85.74% 89.49% 93.97% 94.90%
(+0.44) (+0.71) (+0.9) (+0.48)

PK-GCN-2 86.28% 89.51% 94.12% 94.94%
(+0.98) (+0.73) (+1.05) (+0.53) )

Data size 2,000| 2,500| 3,000|
(Train|Validation) 2,000 2,500 3,000

Base model 1: Original CNN 95.13% 95.78% 96.26%
1 conv layer

PK-GCN-1 95.62% 96.03% 96.32%
(+0.49) (+0.25) (+0.06)

PK-GCN-2 95.66% 95.98% 96.50%
. (+0.53) (+0.2) (+0.24)

Data size 300| 500| 1,000| 1,500|
(Train|Validation) 300 500 1,000 1,500

Base model 2 Original CNN 89.67% 92.08% 95.43% 96.00%
2 conv layers

PK-GCN-1 91.16% 93.46% x 96.30%
(+1.49) (+1.38) (+0.30)

PK-GCN-2 91.23% 93.19% x 96.26%
(+1.56) (+1.11) (+0.26)

Data size 2,000| 2,500| 3,000|
(Train|Validation) 2,000 2,500 3,000

Base model 2 Original CNN 97.00% 97.44% 97.70%
2 conv layers

PK-GCN-1 97.01% 97.46% 97.74%
(+0.01) (+0.02) (+0.04)

PK-GCN-2 x x 97.80%
(+0.10)
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Table (4.5) Test accuracy comparison on CIFAR-10 of the original CNN model and PK-GCN
models with various data sizes.

Data size 300| 500| 1,000| 1,500|
(Train|Validation) 300 500 1,000 1,500

Base model: Original CNN 33.34% 35.51% 44.33% 50.09%
VGG-11

PK-GCN-1 35.37% 36.01% 46.88% 51.16%
(+2.03) (+0.50) (+2.55) (+1.07)

PK-GCN-2 34.93% 37.45% 45.72% 51.21%
(+1.59) (+1.94) (+2.39) (+1.12)

Data size 2,000| 2,500| 3,000|
(Train|Validation) 2,000 2,500 3,000

Base model: Original CNN 52.81% 56.50% 60.56%
VGG-11

PK-GCN-1 53.69% 56.98% 61.04%
(+0.88) (+0.48) (+0.48)

PK-GCN-2 53.25% 56.54% 60.82%
(+0.44) (+0.04) (+0.26)
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Figure (4.2) The original softmax versus softmax with knowledge mask.
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0.04         0.43    0.52      0.61    0.39     0.42   0.12    0.21     0.22      0.13

Figure (4.3) Excluding classes deterministically using k=5.
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Figure (4.4) Class exclusion probabilities.
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Figure (4.5) Classes are excluded stochastically based on exclusion probabilities.

Figure (4.6) A Misclassification Graph example on the MNIST Dataset.
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Figure (4.7) Overall model architecture. In Stage 1 training, mislassification graph is ob-
tained from the the validation data. The graph represents class similarity information and is
fed into the next stage. In Stage 2 training, a graph convolution layer is added to incorporate
class similarity knowledge into the training.
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Figure (4.8) The GCN takes in the data embedding concatenated with class embeddings,
performs neighborhood aggregation, and outputs new node representations.
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Figure (4.9) Obtain data embedding from the model.
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Figure (4.10) Obtain class embeddings for all classes from the model.
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Figure (4.11) Two ways of incorporating the graph convolution layer.
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PART 5

MAPPING NON-IMAGE DATA TO IMAGES FOR FEATURE

RELATIONSHIP LEARNING

5.1 Backrgound

EHRs provide a great amount of digital information that can be used for applications

such as health analytics and clinical informatics [78][87]. Various machine learning and deep

learning models have been used on EHR data to make disease detection [17][18][52][98],

disease progression [12][103], patient subtyping [8], and so on.

EHRs contain information such as patient demographics: age, gender, ethnicity, health

care providers, and so on. They also contain patient journeys: a sequence of diagnosis and

treatment information over time.

Traditionally, the information in an EHR is treated as a bag of features. No relationship

or structural information among features is considered.

Recent works show that there exists structural information among EHR features, and

incorporating this information can help with improving the prediction performance. Choi

et al. [15] proposed graph convolutional transformers that learn the hidden structure of

EHR while performing supervised training. Choi et al. have also proposed MiME [16],

a model architecture that reflects relationships between diagnosis and treatments. Wu et

al. [86] studied the relationship between patients and clinicians because patients with the

same disease that visit the same clinician tend to receive similar treatments. In most EHRs,

structural information among features does not already exist. Researchers reconstruct this

information using various methods. For example, the relationship between a drug and a

disease can be represented by how often they appear in the same medical claim. Zeng et al.

[102] measure drug-drug similarity by calculating the Jaccard similarity coefficient on EHR

data.
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Deep CNN is a popular class of deep learning models, and they are mostly used for

images. Images contain pixels that are spatially coherent. Neighboring pixels share similar

information. Convolution filters in a CNN model do convolution operations and extract

features among neighboring pixels. Sharma et al. [66] have transformed non-image data

such as gene expressions and test data to images and used CNNs for extracting features and

subsequent prediction tasks. When mapping non-image data to images, the positions of the

pixels are important. If they are arbitrarily arranged, it can harm the feature extraction and

prediction performances.

Inspired by previous works, we propose to map EHR features to images using relational

and structural information among the features. This way, the feature relationships are taken

into consideration as related features are positioned as neighboring pixels inside the images.

A CNN model can then be used to extract and learn from the mapped images. Specifically,

we experiment on EHR data on Chronic Lymphocytic Leukemia (CLL) patients and make

predictions on whether the next line of treatments needs to be initiated.

5.2 Method

5.2.1 Mapping Electronic Health Records to images

For each patient, we take the diagnosis-treatment features from EHR data and map them

to images. As a result, each patient will have a unique image that represents his/her doctor

visits journey. To map diagnosis-treatment features, we need to consider: the relationships

between features, the values of the features, encoding time sequence information, and how

to position features inside of the image according to their relationships.

Relationships between procedure, prescription and diagnosis EHRs contain

various types of information such as patient demographic information like age, gender, and

ethnicity; and patient encounter information such as diagnosis codes, procedures used, and

drugs prescribed. There exists structural information among the procedure, prescription,

and diagnosis features. For example, doctors usually give the procedure EKG based on the
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diagnosis of chest pain. It means that chest pain and EKG are closely related.

In images, pixels that are physically close together share similar information. Similarly,

transforming EHRs into images requires positioning similar entities together. EHRs often

do not contain structural information; however, relations between the medical entities can

be measured using quantitative methods. To extract these kinds of associations from EHRs,

we look at how frequently two medical entities appear together in a medical claim. The

more frequently they appear together, the more likely they are related. Specifically, we

use conditional probability to measure the relationship between a treatment (procedure or

prescription) and a diagnosis. Equation 5.1 shows how the relationship is measured:

P (rx|dx) = P (rx ∩ dx)/P (dx) (5.1)

P represents probability, rx is a treatment and dx is a diagnosis.

When mapping these medical entities into images, we want the related features to be

positioned as neighboring pixels as much as possible. Figure 5.1 shows an example of how

some medical features are positioned inside of an image. Related features, such as fever, IV

fluid, and Advil are positioned as neighboring pixels. There might not be enough features

to fill the image, so some pixels are empty and do not represent any features.

Values of Medical Features The value for each pixel inside of an image ranges from

0 to 1: 0 represents black, 1 represents white, and the values in between are various degrees

of grays. For each diagnosis-treatment feature, we can count how many times they appear

for each patient during a given time interval. And for each feature, we normalize its value

to the [0, 1] range.

Time information as image channels The EHR data contains patients’ visits in-

formation over time. For a given time interval, we divide it into three parts, and how many

times each feature appears for each part is counted. The counts are then normalized to a

value in the [0, 1] range. The three parts of time intervals correspond to the three channels
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Figure (5.1) An example of how related features are positioned as neighboring pixels inside
of an image.

of an image. This is how features changes over time are aggregated and encoded into the

image channels.

Genetic Algorithms for optimizing entity positions How to arrange the posi-

tions of diagnosis and treatments in an image such that related entities are as close together

as possible is an optimization problem. Suppose the number of diagnosis and procedure

together is N, and diagnosis and treatments are mapped to an image of size W ·H, there will

be (W ·H)!/(W ·H −N)! ways to arrange. To traverse through each possible arrangement

and evaluate how close together we are positioning the medical features is a computationally

impossible task in practice because as the number of features increases, the number of ways

of positioning grows super-exponentially. GAs can be used to find solutions to optimization

problems efficiently. A GA is a kind of EA inspired by the process of natural selection. It

is commonly used to generate high-quality solutions when the size of the search space for

solutions is very large. Typically, an initial population of solutions is randomly generated
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Figure (5.2) The genetic representation of feature positions inside of an image is the unrolling
of the image.

and then evolved to generate a population of better solutions. Biologically inspired operators

such as selection, crossover, and mutation are applied to the solutions during the evolution-

ary process. The algorithm lets better solutions survive into new generations and eliminate

bad ones.

To use a GA, we need to have genetic representations for the solutions. For our problem,

we simply unroll the image mapping to a vector that contains diagnosis and treatments, as

shown in Figure 5.2. The unrolled vectors are the genetic representation of image mapping

solutions.

We design modified genetic operators to generate new populations. We still use se-

lection, crossover, and mutation operations. However, the original crossover and mutation

operations can not be directly applied for diagnosis and treatment ordering because each

entity appears in the chromosome for exactly one time. Using the original crossover and mu-

tation would cause the solutions to contain some entities multiple times while missing other

ones. Instead, we use modified crossover and mutation operations. Figure 5.3 shows our

crossover operations. Two chromosomes, Parent a and Parent b, are recombined to generate

two children. The children contain genes from both parents. To produce Child a, the front

part of the chromosome from Parent a (bounded by the red box) is first taken. However,

we cannot simply use the latter part of Parent b. Instead, from Parent b, we remove the

genes Parent a has already passed on to the child, concatenate the remaining genes in order,
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Figure (5.3) Modified crossover operation.
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Figure (5.4) Mutation operations swaps two values.

and give that to Child a (bounded by the orange boxes). Child b is produced in a similar

way as Child a. For mutation, two genes in the chromosome are randomly chosen, and their

positions are swapped. These modified genetic operations guarantee that the children inherit

from both parents while containing each diagnosis and treatment for exactly one time.

We also design a fitness function to evaluate how good are the solutions. For each

treatment (procedure or drug), we find its N-nearest diagnosis neighbors {N1, N2, . . . , Nn}

according to the condition probability scores, with N1 being the closest diagnosis neighbor.

In the image mapping, we define a neighborhood for each treatment. The neighborhood is

simply the adjacent pixels to the treatment pixel. As shown in Figure 5.5, the neighborhood

for drug Advil is bounded by the red box and has a size 3x3. For each treatment i, we check

if any diagnosis in {N1, N2, . . . , Nn} is within its neighborhood and assign a corresponding

score Ti. The value of Ti is determined by which diagnosis is within I’s neighborhood. For
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Figure (5.5) A 3x3 neighborhood example.

example, if N1 is within I’s neighborhood, Ti takes on a small value such as 1. If no diagnosis

is within I’s neighborhood, Ti is infinity. The fitness score of an image mapping is sum(Ti)

for all treatments i. We want to optimize the image mapping to have a small fitness score

as possible.

The overall steps of our modified GA for diagnosis-treatment to image mapping is as
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follows:

Algorithm 3: Diagnosis Treatments Mapping Optimization

begin

create initial population of random solutions P ;

choose encoding scheme to encode image mappings to individual chromosomes;

while not stopping condition do

P ′ = ∅;

calculate fitness f(i) for each individual i in P ;

sort f(i) for all i in P ;

select I fittest individuals in P ;

P ′ = P ′ ∪ I;

randomly select I less fit individuals in P ;

P ′ = P ′ ∪ I;

while P ′.size < P .size do

select p1 and p2 from P ′;

crossover p1 and p2 to get h1 and h2;

mutate h1 and h2 to get c1 and c2 P
′ = P ′ ∪ {c1, c2};

end

P = P ′;

end

decode the individual i with the max fitness to get best image mapping rule M ;

return M .

end

5.2.2 Data Augmentation

One problem for prediction tasks on EHRs is that the dataset is usually highly unbal-

anced. The number of positive samples is very small compared with the negatives ones.

Having highly unbalanced data will cause deep learning models to perform poorly since it
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will be difficult for the model to learn from the minority class. Using data augmentation

[67] to boost the number of positives samples is a solution to data imbalance. Popular im-

age augmentation methods such as translation, rotation, and flipping do not suit our needs

here. Since pixels of different coordinates have different meanings – they represent different

diagnosis or treatments, we do not want to use translations or rotations as they change

pixel locations. A popular method used for EHR data augmentation is Synthetic Minority

Oversampling Technique (SMOTE) [11]. SMOTE works by selecting two samples, drawing

a line between them in the feature space, and generating a new sample along the line. We

found the data augmentation using SMOTE to be very slow due to a large amount of data

and high feature dimensions that we have. We use a novel data augmentation technique for

EHR data. The technique is inspired by image overlay data augmentation methods [40], with

adaptation to the EHR domain. As shown in Figure 5.6, we take all features from a positive

sample and overlay them with part/all features from a negative sample to produce a new

synthesized positive sample. Intuitively, positive samples plus features from the negative

samples should still generate positive samples. This technique is easy to implement and runs

very efficiently in practice.

Equation 5.2 is used to generate a synthesized positive patient image.

Iaug[i, j] = min(1, Ipos[i, j] +Mask[i, j] · Ineg[i, j]) (5.2)

Iaug is the augmented image, Ipos is a positive image, Ineg is a negative image. i and j are

coordinates for a pixel in the image. Mask[i, j] is a mask for the pixel that takes either 0

or 1. This value is randomly generated according to a preset probability. The function min

takes the minimum value between two values.

5.2.3 Convolutional Neural Networks for image mapping classification

We process EHR data for every patient and convert the diagnosis-treatment information

to images. Every patient has one image that encodes the EHR information over a time

interval. After mapping diagnosis and treatments to images, we pass the images to a CNN
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Figure (5.6) To generate a synthesize positive patient image, a positive patient’s feature is
overlaid with part of a negative patient’s features.

for feature extraction and classification. A CNN model of multiple convolution layers is

created for a binary classification task. Algorithm 4 describes how the convolution filters

learn the similarity information from neighboring pixels.

Algorithm 4: Convolution for feature similarity learning

begin

obtain feature to image mapping rule M from Algorithm 3;

apply image mapping rule to convert diagnosis, procedure, drug features

{Dx, Px, Rx} to images X = M(Dx, Px, Rx);

obtain training sample scores P using a base machine learning model;

remove n potentially confusing training examples according to P ;

data augmentation to produce balanced train data X train according to

Equation 5.2;

tune CNN model architecture;

train CNN model weights W using X train;

inference scores P test on test datasets using trained model weights W .

end
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5.2.4 Overall Model Architecture

Figure 5.7 shows the overall architecture of our model. Our input data contains both

patient demographic information and patient journey information. All of this information

is fed to the base machine learning model, and prediction scores are produced. The patient

journey information - sequences of procedures, diagnosis, and treatments are mapped to

images using optimized image mapping rules. We then use our data augmentation method

to balance the positive and negative classes. The output scores from the base machine

learning model here are also used to remove some training samples that could potentially

be confusing to the deep learning model. The images are then fed to a CNN model for

prediction. The output scores from the CNN model are finally combined with the base

machine learning model for a final prediction score.

5.3 Experiments and Results

We perform our experiments on a CLL dataset. We compare our results with base

machine learning models on the validation dataset. Top k patients with the highest scores

are selected, and precisions are calculated for different k values;

5.3.1 Chronic Lymphocytic Leukemia Dataset

We perform our experiments on the CLL dataset. This dataset is obtained from the

IQVIA longitudinal prescription claims database and electronic medical claims database.

IQVIA receives 2 billion prescription claims per year with history from January 2004 with

coverage up to 88% for the retail channel, 50-70% for traditional and specialty mail order,

and 40% for long-term care. This information represents activities during the prescription

transaction and contains information regarding the product, provider, payer, and geography.

Prescription claims data is longitudinally linked back to an anonymous patient token and

can be linked to events within the dataset and across other patient data assets. IQVIA re-

ceives just under 1 billion office-based electronic medical claims from office-based individual
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Figure (5.7) The overall architecture of the proposed model.

professionals, ambulatory, and general healthcare sites per year, including patient-level diag-

nosis and procedure information. The information represents nearly 40% of all electronically

filed medical claims in the US and is now the largest diagnosis database of its kind. The

medical claims data includes information that is tracked to a specific prescriber enabling the

user to obtain a complete picture of a prescriber’s activity, which can, in turn, be linked

to prescription data, affiliations, and other attributes of the practitioner. Information for

patients who were diagnosed with CLL is selected from the databases. We select the training

cohort from April 2018 through May 2019. We divide this time frame into three equal time

intervals. Positive patients are those who were diagnosed for CLL before the interval and

initiated treatments within the time interval, whereas negative ones were diagnosed before

the interval but did not receive any treatments inside of the interval. The validation dataset
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Figure (5.8) Actual examples of mapping CLL diagnosis and treatments to images.

is cohort from 201909 to 201912. Due to potential patient information overlap from neigh-

boring cohorts, we ensured that validation cohorts are at least three months later than the

most recent training cohort to avoid information leakage. Overall, the amount of positive

patients is around 3% among all CLL patients. Figure 5.8 shows some real examples of how

the EHR diagnosis-treatment data for CLL patients look like when converted to images.

5.3.2 Disease progression prediction on CLL dataset

Since our dataset is highly unbalanced between positives and negatives, we use number

of relevant items present in the top-k recommendation of our algorithm (Precision at K) to

evaluate model performances. Scores are calculated for all patients, and k patients with the

highest scores are selected. We then calculate among the selected patients to see what is the

percentage of patients who are actually positive.

We apply our method on three baseline models for comparison: Random Forest, XG-

Boost (XGB) [14], and CatBoost. We evaluate the performance of these models with and

without CNN learned feature similarities.

In practice, we care about model performance for the top 3,000 patients with the highest

scores; thus we compare for values 3,000 and less.

As shown in Figure 5.9, we compare the base machine models with our CNN boosted

models. We also include ensembles of baseline models as a reference. It can be seen that our
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Figure (5.9) Overall model performance.

model outperforms the baselines overall.

In Table 5.1, we show the Precision at K results for different values of k: 100, 300,

500, 1,000, 2,000, and 3,000. We compare our method with the base machine learning

models: Random Forest, XGB, and CatBoost. It can be observed that our method has better

precision values compared with the baseline models. When k is smaller, the improvements

tend to be larger.

5.4 Summary

In this work, we propose to map procedure, prescription, and diagnosis features in an

EHR to images and use a CNN to learn the features and local patterns of the images. The

relationship between these medical features is taken into consideration this way. We apply

our method to real-world patient medical data, and experimental results show that our

method can boost the performance of a few base machine learning models. In the future, we
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Table (5.1) Precision comparison on the CLL dataset with different K values. The CNN
boosted Model outperforms the baseline models.

K value 100 300 500 1,000 2,000 3,000
Random Forest 24.4% 19.0% 17.4% 14.6% 12.5% 11.3%

CNN-Boosted-RF 26.4% 20.8% 18.2% 15.8% 12.7% 11.3%
(+2.0%) (+1.8%) (+0.8%) (+1.2%) (+0.2%) x

XGB 26.6% 20.3% 17.8% 14.7% 12.7% 11.5%
CNN-Boosted-XGB 32.8% 23.6% 21.0% 17.4% 13.7% 11.9%

(+6.2%) (+3.3%) (+3.2%) (+2.7)% (+1.0%) (+0.4%)
CatBoost 24.6% 19.9% 17.7% 15.3% 12.7% 11.5%

CNN-Boosted-Cat 26.4% 22.7% 20.4% 17.0% 13.5% 12.0%
(+1.8%) (+ 2.8%) (+2.7%) (+1.7%) (+0.8%) (+0.5%)

RF + XGB 26.2% 19.7% 17.8% 15.2% 13.0% 11.7%
XGB + CAT 26.0% 20.4% 17.8% 14.8% 13.0% 11.8%

plan to apply our method to more medical datasets. Also, medical features can be mapped to

3D images where more detailed time sequence information can be encoded. The 3D images

can then be fed into 3D-CNN models for feature learning.
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PART 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this research, we present various methods to improve the training time and accuracy

of deep learning models. Specifically, we propose a method that efficiently tunes hyperpa-

rameters of CNNs automatically. We use a variable length GA to tune hyperparameters of

a CNN model. The results are compared with a fix-length GA and a mutation only EA.

Experimental results show that our method can discover models with better performance

when under similar time constraints. We also designed an intelligent freezing method that

accelerates the training of deep learning models. A formula is designed to indicate which

layers can be frozen during model training to save time. This formula is designed by analyz-

ing the gradient changes of deep learning layers. Experimental results on standard computer

vision datasets and various deep learning models show that the intelligent freezing method

can save training time while maintaining similar model prediction performance. We also

explore ways to incorporate prior knowledge into deep learning training. We extract class

similarity knowledge from the validation dataset and use a graph convolution layer to em-

bed this knowledge in a CNN model. We performed analysis on the effect of adding prior

knowledge when the size of the model, and amount of training data varies. And results show

that adding knowledge helps, especially when the amount of training data is small. We also

propose a method that maps non-image data into images while taking feature similarity in-

formation into consideration. Specifically, we turn EHRs into images and use a CNN to learn

the local feature patterns. We add this component as a boosting module to build machine

learning models. Results show that this method has improvements over the baselines.
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6.2 Future Works

6.2.1 Extend Layer Freezing to Freeze Arbitrary Layers

We plan to extend the work mentioned in Chapter 3: freezing layers to save training

time. Right now, in this work, there are requirements on which layers can be frozen. Because

of the nature of backpropagation, freezing must start at the first layer and be consecutive.

The question is whether we can employ some techniques so that we can freeze arbitrary

layers in the model.

If a layer is frozen, we do not calculate its gradients. However, if we want to keep the

layer before the frozen one active, we need to know how to calculate its gradients so we can

update its weights. We cannot use back-propagation because the next layer is frozen. One

way is to use the old gradients from the previous epoch. There are also ways to predict a

layer’s gradients based on its gradients in previous epochs.

6.2.2 Use More Metrics for Model Evaluations

Additional metrics can be used for a more comprehensive analysis on our models. For

example, when comparing our intelligent freezing method with the baseline, we used time

and test accuracy as evaluation metrics. We wanted to make sure that similar test accuracy

can be maintained while reducing training time. In the future, we can apply our freezing

methods to class imbalanced datasets and observe the effect on precision and recall. Also,

when experimenting on datasets with imbalanced classes, receiver operating characteristic

(ROC) curve and area under the ROC (AUC) curve can be used as additional metrics for a

more thorough understanding of the model performance.

6.2.3 Combining Improvements from Various Methods

We proposed various methods to improve time and accuracy of deep learning models.

It would be interesting to combine multiple methods together to see if that gives us further

more improvements. For example, can combining freezing and prior knowledge together
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contribute to both faster training and higher model accuracy? Hessel et al. [30] combined

algorithms in deep reinforcement learning and studied their combination. We can do similar

experiments and analysis on our methods.

6.2.4 Use Prior Knowledge to Generate Soft Targets

Typically, the label for the data is one-hot encoded in a classification problem: the

target class is 1 and the rest of the classes are 0’s. The targets are hard targets since they

cannot take other values besides 0 and 1. Soft targets on the other hand, is a real value

between 0 and 1. Unlike hard targets, soft targets can carry more information: the similarity

between classes. For example, it can tell us which 2’s look like 7’s and which 4’s look like

9’s. Soft targets have been used to distill knowledge from a cumbersome ensemble of models

into a small model. We plan to calculate the soft targets using prior knowledge. Since we

have already defined class similarity using misclassification graph in Chapter 4, we can start

from there. We plan to use the misclassification graph to generate soft targets, combine that

which the hard targets, and see how that can help with the deep learning model.

6.2.5 Use Graph Attention Networks to Learn Class Similarities

Instead of using a graph convolutional layer at the end of a CNN mode with predefined

edge information, we can use a graph attention layer. Graph attention networks do not

require edge information as it learns the edges through the training process. It would be

interesting to add a graph attention layer at the end of a CNN, train the model, and observe

the learned edges. Analysis can be performed to see if the learned edges correlate to class

similarities.
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